Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-29" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 struct timeval tv;
219
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
226
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
229
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
237 }
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
255 }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
263 }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 int err = 0;
270 int skb_len;
271
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
274 */
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
279 }
280
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
284
285 skb->dev = NULL;
286 skb_set_owner_r(skb, sk);
287
288 /* Cache the SKB length before we tack it onto the receive
289 * queue. Once it is added it no longer belongs to us and
290 * may be freed by other threads of control pulling packets
291 * from the queue.
292 */
293 skb_len = skb->len;
294
295 skb_queue_tail(&sk->sk_receive_queue, skb);
296
297 if (!sock_flag(sk, SOCK_DEAD))
298 sk->sk_data_ready(sk, skb_len);
299 out:
300 return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306 int rc = NET_RX_SUCCESS;
307
308 if (sk_filter(sk, skb))
309 goto discard_and_relse;
310
311 skb->dev = NULL;
312
313 if (nested)
314 bh_lock_sock_nested(sk);
315 else
316 bh_lock_sock(sk);
317 if (!sock_owned_by_user(sk)) {
318 /*
319 * trylock + unlock semantics:
320 */
321 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323 rc = sk->sk_backlog_rcv(sk, skb);
324
325 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326 } else
327 sk_add_backlog(sk, skb);
328 bh_unlock_sock(sk);
329 out:
330 sock_put(sk);
331 return rc;
332 discard_and_relse:
333 kfree_skb(skb);
334 goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340 struct dst_entry *dst = sk->sk_dst_cache;
341
342 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343 sk->sk_dst_cache = NULL;
344 dst_release(dst);
345 return NULL;
346 }
347
348 return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354 struct dst_entry *dst = sk_dst_get(sk);
355
356 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357 sk_dst_reset(sk);
358 dst_release(dst);
359 return NULL;
360 }
361
362 return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368 int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370 struct net *net = sk->sk_net;
371 char devname[IFNAMSIZ];
372 int index;
373
374 /* Sorry... */
375 ret = -EPERM;
376 if (!capable(CAP_NET_RAW))
377 goto out;
378
379 ret = -EINVAL;
380 if (optlen < 0)
381 goto out;
382
383 /* Bind this socket to a particular device like "eth0",
384 * as specified in the passed interface name. If the
385 * name is "" or the option length is zero the socket
386 * is not bound.
387 */
388 if (optlen > IFNAMSIZ - 1)
389 optlen = IFNAMSIZ - 1;
390 memset(devname, 0, sizeof(devname));
391
392 ret = -EFAULT;
393 if (copy_from_user(devname, optval, optlen))
394 goto out;
395
396 if (devname[0] == '\0') {
397 index = 0;
398 } else {
399 struct net_device *dev = dev_get_by_name(net, devname);
400
401 ret = -ENODEV;
402 if (!dev)
403 goto out;
404
405 index = dev->ifindex;
406 dev_put(dev);
407 }
408
409 lock_sock(sk);
410 sk->sk_bound_dev_if = index;
411 sk_dst_reset(sk);
412 release_sock(sk);
413
414 ret = 0;
415
416 out:
417 #endif
418
419 return ret;
420 }
421
422 /*
423 * This is meant for all protocols to use and covers goings on
424 * at the socket level. Everything here is generic.
425 */
426
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428 char __user *optval, int optlen)
429 {
430 struct sock *sk=sock->sk;
431 int val;
432 int valbool;
433 struct linger ling;
434 int ret = 0;
435
436 /*
437 * Options without arguments
438 */
439
440 #ifdef SO_DONTLINGER /* Compatibility item... */
441 if (optname == SO_DONTLINGER) {
442 lock_sock(sk);
443 sock_reset_flag(sk, SOCK_LINGER);
444 release_sock(sk);
445 return 0;
446 }
447 #endif
448
449 if (optname == SO_BINDTODEVICE)
450 return sock_bindtodevice(sk, optval, optlen);
451
452 if (optlen < sizeof(int))
453 return -EINVAL;
454
455 if (get_user(val, (int __user *)optval))
456 return -EFAULT;
457
458 valbool = val?1:0;
459
460 lock_sock(sk);
461
462 switch(optname) {
463 case SO_DEBUG:
464 if (val && !capable(CAP_NET_ADMIN)) {
465 ret = -EACCES;
466 }
467 else if (valbool)
468 sock_set_flag(sk, SOCK_DBG);
469 else
470 sock_reset_flag(sk, SOCK_DBG);
471 break;
472 case SO_REUSEADDR:
473 sk->sk_reuse = valbool;
474 break;
475 case SO_TYPE:
476 case SO_ERROR:
477 ret = -ENOPROTOOPT;
478 break;
479 case SO_DONTROUTE:
480 if (valbool)
481 sock_set_flag(sk, SOCK_LOCALROUTE);
482 else
483 sock_reset_flag(sk, SOCK_LOCALROUTE);
484 break;
485 case SO_BROADCAST:
486 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487 break;
488 case SO_SNDBUF:
489 /* Don't error on this BSD doesn't and if you think
490 about it this is right. Otherwise apps have to
491 play 'guess the biggest size' games. RCVBUF/SNDBUF
492 are treated in BSD as hints */
493
494 if (val > sysctl_wmem_max)
495 val = sysctl_wmem_max;
496 set_sndbuf:
497 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498 if ((val * 2) < SOCK_MIN_SNDBUF)
499 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500 else
501 sk->sk_sndbuf = val * 2;
502
503 /*
504 * Wake up sending tasks if we
505 * upped the value.
506 */
507 sk->sk_write_space(sk);
508 break;
509
510 case SO_SNDBUFFORCE:
511 if (!capable(CAP_NET_ADMIN)) {
512 ret = -EPERM;
513 break;
514 }
515 goto set_sndbuf;
516
517 case SO_RCVBUF:
518 /* Don't error on this BSD doesn't and if you think
519 about it this is right. Otherwise apps have to
520 play 'guess the biggest size' games. RCVBUF/SNDBUF
521 are treated in BSD as hints */
522
523 if (val > sysctl_rmem_max)
524 val = sysctl_rmem_max;
525 set_rcvbuf:
526 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527 /*
528 * We double it on the way in to account for
529 * "struct sk_buff" etc. overhead. Applications
530 * assume that the SO_RCVBUF setting they make will
531 * allow that much actual data to be received on that
532 * socket.
533 *
534 * Applications are unaware that "struct sk_buff" and
535 * other overheads allocate from the receive buffer
536 * during socket buffer allocation.
537 *
538 * And after considering the possible alternatives,
539 * returning the value we actually used in getsockopt
540 * is the most desirable behavior.
541 */
542 if ((val * 2) < SOCK_MIN_RCVBUF)
543 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544 else
545 sk->sk_rcvbuf = val * 2;
546 break;
547
548 case SO_RCVBUFFORCE:
549 if (!capable(CAP_NET_ADMIN)) {
550 ret = -EPERM;
551 break;
552 }
553 goto set_rcvbuf;
554
555 case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557 if (sk->sk_protocol == IPPROTO_TCP)
558 tcp_set_keepalive(sk, valbool);
559 #endif
560 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561 break;
562
563 case SO_OOBINLINE:
564 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565 break;
566
567 case SO_NO_CHECK:
568 sk->sk_no_check = valbool;
569 break;
570
571 case SO_PRIORITY:
572 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573 sk->sk_priority = val;
574 else
575 ret = -EPERM;
576 break;
577
578 case SO_LINGER:
579 if (optlen < sizeof(ling)) {
580 ret = -EINVAL; /* 1003.1g */
581 break;
582 }
583 if (copy_from_user(&ling,optval,sizeof(ling))) {
584 ret = -EFAULT;
585 break;
586 }
587 if (!ling.l_onoff)
588 sock_reset_flag(sk, SOCK_LINGER);
589 else {
590 #if (BITS_PER_LONG == 32)
591 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593 else
594 #endif
595 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596 sock_set_flag(sk, SOCK_LINGER);
597 }
598 break;
599
600 case SO_BSDCOMPAT:
601 sock_warn_obsolete_bsdism("setsockopt");
602 break;
603
604 case SO_PASSCRED:
605 if (valbool)
606 set_bit(SOCK_PASSCRED, &sock->flags);
607 else
608 clear_bit(SOCK_PASSCRED, &sock->flags);
609 break;
610
611 case SO_TIMESTAMP:
612 case SO_TIMESTAMPNS:
613 if (valbool) {
614 if (optname == SO_TIMESTAMP)
615 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616 else
617 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618 sock_set_flag(sk, SOCK_RCVTSTAMP);
619 sock_enable_timestamp(sk);
620 } else {
621 sock_reset_flag(sk, SOCK_RCVTSTAMP);
622 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 }
624 break;
625
626 case SO_RCVLOWAT:
627 if (val < 0)
628 val = INT_MAX;
629 sk->sk_rcvlowat = val ? : 1;
630 break;
631
632 case SO_RCVTIMEO:
633 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634 break;
635
636 case SO_SNDTIMEO:
637 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638 break;
639
640 case SO_ATTACH_FILTER:
641 ret = -EINVAL;
642 if (optlen == sizeof(struct sock_fprog)) {
643 struct sock_fprog fprog;
644
645 ret = -EFAULT;
646 if (copy_from_user(&fprog, optval, sizeof(fprog)))
647 break;
648
649 ret = sk_attach_filter(&fprog, sk);
650 }
651 break;
652
653 case SO_DETACH_FILTER:
654 ret = sk_detach_filter(sk);
655 break;
656
657 case SO_PASSSEC:
658 if (valbool)
659 set_bit(SOCK_PASSSEC, &sock->flags);
660 else
661 clear_bit(SOCK_PASSSEC, &sock->flags);
662 break;
663
664 /* We implement the SO_SNDLOWAT etc to
665 not be settable (1003.1g 5.3) */
666 default:
667 ret = -ENOPROTOOPT;
668 break;
669 }
670 release_sock(sk);
671 return ret;
672 }
673
674
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676 char __user *optval, int __user *optlen)
677 {
678 struct sock *sk = sock->sk;
679
680 union {
681 int val;
682 struct linger ling;
683 struct timeval tm;
684 } v;
685
686 unsigned int lv = sizeof(int);
687 int len;
688
689 if (get_user(len, optlen))
690 return -EFAULT;
691 if (len < 0)
692 return -EINVAL;
693
694 switch(optname) {
695 case SO_DEBUG:
696 v.val = sock_flag(sk, SOCK_DBG);
697 break;
698
699 case SO_DONTROUTE:
700 v.val = sock_flag(sk, SOCK_LOCALROUTE);
701 break;
702
703 case SO_BROADCAST:
704 v.val = !!sock_flag(sk, SOCK_BROADCAST);
705 break;
706
707 case SO_SNDBUF:
708 v.val = sk->sk_sndbuf;
709 break;
710
711 case SO_RCVBUF:
712 v.val = sk->sk_rcvbuf;
713 break;
714
715 case SO_REUSEADDR:
716 v.val = sk->sk_reuse;
717 break;
718
719 case SO_KEEPALIVE:
720 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721 break;
722
723 case SO_TYPE:
724 v.val = sk->sk_type;
725 break;
726
727 case SO_ERROR:
728 v.val = -sock_error(sk);
729 if (v.val==0)
730 v.val = xchg(&sk->sk_err_soft, 0);
731 break;
732
733 case SO_OOBINLINE:
734 v.val = !!sock_flag(sk, SOCK_URGINLINE);
735 break;
736
737 case SO_NO_CHECK:
738 v.val = sk->sk_no_check;
739 break;
740
741 case SO_PRIORITY:
742 v.val = sk->sk_priority;
743 break;
744
745 case SO_LINGER:
746 lv = sizeof(v.ling);
747 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
748 v.ling.l_linger = sk->sk_lingertime / HZ;
749 break;
750
751 case SO_BSDCOMPAT:
752 sock_warn_obsolete_bsdism("getsockopt");
753 break;
754
755 case SO_TIMESTAMP:
756 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757 !sock_flag(sk, SOCK_RCVTSTAMPNS);
758 break;
759
760 case SO_TIMESTAMPNS:
761 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762 break;
763
764 case SO_RCVTIMEO:
765 lv=sizeof(struct timeval);
766 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767 v.tm.tv_sec = 0;
768 v.tm.tv_usec = 0;
769 } else {
770 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772 }
773 break;
774
775 case SO_SNDTIMEO:
776 lv=sizeof(struct timeval);
777 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778 v.tm.tv_sec = 0;
779 v.tm.tv_usec = 0;
780 } else {
781 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783 }
784 break;
785
786 case SO_RCVLOWAT:
787 v.val = sk->sk_rcvlowat;
788 break;
789
790 case SO_SNDLOWAT:
791 v.val=1;
792 break;
793
794 case SO_PASSCRED:
795 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796 break;
797
798 case SO_PEERCRED:
799 if (len > sizeof(sk->sk_peercred))
800 len = sizeof(sk->sk_peercred);
801 if (copy_to_user(optval, &sk->sk_peercred, len))
802 return -EFAULT;
803 goto lenout;
804
805 case SO_PEERNAME:
806 {
807 char address[128];
808
809 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810 return -ENOTCONN;
811 if (lv < len)
812 return -EINVAL;
813 if (copy_to_user(optval, address, len))
814 return -EFAULT;
815 goto lenout;
816 }
817
818 /* Dubious BSD thing... Probably nobody even uses it, but
819 * the UNIX standard wants it for whatever reason... -DaveM
820 */
821 case SO_ACCEPTCONN:
822 v.val = sk->sk_state == TCP_LISTEN;
823 break;
824
825 case SO_PASSSEC:
826 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827 break;
828
829 case SO_PEERSEC:
830 return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832 default:
833 return -ENOPROTOOPT;
834 }
835
836 if (len > lv)
837 len = lv;
838 if (copy_to_user(optval, &v, len))
839 return -EFAULT;
840 lenout:
841 if (put_user(len, optlen))
842 return -EFAULT;
843 return 0;
844 }
845
846 /*
847 * Initialize an sk_lock.
848 *
849 * (We also register the sk_lock with the lock validator.)
850 */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853 sock_lock_init_class_and_name(sk,
854 af_family_slock_key_strings[sk->sk_family],
855 af_family_slock_keys + sk->sk_family,
856 af_family_key_strings[sk->sk_family],
857 af_family_keys + sk->sk_family);
858 }
859
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863 void *sptr = nsk->sk_security;
864 #endif
865
866 memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868 nsk->sk_security = sptr;
869 security_sk_clone(osk, nsk);
870 #endif
871 }
872
873 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
874 int family)
875 {
876 struct sock *sk;
877 struct kmem_cache *slab;
878
879 slab = prot->slab;
880 if (slab != NULL)
881 sk = kmem_cache_alloc(slab, priority);
882 else
883 sk = kmalloc(prot->obj_size, priority);
884
885 if (sk != NULL) {
886 if (security_sk_alloc(sk, family, priority))
887 goto out_free;
888
889 if (!try_module_get(prot->owner))
890 goto out_free_sec;
891 }
892
893 return sk;
894
895 out_free_sec:
896 security_sk_free(sk);
897 out_free:
898 if (slab != NULL)
899 kmem_cache_free(slab, sk);
900 else
901 kfree(sk);
902 return NULL;
903 }
904
905 static void sk_prot_free(struct proto *prot, struct sock *sk)
906 {
907 struct kmem_cache *slab;
908 struct module *owner;
909
910 owner = prot->owner;
911 slab = prot->slab;
912
913 security_sk_free(sk);
914 if (slab != NULL)
915 kmem_cache_free(slab, sk);
916 else
917 kfree(sk);
918 module_put(owner);
919 }
920
921 /**
922 * sk_alloc - All socket objects are allocated here
923 * @net: the applicable net namespace
924 * @family: protocol family
925 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
926 * @prot: struct proto associated with this new sock instance
927 * @zero_it: if we should zero the newly allocated sock
928 */
929 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
930 struct proto *prot)
931 {
932 struct sock *sk;
933
934 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
935 if (sk) {
936 sk->sk_family = family;
937 /*
938 * See comment in struct sock definition to understand
939 * why we need sk_prot_creator -acme
940 */
941 sk->sk_prot = sk->sk_prot_creator = prot;
942 sock_lock_init(sk);
943 sk->sk_net = get_net(net);
944 }
945
946 return sk;
947 }
948
949 void sk_free(struct sock *sk)
950 {
951 struct sk_filter *filter;
952
953 if (sk->sk_destruct)
954 sk->sk_destruct(sk);
955
956 filter = rcu_dereference(sk->sk_filter);
957 if (filter) {
958 sk_filter_uncharge(sk, filter);
959 rcu_assign_pointer(sk->sk_filter, NULL);
960 }
961
962 sock_disable_timestamp(sk);
963
964 if (atomic_read(&sk->sk_omem_alloc))
965 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
966 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
967
968 put_net(sk->sk_net);
969 sk_prot_free(sk->sk_prot_creator, sk);
970 }
971
972 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
973 {
974 struct sock *newsk;
975
976 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
977 if (newsk != NULL) {
978 struct sk_filter *filter;
979
980 sock_copy(newsk, sk);
981
982 /* SANITY */
983 get_net(newsk->sk_net);
984 sk_node_init(&newsk->sk_node);
985 sock_lock_init(newsk);
986 bh_lock_sock(newsk);
987 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
988
989 atomic_set(&newsk->sk_rmem_alloc, 0);
990 atomic_set(&newsk->sk_wmem_alloc, 0);
991 atomic_set(&newsk->sk_omem_alloc, 0);
992 skb_queue_head_init(&newsk->sk_receive_queue);
993 skb_queue_head_init(&newsk->sk_write_queue);
994 #ifdef CONFIG_NET_DMA
995 skb_queue_head_init(&newsk->sk_async_wait_queue);
996 #endif
997
998 rwlock_init(&newsk->sk_dst_lock);
999 rwlock_init(&newsk->sk_callback_lock);
1000 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1001 af_callback_keys + newsk->sk_family,
1002 af_family_clock_key_strings[newsk->sk_family]);
1003
1004 newsk->sk_dst_cache = NULL;
1005 newsk->sk_wmem_queued = 0;
1006 newsk->sk_forward_alloc = 0;
1007 newsk->sk_send_head = NULL;
1008 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1009
1010 sock_reset_flag(newsk, SOCK_DONE);
1011 skb_queue_head_init(&newsk->sk_error_queue);
1012
1013 filter = newsk->sk_filter;
1014 if (filter != NULL)
1015 sk_filter_charge(newsk, filter);
1016
1017 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1018 /* It is still raw copy of parent, so invalidate
1019 * destructor and make plain sk_free() */
1020 newsk->sk_destruct = NULL;
1021 sk_free(newsk);
1022 newsk = NULL;
1023 goto out;
1024 }
1025
1026 newsk->sk_err = 0;
1027 newsk->sk_priority = 0;
1028 atomic_set(&newsk->sk_refcnt, 2);
1029
1030 /*
1031 * Increment the counter in the same struct proto as the master
1032 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1033 * is the same as sk->sk_prot->socks, as this field was copied
1034 * with memcpy).
1035 *
1036 * This _changes_ the previous behaviour, where
1037 * tcp_create_openreq_child always was incrementing the
1038 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1039 * to be taken into account in all callers. -acme
1040 */
1041 sk_refcnt_debug_inc(newsk);
1042 newsk->sk_socket = NULL;
1043 newsk->sk_sleep = NULL;
1044
1045 if (newsk->sk_prot->sockets_allocated)
1046 atomic_inc(newsk->sk_prot->sockets_allocated);
1047 }
1048 out:
1049 return newsk;
1050 }
1051
1052 EXPORT_SYMBOL_GPL(sk_clone);
1053
1054 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1055 {
1056 __sk_dst_set(sk, dst);
1057 sk->sk_route_caps = dst->dev->features;
1058 if (sk->sk_route_caps & NETIF_F_GSO)
1059 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1060 if (sk_can_gso(sk)) {
1061 if (dst->header_len)
1062 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1063 else
1064 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1065 }
1066 }
1067 EXPORT_SYMBOL_GPL(sk_setup_caps);
1068
1069 void __init sk_init(void)
1070 {
1071 if (num_physpages <= 4096) {
1072 sysctl_wmem_max = 32767;
1073 sysctl_rmem_max = 32767;
1074 sysctl_wmem_default = 32767;
1075 sysctl_rmem_default = 32767;
1076 } else if (num_physpages >= 131072) {
1077 sysctl_wmem_max = 131071;
1078 sysctl_rmem_max = 131071;
1079 }
1080 }
1081
1082 /*
1083 * Simple resource managers for sockets.
1084 */
1085
1086
1087 /*
1088 * Write buffer destructor automatically called from kfree_skb.
1089 */
1090 void sock_wfree(struct sk_buff *skb)
1091 {
1092 struct sock *sk = skb->sk;
1093
1094 /* In case it might be waiting for more memory. */
1095 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1096 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1097 sk->sk_write_space(sk);
1098 sock_put(sk);
1099 }
1100
1101 /*
1102 * Read buffer destructor automatically called from kfree_skb.
1103 */
1104 void sock_rfree(struct sk_buff *skb)
1105 {
1106 struct sock *sk = skb->sk;
1107
1108 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1109 }
1110
1111
1112 int sock_i_uid(struct sock *sk)
1113 {
1114 int uid;
1115
1116 read_lock(&sk->sk_callback_lock);
1117 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1118 read_unlock(&sk->sk_callback_lock);
1119 return uid;
1120 }
1121
1122 unsigned long sock_i_ino(struct sock *sk)
1123 {
1124 unsigned long ino;
1125
1126 read_lock(&sk->sk_callback_lock);
1127 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1128 read_unlock(&sk->sk_callback_lock);
1129 return ino;
1130 }
1131
1132 /*
1133 * Allocate a skb from the socket's send buffer.
1134 */
1135 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1136 gfp_t priority)
1137 {
1138 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1139 struct sk_buff * skb = alloc_skb(size, priority);
1140 if (skb) {
1141 skb_set_owner_w(skb, sk);
1142 return skb;
1143 }
1144 }
1145 return NULL;
1146 }
1147
1148 /*
1149 * Allocate a skb from the socket's receive buffer.
1150 */
1151 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1152 gfp_t priority)
1153 {
1154 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1155 struct sk_buff *skb = alloc_skb(size, priority);
1156 if (skb) {
1157 skb_set_owner_r(skb, sk);
1158 return skb;
1159 }
1160 }
1161 return NULL;
1162 }
1163
1164 /*
1165 * Allocate a memory block from the socket's option memory buffer.
1166 */
1167 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1168 {
1169 if ((unsigned)size <= sysctl_optmem_max &&
1170 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1171 void *mem;
1172 /* First do the add, to avoid the race if kmalloc
1173 * might sleep.
1174 */
1175 atomic_add(size, &sk->sk_omem_alloc);
1176 mem = kmalloc(size, priority);
1177 if (mem)
1178 return mem;
1179 atomic_sub(size, &sk->sk_omem_alloc);
1180 }
1181 return NULL;
1182 }
1183
1184 /*
1185 * Free an option memory block.
1186 */
1187 void sock_kfree_s(struct sock *sk, void *mem, int size)
1188 {
1189 kfree(mem);
1190 atomic_sub(size, &sk->sk_omem_alloc);
1191 }
1192
1193 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1194 I think, these locks should be removed for datagram sockets.
1195 */
1196 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1197 {
1198 DEFINE_WAIT(wait);
1199
1200 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1201 for (;;) {
1202 if (!timeo)
1203 break;
1204 if (signal_pending(current))
1205 break;
1206 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1207 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1208 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1209 break;
1210 if (sk->sk_shutdown & SEND_SHUTDOWN)
1211 break;
1212 if (sk->sk_err)
1213 break;
1214 timeo = schedule_timeout(timeo);
1215 }
1216 finish_wait(sk->sk_sleep, &wait);
1217 return timeo;
1218 }
1219
1220
1221 /*
1222 * Generic send/receive buffer handlers
1223 */
1224
1225 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1226 unsigned long header_len,
1227 unsigned long data_len,
1228 int noblock, int *errcode)
1229 {
1230 struct sk_buff *skb;
1231 gfp_t gfp_mask;
1232 long timeo;
1233 int err;
1234
1235 gfp_mask = sk->sk_allocation;
1236 if (gfp_mask & __GFP_WAIT)
1237 gfp_mask |= __GFP_REPEAT;
1238
1239 timeo = sock_sndtimeo(sk, noblock);
1240 while (1) {
1241 err = sock_error(sk);
1242 if (err != 0)
1243 goto failure;
1244
1245 err = -EPIPE;
1246 if (sk->sk_shutdown & SEND_SHUTDOWN)
1247 goto failure;
1248
1249 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1250 skb = alloc_skb(header_len, gfp_mask);
1251 if (skb) {
1252 int npages;
1253 int i;
1254
1255 /* No pages, we're done... */
1256 if (!data_len)
1257 break;
1258
1259 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1260 skb->truesize += data_len;
1261 skb_shinfo(skb)->nr_frags = npages;
1262 for (i = 0; i < npages; i++) {
1263 struct page *page;
1264 skb_frag_t *frag;
1265
1266 page = alloc_pages(sk->sk_allocation, 0);
1267 if (!page) {
1268 err = -ENOBUFS;
1269 skb_shinfo(skb)->nr_frags = i;
1270 kfree_skb(skb);
1271 goto failure;
1272 }
1273
1274 frag = &skb_shinfo(skb)->frags[i];
1275 frag->page = page;
1276 frag->page_offset = 0;
1277 frag->size = (data_len >= PAGE_SIZE ?
1278 PAGE_SIZE :
1279 data_len);
1280 data_len -= PAGE_SIZE;
1281 }
1282
1283 /* Full success... */
1284 break;
1285 }
1286 err = -ENOBUFS;
1287 goto failure;
1288 }
1289 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1290 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1291 err = -EAGAIN;
1292 if (!timeo)
1293 goto failure;
1294 if (signal_pending(current))
1295 goto interrupted;
1296 timeo = sock_wait_for_wmem(sk, timeo);
1297 }
1298
1299 skb_set_owner_w(skb, sk);
1300 return skb;
1301
1302 interrupted:
1303 err = sock_intr_errno(timeo);
1304 failure:
1305 *errcode = err;
1306 return NULL;
1307 }
1308
1309 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1310 int noblock, int *errcode)
1311 {
1312 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1313 }
1314
1315 static void __lock_sock(struct sock *sk)
1316 {
1317 DEFINE_WAIT(wait);
1318
1319 for (;;) {
1320 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1321 TASK_UNINTERRUPTIBLE);
1322 spin_unlock_bh(&sk->sk_lock.slock);
1323 schedule();
1324 spin_lock_bh(&sk->sk_lock.slock);
1325 if (!sock_owned_by_user(sk))
1326 break;
1327 }
1328 finish_wait(&sk->sk_lock.wq, &wait);
1329 }
1330
1331 static void __release_sock(struct sock *sk)
1332 {
1333 struct sk_buff *skb = sk->sk_backlog.head;
1334
1335 do {
1336 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1337 bh_unlock_sock(sk);
1338
1339 do {
1340 struct sk_buff *next = skb->next;
1341
1342 skb->next = NULL;
1343 sk->sk_backlog_rcv(sk, skb);
1344
1345 /*
1346 * We are in process context here with softirqs
1347 * disabled, use cond_resched_softirq() to preempt.
1348 * This is safe to do because we've taken the backlog
1349 * queue private:
1350 */
1351 cond_resched_softirq();
1352
1353 skb = next;
1354 } while (skb != NULL);
1355
1356 bh_lock_sock(sk);
1357 } while ((skb = sk->sk_backlog.head) != NULL);
1358 }
1359
1360 /**
1361 * sk_wait_data - wait for data to arrive at sk_receive_queue
1362 * @sk: sock to wait on
1363 * @timeo: for how long
1364 *
1365 * Now socket state including sk->sk_err is changed only under lock,
1366 * hence we may omit checks after joining wait queue.
1367 * We check receive queue before schedule() only as optimization;
1368 * it is very likely that release_sock() added new data.
1369 */
1370 int sk_wait_data(struct sock *sk, long *timeo)
1371 {
1372 int rc;
1373 DEFINE_WAIT(wait);
1374
1375 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1376 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1377 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1378 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1379 finish_wait(sk->sk_sleep, &wait);
1380 return rc;
1381 }
1382
1383 EXPORT_SYMBOL(sk_wait_data);
1384
1385 /*
1386 * Set of default routines for initialising struct proto_ops when
1387 * the protocol does not support a particular function. In certain
1388 * cases where it makes no sense for a protocol to have a "do nothing"
1389 * function, some default processing is provided.
1390 */
1391
1392 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1393 {
1394 return -EOPNOTSUPP;
1395 }
1396
1397 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1398 int len, int flags)
1399 {
1400 return -EOPNOTSUPP;
1401 }
1402
1403 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1404 {
1405 return -EOPNOTSUPP;
1406 }
1407
1408 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1409 {
1410 return -EOPNOTSUPP;
1411 }
1412
1413 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1414 int *len, int peer)
1415 {
1416 return -EOPNOTSUPP;
1417 }
1418
1419 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1420 {
1421 return 0;
1422 }
1423
1424 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1425 {
1426 return -EOPNOTSUPP;
1427 }
1428
1429 int sock_no_listen(struct socket *sock, int backlog)
1430 {
1431 return -EOPNOTSUPP;
1432 }
1433
1434 int sock_no_shutdown(struct socket *sock, int how)
1435 {
1436 return -EOPNOTSUPP;
1437 }
1438
1439 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1440 char __user *optval, int optlen)
1441 {
1442 return -EOPNOTSUPP;
1443 }
1444
1445 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1446 char __user *optval, int __user *optlen)
1447 {
1448 return -EOPNOTSUPP;
1449 }
1450
1451 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1452 size_t len)
1453 {
1454 return -EOPNOTSUPP;
1455 }
1456
1457 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1458 size_t len, int flags)
1459 {
1460 return -EOPNOTSUPP;
1461 }
1462
1463 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1464 {
1465 /* Mirror missing mmap method error code */
1466 return -ENODEV;
1467 }
1468
1469 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1470 {
1471 ssize_t res;
1472 struct msghdr msg = {.msg_flags = flags};
1473 struct kvec iov;
1474 char *kaddr = kmap(page);
1475 iov.iov_base = kaddr + offset;
1476 iov.iov_len = size;
1477 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1478 kunmap(page);
1479 return res;
1480 }
1481
1482 /*
1483 * Default Socket Callbacks
1484 */
1485
1486 static void sock_def_wakeup(struct sock *sk)
1487 {
1488 read_lock(&sk->sk_callback_lock);
1489 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1490 wake_up_interruptible_all(sk->sk_sleep);
1491 read_unlock(&sk->sk_callback_lock);
1492 }
1493
1494 static void sock_def_error_report(struct sock *sk)
1495 {
1496 read_lock(&sk->sk_callback_lock);
1497 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1498 wake_up_interruptible(sk->sk_sleep);
1499 sk_wake_async(sk,0,POLL_ERR);
1500 read_unlock(&sk->sk_callback_lock);
1501 }
1502
1503 static void sock_def_readable(struct sock *sk, int len)
1504 {
1505 read_lock(&sk->sk_callback_lock);
1506 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1507 wake_up_interruptible(sk->sk_sleep);
1508 sk_wake_async(sk,1,POLL_IN);
1509 read_unlock(&sk->sk_callback_lock);
1510 }
1511
1512 static void sock_def_write_space(struct sock *sk)
1513 {
1514 read_lock(&sk->sk_callback_lock);
1515
1516 /* Do not wake up a writer until he can make "significant"
1517 * progress. --DaveM
1518 */
1519 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1520 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1521 wake_up_interruptible(sk->sk_sleep);
1522
1523 /* Should agree with poll, otherwise some programs break */
1524 if (sock_writeable(sk))
1525 sk_wake_async(sk, 2, POLL_OUT);
1526 }
1527
1528 read_unlock(&sk->sk_callback_lock);
1529 }
1530
1531 static void sock_def_destruct(struct sock *sk)
1532 {
1533 kfree(sk->sk_protinfo);
1534 }
1535
1536 void sk_send_sigurg(struct sock *sk)
1537 {
1538 if (sk->sk_socket && sk->sk_socket->file)
1539 if (send_sigurg(&sk->sk_socket->file->f_owner))
1540 sk_wake_async(sk, 3, POLL_PRI);
1541 }
1542
1543 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1544 unsigned long expires)
1545 {
1546 if (!mod_timer(timer, expires))
1547 sock_hold(sk);
1548 }
1549
1550 EXPORT_SYMBOL(sk_reset_timer);
1551
1552 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1553 {
1554 if (timer_pending(timer) && del_timer(timer))
1555 __sock_put(sk);
1556 }
1557
1558 EXPORT_SYMBOL(sk_stop_timer);
1559
1560 void sock_init_data(struct socket *sock, struct sock *sk)
1561 {
1562 skb_queue_head_init(&sk->sk_receive_queue);
1563 skb_queue_head_init(&sk->sk_write_queue);
1564 skb_queue_head_init(&sk->sk_error_queue);
1565 #ifdef CONFIG_NET_DMA
1566 skb_queue_head_init(&sk->sk_async_wait_queue);
1567 #endif
1568
1569 sk->sk_send_head = NULL;
1570
1571 init_timer(&sk->sk_timer);
1572
1573 sk->sk_allocation = GFP_KERNEL;
1574 sk->sk_rcvbuf = sysctl_rmem_default;
1575 sk->sk_sndbuf = sysctl_wmem_default;
1576 sk->sk_state = TCP_CLOSE;
1577 sk->sk_socket = sock;
1578
1579 sock_set_flag(sk, SOCK_ZAPPED);
1580
1581 if (sock) {
1582 sk->sk_type = sock->type;
1583 sk->sk_sleep = &sock->wait;
1584 sock->sk = sk;
1585 } else
1586 sk->sk_sleep = NULL;
1587
1588 rwlock_init(&sk->sk_dst_lock);
1589 rwlock_init(&sk->sk_callback_lock);
1590 lockdep_set_class_and_name(&sk->sk_callback_lock,
1591 af_callback_keys + sk->sk_family,
1592 af_family_clock_key_strings[sk->sk_family]);
1593
1594 sk->sk_state_change = sock_def_wakeup;
1595 sk->sk_data_ready = sock_def_readable;
1596 sk->sk_write_space = sock_def_write_space;
1597 sk->sk_error_report = sock_def_error_report;
1598 sk->sk_destruct = sock_def_destruct;
1599
1600 sk->sk_sndmsg_page = NULL;
1601 sk->sk_sndmsg_off = 0;
1602
1603 sk->sk_peercred.pid = 0;
1604 sk->sk_peercred.uid = -1;
1605 sk->sk_peercred.gid = -1;
1606 sk->sk_write_pending = 0;
1607 sk->sk_rcvlowat = 1;
1608 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1609 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1610
1611 sk->sk_stamp = ktime_set(-1L, -1L);
1612
1613 atomic_set(&sk->sk_refcnt, 1);
1614 }
1615
1616 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1617 {
1618 might_sleep();
1619 spin_lock_bh(&sk->sk_lock.slock);
1620 if (sk->sk_lock.owned)
1621 __lock_sock(sk);
1622 sk->sk_lock.owned = 1;
1623 spin_unlock(&sk->sk_lock.slock);
1624 /*
1625 * The sk_lock has mutex_lock() semantics here:
1626 */
1627 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1628 local_bh_enable();
1629 }
1630
1631 EXPORT_SYMBOL(lock_sock_nested);
1632
1633 void fastcall release_sock(struct sock *sk)
1634 {
1635 /*
1636 * The sk_lock has mutex_unlock() semantics:
1637 */
1638 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1639
1640 spin_lock_bh(&sk->sk_lock.slock);
1641 if (sk->sk_backlog.tail)
1642 __release_sock(sk);
1643 sk->sk_lock.owned = 0;
1644 if (waitqueue_active(&sk->sk_lock.wq))
1645 wake_up(&sk->sk_lock.wq);
1646 spin_unlock_bh(&sk->sk_lock.slock);
1647 }
1648 EXPORT_SYMBOL(release_sock);
1649
1650 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1651 {
1652 struct timeval tv;
1653 if (!sock_flag(sk, SOCK_TIMESTAMP))
1654 sock_enable_timestamp(sk);
1655 tv = ktime_to_timeval(sk->sk_stamp);
1656 if (tv.tv_sec == -1)
1657 return -ENOENT;
1658 if (tv.tv_sec == 0) {
1659 sk->sk_stamp = ktime_get_real();
1660 tv = ktime_to_timeval(sk->sk_stamp);
1661 }
1662 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1663 }
1664 EXPORT_SYMBOL(sock_get_timestamp);
1665
1666 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1667 {
1668 struct timespec ts;
1669 if (!sock_flag(sk, SOCK_TIMESTAMP))
1670 sock_enable_timestamp(sk);
1671 ts = ktime_to_timespec(sk->sk_stamp);
1672 if (ts.tv_sec == -1)
1673 return -ENOENT;
1674 if (ts.tv_sec == 0) {
1675 sk->sk_stamp = ktime_get_real();
1676 ts = ktime_to_timespec(sk->sk_stamp);
1677 }
1678 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1679 }
1680 EXPORT_SYMBOL(sock_get_timestampns);
1681
1682 void sock_enable_timestamp(struct sock *sk)
1683 {
1684 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1685 sock_set_flag(sk, SOCK_TIMESTAMP);
1686 net_enable_timestamp();
1687 }
1688 }
1689
1690 /*
1691 * Get a socket option on an socket.
1692 *
1693 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1694 * asynchronous errors should be reported by getsockopt. We assume
1695 * this means if you specify SO_ERROR (otherwise whats the point of it).
1696 */
1697 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1698 char __user *optval, int __user *optlen)
1699 {
1700 struct sock *sk = sock->sk;
1701
1702 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1703 }
1704
1705 EXPORT_SYMBOL(sock_common_getsockopt);
1706
1707 #ifdef CONFIG_COMPAT
1708 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1709 char __user *optval, int __user *optlen)
1710 {
1711 struct sock *sk = sock->sk;
1712
1713 if (sk->sk_prot->compat_getsockopt != NULL)
1714 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1715 optval, optlen);
1716 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1717 }
1718 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1719 #endif
1720
1721 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1722 struct msghdr *msg, size_t size, int flags)
1723 {
1724 struct sock *sk = sock->sk;
1725 int addr_len = 0;
1726 int err;
1727
1728 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1729 flags & ~MSG_DONTWAIT, &addr_len);
1730 if (err >= 0)
1731 msg->msg_namelen = addr_len;
1732 return err;
1733 }
1734
1735 EXPORT_SYMBOL(sock_common_recvmsg);
1736
1737 /*
1738 * Set socket options on an inet socket.
1739 */
1740 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741 char __user *optval, int optlen)
1742 {
1743 struct sock *sk = sock->sk;
1744
1745 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1746 }
1747
1748 EXPORT_SYMBOL(sock_common_setsockopt);
1749
1750 #ifdef CONFIG_COMPAT
1751 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1752 char __user *optval, int optlen)
1753 {
1754 struct sock *sk = sock->sk;
1755
1756 if (sk->sk_prot->compat_setsockopt != NULL)
1757 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1758 optval, optlen);
1759 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1760 }
1761 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1762 #endif
1763
1764 void sk_common_release(struct sock *sk)
1765 {
1766 if (sk->sk_prot->destroy)
1767 sk->sk_prot->destroy(sk);
1768
1769 /*
1770 * Observation: when sock_common_release is called, processes have
1771 * no access to socket. But net still has.
1772 * Step one, detach it from networking:
1773 *
1774 * A. Remove from hash tables.
1775 */
1776
1777 sk->sk_prot->unhash(sk);
1778
1779 /*
1780 * In this point socket cannot receive new packets, but it is possible
1781 * that some packets are in flight because some CPU runs receiver and
1782 * did hash table lookup before we unhashed socket. They will achieve
1783 * receive queue and will be purged by socket destructor.
1784 *
1785 * Also we still have packets pending on receive queue and probably,
1786 * our own packets waiting in device queues. sock_destroy will drain
1787 * receive queue, but transmitted packets will delay socket destruction
1788 * until the last reference will be released.
1789 */
1790
1791 sock_orphan(sk);
1792
1793 xfrm_sk_free_policy(sk);
1794
1795 sk_refcnt_debug_release(sk);
1796 sock_put(sk);
1797 }
1798
1799 EXPORT_SYMBOL(sk_common_release);
1800
1801 static DEFINE_RWLOCK(proto_list_lock);
1802 static LIST_HEAD(proto_list);
1803
1804 #ifdef CONFIG_SMP
1805 /*
1806 * Define default functions to keep track of inuse sockets per protocol
1807 * Note that often used protocols use dedicated functions to get a speed increase.
1808 * (see DEFINE_PROTO_INUSE/REF_PROTO_INUSE)
1809 */
1810 static void inuse_add(struct proto *prot, int inc)
1811 {
1812 per_cpu_ptr(prot->inuse_ptr, smp_processor_id())[0] += inc;
1813 }
1814
1815 static int inuse_get(const struct proto *prot)
1816 {
1817 int res = 0, cpu;
1818 for_each_possible_cpu(cpu)
1819 res += per_cpu_ptr(prot->inuse_ptr, cpu)[0];
1820 return res;
1821 }
1822
1823 static int inuse_init(struct proto *prot)
1824 {
1825 if (!prot->inuse_getval || !prot->inuse_add) {
1826 prot->inuse_ptr = alloc_percpu(int);
1827 if (prot->inuse_ptr == NULL)
1828 return -ENOBUFS;
1829
1830 prot->inuse_getval = inuse_get;
1831 prot->inuse_add = inuse_add;
1832 }
1833 return 0;
1834 }
1835
1836 static void inuse_fini(struct proto *prot)
1837 {
1838 if (prot->inuse_ptr != NULL) {
1839 free_percpu(prot->inuse_ptr);
1840 prot->inuse_ptr = NULL;
1841 prot->inuse_getval = NULL;
1842 prot->inuse_add = NULL;
1843 }
1844 }
1845 #else
1846 static inline int inuse_init(struct proto *prot)
1847 {
1848 return 0;
1849 }
1850
1851 static inline void inuse_fini(struct proto *prot)
1852 {
1853 }
1854 #endif
1855
1856 int proto_register(struct proto *prot, int alloc_slab)
1857 {
1858 char *request_sock_slab_name = NULL;
1859 char *timewait_sock_slab_name;
1860
1861 if (inuse_init(prot))
1862 goto out;
1863
1864 if (alloc_slab) {
1865 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1866 SLAB_HWCACHE_ALIGN, NULL);
1867
1868 if (prot->slab == NULL) {
1869 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1870 prot->name);
1871 goto out_free_inuse;
1872 }
1873
1874 if (prot->rsk_prot != NULL) {
1875 static const char mask[] = "request_sock_%s";
1876
1877 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1878 if (request_sock_slab_name == NULL)
1879 goto out_free_sock_slab;
1880
1881 sprintf(request_sock_slab_name, mask, prot->name);
1882 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1883 prot->rsk_prot->obj_size, 0,
1884 SLAB_HWCACHE_ALIGN, NULL);
1885
1886 if (prot->rsk_prot->slab == NULL) {
1887 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1888 prot->name);
1889 goto out_free_request_sock_slab_name;
1890 }
1891 }
1892
1893 if (prot->twsk_prot != NULL) {
1894 static const char mask[] = "tw_sock_%s";
1895
1896 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1897
1898 if (timewait_sock_slab_name == NULL)
1899 goto out_free_request_sock_slab;
1900
1901 sprintf(timewait_sock_slab_name, mask, prot->name);
1902 prot->twsk_prot->twsk_slab =
1903 kmem_cache_create(timewait_sock_slab_name,
1904 prot->twsk_prot->twsk_obj_size,
1905 0, SLAB_HWCACHE_ALIGN,
1906 NULL);
1907 if (prot->twsk_prot->twsk_slab == NULL)
1908 goto out_free_timewait_sock_slab_name;
1909 }
1910 }
1911
1912 write_lock(&proto_list_lock);
1913 list_add(&prot->node, &proto_list);
1914 write_unlock(&proto_list_lock);
1915 return 0;
1916
1917 out_free_timewait_sock_slab_name:
1918 kfree(timewait_sock_slab_name);
1919 out_free_request_sock_slab:
1920 if (prot->rsk_prot && prot->rsk_prot->slab) {
1921 kmem_cache_destroy(prot->rsk_prot->slab);
1922 prot->rsk_prot->slab = NULL;
1923 }
1924 out_free_request_sock_slab_name:
1925 kfree(request_sock_slab_name);
1926 out_free_sock_slab:
1927 kmem_cache_destroy(prot->slab);
1928 prot->slab = NULL;
1929 out_free_inuse:
1930 inuse_fini(prot);
1931 out:
1932 return -ENOBUFS;
1933 }
1934
1935 EXPORT_SYMBOL(proto_register);
1936
1937 void proto_unregister(struct proto *prot)
1938 {
1939 write_lock(&proto_list_lock);
1940 list_del(&prot->node);
1941 write_unlock(&proto_list_lock);
1942
1943 inuse_fini(prot);
1944 if (prot->slab != NULL) {
1945 kmem_cache_destroy(prot->slab);
1946 prot->slab = NULL;
1947 }
1948
1949 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1950 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1951
1952 kmem_cache_destroy(prot->rsk_prot->slab);
1953 kfree(name);
1954 prot->rsk_prot->slab = NULL;
1955 }
1956
1957 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1958 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1959
1960 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1961 kfree(name);
1962 prot->twsk_prot->twsk_slab = NULL;
1963 }
1964 }
1965
1966 EXPORT_SYMBOL(proto_unregister);
1967
1968 #ifdef CONFIG_PROC_FS
1969 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1970 {
1971 read_lock(&proto_list_lock);
1972 return seq_list_start_head(&proto_list, *pos);
1973 }
1974
1975 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1976 {
1977 return seq_list_next(v, &proto_list, pos);
1978 }
1979
1980 static void proto_seq_stop(struct seq_file *seq, void *v)
1981 {
1982 read_unlock(&proto_list_lock);
1983 }
1984
1985 static char proto_method_implemented(const void *method)
1986 {
1987 return method == NULL ? 'n' : 'y';
1988 }
1989
1990 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1991 {
1992 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1993 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1994 proto->name,
1995 proto->obj_size,
1996 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1997 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1998 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1999 proto->max_header,
2000 proto->slab == NULL ? "no" : "yes",
2001 module_name(proto->owner),
2002 proto_method_implemented(proto->close),
2003 proto_method_implemented(proto->connect),
2004 proto_method_implemented(proto->disconnect),
2005 proto_method_implemented(proto->accept),
2006 proto_method_implemented(proto->ioctl),
2007 proto_method_implemented(proto->init),
2008 proto_method_implemented(proto->destroy),
2009 proto_method_implemented(proto->shutdown),
2010 proto_method_implemented(proto->setsockopt),
2011 proto_method_implemented(proto->getsockopt),
2012 proto_method_implemented(proto->sendmsg),
2013 proto_method_implemented(proto->recvmsg),
2014 proto_method_implemented(proto->sendpage),
2015 proto_method_implemented(proto->bind),
2016 proto_method_implemented(proto->backlog_rcv),
2017 proto_method_implemented(proto->hash),
2018 proto_method_implemented(proto->unhash),
2019 proto_method_implemented(proto->get_port),
2020 proto_method_implemented(proto->enter_memory_pressure));
2021 }
2022
2023 static int proto_seq_show(struct seq_file *seq, void *v)
2024 {
2025 if (v == &proto_list)
2026 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2027 "protocol",
2028 "size",
2029 "sockets",
2030 "memory",
2031 "press",
2032 "maxhdr",
2033 "slab",
2034 "module",
2035 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2036 else
2037 proto_seq_printf(seq, list_entry(v, struct proto, node));
2038 return 0;
2039 }
2040
2041 static const struct seq_operations proto_seq_ops = {
2042 .start = proto_seq_start,
2043 .next = proto_seq_next,
2044 .stop = proto_seq_stop,
2045 .show = proto_seq_show,
2046 };
2047
2048 static int proto_seq_open(struct inode *inode, struct file *file)
2049 {
2050 return seq_open(file, &proto_seq_ops);
2051 }
2052
2053 static const struct file_operations proto_seq_fops = {
2054 .owner = THIS_MODULE,
2055 .open = proto_seq_open,
2056 .read = seq_read,
2057 .llseek = seq_lseek,
2058 .release = seq_release,
2059 };
2060
2061 static int __init proto_init(void)
2062 {
2063 /* register /proc/net/protocols */
2064 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2065 }
2066
2067 subsys_initcall(proto_init);
2068
2069 #endif /* PROC_FS */
2070
2071 EXPORT_SYMBOL(sk_alloc);
2072 EXPORT_SYMBOL(sk_free);
2073 EXPORT_SYMBOL(sk_send_sigurg);
2074 EXPORT_SYMBOL(sock_alloc_send_skb);
2075 EXPORT_SYMBOL(sock_init_data);
2076 EXPORT_SYMBOL(sock_kfree_s);
2077 EXPORT_SYMBOL(sock_kmalloc);
2078 EXPORT_SYMBOL(sock_no_accept);
2079 EXPORT_SYMBOL(sock_no_bind);
2080 EXPORT_SYMBOL(sock_no_connect);
2081 EXPORT_SYMBOL(sock_no_getname);
2082 EXPORT_SYMBOL(sock_no_getsockopt);
2083 EXPORT_SYMBOL(sock_no_ioctl);
2084 EXPORT_SYMBOL(sock_no_listen);
2085 EXPORT_SYMBOL(sock_no_mmap);
2086 EXPORT_SYMBOL(sock_no_poll);
2087 EXPORT_SYMBOL(sock_no_recvmsg);
2088 EXPORT_SYMBOL(sock_no_sendmsg);
2089 EXPORT_SYMBOL(sock_no_sendpage);
2090 EXPORT_SYMBOL(sock_no_setsockopt);
2091 EXPORT_SYMBOL(sock_no_shutdown);
2092 EXPORT_SYMBOL(sock_no_socketpair);
2093 EXPORT_SYMBOL(sock_rfree);
2094 EXPORT_SYMBOL(sock_setsockopt);
2095 EXPORT_SYMBOL(sock_wfree);
2096 EXPORT_SYMBOL(sock_wmalloc);
2097 EXPORT_SYMBOL(sock_i_uid);
2098 EXPORT_SYMBOL(sock_i_ino);
2099 EXPORT_SYMBOL(sysctl_optmem_max);
2100 #ifdef CONFIG_SYSCTL
2101 EXPORT_SYMBOL(sysctl_rmem_max);
2102 EXPORT_SYMBOL(sysctl_wmem_max);
2103 #endif