net: Use a percpu_counter for sockets_allocated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <net/xfrm.h>
124 #include <linux/ipsec.h>
125
126 #include <linux/filter.h>
127
128 #ifdef CONFIG_INET
129 #include <net/tcp.h>
130 #endif
131
132 /*
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
135 */
136 static struct lock_class_key af_family_keys[AF_MAX];
137 static struct lock_class_key af_family_slock_keys[AF_MAX];
138
139 /*
140 * Make lock validator output more readable. (we pre-construct these
141 * strings build-time, so that runtime initialization of socket
142 * locks is fast):
143 */
144 static const char *af_family_key_strings[AF_MAX+1] = {
145 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
146 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
147 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
148 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
149 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
150 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
151 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
152 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
153 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
154 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
155 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
156 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
157 "sk_lock-AF_MAX"
158 };
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-AF_CAN" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
171 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
172 "slock-AF_MAX"
173 };
174 static const char *af_family_clock_key_strings[AF_MAX+1] = {
175 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
176 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
177 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
178 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
179 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
180 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
181 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
182 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
183 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
184 "clock-27" , "clock-28" , "clock-AF_CAN" ,
185 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
186 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
187 "clock-AF_MAX"
188 };
189
190 /*
191 * sk_callback_lock locking rules are per-address-family,
192 * so split the lock classes by using a per-AF key:
193 */
194 static struct lock_class_key af_callback_keys[AF_MAX];
195
196 /* Take into consideration the size of the struct sk_buff overhead in the
197 * determination of these values, since that is non-constant across
198 * platforms. This makes socket queueing behavior and performance
199 * not depend upon such differences.
200 */
201 #define _SK_MEM_PACKETS 256
202 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
203 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205
206 /* Run time adjustable parameters. */
207 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
208 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
209 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
210 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
211
212 /* Maximal space eaten by iovec or ancilliary data plus some space */
213 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
214
215 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
216 {
217 struct timeval tv;
218
219 if (optlen < sizeof(tv))
220 return -EINVAL;
221 if (copy_from_user(&tv, optval, sizeof(tv)))
222 return -EFAULT;
223 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
224 return -EDOM;
225
226 if (tv.tv_sec < 0) {
227 static int warned __read_mostly;
228
229 *timeo_p = 0;
230 if (warned < 10 && net_ratelimit()) {
231 warned++;
232 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
233 "tries to set negative timeout\n",
234 current->comm, task_pid_nr(current));
235 }
236 return 0;
237 }
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
255 }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
263 }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 int err = 0;
270 int skb_len;
271
272 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
274 */
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
279 }
280
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
284
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
288 }
289
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
292
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
297 */
298 skb_len = skb->len;
299
300 skb_queue_tail(&sk->sk_receive_queue, skb);
301
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311 int rc = NET_RX_SUCCESS;
312
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
315
316 skb->dev = NULL;
317
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
323 /*
324 * trylock + unlock semantics:
325 */
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328 rc = sk_backlog_rcv(sk, skb);
329
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345 struct dst_entry *dst = sk->sk_dst_cache;
346
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
351 }
352
353 return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359 struct dst_entry *dst = sk_dst_get(sk);
360
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
365 }
366
367 return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sock_net(sk);
376 char devname[IFNAMSIZ];
377 int index;
378
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
383
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
387
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
392 */
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
396
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
400
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
405
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
409
410 index = dev->ifindex;
411 dev_put(dev);
412 }
413
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
418
419 ret = 0;
420
421 out:
422 #endif
423
424 return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
433 }
434
435 /*
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
438 */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
442 {
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
448
449 /*
450 * Options without arguments
451 */
452
453 if (optname == SO_BINDTODEVICE)
454 return sock_bindtodevice(sk, optval, optlen);
455
456 if (optlen < sizeof(int))
457 return -EINVAL;
458
459 if (get_user(val, (int __user *)optval))
460 return -EFAULT;
461
462 valbool = val?1:0;
463
464 lock_sock(sk);
465
466 switch(optname) {
467 case SO_DEBUG:
468 if (val && !capable(CAP_NET_ADMIN)) {
469 ret = -EACCES;
470 } else
471 sock_valbool_flag(sk, SOCK_DBG, valbool);
472 break;
473 case SO_REUSEADDR:
474 sk->sk_reuse = valbool;
475 break;
476 case SO_TYPE:
477 case SO_ERROR:
478 ret = -ENOPROTOOPT;
479 break;
480 case SO_DONTROUTE:
481 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
482 break;
483 case SO_BROADCAST:
484 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
485 break;
486 case SO_SNDBUF:
487 /* Don't error on this BSD doesn't and if you think
488 about it this is right. Otherwise apps have to
489 play 'guess the biggest size' games. RCVBUF/SNDBUF
490 are treated in BSD as hints */
491
492 if (val > sysctl_wmem_max)
493 val = sysctl_wmem_max;
494 set_sndbuf:
495 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
496 if ((val * 2) < SOCK_MIN_SNDBUF)
497 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
498 else
499 sk->sk_sndbuf = val * 2;
500
501 /*
502 * Wake up sending tasks if we
503 * upped the value.
504 */
505 sk->sk_write_space(sk);
506 break;
507
508 case SO_SNDBUFFORCE:
509 if (!capable(CAP_NET_ADMIN)) {
510 ret = -EPERM;
511 break;
512 }
513 goto set_sndbuf;
514
515 case SO_RCVBUF:
516 /* Don't error on this BSD doesn't and if you think
517 about it this is right. Otherwise apps have to
518 play 'guess the biggest size' games. RCVBUF/SNDBUF
519 are treated in BSD as hints */
520
521 if (val > sysctl_rmem_max)
522 val = sysctl_rmem_max;
523 set_rcvbuf:
524 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
525 /*
526 * We double it on the way in to account for
527 * "struct sk_buff" etc. overhead. Applications
528 * assume that the SO_RCVBUF setting they make will
529 * allow that much actual data to be received on that
530 * socket.
531 *
532 * Applications are unaware that "struct sk_buff" and
533 * other overheads allocate from the receive buffer
534 * during socket buffer allocation.
535 *
536 * And after considering the possible alternatives,
537 * returning the value we actually used in getsockopt
538 * is the most desirable behavior.
539 */
540 if ((val * 2) < SOCK_MIN_RCVBUF)
541 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
542 else
543 sk->sk_rcvbuf = val * 2;
544 break;
545
546 case SO_RCVBUFFORCE:
547 if (!capable(CAP_NET_ADMIN)) {
548 ret = -EPERM;
549 break;
550 }
551 goto set_rcvbuf;
552
553 case SO_KEEPALIVE:
554 #ifdef CONFIG_INET
555 if (sk->sk_protocol == IPPROTO_TCP)
556 tcp_set_keepalive(sk, valbool);
557 #endif
558 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
559 break;
560
561 case SO_OOBINLINE:
562 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
563 break;
564
565 case SO_NO_CHECK:
566 sk->sk_no_check = valbool;
567 break;
568
569 case SO_PRIORITY:
570 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
571 sk->sk_priority = val;
572 else
573 ret = -EPERM;
574 break;
575
576 case SO_LINGER:
577 if (optlen < sizeof(ling)) {
578 ret = -EINVAL; /* 1003.1g */
579 break;
580 }
581 if (copy_from_user(&ling,optval,sizeof(ling))) {
582 ret = -EFAULT;
583 break;
584 }
585 if (!ling.l_onoff)
586 sock_reset_flag(sk, SOCK_LINGER);
587 else {
588 #if (BITS_PER_LONG == 32)
589 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
590 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
591 else
592 #endif
593 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
594 sock_set_flag(sk, SOCK_LINGER);
595 }
596 break;
597
598 case SO_BSDCOMPAT:
599 sock_warn_obsolete_bsdism("setsockopt");
600 break;
601
602 case SO_PASSCRED:
603 if (valbool)
604 set_bit(SOCK_PASSCRED, &sock->flags);
605 else
606 clear_bit(SOCK_PASSCRED, &sock->flags);
607 break;
608
609 case SO_TIMESTAMP:
610 case SO_TIMESTAMPNS:
611 if (valbool) {
612 if (optname == SO_TIMESTAMP)
613 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
614 else
615 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
616 sock_set_flag(sk, SOCK_RCVTSTAMP);
617 sock_enable_timestamp(sk);
618 } else {
619 sock_reset_flag(sk, SOCK_RCVTSTAMP);
620 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
621 }
622 break;
623
624 case SO_RCVLOWAT:
625 if (val < 0)
626 val = INT_MAX;
627 sk->sk_rcvlowat = val ? : 1;
628 break;
629
630 case SO_RCVTIMEO:
631 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
632 break;
633
634 case SO_SNDTIMEO:
635 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
636 break;
637
638 case SO_ATTACH_FILTER:
639 ret = -EINVAL;
640 if (optlen == sizeof(struct sock_fprog)) {
641 struct sock_fprog fprog;
642
643 ret = -EFAULT;
644 if (copy_from_user(&fprog, optval, sizeof(fprog)))
645 break;
646
647 ret = sk_attach_filter(&fprog, sk);
648 }
649 break;
650
651 case SO_DETACH_FILTER:
652 ret = sk_detach_filter(sk);
653 break;
654
655 case SO_PASSSEC:
656 if (valbool)
657 set_bit(SOCK_PASSSEC, &sock->flags);
658 else
659 clear_bit(SOCK_PASSSEC, &sock->flags);
660 break;
661 case SO_MARK:
662 if (!capable(CAP_NET_ADMIN))
663 ret = -EPERM;
664 else {
665 sk->sk_mark = val;
666 }
667 break;
668
669 /* We implement the SO_SNDLOWAT etc to
670 not be settable (1003.1g 5.3) */
671 default:
672 ret = -ENOPROTOOPT;
673 break;
674 }
675 release_sock(sk);
676 return ret;
677 }
678
679
680 int sock_getsockopt(struct socket *sock, int level, int optname,
681 char __user *optval, int __user *optlen)
682 {
683 struct sock *sk = sock->sk;
684
685 union {
686 int val;
687 struct linger ling;
688 struct timeval tm;
689 } v;
690
691 unsigned int lv = sizeof(int);
692 int len;
693
694 if (get_user(len, optlen))
695 return -EFAULT;
696 if (len < 0)
697 return -EINVAL;
698
699 switch(optname) {
700 case SO_DEBUG:
701 v.val = sock_flag(sk, SOCK_DBG);
702 break;
703
704 case SO_DONTROUTE:
705 v.val = sock_flag(sk, SOCK_LOCALROUTE);
706 break;
707
708 case SO_BROADCAST:
709 v.val = !!sock_flag(sk, SOCK_BROADCAST);
710 break;
711
712 case SO_SNDBUF:
713 v.val = sk->sk_sndbuf;
714 break;
715
716 case SO_RCVBUF:
717 v.val = sk->sk_rcvbuf;
718 break;
719
720 case SO_REUSEADDR:
721 v.val = sk->sk_reuse;
722 break;
723
724 case SO_KEEPALIVE:
725 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
726 break;
727
728 case SO_TYPE:
729 v.val = sk->sk_type;
730 break;
731
732 case SO_ERROR:
733 v.val = -sock_error(sk);
734 if (v.val==0)
735 v.val = xchg(&sk->sk_err_soft, 0);
736 break;
737
738 case SO_OOBINLINE:
739 v.val = !!sock_flag(sk, SOCK_URGINLINE);
740 break;
741
742 case SO_NO_CHECK:
743 v.val = sk->sk_no_check;
744 break;
745
746 case SO_PRIORITY:
747 v.val = sk->sk_priority;
748 break;
749
750 case SO_LINGER:
751 lv = sizeof(v.ling);
752 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
753 v.ling.l_linger = sk->sk_lingertime / HZ;
754 break;
755
756 case SO_BSDCOMPAT:
757 sock_warn_obsolete_bsdism("getsockopt");
758 break;
759
760 case SO_TIMESTAMP:
761 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
762 !sock_flag(sk, SOCK_RCVTSTAMPNS);
763 break;
764
765 case SO_TIMESTAMPNS:
766 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
767 break;
768
769 case SO_RCVTIMEO:
770 lv=sizeof(struct timeval);
771 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
772 v.tm.tv_sec = 0;
773 v.tm.tv_usec = 0;
774 } else {
775 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
776 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
777 }
778 break;
779
780 case SO_SNDTIMEO:
781 lv=sizeof(struct timeval);
782 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
783 v.tm.tv_sec = 0;
784 v.tm.tv_usec = 0;
785 } else {
786 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
787 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
788 }
789 break;
790
791 case SO_RCVLOWAT:
792 v.val = sk->sk_rcvlowat;
793 break;
794
795 case SO_SNDLOWAT:
796 v.val=1;
797 break;
798
799 case SO_PASSCRED:
800 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
801 break;
802
803 case SO_PEERCRED:
804 if (len > sizeof(sk->sk_peercred))
805 len = sizeof(sk->sk_peercred);
806 if (copy_to_user(optval, &sk->sk_peercred, len))
807 return -EFAULT;
808 goto lenout;
809
810 case SO_PEERNAME:
811 {
812 char address[128];
813
814 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
815 return -ENOTCONN;
816 if (lv < len)
817 return -EINVAL;
818 if (copy_to_user(optval, address, len))
819 return -EFAULT;
820 goto lenout;
821 }
822
823 /* Dubious BSD thing... Probably nobody even uses it, but
824 * the UNIX standard wants it for whatever reason... -DaveM
825 */
826 case SO_ACCEPTCONN:
827 v.val = sk->sk_state == TCP_LISTEN;
828 break;
829
830 case SO_PASSSEC:
831 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
832 break;
833
834 case SO_PEERSEC:
835 return security_socket_getpeersec_stream(sock, optval, optlen, len);
836
837 case SO_MARK:
838 v.val = sk->sk_mark;
839 break;
840
841 default:
842 return -ENOPROTOOPT;
843 }
844
845 if (len > lv)
846 len = lv;
847 if (copy_to_user(optval, &v, len))
848 return -EFAULT;
849 lenout:
850 if (put_user(len, optlen))
851 return -EFAULT;
852 return 0;
853 }
854
855 /*
856 * Initialize an sk_lock.
857 *
858 * (We also register the sk_lock with the lock validator.)
859 */
860 static inline void sock_lock_init(struct sock *sk)
861 {
862 sock_lock_init_class_and_name(sk,
863 af_family_slock_key_strings[sk->sk_family],
864 af_family_slock_keys + sk->sk_family,
865 af_family_key_strings[sk->sk_family],
866 af_family_keys + sk->sk_family);
867 }
868
869 static void sock_copy(struct sock *nsk, const struct sock *osk)
870 {
871 #ifdef CONFIG_SECURITY_NETWORK
872 void *sptr = nsk->sk_security;
873 #endif
874
875 memcpy(nsk, osk, osk->sk_prot->obj_size);
876 #ifdef CONFIG_SECURITY_NETWORK
877 nsk->sk_security = sptr;
878 security_sk_clone(osk, nsk);
879 #endif
880 }
881
882 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
883 int family)
884 {
885 struct sock *sk;
886 struct kmem_cache *slab;
887
888 slab = prot->slab;
889 if (slab != NULL)
890 sk = kmem_cache_alloc(slab, priority);
891 else
892 sk = kmalloc(prot->obj_size, priority);
893
894 if (sk != NULL) {
895 if (security_sk_alloc(sk, family, priority))
896 goto out_free;
897
898 if (!try_module_get(prot->owner))
899 goto out_free_sec;
900 }
901
902 return sk;
903
904 out_free_sec:
905 security_sk_free(sk);
906 out_free:
907 if (slab != NULL)
908 kmem_cache_free(slab, sk);
909 else
910 kfree(sk);
911 return NULL;
912 }
913
914 static void sk_prot_free(struct proto *prot, struct sock *sk)
915 {
916 struct kmem_cache *slab;
917 struct module *owner;
918
919 owner = prot->owner;
920 slab = prot->slab;
921
922 security_sk_free(sk);
923 if (slab != NULL)
924 kmem_cache_free(slab, sk);
925 else
926 kfree(sk);
927 module_put(owner);
928 }
929
930 /**
931 * sk_alloc - All socket objects are allocated here
932 * @net: the applicable net namespace
933 * @family: protocol family
934 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
935 * @prot: struct proto associated with this new sock instance
936 */
937 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
938 struct proto *prot)
939 {
940 struct sock *sk;
941
942 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
943 if (sk) {
944 sk->sk_family = family;
945 /*
946 * See comment in struct sock definition to understand
947 * why we need sk_prot_creator -acme
948 */
949 sk->sk_prot = sk->sk_prot_creator = prot;
950 sock_lock_init(sk);
951 sock_net_set(sk, get_net(net));
952 }
953
954 return sk;
955 }
956
957 void sk_free(struct sock *sk)
958 {
959 struct sk_filter *filter;
960
961 if (sk->sk_destruct)
962 sk->sk_destruct(sk);
963
964 filter = rcu_dereference(sk->sk_filter);
965 if (filter) {
966 sk_filter_uncharge(sk, filter);
967 rcu_assign_pointer(sk->sk_filter, NULL);
968 }
969
970 sock_disable_timestamp(sk);
971
972 if (atomic_read(&sk->sk_omem_alloc))
973 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
974 __func__, atomic_read(&sk->sk_omem_alloc));
975
976 put_net(sock_net(sk));
977 sk_prot_free(sk->sk_prot_creator, sk);
978 }
979
980 /*
981 * Last sock_put should drop referrence to sk->sk_net. It has already
982 * been dropped in sk_change_net. Taking referrence to stopping namespace
983 * is not an option.
984 * Take referrence to a socket to remove it from hash _alive_ and after that
985 * destroy it in the context of init_net.
986 */
987 void sk_release_kernel(struct sock *sk)
988 {
989 if (sk == NULL || sk->sk_socket == NULL)
990 return;
991
992 sock_hold(sk);
993 sock_release(sk->sk_socket);
994 release_net(sock_net(sk));
995 sock_net_set(sk, get_net(&init_net));
996 sock_put(sk);
997 }
998 EXPORT_SYMBOL(sk_release_kernel);
999
1000 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1001 {
1002 struct sock *newsk;
1003
1004 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1005 if (newsk != NULL) {
1006 struct sk_filter *filter;
1007
1008 sock_copy(newsk, sk);
1009
1010 /* SANITY */
1011 get_net(sock_net(newsk));
1012 sk_node_init(&newsk->sk_node);
1013 sock_lock_init(newsk);
1014 bh_lock_sock(newsk);
1015 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1016
1017 atomic_set(&newsk->sk_rmem_alloc, 0);
1018 atomic_set(&newsk->sk_wmem_alloc, 0);
1019 atomic_set(&newsk->sk_omem_alloc, 0);
1020 skb_queue_head_init(&newsk->sk_receive_queue);
1021 skb_queue_head_init(&newsk->sk_write_queue);
1022 #ifdef CONFIG_NET_DMA
1023 skb_queue_head_init(&newsk->sk_async_wait_queue);
1024 #endif
1025
1026 rwlock_init(&newsk->sk_dst_lock);
1027 rwlock_init(&newsk->sk_callback_lock);
1028 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1029 af_callback_keys + newsk->sk_family,
1030 af_family_clock_key_strings[newsk->sk_family]);
1031
1032 newsk->sk_dst_cache = NULL;
1033 newsk->sk_wmem_queued = 0;
1034 newsk->sk_forward_alloc = 0;
1035 newsk->sk_send_head = NULL;
1036 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1037
1038 sock_reset_flag(newsk, SOCK_DONE);
1039 skb_queue_head_init(&newsk->sk_error_queue);
1040
1041 filter = newsk->sk_filter;
1042 if (filter != NULL)
1043 sk_filter_charge(newsk, filter);
1044
1045 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1046 /* It is still raw copy of parent, so invalidate
1047 * destructor and make plain sk_free() */
1048 newsk->sk_destruct = NULL;
1049 sk_free(newsk);
1050 newsk = NULL;
1051 goto out;
1052 }
1053
1054 newsk->sk_err = 0;
1055 newsk->sk_priority = 0;
1056 atomic_set(&newsk->sk_refcnt, 2);
1057
1058 /*
1059 * Increment the counter in the same struct proto as the master
1060 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1061 * is the same as sk->sk_prot->socks, as this field was copied
1062 * with memcpy).
1063 *
1064 * This _changes_ the previous behaviour, where
1065 * tcp_create_openreq_child always was incrementing the
1066 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1067 * to be taken into account in all callers. -acme
1068 */
1069 sk_refcnt_debug_inc(newsk);
1070 sk_set_socket(newsk, NULL);
1071 newsk->sk_sleep = NULL;
1072
1073 if (newsk->sk_prot->sockets_allocated)
1074 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1075 }
1076 out:
1077 return newsk;
1078 }
1079
1080 EXPORT_SYMBOL_GPL(sk_clone);
1081
1082 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1083 {
1084 __sk_dst_set(sk, dst);
1085 sk->sk_route_caps = dst->dev->features;
1086 if (sk->sk_route_caps & NETIF_F_GSO)
1087 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1088 if (sk_can_gso(sk)) {
1089 if (dst->header_len) {
1090 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1091 } else {
1092 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1093 sk->sk_gso_max_size = dst->dev->gso_max_size;
1094 }
1095 }
1096 }
1097 EXPORT_SYMBOL_GPL(sk_setup_caps);
1098
1099 void __init sk_init(void)
1100 {
1101 if (num_physpages <= 4096) {
1102 sysctl_wmem_max = 32767;
1103 sysctl_rmem_max = 32767;
1104 sysctl_wmem_default = 32767;
1105 sysctl_rmem_default = 32767;
1106 } else if (num_physpages >= 131072) {
1107 sysctl_wmem_max = 131071;
1108 sysctl_rmem_max = 131071;
1109 }
1110 }
1111
1112 /*
1113 * Simple resource managers for sockets.
1114 */
1115
1116
1117 /*
1118 * Write buffer destructor automatically called from kfree_skb.
1119 */
1120 void sock_wfree(struct sk_buff *skb)
1121 {
1122 struct sock *sk = skb->sk;
1123
1124 /* In case it might be waiting for more memory. */
1125 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1126 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1127 sk->sk_write_space(sk);
1128 sock_put(sk);
1129 }
1130
1131 /*
1132 * Read buffer destructor automatically called from kfree_skb.
1133 */
1134 void sock_rfree(struct sk_buff *skb)
1135 {
1136 struct sock *sk = skb->sk;
1137
1138 skb_truesize_check(skb);
1139 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1140 sk_mem_uncharge(skb->sk, skb->truesize);
1141 }
1142
1143
1144 int sock_i_uid(struct sock *sk)
1145 {
1146 int uid;
1147
1148 read_lock(&sk->sk_callback_lock);
1149 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1150 read_unlock(&sk->sk_callback_lock);
1151 return uid;
1152 }
1153
1154 unsigned long sock_i_ino(struct sock *sk)
1155 {
1156 unsigned long ino;
1157
1158 read_lock(&sk->sk_callback_lock);
1159 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1160 read_unlock(&sk->sk_callback_lock);
1161 return ino;
1162 }
1163
1164 /*
1165 * Allocate a skb from the socket's send buffer.
1166 */
1167 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1168 gfp_t priority)
1169 {
1170 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1171 struct sk_buff * skb = alloc_skb(size, priority);
1172 if (skb) {
1173 skb_set_owner_w(skb, sk);
1174 return skb;
1175 }
1176 }
1177 return NULL;
1178 }
1179
1180 /*
1181 * Allocate a skb from the socket's receive buffer.
1182 */
1183 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1184 gfp_t priority)
1185 {
1186 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1187 struct sk_buff *skb = alloc_skb(size, priority);
1188 if (skb) {
1189 skb_set_owner_r(skb, sk);
1190 return skb;
1191 }
1192 }
1193 return NULL;
1194 }
1195
1196 /*
1197 * Allocate a memory block from the socket's option memory buffer.
1198 */
1199 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1200 {
1201 if ((unsigned)size <= sysctl_optmem_max &&
1202 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1203 void *mem;
1204 /* First do the add, to avoid the race if kmalloc
1205 * might sleep.
1206 */
1207 atomic_add(size, &sk->sk_omem_alloc);
1208 mem = kmalloc(size, priority);
1209 if (mem)
1210 return mem;
1211 atomic_sub(size, &sk->sk_omem_alloc);
1212 }
1213 return NULL;
1214 }
1215
1216 /*
1217 * Free an option memory block.
1218 */
1219 void sock_kfree_s(struct sock *sk, void *mem, int size)
1220 {
1221 kfree(mem);
1222 atomic_sub(size, &sk->sk_omem_alloc);
1223 }
1224
1225 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1226 I think, these locks should be removed for datagram sockets.
1227 */
1228 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1229 {
1230 DEFINE_WAIT(wait);
1231
1232 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1233 for (;;) {
1234 if (!timeo)
1235 break;
1236 if (signal_pending(current))
1237 break;
1238 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1239 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1240 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1241 break;
1242 if (sk->sk_shutdown & SEND_SHUTDOWN)
1243 break;
1244 if (sk->sk_err)
1245 break;
1246 timeo = schedule_timeout(timeo);
1247 }
1248 finish_wait(sk->sk_sleep, &wait);
1249 return timeo;
1250 }
1251
1252
1253 /*
1254 * Generic send/receive buffer handlers
1255 */
1256
1257 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1258 unsigned long header_len,
1259 unsigned long data_len,
1260 int noblock, int *errcode)
1261 {
1262 struct sk_buff *skb;
1263 gfp_t gfp_mask;
1264 long timeo;
1265 int err;
1266
1267 gfp_mask = sk->sk_allocation;
1268 if (gfp_mask & __GFP_WAIT)
1269 gfp_mask |= __GFP_REPEAT;
1270
1271 timeo = sock_sndtimeo(sk, noblock);
1272 while (1) {
1273 err = sock_error(sk);
1274 if (err != 0)
1275 goto failure;
1276
1277 err = -EPIPE;
1278 if (sk->sk_shutdown & SEND_SHUTDOWN)
1279 goto failure;
1280
1281 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1282 skb = alloc_skb(header_len, gfp_mask);
1283 if (skb) {
1284 int npages;
1285 int i;
1286
1287 /* No pages, we're done... */
1288 if (!data_len)
1289 break;
1290
1291 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1292 skb->truesize += data_len;
1293 skb_shinfo(skb)->nr_frags = npages;
1294 for (i = 0; i < npages; i++) {
1295 struct page *page;
1296 skb_frag_t *frag;
1297
1298 page = alloc_pages(sk->sk_allocation, 0);
1299 if (!page) {
1300 err = -ENOBUFS;
1301 skb_shinfo(skb)->nr_frags = i;
1302 kfree_skb(skb);
1303 goto failure;
1304 }
1305
1306 frag = &skb_shinfo(skb)->frags[i];
1307 frag->page = page;
1308 frag->page_offset = 0;
1309 frag->size = (data_len >= PAGE_SIZE ?
1310 PAGE_SIZE :
1311 data_len);
1312 data_len -= PAGE_SIZE;
1313 }
1314
1315 /* Full success... */
1316 break;
1317 }
1318 err = -ENOBUFS;
1319 goto failure;
1320 }
1321 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1322 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1323 err = -EAGAIN;
1324 if (!timeo)
1325 goto failure;
1326 if (signal_pending(current))
1327 goto interrupted;
1328 timeo = sock_wait_for_wmem(sk, timeo);
1329 }
1330
1331 skb_set_owner_w(skb, sk);
1332 return skb;
1333
1334 interrupted:
1335 err = sock_intr_errno(timeo);
1336 failure:
1337 *errcode = err;
1338 return NULL;
1339 }
1340
1341 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1342 int noblock, int *errcode)
1343 {
1344 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1345 }
1346
1347 static void __lock_sock(struct sock *sk)
1348 {
1349 DEFINE_WAIT(wait);
1350
1351 for (;;) {
1352 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1353 TASK_UNINTERRUPTIBLE);
1354 spin_unlock_bh(&sk->sk_lock.slock);
1355 schedule();
1356 spin_lock_bh(&sk->sk_lock.slock);
1357 if (!sock_owned_by_user(sk))
1358 break;
1359 }
1360 finish_wait(&sk->sk_lock.wq, &wait);
1361 }
1362
1363 static void __release_sock(struct sock *sk)
1364 {
1365 struct sk_buff *skb = sk->sk_backlog.head;
1366
1367 do {
1368 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1369 bh_unlock_sock(sk);
1370
1371 do {
1372 struct sk_buff *next = skb->next;
1373
1374 skb->next = NULL;
1375 sk_backlog_rcv(sk, skb);
1376
1377 /*
1378 * We are in process context here with softirqs
1379 * disabled, use cond_resched_softirq() to preempt.
1380 * This is safe to do because we've taken the backlog
1381 * queue private:
1382 */
1383 cond_resched_softirq();
1384
1385 skb = next;
1386 } while (skb != NULL);
1387
1388 bh_lock_sock(sk);
1389 } while ((skb = sk->sk_backlog.head) != NULL);
1390 }
1391
1392 /**
1393 * sk_wait_data - wait for data to arrive at sk_receive_queue
1394 * @sk: sock to wait on
1395 * @timeo: for how long
1396 *
1397 * Now socket state including sk->sk_err is changed only under lock,
1398 * hence we may omit checks after joining wait queue.
1399 * We check receive queue before schedule() only as optimization;
1400 * it is very likely that release_sock() added new data.
1401 */
1402 int sk_wait_data(struct sock *sk, long *timeo)
1403 {
1404 int rc;
1405 DEFINE_WAIT(wait);
1406
1407 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1408 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1409 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1410 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1411 finish_wait(sk->sk_sleep, &wait);
1412 return rc;
1413 }
1414
1415 EXPORT_SYMBOL(sk_wait_data);
1416
1417 /**
1418 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1419 * @sk: socket
1420 * @size: memory size to allocate
1421 * @kind: allocation type
1422 *
1423 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1424 * rmem allocation. This function assumes that protocols which have
1425 * memory_pressure use sk_wmem_queued as write buffer accounting.
1426 */
1427 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1428 {
1429 struct proto *prot = sk->sk_prot;
1430 int amt = sk_mem_pages(size);
1431 int allocated;
1432
1433 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1434 allocated = atomic_add_return(amt, prot->memory_allocated);
1435
1436 /* Under limit. */
1437 if (allocated <= prot->sysctl_mem[0]) {
1438 if (prot->memory_pressure && *prot->memory_pressure)
1439 *prot->memory_pressure = 0;
1440 return 1;
1441 }
1442
1443 /* Under pressure. */
1444 if (allocated > prot->sysctl_mem[1])
1445 if (prot->enter_memory_pressure)
1446 prot->enter_memory_pressure(sk);
1447
1448 /* Over hard limit. */
1449 if (allocated > prot->sysctl_mem[2])
1450 goto suppress_allocation;
1451
1452 /* guarantee minimum buffer size under pressure */
1453 if (kind == SK_MEM_RECV) {
1454 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1455 return 1;
1456 } else { /* SK_MEM_SEND */
1457 if (sk->sk_type == SOCK_STREAM) {
1458 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1459 return 1;
1460 } else if (atomic_read(&sk->sk_wmem_alloc) <
1461 prot->sysctl_wmem[0])
1462 return 1;
1463 }
1464
1465 if (prot->memory_pressure) {
1466 int alloc;
1467
1468 if (!*prot->memory_pressure)
1469 return 1;
1470 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1471 if (prot->sysctl_mem[2] > alloc *
1472 sk_mem_pages(sk->sk_wmem_queued +
1473 atomic_read(&sk->sk_rmem_alloc) +
1474 sk->sk_forward_alloc))
1475 return 1;
1476 }
1477
1478 suppress_allocation:
1479
1480 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1481 sk_stream_moderate_sndbuf(sk);
1482
1483 /* Fail only if socket is _under_ its sndbuf.
1484 * In this case we cannot block, so that we have to fail.
1485 */
1486 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1487 return 1;
1488 }
1489
1490 /* Alas. Undo changes. */
1491 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1492 atomic_sub(amt, prot->memory_allocated);
1493 return 0;
1494 }
1495
1496 EXPORT_SYMBOL(__sk_mem_schedule);
1497
1498 /**
1499 * __sk_reclaim - reclaim memory_allocated
1500 * @sk: socket
1501 */
1502 void __sk_mem_reclaim(struct sock *sk)
1503 {
1504 struct proto *prot = sk->sk_prot;
1505
1506 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1507 prot->memory_allocated);
1508 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1509
1510 if (prot->memory_pressure && *prot->memory_pressure &&
1511 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1512 *prot->memory_pressure = 0;
1513 }
1514
1515 EXPORT_SYMBOL(__sk_mem_reclaim);
1516
1517
1518 /*
1519 * Set of default routines for initialising struct proto_ops when
1520 * the protocol does not support a particular function. In certain
1521 * cases where it makes no sense for a protocol to have a "do nothing"
1522 * function, some default processing is provided.
1523 */
1524
1525 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1526 {
1527 return -EOPNOTSUPP;
1528 }
1529
1530 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1531 int len, int flags)
1532 {
1533 return -EOPNOTSUPP;
1534 }
1535
1536 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1537 {
1538 return -EOPNOTSUPP;
1539 }
1540
1541 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1542 {
1543 return -EOPNOTSUPP;
1544 }
1545
1546 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1547 int *len, int peer)
1548 {
1549 return -EOPNOTSUPP;
1550 }
1551
1552 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1553 {
1554 return 0;
1555 }
1556
1557 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1558 {
1559 return -EOPNOTSUPP;
1560 }
1561
1562 int sock_no_listen(struct socket *sock, int backlog)
1563 {
1564 return -EOPNOTSUPP;
1565 }
1566
1567 int sock_no_shutdown(struct socket *sock, int how)
1568 {
1569 return -EOPNOTSUPP;
1570 }
1571
1572 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1573 char __user *optval, int optlen)
1574 {
1575 return -EOPNOTSUPP;
1576 }
1577
1578 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1579 char __user *optval, int __user *optlen)
1580 {
1581 return -EOPNOTSUPP;
1582 }
1583
1584 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1585 size_t len)
1586 {
1587 return -EOPNOTSUPP;
1588 }
1589
1590 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1591 size_t len, int flags)
1592 {
1593 return -EOPNOTSUPP;
1594 }
1595
1596 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1597 {
1598 /* Mirror missing mmap method error code */
1599 return -ENODEV;
1600 }
1601
1602 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1603 {
1604 ssize_t res;
1605 struct msghdr msg = {.msg_flags = flags};
1606 struct kvec iov;
1607 char *kaddr = kmap(page);
1608 iov.iov_base = kaddr + offset;
1609 iov.iov_len = size;
1610 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1611 kunmap(page);
1612 return res;
1613 }
1614
1615 /*
1616 * Default Socket Callbacks
1617 */
1618
1619 static void sock_def_wakeup(struct sock *sk)
1620 {
1621 read_lock(&sk->sk_callback_lock);
1622 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1623 wake_up_interruptible_all(sk->sk_sleep);
1624 read_unlock(&sk->sk_callback_lock);
1625 }
1626
1627 static void sock_def_error_report(struct sock *sk)
1628 {
1629 read_lock(&sk->sk_callback_lock);
1630 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1631 wake_up_interruptible(sk->sk_sleep);
1632 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1633 read_unlock(&sk->sk_callback_lock);
1634 }
1635
1636 static void sock_def_readable(struct sock *sk, int len)
1637 {
1638 read_lock(&sk->sk_callback_lock);
1639 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1640 wake_up_interruptible_sync(sk->sk_sleep);
1641 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1642 read_unlock(&sk->sk_callback_lock);
1643 }
1644
1645 static void sock_def_write_space(struct sock *sk)
1646 {
1647 read_lock(&sk->sk_callback_lock);
1648
1649 /* Do not wake up a writer until he can make "significant"
1650 * progress. --DaveM
1651 */
1652 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1653 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1654 wake_up_interruptible_sync(sk->sk_sleep);
1655
1656 /* Should agree with poll, otherwise some programs break */
1657 if (sock_writeable(sk))
1658 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1659 }
1660
1661 read_unlock(&sk->sk_callback_lock);
1662 }
1663
1664 static void sock_def_destruct(struct sock *sk)
1665 {
1666 kfree(sk->sk_protinfo);
1667 }
1668
1669 void sk_send_sigurg(struct sock *sk)
1670 {
1671 if (sk->sk_socket && sk->sk_socket->file)
1672 if (send_sigurg(&sk->sk_socket->file->f_owner))
1673 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1674 }
1675
1676 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1677 unsigned long expires)
1678 {
1679 if (!mod_timer(timer, expires))
1680 sock_hold(sk);
1681 }
1682
1683 EXPORT_SYMBOL(sk_reset_timer);
1684
1685 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1686 {
1687 if (timer_pending(timer) && del_timer(timer))
1688 __sock_put(sk);
1689 }
1690
1691 EXPORT_SYMBOL(sk_stop_timer);
1692
1693 void sock_init_data(struct socket *sock, struct sock *sk)
1694 {
1695 skb_queue_head_init(&sk->sk_receive_queue);
1696 skb_queue_head_init(&sk->sk_write_queue);
1697 skb_queue_head_init(&sk->sk_error_queue);
1698 #ifdef CONFIG_NET_DMA
1699 skb_queue_head_init(&sk->sk_async_wait_queue);
1700 #endif
1701
1702 sk->sk_send_head = NULL;
1703
1704 init_timer(&sk->sk_timer);
1705
1706 sk->sk_allocation = GFP_KERNEL;
1707 sk->sk_rcvbuf = sysctl_rmem_default;
1708 sk->sk_sndbuf = sysctl_wmem_default;
1709 sk->sk_state = TCP_CLOSE;
1710 sk_set_socket(sk, sock);
1711
1712 sock_set_flag(sk, SOCK_ZAPPED);
1713
1714 if (sock) {
1715 sk->sk_type = sock->type;
1716 sk->sk_sleep = &sock->wait;
1717 sock->sk = sk;
1718 } else
1719 sk->sk_sleep = NULL;
1720
1721 rwlock_init(&sk->sk_dst_lock);
1722 rwlock_init(&sk->sk_callback_lock);
1723 lockdep_set_class_and_name(&sk->sk_callback_lock,
1724 af_callback_keys + sk->sk_family,
1725 af_family_clock_key_strings[sk->sk_family]);
1726
1727 sk->sk_state_change = sock_def_wakeup;
1728 sk->sk_data_ready = sock_def_readable;
1729 sk->sk_write_space = sock_def_write_space;
1730 sk->sk_error_report = sock_def_error_report;
1731 sk->sk_destruct = sock_def_destruct;
1732
1733 sk->sk_sndmsg_page = NULL;
1734 sk->sk_sndmsg_off = 0;
1735
1736 sk->sk_peercred.pid = 0;
1737 sk->sk_peercred.uid = -1;
1738 sk->sk_peercred.gid = -1;
1739 sk->sk_write_pending = 0;
1740 sk->sk_rcvlowat = 1;
1741 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1742 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1743
1744 sk->sk_stamp = ktime_set(-1L, 0);
1745
1746 atomic_set(&sk->sk_refcnt, 1);
1747 atomic_set(&sk->sk_drops, 0);
1748 }
1749
1750 void lock_sock_nested(struct sock *sk, int subclass)
1751 {
1752 might_sleep();
1753 spin_lock_bh(&sk->sk_lock.slock);
1754 if (sk->sk_lock.owned)
1755 __lock_sock(sk);
1756 sk->sk_lock.owned = 1;
1757 spin_unlock(&sk->sk_lock.slock);
1758 /*
1759 * The sk_lock has mutex_lock() semantics here:
1760 */
1761 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1762 local_bh_enable();
1763 }
1764
1765 EXPORT_SYMBOL(lock_sock_nested);
1766
1767 void release_sock(struct sock *sk)
1768 {
1769 /*
1770 * The sk_lock has mutex_unlock() semantics:
1771 */
1772 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1773
1774 spin_lock_bh(&sk->sk_lock.slock);
1775 if (sk->sk_backlog.tail)
1776 __release_sock(sk);
1777 sk->sk_lock.owned = 0;
1778 if (waitqueue_active(&sk->sk_lock.wq))
1779 wake_up(&sk->sk_lock.wq);
1780 spin_unlock_bh(&sk->sk_lock.slock);
1781 }
1782 EXPORT_SYMBOL(release_sock);
1783
1784 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1785 {
1786 struct timeval tv;
1787 if (!sock_flag(sk, SOCK_TIMESTAMP))
1788 sock_enable_timestamp(sk);
1789 tv = ktime_to_timeval(sk->sk_stamp);
1790 if (tv.tv_sec == -1)
1791 return -ENOENT;
1792 if (tv.tv_sec == 0) {
1793 sk->sk_stamp = ktime_get_real();
1794 tv = ktime_to_timeval(sk->sk_stamp);
1795 }
1796 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1797 }
1798 EXPORT_SYMBOL(sock_get_timestamp);
1799
1800 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1801 {
1802 struct timespec ts;
1803 if (!sock_flag(sk, SOCK_TIMESTAMP))
1804 sock_enable_timestamp(sk);
1805 ts = ktime_to_timespec(sk->sk_stamp);
1806 if (ts.tv_sec == -1)
1807 return -ENOENT;
1808 if (ts.tv_sec == 0) {
1809 sk->sk_stamp = ktime_get_real();
1810 ts = ktime_to_timespec(sk->sk_stamp);
1811 }
1812 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1813 }
1814 EXPORT_SYMBOL(sock_get_timestampns);
1815
1816 void sock_enable_timestamp(struct sock *sk)
1817 {
1818 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1819 sock_set_flag(sk, SOCK_TIMESTAMP);
1820 net_enable_timestamp();
1821 }
1822 }
1823
1824 /*
1825 * Get a socket option on an socket.
1826 *
1827 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1828 * asynchronous errors should be reported by getsockopt. We assume
1829 * this means if you specify SO_ERROR (otherwise whats the point of it).
1830 */
1831 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1832 char __user *optval, int __user *optlen)
1833 {
1834 struct sock *sk = sock->sk;
1835
1836 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1837 }
1838
1839 EXPORT_SYMBOL(sock_common_getsockopt);
1840
1841 #ifdef CONFIG_COMPAT
1842 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1843 char __user *optval, int __user *optlen)
1844 {
1845 struct sock *sk = sock->sk;
1846
1847 if (sk->sk_prot->compat_getsockopt != NULL)
1848 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1849 optval, optlen);
1850 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1851 }
1852 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1853 #endif
1854
1855 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1856 struct msghdr *msg, size_t size, int flags)
1857 {
1858 struct sock *sk = sock->sk;
1859 int addr_len = 0;
1860 int err;
1861
1862 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1863 flags & ~MSG_DONTWAIT, &addr_len);
1864 if (err >= 0)
1865 msg->msg_namelen = addr_len;
1866 return err;
1867 }
1868
1869 EXPORT_SYMBOL(sock_common_recvmsg);
1870
1871 /*
1872 * Set socket options on an inet socket.
1873 */
1874 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1875 char __user *optval, int optlen)
1876 {
1877 struct sock *sk = sock->sk;
1878
1879 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1880 }
1881
1882 EXPORT_SYMBOL(sock_common_setsockopt);
1883
1884 #ifdef CONFIG_COMPAT
1885 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1886 char __user *optval, int optlen)
1887 {
1888 struct sock *sk = sock->sk;
1889
1890 if (sk->sk_prot->compat_setsockopt != NULL)
1891 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1892 optval, optlen);
1893 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1894 }
1895 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1896 #endif
1897
1898 void sk_common_release(struct sock *sk)
1899 {
1900 if (sk->sk_prot->destroy)
1901 sk->sk_prot->destroy(sk);
1902
1903 /*
1904 * Observation: when sock_common_release is called, processes have
1905 * no access to socket. But net still has.
1906 * Step one, detach it from networking:
1907 *
1908 * A. Remove from hash tables.
1909 */
1910
1911 sk->sk_prot->unhash(sk);
1912
1913 /*
1914 * In this point socket cannot receive new packets, but it is possible
1915 * that some packets are in flight because some CPU runs receiver and
1916 * did hash table lookup before we unhashed socket. They will achieve
1917 * receive queue and will be purged by socket destructor.
1918 *
1919 * Also we still have packets pending on receive queue and probably,
1920 * our own packets waiting in device queues. sock_destroy will drain
1921 * receive queue, but transmitted packets will delay socket destruction
1922 * until the last reference will be released.
1923 */
1924
1925 sock_orphan(sk);
1926
1927 xfrm_sk_free_policy(sk);
1928
1929 sk_refcnt_debug_release(sk);
1930 sock_put(sk);
1931 }
1932
1933 EXPORT_SYMBOL(sk_common_release);
1934
1935 static DEFINE_RWLOCK(proto_list_lock);
1936 static LIST_HEAD(proto_list);
1937
1938 #ifdef CONFIG_PROC_FS
1939 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1940 struct prot_inuse {
1941 int val[PROTO_INUSE_NR];
1942 };
1943
1944 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1945
1946 #ifdef CONFIG_NET_NS
1947 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1948 {
1949 int cpu = smp_processor_id();
1950 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1951 }
1952 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1953
1954 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1955 {
1956 int cpu, idx = prot->inuse_idx;
1957 int res = 0;
1958
1959 for_each_possible_cpu(cpu)
1960 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1961
1962 return res >= 0 ? res : 0;
1963 }
1964 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1965
1966 static int sock_inuse_init_net(struct net *net)
1967 {
1968 net->core.inuse = alloc_percpu(struct prot_inuse);
1969 return net->core.inuse ? 0 : -ENOMEM;
1970 }
1971
1972 static void sock_inuse_exit_net(struct net *net)
1973 {
1974 free_percpu(net->core.inuse);
1975 }
1976
1977 static struct pernet_operations net_inuse_ops = {
1978 .init = sock_inuse_init_net,
1979 .exit = sock_inuse_exit_net,
1980 };
1981
1982 static __init int net_inuse_init(void)
1983 {
1984 if (register_pernet_subsys(&net_inuse_ops))
1985 panic("Cannot initialize net inuse counters");
1986
1987 return 0;
1988 }
1989
1990 core_initcall(net_inuse_init);
1991 #else
1992 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1993
1994 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1995 {
1996 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1997 }
1998 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1999
2000 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2001 {
2002 int cpu, idx = prot->inuse_idx;
2003 int res = 0;
2004
2005 for_each_possible_cpu(cpu)
2006 res += per_cpu(prot_inuse, cpu).val[idx];
2007
2008 return res >= 0 ? res : 0;
2009 }
2010 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2011 #endif
2012
2013 static void assign_proto_idx(struct proto *prot)
2014 {
2015 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2016
2017 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2018 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2019 return;
2020 }
2021
2022 set_bit(prot->inuse_idx, proto_inuse_idx);
2023 }
2024
2025 static void release_proto_idx(struct proto *prot)
2026 {
2027 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2028 clear_bit(prot->inuse_idx, proto_inuse_idx);
2029 }
2030 #else
2031 static inline void assign_proto_idx(struct proto *prot)
2032 {
2033 }
2034
2035 static inline void release_proto_idx(struct proto *prot)
2036 {
2037 }
2038 #endif
2039
2040 int proto_register(struct proto *prot, int alloc_slab)
2041 {
2042 char *request_sock_slab_name = NULL;
2043 char *timewait_sock_slab_name;
2044
2045 if (alloc_slab) {
2046 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2047 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2048 NULL);
2049
2050 if (prot->slab == NULL) {
2051 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2052 prot->name);
2053 goto out;
2054 }
2055
2056 if (prot->rsk_prot != NULL) {
2057 static const char mask[] = "request_sock_%s";
2058
2059 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2060 if (request_sock_slab_name == NULL)
2061 goto out_free_sock_slab;
2062
2063 sprintf(request_sock_slab_name, mask, prot->name);
2064 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
2065 prot->rsk_prot->obj_size, 0,
2066 SLAB_HWCACHE_ALIGN, NULL);
2067
2068 if (prot->rsk_prot->slab == NULL) {
2069 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2070 prot->name);
2071 goto out_free_request_sock_slab_name;
2072 }
2073 }
2074
2075 if (prot->twsk_prot != NULL) {
2076 static const char mask[] = "tw_sock_%s";
2077
2078 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2079
2080 if (timewait_sock_slab_name == NULL)
2081 goto out_free_request_sock_slab;
2082
2083 sprintf(timewait_sock_slab_name, mask, prot->name);
2084 prot->twsk_prot->twsk_slab =
2085 kmem_cache_create(timewait_sock_slab_name,
2086 prot->twsk_prot->twsk_obj_size,
2087 0,
2088 SLAB_HWCACHE_ALIGN |
2089 prot->slab_flags,
2090 NULL);
2091 if (prot->twsk_prot->twsk_slab == NULL)
2092 goto out_free_timewait_sock_slab_name;
2093 }
2094 }
2095
2096 write_lock(&proto_list_lock);
2097 list_add(&prot->node, &proto_list);
2098 assign_proto_idx(prot);
2099 write_unlock(&proto_list_lock);
2100 return 0;
2101
2102 out_free_timewait_sock_slab_name:
2103 kfree(timewait_sock_slab_name);
2104 out_free_request_sock_slab:
2105 if (prot->rsk_prot && prot->rsk_prot->slab) {
2106 kmem_cache_destroy(prot->rsk_prot->slab);
2107 prot->rsk_prot->slab = NULL;
2108 }
2109 out_free_request_sock_slab_name:
2110 kfree(request_sock_slab_name);
2111 out_free_sock_slab:
2112 kmem_cache_destroy(prot->slab);
2113 prot->slab = NULL;
2114 out:
2115 return -ENOBUFS;
2116 }
2117
2118 EXPORT_SYMBOL(proto_register);
2119
2120 void proto_unregister(struct proto *prot)
2121 {
2122 write_lock(&proto_list_lock);
2123 release_proto_idx(prot);
2124 list_del(&prot->node);
2125 write_unlock(&proto_list_lock);
2126
2127 if (prot->slab != NULL) {
2128 kmem_cache_destroy(prot->slab);
2129 prot->slab = NULL;
2130 }
2131
2132 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2133 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2134
2135 kmem_cache_destroy(prot->rsk_prot->slab);
2136 kfree(name);
2137 prot->rsk_prot->slab = NULL;
2138 }
2139
2140 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2141 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2142
2143 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2144 kfree(name);
2145 prot->twsk_prot->twsk_slab = NULL;
2146 }
2147 }
2148
2149 EXPORT_SYMBOL(proto_unregister);
2150
2151 #ifdef CONFIG_PROC_FS
2152 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2153 __acquires(proto_list_lock)
2154 {
2155 read_lock(&proto_list_lock);
2156 return seq_list_start_head(&proto_list, *pos);
2157 }
2158
2159 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2160 {
2161 return seq_list_next(v, &proto_list, pos);
2162 }
2163
2164 static void proto_seq_stop(struct seq_file *seq, void *v)
2165 __releases(proto_list_lock)
2166 {
2167 read_unlock(&proto_list_lock);
2168 }
2169
2170 static char proto_method_implemented(const void *method)
2171 {
2172 return method == NULL ? 'n' : 'y';
2173 }
2174
2175 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2176 {
2177 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2178 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2179 proto->name,
2180 proto->obj_size,
2181 sock_prot_inuse_get(seq_file_net(seq), proto),
2182 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2183 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2184 proto->max_header,
2185 proto->slab == NULL ? "no" : "yes",
2186 module_name(proto->owner),
2187 proto_method_implemented(proto->close),
2188 proto_method_implemented(proto->connect),
2189 proto_method_implemented(proto->disconnect),
2190 proto_method_implemented(proto->accept),
2191 proto_method_implemented(proto->ioctl),
2192 proto_method_implemented(proto->init),
2193 proto_method_implemented(proto->destroy),
2194 proto_method_implemented(proto->shutdown),
2195 proto_method_implemented(proto->setsockopt),
2196 proto_method_implemented(proto->getsockopt),
2197 proto_method_implemented(proto->sendmsg),
2198 proto_method_implemented(proto->recvmsg),
2199 proto_method_implemented(proto->sendpage),
2200 proto_method_implemented(proto->bind),
2201 proto_method_implemented(proto->backlog_rcv),
2202 proto_method_implemented(proto->hash),
2203 proto_method_implemented(proto->unhash),
2204 proto_method_implemented(proto->get_port),
2205 proto_method_implemented(proto->enter_memory_pressure));
2206 }
2207
2208 static int proto_seq_show(struct seq_file *seq, void *v)
2209 {
2210 if (v == &proto_list)
2211 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2212 "protocol",
2213 "size",
2214 "sockets",
2215 "memory",
2216 "press",
2217 "maxhdr",
2218 "slab",
2219 "module",
2220 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2221 else
2222 proto_seq_printf(seq, list_entry(v, struct proto, node));
2223 return 0;
2224 }
2225
2226 static const struct seq_operations proto_seq_ops = {
2227 .start = proto_seq_start,
2228 .next = proto_seq_next,
2229 .stop = proto_seq_stop,
2230 .show = proto_seq_show,
2231 };
2232
2233 static int proto_seq_open(struct inode *inode, struct file *file)
2234 {
2235 return seq_open_net(inode, file, &proto_seq_ops,
2236 sizeof(struct seq_net_private));
2237 }
2238
2239 static const struct file_operations proto_seq_fops = {
2240 .owner = THIS_MODULE,
2241 .open = proto_seq_open,
2242 .read = seq_read,
2243 .llseek = seq_lseek,
2244 .release = seq_release_net,
2245 };
2246
2247 static __net_init int proto_init_net(struct net *net)
2248 {
2249 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2250 return -ENOMEM;
2251
2252 return 0;
2253 }
2254
2255 static __net_exit void proto_exit_net(struct net *net)
2256 {
2257 proc_net_remove(net, "protocols");
2258 }
2259
2260
2261 static __net_initdata struct pernet_operations proto_net_ops = {
2262 .init = proto_init_net,
2263 .exit = proto_exit_net,
2264 };
2265
2266 static int __init proto_init(void)
2267 {
2268 return register_pernet_subsys(&proto_net_ops);
2269 }
2270
2271 subsys_initcall(proto_init);
2272
2273 #endif /* PROC_FS */
2274
2275 EXPORT_SYMBOL(sk_alloc);
2276 EXPORT_SYMBOL(sk_free);
2277 EXPORT_SYMBOL(sk_send_sigurg);
2278 EXPORT_SYMBOL(sock_alloc_send_skb);
2279 EXPORT_SYMBOL(sock_init_data);
2280 EXPORT_SYMBOL(sock_kfree_s);
2281 EXPORT_SYMBOL(sock_kmalloc);
2282 EXPORT_SYMBOL(sock_no_accept);
2283 EXPORT_SYMBOL(sock_no_bind);
2284 EXPORT_SYMBOL(sock_no_connect);
2285 EXPORT_SYMBOL(sock_no_getname);
2286 EXPORT_SYMBOL(sock_no_getsockopt);
2287 EXPORT_SYMBOL(sock_no_ioctl);
2288 EXPORT_SYMBOL(sock_no_listen);
2289 EXPORT_SYMBOL(sock_no_mmap);
2290 EXPORT_SYMBOL(sock_no_poll);
2291 EXPORT_SYMBOL(sock_no_recvmsg);
2292 EXPORT_SYMBOL(sock_no_sendmsg);
2293 EXPORT_SYMBOL(sock_no_sendpage);
2294 EXPORT_SYMBOL(sock_no_setsockopt);
2295 EXPORT_SYMBOL(sock_no_shutdown);
2296 EXPORT_SYMBOL(sock_no_socketpair);
2297 EXPORT_SYMBOL(sock_rfree);
2298 EXPORT_SYMBOL(sock_setsockopt);
2299 EXPORT_SYMBOL(sock_wfree);
2300 EXPORT_SYMBOL(sock_wmalloc);
2301 EXPORT_SYMBOL(sock_i_uid);
2302 EXPORT_SYMBOL(sock_i_ino);
2303 EXPORT_SYMBOL(sysctl_optmem_max);