[NET]: Make netlink_kernel_release publically available as sk_release_kernel.
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 struct timeval tv;
219
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
226
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
229
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
237 }
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
255 }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
263 }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 int err = 0;
270 int skb_len;
271
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
274 */
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
279 }
280
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
284
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
288 }
289
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
292
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
297 */
298 skb_len = skb->len;
299
300 skb_queue_tail(&sk->sk_receive_queue, skb);
301
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311 int rc = NET_RX_SUCCESS;
312
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
315
316 skb->dev = NULL;
317
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
323 /*
324 * trylock + unlock semantics:
325 */
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328 rc = sk->sk_backlog_rcv(sk, skb);
329
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345 struct dst_entry *dst = sk->sk_dst_cache;
346
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
351 }
352
353 return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359 struct dst_entry *dst = sk_dst_get(sk);
360
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
365 }
366
367 return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sk->sk_net;
376 char devname[IFNAMSIZ];
377 int index;
378
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
383
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
387
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
392 */
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
396
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
400
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
405
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
409
410 index = dev->ifindex;
411 dev_put(dev);
412 }
413
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
418
419 ret = 0;
420
421 out:
422 #endif
423
424 return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
433 }
434
435 /*
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
438 */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
442 {
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
448
449 /*
450 * Options without arguments
451 */
452
453 #ifdef SO_DONTLINGER /* Compatibility item... */
454 if (optname == SO_DONTLINGER) {
455 lock_sock(sk);
456 sock_reset_flag(sk, SOCK_LINGER);
457 release_sock(sk);
458 return 0;
459 }
460 #endif
461
462 if (optname == SO_BINDTODEVICE)
463 return sock_bindtodevice(sk, optval, optlen);
464
465 if (optlen < sizeof(int))
466 return -EINVAL;
467
468 if (get_user(val, (int __user *)optval))
469 return -EFAULT;
470
471 valbool = val?1:0;
472
473 lock_sock(sk);
474
475 switch(optname) {
476 case SO_DEBUG:
477 if (val && !capable(CAP_NET_ADMIN)) {
478 ret = -EACCES;
479 } else
480 sock_valbool_flag(sk, SOCK_DBG, valbool);
481 break;
482 case SO_REUSEADDR:
483 sk->sk_reuse = valbool;
484 break;
485 case SO_TYPE:
486 case SO_ERROR:
487 ret = -ENOPROTOOPT;
488 break;
489 case SO_DONTROUTE:
490 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491 break;
492 case SO_BROADCAST:
493 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494 break;
495 case SO_SNDBUF:
496 /* Don't error on this BSD doesn't and if you think
497 about it this is right. Otherwise apps have to
498 play 'guess the biggest size' games. RCVBUF/SNDBUF
499 are treated in BSD as hints */
500
501 if (val > sysctl_wmem_max)
502 val = sysctl_wmem_max;
503 set_sndbuf:
504 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505 if ((val * 2) < SOCK_MIN_SNDBUF)
506 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 else
508 sk->sk_sndbuf = val * 2;
509
510 /*
511 * Wake up sending tasks if we
512 * upped the value.
513 */
514 sk->sk_write_space(sk);
515 break;
516
517 case SO_SNDBUFFORCE:
518 if (!capable(CAP_NET_ADMIN)) {
519 ret = -EPERM;
520 break;
521 }
522 goto set_sndbuf;
523
524 case SO_RCVBUF:
525 /* Don't error on this BSD doesn't and if you think
526 about it this is right. Otherwise apps have to
527 play 'guess the biggest size' games. RCVBUF/SNDBUF
528 are treated in BSD as hints */
529
530 if (val > sysctl_rmem_max)
531 val = sysctl_rmem_max;
532 set_rcvbuf:
533 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 /*
535 * We double it on the way in to account for
536 * "struct sk_buff" etc. overhead. Applications
537 * assume that the SO_RCVBUF setting they make will
538 * allow that much actual data to be received on that
539 * socket.
540 *
541 * Applications are unaware that "struct sk_buff" and
542 * other overheads allocate from the receive buffer
543 * during socket buffer allocation.
544 *
545 * And after considering the possible alternatives,
546 * returning the value we actually used in getsockopt
547 * is the most desirable behavior.
548 */
549 if ((val * 2) < SOCK_MIN_RCVBUF)
550 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 else
552 sk->sk_rcvbuf = val * 2;
553 break;
554
555 case SO_RCVBUFFORCE:
556 if (!capable(CAP_NET_ADMIN)) {
557 ret = -EPERM;
558 break;
559 }
560 goto set_rcvbuf;
561
562 case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564 if (sk->sk_protocol == IPPROTO_TCP)
565 tcp_set_keepalive(sk, valbool);
566 #endif
567 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568 break;
569
570 case SO_OOBINLINE:
571 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572 break;
573
574 case SO_NO_CHECK:
575 sk->sk_no_check = valbool;
576 break;
577
578 case SO_PRIORITY:
579 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580 sk->sk_priority = val;
581 else
582 ret = -EPERM;
583 break;
584
585 case SO_LINGER:
586 if (optlen < sizeof(ling)) {
587 ret = -EINVAL; /* 1003.1g */
588 break;
589 }
590 if (copy_from_user(&ling,optval,sizeof(ling))) {
591 ret = -EFAULT;
592 break;
593 }
594 if (!ling.l_onoff)
595 sock_reset_flag(sk, SOCK_LINGER);
596 else {
597 #if (BITS_PER_LONG == 32)
598 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600 else
601 #endif
602 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603 sock_set_flag(sk, SOCK_LINGER);
604 }
605 break;
606
607 case SO_BSDCOMPAT:
608 sock_warn_obsolete_bsdism("setsockopt");
609 break;
610
611 case SO_PASSCRED:
612 if (valbool)
613 set_bit(SOCK_PASSCRED, &sock->flags);
614 else
615 clear_bit(SOCK_PASSCRED, &sock->flags);
616 break;
617
618 case SO_TIMESTAMP:
619 case SO_TIMESTAMPNS:
620 if (valbool) {
621 if (optname == SO_TIMESTAMP)
622 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 else
624 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625 sock_set_flag(sk, SOCK_RCVTSTAMP);
626 sock_enable_timestamp(sk);
627 } else {
628 sock_reset_flag(sk, SOCK_RCVTSTAMP);
629 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630 }
631 break;
632
633 case SO_RCVLOWAT:
634 if (val < 0)
635 val = INT_MAX;
636 sk->sk_rcvlowat = val ? : 1;
637 break;
638
639 case SO_RCVTIMEO:
640 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641 break;
642
643 case SO_SNDTIMEO:
644 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645 break;
646
647 case SO_ATTACH_FILTER:
648 ret = -EINVAL;
649 if (optlen == sizeof(struct sock_fprog)) {
650 struct sock_fprog fprog;
651
652 ret = -EFAULT;
653 if (copy_from_user(&fprog, optval, sizeof(fprog)))
654 break;
655
656 ret = sk_attach_filter(&fprog, sk);
657 }
658 break;
659
660 case SO_DETACH_FILTER:
661 ret = sk_detach_filter(sk);
662 break;
663
664 case SO_PASSSEC:
665 if (valbool)
666 set_bit(SOCK_PASSSEC, &sock->flags);
667 else
668 clear_bit(SOCK_PASSSEC, &sock->flags);
669 break;
670 case SO_MARK:
671 if (!capable(CAP_NET_ADMIN))
672 ret = -EPERM;
673 else {
674 sk->sk_mark = val;
675 }
676 break;
677
678 /* We implement the SO_SNDLOWAT etc to
679 not be settable (1003.1g 5.3) */
680 default:
681 ret = -ENOPROTOOPT;
682 break;
683 }
684 release_sock(sk);
685 return ret;
686 }
687
688
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690 char __user *optval, int __user *optlen)
691 {
692 struct sock *sk = sock->sk;
693
694 union {
695 int val;
696 struct linger ling;
697 struct timeval tm;
698 } v;
699
700 unsigned int lv = sizeof(int);
701 int len;
702
703 if (get_user(len, optlen))
704 return -EFAULT;
705 if (len < 0)
706 return -EINVAL;
707
708 switch(optname) {
709 case SO_DEBUG:
710 v.val = sock_flag(sk, SOCK_DBG);
711 break;
712
713 case SO_DONTROUTE:
714 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715 break;
716
717 case SO_BROADCAST:
718 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719 break;
720
721 case SO_SNDBUF:
722 v.val = sk->sk_sndbuf;
723 break;
724
725 case SO_RCVBUF:
726 v.val = sk->sk_rcvbuf;
727 break;
728
729 case SO_REUSEADDR:
730 v.val = sk->sk_reuse;
731 break;
732
733 case SO_KEEPALIVE:
734 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735 break;
736
737 case SO_TYPE:
738 v.val = sk->sk_type;
739 break;
740
741 case SO_ERROR:
742 v.val = -sock_error(sk);
743 if (v.val==0)
744 v.val = xchg(&sk->sk_err_soft, 0);
745 break;
746
747 case SO_OOBINLINE:
748 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749 break;
750
751 case SO_NO_CHECK:
752 v.val = sk->sk_no_check;
753 break;
754
755 case SO_PRIORITY:
756 v.val = sk->sk_priority;
757 break;
758
759 case SO_LINGER:
760 lv = sizeof(v.ling);
761 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
762 v.ling.l_linger = sk->sk_lingertime / HZ;
763 break;
764
765 case SO_BSDCOMPAT:
766 sock_warn_obsolete_bsdism("getsockopt");
767 break;
768
769 case SO_TIMESTAMP:
770 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772 break;
773
774 case SO_TIMESTAMPNS:
775 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776 break;
777
778 case SO_RCVTIMEO:
779 lv=sizeof(struct timeval);
780 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781 v.tm.tv_sec = 0;
782 v.tm.tv_usec = 0;
783 } else {
784 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786 }
787 break;
788
789 case SO_SNDTIMEO:
790 lv=sizeof(struct timeval);
791 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792 v.tm.tv_sec = 0;
793 v.tm.tv_usec = 0;
794 } else {
795 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797 }
798 break;
799
800 case SO_RCVLOWAT:
801 v.val = sk->sk_rcvlowat;
802 break;
803
804 case SO_SNDLOWAT:
805 v.val=1;
806 break;
807
808 case SO_PASSCRED:
809 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810 break;
811
812 case SO_PEERCRED:
813 if (len > sizeof(sk->sk_peercred))
814 len = sizeof(sk->sk_peercred);
815 if (copy_to_user(optval, &sk->sk_peercred, len))
816 return -EFAULT;
817 goto lenout;
818
819 case SO_PEERNAME:
820 {
821 char address[128];
822
823 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824 return -ENOTCONN;
825 if (lv < len)
826 return -EINVAL;
827 if (copy_to_user(optval, address, len))
828 return -EFAULT;
829 goto lenout;
830 }
831
832 /* Dubious BSD thing... Probably nobody even uses it, but
833 * the UNIX standard wants it for whatever reason... -DaveM
834 */
835 case SO_ACCEPTCONN:
836 v.val = sk->sk_state == TCP_LISTEN;
837 break;
838
839 case SO_PASSSEC:
840 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841 break;
842
843 case SO_PEERSEC:
844 return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846 case SO_MARK:
847 v.val = sk->sk_mark;
848 break;
849
850 default:
851 return -ENOPROTOOPT;
852 }
853
854 if (len > lv)
855 len = lv;
856 if (copy_to_user(optval, &v, len))
857 return -EFAULT;
858 lenout:
859 if (put_user(len, optlen))
860 return -EFAULT;
861 return 0;
862 }
863
864 /*
865 * Initialize an sk_lock.
866 *
867 * (We also register the sk_lock with the lock validator.)
868 */
869 static inline void sock_lock_init(struct sock *sk)
870 {
871 sock_lock_init_class_and_name(sk,
872 af_family_slock_key_strings[sk->sk_family],
873 af_family_slock_keys + sk->sk_family,
874 af_family_key_strings[sk->sk_family],
875 af_family_keys + sk->sk_family);
876 }
877
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
879 {
880 #ifdef CONFIG_SECURITY_NETWORK
881 void *sptr = nsk->sk_security;
882 #endif
883
884 memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886 nsk->sk_security = sptr;
887 security_sk_clone(osk, nsk);
888 #endif
889 }
890
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892 int family)
893 {
894 struct sock *sk;
895 struct kmem_cache *slab;
896
897 slab = prot->slab;
898 if (slab != NULL)
899 sk = kmem_cache_alloc(slab, priority);
900 else
901 sk = kmalloc(prot->obj_size, priority);
902
903 if (sk != NULL) {
904 if (security_sk_alloc(sk, family, priority))
905 goto out_free;
906
907 if (!try_module_get(prot->owner))
908 goto out_free_sec;
909 }
910
911 return sk;
912
913 out_free_sec:
914 security_sk_free(sk);
915 out_free:
916 if (slab != NULL)
917 kmem_cache_free(slab, sk);
918 else
919 kfree(sk);
920 return NULL;
921 }
922
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
924 {
925 struct kmem_cache *slab;
926 struct module *owner;
927
928 owner = prot->owner;
929 slab = prot->slab;
930
931 security_sk_free(sk);
932 if (slab != NULL)
933 kmem_cache_free(slab, sk);
934 else
935 kfree(sk);
936 module_put(owner);
937 }
938
939 /**
940 * sk_alloc - All socket objects are allocated here
941 * @net: the applicable net namespace
942 * @family: protocol family
943 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 * @prot: struct proto associated with this new sock instance
945 * @zero_it: if we should zero the newly allocated sock
946 */
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948 struct proto *prot)
949 {
950 struct sock *sk;
951
952 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953 if (sk) {
954 sk->sk_family = family;
955 /*
956 * See comment in struct sock definition to understand
957 * why we need sk_prot_creator -acme
958 */
959 sk->sk_prot = sk->sk_prot_creator = prot;
960 sock_lock_init(sk);
961 sk->sk_net = get_net(net);
962 }
963
964 return sk;
965 }
966
967 void sk_free(struct sock *sk)
968 {
969 struct sk_filter *filter;
970
971 if (sk->sk_destruct)
972 sk->sk_destruct(sk);
973
974 filter = rcu_dereference(sk->sk_filter);
975 if (filter) {
976 sk_filter_uncharge(sk, filter);
977 rcu_assign_pointer(sk->sk_filter, NULL);
978 }
979
980 sock_disable_timestamp(sk);
981
982 if (atomic_read(&sk->sk_omem_alloc))
983 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
985
986 put_net(sk->sk_net);
987 sk_prot_free(sk->sk_prot_creator, sk);
988 }
989
990 /*
991 * Last sock_put should drop referrence to sk->sk_net. It has already
992 * been dropped in sk_change_net. Taking referrence to stopping namespace
993 * is not an option.
994 * Take referrence to a socket to remove it from hash _alive_ and after that
995 * destroy it in the context of init_net.
996 */
997 void sk_release_kernel(struct sock *sk)
998 {
999 if (sk == NULL || sk->sk_socket == NULL)
1000 return;
1001
1002 sock_hold(sk);
1003 sock_release(sk->sk_socket);
1004 sk->sk_net = get_net(&init_net);
1005 sock_put(sk);
1006 }
1007
1008 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1009 {
1010 struct sock *newsk;
1011
1012 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1013 if (newsk != NULL) {
1014 struct sk_filter *filter;
1015
1016 sock_copy(newsk, sk);
1017
1018 /* SANITY */
1019 get_net(newsk->sk_net);
1020 sk_node_init(&newsk->sk_node);
1021 sock_lock_init(newsk);
1022 bh_lock_sock(newsk);
1023 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1024
1025 atomic_set(&newsk->sk_rmem_alloc, 0);
1026 atomic_set(&newsk->sk_wmem_alloc, 0);
1027 atomic_set(&newsk->sk_omem_alloc, 0);
1028 skb_queue_head_init(&newsk->sk_receive_queue);
1029 skb_queue_head_init(&newsk->sk_write_queue);
1030 #ifdef CONFIG_NET_DMA
1031 skb_queue_head_init(&newsk->sk_async_wait_queue);
1032 #endif
1033
1034 rwlock_init(&newsk->sk_dst_lock);
1035 rwlock_init(&newsk->sk_callback_lock);
1036 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1037 af_callback_keys + newsk->sk_family,
1038 af_family_clock_key_strings[newsk->sk_family]);
1039
1040 newsk->sk_dst_cache = NULL;
1041 newsk->sk_wmem_queued = 0;
1042 newsk->sk_forward_alloc = 0;
1043 newsk->sk_send_head = NULL;
1044 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1045
1046 sock_reset_flag(newsk, SOCK_DONE);
1047 skb_queue_head_init(&newsk->sk_error_queue);
1048
1049 filter = newsk->sk_filter;
1050 if (filter != NULL)
1051 sk_filter_charge(newsk, filter);
1052
1053 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1054 /* It is still raw copy of parent, so invalidate
1055 * destructor and make plain sk_free() */
1056 newsk->sk_destruct = NULL;
1057 sk_free(newsk);
1058 newsk = NULL;
1059 goto out;
1060 }
1061
1062 newsk->sk_err = 0;
1063 newsk->sk_priority = 0;
1064 atomic_set(&newsk->sk_refcnt, 2);
1065
1066 /*
1067 * Increment the counter in the same struct proto as the master
1068 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1069 * is the same as sk->sk_prot->socks, as this field was copied
1070 * with memcpy).
1071 *
1072 * This _changes_ the previous behaviour, where
1073 * tcp_create_openreq_child always was incrementing the
1074 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1075 * to be taken into account in all callers. -acme
1076 */
1077 sk_refcnt_debug_inc(newsk);
1078 newsk->sk_socket = NULL;
1079 newsk->sk_sleep = NULL;
1080
1081 if (newsk->sk_prot->sockets_allocated)
1082 atomic_inc(newsk->sk_prot->sockets_allocated);
1083 }
1084 out:
1085 return newsk;
1086 }
1087
1088 EXPORT_SYMBOL_GPL(sk_clone);
1089
1090 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1091 {
1092 __sk_dst_set(sk, dst);
1093 sk->sk_route_caps = dst->dev->features;
1094 if (sk->sk_route_caps & NETIF_F_GSO)
1095 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1096 if (sk_can_gso(sk)) {
1097 if (dst->header_len)
1098 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1099 else
1100 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1101 }
1102 }
1103 EXPORT_SYMBOL_GPL(sk_setup_caps);
1104
1105 void __init sk_init(void)
1106 {
1107 if (num_physpages <= 4096) {
1108 sysctl_wmem_max = 32767;
1109 sysctl_rmem_max = 32767;
1110 sysctl_wmem_default = 32767;
1111 sysctl_rmem_default = 32767;
1112 } else if (num_physpages >= 131072) {
1113 sysctl_wmem_max = 131071;
1114 sysctl_rmem_max = 131071;
1115 }
1116 }
1117
1118 /*
1119 * Simple resource managers for sockets.
1120 */
1121
1122
1123 /*
1124 * Write buffer destructor automatically called from kfree_skb.
1125 */
1126 void sock_wfree(struct sk_buff *skb)
1127 {
1128 struct sock *sk = skb->sk;
1129
1130 /* In case it might be waiting for more memory. */
1131 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1132 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1133 sk->sk_write_space(sk);
1134 sock_put(sk);
1135 }
1136
1137 /*
1138 * Read buffer destructor automatically called from kfree_skb.
1139 */
1140 void sock_rfree(struct sk_buff *skb)
1141 {
1142 struct sock *sk = skb->sk;
1143
1144 skb_truesize_check(skb);
1145 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1146 sk_mem_uncharge(skb->sk, skb->truesize);
1147 }
1148
1149
1150 int sock_i_uid(struct sock *sk)
1151 {
1152 int uid;
1153
1154 read_lock(&sk->sk_callback_lock);
1155 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1156 read_unlock(&sk->sk_callback_lock);
1157 return uid;
1158 }
1159
1160 unsigned long sock_i_ino(struct sock *sk)
1161 {
1162 unsigned long ino;
1163
1164 read_lock(&sk->sk_callback_lock);
1165 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1166 read_unlock(&sk->sk_callback_lock);
1167 return ino;
1168 }
1169
1170 /*
1171 * Allocate a skb from the socket's send buffer.
1172 */
1173 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1174 gfp_t priority)
1175 {
1176 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1177 struct sk_buff * skb = alloc_skb(size, priority);
1178 if (skb) {
1179 skb_set_owner_w(skb, sk);
1180 return skb;
1181 }
1182 }
1183 return NULL;
1184 }
1185
1186 /*
1187 * Allocate a skb from the socket's receive buffer.
1188 */
1189 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1190 gfp_t priority)
1191 {
1192 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1193 struct sk_buff *skb = alloc_skb(size, priority);
1194 if (skb) {
1195 skb_set_owner_r(skb, sk);
1196 return skb;
1197 }
1198 }
1199 return NULL;
1200 }
1201
1202 /*
1203 * Allocate a memory block from the socket's option memory buffer.
1204 */
1205 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1206 {
1207 if ((unsigned)size <= sysctl_optmem_max &&
1208 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1209 void *mem;
1210 /* First do the add, to avoid the race if kmalloc
1211 * might sleep.
1212 */
1213 atomic_add(size, &sk->sk_omem_alloc);
1214 mem = kmalloc(size, priority);
1215 if (mem)
1216 return mem;
1217 atomic_sub(size, &sk->sk_omem_alloc);
1218 }
1219 return NULL;
1220 }
1221
1222 /*
1223 * Free an option memory block.
1224 */
1225 void sock_kfree_s(struct sock *sk, void *mem, int size)
1226 {
1227 kfree(mem);
1228 atomic_sub(size, &sk->sk_omem_alloc);
1229 }
1230
1231 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1232 I think, these locks should be removed for datagram sockets.
1233 */
1234 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1235 {
1236 DEFINE_WAIT(wait);
1237
1238 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1239 for (;;) {
1240 if (!timeo)
1241 break;
1242 if (signal_pending(current))
1243 break;
1244 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1246 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1247 break;
1248 if (sk->sk_shutdown & SEND_SHUTDOWN)
1249 break;
1250 if (sk->sk_err)
1251 break;
1252 timeo = schedule_timeout(timeo);
1253 }
1254 finish_wait(sk->sk_sleep, &wait);
1255 return timeo;
1256 }
1257
1258
1259 /*
1260 * Generic send/receive buffer handlers
1261 */
1262
1263 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1264 unsigned long header_len,
1265 unsigned long data_len,
1266 int noblock, int *errcode)
1267 {
1268 struct sk_buff *skb;
1269 gfp_t gfp_mask;
1270 long timeo;
1271 int err;
1272
1273 gfp_mask = sk->sk_allocation;
1274 if (gfp_mask & __GFP_WAIT)
1275 gfp_mask |= __GFP_REPEAT;
1276
1277 timeo = sock_sndtimeo(sk, noblock);
1278 while (1) {
1279 err = sock_error(sk);
1280 if (err != 0)
1281 goto failure;
1282
1283 err = -EPIPE;
1284 if (sk->sk_shutdown & SEND_SHUTDOWN)
1285 goto failure;
1286
1287 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1288 skb = alloc_skb(header_len, gfp_mask);
1289 if (skb) {
1290 int npages;
1291 int i;
1292
1293 /* No pages, we're done... */
1294 if (!data_len)
1295 break;
1296
1297 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1298 skb->truesize += data_len;
1299 skb_shinfo(skb)->nr_frags = npages;
1300 for (i = 0; i < npages; i++) {
1301 struct page *page;
1302 skb_frag_t *frag;
1303
1304 page = alloc_pages(sk->sk_allocation, 0);
1305 if (!page) {
1306 err = -ENOBUFS;
1307 skb_shinfo(skb)->nr_frags = i;
1308 kfree_skb(skb);
1309 goto failure;
1310 }
1311
1312 frag = &skb_shinfo(skb)->frags[i];
1313 frag->page = page;
1314 frag->page_offset = 0;
1315 frag->size = (data_len >= PAGE_SIZE ?
1316 PAGE_SIZE :
1317 data_len);
1318 data_len -= PAGE_SIZE;
1319 }
1320
1321 /* Full success... */
1322 break;
1323 }
1324 err = -ENOBUFS;
1325 goto failure;
1326 }
1327 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1328 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1329 err = -EAGAIN;
1330 if (!timeo)
1331 goto failure;
1332 if (signal_pending(current))
1333 goto interrupted;
1334 timeo = sock_wait_for_wmem(sk, timeo);
1335 }
1336
1337 skb_set_owner_w(skb, sk);
1338 return skb;
1339
1340 interrupted:
1341 err = sock_intr_errno(timeo);
1342 failure:
1343 *errcode = err;
1344 return NULL;
1345 }
1346
1347 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1348 int noblock, int *errcode)
1349 {
1350 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1351 }
1352
1353 static void __lock_sock(struct sock *sk)
1354 {
1355 DEFINE_WAIT(wait);
1356
1357 for (;;) {
1358 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1359 TASK_UNINTERRUPTIBLE);
1360 spin_unlock_bh(&sk->sk_lock.slock);
1361 schedule();
1362 spin_lock_bh(&sk->sk_lock.slock);
1363 if (!sock_owned_by_user(sk))
1364 break;
1365 }
1366 finish_wait(&sk->sk_lock.wq, &wait);
1367 }
1368
1369 static void __release_sock(struct sock *sk)
1370 {
1371 struct sk_buff *skb = sk->sk_backlog.head;
1372
1373 do {
1374 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1375 bh_unlock_sock(sk);
1376
1377 do {
1378 struct sk_buff *next = skb->next;
1379
1380 skb->next = NULL;
1381 sk->sk_backlog_rcv(sk, skb);
1382
1383 /*
1384 * We are in process context here with softirqs
1385 * disabled, use cond_resched_softirq() to preempt.
1386 * This is safe to do because we've taken the backlog
1387 * queue private:
1388 */
1389 cond_resched_softirq();
1390
1391 skb = next;
1392 } while (skb != NULL);
1393
1394 bh_lock_sock(sk);
1395 } while ((skb = sk->sk_backlog.head) != NULL);
1396 }
1397
1398 /**
1399 * sk_wait_data - wait for data to arrive at sk_receive_queue
1400 * @sk: sock to wait on
1401 * @timeo: for how long
1402 *
1403 * Now socket state including sk->sk_err is changed only under lock,
1404 * hence we may omit checks after joining wait queue.
1405 * We check receive queue before schedule() only as optimization;
1406 * it is very likely that release_sock() added new data.
1407 */
1408 int sk_wait_data(struct sock *sk, long *timeo)
1409 {
1410 int rc;
1411 DEFINE_WAIT(wait);
1412
1413 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1414 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1415 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1416 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1417 finish_wait(sk->sk_sleep, &wait);
1418 return rc;
1419 }
1420
1421 EXPORT_SYMBOL(sk_wait_data);
1422
1423 /**
1424 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1425 * @sk: socket
1426 * @size: memory size to allocate
1427 * @kind: allocation type
1428 *
1429 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1430 * rmem allocation. This function assumes that protocols which have
1431 * memory_pressure use sk_wmem_queued as write buffer accounting.
1432 */
1433 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1434 {
1435 struct proto *prot = sk->sk_prot;
1436 int amt = sk_mem_pages(size);
1437 int allocated;
1438
1439 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1440 allocated = atomic_add_return(amt, prot->memory_allocated);
1441
1442 /* Under limit. */
1443 if (allocated <= prot->sysctl_mem[0]) {
1444 if (prot->memory_pressure && *prot->memory_pressure)
1445 *prot->memory_pressure = 0;
1446 return 1;
1447 }
1448
1449 /* Under pressure. */
1450 if (allocated > prot->sysctl_mem[1])
1451 if (prot->enter_memory_pressure)
1452 prot->enter_memory_pressure();
1453
1454 /* Over hard limit. */
1455 if (allocated > prot->sysctl_mem[2])
1456 goto suppress_allocation;
1457
1458 /* guarantee minimum buffer size under pressure */
1459 if (kind == SK_MEM_RECV) {
1460 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1461 return 1;
1462 } else { /* SK_MEM_SEND */
1463 if (sk->sk_type == SOCK_STREAM) {
1464 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1465 return 1;
1466 } else if (atomic_read(&sk->sk_wmem_alloc) <
1467 prot->sysctl_wmem[0])
1468 return 1;
1469 }
1470
1471 if (prot->memory_pressure) {
1472 if (!*prot->memory_pressure ||
1473 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1474 sk_mem_pages(sk->sk_wmem_queued +
1475 atomic_read(&sk->sk_rmem_alloc) +
1476 sk->sk_forward_alloc))
1477 return 1;
1478 }
1479
1480 suppress_allocation:
1481
1482 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1483 sk_stream_moderate_sndbuf(sk);
1484
1485 /* Fail only if socket is _under_ its sndbuf.
1486 * In this case we cannot block, so that we have to fail.
1487 */
1488 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1489 return 1;
1490 }
1491
1492 /* Alas. Undo changes. */
1493 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1494 atomic_sub(amt, prot->memory_allocated);
1495 return 0;
1496 }
1497
1498 EXPORT_SYMBOL(__sk_mem_schedule);
1499
1500 /**
1501 * __sk_reclaim - reclaim memory_allocated
1502 * @sk: socket
1503 */
1504 void __sk_mem_reclaim(struct sock *sk)
1505 {
1506 struct proto *prot = sk->sk_prot;
1507
1508 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1509 prot->memory_allocated);
1510 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1511
1512 if (prot->memory_pressure && *prot->memory_pressure &&
1513 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1514 *prot->memory_pressure = 0;
1515 }
1516
1517 EXPORT_SYMBOL(__sk_mem_reclaim);
1518
1519
1520 /*
1521 * Set of default routines for initialising struct proto_ops when
1522 * the protocol does not support a particular function. In certain
1523 * cases where it makes no sense for a protocol to have a "do nothing"
1524 * function, some default processing is provided.
1525 */
1526
1527 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1528 {
1529 return -EOPNOTSUPP;
1530 }
1531
1532 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1533 int len, int flags)
1534 {
1535 return -EOPNOTSUPP;
1536 }
1537
1538 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1539 {
1540 return -EOPNOTSUPP;
1541 }
1542
1543 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1544 {
1545 return -EOPNOTSUPP;
1546 }
1547
1548 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1549 int *len, int peer)
1550 {
1551 return -EOPNOTSUPP;
1552 }
1553
1554 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1555 {
1556 return 0;
1557 }
1558
1559 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1560 {
1561 return -EOPNOTSUPP;
1562 }
1563
1564 int sock_no_listen(struct socket *sock, int backlog)
1565 {
1566 return -EOPNOTSUPP;
1567 }
1568
1569 int sock_no_shutdown(struct socket *sock, int how)
1570 {
1571 return -EOPNOTSUPP;
1572 }
1573
1574 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1575 char __user *optval, int optlen)
1576 {
1577 return -EOPNOTSUPP;
1578 }
1579
1580 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1581 char __user *optval, int __user *optlen)
1582 {
1583 return -EOPNOTSUPP;
1584 }
1585
1586 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1587 size_t len)
1588 {
1589 return -EOPNOTSUPP;
1590 }
1591
1592 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1593 size_t len, int flags)
1594 {
1595 return -EOPNOTSUPP;
1596 }
1597
1598 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1599 {
1600 /* Mirror missing mmap method error code */
1601 return -ENODEV;
1602 }
1603
1604 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1605 {
1606 ssize_t res;
1607 struct msghdr msg = {.msg_flags = flags};
1608 struct kvec iov;
1609 char *kaddr = kmap(page);
1610 iov.iov_base = kaddr + offset;
1611 iov.iov_len = size;
1612 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1613 kunmap(page);
1614 return res;
1615 }
1616
1617 /*
1618 * Default Socket Callbacks
1619 */
1620
1621 static void sock_def_wakeup(struct sock *sk)
1622 {
1623 read_lock(&sk->sk_callback_lock);
1624 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1625 wake_up_interruptible_all(sk->sk_sleep);
1626 read_unlock(&sk->sk_callback_lock);
1627 }
1628
1629 static void sock_def_error_report(struct sock *sk)
1630 {
1631 read_lock(&sk->sk_callback_lock);
1632 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1633 wake_up_interruptible(sk->sk_sleep);
1634 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1635 read_unlock(&sk->sk_callback_lock);
1636 }
1637
1638 static void sock_def_readable(struct sock *sk, int len)
1639 {
1640 read_lock(&sk->sk_callback_lock);
1641 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1642 wake_up_interruptible(sk->sk_sleep);
1643 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1644 read_unlock(&sk->sk_callback_lock);
1645 }
1646
1647 static void sock_def_write_space(struct sock *sk)
1648 {
1649 read_lock(&sk->sk_callback_lock);
1650
1651 /* Do not wake up a writer until he can make "significant"
1652 * progress. --DaveM
1653 */
1654 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1655 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1656 wake_up_interruptible(sk->sk_sleep);
1657
1658 /* Should agree with poll, otherwise some programs break */
1659 if (sock_writeable(sk))
1660 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1661 }
1662
1663 read_unlock(&sk->sk_callback_lock);
1664 }
1665
1666 static void sock_def_destruct(struct sock *sk)
1667 {
1668 kfree(sk->sk_protinfo);
1669 }
1670
1671 void sk_send_sigurg(struct sock *sk)
1672 {
1673 if (sk->sk_socket && sk->sk_socket->file)
1674 if (send_sigurg(&sk->sk_socket->file->f_owner))
1675 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1676 }
1677
1678 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1679 unsigned long expires)
1680 {
1681 if (!mod_timer(timer, expires))
1682 sock_hold(sk);
1683 }
1684
1685 EXPORT_SYMBOL(sk_reset_timer);
1686
1687 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1688 {
1689 if (timer_pending(timer) && del_timer(timer))
1690 __sock_put(sk);
1691 }
1692
1693 EXPORT_SYMBOL(sk_stop_timer);
1694
1695 void sock_init_data(struct socket *sock, struct sock *sk)
1696 {
1697 skb_queue_head_init(&sk->sk_receive_queue);
1698 skb_queue_head_init(&sk->sk_write_queue);
1699 skb_queue_head_init(&sk->sk_error_queue);
1700 #ifdef CONFIG_NET_DMA
1701 skb_queue_head_init(&sk->sk_async_wait_queue);
1702 #endif
1703
1704 sk->sk_send_head = NULL;
1705
1706 init_timer(&sk->sk_timer);
1707
1708 sk->sk_allocation = GFP_KERNEL;
1709 sk->sk_rcvbuf = sysctl_rmem_default;
1710 sk->sk_sndbuf = sysctl_wmem_default;
1711 sk->sk_state = TCP_CLOSE;
1712 sk->sk_socket = sock;
1713
1714 sock_set_flag(sk, SOCK_ZAPPED);
1715
1716 if (sock) {
1717 sk->sk_type = sock->type;
1718 sk->sk_sleep = &sock->wait;
1719 sock->sk = sk;
1720 } else
1721 sk->sk_sleep = NULL;
1722
1723 rwlock_init(&sk->sk_dst_lock);
1724 rwlock_init(&sk->sk_callback_lock);
1725 lockdep_set_class_and_name(&sk->sk_callback_lock,
1726 af_callback_keys + sk->sk_family,
1727 af_family_clock_key_strings[sk->sk_family]);
1728
1729 sk->sk_state_change = sock_def_wakeup;
1730 sk->sk_data_ready = sock_def_readable;
1731 sk->sk_write_space = sock_def_write_space;
1732 sk->sk_error_report = sock_def_error_report;
1733 sk->sk_destruct = sock_def_destruct;
1734
1735 sk->sk_sndmsg_page = NULL;
1736 sk->sk_sndmsg_off = 0;
1737
1738 sk->sk_peercred.pid = 0;
1739 sk->sk_peercred.uid = -1;
1740 sk->sk_peercred.gid = -1;
1741 sk->sk_write_pending = 0;
1742 sk->sk_rcvlowat = 1;
1743 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1744 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1745
1746 sk->sk_stamp = ktime_set(-1L, -1L);
1747
1748 atomic_set(&sk->sk_refcnt, 1);
1749 atomic_set(&sk->sk_drops, 0);
1750 }
1751
1752 void lock_sock_nested(struct sock *sk, int subclass)
1753 {
1754 might_sleep();
1755 spin_lock_bh(&sk->sk_lock.slock);
1756 if (sk->sk_lock.owned)
1757 __lock_sock(sk);
1758 sk->sk_lock.owned = 1;
1759 spin_unlock(&sk->sk_lock.slock);
1760 /*
1761 * The sk_lock has mutex_lock() semantics here:
1762 */
1763 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1764 local_bh_enable();
1765 }
1766
1767 EXPORT_SYMBOL(lock_sock_nested);
1768
1769 void release_sock(struct sock *sk)
1770 {
1771 /*
1772 * The sk_lock has mutex_unlock() semantics:
1773 */
1774 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1775
1776 spin_lock_bh(&sk->sk_lock.slock);
1777 if (sk->sk_backlog.tail)
1778 __release_sock(sk);
1779 sk->sk_lock.owned = 0;
1780 if (waitqueue_active(&sk->sk_lock.wq))
1781 wake_up(&sk->sk_lock.wq);
1782 spin_unlock_bh(&sk->sk_lock.slock);
1783 }
1784 EXPORT_SYMBOL(release_sock);
1785
1786 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1787 {
1788 struct timeval tv;
1789 if (!sock_flag(sk, SOCK_TIMESTAMP))
1790 sock_enable_timestamp(sk);
1791 tv = ktime_to_timeval(sk->sk_stamp);
1792 if (tv.tv_sec == -1)
1793 return -ENOENT;
1794 if (tv.tv_sec == 0) {
1795 sk->sk_stamp = ktime_get_real();
1796 tv = ktime_to_timeval(sk->sk_stamp);
1797 }
1798 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1799 }
1800 EXPORT_SYMBOL(sock_get_timestamp);
1801
1802 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1803 {
1804 struct timespec ts;
1805 if (!sock_flag(sk, SOCK_TIMESTAMP))
1806 sock_enable_timestamp(sk);
1807 ts = ktime_to_timespec(sk->sk_stamp);
1808 if (ts.tv_sec == -1)
1809 return -ENOENT;
1810 if (ts.tv_sec == 0) {
1811 sk->sk_stamp = ktime_get_real();
1812 ts = ktime_to_timespec(sk->sk_stamp);
1813 }
1814 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1815 }
1816 EXPORT_SYMBOL(sock_get_timestampns);
1817
1818 void sock_enable_timestamp(struct sock *sk)
1819 {
1820 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1821 sock_set_flag(sk, SOCK_TIMESTAMP);
1822 net_enable_timestamp();
1823 }
1824 }
1825
1826 /*
1827 * Get a socket option on an socket.
1828 *
1829 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1830 * asynchronous errors should be reported by getsockopt. We assume
1831 * this means if you specify SO_ERROR (otherwise whats the point of it).
1832 */
1833 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834 char __user *optval, int __user *optlen)
1835 {
1836 struct sock *sk = sock->sk;
1837
1838 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1839 }
1840
1841 EXPORT_SYMBOL(sock_common_getsockopt);
1842
1843 #ifdef CONFIG_COMPAT
1844 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1845 char __user *optval, int __user *optlen)
1846 {
1847 struct sock *sk = sock->sk;
1848
1849 if (sk->sk_prot->compat_getsockopt != NULL)
1850 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1851 optval, optlen);
1852 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1853 }
1854 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1855 #endif
1856
1857 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1858 struct msghdr *msg, size_t size, int flags)
1859 {
1860 struct sock *sk = sock->sk;
1861 int addr_len = 0;
1862 int err;
1863
1864 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1865 flags & ~MSG_DONTWAIT, &addr_len);
1866 if (err >= 0)
1867 msg->msg_namelen = addr_len;
1868 return err;
1869 }
1870
1871 EXPORT_SYMBOL(sock_common_recvmsg);
1872
1873 /*
1874 * Set socket options on an inet socket.
1875 */
1876 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1877 char __user *optval, int optlen)
1878 {
1879 struct sock *sk = sock->sk;
1880
1881 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1882 }
1883
1884 EXPORT_SYMBOL(sock_common_setsockopt);
1885
1886 #ifdef CONFIG_COMPAT
1887 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1888 char __user *optval, int optlen)
1889 {
1890 struct sock *sk = sock->sk;
1891
1892 if (sk->sk_prot->compat_setsockopt != NULL)
1893 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1894 optval, optlen);
1895 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1896 }
1897 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1898 #endif
1899
1900 void sk_common_release(struct sock *sk)
1901 {
1902 if (sk->sk_prot->destroy)
1903 sk->sk_prot->destroy(sk);
1904
1905 /*
1906 * Observation: when sock_common_release is called, processes have
1907 * no access to socket. But net still has.
1908 * Step one, detach it from networking:
1909 *
1910 * A. Remove from hash tables.
1911 */
1912
1913 sk->sk_prot->unhash(sk);
1914
1915 /*
1916 * In this point socket cannot receive new packets, but it is possible
1917 * that some packets are in flight because some CPU runs receiver and
1918 * did hash table lookup before we unhashed socket. They will achieve
1919 * receive queue and will be purged by socket destructor.
1920 *
1921 * Also we still have packets pending on receive queue and probably,
1922 * our own packets waiting in device queues. sock_destroy will drain
1923 * receive queue, but transmitted packets will delay socket destruction
1924 * until the last reference will be released.
1925 */
1926
1927 sock_orphan(sk);
1928
1929 xfrm_sk_free_policy(sk);
1930
1931 sk_refcnt_debug_release(sk);
1932 sock_put(sk);
1933 }
1934
1935 EXPORT_SYMBOL(sk_common_release);
1936
1937 static DEFINE_RWLOCK(proto_list_lock);
1938 static LIST_HEAD(proto_list);
1939
1940 int proto_register(struct proto *prot, int alloc_slab)
1941 {
1942 char *request_sock_slab_name = NULL;
1943 char *timewait_sock_slab_name;
1944
1945 if (sock_prot_inuse_init(prot) != 0) {
1946 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1947 goto out;
1948 }
1949
1950 if (alloc_slab) {
1951 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1952 SLAB_HWCACHE_ALIGN, NULL);
1953
1954 if (prot->slab == NULL) {
1955 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1956 prot->name);
1957 goto out_free_inuse;
1958 }
1959
1960 if (prot->rsk_prot != NULL) {
1961 static const char mask[] = "request_sock_%s";
1962
1963 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1964 if (request_sock_slab_name == NULL)
1965 goto out_free_sock_slab;
1966
1967 sprintf(request_sock_slab_name, mask, prot->name);
1968 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1969 prot->rsk_prot->obj_size, 0,
1970 SLAB_HWCACHE_ALIGN, NULL);
1971
1972 if (prot->rsk_prot->slab == NULL) {
1973 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1974 prot->name);
1975 goto out_free_request_sock_slab_name;
1976 }
1977 }
1978
1979 if (prot->twsk_prot != NULL) {
1980 static const char mask[] = "tw_sock_%s";
1981
1982 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1983
1984 if (timewait_sock_slab_name == NULL)
1985 goto out_free_request_sock_slab;
1986
1987 sprintf(timewait_sock_slab_name, mask, prot->name);
1988 prot->twsk_prot->twsk_slab =
1989 kmem_cache_create(timewait_sock_slab_name,
1990 prot->twsk_prot->twsk_obj_size,
1991 0, SLAB_HWCACHE_ALIGN,
1992 NULL);
1993 if (prot->twsk_prot->twsk_slab == NULL)
1994 goto out_free_timewait_sock_slab_name;
1995 }
1996 }
1997
1998 write_lock(&proto_list_lock);
1999 list_add(&prot->node, &proto_list);
2000 write_unlock(&proto_list_lock);
2001 return 0;
2002
2003 out_free_timewait_sock_slab_name:
2004 kfree(timewait_sock_slab_name);
2005 out_free_request_sock_slab:
2006 if (prot->rsk_prot && prot->rsk_prot->slab) {
2007 kmem_cache_destroy(prot->rsk_prot->slab);
2008 prot->rsk_prot->slab = NULL;
2009 }
2010 out_free_request_sock_slab_name:
2011 kfree(request_sock_slab_name);
2012 out_free_sock_slab:
2013 kmem_cache_destroy(prot->slab);
2014 prot->slab = NULL;
2015 out_free_inuse:
2016 sock_prot_inuse_free(prot);
2017 out:
2018 return -ENOBUFS;
2019 }
2020
2021 EXPORT_SYMBOL(proto_register);
2022
2023 void proto_unregister(struct proto *prot)
2024 {
2025 write_lock(&proto_list_lock);
2026 list_del(&prot->node);
2027 write_unlock(&proto_list_lock);
2028
2029 sock_prot_inuse_free(prot);
2030
2031 if (prot->slab != NULL) {
2032 kmem_cache_destroy(prot->slab);
2033 prot->slab = NULL;
2034 }
2035
2036 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2037 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2038
2039 kmem_cache_destroy(prot->rsk_prot->slab);
2040 kfree(name);
2041 prot->rsk_prot->slab = NULL;
2042 }
2043
2044 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2045 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2046
2047 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2048 kfree(name);
2049 prot->twsk_prot->twsk_slab = NULL;
2050 }
2051 }
2052
2053 EXPORT_SYMBOL(proto_unregister);
2054
2055 #ifdef CONFIG_PROC_FS
2056 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2057 __acquires(proto_list_lock)
2058 {
2059 read_lock(&proto_list_lock);
2060 return seq_list_start_head(&proto_list, *pos);
2061 }
2062
2063 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2064 {
2065 return seq_list_next(v, &proto_list, pos);
2066 }
2067
2068 static void proto_seq_stop(struct seq_file *seq, void *v)
2069 __releases(proto_list_lock)
2070 {
2071 read_unlock(&proto_list_lock);
2072 }
2073
2074 static char proto_method_implemented(const void *method)
2075 {
2076 return method == NULL ? 'n' : 'y';
2077 }
2078
2079 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2080 {
2081 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2082 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2083 proto->name,
2084 proto->obj_size,
2085 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2086 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2087 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2088 proto->max_header,
2089 proto->slab == NULL ? "no" : "yes",
2090 module_name(proto->owner),
2091 proto_method_implemented(proto->close),
2092 proto_method_implemented(proto->connect),
2093 proto_method_implemented(proto->disconnect),
2094 proto_method_implemented(proto->accept),
2095 proto_method_implemented(proto->ioctl),
2096 proto_method_implemented(proto->init),
2097 proto_method_implemented(proto->destroy),
2098 proto_method_implemented(proto->shutdown),
2099 proto_method_implemented(proto->setsockopt),
2100 proto_method_implemented(proto->getsockopt),
2101 proto_method_implemented(proto->sendmsg),
2102 proto_method_implemented(proto->recvmsg),
2103 proto_method_implemented(proto->sendpage),
2104 proto_method_implemented(proto->bind),
2105 proto_method_implemented(proto->backlog_rcv),
2106 proto_method_implemented(proto->hash),
2107 proto_method_implemented(proto->unhash),
2108 proto_method_implemented(proto->get_port),
2109 proto_method_implemented(proto->enter_memory_pressure));
2110 }
2111
2112 static int proto_seq_show(struct seq_file *seq, void *v)
2113 {
2114 if (v == &proto_list)
2115 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2116 "protocol",
2117 "size",
2118 "sockets",
2119 "memory",
2120 "press",
2121 "maxhdr",
2122 "slab",
2123 "module",
2124 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2125 else
2126 proto_seq_printf(seq, list_entry(v, struct proto, node));
2127 return 0;
2128 }
2129
2130 static const struct seq_operations proto_seq_ops = {
2131 .start = proto_seq_start,
2132 .next = proto_seq_next,
2133 .stop = proto_seq_stop,
2134 .show = proto_seq_show,
2135 };
2136
2137 static int proto_seq_open(struct inode *inode, struct file *file)
2138 {
2139 return seq_open(file, &proto_seq_ops);
2140 }
2141
2142 static const struct file_operations proto_seq_fops = {
2143 .owner = THIS_MODULE,
2144 .open = proto_seq_open,
2145 .read = seq_read,
2146 .llseek = seq_lseek,
2147 .release = seq_release,
2148 };
2149
2150 static int __init proto_init(void)
2151 {
2152 /* register /proc/net/protocols */
2153 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2154 }
2155
2156 subsys_initcall(proto_init);
2157
2158 #endif /* PROC_FS */
2159
2160 EXPORT_SYMBOL(sk_alloc);
2161 EXPORT_SYMBOL(sk_free);
2162 EXPORT_SYMBOL(sk_send_sigurg);
2163 EXPORT_SYMBOL(sock_alloc_send_skb);
2164 EXPORT_SYMBOL(sock_init_data);
2165 EXPORT_SYMBOL(sock_kfree_s);
2166 EXPORT_SYMBOL(sock_kmalloc);
2167 EXPORT_SYMBOL(sock_no_accept);
2168 EXPORT_SYMBOL(sock_no_bind);
2169 EXPORT_SYMBOL(sock_no_connect);
2170 EXPORT_SYMBOL(sock_no_getname);
2171 EXPORT_SYMBOL(sock_no_getsockopt);
2172 EXPORT_SYMBOL(sock_no_ioctl);
2173 EXPORT_SYMBOL(sock_no_listen);
2174 EXPORT_SYMBOL(sock_no_mmap);
2175 EXPORT_SYMBOL(sock_no_poll);
2176 EXPORT_SYMBOL(sock_no_recvmsg);
2177 EXPORT_SYMBOL(sock_no_sendmsg);
2178 EXPORT_SYMBOL(sock_no_sendpage);
2179 EXPORT_SYMBOL(sock_no_setsockopt);
2180 EXPORT_SYMBOL(sock_no_shutdown);
2181 EXPORT_SYMBOL(sock_no_socketpair);
2182 EXPORT_SYMBOL(sock_rfree);
2183 EXPORT_SYMBOL(sock_setsockopt);
2184 EXPORT_SYMBOL(sock_wfree);
2185 EXPORT_SYMBOL(sock_wmalloc);
2186 EXPORT_SYMBOL(sock_i_uid);
2187 EXPORT_SYMBOL(sock_i_ino);
2188 EXPORT_SYMBOL(sysctl_optmem_max);