Merge branch 'for-linux-next' of git://people.freedesktop.org/~danvet/drm-intel into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 #if defined(CONFIG_MEMCG_KMEM)
190 struct static_key memcg_socket_limit_enabled;
191 EXPORT_SYMBOL(memcg_socket_limit_enabled);
192 #endif
193
194 /*
195 * Make lock validator output more readable. (we pre-construct these
196 * strings build-time, so that runtime initialization of socket
197 * locks is fast):
198 */
199 static const char *const af_family_key_strings[AF_MAX+1] = {
200 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
201 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
202 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
203 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
204 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
205 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
206 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
207 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
208 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
209 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
210 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
211 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
212 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
213 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
214 };
215 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
217 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
218 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
219 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
220 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
221 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
222 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
223 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
224 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
225 "slock-27" , "slock-28" , "slock-AF_CAN" ,
226 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
227 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
228 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
229 "slock-AF_NFC" , "slock-AF_MAX"
230 };
231 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
233 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
234 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
235 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
236 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
237 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
238 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
239 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
240 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
241 "clock-27" , "clock-28" , "clock-AF_CAN" ,
242 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
243 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
244 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
245 "clock-AF_NFC" , "clock-AF_MAX"
246 };
247
248 /*
249 * sk_callback_lock locking rules are per-address-family,
250 * so split the lock classes by using a per-AF key:
251 */
252 static struct lock_class_key af_callback_keys[AF_MAX];
253
254 /* Take into consideration the size of the struct sk_buff overhead in the
255 * determination of these values, since that is non-constant across
256 * platforms. This makes socket queueing behavior and performance
257 * not depend upon such differences.
258 */
259 #define _SK_MEM_PACKETS 256
260 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
261 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
263
264 /* Run time adjustable parameters. */
265 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266 EXPORT_SYMBOL(sysctl_wmem_max);
267 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268 EXPORT_SYMBOL(sysctl_rmem_max);
269 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
271
272 /* Maximal space eaten by iovec or ancillary data plus some space */
273 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274 EXPORT_SYMBOL(sysctl_optmem_max);
275
276 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277 EXPORT_SYMBOL_GPL(memalloc_socks);
278
279 /**
280 * sk_set_memalloc - sets %SOCK_MEMALLOC
281 * @sk: socket to set it on
282 *
283 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284 * It's the responsibility of the admin to adjust min_free_kbytes
285 * to meet the requirements
286 */
287 void sk_set_memalloc(struct sock *sk)
288 {
289 sock_set_flag(sk, SOCK_MEMALLOC);
290 sk->sk_allocation |= __GFP_MEMALLOC;
291 static_key_slow_inc(&memalloc_socks);
292 }
293 EXPORT_SYMBOL_GPL(sk_set_memalloc);
294
295 void sk_clear_memalloc(struct sock *sk)
296 {
297 sock_reset_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation &= ~__GFP_MEMALLOC;
299 static_key_slow_dec(&memalloc_socks);
300
301 /*
302 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304 * it has rmem allocations there is a risk that the user of the
305 * socket cannot make forward progress due to exceeding the rmem
306 * limits. By rights, sk_clear_memalloc() should only be called
307 * on sockets being torn down but warn and reset the accounting if
308 * that assumption breaks.
309 */
310 if (WARN_ON(sk->sk_forward_alloc))
311 sk_mem_reclaim(sk);
312 }
313 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
314
315 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317 int ret;
318 unsigned long pflags = current->flags;
319
320 /* these should have been dropped before queueing */
321 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
322
323 current->flags |= PF_MEMALLOC;
324 ret = sk->sk_backlog_rcv(sk, skb);
325 tsk_restore_flags(current, pflags, PF_MEMALLOC);
326
327 return ret;
328 }
329 EXPORT_SYMBOL(__sk_backlog_rcv);
330
331 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
332 {
333 struct timeval tv;
334
335 if (optlen < sizeof(tv))
336 return -EINVAL;
337 if (copy_from_user(&tv, optval, sizeof(tv)))
338 return -EFAULT;
339 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
340 return -EDOM;
341
342 if (tv.tv_sec < 0) {
343 static int warned __read_mostly;
344
345 *timeo_p = 0;
346 if (warned < 10 && net_ratelimit()) {
347 warned++;
348 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349 __func__, current->comm, task_pid_nr(current));
350 }
351 return 0;
352 }
353 *timeo_p = MAX_SCHEDULE_TIMEOUT;
354 if (tv.tv_sec == 0 && tv.tv_usec == 0)
355 return 0;
356 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
358 return 0;
359 }
360
361 static void sock_warn_obsolete_bsdism(const char *name)
362 {
363 static int warned;
364 static char warncomm[TASK_COMM_LEN];
365 if (strcmp(warncomm, current->comm) && warned < 5) {
366 strcpy(warncomm, current->comm);
367 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
368 warncomm, name);
369 warned++;
370 }
371 }
372
373 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
374
375 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
376 {
377 if (sk->sk_flags & flags) {
378 sk->sk_flags &= ~flags;
379 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380 net_disable_timestamp();
381 }
382 }
383
384
385 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
386 {
387 int err;
388 int skb_len;
389 unsigned long flags;
390 struct sk_buff_head *list = &sk->sk_receive_queue;
391
392 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393 atomic_inc(&sk->sk_drops);
394 trace_sock_rcvqueue_full(sk, skb);
395 return -ENOMEM;
396 }
397
398 err = sk_filter(sk, skb);
399 if (err)
400 return err;
401
402 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403 atomic_inc(&sk->sk_drops);
404 return -ENOBUFS;
405 }
406
407 skb->dev = NULL;
408 skb_set_owner_r(skb, sk);
409
410 /* Cache the SKB length before we tack it onto the receive
411 * queue. Once it is added it no longer belongs to us and
412 * may be freed by other threads of control pulling packets
413 * from the queue.
414 */
415 skb_len = skb->len;
416
417 /* we escape from rcu protected region, make sure we dont leak
418 * a norefcounted dst
419 */
420 skb_dst_force(skb);
421
422 spin_lock_irqsave(&list->lock, flags);
423 skb->dropcount = atomic_read(&sk->sk_drops);
424 __skb_queue_tail(list, skb);
425 spin_unlock_irqrestore(&list->lock, flags);
426
427 if (!sock_flag(sk, SOCK_DEAD))
428 sk->sk_data_ready(sk, skb_len);
429 return 0;
430 }
431 EXPORT_SYMBOL(sock_queue_rcv_skb);
432
433 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
434 {
435 int rc = NET_RX_SUCCESS;
436
437 if (sk_filter(sk, skb))
438 goto discard_and_relse;
439
440 skb->dev = NULL;
441
442 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443 atomic_inc(&sk->sk_drops);
444 goto discard_and_relse;
445 }
446 if (nested)
447 bh_lock_sock_nested(sk);
448 else
449 bh_lock_sock(sk);
450 if (!sock_owned_by_user(sk)) {
451 /*
452 * trylock + unlock semantics:
453 */
454 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
455
456 rc = sk_backlog_rcv(sk, skb);
457
458 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
460 bh_unlock_sock(sk);
461 atomic_inc(&sk->sk_drops);
462 goto discard_and_relse;
463 }
464
465 bh_unlock_sock(sk);
466 out:
467 sock_put(sk);
468 return rc;
469 discard_and_relse:
470 kfree_skb(skb);
471 goto out;
472 }
473 EXPORT_SYMBOL(sk_receive_skb);
474
475 void sk_reset_txq(struct sock *sk)
476 {
477 sk_tx_queue_clear(sk);
478 }
479 EXPORT_SYMBOL(sk_reset_txq);
480
481 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
482 {
483 struct dst_entry *dst = __sk_dst_get(sk);
484
485 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486 sk_tx_queue_clear(sk);
487 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
488 dst_release(dst);
489 return NULL;
490 }
491
492 return dst;
493 }
494 EXPORT_SYMBOL(__sk_dst_check);
495
496 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
497 {
498 struct dst_entry *dst = sk_dst_get(sk);
499
500 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
501 sk_dst_reset(sk);
502 dst_release(dst);
503 return NULL;
504 }
505
506 return dst;
507 }
508 EXPORT_SYMBOL(sk_dst_check);
509
510 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511 int optlen)
512 {
513 int ret = -ENOPROTOOPT;
514 #ifdef CONFIG_NETDEVICES
515 struct net *net = sock_net(sk);
516 char devname[IFNAMSIZ];
517 int index;
518
519 /* Sorry... */
520 ret = -EPERM;
521 if (!ns_capable(net->user_ns, CAP_NET_RAW))
522 goto out;
523
524 ret = -EINVAL;
525 if (optlen < 0)
526 goto out;
527
528 /* Bind this socket to a particular device like "eth0",
529 * as specified in the passed interface name. If the
530 * name is "" or the option length is zero the socket
531 * is not bound.
532 */
533 if (optlen > IFNAMSIZ - 1)
534 optlen = IFNAMSIZ - 1;
535 memset(devname, 0, sizeof(devname));
536
537 ret = -EFAULT;
538 if (copy_from_user(devname, optval, optlen))
539 goto out;
540
541 index = 0;
542 if (devname[0] != '\0') {
543 struct net_device *dev;
544
545 rcu_read_lock();
546 dev = dev_get_by_name_rcu(net, devname);
547 if (dev)
548 index = dev->ifindex;
549 rcu_read_unlock();
550 ret = -ENODEV;
551 if (!dev)
552 goto out;
553 }
554
555 lock_sock(sk);
556 sk->sk_bound_dev_if = index;
557 sk_dst_reset(sk);
558 release_sock(sk);
559
560 ret = 0;
561
562 out:
563 #endif
564
565 return ret;
566 }
567
568 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569 int __user *optlen, int len)
570 {
571 int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 struct net *net = sock_net(sk);
574 struct net_device *dev;
575 char devname[IFNAMSIZ];
576 unsigned seq;
577
578 if (sk->sk_bound_dev_if == 0) {
579 len = 0;
580 goto zero;
581 }
582
583 ret = -EINVAL;
584 if (len < IFNAMSIZ)
585 goto out;
586
587 retry:
588 seq = read_seqcount_begin(&devnet_rename_seq);
589 rcu_read_lock();
590 dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
591 ret = -ENODEV;
592 if (!dev) {
593 rcu_read_unlock();
594 goto out;
595 }
596
597 strcpy(devname, dev->name);
598 rcu_read_unlock();
599 if (read_seqcount_retry(&devnet_rename_seq, seq))
600 goto retry;
601
602 len = strlen(devname) + 1;
603
604 ret = -EFAULT;
605 if (copy_to_user(optval, devname, len))
606 goto out;
607
608 zero:
609 ret = -EFAULT;
610 if (put_user(len, optlen))
611 goto out;
612
613 ret = 0;
614
615 out:
616 #endif
617
618 return ret;
619 }
620
621 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622 {
623 if (valbool)
624 sock_set_flag(sk, bit);
625 else
626 sock_reset_flag(sk, bit);
627 }
628
629 /*
630 * This is meant for all protocols to use and covers goings on
631 * at the socket level. Everything here is generic.
632 */
633
634 int sock_setsockopt(struct socket *sock, int level, int optname,
635 char __user *optval, unsigned int optlen)
636 {
637 struct sock *sk = sock->sk;
638 int val;
639 int valbool;
640 struct linger ling;
641 int ret = 0;
642
643 /*
644 * Options without arguments
645 */
646
647 if (optname == SO_BINDTODEVICE)
648 return sock_setbindtodevice(sk, optval, optlen);
649
650 if (optlen < sizeof(int))
651 return -EINVAL;
652
653 if (get_user(val, (int __user *)optval))
654 return -EFAULT;
655
656 valbool = val ? 1 : 0;
657
658 lock_sock(sk);
659
660 switch (optname) {
661 case SO_DEBUG:
662 if (val && !capable(CAP_NET_ADMIN))
663 ret = -EACCES;
664 else
665 sock_valbool_flag(sk, SOCK_DBG, valbool);
666 break;
667 case SO_REUSEADDR:
668 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
669 break;
670 case SO_REUSEPORT:
671 sk->sk_reuseport = valbool;
672 break;
673 case SO_TYPE:
674 case SO_PROTOCOL:
675 case SO_DOMAIN:
676 case SO_ERROR:
677 ret = -ENOPROTOOPT;
678 break;
679 case SO_DONTROUTE:
680 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
681 break;
682 case SO_BROADCAST:
683 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
684 break;
685 case SO_SNDBUF:
686 /* Don't error on this BSD doesn't and if you think
687 * about it this is right. Otherwise apps have to
688 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689 * are treated in BSD as hints
690 */
691 val = min_t(u32, val, sysctl_wmem_max);
692 set_sndbuf:
693 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
694 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
695 /* Wake up sending tasks if we upped the value. */
696 sk->sk_write_space(sk);
697 break;
698
699 case SO_SNDBUFFORCE:
700 if (!capable(CAP_NET_ADMIN)) {
701 ret = -EPERM;
702 break;
703 }
704 goto set_sndbuf;
705
706 case SO_RCVBUF:
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
711 */
712 val = min_t(u32, val, sysctl_rmem_max);
713 set_rcvbuf:
714 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
715 /*
716 * We double it on the way in to account for
717 * "struct sk_buff" etc. overhead. Applications
718 * assume that the SO_RCVBUF setting they make will
719 * allow that much actual data to be received on that
720 * socket.
721 *
722 * Applications are unaware that "struct sk_buff" and
723 * other overheads allocate from the receive buffer
724 * during socket buffer allocation.
725 *
726 * And after considering the possible alternatives,
727 * returning the value we actually used in getsockopt
728 * is the most desirable behavior.
729 */
730 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
731 break;
732
733 case SO_RCVBUFFORCE:
734 if (!capable(CAP_NET_ADMIN)) {
735 ret = -EPERM;
736 break;
737 }
738 goto set_rcvbuf;
739
740 case SO_KEEPALIVE:
741 #ifdef CONFIG_INET
742 if (sk->sk_protocol == IPPROTO_TCP &&
743 sk->sk_type == SOCK_STREAM)
744 tcp_set_keepalive(sk, valbool);
745 #endif
746 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
747 break;
748
749 case SO_OOBINLINE:
750 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
751 break;
752
753 case SO_NO_CHECK:
754 sk->sk_no_check = valbool;
755 break;
756
757 case SO_PRIORITY:
758 if ((val >= 0 && val <= 6) ||
759 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
760 sk->sk_priority = val;
761 else
762 ret = -EPERM;
763 break;
764
765 case SO_LINGER:
766 if (optlen < sizeof(ling)) {
767 ret = -EINVAL; /* 1003.1g */
768 break;
769 }
770 if (copy_from_user(&ling, optval, sizeof(ling))) {
771 ret = -EFAULT;
772 break;
773 }
774 if (!ling.l_onoff)
775 sock_reset_flag(sk, SOCK_LINGER);
776 else {
777 #if (BITS_PER_LONG == 32)
778 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
779 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
780 else
781 #endif
782 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
783 sock_set_flag(sk, SOCK_LINGER);
784 }
785 break;
786
787 case SO_BSDCOMPAT:
788 sock_warn_obsolete_bsdism("setsockopt");
789 break;
790
791 case SO_PASSCRED:
792 if (valbool)
793 set_bit(SOCK_PASSCRED, &sock->flags);
794 else
795 clear_bit(SOCK_PASSCRED, &sock->flags);
796 break;
797
798 case SO_TIMESTAMP:
799 case SO_TIMESTAMPNS:
800 if (valbool) {
801 if (optname == SO_TIMESTAMP)
802 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
803 else
804 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
805 sock_set_flag(sk, SOCK_RCVTSTAMP);
806 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
807 } else {
808 sock_reset_flag(sk, SOCK_RCVTSTAMP);
809 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
810 }
811 break;
812
813 case SO_TIMESTAMPING:
814 if (val & ~SOF_TIMESTAMPING_MASK) {
815 ret = -EINVAL;
816 break;
817 }
818 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
819 val & SOF_TIMESTAMPING_TX_HARDWARE);
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
821 val & SOF_TIMESTAMPING_TX_SOFTWARE);
822 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
823 val & SOF_TIMESTAMPING_RX_HARDWARE);
824 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
825 sock_enable_timestamp(sk,
826 SOCK_TIMESTAMPING_RX_SOFTWARE);
827 else
828 sock_disable_timestamp(sk,
829 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
830 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
831 val & SOF_TIMESTAMPING_SOFTWARE);
832 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
833 val & SOF_TIMESTAMPING_SYS_HARDWARE);
834 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
835 val & SOF_TIMESTAMPING_RAW_HARDWARE);
836 break;
837
838 case SO_RCVLOWAT:
839 if (val < 0)
840 val = INT_MAX;
841 sk->sk_rcvlowat = val ? : 1;
842 break;
843
844 case SO_RCVTIMEO:
845 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
846 break;
847
848 case SO_SNDTIMEO:
849 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
850 break;
851
852 case SO_ATTACH_FILTER:
853 ret = -EINVAL;
854 if (optlen == sizeof(struct sock_fprog)) {
855 struct sock_fprog fprog;
856
857 ret = -EFAULT;
858 if (copy_from_user(&fprog, optval, sizeof(fprog)))
859 break;
860
861 ret = sk_attach_filter(&fprog, sk);
862 }
863 break;
864
865 case SO_DETACH_FILTER:
866 ret = sk_detach_filter(sk);
867 break;
868
869 case SO_LOCK_FILTER:
870 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
871 ret = -EPERM;
872 else
873 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
874 break;
875
876 case SO_PASSSEC:
877 if (valbool)
878 set_bit(SOCK_PASSSEC, &sock->flags);
879 else
880 clear_bit(SOCK_PASSSEC, &sock->flags);
881 break;
882 case SO_MARK:
883 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
884 ret = -EPERM;
885 else
886 sk->sk_mark = val;
887 break;
888
889 /* We implement the SO_SNDLOWAT etc to
890 not be settable (1003.1g 5.3) */
891 case SO_RXQ_OVFL:
892 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
893 break;
894
895 case SO_WIFI_STATUS:
896 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
897 break;
898
899 case SO_PEEK_OFF:
900 if (sock->ops->set_peek_off)
901 sock->ops->set_peek_off(sk, val);
902 else
903 ret = -EOPNOTSUPP;
904 break;
905
906 case SO_NOFCS:
907 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
908 break;
909
910 default:
911 ret = -ENOPROTOOPT;
912 break;
913 }
914 release_sock(sk);
915 return ret;
916 }
917 EXPORT_SYMBOL(sock_setsockopt);
918
919
920 void cred_to_ucred(struct pid *pid, const struct cred *cred,
921 struct ucred *ucred)
922 {
923 ucred->pid = pid_vnr(pid);
924 ucred->uid = ucred->gid = -1;
925 if (cred) {
926 struct user_namespace *current_ns = current_user_ns();
927
928 ucred->uid = from_kuid_munged(current_ns, cred->euid);
929 ucred->gid = from_kgid_munged(current_ns, cred->egid);
930 }
931 }
932 EXPORT_SYMBOL_GPL(cred_to_ucred);
933
934 int sock_getsockopt(struct socket *sock, int level, int optname,
935 char __user *optval, int __user *optlen)
936 {
937 struct sock *sk = sock->sk;
938
939 union {
940 int val;
941 struct linger ling;
942 struct timeval tm;
943 } v;
944
945 int lv = sizeof(int);
946 int len;
947
948 if (get_user(len, optlen))
949 return -EFAULT;
950 if (len < 0)
951 return -EINVAL;
952
953 memset(&v, 0, sizeof(v));
954
955 switch (optname) {
956 case SO_DEBUG:
957 v.val = sock_flag(sk, SOCK_DBG);
958 break;
959
960 case SO_DONTROUTE:
961 v.val = sock_flag(sk, SOCK_LOCALROUTE);
962 break;
963
964 case SO_BROADCAST:
965 v.val = sock_flag(sk, SOCK_BROADCAST);
966 break;
967
968 case SO_SNDBUF:
969 v.val = sk->sk_sndbuf;
970 break;
971
972 case SO_RCVBUF:
973 v.val = sk->sk_rcvbuf;
974 break;
975
976 case SO_REUSEADDR:
977 v.val = sk->sk_reuse;
978 break;
979
980 case SO_REUSEPORT:
981 v.val = sk->sk_reuseport;
982 break;
983
984 case SO_KEEPALIVE:
985 v.val = sock_flag(sk, SOCK_KEEPOPEN);
986 break;
987
988 case SO_TYPE:
989 v.val = sk->sk_type;
990 break;
991
992 case SO_PROTOCOL:
993 v.val = sk->sk_protocol;
994 break;
995
996 case SO_DOMAIN:
997 v.val = sk->sk_family;
998 break;
999
1000 case SO_ERROR:
1001 v.val = -sock_error(sk);
1002 if (v.val == 0)
1003 v.val = xchg(&sk->sk_err_soft, 0);
1004 break;
1005
1006 case SO_OOBINLINE:
1007 v.val = sock_flag(sk, SOCK_URGINLINE);
1008 break;
1009
1010 case SO_NO_CHECK:
1011 v.val = sk->sk_no_check;
1012 break;
1013
1014 case SO_PRIORITY:
1015 v.val = sk->sk_priority;
1016 break;
1017
1018 case SO_LINGER:
1019 lv = sizeof(v.ling);
1020 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1021 v.ling.l_linger = sk->sk_lingertime / HZ;
1022 break;
1023
1024 case SO_BSDCOMPAT:
1025 sock_warn_obsolete_bsdism("getsockopt");
1026 break;
1027
1028 case SO_TIMESTAMP:
1029 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1030 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1031 break;
1032
1033 case SO_TIMESTAMPNS:
1034 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1035 break;
1036
1037 case SO_TIMESTAMPING:
1038 v.val = 0;
1039 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1040 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1041 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1042 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1043 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1044 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1045 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1046 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1047 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1048 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1049 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1050 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1051 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1052 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1053 break;
1054
1055 case SO_RCVTIMEO:
1056 lv = sizeof(struct timeval);
1057 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1058 v.tm.tv_sec = 0;
1059 v.tm.tv_usec = 0;
1060 } else {
1061 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1062 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1063 }
1064 break;
1065
1066 case SO_SNDTIMEO:
1067 lv = sizeof(struct timeval);
1068 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1069 v.tm.tv_sec = 0;
1070 v.tm.tv_usec = 0;
1071 } else {
1072 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1073 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1074 }
1075 break;
1076
1077 case SO_RCVLOWAT:
1078 v.val = sk->sk_rcvlowat;
1079 break;
1080
1081 case SO_SNDLOWAT:
1082 v.val = 1;
1083 break;
1084
1085 case SO_PASSCRED:
1086 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1087 break;
1088
1089 case SO_PEERCRED:
1090 {
1091 struct ucred peercred;
1092 if (len > sizeof(peercred))
1093 len = sizeof(peercred);
1094 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1095 if (copy_to_user(optval, &peercred, len))
1096 return -EFAULT;
1097 goto lenout;
1098 }
1099
1100 case SO_PEERNAME:
1101 {
1102 char address[128];
1103
1104 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1105 return -ENOTCONN;
1106 if (lv < len)
1107 return -EINVAL;
1108 if (copy_to_user(optval, address, len))
1109 return -EFAULT;
1110 goto lenout;
1111 }
1112
1113 /* Dubious BSD thing... Probably nobody even uses it, but
1114 * the UNIX standard wants it for whatever reason... -DaveM
1115 */
1116 case SO_ACCEPTCONN:
1117 v.val = sk->sk_state == TCP_LISTEN;
1118 break;
1119
1120 case SO_PASSSEC:
1121 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1122 break;
1123
1124 case SO_PEERSEC:
1125 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1126
1127 case SO_MARK:
1128 v.val = sk->sk_mark;
1129 break;
1130
1131 case SO_RXQ_OVFL:
1132 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1133 break;
1134
1135 case SO_WIFI_STATUS:
1136 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1137 break;
1138
1139 case SO_PEEK_OFF:
1140 if (!sock->ops->set_peek_off)
1141 return -EOPNOTSUPP;
1142
1143 v.val = sk->sk_peek_off;
1144 break;
1145 case SO_NOFCS:
1146 v.val = sock_flag(sk, SOCK_NOFCS);
1147 break;
1148
1149 case SO_BINDTODEVICE:
1150 return sock_getbindtodevice(sk, optval, optlen, len);
1151
1152 case SO_GET_FILTER:
1153 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1154 if (len < 0)
1155 return len;
1156
1157 goto lenout;
1158
1159 case SO_LOCK_FILTER:
1160 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1161 break;
1162
1163 default:
1164 return -ENOPROTOOPT;
1165 }
1166
1167 if (len > lv)
1168 len = lv;
1169 if (copy_to_user(optval, &v, len))
1170 return -EFAULT;
1171 lenout:
1172 if (put_user(len, optlen))
1173 return -EFAULT;
1174 return 0;
1175 }
1176
1177 /*
1178 * Initialize an sk_lock.
1179 *
1180 * (We also register the sk_lock with the lock validator.)
1181 */
1182 static inline void sock_lock_init(struct sock *sk)
1183 {
1184 sock_lock_init_class_and_name(sk,
1185 af_family_slock_key_strings[sk->sk_family],
1186 af_family_slock_keys + sk->sk_family,
1187 af_family_key_strings[sk->sk_family],
1188 af_family_keys + sk->sk_family);
1189 }
1190
1191 /*
1192 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1193 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1194 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1195 */
1196 static void sock_copy(struct sock *nsk, const struct sock *osk)
1197 {
1198 #ifdef CONFIG_SECURITY_NETWORK
1199 void *sptr = nsk->sk_security;
1200 #endif
1201 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1202
1203 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1204 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1205
1206 #ifdef CONFIG_SECURITY_NETWORK
1207 nsk->sk_security = sptr;
1208 security_sk_clone(osk, nsk);
1209 #endif
1210 }
1211
1212 /*
1213 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1214 * un-modified. Special care is taken when initializing object to zero.
1215 */
1216 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1217 {
1218 if (offsetof(struct sock, sk_node.next) != 0)
1219 memset(sk, 0, offsetof(struct sock, sk_node.next));
1220 memset(&sk->sk_node.pprev, 0,
1221 size - offsetof(struct sock, sk_node.pprev));
1222 }
1223
1224 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1225 {
1226 unsigned long nulls1, nulls2;
1227
1228 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1229 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1230 if (nulls1 > nulls2)
1231 swap(nulls1, nulls2);
1232
1233 if (nulls1 != 0)
1234 memset((char *)sk, 0, nulls1);
1235 memset((char *)sk + nulls1 + sizeof(void *), 0,
1236 nulls2 - nulls1 - sizeof(void *));
1237 memset((char *)sk + nulls2 + sizeof(void *), 0,
1238 size - nulls2 - sizeof(void *));
1239 }
1240 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1241
1242 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1243 int family)
1244 {
1245 struct sock *sk;
1246 struct kmem_cache *slab;
1247
1248 slab = prot->slab;
1249 if (slab != NULL) {
1250 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1251 if (!sk)
1252 return sk;
1253 if (priority & __GFP_ZERO) {
1254 if (prot->clear_sk)
1255 prot->clear_sk(sk, prot->obj_size);
1256 else
1257 sk_prot_clear_nulls(sk, prot->obj_size);
1258 }
1259 } else
1260 sk = kmalloc(prot->obj_size, priority);
1261
1262 if (sk != NULL) {
1263 kmemcheck_annotate_bitfield(sk, flags);
1264
1265 if (security_sk_alloc(sk, family, priority))
1266 goto out_free;
1267
1268 if (!try_module_get(prot->owner))
1269 goto out_free_sec;
1270 sk_tx_queue_clear(sk);
1271 }
1272
1273 return sk;
1274
1275 out_free_sec:
1276 security_sk_free(sk);
1277 out_free:
1278 if (slab != NULL)
1279 kmem_cache_free(slab, sk);
1280 else
1281 kfree(sk);
1282 return NULL;
1283 }
1284
1285 static void sk_prot_free(struct proto *prot, struct sock *sk)
1286 {
1287 struct kmem_cache *slab;
1288 struct module *owner;
1289
1290 owner = prot->owner;
1291 slab = prot->slab;
1292
1293 security_sk_free(sk);
1294 if (slab != NULL)
1295 kmem_cache_free(slab, sk);
1296 else
1297 kfree(sk);
1298 module_put(owner);
1299 }
1300
1301 #ifdef CONFIG_CGROUPS
1302 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1303 void sock_update_classid(struct sock *sk, struct task_struct *task)
1304 {
1305 u32 classid;
1306
1307 classid = task_cls_classid(task);
1308 if (classid != sk->sk_classid)
1309 sk->sk_classid = classid;
1310 }
1311 EXPORT_SYMBOL(sock_update_classid);
1312 #endif
1313
1314 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1315 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1316 {
1317 if (in_interrupt())
1318 return;
1319
1320 sk->sk_cgrp_prioidx = task_netprioidx(task);
1321 }
1322 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1323 #endif
1324 #endif
1325
1326 /**
1327 * sk_alloc - All socket objects are allocated here
1328 * @net: the applicable net namespace
1329 * @family: protocol family
1330 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1331 * @prot: struct proto associated with this new sock instance
1332 */
1333 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1334 struct proto *prot)
1335 {
1336 struct sock *sk;
1337
1338 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1339 if (sk) {
1340 sk->sk_family = family;
1341 /*
1342 * See comment in struct sock definition to understand
1343 * why we need sk_prot_creator -acme
1344 */
1345 sk->sk_prot = sk->sk_prot_creator = prot;
1346 sock_lock_init(sk);
1347 sock_net_set(sk, get_net(net));
1348 atomic_set(&sk->sk_wmem_alloc, 1);
1349
1350 sock_update_classid(sk, current);
1351 sock_update_netprioidx(sk, current);
1352 }
1353
1354 return sk;
1355 }
1356 EXPORT_SYMBOL(sk_alloc);
1357
1358 static void __sk_free(struct sock *sk)
1359 {
1360 struct sk_filter *filter;
1361
1362 if (sk->sk_destruct)
1363 sk->sk_destruct(sk);
1364
1365 filter = rcu_dereference_check(sk->sk_filter,
1366 atomic_read(&sk->sk_wmem_alloc) == 0);
1367 if (filter) {
1368 sk_filter_uncharge(sk, filter);
1369 RCU_INIT_POINTER(sk->sk_filter, NULL);
1370 }
1371
1372 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1373
1374 if (atomic_read(&sk->sk_omem_alloc))
1375 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1376 __func__, atomic_read(&sk->sk_omem_alloc));
1377
1378 if (sk->sk_peer_cred)
1379 put_cred(sk->sk_peer_cred);
1380 put_pid(sk->sk_peer_pid);
1381 put_net(sock_net(sk));
1382 sk_prot_free(sk->sk_prot_creator, sk);
1383 }
1384
1385 void sk_free(struct sock *sk)
1386 {
1387 /*
1388 * We subtract one from sk_wmem_alloc and can know if
1389 * some packets are still in some tx queue.
1390 * If not null, sock_wfree() will call __sk_free(sk) later
1391 */
1392 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1393 __sk_free(sk);
1394 }
1395 EXPORT_SYMBOL(sk_free);
1396
1397 /*
1398 * Last sock_put should drop reference to sk->sk_net. It has already
1399 * been dropped in sk_change_net. Taking reference to stopping namespace
1400 * is not an option.
1401 * Take reference to a socket to remove it from hash _alive_ and after that
1402 * destroy it in the context of init_net.
1403 */
1404 void sk_release_kernel(struct sock *sk)
1405 {
1406 if (sk == NULL || sk->sk_socket == NULL)
1407 return;
1408
1409 sock_hold(sk);
1410 sock_release(sk->sk_socket);
1411 release_net(sock_net(sk));
1412 sock_net_set(sk, get_net(&init_net));
1413 sock_put(sk);
1414 }
1415 EXPORT_SYMBOL(sk_release_kernel);
1416
1417 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1418 {
1419 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1420 sock_update_memcg(newsk);
1421 }
1422
1423 /**
1424 * sk_clone_lock - clone a socket, and lock its clone
1425 * @sk: the socket to clone
1426 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1427 *
1428 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1429 */
1430 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1431 {
1432 struct sock *newsk;
1433
1434 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1435 if (newsk != NULL) {
1436 struct sk_filter *filter;
1437
1438 sock_copy(newsk, sk);
1439
1440 /* SANITY */
1441 get_net(sock_net(newsk));
1442 sk_node_init(&newsk->sk_node);
1443 sock_lock_init(newsk);
1444 bh_lock_sock(newsk);
1445 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1446 newsk->sk_backlog.len = 0;
1447
1448 atomic_set(&newsk->sk_rmem_alloc, 0);
1449 /*
1450 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1451 */
1452 atomic_set(&newsk->sk_wmem_alloc, 1);
1453 atomic_set(&newsk->sk_omem_alloc, 0);
1454 skb_queue_head_init(&newsk->sk_receive_queue);
1455 skb_queue_head_init(&newsk->sk_write_queue);
1456 #ifdef CONFIG_NET_DMA
1457 skb_queue_head_init(&newsk->sk_async_wait_queue);
1458 #endif
1459
1460 spin_lock_init(&newsk->sk_dst_lock);
1461 rwlock_init(&newsk->sk_callback_lock);
1462 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1463 af_callback_keys + newsk->sk_family,
1464 af_family_clock_key_strings[newsk->sk_family]);
1465
1466 newsk->sk_dst_cache = NULL;
1467 newsk->sk_wmem_queued = 0;
1468 newsk->sk_forward_alloc = 0;
1469 newsk->sk_send_head = NULL;
1470 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1471
1472 sock_reset_flag(newsk, SOCK_DONE);
1473 skb_queue_head_init(&newsk->sk_error_queue);
1474
1475 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1476 if (filter != NULL)
1477 sk_filter_charge(newsk, filter);
1478
1479 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1480 /* It is still raw copy of parent, so invalidate
1481 * destructor and make plain sk_free() */
1482 newsk->sk_destruct = NULL;
1483 bh_unlock_sock(newsk);
1484 sk_free(newsk);
1485 newsk = NULL;
1486 goto out;
1487 }
1488
1489 newsk->sk_err = 0;
1490 newsk->sk_priority = 0;
1491 /*
1492 * Before updating sk_refcnt, we must commit prior changes to memory
1493 * (Documentation/RCU/rculist_nulls.txt for details)
1494 */
1495 smp_wmb();
1496 atomic_set(&newsk->sk_refcnt, 2);
1497
1498 /*
1499 * Increment the counter in the same struct proto as the master
1500 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1501 * is the same as sk->sk_prot->socks, as this field was copied
1502 * with memcpy).
1503 *
1504 * This _changes_ the previous behaviour, where
1505 * tcp_create_openreq_child always was incrementing the
1506 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1507 * to be taken into account in all callers. -acme
1508 */
1509 sk_refcnt_debug_inc(newsk);
1510 sk_set_socket(newsk, NULL);
1511 newsk->sk_wq = NULL;
1512
1513 sk_update_clone(sk, newsk);
1514
1515 if (newsk->sk_prot->sockets_allocated)
1516 sk_sockets_allocated_inc(newsk);
1517
1518 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1519 net_enable_timestamp();
1520 }
1521 out:
1522 return newsk;
1523 }
1524 EXPORT_SYMBOL_GPL(sk_clone_lock);
1525
1526 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1527 {
1528 __sk_dst_set(sk, dst);
1529 sk->sk_route_caps = dst->dev->features;
1530 if (sk->sk_route_caps & NETIF_F_GSO)
1531 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1532 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1533 if (sk_can_gso(sk)) {
1534 if (dst->header_len) {
1535 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1536 } else {
1537 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1538 sk->sk_gso_max_size = dst->dev->gso_max_size;
1539 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1540 }
1541 }
1542 }
1543 EXPORT_SYMBOL_GPL(sk_setup_caps);
1544
1545 /*
1546 * Simple resource managers for sockets.
1547 */
1548
1549
1550 /*
1551 * Write buffer destructor automatically called from kfree_skb.
1552 */
1553 void sock_wfree(struct sk_buff *skb)
1554 {
1555 struct sock *sk = skb->sk;
1556 unsigned int len = skb->truesize;
1557
1558 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1559 /*
1560 * Keep a reference on sk_wmem_alloc, this will be released
1561 * after sk_write_space() call
1562 */
1563 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1564 sk->sk_write_space(sk);
1565 len = 1;
1566 }
1567 /*
1568 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1569 * could not do because of in-flight packets
1570 */
1571 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1572 __sk_free(sk);
1573 }
1574 EXPORT_SYMBOL(sock_wfree);
1575
1576 /*
1577 * Read buffer destructor automatically called from kfree_skb.
1578 */
1579 void sock_rfree(struct sk_buff *skb)
1580 {
1581 struct sock *sk = skb->sk;
1582 unsigned int len = skb->truesize;
1583
1584 atomic_sub(len, &sk->sk_rmem_alloc);
1585 sk_mem_uncharge(sk, len);
1586 }
1587 EXPORT_SYMBOL(sock_rfree);
1588
1589 void sock_edemux(struct sk_buff *skb)
1590 {
1591 struct sock *sk = skb->sk;
1592
1593 #ifdef CONFIG_INET
1594 if (sk->sk_state == TCP_TIME_WAIT)
1595 inet_twsk_put(inet_twsk(sk));
1596 else
1597 #endif
1598 sock_put(sk);
1599 }
1600 EXPORT_SYMBOL(sock_edemux);
1601
1602 kuid_t sock_i_uid(struct sock *sk)
1603 {
1604 kuid_t uid;
1605
1606 read_lock_bh(&sk->sk_callback_lock);
1607 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1608 read_unlock_bh(&sk->sk_callback_lock);
1609 return uid;
1610 }
1611 EXPORT_SYMBOL(sock_i_uid);
1612
1613 unsigned long sock_i_ino(struct sock *sk)
1614 {
1615 unsigned long ino;
1616
1617 read_lock_bh(&sk->sk_callback_lock);
1618 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1619 read_unlock_bh(&sk->sk_callback_lock);
1620 return ino;
1621 }
1622 EXPORT_SYMBOL(sock_i_ino);
1623
1624 /*
1625 * Allocate a skb from the socket's send buffer.
1626 */
1627 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1628 gfp_t priority)
1629 {
1630 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1631 struct sk_buff *skb = alloc_skb(size, priority);
1632 if (skb) {
1633 skb_set_owner_w(skb, sk);
1634 return skb;
1635 }
1636 }
1637 return NULL;
1638 }
1639 EXPORT_SYMBOL(sock_wmalloc);
1640
1641 /*
1642 * Allocate a skb from the socket's receive buffer.
1643 */
1644 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1645 gfp_t priority)
1646 {
1647 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1648 struct sk_buff *skb = alloc_skb(size, priority);
1649 if (skb) {
1650 skb_set_owner_r(skb, sk);
1651 return skb;
1652 }
1653 }
1654 return NULL;
1655 }
1656
1657 /*
1658 * Allocate a memory block from the socket's option memory buffer.
1659 */
1660 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1661 {
1662 if ((unsigned int)size <= sysctl_optmem_max &&
1663 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1664 void *mem;
1665 /* First do the add, to avoid the race if kmalloc
1666 * might sleep.
1667 */
1668 atomic_add(size, &sk->sk_omem_alloc);
1669 mem = kmalloc(size, priority);
1670 if (mem)
1671 return mem;
1672 atomic_sub(size, &sk->sk_omem_alloc);
1673 }
1674 return NULL;
1675 }
1676 EXPORT_SYMBOL(sock_kmalloc);
1677
1678 /*
1679 * Free an option memory block.
1680 */
1681 void sock_kfree_s(struct sock *sk, void *mem, int size)
1682 {
1683 kfree(mem);
1684 atomic_sub(size, &sk->sk_omem_alloc);
1685 }
1686 EXPORT_SYMBOL(sock_kfree_s);
1687
1688 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1689 I think, these locks should be removed for datagram sockets.
1690 */
1691 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1692 {
1693 DEFINE_WAIT(wait);
1694
1695 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1696 for (;;) {
1697 if (!timeo)
1698 break;
1699 if (signal_pending(current))
1700 break;
1701 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1702 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1703 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1704 break;
1705 if (sk->sk_shutdown & SEND_SHUTDOWN)
1706 break;
1707 if (sk->sk_err)
1708 break;
1709 timeo = schedule_timeout(timeo);
1710 }
1711 finish_wait(sk_sleep(sk), &wait);
1712 return timeo;
1713 }
1714
1715
1716 /*
1717 * Generic send/receive buffer handlers
1718 */
1719
1720 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1721 unsigned long data_len, int noblock,
1722 int *errcode)
1723 {
1724 struct sk_buff *skb;
1725 gfp_t gfp_mask;
1726 long timeo;
1727 int err;
1728 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1729
1730 err = -EMSGSIZE;
1731 if (npages > MAX_SKB_FRAGS)
1732 goto failure;
1733
1734 gfp_mask = sk->sk_allocation;
1735 if (gfp_mask & __GFP_WAIT)
1736 gfp_mask |= __GFP_REPEAT;
1737
1738 timeo = sock_sndtimeo(sk, noblock);
1739 while (1) {
1740 err = sock_error(sk);
1741 if (err != 0)
1742 goto failure;
1743
1744 err = -EPIPE;
1745 if (sk->sk_shutdown & SEND_SHUTDOWN)
1746 goto failure;
1747
1748 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1749 skb = alloc_skb(header_len, gfp_mask);
1750 if (skb) {
1751 int i;
1752
1753 /* No pages, we're done... */
1754 if (!data_len)
1755 break;
1756
1757 skb->truesize += data_len;
1758 skb_shinfo(skb)->nr_frags = npages;
1759 for (i = 0; i < npages; i++) {
1760 struct page *page;
1761
1762 page = alloc_pages(sk->sk_allocation, 0);
1763 if (!page) {
1764 err = -ENOBUFS;
1765 skb_shinfo(skb)->nr_frags = i;
1766 kfree_skb(skb);
1767 goto failure;
1768 }
1769
1770 __skb_fill_page_desc(skb, i,
1771 page, 0,
1772 (data_len >= PAGE_SIZE ?
1773 PAGE_SIZE :
1774 data_len));
1775 data_len -= PAGE_SIZE;
1776 }
1777
1778 /* Full success... */
1779 break;
1780 }
1781 err = -ENOBUFS;
1782 goto failure;
1783 }
1784 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1785 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1786 err = -EAGAIN;
1787 if (!timeo)
1788 goto failure;
1789 if (signal_pending(current))
1790 goto interrupted;
1791 timeo = sock_wait_for_wmem(sk, timeo);
1792 }
1793
1794 skb_set_owner_w(skb, sk);
1795 return skb;
1796
1797 interrupted:
1798 err = sock_intr_errno(timeo);
1799 failure:
1800 *errcode = err;
1801 return NULL;
1802 }
1803 EXPORT_SYMBOL(sock_alloc_send_pskb);
1804
1805 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1806 int noblock, int *errcode)
1807 {
1808 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1809 }
1810 EXPORT_SYMBOL(sock_alloc_send_skb);
1811
1812 /* On 32bit arches, an skb frag is limited to 2^15 */
1813 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1814
1815 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1816 {
1817 int order;
1818
1819 if (pfrag->page) {
1820 if (atomic_read(&pfrag->page->_count) == 1) {
1821 pfrag->offset = 0;
1822 return true;
1823 }
1824 if (pfrag->offset < pfrag->size)
1825 return true;
1826 put_page(pfrag->page);
1827 }
1828
1829 /* We restrict high order allocations to users that can afford to wait */
1830 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1831
1832 do {
1833 gfp_t gfp = sk->sk_allocation;
1834
1835 if (order)
1836 gfp |= __GFP_COMP | __GFP_NOWARN;
1837 pfrag->page = alloc_pages(gfp, order);
1838 if (likely(pfrag->page)) {
1839 pfrag->offset = 0;
1840 pfrag->size = PAGE_SIZE << order;
1841 return true;
1842 }
1843 } while (--order >= 0);
1844
1845 sk_enter_memory_pressure(sk);
1846 sk_stream_moderate_sndbuf(sk);
1847 return false;
1848 }
1849 EXPORT_SYMBOL(sk_page_frag_refill);
1850
1851 static void __lock_sock(struct sock *sk)
1852 __releases(&sk->sk_lock.slock)
1853 __acquires(&sk->sk_lock.slock)
1854 {
1855 DEFINE_WAIT(wait);
1856
1857 for (;;) {
1858 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1859 TASK_UNINTERRUPTIBLE);
1860 spin_unlock_bh(&sk->sk_lock.slock);
1861 schedule();
1862 spin_lock_bh(&sk->sk_lock.slock);
1863 if (!sock_owned_by_user(sk))
1864 break;
1865 }
1866 finish_wait(&sk->sk_lock.wq, &wait);
1867 }
1868
1869 static void __release_sock(struct sock *sk)
1870 __releases(&sk->sk_lock.slock)
1871 __acquires(&sk->sk_lock.slock)
1872 {
1873 struct sk_buff *skb = sk->sk_backlog.head;
1874
1875 do {
1876 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1877 bh_unlock_sock(sk);
1878
1879 do {
1880 struct sk_buff *next = skb->next;
1881
1882 prefetch(next);
1883 WARN_ON_ONCE(skb_dst_is_noref(skb));
1884 skb->next = NULL;
1885 sk_backlog_rcv(sk, skb);
1886
1887 /*
1888 * We are in process context here with softirqs
1889 * disabled, use cond_resched_softirq() to preempt.
1890 * This is safe to do because we've taken the backlog
1891 * queue private:
1892 */
1893 cond_resched_softirq();
1894
1895 skb = next;
1896 } while (skb != NULL);
1897
1898 bh_lock_sock(sk);
1899 } while ((skb = sk->sk_backlog.head) != NULL);
1900
1901 /*
1902 * Doing the zeroing here guarantee we can not loop forever
1903 * while a wild producer attempts to flood us.
1904 */
1905 sk->sk_backlog.len = 0;
1906 }
1907
1908 /**
1909 * sk_wait_data - wait for data to arrive at sk_receive_queue
1910 * @sk: sock to wait on
1911 * @timeo: for how long
1912 *
1913 * Now socket state including sk->sk_err is changed only under lock,
1914 * hence we may omit checks after joining wait queue.
1915 * We check receive queue before schedule() only as optimization;
1916 * it is very likely that release_sock() added new data.
1917 */
1918 int sk_wait_data(struct sock *sk, long *timeo)
1919 {
1920 int rc;
1921 DEFINE_WAIT(wait);
1922
1923 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1924 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1926 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1927 finish_wait(sk_sleep(sk), &wait);
1928 return rc;
1929 }
1930 EXPORT_SYMBOL(sk_wait_data);
1931
1932 /**
1933 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1934 * @sk: socket
1935 * @size: memory size to allocate
1936 * @kind: allocation type
1937 *
1938 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1939 * rmem allocation. This function assumes that protocols which have
1940 * memory_pressure use sk_wmem_queued as write buffer accounting.
1941 */
1942 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1943 {
1944 struct proto *prot = sk->sk_prot;
1945 int amt = sk_mem_pages(size);
1946 long allocated;
1947 int parent_status = UNDER_LIMIT;
1948
1949 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1950
1951 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1952
1953 /* Under limit. */
1954 if (parent_status == UNDER_LIMIT &&
1955 allocated <= sk_prot_mem_limits(sk, 0)) {
1956 sk_leave_memory_pressure(sk);
1957 return 1;
1958 }
1959
1960 /* Under pressure. (we or our parents) */
1961 if ((parent_status > SOFT_LIMIT) ||
1962 allocated > sk_prot_mem_limits(sk, 1))
1963 sk_enter_memory_pressure(sk);
1964
1965 /* Over hard limit (we or our parents) */
1966 if ((parent_status == OVER_LIMIT) ||
1967 (allocated > sk_prot_mem_limits(sk, 2)))
1968 goto suppress_allocation;
1969
1970 /* guarantee minimum buffer size under pressure */
1971 if (kind == SK_MEM_RECV) {
1972 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1973 return 1;
1974
1975 } else { /* SK_MEM_SEND */
1976 if (sk->sk_type == SOCK_STREAM) {
1977 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1978 return 1;
1979 } else if (atomic_read(&sk->sk_wmem_alloc) <
1980 prot->sysctl_wmem[0])
1981 return 1;
1982 }
1983
1984 if (sk_has_memory_pressure(sk)) {
1985 int alloc;
1986
1987 if (!sk_under_memory_pressure(sk))
1988 return 1;
1989 alloc = sk_sockets_allocated_read_positive(sk);
1990 if (sk_prot_mem_limits(sk, 2) > alloc *
1991 sk_mem_pages(sk->sk_wmem_queued +
1992 atomic_read(&sk->sk_rmem_alloc) +
1993 sk->sk_forward_alloc))
1994 return 1;
1995 }
1996
1997 suppress_allocation:
1998
1999 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2000 sk_stream_moderate_sndbuf(sk);
2001
2002 /* Fail only if socket is _under_ its sndbuf.
2003 * In this case we cannot block, so that we have to fail.
2004 */
2005 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2006 return 1;
2007 }
2008
2009 trace_sock_exceed_buf_limit(sk, prot, allocated);
2010
2011 /* Alas. Undo changes. */
2012 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2013
2014 sk_memory_allocated_sub(sk, amt);
2015
2016 return 0;
2017 }
2018 EXPORT_SYMBOL(__sk_mem_schedule);
2019
2020 /**
2021 * __sk_reclaim - reclaim memory_allocated
2022 * @sk: socket
2023 */
2024 void __sk_mem_reclaim(struct sock *sk)
2025 {
2026 sk_memory_allocated_sub(sk,
2027 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2028 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2029
2030 if (sk_under_memory_pressure(sk) &&
2031 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2032 sk_leave_memory_pressure(sk);
2033 }
2034 EXPORT_SYMBOL(__sk_mem_reclaim);
2035
2036
2037 /*
2038 * Set of default routines for initialising struct proto_ops when
2039 * the protocol does not support a particular function. In certain
2040 * cases where it makes no sense for a protocol to have a "do nothing"
2041 * function, some default processing is provided.
2042 */
2043
2044 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2045 {
2046 return -EOPNOTSUPP;
2047 }
2048 EXPORT_SYMBOL(sock_no_bind);
2049
2050 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2051 int len, int flags)
2052 {
2053 return -EOPNOTSUPP;
2054 }
2055 EXPORT_SYMBOL(sock_no_connect);
2056
2057 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2058 {
2059 return -EOPNOTSUPP;
2060 }
2061 EXPORT_SYMBOL(sock_no_socketpair);
2062
2063 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2064 {
2065 return -EOPNOTSUPP;
2066 }
2067 EXPORT_SYMBOL(sock_no_accept);
2068
2069 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2070 int *len, int peer)
2071 {
2072 return -EOPNOTSUPP;
2073 }
2074 EXPORT_SYMBOL(sock_no_getname);
2075
2076 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2077 {
2078 return 0;
2079 }
2080 EXPORT_SYMBOL(sock_no_poll);
2081
2082 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2083 {
2084 return -EOPNOTSUPP;
2085 }
2086 EXPORT_SYMBOL(sock_no_ioctl);
2087
2088 int sock_no_listen(struct socket *sock, int backlog)
2089 {
2090 return -EOPNOTSUPP;
2091 }
2092 EXPORT_SYMBOL(sock_no_listen);
2093
2094 int sock_no_shutdown(struct socket *sock, int how)
2095 {
2096 return -EOPNOTSUPP;
2097 }
2098 EXPORT_SYMBOL(sock_no_shutdown);
2099
2100 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2101 char __user *optval, unsigned int optlen)
2102 {
2103 return -EOPNOTSUPP;
2104 }
2105 EXPORT_SYMBOL(sock_no_setsockopt);
2106
2107 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2108 char __user *optval, int __user *optlen)
2109 {
2110 return -EOPNOTSUPP;
2111 }
2112 EXPORT_SYMBOL(sock_no_getsockopt);
2113
2114 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2115 size_t len)
2116 {
2117 return -EOPNOTSUPP;
2118 }
2119 EXPORT_SYMBOL(sock_no_sendmsg);
2120
2121 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2122 size_t len, int flags)
2123 {
2124 return -EOPNOTSUPP;
2125 }
2126 EXPORT_SYMBOL(sock_no_recvmsg);
2127
2128 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2129 {
2130 /* Mirror missing mmap method error code */
2131 return -ENODEV;
2132 }
2133 EXPORT_SYMBOL(sock_no_mmap);
2134
2135 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2136 {
2137 ssize_t res;
2138 struct msghdr msg = {.msg_flags = flags};
2139 struct kvec iov;
2140 char *kaddr = kmap(page);
2141 iov.iov_base = kaddr + offset;
2142 iov.iov_len = size;
2143 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2144 kunmap(page);
2145 return res;
2146 }
2147 EXPORT_SYMBOL(sock_no_sendpage);
2148
2149 /*
2150 * Default Socket Callbacks
2151 */
2152
2153 static void sock_def_wakeup(struct sock *sk)
2154 {
2155 struct socket_wq *wq;
2156
2157 rcu_read_lock();
2158 wq = rcu_dereference(sk->sk_wq);
2159 if (wq_has_sleeper(wq))
2160 wake_up_interruptible_all(&wq->wait);
2161 rcu_read_unlock();
2162 }
2163
2164 static void sock_def_error_report(struct sock *sk)
2165 {
2166 struct socket_wq *wq;
2167
2168 rcu_read_lock();
2169 wq = rcu_dereference(sk->sk_wq);
2170 if (wq_has_sleeper(wq))
2171 wake_up_interruptible_poll(&wq->wait, POLLERR);
2172 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2173 rcu_read_unlock();
2174 }
2175
2176 static void sock_def_readable(struct sock *sk, int len)
2177 {
2178 struct socket_wq *wq;
2179
2180 rcu_read_lock();
2181 wq = rcu_dereference(sk->sk_wq);
2182 if (wq_has_sleeper(wq))
2183 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2184 POLLRDNORM | POLLRDBAND);
2185 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2186 rcu_read_unlock();
2187 }
2188
2189 static void sock_def_write_space(struct sock *sk)
2190 {
2191 struct socket_wq *wq;
2192
2193 rcu_read_lock();
2194
2195 /* Do not wake up a writer until he can make "significant"
2196 * progress. --DaveM
2197 */
2198 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2199 wq = rcu_dereference(sk->sk_wq);
2200 if (wq_has_sleeper(wq))
2201 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2202 POLLWRNORM | POLLWRBAND);
2203
2204 /* Should agree with poll, otherwise some programs break */
2205 if (sock_writeable(sk))
2206 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2207 }
2208
2209 rcu_read_unlock();
2210 }
2211
2212 static void sock_def_destruct(struct sock *sk)
2213 {
2214 kfree(sk->sk_protinfo);
2215 }
2216
2217 void sk_send_sigurg(struct sock *sk)
2218 {
2219 if (sk->sk_socket && sk->sk_socket->file)
2220 if (send_sigurg(&sk->sk_socket->file->f_owner))
2221 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2222 }
2223 EXPORT_SYMBOL(sk_send_sigurg);
2224
2225 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2226 unsigned long expires)
2227 {
2228 if (!mod_timer(timer, expires))
2229 sock_hold(sk);
2230 }
2231 EXPORT_SYMBOL(sk_reset_timer);
2232
2233 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2234 {
2235 if (del_timer(timer))
2236 __sock_put(sk);
2237 }
2238 EXPORT_SYMBOL(sk_stop_timer);
2239
2240 void sock_init_data(struct socket *sock, struct sock *sk)
2241 {
2242 skb_queue_head_init(&sk->sk_receive_queue);
2243 skb_queue_head_init(&sk->sk_write_queue);
2244 skb_queue_head_init(&sk->sk_error_queue);
2245 #ifdef CONFIG_NET_DMA
2246 skb_queue_head_init(&sk->sk_async_wait_queue);
2247 #endif
2248
2249 sk->sk_send_head = NULL;
2250
2251 init_timer(&sk->sk_timer);
2252
2253 sk->sk_allocation = GFP_KERNEL;
2254 sk->sk_rcvbuf = sysctl_rmem_default;
2255 sk->sk_sndbuf = sysctl_wmem_default;
2256 sk->sk_state = TCP_CLOSE;
2257 sk_set_socket(sk, sock);
2258
2259 sock_set_flag(sk, SOCK_ZAPPED);
2260
2261 if (sock) {
2262 sk->sk_type = sock->type;
2263 sk->sk_wq = sock->wq;
2264 sock->sk = sk;
2265 } else
2266 sk->sk_wq = NULL;
2267
2268 spin_lock_init(&sk->sk_dst_lock);
2269 rwlock_init(&sk->sk_callback_lock);
2270 lockdep_set_class_and_name(&sk->sk_callback_lock,
2271 af_callback_keys + sk->sk_family,
2272 af_family_clock_key_strings[sk->sk_family]);
2273
2274 sk->sk_state_change = sock_def_wakeup;
2275 sk->sk_data_ready = sock_def_readable;
2276 sk->sk_write_space = sock_def_write_space;
2277 sk->sk_error_report = sock_def_error_report;
2278 sk->sk_destruct = sock_def_destruct;
2279
2280 sk->sk_frag.page = NULL;
2281 sk->sk_frag.offset = 0;
2282 sk->sk_peek_off = -1;
2283
2284 sk->sk_peer_pid = NULL;
2285 sk->sk_peer_cred = NULL;
2286 sk->sk_write_pending = 0;
2287 sk->sk_rcvlowat = 1;
2288 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2289 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2290
2291 sk->sk_stamp = ktime_set(-1L, 0);
2292
2293 /*
2294 * Before updating sk_refcnt, we must commit prior changes to memory
2295 * (Documentation/RCU/rculist_nulls.txt for details)
2296 */
2297 smp_wmb();
2298 atomic_set(&sk->sk_refcnt, 1);
2299 atomic_set(&sk->sk_drops, 0);
2300 }
2301 EXPORT_SYMBOL(sock_init_data);
2302
2303 void lock_sock_nested(struct sock *sk, int subclass)
2304 {
2305 might_sleep();
2306 spin_lock_bh(&sk->sk_lock.slock);
2307 if (sk->sk_lock.owned)
2308 __lock_sock(sk);
2309 sk->sk_lock.owned = 1;
2310 spin_unlock(&sk->sk_lock.slock);
2311 /*
2312 * The sk_lock has mutex_lock() semantics here:
2313 */
2314 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2315 local_bh_enable();
2316 }
2317 EXPORT_SYMBOL(lock_sock_nested);
2318
2319 void release_sock(struct sock *sk)
2320 {
2321 /*
2322 * The sk_lock has mutex_unlock() semantics:
2323 */
2324 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2325
2326 spin_lock_bh(&sk->sk_lock.slock);
2327 if (sk->sk_backlog.tail)
2328 __release_sock(sk);
2329
2330 if (sk->sk_prot->release_cb)
2331 sk->sk_prot->release_cb(sk);
2332
2333 sk->sk_lock.owned = 0;
2334 if (waitqueue_active(&sk->sk_lock.wq))
2335 wake_up(&sk->sk_lock.wq);
2336 spin_unlock_bh(&sk->sk_lock.slock);
2337 }
2338 EXPORT_SYMBOL(release_sock);
2339
2340 /**
2341 * lock_sock_fast - fast version of lock_sock
2342 * @sk: socket
2343 *
2344 * This version should be used for very small section, where process wont block
2345 * return false if fast path is taken
2346 * sk_lock.slock locked, owned = 0, BH disabled
2347 * return true if slow path is taken
2348 * sk_lock.slock unlocked, owned = 1, BH enabled
2349 */
2350 bool lock_sock_fast(struct sock *sk)
2351 {
2352 might_sleep();
2353 spin_lock_bh(&sk->sk_lock.slock);
2354
2355 if (!sk->sk_lock.owned)
2356 /*
2357 * Note : We must disable BH
2358 */
2359 return false;
2360
2361 __lock_sock(sk);
2362 sk->sk_lock.owned = 1;
2363 spin_unlock(&sk->sk_lock.slock);
2364 /*
2365 * The sk_lock has mutex_lock() semantics here:
2366 */
2367 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2368 local_bh_enable();
2369 return true;
2370 }
2371 EXPORT_SYMBOL(lock_sock_fast);
2372
2373 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2374 {
2375 struct timeval tv;
2376 if (!sock_flag(sk, SOCK_TIMESTAMP))
2377 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2378 tv = ktime_to_timeval(sk->sk_stamp);
2379 if (tv.tv_sec == -1)
2380 return -ENOENT;
2381 if (tv.tv_sec == 0) {
2382 sk->sk_stamp = ktime_get_real();
2383 tv = ktime_to_timeval(sk->sk_stamp);
2384 }
2385 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2386 }
2387 EXPORT_SYMBOL(sock_get_timestamp);
2388
2389 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2390 {
2391 struct timespec ts;
2392 if (!sock_flag(sk, SOCK_TIMESTAMP))
2393 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2394 ts = ktime_to_timespec(sk->sk_stamp);
2395 if (ts.tv_sec == -1)
2396 return -ENOENT;
2397 if (ts.tv_sec == 0) {
2398 sk->sk_stamp = ktime_get_real();
2399 ts = ktime_to_timespec(sk->sk_stamp);
2400 }
2401 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2402 }
2403 EXPORT_SYMBOL(sock_get_timestampns);
2404
2405 void sock_enable_timestamp(struct sock *sk, int flag)
2406 {
2407 if (!sock_flag(sk, flag)) {
2408 unsigned long previous_flags = sk->sk_flags;
2409
2410 sock_set_flag(sk, flag);
2411 /*
2412 * we just set one of the two flags which require net
2413 * time stamping, but time stamping might have been on
2414 * already because of the other one
2415 */
2416 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2417 net_enable_timestamp();
2418 }
2419 }
2420
2421 /*
2422 * Get a socket option on an socket.
2423 *
2424 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2425 * asynchronous errors should be reported by getsockopt. We assume
2426 * this means if you specify SO_ERROR (otherwise whats the point of it).
2427 */
2428 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2429 char __user *optval, int __user *optlen)
2430 {
2431 struct sock *sk = sock->sk;
2432
2433 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2434 }
2435 EXPORT_SYMBOL(sock_common_getsockopt);
2436
2437 #ifdef CONFIG_COMPAT
2438 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2439 char __user *optval, int __user *optlen)
2440 {
2441 struct sock *sk = sock->sk;
2442
2443 if (sk->sk_prot->compat_getsockopt != NULL)
2444 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2445 optval, optlen);
2446 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2447 }
2448 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2449 #endif
2450
2451 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2452 struct msghdr *msg, size_t size, int flags)
2453 {
2454 struct sock *sk = sock->sk;
2455 int addr_len = 0;
2456 int err;
2457
2458 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2459 flags & ~MSG_DONTWAIT, &addr_len);
2460 if (err >= 0)
2461 msg->msg_namelen = addr_len;
2462 return err;
2463 }
2464 EXPORT_SYMBOL(sock_common_recvmsg);
2465
2466 /*
2467 * Set socket options on an inet socket.
2468 */
2469 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2470 char __user *optval, unsigned int optlen)
2471 {
2472 struct sock *sk = sock->sk;
2473
2474 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2475 }
2476 EXPORT_SYMBOL(sock_common_setsockopt);
2477
2478 #ifdef CONFIG_COMPAT
2479 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2480 char __user *optval, unsigned int optlen)
2481 {
2482 struct sock *sk = sock->sk;
2483
2484 if (sk->sk_prot->compat_setsockopt != NULL)
2485 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2486 optval, optlen);
2487 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2488 }
2489 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2490 #endif
2491
2492 void sk_common_release(struct sock *sk)
2493 {
2494 if (sk->sk_prot->destroy)
2495 sk->sk_prot->destroy(sk);
2496
2497 /*
2498 * Observation: when sock_common_release is called, processes have
2499 * no access to socket. But net still has.
2500 * Step one, detach it from networking:
2501 *
2502 * A. Remove from hash tables.
2503 */
2504
2505 sk->sk_prot->unhash(sk);
2506
2507 /*
2508 * In this point socket cannot receive new packets, but it is possible
2509 * that some packets are in flight because some CPU runs receiver and
2510 * did hash table lookup before we unhashed socket. They will achieve
2511 * receive queue and will be purged by socket destructor.
2512 *
2513 * Also we still have packets pending on receive queue and probably,
2514 * our own packets waiting in device queues. sock_destroy will drain
2515 * receive queue, but transmitted packets will delay socket destruction
2516 * until the last reference will be released.
2517 */
2518
2519 sock_orphan(sk);
2520
2521 xfrm_sk_free_policy(sk);
2522
2523 sk_refcnt_debug_release(sk);
2524
2525 if (sk->sk_frag.page) {
2526 put_page(sk->sk_frag.page);
2527 sk->sk_frag.page = NULL;
2528 }
2529
2530 sock_put(sk);
2531 }
2532 EXPORT_SYMBOL(sk_common_release);
2533
2534 #ifdef CONFIG_PROC_FS
2535 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2536 struct prot_inuse {
2537 int val[PROTO_INUSE_NR];
2538 };
2539
2540 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2541
2542 #ifdef CONFIG_NET_NS
2543 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2544 {
2545 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2546 }
2547 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2548
2549 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2550 {
2551 int cpu, idx = prot->inuse_idx;
2552 int res = 0;
2553
2554 for_each_possible_cpu(cpu)
2555 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2556
2557 return res >= 0 ? res : 0;
2558 }
2559 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2560
2561 static int __net_init sock_inuse_init_net(struct net *net)
2562 {
2563 net->core.inuse = alloc_percpu(struct prot_inuse);
2564 return net->core.inuse ? 0 : -ENOMEM;
2565 }
2566
2567 static void __net_exit sock_inuse_exit_net(struct net *net)
2568 {
2569 free_percpu(net->core.inuse);
2570 }
2571
2572 static struct pernet_operations net_inuse_ops = {
2573 .init = sock_inuse_init_net,
2574 .exit = sock_inuse_exit_net,
2575 };
2576
2577 static __init int net_inuse_init(void)
2578 {
2579 if (register_pernet_subsys(&net_inuse_ops))
2580 panic("Cannot initialize net inuse counters");
2581
2582 return 0;
2583 }
2584
2585 core_initcall(net_inuse_init);
2586 #else
2587 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2588
2589 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2590 {
2591 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2592 }
2593 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2594
2595 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2596 {
2597 int cpu, idx = prot->inuse_idx;
2598 int res = 0;
2599
2600 for_each_possible_cpu(cpu)
2601 res += per_cpu(prot_inuse, cpu).val[idx];
2602
2603 return res >= 0 ? res : 0;
2604 }
2605 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2606 #endif
2607
2608 static void assign_proto_idx(struct proto *prot)
2609 {
2610 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2611
2612 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2613 pr_err("PROTO_INUSE_NR exhausted\n");
2614 return;
2615 }
2616
2617 set_bit(prot->inuse_idx, proto_inuse_idx);
2618 }
2619
2620 static void release_proto_idx(struct proto *prot)
2621 {
2622 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2623 clear_bit(prot->inuse_idx, proto_inuse_idx);
2624 }
2625 #else
2626 static inline void assign_proto_idx(struct proto *prot)
2627 {
2628 }
2629
2630 static inline void release_proto_idx(struct proto *prot)
2631 {
2632 }
2633 #endif
2634
2635 int proto_register(struct proto *prot, int alloc_slab)
2636 {
2637 if (alloc_slab) {
2638 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2639 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2640 NULL);
2641
2642 if (prot->slab == NULL) {
2643 pr_crit("%s: Can't create sock SLAB cache!\n",
2644 prot->name);
2645 goto out;
2646 }
2647
2648 if (prot->rsk_prot != NULL) {
2649 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2650 if (prot->rsk_prot->slab_name == NULL)
2651 goto out_free_sock_slab;
2652
2653 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2654 prot->rsk_prot->obj_size, 0,
2655 SLAB_HWCACHE_ALIGN, NULL);
2656
2657 if (prot->rsk_prot->slab == NULL) {
2658 pr_crit("%s: Can't create request sock SLAB cache!\n",
2659 prot->name);
2660 goto out_free_request_sock_slab_name;
2661 }
2662 }
2663
2664 if (prot->twsk_prot != NULL) {
2665 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2666
2667 if (prot->twsk_prot->twsk_slab_name == NULL)
2668 goto out_free_request_sock_slab;
2669
2670 prot->twsk_prot->twsk_slab =
2671 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2672 prot->twsk_prot->twsk_obj_size,
2673 0,
2674 SLAB_HWCACHE_ALIGN |
2675 prot->slab_flags,
2676 NULL);
2677 if (prot->twsk_prot->twsk_slab == NULL)
2678 goto out_free_timewait_sock_slab_name;
2679 }
2680 }
2681
2682 mutex_lock(&proto_list_mutex);
2683 list_add(&prot->node, &proto_list);
2684 assign_proto_idx(prot);
2685 mutex_unlock(&proto_list_mutex);
2686 return 0;
2687
2688 out_free_timewait_sock_slab_name:
2689 kfree(prot->twsk_prot->twsk_slab_name);
2690 out_free_request_sock_slab:
2691 if (prot->rsk_prot && prot->rsk_prot->slab) {
2692 kmem_cache_destroy(prot->rsk_prot->slab);
2693 prot->rsk_prot->slab = NULL;
2694 }
2695 out_free_request_sock_slab_name:
2696 if (prot->rsk_prot)
2697 kfree(prot->rsk_prot->slab_name);
2698 out_free_sock_slab:
2699 kmem_cache_destroy(prot->slab);
2700 prot->slab = NULL;
2701 out:
2702 return -ENOBUFS;
2703 }
2704 EXPORT_SYMBOL(proto_register);
2705
2706 void proto_unregister(struct proto *prot)
2707 {
2708 mutex_lock(&proto_list_mutex);
2709 release_proto_idx(prot);
2710 list_del(&prot->node);
2711 mutex_unlock(&proto_list_mutex);
2712
2713 if (prot->slab != NULL) {
2714 kmem_cache_destroy(prot->slab);
2715 prot->slab = NULL;
2716 }
2717
2718 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2719 kmem_cache_destroy(prot->rsk_prot->slab);
2720 kfree(prot->rsk_prot->slab_name);
2721 prot->rsk_prot->slab = NULL;
2722 }
2723
2724 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2725 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2726 kfree(prot->twsk_prot->twsk_slab_name);
2727 prot->twsk_prot->twsk_slab = NULL;
2728 }
2729 }
2730 EXPORT_SYMBOL(proto_unregister);
2731
2732 #ifdef CONFIG_PROC_FS
2733 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2734 __acquires(proto_list_mutex)
2735 {
2736 mutex_lock(&proto_list_mutex);
2737 return seq_list_start_head(&proto_list, *pos);
2738 }
2739
2740 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2741 {
2742 return seq_list_next(v, &proto_list, pos);
2743 }
2744
2745 static void proto_seq_stop(struct seq_file *seq, void *v)
2746 __releases(proto_list_mutex)
2747 {
2748 mutex_unlock(&proto_list_mutex);
2749 }
2750
2751 static char proto_method_implemented(const void *method)
2752 {
2753 return method == NULL ? 'n' : 'y';
2754 }
2755 static long sock_prot_memory_allocated(struct proto *proto)
2756 {
2757 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2758 }
2759
2760 static char *sock_prot_memory_pressure(struct proto *proto)
2761 {
2762 return proto->memory_pressure != NULL ?
2763 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2764 }
2765
2766 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2767 {
2768
2769 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2770 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2771 proto->name,
2772 proto->obj_size,
2773 sock_prot_inuse_get(seq_file_net(seq), proto),
2774 sock_prot_memory_allocated(proto),
2775 sock_prot_memory_pressure(proto),
2776 proto->max_header,
2777 proto->slab == NULL ? "no" : "yes",
2778 module_name(proto->owner),
2779 proto_method_implemented(proto->close),
2780 proto_method_implemented(proto->connect),
2781 proto_method_implemented(proto->disconnect),
2782 proto_method_implemented(proto->accept),
2783 proto_method_implemented(proto->ioctl),
2784 proto_method_implemented(proto->init),
2785 proto_method_implemented(proto->destroy),
2786 proto_method_implemented(proto->shutdown),
2787 proto_method_implemented(proto->setsockopt),
2788 proto_method_implemented(proto->getsockopt),
2789 proto_method_implemented(proto->sendmsg),
2790 proto_method_implemented(proto->recvmsg),
2791 proto_method_implemented(proto->sendpage),
2792 proto_method_implemented(proto->bind),
2793 proto_method_implemented(proto->backlog_rcv),
2794 proto_method_implemented(proto->hash),
2795 proto_method_implemented(proto->unhash),
2796 proto_method_implemented(proto->get_port),
2797 proto_method_implemented(proto->enter_memory_pressure));
2798 }
2799
2800 static int proto_seq_show(struct seq_file *seq, void *v)
2801 {
2802 if (v == &proto_list)
2803 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2804 "protocol",
2805 "size",
2806 "sockets",
2807 "memory",
2808 "press",
2809 "maxhdr",
2810 "slab",
2811 "module",
2812 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2813 else
2814 proto_seq_printf(seq, list_entry(v, struct proto, node));
2815 return 0;
2816 }
2817
2818 static const struct seq_operations proto_seq_ops = {
2819 .start = proto_seq_start,
2820 .next = proto_seq_next,
2821 .stop = proto_seq_stop,
2822 .show = proto_seq_show,
2823 };
2824
2825 static int proto_seq_open(struct inode *inode, struct file *file)
2826 {
2827 return seq_open_net(inode, file, &proto_seq_ops,
2828 sizeof(struct seq_net_private));
2829 }
2830
2831 static const struct file_operations proto_seq_fops = {
2832 .owner = THIS_MODULE,
2833 .open = proto_seq_open,
2834 .read = seq_read,
2835 .llseek = seq_lseek,
2836 .release = seq_release_net,
2837 };
2838
2839 static __net_init int proto_init_net(struct net *net)
2840 {
2841 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2842 return -ENOMEM;
2843
2844 return 0;
2845 }
2846
2847 static __net_exit void proto_exit_net(struct net *net)
2848 {
2849 remove_proc_entry("protocols", net->proc_net);
2850 }
2851
2852
2853 static __net_initdata struct pernet_operations proto_net_ops = {
2854 .init = proto_init_net,
2855 .exit = proto_exit_net,
2856 };
2857
2858 static int __init proto_init(void)
2859 {
2860 return register_pernet_subsys(&proto_net_ops);
2861 }
2862
2863 subsys_initcall(proto_init);
2864
2865 #endif /* PROC_FS */