remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121
122 #include <linux/uaccess.h>
123
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139
140 #include <trace/events/sock.h>
141
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196 /*
197 * Each address family might have different locking rules, so we have
198 * one slock key per address family and separate keys for internal and
199 * userspace sockets.
200 */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205
206 /*
207 * Make lock validator output more readable. (we pre-construct these
208 * strings build-time, so that runtime initialization of socket
209 * locks is fast):
210 */
211
212 #define _sock_locks(x) \
213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
222 x "27" , x "28" , x "AF_CAN" , \
223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
250 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
251 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
252 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
253 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
254 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
255 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
256 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
257 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
258 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
259 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
260 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
261 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
262 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
263 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
264 };
265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
266 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
267 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
268 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
269 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
270 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
271 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
272 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
273 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
274 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
275 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
276 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
277 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
278 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
279 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
280 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
281 };
282 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
283 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
284 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
285 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
286 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
287 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
288 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
289 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
290 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
291 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
292 "elock-27" , "elock-28" , "elock-AF_CAN" ,
293 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
294 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
295 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
296 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
297 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock and sk queues locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 static struct lock_class_key af_rlock_keys[AF_MAX];
306 static struct lock_class_key af_wlock_keys[AF_MAX];
307 static struct lock_class_key af_elock_keys[AF_MAX];
308 static struct lock_class_key af_kern_callback_keys[AF_MAX];
309
310 /* Run time adjustable parameters. */
311 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
312 EXPORT_SYMBOL(sysctl_wmem_max);
313 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
314 EXPORT_SYMBOL(sysctl_rmem_max);
315 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
316 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
317
318 /* Maximal space eaten by iovec or ancillary data plus some space */
319 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
320 EXPORT_SYMBOL(sysctl_optmem_max);
321
322 int sysctl_tstamp_allow_data __read_mostly = 1;
323
324 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
325 EXPORT_SYMBOL_GPL(memalloc_socks);
326
327 /**
328 * sk_set_memalloc - sets %SOCK_MEMALLOC
329 * @sk: socket to set it on
330 *
331 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
332 * It's the responsibility of the admin to adjust min_free_kbytes
333 * to meet the requirements
334 */
335 void sk_set_memalloc(struct sock *sk)
336 {
337 sock_set_flag(sk, SOCK_MEMALLOC);
338 sk->sk_allocation |= __GFP_MEMALLOC;
339 static_key_slow_inc(&memalloc_socks);
340 }
341 EXPORT_SYMBOL_GPL(sk_set_memalloc);
342
343 void sk_clear_memalloc(struct sock *sk)
344 {
345 sock_reset_flag(sk, SOCK_MEMALLOC);
346 sk->sk_allocation &= ~__GFP_MEMALLOC;
347 static_key_slow_dec(&memalloc_socks);
348
349 /*
350 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
351 * progress of swapping. SOCK_MEMALLOC may be cleared while
352 * it has rmem allocations due to the last swapfile being deactivated
353 * but there is a risk that the socket is unusable due to exceeding
354 * the rmem limits. Reclaim the reserves and obey rmem limits again.
355 */
356 sk_mem_reclaim(sk);
357 }
358 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
359
360 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
361 {
362 int ret;
363 unsigned int noreclaim_flag;
364
365 /* these should have been dropped before queueing */
366 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
367
368 noreclaim_flag = memalloc_noreclaim_save();
369 ret = sk->sk_backlog_rcv(sk, skb);
370 memalloc_noreclaim_restore(noreclaim_flag);
371
372 return ret;
373 }
374 EXPORT_SYMBOL(__sk_backlog_rcv);
375
376 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
377 {
378 struct timeval tv;
379
380 if (optlen < sizeof(tv))
381 return -EINVAL;
382 if (copy_from_user(&tv, optval, sizeof(tv)))
383 return -EFAULT;
384 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
385 return -EDOM;
386
387 if (tv.tv_sec < 0) {
388 static int warned __read_mostly;
389
390 *timeo_p = 0;
391 if (warned < 10 && net_ratelimit()) {
392 warned++;
393 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
394 __func__, current->comm, task_pid_nr(current));
395 }
396 return 0;
397 }
398 *timeo_p = MAX_SCHEDULE_TIMEOUT;
399 if (tv.tv_sec == 0 && tv.tv_usec == 0)
400 return 0;
401 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
402 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
403 return 0;
404 }
405
406 static void sock_warn_obsolete_bsdism(const char *name)
407 {
408 static int warned;
409 static char warncomm[TASK_COMM_LEN];
410 if (strcmp(warncomm, current->comm) && warned < 5) {
411 strcpy(warncomm, current->comm);
412 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
413 warncomm, name);
414 warned++;
415 }
416 }
417
418 static bool sock_needs_netstamp(const struct sock *sk)
419 {
420 switch (sk->sk_family) {
421 case AF_UNSPEC:
422 case AF_UNIX:
423 return false;
424 default:
425 return true;
426 }
427 }
428
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 if (sk->sk_flags & flags) {
432 sk->sk_flags &= ~flags;
433 if (sock_needs_netstamp(sk) &&
434 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
435 net_disable_timestamp();
436 }
437 }
438
439
440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 {
442 unsigned long flags;
443 struct sk_buff_head *list = &sk->sk_receive_queue;
444
445 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 atomic_inc(&sk->sk_drops);
447 trace_sock_rcvqueue_full(sk, skb);
448 return -ENOMEM;
449 }
450
451 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
452 atomic_inc(&sk->sk_drops);
453 return -ENOBUFS;
454 }
455
456 skb->dev = NULL;
457 skb_set_owner_r(skb, sk);
458
459 /* we escape from rcu protected region, make sure we dont leak
460 * a norefcounted dst
461 */
462 skb_dst_force(skb);
463
464 spin_lock_irqsave(&list->lock, flags);
465 sock_skb_set_dropcount(sk, skb);
466 __skb_queue_tail(list, skb);
467 spin_unlock_irqrestore(&list->lock, flags);
468
469 if (!sock_flag(sk, SOCK_DEAD))
470 sk->sk_data_ready(sk);
471 return 0;
472 }
473 EXPORT_SYMBOL(__sock_queue_rcv_skb);
474
475 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
476 {
477 int err;
478
479 err = sk_filter(sk, skb);
480 if (err)
481 return err;
482
483 return __sock_queue_rcv_skb(sk, skb);
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486
487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
488 const int nested, unsigned int trim_cap, bool refcounted)
489 {
490 int rc = NET_RX_SUCCESS;
491
492 if (sk_filter_trim_cap(sk, skb, trim_cap))
493 goto discard_and_relse;
494
495 skb->dev = NULL;
496
497 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
498 atomic_inc(&sk->sk_drops);
499 goto discard_and_relse;
500 }
501 if (nested)
502 bh_lock_sock_nested(sk);
503 else
504 bh_lock_sock(sk);
505 if (!sock_owned_by_user(sk)) {
506 /*
507 * trylock + unlock semantics:
508 */
509 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
510
511 rc = sk_backlog_rcv(sk, skb);
512
513 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
514 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
515 bh_unlock_sock(sk);
516 atomic_inc(&sk->sk_drops);
517 goto discard_and_relse;
518 }
519
520 bh_unlock_sock(sk);
521 out:
522 if (refcounted)
523 sock_put(sk);
524 return rc;
525 discard_and_relse:
526 kfree_skb(skb);
527 goto out;
528 }
529 EXPORT_SYMBOL(__sk_receive_skb);
530
531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
532 {
533 struct dst_entry *dst = __sk_dst_get(sk);
534
535 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536 sk_tx_queue_clear(sk);
537 sk->sk_dst_pending_confirm = 0;
538 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
539 dst_release(dst);
540 return NULL;
541 }
542
543 return dst;
544 }
545 EXPORT_SYMBOL(__sk_dst_check);
546
547 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
548 {
549 struct dst_entry *dst = sk_dst_get(sk);
550
551 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
552 sk_dst_reset(sk);
553 dst_release(dst);
554 return NULL;
555 }
556
557 return dst;
558 }
559 EXPORT_SYMBOL(sk_dst_check);
560
561 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
562 int optlen)
563 {
564 int ret = -ENOPROTOOPT;
565 #ifdef CONFIG_NETDEVICES
566 struct net *net = sock_net(sk);
567 char devname[IFNAMSIZ];
568 int index;
569
570 /* Sorry... */
571 ret = -EPERM;
572 if (!ns_capable(net->user_ns, CAP_NET_RAW))
573 goto out;
574
575 ret = -EINVAL;
576 if (optlen < 0)
577 goto out;
578
579 /* Bind this socket to a particular device like "eth0",
580 * as specified in the passed interface name. If the
581 * name is "" or the option length is zero the socket
582 * is not bound.
583 */
584 if (optlen > IFNAMSIZ - 1)
585 optlen = IFNAMSIZ - 1;
586 memset(devname, 0, sizeof(devname));
587
588 ret = -EFAULT;
589 if (copy_from_user(devname, optval, optlen))
590 goto out;
591
592 index = 0;
593 if (devname[0] != '\0') {
594 struct net_device *dev;
595
596 rcu_read_lock();
597 dev = dev_get_by_name_rcu(net, devname);
598 if (dev)
599 index = dev->ifindex;
600 rcu_read_unlock();
601 ret = -ENODEV;
602 if (!dev)
603 goto out;
604 }
605
606 lock_sock(sk);
607 sk->sk_bound_dev_if = index;
608 sk_dst_reset(sk);
609 release_sock(sk);
610
611 ret = 0;
612
613 out:
614 #endif
615
616 return ret;
617 }
618
619 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
620 int __user *optlen, int len)
621 {
622 int ret = -ENOPROTOOPT;
623 #ifdef CONFIG_NETDEVICES
624 struct net *net = sock_net(sk);
625 char devname[IFNAMSIZ];
626
627 if (sk->sk_bound_dev_if == 0) {
628 len = 0;
629 goto zero;
630 }
631
632 ret = -EINVAL;
633 if (len < IFNAMSIZ)
634 goto out;
635
636 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
637 if (ret)
638 goto out;
639
640 len = strlen(devname) + 1;
641
642 ret = -EFAULT;
643 if (copy_to_user(optval, devname, len))
644 goto out;
645
646 zero:
647 ret = -EFAULT;
648 if (put_user(len, optlen))
649 goto out;
650
651 ret = 0;
652
653 out:
654 #endif
655
656 return ret;
657 }
658
659 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
660 {
661 if (valbool)
662 sock_set_flag(sk, bit);
663 else
664 sock_reset_flag(sk, bit);
665 }
666
667 bool sk_mc_loop(struct sock *sk)
668 {
669 if (dev_recursion_level())
670 return false;
671 if (!sk)
672 return true;
673 switch (sk->sk_family) {
674 case AF_INET:
675 return inet_sk(sk)->mc_loop;
676 #if IS_ENABLED(CONFIG_IPV6)
677 case AF_INET6:
678 return inet6_sk(sk)->mc_loop;
679 #endif
680 }
681 WARN_ON(1);
682 return true;
683 }
684 EXPORT_SYMBOL(sk_mc_loop);
685
686 /*
687 * This is meant for all protocols to use and covers goings on
688 * at the socket level. Everything here is generic.
689 */
690
691 int sock_setsockopt(struct socket *sock, int level, int optname,
692 char __user *optval, unsigned int optlen)
693 {
694 struct sock *sk = sock->sk;
695 int val;
696 int valbool;
697 struct linger ling;
698 int ret = 0;
699
700 /*
701 * Options without arguments
702 */
703
704 if (optname == SO_BINDTODEVICE)
705 return sock_setbindtodevice(sk, optval, optlen);
706
707 if (optlen < sizeof(int))
708 return -EINVAL;
709
710 if (get_user(val, (int __user *)optval))
711 return -EFAULT;
712
713 valbool = val ? 1 : 0;
714
715 lock_sock(sk);
716
717 switch (optname) {
718 case SO_DEBUG:
719 if (val && !capable(CAP_NET_ADMIN))
720 ret = -EACCES;
721 else
722 sock_valbool_flag(sk, SOCK_DBG, valbool);
723 break;
724 case SO_REUSEADDR:
725 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
726 break;
727 case SO_REUSEPORT:
728 sk->sk_reuseport = valbool;
729 break;
730 case SO_TYPE:
731 case SO_PROTOCOL:
732 case SO_DOMAIN:
733 case SO_ERROR:
734 ret = -ENOPROTOOPT;
735 break;
736 case SO_DONTROUTE:
737 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
738 sk_dst_reset(sk);
739 break;
740 case SO_BROADCAST:
741 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
742 break;
743 case SO_SNDBUF:
744 /* Don't error on this BSD doesn't and if you think
745 * about it this is right. Otherwise apps have to
746 * play 'guess the biggest size' games. RCVBUF/SNDBUF
747 * are treated in BSD as hints
748 */
749 val = min_t(u32, val, sysctl_wmem_max);
750 set_sndbuf:
751 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
752 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
753 /* Wake up sending tasks if we upped the value. */
754 sk->sk_write_space(sk);
755 break;
756
757 case SO_SNDBUFFORCE:
758 if (!capable(CAP_NET_ADMIN)) {
759 ret = -EPERM;
760 break;
761 }
762 goto set_sndbuf;
763
764 case SO_RCVBUF:
765 /* Don't error on this BSD doesn't and if you think
766 * about it this is right. Otherwise apps have to
767 * play 'guess the biggest size' games. RCVBUF/SNDBUF
768 * are treated in BSD as hints
769 */
770 val = min_t(u32, val, sysctl_rmem_max);
771 set_rcvbuf:
772 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
773 /*
774 * We double it on the way in to account for
775 * "struct sk_buff" etc. overhead. Applications
776 * assume that the SO_RCVBUF setting they make will
777 * allow that much actual data to be received on that
778 * socket.
779 *
780 * Applications are unaware that "struct sk_buff" and
781 * other overheads allocate from the receive buffer
782 * during socket buffer allocation.
783 *
784 * And after considering the possible alternatives,
785 * returning the value we actually used in getsockopt
786 * is the most desirable behavior.
787 */
788 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
789 break;
790
791 case SO_RCVBUFFORCE:
792 if (!capable(CAP_NET_ADMIN)) {
793 ret = -EPERM;
794 break;
795 }
796 goto set_rcvbuf;
797
798 case SO_KEEPALIVE:
799 if (sk->sk_prot->keepalive)
800 sk->sk_prot->keepalive(sk, valbool);
801 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
802 break;
803
804 case SO_OOBINLINE:
805 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
806 break;
807
808 case SO_NO_CHECK:
809 sk->sk_no_check_tx = valbool;
810 break;
811
812 case SO_PRIORITY:
813 if ((val >= 0 && val <= 6) ||
814 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
815 sk->sk_priority = val;
816 else
817 ret = -EPERM;
818 break;
819
820 case SO_LINGER:
821 if (optlen < sizeof(ling)) {
822 ret = -EINVAL; /* 1003.1g */
823 break;
824 }
825 if (copy_from_user(&ling, optval, sizeof(ling))) {
826 ret = -EFAULT;
827 break;
828 }
829 if (!ling.l_onoff)
830 sock_reset_flag(sk, SOCK_LINGER);
831 else {
832 #if (BITS_PER_LONG == 32)
833 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
834 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
835 else
836 #endif
837 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
838 sock_set_flag(sk, SOCK_LINGER);
839 }
840 break;
841
842 case SO_BSDCOMPAT:
843 sock_warn_obsolete_bsdism("setsockopt");
844 break;
845
846 case SO_PASSCRED:
847 if (valbool)
848 set_bit(SOCK_PASSCRED, &sock->flags);
849 else
850 clear_bit(SOCK_PASSCRED, &sock->flags);
851 break;
852
853 case SO_TIMESTAMP:
854 case SO_TIMESTAMPNS:
855 if (valbool) {
856 if (optname == SO_TIMESTAMP)
857 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
858 else
859 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
860 sock_set_flag(sk, SOCK_RCVTSTAMP);
861 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
862 } else {
863 sock_reset_flag(sk, SOCK_RCVTSTAMP);
864 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
865 }
866 break;
867
868 case SO_TIMESTAMPING:
869 if (val & ~SOF_TIMESTAMPING_MASK) {
870 ret = -EINVAL;
871 break;
872 }
873
874 if (val & SOF_TIMESTAMPING_OPT_ID &&
875 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
876 if (sk->sk_protocol == IPPROTO_TCP &&
877 sk->sk_type == SOCK_STREAM) {
878 if ((1 << sk->sk_state) &
879 (TCPF_CLOSE | TCPF_LISTEN)) {
880 ret = -EINVAL;
881 break;
882 }
883 sk->sk_tskey = tcp_sk(sk)->snd_una;
884 } else {
885 sk->sk_tskey = 0;
886 }
887 }
888
889 if (val & SOF_TIMESTAMPING_OPT_STATS &&
890 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
891 ret = -EINVAL;
892 break;
893 }
894
895 sk->sk_tsflags = val;
896 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
897 sock_enable_timestamp(sk,
898 SOCK_TIMESTAMPING_RX_SOFTWARE);
899 else
900 sock_disable_timestamp(sk,
901 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
902 break;
903
904 case SO_RCVLOWAT:
905 if (val < 0)
906 val = INT_MAX;
907 sk->sk_rcvlowat = val ? : 1;
908 break;
909
910 case SO_RCVTIMEO:
911 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
912 break;
913
914 case SO_SNDTIMEO:
915 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
916 break;
917
918 case SO_ATTACH_FILTER:
919 ret = -EINVAL;
920 if (optlen == sizeof(struct sock_fprog)) {
921 struct sock_fprog fprog;
922
923 ret = -EFAULT;
924 if (copy_from_user(&fprog, optval, sizeof(fprog)))
925 break;
926
927 ret = sk_attach_filter(&fprog, sk);
928 }
929 break;
930
931 case SO_ATTACH_BPF:
932 ret = -EINVAL;
933 if (optlen == sizeof(u32)) {
934 u32 ufd;
935
936 ret = -EFAULT;
937 if (copy_from_user(&ufd, optval, sizeof(ufd)))
938 break;
939
940 ret = sk_attach_bpf(ufd, sk);
941 }
942 break;
943
944 case SO_ATTACH_REUSEPORT_CBPF:
945 ret = -EINVAL;
946 if (optlen == sizeof(struct sock_fprog)) {
947 struct sock_fprog fprog;
948
949 ret = -EFAULT;
950 if (copy_from_user(&fprog, optval, sizeof(fprog)))
951 break;
952
953 ret = sk_reuseport_attach_filter(&fprog, sk);
954 }
955 break;
956
957 case SO_ATTACH_REUSEPORT_EBPF:
958 ret = -EINVAL;
959 if (optlen == sizeof(u32)) {
960 u32 ufd;
961
962 ret = -EFAULT;
963 if (copy_from_user(&ufd, optval, sizeof(ufd)))
964 break;
965
966 ret = sk_reuseport_attach_bpf(ufd, sk);
967 }
968 break;
969
970 case SO_DETACH_FILTER:
971 ret = sk_detach_filter(sk);
972 break;
973
974 case SO_LOCK_FILTER:
975 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
976 ret = -EPERM;
977 else
978 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
979 break;
980
981 case SO_PASSSEC:
982 if (valbool)
983 set_bit(SOCK_PASSSEC, &sock->flags);
984 else
985 clear_bit(SOCK_PASSSEC, &sock->flags);
986 break;
987 case SO_MARK:
988 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
989 ret = -EPERM;
990 else
991 sk->sk_mark = val;
992 break;
993
994 case SO_RXQ_OVFL:
995 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
996 break;
997
998 case SO_WIFI_STATUS:
999 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1000 break;
1001
1002 case SO_PEEK_OFF:
1003 if (sock->ops->set_peek_off)
1004 ret = sock->ops->set_peek_off(sk, val);
1005 else
1006 ret = -EOPNOTSUPP;
1007 break;
1008
1009 case SO_NOFCS:
1010 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1011 break;
1012
1013 case SO_SELECT_ERR_QUEUE:
1014 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1015 break;
1016
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 case SO_BUSY_POLL:
1019 /* allow unprivileged users to decrease the value */
1020 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1021 ret = -EPERM;
1022 else {
1023 if (val < 0)
1024 ret = -EINVAL;
1025 else
1026 sk->sk_ll_usec = val;
1027 }
1028 break;
1029 #endif
1030
1031 case SO_MAX_PACING_RATE:
1032 if (val != ~0U)
1033 cmpxchg(&sk->sk_pacing_status,
1034 SK_PACING_NONE,
1035 SK_PACING_NEEDED);
1036 sk->sk_max_pacing_rate = val;
1037 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1038 sk->sk_max_pacing_rate);
1039 break;
1040
1041 case SO_INCOMING_CPU:
1042 sk->sk_incoming_cpu = val;
1043 break;
1044
1045 case SO_CNX_ADVICE:
1046 if (val == 1)
1047 dst_negative_advice(sk);
1048 break;
1049
1050 case SO_ZEROCOPY:
1051 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1052 ret = -ENOTSUPP;
1053 else if (sk->sk_protocol != IPPROTO_TCP)
1054 ret = -ENOTSUPP;
1055 else if (sk->sk_state != TCP_CLOSE)
1056 ret = -EBUSY;
1057 else if (val < 0 || val > 1)
1058 ret = -EINVAL;
1059 else
1060 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1061 break;
1062
1063 default:
1064 ret = -ENOPROTOOPT;
1065 break;
1066 }
1067 release_sock(sk);
1068 return ret;
1069 }
1070 EXPORT_SYMBOL(sock_setsockopt);
1071
1072
1073 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1074 struct ucred *ucred)
1075 {
1076 ucred->pid = pid_vnr(pid);
1077 ucred->uid = ucred->gid = -1;
1078 if (cred) {
1079 struct user_namespace *current_ns = current_user_ns();
1080
1081 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1082 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1083 }
1084 }
1085
1086 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1087 {
1088 struct user_namespace *user_ns = current_user_ns();
1089 int i;
1090
1091 for (i = 0; i < src->ngroups; i++)
1092 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1093 return -EFAULT;
1094
1095 return 0;
1096 }
1097
1098 int sock_getsockopt(struct socket *sock, int level, int optname,
1099 char __user *optval, int __user *optlen)
1100 {
1101 struct sock *sk = sock->sk;
1102
1103 union {
1104 int val;
1105 u64 val64;
1106 struct linger ling;
1107 struct timeval tm;
1108 } v;
1109
1110 int lv = sizeof(int);
1111 int len;
1112
1113 if (get_user(len, optlen))
1114 return -EFAULT;
1115 if (len < 0)
1116 return -EINVAL;
1117
1118 memset(&v, 0, sizeof(v));
1119
1120 switch (optname) {
1121 case SO_DEBUG:
1122 v.val = sock_flag(sk, SOCK_DBG);
1123 break;
1124
1125 case SO_DONTROUTE:
1126 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1127 break;
1128
1129 case SO_BROADCAST:
1130 v.val = sock_flag(sk, SOCK_BROADCAST);
1131 break;
1132
1133 case SO_SNDBUF:
1134 v.val = sk->sk_sndbuf;
1135 break;
1136
1137 case SO_RCVBUF:
1138 v.val = sk->sk_rcvbuf;
1139 break;
1140
1141 case SO_REUSEADDR:
1142 v.val = sk->sk_reuse;
1143 break;
1144
1145 case SO_REUSEPORT:
1146 v.val = sk->sk_reuseport;
1147 break;
1148
1149 case SO_KEEPALIVE:
1150 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1151 break;
1152
1153 case SO_TYPE:
1154 v.val = sk->sk_type;
1155 break;
1156
1157 case SO_PROTOCOL:
1158 v.val = sk->sk_protocol;
1159 break;
1160
1161 case SO_DOMAIN:
1162 v.val = sk->sk_family;
1163 break;
1164
1165 case SO_ERROR:
1166 v.val = -sock_error(sk);
1167 if (v.val == 0)
1168 v.val = xchg(&sk->sk_err_soft, 0);
1169 break;
1170
1171 case SO_OOBINLINE:
1172 v.val = sock_flag(sk, SOCK_URGINLINE);
1173 break;
1174
1175 case SO_NO_CHECK:
1176 v.val = sk->sk_no_check_tx;
1177 break;
1178
1179 case SO_PRIORITY:
1180 v.val = sk->sk_priority;
1181 break;
1182
1183 case SO_LINGER:
1184 lv = sizeof(v.ling);
1185 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1186 v.ling.l_linger = sk->sk_lingertime / HZ;
1187 break;
1188
1189 case SO_BSDCOMPAT:
1190 sock_warn_obsolete_bsdism("getsockopt");
1191 break;
1192
1193 case SO_TIMESTAMP:
1194 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1195 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1196 break;
1197
1198 case SO_TIMESTAMPNS:
1199 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1200 break;
1201
1202 case SO_TIMESTAMPING:
1203 v.val = sk->sk_tsflags;
1204 break;
1205
1206 case SO_RCVTIMEO:
1207 lv = sizeof(struct timeval);
1208 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1209 v.tm.tv_sec = 0;
1210 v.tm.tv_usec = 0;
1211 } else {
1212 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1213 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1214 }
1215 break;
1216
1217 case SO_SNDTIMEO:
1218 lv = sizeof(struct timeval);
1219 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1220 v.tm.tv_sec = 0;
1221 v.tm.tv_usec = 0;
1222 } else {
1223 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1224 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1225 }
1226 break;
1227
1228 case SO_RCVLOWAT:
1229 v.val = sk->sk_rcvlowat;
1230 break;
1231
1232 case SO_SNDLOWAT:
1233 v.val = 1;
1234 break;
1235
1236 case SO_PASSCRED:
1237 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1238 break;
1239
1240 case SO_PEERCRED:
1241 {
1242 struct ucred peercred;
1243 if (len > sizeof(peercred))
1244 len = sizeof(peercred);
1245 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1246 if (copy_to_user(optval, &peercred, len))
1247 return -EFAULT;
1248 goto lenout;
1249 }
1250
1251 case SO_PEERGROUPS:
1252 {
1253 int ret, n;
1254
1255 if (!sk->sk_peer_cred)
1256 return -ENODATA;
1257
1258 n = sk->sk_peer_cred->group_info->ngroups;
1259 if (len < n * sizeof(gid_t)) {
1260 len = n * sizeof(gid_t);
1261 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1262 }
1263 len = n * sizeof(gid_t);
1264
1265 ret = groups_to_user((gid_t __user *)optval,
1266 sk->sk_peer_cred->group_info);
1267 if (ret)
1268 return ret;
1269 goto lenout;
1270 }
1271
1272 case SO_PEERNAME:
1273 {
1274 char address[128];
1275
1276 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1277 return -ENOTCONN;
1278 if (lv < len)
1279 return -EINVAL;
1280 if (copy_to_user(optval, address, len))
1281 return -EFAULT;
1282 goto lenout;
1283 }
1284
1285 /* Dubious BSD thing... Probably nobody even uses it, but
1286 * the UNIX standard wants it for whatever reason... -DaveM
1287 */
1288 case SO_ACCEPTCONN:
1289 v.val = sk->sk_state == TCP_LISTEN;
1290 break;
1291
1292 case SO_PASSSEC:
1293 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1294 break;
1295
1296 case SO_PEERSEC:
1297 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1298
1299 case SO_MARK:
1300 v.val = sk->sk_mark;
1301 break;
1302
1303 case SO_RXQ_OVFL:
1304 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1305 break;
1306
1307 case SO_WIFI_STATUS:
1308 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1309 break;
1310
1311 case SO_PEEK_OFF:
1312 if (!sock->ops->set_peek_off)
1313 return -EOPNOTSUPP;
1314
1315 v.val = sk->sk_peek_off;
1316 break;
1317 case SO_NOFCS:
1318 v.val = sock_flag(sk, SOCK_NOFCS);
1319 break;
1320
1321 case SO_BINDTODEVICE:
1322 return sock_getbindtodevice(sk, optval, optlen, len);
1323
1324 case SO_GET_FILTER:
1325 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1326 if (len < 0)
1327 return len;
1328
1329 goto lenout;
1330
1331 case SO_LOCK_FILTER:
1332 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1333 break;
1334
1335 case SO_BPF_EXTENSIONS:
1336 v.val = bpf_tell_extensions();
1337 break;
1338
1339 case SO_SELECT_ERR_QUEUE:
1340 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1341 break;
1342
1343 #ifdef CONFIG_NET_RX_BUSY_POLL
1344 case SO_BUSY_POLL:
1345 v.val = sk->sk_ll_usec;
1346 break;
1347 #endif
1348
1349 case SO_MAX_PACING_RATE:
1350 v.val = sk->sk_max_pacing_rate;
1351 break;
1352
1353 case SO_INCOMING_CPU:
1354 v.val = sk->sk_incoming_cpu;
1355 break;
1356
1357 case SO_MEMINFO:
1358 {
1359 u32 meminfo[SK_MEMINFO_VARS];
1360
1361 if (get_user(len, optlen))
1362 return -EFAULT;
1363
1364 sk_get_meminfo(sk, meminfo);
1365
1366 len = min_t(unsigned int, len, sizeof(meminfo));
1367 if (copy_to_user(optval, &meminfo, len))
1368 return -EFAULT;
1369
1370 goto lenout;
1371 }
1372
1373 #ifdef CONFIG_NET_RX_BUSY_POLL
1374 case SO_INCOMING_NAPI_ID:
1375 v.val = READ_ONCE(sk->sk_napi_id);
1376
1377 /* aggregate non-NAPI IDs down to 0 */
1378 if (v.val < MIN_NAPI_ID)
1379 v.val = 0;
1380
1381 break;
1382 #endif
1383
1384 case SO_COOKIE:
1385 lv = sizeof(u64);
1386 if (len < lv)
1387 return -EINVAL;
1388 v.val64 = sock_gen_cookie(sk);
1389 break;
1390
1391 case SO_ZEROCOPY:
1392 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1393 break;
1394
1395 default:
1396 /* We implement the SO_SNDLOWAT etc to not be settable
1397 * (1003.1g 7).
1398 */
1399 return -ENOPROTOOPT;
1400 }
1401
1402 if (len > lv)
1403 len = lv;
1404 if (copy_to_user(optval, &v, len))
1405 return -EFAULT;
1406 lenout:
1407 if (put_user(len, optlen))
1408 return -EFAULT;
1409 return 0;
1410 }
1411
1412 /*
1413 * Initialize an sk_lock.
1414 *
1415 * (We also register the sk_lock with the lock validator.)
1416 */
1417 static inline void sock_lock_init(struct sock *sk)
1418 {
1419 if (sk->sk_kern_sock)
1420 sock_lock_init_class_and_name(
1421 sk,
1422 af_family_kern_slock_key_strings[sk->sk_family],
1423 af_family_kern_slock_keys + sk->sk_family,
1424 af_family_kern_key_strings[sk->sk_family],
1425 af_family_kern_keys + sk->sk_family);
1426 else
1427 sock_lock_init_class_and_name(
1428 sk,
1429 af_family_slock_key_strings[sk->sk_family],
1430 af_family_slock_keys + sk->sk_family,
1431 af_family_key_strings[sk->sk_family],
1432 af_family_keys + sk->sk_family);
1433 }
1434
1435 /*
1436 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1437 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1438 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1439 */
1440 static void sock_copy(struct sock *nsk, const struct sock *osk)
1441 {
1442 #ifdef CONFIG_SECURITY_NETWORK
1443 void *sptr = nsk->sk_security;
1444 #endif
1445 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1446
1447 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1448 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1449
1450 #ifdef CONFIG_SECURITY_NETWORK
1451 nsk->sk_security = sptr;
1452 security_sk_clone(osk, nsk);
1453 #endif
1454 }
1455
1456 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1457 int family)
1458 {
1459 struct sock *sk;
1460 struct kmem_cache *slab;
1461
1462 slab = prot->slab;
1463 if (slab != NULL) {
1464 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1465 if (!sk)
1466 return sk;
1467 if (priority & __GFP_ZERO)
1468 sk_prot_clear_nulls(sk, prot->obj_size);
1469 } else
1470 sk = kmalloc(prot->obj_size, priority);
1471
1472 if (sk != NULL) {
1473 if (security_sk_alloc(sk, family, priority))
1474 goto out_free;
1475
1476 if (!try_module_get(prot->owner))
1477 goto out_free_sec;
1478 sk_tx_queue_clear(sk);
1479 }
1480
1481 return sk;
1482
1483 out_free_sec:
1484 security_sk_free(sk);
1485 out_free:
1486 if (slab != NULL)
1487 kmem_cache_free(slab, sk);
1488 else
1489 kfree(sk);
1490 return NULL;
1491 }
1492
1493 static void sk_prot_free(struct proto *prot, struct sock *sk)
1494 {
1495 struct kmem_cache *slab;
1496 struct module *owner;
1497
1498 owner = prot->owner;
1499 slab = prot->slab;
1500
1501 cgroup_sk_free(&sk->sk_cgrp_data);
1502 mem_cgroup_sk_free(sk);
1503 security_sk_free(sk);
1504 if (slab != NULL)
1505 kmem_cache_free(slab, sk);
1506 else
1507 kfree(sk);
1508 module_put(owner);
1509 }
1510
1511 /**
1512 * sk_alloc - All socket objects are allocated here
1513 * @net: the applicable net namespace
1514 * @family: protocol family
1515 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1516 * @prot: struct proto associated with this new sock instance
1517 * @kern: is this to be a kernel socket?
1518 */
1519 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1520 struct proto *prot, int kern)
1521 {
1522 struct sock *sk;
1523
1524 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1525 if (sk) {
1526 sk->sk_family = family;
1527 /*
1528 * See comment in struct sock definition to understand
1529 * why we need sk_prot_creator -acme
1530 */
1531 sk->sk_prot = sk->sk_prot_creator = prot;
1532 sk->sk_kern_sock = kern;
1533 sock_lock_init(sk);
1534 sk->sk_net_refcnt = kern ? 0 : 1;
1535 if (likely(sk->sk_net_refcnt))
1536 get_net(net);
1537 sock_net_set(sk, net);
1538 refcount_set(&sk->sk_wmem_alloc, 1);
1539
1540 mem_cgroup_sk_alloc(sk);
1541 cgroup_sk_alloc(&sk->sk_cgrp_data);
1542 sock_update_classid(&sk->sk_cgrp_data);
1543 sock_update_netprioidx(&sk->sk_cgrp_data);
1544 }
1545
1546 return sk;
1547 }
1548 EXPORT_SYMBOL(sk_alloc);
1549
1550 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1551 * grace period. This is the case for UDP sockets and TCP listeners.
1552 */
1553 static void __sk_destruct(struct rcu_head *head)
1554 {
1555 struct sock *sk = container_of(head, struct sock, sk_rcu);
1556 struct sk_filter *filter;
1557
1558 if (sk->sk_destruct)
1559 sk->sk_destruct(sk);
1560
1561 filter = rcu_dereference_check(sk->sk_filter,
1562 refcount_read(&sk->sk_wmem_alloc) == 0);
1563 if (filter) {
1564 sk_filter_uncharge(sk, filter);
1565 RCU_INIT_POINTER(sk->sk_filter, NULL);
1566 }
1567 if (rcu_access_pointer(sk->sk_reuseport_cb))
1568 reuseport_detach_sock(sk);
1569
1570 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1571
1572 if (atomic_read(&sk->sk_omem_alloc))
1573 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1574 __func__, atomic_read(&sk->sk_omem_alloc));
1575
1576 if (sk->sk_frag.page) {
1577 put_page(sk->sk_frag.page);
1578 sk->sk_frag.page = NULL;
1579 }
1580
1581 if (sk->sk_peer_cred)
1582 put_cred(sk->sk_peer_cred);
1583 put_pid(sk->sk_peer_pid);
1584 if (likely(sk->sk_net_refcnt))
1585 put_net(sock_net(sk));
1586 sk_prot_free(sk->sk_prot_creator, sk);
1587 }
1588
1589 void sk_destruct(struct sock *sk)
1590 {
1591 if (sock_flag(sk, SOCK_RCU_FREE))
1592 call_rcu(&sk->sk_rcu, __sk_destruct);
1593 else
1594 __sk_destruct(&sk->sk_rcu);
1595 }
1596
1597 static void __sk_free(struct sock *sk)
1598 {
1599 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1600 sock_diag_broadcast_destroy(sk);
1601 else
1602 sk_destruct(sk);
1603 }
1604
1605 void sk_free(struct sock *sk)
1606 {
1607 /*
1608 * We subtract one from sk_wmem_alloc and can know if
1609 * some packets are still in some tx queue.
1610 * If not null, sock_wfree() will call __sk_free(sk) later
1611 */
1612 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1613 __sk_free(sk);
1614 }
1615 EXPORT_SYMBOL(sk_free);
1616
1617 static void sk_init_common(struct sock *sk)
1618 {
1619 skb_queue_head_init(&sk->sk_receive_queue);
1620 skb_queue_head_init(&sk->sk_write_queue);
1621 skb_queue_head_init(&sk->sk_error_queue);
1622
1623 rwlock_init(&sk->sk_callback_lock);
1624 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1625 af_rlock_keys + sk->sk_family,
1626 af_family_rlock_key_strings[sk->sk_family]);
1627 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1628 af_wlock_keys + sk->sk_family,
1629 af_family_wlock_key_strings[sk->sk_family]);
1630 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1631 af_elock_keys + sk->sk_family,
1632 af_family_elock_key_strings[sk->sk_family]);
1633 lockdep_set_class_and_name(&sk->sk_callback_lock,
1634 af_callback_keys + sk->sk_family,
1635 af_family_clock_key_strings[sk->sk_family]);
1636 }
1637
1638 /**
1639 * sk_clone_lock - clone a socket, and lock its clone
1640 * @sk: the socket to clone
1641 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1642 *
1643 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1644 */
1645 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1646 {
1647 struct sock *newsk;
1648 bool is_charged = true;
1649
1650 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1651 if (newsk != NULL) {
1652 struct sk_filter *filter;
1653
1654 sock_copy(newsk, sk);
1655
1656 newsk->sk_prot_creator = sk->sk_prot;
1657
1658 /* SANITY */
1659 if (likely(newsk->sk_net_refcnt))
1660 get_net(sock_net(newsk));
1661 sk_node_init(&newsk->sk_node);
1662 sock_lock_init(newsk);
1663 bh_lock_sock(newsk);
1664 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1665 newsk->sk_backlog.len = 0;
1666
1667 atomic_set(&newsk->sk_rmem_alloc, 0);
1668 /*
1669 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1670 */
1671 refcount_set(&newsk->sk_wmem_alloc, 1);
1672 atomic_set(&newsk->sk_omem_alloc, 0);
1673 sk_init_common(newsk);
1674
1675 newsk->sk_dst_cache = NULL;
1676 newsk->sk_dst_pending_confirm = 0;
1677 newsk->sk_wmem_queued = 0;
1678 newsk->sk_forward_alloc = 0;
1679 atomic_set(&newsk->sk_drops, 0);
1680 newsk->sk_send_head = NULL;
1681 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1682 atomic_set(&newsk->sk_zckey, 0);
1683
1684 sock_reset_flag(newsk, SOCK_DONE);
1685 mem_cgroup_sk_alloc(newsk);
1686 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1687
1688 rcu_read_lock();
1689 filter = rcu_dereference(sk->sk_filter);
1690 if (filter != NULL)
1691 /* though it's an empty new sock, the charging may fail
1692 * if sysctl_optmem_max was changed between creation of
1693 * original socket and cloning
1694 */
1695 is_charged = sk_filter_charge(newsk, filter);
1696 RCU_INIT_POINTER(newsk->sk_filter, filter);
1697 rcu_read_unlock();
1698
1699 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1700 /* We need to make sure that we don't uncharge the new
1701 * socket if we couldn't charge it in the first place
1702 * as otherwise we uncharge the parent's filter.
1703 */
1704 if (!is_charged)
1705 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1706 sk_free_unlock_clone(newsk);
1707 newsk = NULL;
1708 goto out;
1709 }
1710 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1711
1712 newsk->sk_err = 0;
1713 newsk->sk_err_soft = 0;
1714 newsk->sk_priority = 0;
1715 newsk->sk_incoming_cpu = raw_smp_processor_id();
1716 atomic64_set(&newsk->sk_cookie, 0);
1717
1718 /*
1719 * Before updating sk_refcnt, we must commit prior changes to memory
1720 * (Documentation/RCU/rculist_nulls.txt for details)
1721 */
1722 smp_wmb();
1723 refcount_set(&newsk->sk_refcnt, 2);
1724
1725 /*
1726 * Increment the counter in the same struct proto as the master
1727 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1728 * is the same as sk->sk_prot->socks, as this field was copied
1729 * with memcpy).
1730 *
1731 * This _changes_ the previous behaviour, where
1732 * tcp_create_openreq_child always was incrementing the
1733 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1734 * to be taken into account in all callers. -acme
1735 */
1736 sk_refcnt_debug_inc(newsk);
1737 sk_set_socket(newsk, NULL);
1738 newsk->sk_wq = NULL;
1739
1740 if (newsk->sk_prot->sockets_allocated)
1741 sk_sockets_allocated_inc(newsk);
1742
1743 if (sock_needs_netstamp(sk) &&
1744 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1745 net_enable_timestamp();
1746 }
1747 out:
1748 return newsk;
1749 }
1750 EXPORT_SYMBOL_GPL(sk_clone_lock);
1751
1752 void sk_free_unlock_clone(struct sock *sk)
1753 {
1754 /* It is still raw copy of parent, so invalidate
1755 * destructor and make plain sk_free() */
1756 sk->sk_destruct = NULL;
1757 bh_unlock_sock(sk);
1758 sk_free(sk);
1759 }
1760 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1761
1762 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1763 {
1764 u32 max_segs = 1;
1765
1766 sk_dst_set(sk, dst);
1767 sk->sk_route_caps = dst->dev->features;
1768 if (sk->sk_route_caps & NETIF_F_GSO)
1769 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1770 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1771 if (sk_can_gso(sk)) {
1772 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1773 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1774 } else {
1775 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1776 sk->sk_gso_max_size = dst->dev->gso_max_size;
1777 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1778 }
1779 }
1780 sk->sk_gso_max_segs = max_segs;
1781 }
1782 EXPORT_SYMBOL_GPL(sk_setup_caps);
1783
1784 /*
1785 * Simple resource managers for sockets.
1786 */
1787
1788
1789 /*
1790 * Write buffer destructor automatically called from kfree_skb.
1791 */
1792 void sock_wfree(struct sk_buff *skb)
1793 {
1794 struct sock *sk = skb->sk;
1795 unsigned int len = skb->truesize;
1796
1797 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1798 /*
1799 * Keep a reference on sk_wmem_alloc, this will be released
1800 * after sk_write_space() call
1801 */
1802 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1803 sk->sk_write_space(sk);
1804 len = 1;
1805 }
1806 /*
1807 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1808 * could not do because of in-flight packets
1809 */
1810 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1811 __sk_free(sk);
1812 }
1813 EXPORT_SYMBOL(sock_wfree);
1814
1815 /* This variant of sock_wfree() is used by TCP,
1816 * since it sets SOCK_USE_WRITE_QUEUE.
1817 */
1818 void __sock_wfree(struct sk_buff *skb)
1819 {
1820 struct sock *sk = skb->sk;
1821
1822 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1823 __sk_free(sk);
1824 }
1825
1826 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1827 {
1828 skb_orphan(skb);
1829 skb->sk = sk;
1830 #ifdef CONFIG_INET
1831 if (unlikely(!sk_fullsock(sk))) {
1832 skb->destructor = sock_edemux;
1833 sock_hold(sk);
1834 return;
1835 }
1836 #endif
1837 skb->destructor = sock_wfree;
1838 skb_set_hash_from_sk(skb, sk);
1839 /*
1840 * We used to take a refcount on sk, but following operation
1841 * is enough to guarantee sk_free() wont free this sock until
1842 * all in-flight packets are completed
1843 */
1844 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1845 }
1846 EXPORT_SYMBOL(skb_set_owner_w);
1847
1848 /* This helper is used by netem, as it can hold packets in its
1849 * delay queue. We want to allow the owner socket to send more
1850 * packets, as if they were already TX completed by a typical driver.
1851 * But we also want to keep skb->sk set because some packet schedulers
1852 * rely on it (sch_fq for example).
1853 */
1854 void skb_orphan_partial(struct sk_buff *skb)
1855 {
1856 if (skb_is_tcp_pure_ack(skb))
1857 return;
1858
1859 if (skb->destructor == sock_wfree
1860 #ifdef CONFIG_INET
1861 || skb->destructor == tcp_wfree
1862 #endif
1863 ) {
1864 struct sock *sk = skb->sk;
1865
1866 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1867 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1868 skb->destructor = sock_efree;
1869 }
1870 } else {
1871 skb_orphan(skb);
1872 }
1873 }
1874 EXPORT_SYMBOL(skb_orphan_partial);
1875
1876 /*
1877 * Read buffer destructor automatically called from kfree_skb.
1878 */
1879 void sock_rfree(struct sk_buff *skb)
1880 {
1881 struct sock *sk = skb->sk;
1882 unsigned int len = skb->truesize;
1883
1884 atomic_sub(len, &sk->sk_rmem_alloc);
1885 sk_mem_uncharge(sk, len);
1886 }
1887 EXPORT_SYMBOL(sock_rfree);
1888
1889 /*
1890 * Buffer destructor for skbs that are not used directly in read or write
1891 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1892 */
1893 void sock_efree(struct sk_buff *skb)
1894 {
1895 sock_put(skb->sk);
1896 }
1897 EXPORT_SYMBOL(sock_efree);
1898
1899 kuid_t sock_i_uid(struct sock *sk)
1900 {
1901 kuid_t uid;
1902
1903 read_lock_bh(&sk->sk_callback_lock);
1904 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1905 read_unlock_bh(&sk->sk_callback_lock);
1906 return uid;
1907 }
1908 EXPORT_SYMBOL(sock_i_uid);
1909
1910 unsigned long sock_i_ino(struct sock *sk)
1911 {
1912 unsigned long ino;
1913
1914 read_lock_bh(&sk->sk_callback_lock);
1915 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1916 read_unlock_bh(&sk->sk_callback_lock);
1917 return ino;
1918 }
1919 EXPORT_SYMBOL(sock_i_ino);
1920
1921 /*
1922 * Allocate a skb from the socket's send buffer.
1923 */
1924 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1925 gfp_t priority)
1926 {
1927 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1928 struct sk_buff *skb = alloc_skb(size, priority);
1929 if (skb) {
1930 skb_set_owner_w(skb, sk);
1931 return skb;
1932 }
1933 }
1934 return NULL;
1935 }
1936 EXPORT_SYMBOL(sock_wmalloc);
1937
1938 static void sock_ofree(struct sk_buff *skb)
1939 {
1940 struct sock *sk = skb->sk;
1941
1942 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1943 }
1944
1945 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1946 gfp_t priority)
1947 {
1948 struct sk_buff *skb;
1949
1950 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1951 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1952 sysctl_optmem_max)
1953 return NULL;
1954
1955 skb = alloc_skb(size, priority);
1956 if (!skb)
1957 return NULL;
1958
1959 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1960 skb->sk = sk;
1961 skb->destructor = sock_ofree;
1962 return skb;
1963 }
1964
1965 /*
1966 * Allocate a memory block from the socket's option memory buffer.
1967 */
1968 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1969 {
1970 if ((unsigned int)size <= sysctl_optmem_max &&
1971 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1972 void *mem;
1973 /* First do the add, to avoid the race if kmalloc
1974 * might sleep.
1975 */
1976 atomic_add(size, &sk->sk_omem_alloc);
1977 mem = kmalloc(size, priority);
1978 if (mem)
1979 return mem;
1980 atomic_sub(size, &sk->sk_omem_alloc);
1981 }
1982 return NULL;
1983 }
1984 EXPORT_SYMBOL(sock_kmalloc);
1985
1986 /* Free an option memory block. Note, we actually want the inline
1987 * here as this allows gcc to detect the nullify and fold away the
1988 * condition entirely.
1989 */
1990 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1991 const bool nullify)
1992 {
1993 if (WARN_ON_ONCE(!mem))
1994 return;
1995 if (nullify)
1996 kzfree(mem);
1997 else
1998 kfree(mem);
1999 atomic_sub(size, &sk->sk_omem_alloc);
2000 }
2001
2002 void sock_kfree_s(struct sock *sk, void *mem, int size)
2003 {
2004 __sock_kfree_s(sk, mem, size, false);
2005 }
2006 EXPORT_SYMBOL(sock_kfree_s);
2007
2008 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2009 {
2010 __sock_kfree_s(sk, mem, size, true);
2011 }
2012 EXPORT_SYMBOL(sock_kzfree_s);
2013
2014 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2015 I think, these locks should be removed for datagram sockets.
2016 */
2017 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2018 {
2019 DEFINE_WAIT(wait);
2020
2021 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2022 for (;;) {
2023 if (!timeo)
2024 break;
2025 if (signal_pending(current))
2026 break;
2027 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2028 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2029 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2030 break;
2031 if (sk->sk_shutdown & SEND_SHUTDOWN)
2032 break;
2033 if (sk->sk_err)
2034 break;
2035 timeo = schedule_timeout(timeo);
2036 }
2037 finish_wait(sk_sleep(sk), &wait);
2038 return timeo;
2039 }
2040
2041
2042 /*
2043 * Generic send/receive buffer handlers
2044 */
2045
2046 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2047 unsigned long data_len, int noblock,
2048 int *errcode, int max_page_order)
2049 {
2050 struct sk_buff *skb;
2051 long timeo;
2052 int err;
2053
2054 timeo = sock_sndtimeo(sk, noblock);
2055 for (;;) {
2056 err = sock_error(sk);
2057 if (err != 0)
2058 goto failure;
2059
2060 err = -EPIPE;
2061 if (sk->sk_shutdown & SEND_SHUTDOWN)
2062 goto failure;
2063
2064 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2065 break;
2066
2067 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2068 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2069 err = -EAGAIN;
2070 if (!timeo)
2071 goto failure;
2072 if (signal_pending(current))
2073 goto interrupted;
2074 timeo = sock_wait_for_wmem(sk, timeo);
2075 }
2076 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2077 errcode, sk->sk_allocation);
2078 if (skb)
2079 skb_set_owner_w(skb, sk);
2080 return skb;
2081
2082 interrupted:
2083 err = sock_intr_errno(timeo);
2084 failure:
2085 *errcode = err;
2086 return NULL;
2087 }
2088 EXPORT_SYMBOL(sock_alloc_send_pskb);
2089
2090 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2091 int noblock, int *errcode)
2092 {
2093 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2094 }
2095 EXPORT_SYMBOL(sock_alloc_send_skb);
2096
2097 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2098 struct sockcm_cookie *sockc)
2099 {
2100 u32 tsflags;
2101
2102 switch (cmsg->cmsg_type) {
2103 case SO_MARK:
2104 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2105 return -EPERM;
2106 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2107 return -EINVAL;
2108 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2109 break;
2110 case SO_TIMESTAMPING:
2111 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2112 return -EINVAL;
2113
2114 tsflags = *(u32 *)CMSG_DATA(cmsg);
2115 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2116 return -EINVAL;
2117
2118 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2119 sockc->tsflags |= tsflags;
2120 break;
2121 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2122 case SCM_RIGHTS:
2123 case SCM_CREDENTIALS:
2124 break;
2125 default:
2126 return -EINVAL;
2127 }
2128 return 0;
2129 }
2130 EXPORT_SYMBOL(__sock_cmsg_send);
2131
2132 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2133 struct sockcm_cookie *sockc)
2134 {
2135 struct cmsghdr *cmsg;
2136 int ret;
2137
2138 for_each_cmsghdr(cmsg, msg) {
2139 if (!CMSG_OK(msg, cmsg))
2140 return -EINVAL;
2141 if (cmsg->cmsg_level != SOL_SOCKET)
2142 continue;
2143 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2144 if (ret)
2145 return ret;
2146 }
2147 return 0;
2148 }
2149 EXPORT_SYMBOL(sock_cmsg_send);
2150
2151 static void sk_enter_memory_pressure(struct sock *sk)
2152 {
2153 if (!sk->sk_prot->enter_memory_pressure)
2154 return;
2155
2156 sk->sk_prot->enter_memory_pressure(sk);
2157 }
2158
2159 static void sk_leave_memory_pressure(struct sock *sk)
2160 {
2161 if (sk->sk_prot->leave_memory_pressure) {
2162 sk->sk_prot->leave_memory_pressure(sk);
2163 } else {
2164 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2165
2166 if (memory_pressure && *memory_pressure)
2167 *memory_pressure = 0;
2168 }
2169 }
2170
2171 /* On 32bit arches, an skb frag is limited to 2^15 */
2172 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2173
2174 /**
2175 * skb_page_frag_refill - check that a page_frag contains enough room
2176 * @sz: minimum size of the fragment we want to get
2177 * @pfrag: pointer to page_frag
2178 * @gfp: priority for memory allocation
2179 *
2180 * Note: While this allocator tries to use high order pages, there is
2181 * no guarantee that allocations succeed. Therefore, @sz MUST be
2182 * less or equal than PAGE_SIZE.
2183 */
2184 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2185 {
2186 if (pfrag->page) {
2187 if (page_ref_count(pfrag->page) == 1) {
2188 pfrag->offset = 0;
2189 return true;
2190 }
2191 if (pfrag->offset + sz <= pfrag->size)
2192 return true;
2193 put_page(pfrag->page);
2194 }
2195
2196 pfrag->offset = 0;
2197 if (SKB_FRAG_PAGE_ORDER) {
2198 /* Avoid direct reclaim but allow kswapd to wake */
2199 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2200 __GFP_COMP | __GFP_NOWARN |
2201 __GFP_NORETRY,
2202 SKB_FRAG_PAGE_ORDER);
2203 if (likely(pfrag->page)) {
2204 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2205 return true;
2206 }
2207 }
2208 pfrag->page = alloc_page(gfp);
2209 if (likely(pfrag->page)) {
2210 pfrag->size = PAGE_SIZE;
2211 return true;
2212 }
2213 return false;
2214 }
2215 EXPORT_SYMBOL(skb_page_frag_refill);
2216
2217 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2218 {
2219 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2220 return true;
2221
2222 sk_enter_memory_pressure(sk);
2223 sk_stream_moderate_sndbuf(sk);
2224 return false;
2225 }
2226 EXPORT_SYMBOL(sk_page_frag_refill);
2227
2228 static void __lock_sock(struct sock *sk)
2229 __releases(&sk->sk_lock.slock)
2230 __acquires(&sk->sk_lock.slock)
2231 {
2232 DEFINE_WAIT(wait);
2233
2234 for (;;) {
2235 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2236 TASK_UNINTERRUPTIBLE);
2237 spin_unlock_bh(&sk->sk_lock.slock);
2238 schedule();
2239 spin_lock_bh(&sk->sk_lock.slock);
2240 if (!sock_owned_by_user(sk))
2241 break;
2242 }
2243 finish_wait(&sk->sk_lock.wq, &wait);
2244 }
2245
2246 void __release_sock(struct sock *sk)
2247 __releases(&sk->sk_lock.slock)
2248 __acquires(&sk->sk_lock.slock)
2249 {
2250 struct sk_buff *skb, *next;
2251
2252 while ((skb = sk->sk_backlog.head) != NULL) {
2253 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2254
2255 spin_unlock_bh(&sk->sk_lock.slock);
2256
2257 do {
2258 next = skb->next;
2259 prefetch(next);
2260 WARN_ON_ONCE(skb_dst_is_noref(skb));
2261 skb->next = NULL;
2262 sk_backlog_rcv(sk, skb);
2263
2264 cond_resched();
2265
2266 skb = next;
2267 } while (skb != NULL);
2268
2269 spin_lock_bh(&sk->sk_lock.slock);
2270 }
2271
2272 /*
2273 * Doing the zeroing here guarantee we can not loop forever
2274 * while a wild producer attempts to flood us.
2275 */
2276 sk->sk_backlog.len = 0;
2277 }
2278
2279 void __sk_flush_backlog(struct sock *sk)
2280 {
2281 spin_lock_bh(&sk->sk_lock.slock);
2282 __release_sock(sk);
2283 spin_unlock_bh(&sk->sk_lock.slock);
2284 }
2285
2286 /**
2287 * sk_wait_data - wait for data to arrive at sk_receive_queue
2288 * @sk: sock to wait on
2289 * @timeo: for how long
2290 * @skb: last skb seen on sk_receive_queue
2291 *
2292 * Now socket state including sk->sk_err is changed only under lock,
2293 * hence we may omit checks after joining wait queue.
2294 * We check receive queue before schedule() only as optimization;
2295 * it is very likely that release_sock() added new data.
2296 */
2297 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2298 {
2299 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2300 int rc;
2301
2302 add_wait_queue(sk_sleep(sk), &wait);
2303 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2304 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2305 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2306 remove_wait_queue(sk_sleep(sk), &wait);
2307 return rc;
2308 }
2309 EXPORT_SYMBOL(sk_wait_data);
2310
2311 /**
2312 * __sk_mem_raise_allocated - increase memory_allocated
2313 * @sk: socket
2314 * @size: memory size to allocate
2315 * @amt: pages to allocate
2316 * @kind: allocation type
2317 *
2318 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2319 */
2320 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2321 {
2322 struct proto *prot = sk->sk_prot;
2323 long allocated = sk_memory_allocated_add(sk, amt);
2324
2325 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2326 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2327 goto suppress_allocation;
2328
2329 /* Under limit. */
2330 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2331 sk_leave_memory_pressure(sk);
2332 return 1;
2333 }
2334
2335 /* Under pressure. */
2336 if (allocated > sk_prot_mem_limits(sk, 1))
2337 sk_enter_memory_pressure(sk);
2338
2339 /* Over hard limit. */
2340 if (allocated > sk_prot_mem_limits(sk, 2))
2341 goto suppress_allocation;
2342
2343 /* guarantee minimum buffer size under pressure */
2344 if (kind == SK_MEM_RECV) {
2345 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2346 return 1;
2347
2348 } else { /* SK_MEM_SEND */
2349 if (sk->sk_type == SOCK_STREAM) {
2350 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2351 return 1;
2352 } else if (refcount_read(&sk->sk_wmem_alloc) <
2353 prot->sysctl_wmem[0])
2354 return 1;
2355 }
2356
2357 if (sk_has_memory_pressure(sk)) {
2358 int alloc;
2359
2360 if (!sk_under_memory_pressure(sk))
2361 return 1;
2362 alloc = sk_sockets_allocated_read_positive(sk);
2363 if (sk_prot_mem_limits(sk, 2) > alloc *
2364 sk_mem_pages(sk->sk_wmem_queued +
2365 atomic_read(&sk->sk_rmem_alloc) +
2366 sk->sk_forward_alloc))
2367 return 1;
2368 }
2369
2370 suppress_allocation:
2371
2372 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2373 sk_stream_moderate_sndbuf(sk);
2374
2375 /* Fail only if socket is _under_ its sndbuf.
2376 * In this case we cannot block, so that we have to fail.
2377 */
2378 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2379 return 1;
2380 }
2381
2382 trace_sock_exceed_buf_limit(sk, prot, allocated);
2383
2384 sk_memory_allocated_sub(sk, amt);
2385
2386 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2387 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2388
2389 return 0;
2390 }
2391 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2392
2393 /**
2394 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2395 * @sk: socket
2396 * @size: memory size to allocate
2397 * @kind: allocation type
2398 *
2399 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2400 * rmem allocation. This function assumes that protocols which have
2401 * memory_pressure use sk_wmem_queued as write buffer accounting.
2402 */
2403 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2404 {
2405 int ret, amt = sk_mem_pages(size);
2406
2407 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2408 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2409 if (!ret)
2410 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2411 return ret;
2412 }
2413 EXPORT_SYMBOL(__sk_mem_schedule);
2414
2415 /**
2416 * __sk_mem_reduce_allocated - reclaim memory_allocated
2417 * @sk: socket
2418 * @amount: number of quanta
2419 *
2420 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2421 */
2422 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2423 {
2424 sk_memory_allocated_sub(sk, amount);
2425
2426 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2427 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2428
2429 if (sk_under_memory_pressure(sk) &&
2430 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2431 sk_leave_memory_pressure(sk);
2432 }
2433 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2434
2435 /**
2436 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2437 * @sk: socket
2438 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2439 */
2440 void __sk_mem_reclaim(struct sock *sk, int amount)
2441 {
2442 amount >>= SK_MEM_QUANTUM_SHIFT;
2443 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2444 __sk_mem_reduce_allocated(sk, amount);
2445 }
2446 EXPORT_SYMBOL(__sk_mem_reclaim);
2447
2448 int sk_set_peek_off(struct sock *sk, int val)
2449 {
2450 sk->sk_peek_off = val;
2451 return 0;
2452 }
2453 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2454
2455 /*
2456 * Set of default routines for initialising struct proto_ops when
2457 * the protocol does not support a particular function. In certain
2458 * cases where it makes no sense for a protocol to have a "do nothing"
2459 * function, some default processing is provided.
2460 */
2461
2462 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2463 {
2464 return -EOPNOTSUPP;
2465 }
2466 EXPORT_SYMBOL(sock_no_bind);
2467
2468 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2469 int len, int flags)
2470 {
2471 return -EOPNOTSUPP;
2472 }
2473 EXPORT_SYMBOL(sock_no_connect);
2474
2475 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2476 {
2477 return -EOPNOTSUPP;
2478 }
2479 EXPORT_SYMBOL(sock_no_socketpair);
2480
2481 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2482 bool kern)
2483 {
2484 return -EOPNOTSUPP;
2485 }
2486 EXPORT_SYMBOL(sock_no_accept);
2487
2488 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2489 int *len, int peer)
2490 {
2491 return -EOPNOTSUPP;
2492 }
2493 EXPORT_SYMBOL(sock_no_getname);
2494
2495 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2496 {
2497 return 0;
2498 }
2499 EXPORT_SYMBOL(sock_no_poll);
2500
2501 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2502 {
2503 return -EOPNOTSUPP;
2504 }
2505 EXPORT_SYMBOL(sock_no_ioctl);
2506
2507 int sock_no_listen(struct socket *sock, int backlog)
2508 {
2509 return -EOPNOTSUPP;
2510 }
2511 EXPORT_SYMBOL(sock_no_listen);
2512
2513 int sock_no_shutdown(struct socket *sock, int how)
2514 {
2515 return -EOPNOTSUPP;
2516 }
2517 EXPORT_SYMBOL(sock_no_shutdown);
2518
2519 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2520 char __user *optval, unsigned int optlen)
2521 {
2522 return -EOPNOTSUPP;
2523 }
2524 EXPORT_SYMBOL(sock_no_setsockopt);
2525
2526 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2527 char __user *optval, int __user *optlen)
2528 {
2529 return -EOPNOTSUPP;
2530 }
2531 EXPORT_SYMBOL(sock_no_getsockopt);
2532
2533 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2534 {
2535 return -EOPNOTSUPP;
2536 }
2537 EXPORT_SYMBOL(sock_no_sendmsg);
2538
2539 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2540 {
2541 return -EOPNOTSUPP;
2542 }
2543 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2544
2545 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2546 int flags)
2547 {
2548 return -EOPNOTSUPP;
2549 }
2550 EXPORT_SYMBOL(sock_no_recvmsg);
2551
2552 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2553 {
2554 /* Mirror missing mmap method error code */
2555 return -ENODEV;
2556 }
2557 EXPORT_SYMBOL(sock_no_mmap);
2558
2559 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2560 {
2561 ssize_t res;
2562 struct msghdr msg = {.msg_flags = flags};
2563 struct kvec iov;
2564 char *kaddr = kmap(page);
2565 iov.iov_base = kaddr + offset;
2566 iov.iov_len = size;
2567 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2568 kunmap(page);
2569 return res;
2570 }
2571 EXPORT_SYMBOL(sock_no_sendpage);
2572
2573 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2574 int offset, size_t size, int flags)
2575 {
2576 ssize_t res;
2577 struct msghdr msg = {.msg_flags = flags};
2578 struct kvec iov;
2579 char *kaddr = kmap(page);
2580
2581 iov.iov_base = kaddr + offset;
2582 iov.iov_len = size;
2583 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2584 kunmap(page);
2585 return res;
2586 }
2587 EXPORT_SYMBOL(sock_no_sendpage_locked);
2588
2589 /*
2590 * Default Socket Callbacks
2591 */
2592
2593 static void sock_def_wakeup(struct sock *sk)
2594 {
2595 struct socket_wq *wq;
2596
2597 rcu_read_lock();
2598 wq = rcu_dereference(sk->sk_wq);
2599 if (skwq_has_sleeper(wq))
2600 wake_up_interruptible_all(&wq->wait);
2601 rcu_read_unlock();
2602 }
2603
2604 static void sock_def_error_report(struct sock *sk)
2605 {
2606 struct socket_wq *wq;
2607
2608 rcu_read_lock();
2609 wq = rcu_dereference(sk->sk_wq);
2610 if (skwq_has_sleeper(wq))
2611 wake_up_interruptible_poll(&wq->wait, POLLERR);
2612 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2613 rcu_read_unlock();
2614 }
2615
2616 static void sock_def_readable(struct sock *sk)
2617 {
2618 struct socket_wq *wq;
2619
2620 rcu_read_lock();
2621 wq = rcu_dereference(sk->sk_wq);
2622 if (skwq_has_sleeper(wq))
2623 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2624 POLLRDNORM | POLLRDBAND);
2625 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2626 rcu_read_unlock();
2627 }
2628
2629 static void sock_def_write_space(struct sock *sk)
2630 {
2631 struct socket_wq *wq;
2632
2633 rcu_read_lock();
2634
2635 /* Do not wake up a writer until he can make "significant"
2636 * progress. --DaveM
2637 */
2638 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2639 wq = rcu_dereference(sk->sk_wq);
2640 if (skwq_has_sleeper(wq))
2641 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2642 POLLWRNORM | POLLWRBAND);
2643
2644 /* Should agree with poll, otherwise some programs break */
2645 if (sock_writeable(sk))
2646 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2647 }
2648
2649 rcu_read_unlock();
2650 }
2651
2652 static void sock_def_destruct(struct sock *sk)
2653 {
2654 }
2655
2656 void sk_send_sigurg(struct sock *sk)
2657 {
2658 if (sk->sk_socket && sk->sk_socket->file)
2659 if (send_sigurg(&sk->sk_socket->file->f_owner))
2660 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2661 }
2662 EXPORT_SYMBOL(sk_send_sigurg);
2663
2664 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2665 unsigned long expires)
2666 {
2667 if (!mod_timer(timer, expires))
2668 sock_hold(sk);
2669 }
2670 EXPORT_SYMBOL(sk_reset_timer);
2671
2672 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2673 {
2674 if (del_timer(timer))
2675 __sock_put(sk);
2676 }
2677 EXPORT_SYMBOL(sk_stop_timer);
2678
2679 void sock_init_data(struct socket *sock, struct sock *sk)
2680 {
2681 sk_init_common(sk);
2682 sk->sk_send_head = NULL;
2683
2684 init_timer(&sk->sk_timer);
2685
2686 sk->sk_allocation = GFP_KERNEL;
2687 sk->sk_rcvbuf = sysctl_rmem_default;
2688 sk->sk_sndbuf = sysctl_wmem_default;
2689 sk->sk_state = TCP_CLOSE;
2690 sk_set_socket(sk, sock);
2691
2692 sock_set_flag(sk, SOCK_ZAPPED);
2693
2694 if (sock) {
2695 sk->sk_type = sock->type;
2696 sk->sk_wq = sock->wq;
2697 sock->sk = sk;
2698 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2699 } else {
2700 sk->sk_wq = NULL;
2701 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2702 }
2703
2704 rwlock_init(&sk->sk_callback_lock);
2705 if (sk->sk_kern_sock)
2706 lockdep_set_class_and_name(
2707 &sk->sk_callback_lock,
2708 af_kern_callback_keys + sk->sk_family,
2709 af_family_kern_clock_key_strings[sk->sk_family]);
2710 else
2711 lockdep_set_class_and_name(
2712 &sk->sk_callback_lock,
2713 af_callback_keys + sk->sk_family,
2714 af_family_clock_key_strings[sk->sk_family]);
2715
2716 sk->sk_state_change = sock_def_wakeup;
2717 sk->sk_data_ready = sock_def_readable;
2718 sk->sk_write_space = sock_def_write_space;
2719 sk->sk_error_report = sock_def_error_report;
2720 sk->sk_destruct = sock_def_destruct;
2721
2722 sk->sk_frag.page = NULL;
2723 sk->sk_frag.offset = 0;
2724 sk->sk_peek_off = -1;
2725
2726 sk->sk_peer_pid = NULL;
2727 sk->sk_peer_cred = NULL;
2728 sk->sk_write_pending = 0;
2729 sk->sk_rcvlowat = 1;
2730 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2731 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2732
2733 sk->sk_stamp = SK_DEFAULT_STAMP;
2734 #if BITS_PER_LONG==32
2735 seqlock_init(&sk->sk_stamp_seq);
2736 #endif
2737 atomic_set(&sk->sk_zckey, 0);
2738
2739 #ifdef CONFIG_NET_RX_BUSY_POLL
2740 sk->sk_napi_id = 0;
2741 sk->sk_ll_usec = sysctl_net_busy_read;
2742 #endif
2743
2744 sk->sk_max_pacing_rate = ~0U;
2745 sk->sk_pacing_rate = ~0U;
2746 sk->sk_incoming_cpu = -1;
2747 /*
2748 * Before updating sk_refcnt, we must commit prior changes to memory
2749 * (Documentation/RCU/rculist_nulls.txt for details)
2750 */
2751 smp_wmb();
2752 refcount_set(&sk->sk_refcnt, 1);
2753 atomic_set(&sk->sk_drops, 0);
2754 }
2755 EXPORT_SYMBOL(sock_init_data);
2756
2757 void lock_sock_nested(struct sock *sk, int subclass)
2758 {
2759 might_sleep();
2760 spin_lock_bh(&sk->sk_lock.slock);
2761 if (sk->sk_lock.owned)
2762 __lock_sock(sk);
2763 sk->sk_lock.owned = 1;
2764 spin_unlock(&sk->sk_lock.slock);
2765 /*
2766 * The sk_lock has mutex_lock() semantics here:
2767 */
2768 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2769 local_bh_enable();
2770 }
2771 EXPORT_SYMBOL(lock_sock_nested);
2772
2773 void release_sock(struct sock *sk)
2774 {
2775 spin_lock_bh(&sk->sk_lock.slock);
2776 if (sk->sk_backlog.tail)
2777 __release_sock(sk);
2778
2779 /* Warning : release_cb() might need to release sk ownership,
2780 * ie call sock_release_ownership(sk) before us.
2781 */
2782 if (sk->sk_prot->release_cb)
2783 sk->sk_prot->release_cb(sk);
2784
2785 sock_release_ownership(sk);
2786 if (waitqueue_active(&sk->sk_lock.wq))
2787 wake_up(&sk->sk_lock.wq);
2788 spin_unlock_bh(&sk->sk_lock.slock);
2789 }
2790 EXPORT_SYMBOL(release_sock);
2791
2792 /**
2793 * lock_sock_fast - fast version of lock_sock
2794 * @sk: socket
2795 *
2796 * This version should be used for very small section, where process wont block
2797 * return false if fast path is taken:
2798 *
2799 * sk_lock.slock locked, owned = 0, BH disabled
2800 *
2801 * return true if slow path is taken:
2802 *
2803 * sk_lock.slock unlocked, owned = 1, BH enabled
2804 */
2805 bool lock_sock_fast(struct sock *sk)
2806 {
2807 might_sleep();
2808 spin_lock_bh(&sk->sk_lock.slock);
2809
2810 if (!sk->sk_lock.owned)
2811 /*
2812 * Note : We must disable BH
2813 */
2814 return false;
2815
2816 __lock_sock(sk);
2817 sk->sk_lock.owned = 1;
2818 spin_unlock(&sk->sk_lock.slock);
2819 /*
2820 * The sk_lock has mutex_lock() semantics here:
2821 */
2822 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2823 local_bh_enable();
2824 return true;
2825 }
2826 EXPORT_SYMBOL(lock_sock_fast);
2827
2828 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2829 {
2830 struct timeval tv;
2831 if (!sock_flag(sk, SOCK_TIMESTAMP))
2832 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2833 tv = ktime_to_timeval(sk->sk_stamp);
2834 if (tv.tv_sec == -1)
2835 return -ENOENT;
2836 if (tv.tv_sec == 0) {
2837 sk->sk_stamp = ktime_get_real();
2838 tv = ktime_to_timeval(sk->sk_stamp);
2839 }
2840 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2841 }
2842 EXPORT_SYMBOL(sock_get_timestamp);
2843
2844 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2845 {
2846 struct timespec ts;
2847 if (!sock_flag(sk, SOCK_TIMESTAMP))
2848 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2849 ts = ktime_to_timespec(sk->sk_stamp);
2850 if (ts.tv_sec == -1)
2851 return -ENOENT;
2852 if (ts.tv_sec == 0) {
2853 sk->sk_stamp = ktime_get_real();
2854 ts = ktime_to_timespec(sk->sk_stamp);
2855 }
2856 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2857 }
2858 EXPORT_SYMBOL(sock_get_timestampns);
2859
2860 void sock_enable_timestamp(struct sock *sk, int flag)
2861 {
2862 if (!sock_flag(sk, flag)) {
2863 unsigned long previous_flags = sk->sk_flags;
2864
2865 sock_set_flag(sk, flag);
2866 /*
2867 * we just set one of the two flags which require net
2868 * time stamping, but time stamping might have been on
2869 * already because of the other one
2870 */
2871 if (sock_needs_netstamp(sk) &&
2872 !(previous_flags & SK_FLAGS_TIMESTAMP))
2873 net_enable_timestamp();
2874 }
2875 }
2876
2877 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2878 int level, int type)
2879 {
2880 struct sock_exterr_skb *serr;
2881 struct sk_buff *skb;
2882 int copied, err;
2883
2884 err = -EAGAIN;
2885 skb = sock_dequeue_err_skb(sk);
2886 if (skb == NULL)
2887 goto out;
2888
2889 copied = skb->len;
2890 if (copied > len) {
2891 msg->msg_flags |= MSG_TRUNC;
2892 copied = len;
2893 }
2894 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2895 if (err)
2896 goto out_free_skb;
2897
2898 sock_recv_timestamp(msg, sk, skb);
2899
2900 serr = SKB_EXT_ERR(skb);
2901 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2902
2903 msg->msg_flags |= MSG_ERRQUEUE;
2904 err = copied;
2905
2906 out_free_skb:
2907 kfree_skb(skb);
2908 out:
2909 return err;
2910 }
2911 EXPORT_SYMBOL(sock_recv_errqueue);
2912
2913 /*
2914 * Get a socket option on an socket.
2915 *
2916 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2917 * asynchronous errors should be reported by getsockopt. We assume
2918 * this means if you specify SO_ERROR (otherwise whats the point of it).
2919 */
2920 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2921 char __user *optval, int __user *optlen)
2922 {
2923 struct sock *sk = sock->sk;
2924
2925 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2926 }
2927 EXPORT_SYMBOL(sock_common_getsockopt);
2928
2929 #ifdef CONFIG_COMPAT
2930 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2931 char __user *optval, int __user *optlen)
2932 {
2933 struct sock *sk = sock->sk;
2934
2935 if (sk->sk_prot->compat_getsockopt != NULL)
2936 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2937 optval, optlen);
2938 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2939 }
2940 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2941 #endif
2942
2943 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2944 int flags)
2945 {
2946 struct sock *sk = sock->sk;
2947 int addr_len = 0;
2948 int err;
2949
2950 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2951 flags & ~MSG_DONTWAIT, &addr_len);
2952 if (err >= 0)
2953 msg->msg_namelen = addr_len;
2954 return err;
2955 }
2956 EXPORT_SYMBOL(sock_common_recvmsg);
2957
2958 /*
2959 * Set socket options on an inet socket.
2960 */
2961 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2962 char __user *optval, unsigned int optlen)
2963 {
2964 struct sock *sk = sock->sk;
2965
2966 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2967 }
2968 EXPORT_SYMBOL(sock_common_setsockopt);
2969
2970 #ifdef CONFIG_COMPAT
2971 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2972 char __user *optval, unsigned int optlen)
2973 {
2974 struct sock *sk = sock->sk;
2975
2976 if (sk->sk_prot->compat_setsockopt != NULL)
2977 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2978 optval, optlen);
2979 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2980 }
2981 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2982 #endif
2983
2984 void sk_common_release(struct sock *sk)
2985 {
2986 if (sk->sk_prot->destroy)
2987 sk->sk_prot->destroy(sk);
2988
2989 /*
2990 * Observation: when sock_common_release is called, processes have
2991 * no access to socket. But net still has.
2992 * Step one, detach it from networking:
2993 *
2994 * A. Remove from hash tables.
2995 */
2996
2997 sk->sk_prot->unhash(sk);
2998
2999 /*
3000 * In this point socket cannot receive new packets, but it is possible
3001 * that some packets are in flight because some CPU runs receiver and
3002 * did hash table lookup before we unhashed socket. They will achieve
3003 * receive queue and will be purged by socket destructor.
3004 *
3005 * Also we still have packets pending on receive queue and probably,
3006 * our own packets waiting in device queues. sock_destroy will drain
3007 * receive queue, but transmitted packets will delay socket destruction
3008 * until the last reference will be released.
3009 */
3010
3011 sock_orphan(sk);
3012
3013 xfrm_sk_free_policy(sk);
3014
3015 sk_refcnt_debug_release(sk);
3016
3017 sock_put(sk);
3018 }
3019 EXPORT_SYMBOL(sk_common_release);
3020
3021 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3022 {
3023 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3024
3025 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3026 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3027 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3028 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3029 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3030 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3031 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3032 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3033 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3034 }
3035
3036 #ifdef CONFIG_PROC_FS
3037 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3038 struct prot_inuse {
3039 int val[PROTO_INUSE_NR];
3040 };
3041
3042 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3043
3044 #ifdef CONFIG_NET_NS
3045 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3046 {
3047 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
3048 }
3049 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3050
3051 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3052 {
3053 int cpu, idx = prot->inuse_idx;
3054 int res = 0;
3055
3056 for_each_possible_cpu(cpu)
3057 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
3058
3059 return res >= 0 ? res : 0;
3060 }
3061 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3062
3063 static int __net_init sock_inuse_init_net(struct net *net)
3064 {
3065 net->core.inuse = alloc_percpu(struct prot_inuse);
3066 return net->core.inuse ? 0 : -ENOMEM;
3067 }
3068
3069 static void __net_exit sock_inuse_exit_net(struct net *net)
3070 {
3071 free_percpu(net->core.inuse);
3072 }
3073
3074 static struct pernet_operations net_inuse_ops = {
3075 .init = sock_inuse_init_net,
3076 .exit = sock_inuse_exit_net,
3077 };
3078
3079 static __init int net_inuse_init(void)
3080 {
3081 if (register_pernet_subsys(&net_inuse_ops))
3082 panic("Cannot initialize net inuse counters");
3083
3084 return 0;
3085 }
3086
3087 core_initcall(net_inuse_init);
3088 #else
3089 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
3090
3091 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3092 {
3093 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
3094 }
3095 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3096
3097 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3098 {
3099 int cpu, idx = prot->inuse_idx;
3100 int res = 0;
3101
3102 for_each_possible_cpu(cpu)
3103 res += per_cpu(prot_inuse, cpu).val[idx];
3104
3105 return res >= 0 ? res : 0;
3106 }
3107 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3108 #endif
3109
3110 static void assign_proto_idx(struct proto *prot)
3111 {
3112 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3113
3114 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3115 pr_err("PROTO_INUSE_NR exhausted\n");
3116 return;
3117 }
3118
3119 set_bit(prot->inuse_idx, proto_inuse_idx);
3120 }
3121
3122 static void release_proto_idx(struct proto *prot)
3123 {
3124 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3125 clear_bit(prot->inuse_idx, proto_inuse_idx);
3126 }
3127 #else
3128 static inline void assign_proto_idx(struct proto *prot)
3129 {
3130 }
3131
3132 static inline void release_proto_idx(struct proto *prot)
3133 {
3134 }
3135 #endif
3136
3137 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3138 {
3139 if (!rsk_prot)
3140 return;
3141 kfree(rsk_prot->slab_name);
3142 rsk_prot->slab_name = NULL;
3143 kmem_cache_destroy(rsk_prot->slab);
3144 rsk_prot->slab = NULL;
3145 }
3146
3147 static int req_prot_init(const struct proto *prot)
3148 {
3149 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3150
3151 if (!rsk_prot)
3152 return 0;
3153
3154 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3155 prot->name);
3156 if (!rsk_prot->slab_name)
3157 return -ENOMEM;
3158
3159 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3160 rsk_prot->obj_size, 0,
3161 prot->slab_flags, NULL);
3162
3163 if (!rsk_prot->slab) {
3164 pr_crit("%s: Can't create request sock SLAB cache!\n",
3165 prot->name);
3166 return -ENOMEM;
3167 }
3168 return 0;
3169 }
3170
3171 int proto_register(struct proto *prot, int alloc_slab)
3172 {
3173 if (alloc_slab) {
3174 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3175 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3176 NULL);
3177
3178 if (prot->slab == NULL) {
3179 pr_crit("%s: Can't create sock SLAB cache!\n",
3180 prot->name);
3181 goto out;
3182 }
3183
3184 if (req_prot_init(prot))
3185 goto out_free_request_sock_slab;
3186
3187 if (prot->twsk_prot != NULL) {
3188 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3189
3190 if (prot->twsk_prot->twsk_slab_name == NULL)
3191 goto out_free_request_sock_slab;
3192
3193 prot->twsk_prot->twsk_slab =
3194 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3195 prot->twsk_prot->twsk_obj_size,
3196 0,
3197 prot->slab_flags,
3198 NULL);
3199 if (prot->twsk_prot->twsk_slab == NULL)
3200 goto out_free_timewait_sock_slab_name;
3201 }
3202 }
3203
3204 mutex_lock(&proto_list_mutex);
3205 list_add(&prot->node, &proto_list);
3206 assign_proto_idx(prot);
3207 mutex_unlock(&proto_list_mutex);
3208 return 0;
3209
3210 out_free_timewait_sock_slab_name:
3211 kfree(prot->twsk_prot->twsk_slab_name);
3212 out_free_request_sock_slab:
3213 req_prot_cleanup(prot->rsk_prot);
3214
3215 kmem_cache_destroy(prot->slab);
3216 prot->slab = NULL;
3217 out:
3218 return -ENOBUFS;
3219 }
3220 EXPORT_SYMBOL(proto_register);
3221
3222 void proto_unregister(struct proto *prot)
3223 {
3224 mutex_lock(&proto_list_mutex);
3225 release_proto_idx(prot);
3226 list_del(&prot->node);
3227 mutex_unlock(&proto_list_mutex);
3228
3229 kmem_cache_destroy(prot->slab);
3230 prot->slab = NULL;
3231
3232 req_prot_cleanup(prot->rsk_prot);
3233
3234 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3235 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3236 kfree(prot->twsk_prot->twsk_slab_name);
3237 prot->twsk_prot->twsk_slab = NULL;
3238 }
3239 }
3240 EXPORT_SYMBOL(proto_unregister);
3241
3242 #ifdef CONFIG_PROC_FS
3243 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3244 __acquires(proto_list_mutex)
3245 {
3246 mutex_lock(&proto_list_mutex);
3247 return seq_list_start_head(&proto_list, *pos);
3248 }
3249
3250 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3251 {
3252 return seq_list_next(v, &proto_list, pos);
3253 }
3254
3255 static void proto_seq_stop(struct seq_file *seq, void *v)
3256 __releases(proto_list_mutex)
3257 {
3258 mutex_unlock(&proto_list_mutex);
3259 }
3260
3261 static char proto_method_implemented(const void *method)
3262 {
3263 return method == NULL ? 'n' : 'y';
3264 }
3265 static long sock_prot_memory_allocated(struct proto *proto)
3266 {
3267 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3268 }
3269
3270 static char *sock_prot_memory_pressure(struct proto *proto)
3271 {
3272 return proto->memory_pressure != NULL ?
3273 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3274 }
3275
3276 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3277 {
3278
3279 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3280 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3281 proto->name,
3282 proto->obj_size,
3283 sock_prot_inuse_get(seq_file_net(seq), proto),
3284 sock_prot_memory_allocated(proto),
3285 sock_prot_memory_pressure(proto),
3286 proto->max_header,
3287 proto->slab == NULL ? "no" : "yes",
3288 module_name(proto->owner),
3289 proto_method_implemented(proto->close),
3290 proto_method_implemented(proto->connect),
3291 proto_method_implemented(proto->disconnect),
3292 proto_method_implemented(proto->accept),
3293 proto_method_implemented(proto->ioctl),
3294 proto_method_implemented(proto->init),
3295 proto_method_implemented(proto->destroy),
3296 proto_method_implemented(proto->shutdown),
3297 proto_method_implemented(proto->setsockopt),
3298 proto_method_implemented(proto->getsockopt),
3299 proto_method_implemented(proto->sendmsg),
3300 proto_method_implemented(proto->recvmsg),
3301 proto_method_implemented(proto->sendpage),
3302 proto_method_implemented(proto->bind),
3303 proto_method_implemented(proto->backlog_rcv),
3304 proto_method_implemented(proto->hash),
3305 proto_method_implemented(proto->unhash),
3306 proto_method_implemented(proto->get_port),
3307 proto_method_implemented(proto->enter_memory_pressure));
3308 }
3309
3310 static int proto_seq_show(struct seq_file *seq, void *v)
3311 {
3312 if (v == &proto_list)
3313 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3314 "protocol",
3315 "size",
3316 "sockets",
3317 "memory",
3318 "press",
3319 "maxhdr",
3320 "slab",
3321 "module",
3322 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3323 else
3324 proto_seq_printf(seq, list_entry(v, struct proto, node));
3325 return 0;
3326 }
3327
3328 static const struct seq_operations proto_seq_ops = {
3329 .start = proto_seq_start,
3330 .next = proto_seq_next,
3331 .stop = proto_seq_stop,
3332 .show = proto_seq_show,
3333 };
3334
3335 static int proto_seq_open(struct inode *inode, struct file *file)
3336 {
3337 return seq_open_net(inode, file, &proto_seq_ops,
3338 sizeof(struct seq_net_private));
3339 }
3340
3341 static const struct file_operations proto_seq_fops = {
3342 .owner = THIS_MODULE,
3343 .open = proto_seq_open,
3344 .read = seq_read,
3345 .llseek = seq_lseek,
3346 .release = seq_release_net,
3347 };
3348
3349 static __net_init int proto_init_net(struct net *net)
3350 {
3351 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3352 return -ENOMEM;
3353
3354 return 0;
3355 }
3356
3357 static __net_exit void proto_exit_net(struct net *net)
3358 {
3359 remove_proc_entry("protocols", net->proc_net);
3360 }
3361
3362
3363 static __net_initdata struct pernet_operations proto_net_ops = {
3364 .init = proto_init_net,
3365 .exit = proto_exit_net,
3366 };
3367
3368 static int __init proto_init(void)
3369 {
3370 return register_pernet_subsys(&proto_net_ops);
3371 }
3372
3373 subsys_initcall(proto_init);
3374
3375 #endif /* PROC_FS */
3376
3377 #ifdef CONFIG_NET_RX_BUSY_POLL
3378 bool sk_busy_loop_end(void *p, unsigned long start_time)
3379 {
3380 struct sock *sk = p;
3381
3382 return !skb_queue_empty(&sk->sk_receive_queue) ||
3383 sk_busy_loop_timeout(sk, start_time);
3384 }
3385 EXPORT_SYMBOL(sk_busy_loop_end);
3386 #endif /* CONFIG_NET_RX_BUSY_POLL */