Merge branch 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 #if defined(CONFIG_CGROUPS)
275 #if !defined(CONFIG_NET_CLS_CGROUP)
276 int net_cls_subsys_id = -1;
277 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
278 #endif
279 #if !defined(CONFIG_NETPRIO_CGROUP)
280 int net_prio_subsys_id = -1;
281 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
282 #endif
283 #endif
284
285 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
286 {
287 struct timeval tv;
288
289 if (optlen < sizeof(tv))
290 return -EINVAL;
291 if (copy_from_user(&tv, optval, sizeof(tv)))
292 return -EFAULT;
293 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
294 return -EDOM;
295
296 if (tv.tv_sec < 0) {
297 static int warned __read_mostly;
298
299 *timeo_p = 0;
300 if (warned < 10 && net_ratelimit()) {
301 warned++;
302 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
303 __func__, current->comm, task_pid_nr(current));
304 }
305 return 0;
306 }
307 *timeo_p = MAX_SCHEDULE_TIMEOUT;
308 if (tv.tv_sec == 0 && tv.tv_usec == 0)
309 return 0;
310 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
311 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
312 return 0;
313 }
314
315 static void sock_warn_obsolete_bsdism(const char *name)
316 {
317 static int warned;
318 static char warncomm[TASK_COMM_LEN];
319 if (strcmp(warncomm, current->comm) && warned < 5) {
320 strcpy(warncomm, current->comm);
321 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
322 warncomm, name);
323 warned++;
324 }
325 }
326
327 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
328
329 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
330 {
331 if (sk->sk_flags & flags) {
332 sk->sk_flags &= ~flags;
333 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
334 net_disable_timestamp();
335 }
336 }
337
338
339 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
340 {
341 int err;
342 int skb_len;
343 unsigned long flags;
344 struct sk_buff_head *list = &sk->sk_receive_queue;
345
346 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
347 atomic_inc(&sk->sk_drops);
348 trace_sock_rcvqueue_full(sk, skb);
349 return -ENOMEM;
350 }
351
352 err = sk_filter(sk, skb);
353 if (err)
354 return err;
355
356 if (!sk_rmem_schedule(sk, skb->truesize)) {
357 atomic_inc(&sk->sk_drops);
358 return -ENOBUFS;
359 }
360
361 skb->dev = NULL;
362 skb_set_owner_r(skb, sk);
363
364 /* Cache the SKB length before we tack it onto the receive
365 * queue. Once it is added it no longer belongs to us and
366 * may be freed by other threads of control pulling packets
367 * from the queue.
368 */
369 skb_len = skb->len;
370
371 /* we escape from rcu protected region, make sure we dont leak
372 * a norefcounted dst
373 */
374 skb_dst_force(skb);
375
376 spin_lock_irqsave(&list->lock, flags);
377 skb->dropcount = atomic_read(&sk->sk_drops);
378 __skb_queue_tail(list, skb);
379 spin_unlock_irqrestore(&list->lock, flags);
380
381 if (!sock_flag(sk, SOCK_DEAD))
382 sk->sk_data_ready(sk, skb_len);
383 return 0;
384 }
385 EXPORT_SYMBOL(sock_queue_rcv_skb);
386
387 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
388 {
389 int rc = NET_RX_SUCCESS;
390
391 if (sk_filter(sk, skb))
392 goto discard_and_relse;
393
394 skb->dev = NULL;
395
396 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
397 atomic_inc(&sk->sk_drops);
398 goto discard_and_relse;
399 }
400 if (nested)
401 bh_lock_sock_nested(sk);
402 else
403 bh_lock_sock(sk);
404 if (!sock_owned_by_user(sk)) {
405 /*
406 * trylock + unlock semantics:
407 */
408 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
409
410 rc = sk_backlog_rcv(sk, skb);
411
412 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
413 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
414 bh_unlock_sock(sk);
415 atomic_inc(&sk->sk_drops);
416 goto discard_and_relse;
417 }
418
419 bh_unlock_sock(sk);
420 out:
421 sock_put(sk);
422 return rc;
423 discard_and_relse:
424 kfree_skb(skb);
425 goto out;
426 }
427 EXPORT_SYMBOL(sk_receive_skb);
428
429 void sk_reset_txq(struct sock *sk)
430 {
431 sk_tx_queue_clear(sk);
432 }
433 EXPORT_SYMBOL(sk_reset_txq);
434
435 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
436 {
437 struct dst_entry *dst = __sk_dst_get(sk);
438
439 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
440 sk_tx_queue_clear(sk);
441 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
442 dst_release(dst);
443 return NULL;
444 }
445
446 return dst;
447 }
448 EXPORT_SYMBOL(__sk_dst_check);
449
450 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
451 {
452 struct dst_entry *dst = sk_dst_get(sk);
453
454 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
455 sk_dst_reset(sk);
456 dst_release(dst);
457 return NULL;
458 }
459
460 return dst;
461 }
462 EXPORT_SYMBOL(sk_dst_check);
463
464 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
465 {
466 int ret = -ENOPROTOOPT;
467 #ifdef CONFIG_NETDEVICES
468 struct net *net = sock_net(sk);
469 char devname[IFNAMSIZ];
470 int index;
471
472 /* Sorry... */
473 ret = -EPERM;
474 if (!capable(CAP_NET_RAW))
475 goto out;
476
477 ret = -EINVAL;
478 if (optlen < 0)
479 goto out;
480
481 /* Bind this socket to a particular device like "eth0",
482 * as specified in the passed interface name. If the
483 * name is "" or the option length is zero the socket
484 * is not bound.
485 */
486 if (optlen > IFNAMSIZ - 1)
487 optlen = IFNAMSIZ - 1;
488 memset(devname, 0, sizeof(devname));
489
490 ret = -EFAULT;
491 if (copy_from_user(devname, optval, optlen))
492 goto out;
493
494 index = 0;
495 if (devname[0] != '\0') {
496 struct net_device *dev;
497
498 rcu_read_lock();
499 dev = dev_get_by_name_rcu(net, devname);
500 if (dev)
501 index = dev->ifindex;
502 rcu_read_unlock();
503 ret = -ENODEV;
504 if (!dev)
505 goto out;
506 }
507
508 lock_sock(sk);
509 sk->sk_bound_dev_if = index;
510 sk_dst_reset(sk);
511 release_sock(sk);
512
513 ret = 0;
514
515 out:
516 #endif
517
518 return ret;
519 }
520
521 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
522 {
523 if (valbool)
524 sock_set_flag(sk, bit);
525 else
526 sock_reset_flag(sk, bit);
527 }
528
529 /*
530 * This is meant for all protocols to use and covers goings on
531 * at the socket level. Everything here is generic.
532 */
533
534 int sock_setsockopt(struct socket *sock, int level, int optname,
535 char __user *optval, unsigned int optlen)
536 {
537 struct sock *sk = sock->sk;
538 int val;
539 int valbool;
540 struct linger ling;
541 int ret = 0;
542
543 /*
544 * Options without arguments
545 */
546
547 if (optname == SO_BINDTODEVICE)
548 return sock_bindtodevice(sk, optval, optlen);
549
550 if (optlen < sizeof(int))
551 return -EINVAL;
552
553 if (get_user(val, (int __user *)optval))
554 return -EFAULT;
555
556 valbool = val ? 1 : 0;
557
558 lock_sock(sk);
559
560 switch (optname) {
561 case SO_DEBUG:
562 if (val && !capable(CAP_NET_ADMIN))
563 ret = -EACCES;
564 else
565 sock_valbool_flag(sk, SOCK_DBG, valbool);
566 break;
567 case SO_REUSEADDR:
568 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
569 break;
570 case SO_TYPE:
571 case SO_PROTOCOL:
572 case SO_DOMAIN:
573 case SO_ERROR:
574 ret = -ENOPROTOOPT;
575 break;
576 case SO_DONTROUTE:
577 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
578 break;
579 case SO_BROADCAST:
580 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
581 break;
582 case SO_SNDBUF:
583 /* Don't error on this BSD doesn't and if you think
584 * about it this is right. Otherwise apps have to
585 * play 'guess the biggest size' games. RCVBUF/SNDBUF
586 * are treated in BSD as hints
587 */
588 val = min_t(u32, val, sysctl_wmem_max);
589 set_sndbuf:
590 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
591 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
592 /* Wake up sending tasks if we upped the value. */
593 sk->sk_write_space(sk);
594 break;
595
596 case SO_SNDBUFFORCE:
597 if (!capable(CAP_NET_ADMIN)) {
598 ret = -EPERM;
599 break;
600 }
601 goto set_sndbuf;
602
603 case SO_RCVBUF:
604 /* Don't error on this BSD doesn't and if you think
605 * about it this is right. Otherwise apps have to
606 * play 'guess the biggest size' games. RCVBUF/SNDBUF
607 * are treated in BSD as hints
608 */
609 val = min_t(u32, val, sysctl_rmem_max);
610 set_rcvbuf:
611 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
612 /*
613 * We double it on the way in to account for
614 * "struct sk_buff" etc. overhead. Applications
615 * assume that the SO_RCVBUF setting they make will
616 * allow that much actual data to be received on that
617 * socket.
618 *
619 * Applications are unaware that "struct sk_buff" and
620 * other overheads allocate from the receive buffer
621 * during socket buffer allocation.
622 *
623 * And after considering the possible alternatives,
624 * returning the value we actually used in getsockopt
625 * is the most desirable behavior.
626 */
627 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
628 break;
629
630 case SO_RCVBUFFORCE:
631 if (!capable(CAP_NET_ADMIN)) {
632 ret = -EPERM;
633 break;
634 }
635 goto set_rcvbuf;
636
637 case SO_KEEPALIVE:
638 #ifdef CONFIG_INET
639 if (sk->sk_protocol == IPPROTO_TCP)
640 tcp_set_keepalive(sk, valbool);
641 #endif
642 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
643 break;
644
645 case SO_OOBINLINE:
646 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
647 break;
648
649 case SO_NO_CHECK:
650 sk->sk_no_check = valbool;
651 break;
652
653 case SO_PRIORITY:
654 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
655 sk->sk_priority = val;
656 else
657 ret = -EPERM;
658 break;
659
660 case SO_LINGER:
661 if (optlen < sizeof(ling)) {
662 ret = -EINVAL; /* 1003.1g */
663 break;
664 }
665 if (copy_from_user(&ling, optval, sizeof(ling))) {
666 ret = -EFAULT;
667 break;
668 }
669 if (!ling.l_onoff)
670 sock_reset_flag(sk, SOCK_LINGER);
671 else {
672 #if (BITS_PER_LONG == 32)
673 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
674 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
675 else
676 #endif
677 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
678 sock_set_flag(sk, SOCK_LINGER);
679 }
680 break;
681
682 case SO_BSDCOMPAT:
683 sock_warn_obsolete_bsdism("setsockopt");
684 break;
685
686 case SO_PASSCRED:
687 if (valbool)
688 set_bit(SOCK_PASSCRED, &sock->flags);
689 else
690 clear_bit(SOCK_PASSCRED, &sock->flags);
691 break;
692
693 case SO_TIMESTAMP:
694 case SO_TIMESTAMPNS:
695 if (valbool) {
696 if (optname == SO_TIMESTAMP)
697 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
698 else
699 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
700 sock_set_flag(sk, SOCK_RCVTSTAMP);
701 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
702 } else {
703 sock_reset_flag(sk, SOCK_RCVTSTAMP);
704 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
705 }
706 break;
707
708 case SO_TIMESTAMPING:
709 if (val & ~SOF_TIMESTAMPING_MASK) {
710 ret = -EINVAL;
711 break;
712 }
713 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
714 val & SOF_TIMESTAMPING_TX_HARDWARE);
715 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
716 val & SOF_TIMESTAMPING_TX_SOFTWARE);
717 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
718 val & SOF_TIMESTAMPING_RX_HARDWARE);
719 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
720 sock_enable_timestamp(sk,
721 SOCK_TIMESTAMPING_RX_SOFTWARE);
722 else
723 sock_disable_timestamp(sk,
724 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
725 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
726 val & SOF_TIMESTAMPING_SOFTWARE);
727 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
728 val & SOF_TIMESTAMPING_SYS_HARDWARE);
729 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
730 val & SOF_TIMESTAMPING_RAW_HARDWARE);
731 break;
732
733 case SO_RCVLOWAT:
734 if (val < 0)
735 val = INT_MAX;
736 sk->sk_rcvlowat = val ? : 1;
737 break;
738
739 case SO_RCVTIMEO:
740 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
741 break;
742
743 case SO_SNDTIMEO:
744 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
745 break;
746
747 case SO_ATTACH_FILTER:
748 ret = -EINVAL;
749 if (optlen == sizeof(struct sock_fprog)) {
750 struct sock_fprog fprog;
751
752 ret = -EFAULT;
753 if (copy_from_user(&fprog, optval, sizeof(fprog)))
754 break;
755
756 ret = sk_attach_filter(&fprog, sk);
757 }
758 break;
759
760 case SO_DETACH_FILTER:
761 ret = sk_detach_filter(sk);
762 break;
763
764 case SO_PASSSEC:
765 if (valbool)
766 set_bit(SOCK_PASSSEC, &sock->flags);
767 else
768 clear_bit(SOCK_PASSSEC, &sock->flags);
769 break;
770 case SO_MARK:
771 if (!capable(CAP_NET_ADMIN))
772 ret = -EPERM;
773 else
774 sk->sk_mark = val;
775 break;
776
777 /* We implement the SO_SNDLOWAT etc to
778 not be settable (1003.1g 5.3) */
779 case SO_RXQ_OVFL:
780 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
781 break;
782
783 case SO_WIFI_STATUS:
784 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
785 break;
786
787 case SO_PEEK_OFF:
788 if (sock->ops->set_peek_off)
789 sock->ops->set_peek_off(sk, val);
790 else
791 ret = -EOPNOTSUPP;
792 break;
793
794 case SO_NOFCS:
795 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
796 break;
797
798 default:
799 ret = -ENOPROTOOPT;
800 break;
801 }
802 release_sock(sk);
803 return ret;
804 }
805 EXPORT_SYMBOL(sock_setsockopt);
806
807
808 void cred_to_ucred(struct pid *pid, const struct cred *cred,
809 struct ucred *ucred)
810 {
811 ucred->pid = pid_vnr(pid);
812 ucred->uid = ucred->gid = -1;
813 if (cred) {
814 struct user_namespace *current_ns = current_user_ns();
815
816 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
817 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
818 }
819 }
820 EXPORT_SYMBOL_GPL(cred_to_ucred);
821
822 int sock_getsockopt(struct socket *sock, int level, int optname,
823 char __user *optval, int __user *optlen)
824 {
825 struct sock *sk = sock->sk;
826
827 union {
828 int val;
829 struct linger ling;
830 struct timeval tm;
831 } v;
832
833 int lv = sizeof(int);
834 int len;
835
836 if (get_user(len, optlen))
837 return -EFAULT;
838 if (len < 0)
839 return -EINVAL;
840
841 memset(&v, 0, sizeof(v));
842
843 switch (optname) {
844 case SO_DEBUG:
845 v.val = sock_flag(sk, SOCK_DBG);
846 break;
847
848 case SO_DONTROUTE:
849 v.val = sock_flag(sk, SOCK_LOCALROUTE);
850 break;
851
852 case SO_BROADCAST:
853 v.val = sock_flag(sk, SOCK_BROADCAST);
854 break;
855
856 case SO_SNDBUF:
857 v.val = sk->sk_sndbuf;
858 break;
859
860 case SO_RCVBUF:
861 v.val = sk->sk_rcvbuf;
862 break;
863
864 case SO_REUSEADDR:
865 v.val = sk->sk_reuse;
866 break;
867
868 case SO_KEEPALIVE:
869 v.val = sock_flag(sk, SOCK_KEEPOPEN);
870 break;
871
872 case SO_TYPE:
873 v.val = sk->sk_type;
874 break;
875
876 case SO_PROTOCOL:
877 v.val = sk->sk_protocol;
878 break;
879
880 case SO_DOMAIN:
881 v.val = sk->sk_family;
882 break;
883
884 case SO_ERROR:
885 v.val = -sock_error(sk);
886 if (v.val == 0)
887 v.val = xchg(&sk->sk_err_soft, 0);
888 break;
889
890 case SO_OOBINLINE:
891 v.val = sock_flag(sk, SOCK_URGINLINE);
892 break;
893
894 case SO_NO_CHECK:
895 v.val = sk->sk_no_check;
896 break;
897
898 case SO_PRIORITY:
899 v.val = sk->sk_priority;
900 break;
901
902 case SO_LINGER:
903 lv = sizeof(v.ling);
904 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
905 v.ling.l_linger = sk->sk_lingertime / HZ;
906 break;
907
908 case SO_BSDCOMPAT:
909 sock_warn_obsolete_bsdism("getsockopt");
910 break;
911
912 case SO_TIMESTAMP:
913 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
914 !sock_flag(sk, SOCK_RCVTSTAMPNS);
915 break;
916
917 case SO_TIMESTAMPNS:
918 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
919 break;
920
921 case SO_TIMESTAMPING:
922 v.val = 0;
923 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
924 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
925 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
926 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
927 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
928 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
929 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
930 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
932 v.val |= SOF_TIMESTAMPING_SOFTWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
934 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
935 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
936 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
937 break;
938
939 case SO_RCVTIMEO:
940 lv = sizeof(struct timeval);
941 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
942 v.tm.tv_sec = 0;
943 v.tm.tv_usec = 0;
944 } else {
945 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
946 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
947 }
948 break;
949
950 case SO_SNDTIMEO:
951 lv = sizeof(struct timeval);
952 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
953 v.tm.tv_sec = 0;
954 v.tm.tv_usec = 0;
955 } else {
956 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
957 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
958 }
959 break;
960
961 case SO_RCVLOWAT:
962 v.val = sk->sk_rcvlowat;
963 break;
964
965 case SO_SNDLOWAT:
966 v.val = 1;
967 break;
968
969 case SO_PASSCRED:
970 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
971 break;
972
973 case SO_PEERCRED:
974 {
975 struct ucred peercred;
976 if (len > sizeof(peercred))
977 len = sizeof(peercred);
978 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
979 if (copy_to_user(optval, &peercred, len))
980 return -EFAULT;
981 goto lenout;
982 }
983
984 case SO_PEERNAME:
985 {
986 char address[128];
987
988 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
989 return -ENOTCONN;
990 if (lv < len)
991 return -EINVAL;
992 if (copy_to_user(optval, address, len))
993 return -EFAULT;
994 goto lenout;
995 }
996
997 /* Dubious BSD thing... Probably nobody even uses it, but
998 * the UNIX standard wants it for whatever reason... -DaveM
999 */
1000 case SO_ACCEPTCONN:
1001 v.val = sk->sk_state == TCP_LISTEN;
1002 break;
1003
1004 case SO_PASSSEC:
1005 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006 break;
1007
1008 case SO_PEERSEC:
1009 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1010
1011 case SO_MARK:
1012 v.val = sk->sk_mark;
1013 break;
1014
1015 case SO_RXQ_OVFL:
1016 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017 break;
1018
1019 case SO_WIFI_STATUS:
1020 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021 break;
1022
1023 case SO_PEEK_OFF:
1024 if (!sock->ops->set_peek_off)
1025 return -EOPNOTSUPP;
1026
1027 v.val = sk->sk_peek_off;
1028 break;
1029 case SO_NOFCS:
1030 v.val = sock_flag(sk, SOCK_NOFCS);
1031 break;
1032 default:
1033 return -ENOPROTOOPT;
1034 }
1035
1036 if (len > lv)
1037 len = lv;
1038 if (copy_to_user(optval, &v, len))
1039 return -EFAULT;
1040 lenout:
1041 if (put_user(len, optlen))
1042 return -EFAULT;
1043 return 0;
1044 }
1045
1046 /*
1047 * Initialize an sk_lock.
1048 *
1049 * (We also register the sk_lock with the lock validator.)
1050 */
1051 static inline void sock_lock_init(struct sock *sk)
1052 {
1053 sock_lock_init_class_and_name(sk,
1054 af_family_slock_key_strings[sk->sk_family],
1055 af_family_slock_keys + sk->sk_family,
1056 af_family_key_strings[sk->sk_family],
1057 af_family_keys + sk->sk_family);
1058 }
1059
1060 /*
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1064 */
1065 static void sock_copy(struct sock *nsk, const struct sock *osk)
1066 {
1067 #ifdef CONFIG_SECURITY_NETWORK
1068 void *sptr = nsk->sk_security;
1069 #endif
1070 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1071
1072 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1074
1075 #ifdef CONFIG_SECURITY_NETWORK
1076 nsk->sk_security = sptr;
1077 security_sk_clone(osk, nsk);
1078 #endif
1079 }
1080
1081 /*
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1084 */
1085 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1086 {
1087 if (offsetof(struct sock, sk_node.next) != 0)
1088 memset(sk, 0, offsetof(struct sock, sk_node.next));
1089 memset(&sk->sk_node.pprev, 0,
1090 size - offsetof(struct sock, sk_node.pprev));
1091 }
1092
1093 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1094 {
1095 unsigned long nulls1, nulls2;
1096
1097 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099 if (nulls1 > nulls2)
1100 swap(nulls1, nulls2);
1101
1102 if (nulls1 != 0)
1103 memset((char *)sk, 0, nulls1);
1104 memset((char *)sk + nulls1 + sizeof(void *), 0,
1105 nulls2 - nulls1 - sizeof(void *));
1106 memset((char *)sk + nulls2 + sizeof(void *), 0,
1107 size - nulls2 - sizeof(void *));
1108 }
1109 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1110
1111 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112 int family)
1113 {
1114 struct sock *sk;
1115 struct kmem_cache *slab;
1116
1117 slab = prot->slab;
1118 if (slab != NULL) {
1119 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120 if (!sk)
1121 return sk;
1122 if (priority & __GFP_ZERO) {
1123 if (prot->clear_sk)
1124 prot->clear_sk(sk, prot->obj_size);
1125 else
1126 sk_prot_clear_nulls(sk, prot->obj_size);
1127 }
1128 } else
1129 sk = kmalloc(prot->obj_size, priority);
1130
1131 if (sk != NULL) {
1132 kmemcheck_annotate_bitfield(sk, flags);
1133
1134 if (security_sk_alloc(sk, family, priority))
1135 goto out_free;
1136
1137 if (!try_module_get(prot->owner))
1138 goto out_free_sec;
1139 sk_tx_queue_clear(sk);
1140 }
1141
1142 return sk;
1143
1144 out_free_sec:
1145 security_sk_free(sk);
1146 out_free:
1147 if (slab != NULL)
1148 kmem_cache_free(slab, sk);
1149 else
1150 kfree(sk);
1151 return NULL;
1152 }
1153
1154 static void sk_prot_free(struct proto *prot, struct sock *sk)
1155 {
1156 struct kmem_cache *slab;
1157 struct module *owner;
1158
1159 owner = prot->owner;
1160 slab = prot->slab;
1161
1162 security_sk_free(sk);
1163 if (slab != NULL)
1164 kmem_cache_free(slab, sk);
1165 else
1166 kfree(sk);
1167 module_put(owner);
1168 }
1169
1170 #ifdef CONFIG_CGROUPS
1171 void sock_update_classid(struct sock *sk)
1172 {
1173 u32 classid;
1174
1175 rcu_read_lock(); /* doing current task, which cannot vanish. */
1176 classid = task_cls_classid(current);
1177 rcu_read_unlock();
1178 if (classid && classid != sk->sk_classid)
1179 sk->sk_classid = classid;
1180 }
1181 EXPORT_SYMBOL(sock_update_classid);
1182
1183 void sock_update_netprioidx(struct sock *sk)
1184 {
1185 if (in_interrupt())
1186 return;
1187
1188 sk->sk_cgrp_prioidx = task_netprioidx(current);
1189 }
1190 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191 #endif
1192
1193 /**
1194 * sk_alloc - All socket objects are allocated here
1195 * @net: the applicable net namespace
1196 * @family: protocol family
1197 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 * @prot: struct proto associated with this new sock instance
1199 */
1200 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201 struct proto *prot)
1202 {
1203 struct sock *sk;
1204
1205 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206 if (sk) {
1207 sk->sk_family = family;
1208 /*
1209 * See comment in struct sock definition to understand
1210 * why we need sk_prot_creator -acme
1211 */
1212 sk->sk_prot = sk->sk_prot_creator = prot;
1213 sock_lock_init(sk);
1214 sock_net_set(sk, get_net(net));
1215 atomic_set(&sk->sk_wmem_alloc, 1);
1216
1217 sock_update_classid(sk);
1218 sock_update_netprioidx(sk);
1219 }
1220
1221 return sk;
1222 }
1223 EXPORT_SYMBOL(sk_alloc);
1224
1225 static void __sk_free(struct sock *sk)
1226 {
1227 struct sk_filter *filter;
1228
1229 if (sk->sk_destruct)
1230 sk->sk_destruct(sk);
1231
1232 filter = rcu_dereference_check(sk->sk_filter,
1233 atomic_read(&sk->sk_wmem_alloc) == 0);
1234 if (filter) {
1235 sk_filter_uncharge(sk, filter);
1236 RCU_INIT_POINTER(sk->sk_filter, NULL);
1237 }
1238
1239 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1240
1241 if (atomic_read(&sk->sk_omem_alloc))
1242 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243 __func__, atomic_read(&sk->sk_omem_alloc));
1244
1245 if (sk->sk_peer_cred)
1246 put_cred(sk->sk_peer_cred);
1247 put_pid(sk->sk_peer_pid);
1248 put_net(sock_net(sk));
1249 sk_prot_free(sk->sk_prot_creator, sk);
1250 }
1251
1252 void sk_free(struct sock *sk)
1253 {
1254 /*
1255 * We subtract one from sk_wmem_alloc and can know if
1256 * some packets are still in some tx queue.
1257 * If not null, sock_wfree() will call __sk_free(sk) later
1258 */
1259 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260 __sk_free(sk);
1261 }
1262 EXPORT_SYMBOL(sk_free);
1263
1264 /*
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1270 */
1271 void sk_release_kernel(struct sock *sk)
1272 {
1273 if (sk == NULL || sk->sk_socket == NULL)
1274 return;
1275
1276 sock_hold(sk);
1277 sock_release(sk->sk_socket);
1278 release_net(sock_net(sk));
1279 sock_net_set(sk, get_net(&init_net));
1280 sock_put(sk);
1281 }
1282 EXPORT_SYMBOL(sk_release_kernel);
1283
1284 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1285 {
1286 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287 sock_update_memcg(newsk);
1288 }
1289
1290 /**
1291 * sk_clone_lock - clone a socket, and lock its clone
1292 * @sk: the socket to clone
1293 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1294 *
1295 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1296 */
1297 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1298 {
1299 struct sock *newsk;
1300
1301 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302 if (newsk != NULL) {
1303 struct sk_filter *filter;
1304
1305 sock_copy(newsk, sk);
1306
1307 /* SANITY */
1308 get_net(sock_net(newsk));
1309 sk_node_init(&newsk->sk_node);
1310 sock_lock_init(newsk);
1311 bh_lock_sock(newsk);
1312 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1313 newsk->sk_backlog.len = 0;
1314
1315 atomic_set(&newsk->sk_rmem_alloc, 0);
1316 /*
1317 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1318 */
1319 atomic_set(&newsk->sk_wmem_alloc, 1);
1320 atomic_set(&newsk->sk_omem_alloc, 0);
1321 skb_queue_head_init(&newsk->sk_receive_queue);
1322 skb_queue_head_init(&newsk->sk_write_queue);
1323 #ifdef CONFIG_NET_DMA
1324 skb_queue_head_init(&newsk->sk_async_wait_queue);
1325 #endif
1326
1327 spin_lock_init(&newsk->sk_dst_lock);
1328 rwlock_init(&newsk->sk_callback_lock);
1329 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330 af_callback_keys + newsk->sk_family,
1331 af_family_clock_key_strings[newsk->sk_family]);
1332
1333 newsk->sk_dst_cache = NULL;
1334 newsk->sk_wmem_queued = 0;
1335 newsk->sk_forward_alloc = 0;
1336 newsk->sk_send_head = NULL;
1337 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1338
1339 sock_reset_flag(newsk, SOCK_DONE);
1340 skb_queue_head_init(&newsk->sk_error_queue);
1341
1342 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1343 if (filter != NULL)
1344 sk_filter_charge(newsk, filter);
1345
1346 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347 /* It is still raw copy of parent, so invalidate
1348 * destructor and make plain sk_free() */
1349 newsk->sk_destruct = NULL;
1350 bh_unlock_sock(newsk);
1351 sk_free(newsk);
1352 newsk = NULL;
1353 goto out;
1354 }
1355
1356 newsk->sk_err = 0;
1357 newsk->sk_priority = 0;
1358 /*
1359 * Before updating sk_refcnt, we must commit prior changes to memory
1360 * (Documentation/RCU/rculist_nulls.txt for details)
1361 */
1362 smp_wmb();
1363 atomic_set(&newsk->sk_refcnt, 2);
1364
1365 /*
1366 * Increment the counter in the same struct proto as the master
1367 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368 * is the same as sk->sk_prot->socks, as this field was copied
1369 * with memcpy).
1370 *
1371 * This _changes_ the previous behaviour, where
1372 * tcp_create_openreq_child always was incrementing the
1373 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374 * to be taken into account in all callers. -acme
1375 */
1376 sk_refcnt_debug_inc(newsk);
1377 sk_set_socket(newsk, NULL);
1378 newsk->sk_wq = NULL;
1379
1380 sk_update_clone(sk, newsk);
1381
1382 if (newsk->sk_prot->sockets_allocated)
1383 sk_sockets_allocated_inc(newsk);
1384
1385 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1386 net_enable_timestamp();
1387 }
1388 out:
1389 return newsk;
1390 }
1391 EXPORT_SYMBOL_GPL(sk_clone_lock);
1392
1393 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1394 {
1395 __sk_dst_set(sk, dst);
1396 sk->sk_route_caps = dst->dev->features;
1397 if (sk->sk_route_caps & NETIF_F_GSO)
1398 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1400 if (sk_can_gso(sk)) {
1401 if (dst->header_len) {
1402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403 } else {
1404 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405 sk->sk_gso_max_size = dst->dev->gso_max_size;
1406 }
1407 }
1408 }
1409 EXPORT_SYMBOL_GPL(sk_setup_caps);
1410
1411 void __init sk_init(void)
1412 {
1413 if (totalram_pages <= 4096) {
1414 sysctl_wmem_max = 32767;
1415 sysctl_rmem_max = 32767;
1416 sysctl_wmem_default = 32767;
1417 sysctl_rmem_default = 32767;
1418 } else if (totalram_pages >= 131072) {
1419 sysctl_wmem_max = 131071;
1420 sysctl_rmem_max = 131071;
1421 }
1422 }
1423
1424 /*
1425 * Simple resource managers for sockets.
1426 */
1427
1428
1429 /*
1430 * Write buffer destructor automatically called from kfree_skb.
1431 */
1432 void sock_wfree(struct sk_buff *skb)
1433 {
1434 struct sock *sk = skb->sk;
1435 unsigned int len = skb->truesize;
1436
1437 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1438 /*
1439 * Keep a reference on sk_wmem_alloc, this will be released
1440 * after sk_write_space() call
1441 */
1442 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1443 sk->sk_write_space(sk);
1444 len = 1;
1445 }
1446 /*
1447 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1448 * could not do because of in-flight packets
1449 */
1450 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1451 __sk_free(sk);
1452 }
1453 EXPORT_SYMBOL(sock_wfree);
1454
1455 /*
1456 * Read buffer destructor automatically called from kfree_skb.
1457 */
1458 void sock_rfree(struct sk_buff *skb)
1459 {
1460 struct sock *sk = skb->sk;
1461 unsigned int len = skb->truesize;
1462
1463 atomic_sub(len, &sk->sk_rmem_alloc);
1464 sk_mem_uncharge(sk, len);
1465 }
1466 EXPORT_SYMBOL(sock_rfree);
1467
1468
1469 int sock_i_uid(struct sock *sk)
1470 {
1471 int uid;
1472
1473 read_lock_bh(&sk->sk_callback_lock);
1474 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1475 read_unlock_bh(&sk->sk_callback_lock);
1476 return uid;
1477 }
1478 EXPORT_SYMBOL(sock_i_uid);
1479
1480 unsigned long sock_i_ino(struct sock *sk)
1481 {
1482 unsigned long ino;
1483
1484 read_lock_bh(&sk->sk_callback_lock);
1485 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1486 read_unlock_bh(&sk->sk_callback_lock);
1487 return ino;
1488 }
1489 EXPORT_SYMBOL(sock_i_ino);
1490
1491 /*
1492 * Allocate a skb from the socket's send buffer.
1493 */
1494 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1495 gfp_t priority)
1496 {
1497 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1498 struct sk_buff *skb = alloc_skb(size, priority);
1499 if (skb) {
1500 skb_set_owner_w(skb, sk);
1501 return skb;
1502 }
1503 }
1504 return NULL;
1505 }
1506 EXPORT_SYMBOL(sock_wmalloc);
1507
1508 /*
1509 * Allocate a skb from the socket's receive buffer.
1510 */
1511 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1512 gfp_t priority)
1513 {
1514 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1515 struct sk_buff *skb = alloc_skb(size, priority);
1516 if (skb) {
1517 skb_set_owner_r(skb, sk);
1518 return skb;
1519 }
1520 }
1521 return NULL;
1522 }
1523
1524 /*
1525 * Allocate a memory block from the socket's option memory buffer.
1526 */
1527 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1528 {
1529 if ((unsigned int)size <= sysctl_optmem_max &&
1530 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1531 void *mem;
1532 /* First do the add, to avoid the race if kmalloc
1533 * might sleep.
1534 */
1535 atomic_add(size, &sk->sk_omem_alloc);
1536 mem = kmalloc(size, priority);
1537 if (mem)
1538 return mem;
1539 atomic_sub(size, &sk->sk_omem_alloc);
1540 }
1541 return NULL;
1542 }
1543 EXPORT_SYMBOL(sock_kmalloc);
1544
1545 /*
1546 * Free an option memory block.
1547 */
1548 void sock_kfree_s(struct sock *sk, void *mem, int size)
1549 {
1550 kfree(mem);
1551 atomic_sub(size, &sk->sk_omem_alloc);
1552 }
1553 EXPORT_SYMBOL(sock_kfree_s);
1554
1555 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1556 I think, these locks should be removed for datagram sockets.
1557 */
1558 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1559 {
1560 DEFINE_WAIT(wait);
1561
1562 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1563 for (;;) {
1564 if (!timeo)
1565 break;
1566 if (signal_pending(current))
1567 break;
1568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1569 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1570 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1571 break;
1572 if (sk->sk_shutdown & SEND_SHUTDOWN)
1573 break;
1574 if (sk->sk_err)
1575 break;
1576 timeo = schedule_timeout(timeo);
1577 }
1578 finish_wait(sk_sleep(sk), &wait);
1579 return timeo;
1580 }
1581
1582
1583 /*
1584 * Generic send/receive buffer handlers
1585 */
1586
1587 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1588 unsigned long data_len, int noblock,
1589 int *errcode)
1590 {
1591 struct sk_buff *skb;
1592 gfp_t gfp_mask;
1593 long timeo;
1594 int err;
1595
1596 gfp_mask = sk->sk_allocation;
1597 if (gfp_mask & __GFP_WAIT)
1598 gfp_mask |= __GFP_REPEAT;
1599
1600 timeo = sock_sndtimeo(sk, noblock);
1601 while (1) {
1602 err = sock_error(sk);
1603 if (err != 0)
1604 goto failure;
1605
1606 err = -EPIPE;
1607 if (sk->sk_shutdown & SEND_SHUTDOWN)
1608 goto failure;
1609
1610 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1611 skb = alloc_skb(header_len, gfp_mask);
1612 if (skb) {
1613 int npages;
1614 int i;
1615
1616 /* No pages, we're done... */
1617 if (!data_len)
1618 break;
1619
1620 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1621 skb->truesize += data_len;
1622 skb_shinfo(skb)->nr_frags = npages;
1623 for (i = 0; i < npages; i++) {
1624 struct page *page;
1625
1626 page = alloc_pages(sk->sk_allocation, 0);
1627 if (!page) {
1628 err = -ENOBUFS;
1629 skb_shinfo(skb)->nr_frags = i;
1630 kfree_skb(skb);
1631 goto failure;
1632 }
1633
1634 __skb_fill_page_desc(skb, i,
1635 page, 0,
1636 (data_len >= PAGE_SIZE ?
1637 PAGE_SIZE :
1638 data_len));
1639 data_len -= PAGE_SIZE;
1640 }
1641
1642 /* Full success... */
1643 break;
1644 }
1645 err = -ENOBUFS;
1646 goto failure;
1647 }
1648 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1649 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1650 err = -EAGAIN;
1651 if (!timeo)
1652 goto failure;
1653 if (signal_pending(current))
1654 goto interrupted;
1655 timeo = sock_wait_for_wmem(sk, timeo);
1656 }
1657
1658 skb_set_owner_w(skb, sk);
1659 return skb;
1660
1661 interrupted:
1662 err = sock_intr_errno(timeo);
1663 failure:
1664 *errcode = err;
1665 return NULL;
1666 }
1667 EXPORT_SYMBOL(sock_alloc_send_pskb);
1668
1669 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1670 int noblock, int *errcode)
1671 {
1672 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1673 }
1674 EXPORT_SYMBOL(sock_alloc_send_skb);
1675
1676 static void __lock_sock(struct sock *sk)
1677 __releases(&sk->sk_lock.slock)
1678 __acquires(&sk->sk_lock.slock)
1679 {
1680 DEFINE_WAIT(wait);
1681
1682 for (;;) {
1683 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1684 TASK_UNINTERRUPTIBLE);
1685 spin_unlock_bh(&sk->sk_lock.slock);
1686 schedule();
1687 spin_lock_bh(&sk->sk_lock.slock);
1688 if (!sock_owned_by_user(sk))
1689 break;
1690 }
1691 finish_wait(&sk->sk_lock.wq, &wait);
1692 }
1693
1694 static void __release_sock(struct sock *sk)
1695 __releases(&sk->sk_lock.slock)
1696 __acquires(&sk->sk_lock.slock)
1697 {
1698 struct sk_buff *skb = sk->sk_backlog.head;
1699
1700 do {
1701 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1702 bh_unlock_sock(sk);
1703
1704 do {
1705 struct sk_buff *next = skb->next;
1706
1707 prefetch(next);
1708 WARN_ON_ONCE(skb_dst_is_noref(skb));
1709 skb->next = NULL;
1710 sk_backlog_rcv(sk, skb);
1711
1712 /*
1713 * We are in process context here with softirqs
1714 * disabled, use cond_resched_softirq() to preempt.
1715 * This is safe to do because we've taken the backlog
1716 * queue private:
1717 */
1718 cond_resched_softirq();
1719
1720 skb = next;
1721 } while (skb != NULL);
1722
1723 bh_lock_sock(sk);
1724 } while ((skb = sk->sk_backlog.head) != NULL);
1725
1726 /*
1727 * Doing the zeroing here guarantee we can not loop forever
1728 * while a wild producer attempts to flood us.
1729 */
1730 sk->sk_backlog.len = 0;
1731 }
1732
1733 /**
1734 * sk_wait_data - wait for data to arrive at sk_receive_queue
1735 * @sk: sock to wait on
1736 * @timeo: for how long
1737 *
1738 * Now socket state including sk->sk_err is changed only under lock,
1739 * hence we may omit checks after joining wait queue.
1740 * We check receive queue before schedule() only as optimization;
1741 * it is very likely that release_sock() added new data.
1742 */
1743 int sk_wait_data(struct sock *sk, long *timeo)
1744 {
1745 int rc;
1746 DEFINE_WAIT(wait);
1747
1748 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1749 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1750 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1751 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1752 finish_wait(sk_sleep(sk), &wait);
1753 return rc;
1754 }
1755 EXPORT_SYMBOL(sk_wait_data);
1756
1757 /**
1758 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1759 * @sk: socket
1760 * @size: memory size to allocate
1761 * @kind: allocation type
1762 *
1763 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1764 * rmem allocation. This function assumes that protocols which have
1765 * memory_pressure use sk_wmem_queued as write buffer accounting.
1766 */
1767 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1768 {
1769 struct proto *prot = sk->sk_prot;
1770 int amt = sk_mem_pages(size);
1771 long allocated;
1772 int parent_status = UNDER_LIMIT;
1773
1774 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1775
1776 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1777
1778 /* Under limit. */
1779 if (parent_status == UNDER_LIMIT &&
1780 allocated <= sk_prot_mem_limits(sk, 0)) {
1781 sk_leave_memory_pressure(sk);
1782 return 1;
1783 }
1784
1785 /* Under pressure. (we or our parents) */
1786 if ((parent_status > SOFT_LIMIT) ||
1787 allocated > sk_prot_mem_limits(sk, 1))
1788 sk_enter_memory_pressure(sk);
1789
1790 /* Over hard limit (we or our parents) */
1791 if ((parent_status == OVER_LIMIT) ||
1792 (allocated > sk_prot_mem_limits(sk, 2)))
1793 goto suppress_allocation;
1794
1795 /* guarantee minimum buffer size under pressure */
1796 if (kind == SK_MEM_RECV) {
1797 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1798 return 1;
1799
1800 } else { /* SK_MEM_SEND */
1801 if (sk->sk_type == SOCK_STREAM) {
1802 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1803 return 1;
1804 } else if (atomic_read(&sk->sk_wmem_alloc) <
1805 prot->sysctl_wmem[0])
1806 return 1;
1807 }
1808
1809 if (sk_has_memory_pressure(sk)) {
1810 int alloc;
1811
1812 if (!sk_under_memory_pressure(sk))
1813 return 1;
1814 alloc = sk_sockets_allocated_read_positive(sk);
1815 if (sk_prot_mem_limits(sk, 2) > alloc *
1816 sk_mem_pages(sk->sk_wmem_queued +
1817 atomic_read(&sk->sk_rmem_alloc) +
1818 sk->sk_forward_alloc))
1819 return 1;
1820 }
1821
1822 suppress_allocation:
1823
1824 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1825 sk_stream_moderate_sndbuf(sk);
1826
1827 /* Fail only if socket is _under_ its sndbuf.
1828 * In this case we cannot block, so that we have to fail.
1829 */
1830 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1831 return 1;
1832 }
1833
1834 trace_sock_exceed_buf_limit(sk, prot, allocated);
1835
1836 /* Alas. Undo changes. */
1837 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1838
1839 sk_memory_allocated_sub(sk, amt);
1840
1841 return 0;
1842 }
1843 EXPORT_SYMBOL(__sk_mem_schedule);
1844
1845 /**
1846 * __sk_reclaim - reclaim memory_allocated
1847 * @sk: socket
1848 */
1849 void __sk_mem_reclaim(struct sock *sk)
1850 {
1851 sk_memory_allocated_sub(sk,
1852 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1853 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1854
1855 if (sk_under_memory_pressure(sk) &&
1856 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1857 sk_leave_memory_pressure(sk);
1858 }
1859 EXPORT_SYMBOL(__sk_mem_reclaim);
1860
1861
1862 /*
1863 * Set of default routines for initialising struct proto_ops when
1864 * the protocol does not support a particular function. In certain
1865 * cases where it makes no sense for a protocol to have a "do nothing"
1866 * function, some default processing is provided.
1867 */
1868
1869 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1870 {
1871 return -EOPNOTSUPP;
1872 }
1873 EXPORT_SYMBOL(sock_no_bind);
1874
1875 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1876 int len, int flags)
1877 {
1878 return -EOPNOTSUPP;
1879 }
1880 EXPORT_SYMBOL(sock_no_connect);
1881
1882 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1883 {
1884 return -EOPNOTSUPP;
1885 }
1886 EXPORT_SYMBOL(sock_no_socketpair);
1887
1888 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1889 {
1890 return -EOPNOTSUPP;
1891 }
1892 EXPORT_SYMBOL(sock_no_accept);
1893
1894 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1895 int *len, int peer)
1896 {
1897 return -EOPNOTSUPP;
1898 }
1899 EXPORT_SYMBOL(sock_no_getname);
1900
1901 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1902 {
1903 return 0;
1904 }
1905 EXPORT_SYMBOL(sock_no_poll);
1906
1907 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1908 {
1909 return -EOPNOTSUPP;
1910 }
1911 EXPORT_SYMBOL(sock_no_ioctl);
1912
1913 int sock_no_listen(struct socket *sock, int backlog)
1914 {
1915 return -EOPNOTSUPP;
1916 }
1917 EXPORT_SYMBOL(sock_no_listen);
1918
1919 int sock_no_shutdown(struct socket *sock, int how)
1920 {
1921 return -EOPNOTSUPP;
1922 }
1923 EXPORT_SYMBOL(sock_no_shutdown);
1924
1925 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1926 char __user *optval, unsigned int optlen)
1927 {
1928 return -EOPNOTSUPP;
1929 }
1930 EXPORT_SYMBOL(sock_no_setsockopt);
1931
1932 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1933 char __user *optval, int __user *optlen)
1934 {
1935 return -EOPNOTSUPP;
1936 }
1937 EXPORT_SYMBOL(sock_no_getsockopt);
1938
1939 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1940 size_t len)
1941 {
1942 return -EOPNOTSUPP;
1943 }
1944 EXPORT_SYMBOL(sock_no_sendmsg);
1945
1946 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1947 size_t len, int flags)
1948 {
1949 return -EOPNOTSUPP;
1950 }
1951 EXPORT_SYMBOL(sock_no_recvmsg);
1952
1953 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1954 {
1955 /* Mirror missing mmap method error code */
1956 return -ENODEV;
1957 }
1958 EXPORT_SYMBOL(sock_no_mmap);
1959
1960 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1961 {
1962 ssize_t res;
1963 struct msghdr msg = {.msg_flags = flags};
1964 struct kvec iov;
1965 char *kaddr = kmap(page);
1966 iov.iov_base = kaddr + offset;
1967 iov.iov_len = size;
1968 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1969 kunmap(page);
1970 return res;
1971 }
1972 EXPORT_SYMBOL(sock_no_sendpage);
1973
1974 /*
1975 * Default Socket Callbacks
1976 */
1977
1978 static void sock_def_wakeup(struct sock *sk)
1979 {
1980 struct socket_wq *wq;
1981
1982 rcu_read_lock();
1983 wq = rcu_dereference(sk->sk_wq);
1984 if (wq_has_sleeper(wq))
1985 wake_up_interruptible_all(&wq->wait);
1986 rcu_read_unlock();
1987 }
1988
1989 static void sock_def_error_report(struct sock *sk)
1990 {
1991 struct socket_wq *wq;
1992
1993 rcu_read_lock();
1994 wq = rcu_dereference(sk->sk_wq);
1995 if (wq_has_sleeper(wq))
1996 wake_up_interruptible_poll(&wq->wait, POLLERR);
1997 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1998 rcu_read_unlock();
1999 }
2000
2001 static void sock_def_readable(struct sock *sk, int len)
2002 {
2003 struct socket_wq *wq;
2004
2005 rcu_read_lock();
2006 wq = rcu_dereference(sk->sk_wq);
2007 if (wq_has_sleeper(wq))
2008 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2009 POLLRDNORM | POLLRDBAND);
2010 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2011 rcu_read_unlock();
2012 }
2013
2014 static void sock_def_write_space(struct sock *sk)
2015 {
2016 struct socket_wq *wq;
2017
2018 rcu_read_lock();
2019
2020 /* Do not wake up a writer until he can make "significant"
2021 * progress. --DaveM
2022 */
2023 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2024 wq = rcu_dereference(sk->sk_wq);
2025 if (wq_has_sleeper(wq))
2026 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2027 POLLWRNORM | POLLWRBAND);
2028
2029 /* Should agree with poll, otherwise some programs break */
2030 if (sock_writeable(sk))
2031 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2032 }
2033
2034 rcu_read_unlock();
2035 }
2036
2037 static void sock_def_destruct(struct sock *sk)
2038 {
2039 kfree(sk->sk_protinfo);
2040 }
2041
2042 void sk_send_sigurg(struct sock *sk)
2043 {
2044 if (sk->sk_socket && sk->sk_socket->file)
2045 if (send_sigurg(&sk->sk_socket->file->f_owner))
2046 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2047 }
2048 EXPORT_SYMBOL(sk_send_sigurg);
2049
2050 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2051 unsigned long expires)
2052 {
2053 if (!mod_timer(timer, expires))
2054 sock_hold(sk);
2055 }
2056 EXPORT_SYMBOL(sk_reset_timer);
2057
2058 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2059 {
2060 if (timer_pending(timer) && del_timer(timer))
2061 __sock_put(sk);
2062 }
2063 EXPORT_SYMBOL(sk_stop_timer);
2064
2065 void sock_init_data(struct socket *sock, struct sock *sk)
2066 {
2067 skb_queue_head_init(&sk->sk_receive_queue);
2068 skb_queue_head_init(&sk->sk_write_queue);
2069 skb_queue_head_init(&sk->sk_error_queue);
2070 #ifdef CONFIG_NET_DMA
2071 skb_queue_head_init(&sk->sk_async_wait_queue);
2072 #endif
2073
2074 sk->sk_send_head = NULL;
2075
2076 init_timer(&sk->sk_timer);
2077
2078 sk->sk_allocation = GFP_KERNEL;
2079 sk->sk_rcvbuf = sysctl_rmem_default;
2080 sk->sk_sndbuf = sysctl_wmem_default;
2081 sk->sk_state = TCP_CLOSE;
2082 sk_set_socket(sk, sock);
2083
2084 sock_set_flag(sk, SOCK_ZAPPED);
2085
2086 if (sock) {
2087 sk->sk_type = sock->type;
2088 sk->sk_wq = sock->wq;
2089 sock->sk = sk;
2090 } else
2091 sk->sk_wq = NULL;
2092
2093 spin_lock_init(&sk->sk_dst_lock);
2094 rwlock_init(&sk->sk_callback_lock);
2095 lockdep_set_class_and_name(&sk->sk_callback_lock,
2096 af_callback_keys + sk->sk_family,
2097 af_family_clock_key_strings[sk->sk_family]);
2098
2099 sk->sk_state_change = sock_def_wakeup;
2100 sk->sk_data_ready = sock_def_readable;
2101 sk->sk_write_space = sock_def_write_space;
2102 sk->sk_error_report = sock_def_error_report;
2103 sk->sk_destruct = sock_def_destruct;
2104
2105 sk->sk_sndmsg_page = NULL;
2106 sk->sk_sndmsg_off = 0;
2107 sk->sk_peek_off = -1;
2108
2109 sk->sk_peer_pid = NULL;
2110 sk->sk_peer_cred = NULL;
2111 sk->sk_write_pending = 0;
2112 sk->sk_rcvlowat = 1;
2113 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2114 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2115
2116 sk->sk_stamp = ktime_set(-1L, 0);
2117
2118 /*
2119 * Before updating sk_refcnt, we must commit prior changes to memory
2120 * (Documentation/RCU/rculist_nulls.txt for details)
2121 */
2122 smp_wmb();
2123 atomic_set(&sk->sk_refcnt, 1);
2124 atomic_set(&sk->sk_drops, 0);
2125 }
2126 EXPORT_SYMBOL(sock_init_data);
2127
2128 void lock_sock_nested(struct sock *sk, int subclass)
2129 {
2130 might_sleep();
2131 spin_lock_bh(&sk->sk_lock.slock);
2132 if (sk->sk_lock.owned)
2133 __lock_sock(sk);
2134 sk->sk_lock.owned = 1;
2135 spin_unlock(&sk->sk_lock.slock);
2136 /*
2137 * The sk_lock has mutex_lock() semantics here:
2138 */
2139 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2140 local_bh_enable();
2141 }
2142 EXPORT_SYMBOL(lock_sock_nested);
2143
2144 void release_sock(struct sock *sk)
2145 {
2146 /*
2147 * The sk_lock has mutex_unlock() semantics:
2148 */
2149 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2150
2151 spin_lock_bh(&sk->sk_lock.slock);
2152 if (sk->sk_backlog.tail)
2153 __release_sock(sk);
2154 sk->sk_lock.owned = 0;
2155 if (waitqueue_active(&sk->sk_lock.wq))
2156 wake_up(&sk->sk_lock.wq);
2157 spin_unlock_bh(&sk->sk_lock.slock);
2158 }
2159 EXPORT_SYMBOL(release_sock);
2160
2161 /**
2162 * lock_sock_fast - fast version of lock_sock
2163 * @sk: socket
2164 *
2165 * This version should be used for very small section, where process wont block
2166 * return false if fast path is taken
2167 * sk_lock.slock locked, owned = 0, BH disabled
2168 * return true if slow path is taken
2169 * sk_lock.slock unlocked, owned = 1, BH enabled
2170 */
2171 bool lock_sock_fast(struct sock *sk)
2172 {
2173 might_sleep();
2174 spin_lock_bh(&sk->sk_lock.slock);
2175
2176 if (!sk->sk_lock.owned)
2177 /*
2178 * Note : We must disable BH
2179 */
2180 return false;
2181
2182 __lock_sock(sk);
2183 sk->sk_lock.owned = 1;
2184 spin_unlock(&sk->sk_lock.slock);
2185 /*
2186 * The sk_lock has mutex_lock() semantics here:
2187 */
2188 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2189 local_bh_enable();
2190 return true;
2191 }
2192 EXPORT_SYMBOL(lock_sock_fast);
2193
2194 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2195 {
2196 struct timeval tv;
2197 if (!sock_flag(sk, SOCK_TIMESTAMP))
2198 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2199 tv = ktime_to_timeval(sk->sk_stamp);
2200 if (tv.tv_sec == -1)
2201 return -ENOENT;
2202 if (tv.tv_sec == 0) {
2203 sk->sk_stamp = ktime_get_real();
2204 tv = ktime_to_timeval(sk->sk_stamp);
2205 }
2206 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2207 }
2208 EXPORT_SYMBOL(sock_get_timestamp);
2209
2210 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2211 {
2212 struct timespec ts;
2213 if (!sock_flag(sk, SOCK_TIMESTAMP))
2214 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2215 ts = ktime_to_timespec(sk->sk_stamp);
2216 if (ts.tv_sec == -1)
2217 return -ENOENT;
2218 if (ts.tv_sec == 0) {
2219 sk->sk_stamp = ktime_get_real();
2220 ts = ktime_to_timespec(sk->sk_stamp);
2221 }
2222 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2223 }
2224 EXPORT_SYMBOL(sock_get_timestampns);
2225
2226 void sock_enable_timestamp(struct sock *sk, int flag)
2227 {
2228 if (!sock_flag(sk, flag)) {
2229 unsigned long previous_flags = sk->sk_flags;
2230
2231 sock_set_flag(sk, flag);
2232 /*
2233 * we just set one of the two flags which require net
2234 * time stamping, but time stamping might have been on
2235 * already because of the other one
2236 */
2237 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2238 net_enable_timestamp();
2239 }
2240 }
2241
2242 /*
2243 * Get a socket option on an socket.
2244 *
2245 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2246 * asynchronous errors should be reported by getsockopt. We assume
2247 * this means if you specify SO_ERROR (otherwise whats the point of it).
2248 */
2249 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2250 char __user *optval, int __user *optlen)
2251 {
2252 struct sock *sk = sock->sk;
2253
2254 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2255 }
2256 EXPORT_SYMBOL(sock_common_getsockopt);
2257
2258 #ifdef CONFIG_COMPAT
2259 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2260 char __user *optval, int __user *optlen)
2261 {
2262 struct sock *sk = sock->sk;
2263
2264 if (sk->sk_prot->compat_getsockopt != NULL)
2265 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2266 optval, optlen);
2267 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2268 }
2269 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2270 #endif
2271
2272 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2273 struct msghdr *msg, size_t size, int flags)
2274 {
2275 struct sock *sk = sock->sk;
2276 int addr_len = 0;
2277 int err;
2278
2279 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2280 flags & ~MSG_DONTWAIT, &addr_len);
2281 if (err >= 0)
2282 msg->msg_namelen = addr_len;
2283 return err;
2284 }
2285 EXPORT_SYMBOL(sock_common_recvmsg);
2286
2287 /*
2288 * Set socket options on an inet socket.
2289 */
2290 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2291 char __user *optval, unsigned int optlen)
2292 {
2293 struct sock *sk = sock->sk;
2294
2295 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2296 }
2297 EXPORT_SYMBOL(sock_common_setsockopt);
2298
2299 #ifdef CONFIG_COMPAT
2300 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2301 char __user *optval, unsigned int optlen)
2302 {
2303 struct sock *sk = sock->sk;
2304
2305 if (sk->sk_prot->compat_setsockopt != NULL)
2306 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2307 optval, optlen);
2308 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2309 }
2310 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2311 #endif
2312
2313 void sk_common_release(struct sock *sk)
2314 {
2315 if (sk->sk_prot->destroy)
2316 sk->sk_prot->destroy(sk);
2317
2318 /*
2319 * Observation: when sock_common_release is called, processes have
2320 * no access to socket. But net still has.
2321 * Step one, detach it from networking:
2322 *
2323 * A. Remove from hash tables.
2324 */
2325
2326 sk->sk_prot->unhash(sk);
2327
2328 /*
2329 * In this point socket cannot receive new packets, but it is possible
2330 * that some packets are in flight because some CPU runs receiver and
2331 * did hash table lookup before we unhashed socket. They will achieve
2332 * receive queue and will be purged by socket destructor.
2333 *
2334 * Also we still have packets pending on receive queue and probably,
2335 * our own packets waiting in device queues. sock_destroy will drain
2336 * receive queue, but transmitted packets will delay socket destruction
2337 * until the last reference will be released.
2338 */
2339
2340 sock_orphan(sk);
2341
2342 xfrm_sk_free_policy(sk);
2343
2344 sk_refcnt_debug_release(sk);
2345 sock_put(sk);
2346 }
2347 EXPORT_SYMBOL(sk_common_release);
2348
2349 #ifdef CONFIG_PROC_FS
2350 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2351 struct prot_inuse {
2352 int val[PROTO_INUSE_NR];
2353 };
2354
2355 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2356
2357 #ifdef CONFIG_NET_NS
2358 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2359 {
2360 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2361 }
2362 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2363
2364 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2365 {
2366 int cpu, idx = prot->inuse_idx;
2367 int res = 0;
2368
2369 for_each_possible_cpu(cpu)
2370 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2371
2372 return res >= 0 ? res : 0;
2373 }
2374 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2375
2376 static int __net_init sock_inuse_init_net(struct net *net)
2377 {
2378 net->core.inuse = alloc_percpu(struct prot_inuse);
2379 return net->core.inuse ? 0 : -ENOMEM;
2380 }
2381
2382 static void __net_exit sock_inuse_exit_net(struct net *net)
2383 {
2384 free_percpu(net->core.inuse);
2385 }
2386
2387 static struct pernet_operations net_inuse_ops = {
2388 .init = sock_inuse_init_net,
2389 .exit = sock_inuse_exit_net,
2390 };
2391
2392 static __init int net_inuse_init(void)
2393 {
2394 if (register_pernet_subsys(&net_inuse_ops))
2395 panic("Cannot initialize net inuse counters");
2396
2397 return 0;
2398 }
2399
2400 core_initcall(net_inuse_init);
2401 #else
2402 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2403
2404 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2405 {
2406 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2407 }
2408 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2409
2410 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2411 {
2412 int cpu, idx = prot->inuse_idx;
2413 int res = 0;
2414
2415 for_each_possible_cpu(cpu)
2416 res += per_cpu(prot_inuse, cpu).val[idx];
2417
2418 return res >= 0 ? res : 0;
2419 }
2420 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2421 #endif
2422
2423 static void assign_proto_idx(struct proto *prot)
2424 {
2425 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2426
2427 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2428 pr_err("PROTO_INUSE_NR exhausted\n");
2429 return;
2430 }
2431
2432 set_bit(prot->inuse_idx, proto_inuse_idx);
2433 }
2434
2435 static void release_proto_idx(struct proto *prot)
2436 {
2437 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2438 clear_bit(prot->inuse_idx, proto_inuse_idx);
2439 }
2440 #else
2441 static inline void assign_proto_idx(struct proto *prot)
2442 {
2443 }
2444
2445 static inline void release_proto_idx(struct proto *prot)
2446 {
2447 }
2448 #endif
2449
2450 int proto_register(struct proto *prot, int alloc_slab)
2451 {
2452 if (alloc_slab) {
2453 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2454 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2455 NULL);
2456
2457 if (prot->slab == NULL) {
2458 pr_crit("%s: Can't create sock SLAB cache!\n",
2459 prot->name);
2460 goto out;
2461 }
2462
2463 if (prot->rsk_prot != NULL) {
2464 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2465 if (prot->rsk_prot->slab_name == NULL)
2466 goto out_free_sock_slab;
2467
2468 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2469 prot->rsk_prot->obj_size, 0,
2470 SLAB_HWCACHE_ALIGN, NULL);
2471
2472 if (prot->rsk_prot->slab == NULL) {
2473 pr_crit("%s: Can't create request sock SLAB cache!\n",
2474 prot->name);
2475 goto out_free_request_sock_slab_name;
2476 }
2477 }
2478
2479 if (prot->twsk_prot != NULL) {
2480 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2481
2482 if (prot->twsk_prot->twsk_slab_name == NULL)
2483 goto out_free_request_sock_slab;
2484
2485 prot->twsk_prot->twsk_slab =
2486 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2487 prot->twsk_prot->twsk_obj_size,
2488 0,
2489 SLAB_HWCACHE_ALIGN |
2490 prot->slab_flags,
2491 NULL);
2492 if (prot->twsk_prot->twsk_slab == NULL)
2493 goto out_free_timewait_sock_slab_name;
2494 }
2495 }
2496
2497 mutex_lock(&proto_list_mutex);
2498 list_add(&prot->node, &proto_list);
2499 assign_proto_idx(prot);
2500 mutex_unlock(&proto_list_mutex);
2501 return 0;
2502
2503 out_free_timewait_sock_slab_name:
2504 kfree(prot->twsk_prot->twsk_slab_name);
2505 out_free_request_sock_slab:
2506 if (prot->rsk_prot && prot->rsk_prot->slab) {
2507 kmem_cache_destroy(prot->rsk_prot->slab);
2508 prot->rsk_prot->slab = NULL;
2509 }
2510 out_free_request_sock_slab_name:
2511 if (prot->rsk_prot)
2512 kfree(prot->rsk_prot->slab_name);
2513 out_free_sock_slab:
2514 kmem_cache_destroy(prot->slab);
2515 prot->slab = NULL;
2516 out:
2517 return -ENOBUFS;
2518 }
2519 EXPORT_SYMBOL(proto_register);
2520
2521 void proto_unregister(struct proto *prot)
2522 {
2523 mutex_lock(&proto_list_mutex);
2524 release_proto_idx(prot);
2525 list_del(&prot->node);
2526 mutex_unlock(&proto_list_mutex);
2527
2528 if (prot->slab != NULL) {
2529 kmem_cache_destroy(prot->slab);
2530 prot->slab = NULL;
2531 }
2532
2533 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2534 kmem_cache_destroy(prot->rsk_prot->slab);
2535 kfree(prot->rsk_prot->slab_name);
2536 prot->rsk_prot->slab = NULL;
2537 }
2538
2539 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2540 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2541 kfree(prot->twsk_prot->twsk_slab_name);
2542 prot->twsk_prot->twsk_slab = NULL;
2543 }
2544 }
2545 EXPORT_SYMBOL(proto_unregister);
2546
2547 #ifdef CONFIG_PROC_FS
2548 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2549 __acquires(proto_list_mutex)
2550 {
2551 mutex_lock(&proto_list_mutex);
2552 return seq_list_start_head(&proto_list, *pos);
2553 }
2554
2555 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2556 {
2557 return seq_list_next(v, &proto_list, pos);
2558 }
2559
2560 static void proto_seq_stop(struct seq_file *seq, void *v)
2561 __releases(proto_list_mutex)
2562 {
2563 mutex_unlock(&proto_list_mutex);
2564 }
2565
2566 static char proto_method_implemented(const void *method)
2567 {
2568 return method == NULL ? 'n' : 'y';
2569 }
2570 static long sock_prot_memory_allocated(struct proto *proto)
2571 {
2572 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2573 }
2574
2575 static char *sock_prot_memory_pressure(struct proto *proto)
2576 {
2577 return proto->memory_pressure != NULL ?
2578 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2579 }
2580
2581 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2582 {
2583
2584 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2585 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2586 proto->name,
2587 proto->obj_size,
2588 sock_prot_inuse_get(seq_file_net(seq), proto),
2589 sock_prot_memory_allocated(proto),
2590 sock_prot_memory_pressure(proto),
2591 proto->max_header,
2592 proto->slab == NULL ? "no" : "yes",
2593 module_name(proto->owner),
2594 proto_method_implemented(proto->close),
2595 proto_method_implemented(proto->connect),
2596 proto_method_implemented(proto->disconnect),
2597 proto_method_implemented(proto->accept),
2598 proto_method_implemented(proto->ioctl),
2599 proto_method_implemented(proto->init),
2600 proto_method_implemented(proto->destroy),
2601 proto_method_implemented(proto->shutdown),
2602 proto_method_implemented(proto->setsockopt),
2603 proto_method_implemented(proto->getsockopt),
2604 proto_method_implemented(proto->sendmsg),
2605 proto_method_implemented(proto->recvmsg),
2606 proto_method_implemented(proto->sendpage),
2607 proto_method_implemented(proto->bind),
2608 proto_method_implemented(proto->backlog_rcv),
2609 proto_method_implemented(proto->hash),
2610 proto_method_implemented(proto->unhash),
2611 proto_method_implemented(proto->get_port),
2612 proto_method_implemented(proto->enter_memory_pressure));
2613 }
2614
2615 static int proto_seq_show(struct seq_file *seq, void *v)
2616 {
2617 if (v == &proto_list)
2618 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2619 "protocol",
2620 "size",
2621 "sockets",
2622 "memory",
2623 "press",
2624 "maxhdr",
2625 "slab",
2626 "module",
2627 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2628 else
2629 proto_seq_printf(seq, list_entry(v, struct proto, node));
2630 return 0;
2631 }
2632
2633 static const struct seq_operations proto_seq_ops = {
2634 .start = proto_seq_start,
2635 .next = proto_seq_next,
2636 .stop = proto_seq_stop,
2637 .show = proto_seq_show,
2638 };
2639
2640 static int proto_seq_open(struct inode *inode, struct file *file)
2641 {
2642 return seq_open_net(inode, file, &proto_seq_ops,
2643 sizeof(struct seq_net_private));
2644 }
2645
2646 static const struct file_operations proto_seq_fops = {
2647 .owner = THIS_MODULE,
2648 .open = proto_seq_open,
2649 .read = seq_read,
2650 .llseek = seq_lseek,
2651 .release = seq_release_net,
2652 };
2653
2654 static __net_init int proto_init_net(struct net *net)
2655 {
2656 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2657 return -ENOMEM;
2658
2659 return 0;
2660 }
2661
2662 static __net_exit void proto_exit_net(struct net *net)
2663 {
2664 proc_net_remove(net, "protocols");
2665 }
2666
2667
2668 static __net_initdata struct pernet_operations proto_net_ops = {
2669 .init = proto_init_net,
2670 .exit = proto_exit_net,
2671 };
2672
2673 static int __init proto_init(void)
2674 {
2675 return register_pernet_subsys(&proto_net_ops);
2676 }
2677
2678 subsys_initcall(proto_init);
2679
2680 #endif /* PROC_FS */