Merge branch 'urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
146 }
147
148 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
149 * 'private' fields and also do memory statistics to find all the
150 * [BEEP] leaks.
151 *
152 */
153
154 /**
155 * __alloc_skb - allocate a network buffer
156 * @size: size to allocate
157 * @gfp_mask: allocation mask
158 * @fclone: allocate from fclone cache instead of head cache
159 * and allocate a cloned (child) skb
160 * @node: numa node to allocate memory on
161 *
162 * Allocate a new &sk_buff. The returned buffer has no headroom and a
163 * tail room of size bytes. The object has a reference count of one.
164 * The return is the buffer. On a failure the return is %NULL.
165 *
166 * Buffers may only be allocated from interrupts using a @gfp_mask of
167 * %GFP_ATOMIC.
168 */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 int fclone, int node)
171 {
172 struct kmem_cache *cache;
173 struct skb_shared_info *shinfo;
174 struct sk_buff *skb;
175 u8 *data;
176
177 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178
179 /* Get the HEAD */
180 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 if (!skb)
182 goto out;
183 prefetchw(skb);
184
185 /* We do our best to align skb_shared_info on a separate cache
186 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 * Both skb->head and skb_shared_info are cache line aligned.
189 */
190 size = SKB_DATA_ALIGN(size);
191 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 data = kmalloc_node_track_caller(size, gfp_mask, node);
193 if (!data)
194 goto nodata;
195 /* kmalloc(size) might give us more room than requested.
196 * Put skb_shared_info exactly at the end of allocated zone,
197 * to allow max possible filling before reallocation.
198 */
199 size = SKB_WITH_OVERHEAD(ksize(data));
200 prefetchw(data + size);
201
202 /*
203 * Only clear those fields we need to clear, not those that we will
204 * actually initialise below. Hence, don't put any more fields after
205 * the tail pointer in struct sk_buff!
206 */
207 memset(skb, 0, offsetof(struct sk_buff, tail));
208 /* Account for allocated memory : skb + skb->head */
209 skb->truesize = SKB_TRUESIZE(size);
210 atomic_set(&skb->users, 1);
211 skb->head = data;
212 skb->data = data;
213 skb_reset_tail_pointer(skb);
214 skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 skb->mac_header = ~0U;
217 #endif
218
219 /* make sure we initialize shinfo sequentially */
220 shinfo = skb_shinfo(skb);
221 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 atomic_set(&shinfo->dataref, 1);
223 kmemcheck_annotate_variable(shinfo->destructor_arg);
224
225 if (fclone) {
226 struct sk_buff *child = skb + 1;
227 atomic_t *fclone_ref = (atomic_t *) (child + 1);
228
229 kmemcheck_annotate_bitfield(child, flags1);
230 kmemcheck_annotate_bitfield(child, flags2);
231 skb->fclone = SKB_FCLONE_ORIG;
232 atomic_set(fclone_ref, 1);
233
234 child->fclone = SKB_FCLONE_UNAVAILABLE;
235 }
236 out:
237 return skb;
238 nodata:
239 kmem_cache_free(cache, skb);
240 skb = NULL;
241 goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244
245 /**
246 * build_skb - build a network buffer
247 * @data: data buffer provided by caller
248 * @frag_size: size of fragment, or 0 if head was kmalloced
249 *
250 * Allocate a new &sk_buff. Caller provides space holding head and
251 * skb_shared_info. @data must have been allocated by kmalloc()
252 * The return is the new skb buffer.
253 * On a failure the return is %NULL, and @data is not freed.
254 * Notes :
255 * Before IO, driver allocates only data buffer where NIC put incoming frame
256 * Driver should add room at head (NET_SKB_PAD) and
257 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
259 * before giving packet to stack.
260 * RX rings only contains data buffers, not full skbs.
261 */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 struct skb_shared_info *shinfo;
265 struct sk_buff *skb;
266 unsigned int size = frag_size ? : ksize(data);
267
268 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 if (!skb)
270 return NULL;
271
272 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273
274 memset(skb, 0, offsetof(struct sk_buff, tail));
275 skb->truesize = SKB_TRUESIZE(size);
276 skb->head_frag = frag_size != 0;
277 atomic_set(&skb->users, 1);
278 skb->head = data;
279 skb->data = data;
280 skb_reset_tail_pointer(skb);
281 skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 skb->mac_header = ~0U;
284 #endif
285
286 /* make sure we initialize shinfo sequentially */
287 shinfo = skb_shinfo(skb);
288 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 atomic_set(&shinfo->dataref, 1);
290 kmemcheck_annotate_variable(shinfo->destructor_arg);
291
292 return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295
296 struct netdev_alloc_cache {
297 struct page *page;
298 unsigned int offset;
299 };
300 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
301
302 /**
303 * netdev_alloc_frag - allocate a page fragment
304 * @fragsz: fragment size
305 *
306 * Allocates a frag from a page for receive buffer.
307 * Uses GFP_ATOMIC allocations.
308 */
309 void *netdev_alloc_frag(unsigned int fragsz)
310 {
311 struct netdev_alloc_cache *nc;
312 void *data = NULL;
313 unsigned long flags;
314
315 local_irq_save(flags);
316 nc = &__get_cpu_var(netdev_alloc_cache);
317 if (unlikely(!nc->page)) {
318 refill:
319 nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
320 nc->offset = 0;
321 }
322 if (likely(nc->page)) {
323 if (nc->offset + fragsz > PAGE_SIZE) {
324 put_page(nc->page);
325 goto refill;
326 }
327 data = page_address(nc->page) + nc->offset;
328 nc->offset += fragsz;
329 get_page(nc->page);
330 }
331 local_irq_restore(flags);
332 return data;
333 }
334 EXPORT_SYMBOL(netdev_alloc_frag);
335
336 /**
337 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
338 * @dev: network device to receive on
339 * @length: length to allocate
340 * @gfp_mask: get_free_pages mask, passed to alloc_skb
341 *
342 * Allocate a new &sk_buff and assign it a usage count of one. The
343 * buffer has unspecified headroom built in. Users should allocate
344 * the headroom they think they need without accounting for the
345 * built in space. The built in space is used for optimisations.
346 *
347 * %NULL is returned if there is no free memory.
348 */
349 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
350 unsigned int length, gfp_t gfp_mask)
351 {
352 struct sk_buff *skb = NULL;
353 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
354 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
355
356 if (fragsz <= PAGE_SIZE && !(gfp_mask & __GFP_WAIT)) {
357 void *data = netdev_alloc_frag(fragsz);
358
359 if (likely(data)) {
360 skb = build_skb(data, fragsz);
361 if (unlikely(!skb))
362 put_page(virt_to_head_page(data));
363 }
364 } else {
365 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
366 }
367 if (likely(skb)) {
368 skb_reserve(skb, NET_SKB_PAD);
369 skb->dev = dev;
370 }
371 return skb;
372 }
373 EXPORT_SYMBOL(__netdev_alloc_skb);
374
375 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
376 int size, unsigned int truesize)
377 {
378 skb_fill_page_desc(skb, i, page, off, size);
379 skb->len += size;
380 skb->data_len += size;
381 skb->truesize += truesize;
382 }
383 EXPORT_SYMBOL(skb_add_rx_frag);
384
385 static void skb_drop_list(struct sk_buff **listp)
386 {
387 struct sk_buff *list = *listp;
388
389 *listp = NULL;
390
391 do {
392 struct sk_buff *this = list;
393 list = list->next;
394 kfree_skb(this);
395 } while (list);
396 }
397
398 static inline void skb_drop_fraglist(struct sk_buff *skb)
399 {
400 skb_drop_list(&skb_shinfo(skb)->frag_list);
401 }
402
403 static void skb_clone_fraglist(struct sk_buff *skb)
404 {
405 struct sk_buff *list;
406
407 skb_walk_frags(skb, list)
408 skb_get(list);
409 }
410
411 static void skb_free_head(struct sk_buff *skb)
412 {
413 if (skb->head_frag)
414 put_page(virt_to_head_page(skb->head));
415 else
416 kfree(skb->head);
417 }
418
419 static void skb_release_data(struct sk_buff *skb)
420 {
421 if (!skb->cloned ||
422 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
423 &skb_shinfo(skb)->dataref)) {
424 if (skb_shinfo(skb)->nr_frags) {
425 int i;
426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
427 skb_frag_unref(skb, i);
428 }
429
430 /*
431 * If skb buf is from userspace, we need to notify the caller
432 * the lower device DMA has done;
433 */
434 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
435 struct ubuf_info *uarg;
436
437 uarg = skb_shinfo(skb)->destructor_arg;
438 if (uarg->callback)
439 uarg->callback(uarg);
440 }
441
442 if (skb_has_frag_list(skb))
443 skb_drop_fraglist(skb);
444
445 skb_free_head(skb);
446 }
447 }
448
449 /*
450 * Free an skbuff by memory without cleaning the state.
451 */
452 static void kfree_skbmem(struct sk_buff *skb)
453 {
454 struct sk_buff *other;
455 atomic_t *fclone_ref;
456
457 switch (skb->fclone) {
458 case SKB_FCLONE_UNAVAILABLE:
459 kmem_cache_free(skbuff_head_cache, skb);
460 break;
461
462 case SKB_FCLONE_ORIG:
463 fclone_ref = (atomic_t *) (skb + 2);
464 if (atomic_dec_and_test(fclone_ref))
465 kmem_cache_free(skbuff_fclone_cache, skb);
466 break;
467
468 case SKB_FCLONE_CLONE:
469 fclone_ref = (atomic_t *) (skb + 1);
470 other = skb - 1;
471
472 /* The clone portion is available for
473 * fast-cloning again.
474 */
475 skb->fclone = SKB_FCLONE_UNAVAILABLE;
476
477 if (atomic_dec_and_test(fclone_ref))
478 kmem_cache_free(skbuff_fclone_cache, other);
479 break;
480 }
481 }
482
483 static void skb_release_head_state(struct sk_buff *skb)
484 {
485 skb_dst_drop(skb);
486 #ifdef CONFIG_XFRM
487 secpath_put(skb->sp);
488 #endif
489 if (skb->destructor) {
490 WARN_ON(in_irq());
491 skb->destructor(skb);
492 }
493 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
494 nf_conntrack_put(skb->nfct);
495 #endif
496 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
497 nf_conntrack_put_reasm(skb->nfct_reasm);
498 #endif
499 #ifdef CONFIG_BRIDGE_NETFILTER
500 nf_bridge_put(skb->nf_bridge);
501 #endif
502 /* XXX: IS this still necessary? - JHS */
503 #ifdef CONFIG_NET_SCHED
504 skb->tc_index = 0;
505 #ifdef CONFIG_NET_CLS_ACT
506 skb->tc_verd = 0;
507 #endif
508 #endif
509 }
510
511 /* Free everything but the sk_buff shell. */
512 static void skb_release_all(struct sk_buff *skb)
513 {
514 skb_release_head_state(skb);
515 skb_release_data(skb);
516 }
517
518 /**
519 * __kfree_skb - private function
520 * @skb: buffer
521 *
522 * Free an sk_buff. Release anything attached to the buffer.
523 * Clean the state. This is an internal helper function. Users should
524 * always call kfree_skb
525 */
526
527 void __kfree_skb(struct sk_buff *skb)
528 {
529 skb_release_all(skb);
530 kfree_skbmem(skb);
531 }
532 EXPORT_SYMBOL(__kfree_skb);
533
534 /**
535 * kfree_skb - free an sk_buff
536 * @skb: buffer to free
537 *
538 * Drop a reference to the buffer and free it if the usage count has
539 * hit zero.
540 */
541 void kfree_skb(struct sk_buff *skb)
542 {
543 if (unlikely(!skb))
544 return;
545 if (likely(atomic_read(&skb->users) == 1))
546 smp_rmb();
547 else if (likely(!atomic_dec_and_test(&skb->users)))
548 return;
549 trace_kfree_skb(skb, __builtin_return_address(0));
550 __kfree_skb(skb);
551 }
552 EXPORT_SYMBOL(kfree_skb);
553
554 /**
555 * consume_skb - free an skbuff
556 * @skb: buffer to free
557 *
558 * Drop a ref to the buffer and free it if the usage count has hit zero
559 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
560 * is being dropped after a failure and notes that
561 */
562 void consume_skb(struct sk_buff *skb)
563 {
564 if (unlikely(!skb))
565 return;
566 if (likely(atomic_read(&skb->users) == 1))
567 smp_rmb();
568 else if (likely(!atomic_dec_and_test(&skb->users)))
569 return;
570 trace_consume_skb(skb);
571 __kfree_skb(skb);
572 }
573 EXPORT_SYMBOL(consume_skb);
574
575 /**
576 * skb_recycle - clean up an skb for reuse
577 * @skb: buffer
578 *
579 * Recycles the skb to be reused as a receive buffer. This
580 * function does any necessary reference count dropping, and
581 * cleans up the skbuff as if it just came from __alloc_skb().
582 */
583 void skb_recycle(struct sk_buff *skb)
584 {
585 struct skb_shared_info *shinfo;
586
587 skb_release_head_state(skb);
588
589 shinfo = skb_shinfo(skb);
590 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
591 atomic_set(&shinfo->dataref, 1);
592
593 memset(skb, 0, offsetof(struct sk_buff, tail));
594 skb->data = skb->head + NET_SKB_PAD;
595 skb_reset_tail_pointer(skb);
596 }
597 EXPORT_SYMBOL(skb_recycle);
598
599 /**
600 * skb_recycle_check - check if skb can be reused for receive
601 * @skb: buffer
602 * @skb_size: minimum receive buffer size
603 *
604 * Checks that the skb passed in is not shared or cloned, and
605 * that it is linear and its head portion at least as large as
606 * skb_size so that it can be recycled as a receive buffer.
607 * If these conditions are met, this function does any necessary
608 * reference count dropping and cleans up the skbuff as if it
609 * just came from __alloc_skb().
610 */
611 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
612 {
613 if (!skb_is_recycleable(skb, skb_size))
614 return false;
615
616 skb_recycle(skb);
617
618 return true;
619 }
620 EXPORT_SYMBOL(skb_recycle_check);
621
622 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
623 {
624 new->tstamp = old->tstamp;
625 new->dev = old->dev;
626 new->transport_header = old->transport_header;
627 new->network_header = old->network_header;
628 new->mac_header = old->mac_header;
629 skb_dst_copy(new, old);
630 new->rxhash = old->rxhash;
631 new->ooo_okay = old->ooo_okay;
632 new->l4_rxhash = old->l4_rxhash;
633 new->no_fcs = old->no_fcs;
634 #ifdef CONFIG_XFRM
635 new->sp = secpath_get(old->sp);
636 #endif
637 memcpy(new->cb, old->cb, sizeof(old->cb));
638 new->csum = old->csum;
639 new->local_df = old->local_df;
640 new->pkt_type = old->pkt_type;
641 new->ip_summed = old->ip_summed;
642 skb_copy_queue_mapping(new, old);
643 new->priority = old->priority;
644 #if IS_ENABLED(CONFIG_IP_VS)
645 new->ipvs_property = old->ipvs_property;
646 #endif
647 new->protocol = old->protocol;
648 new->mark = old->mark;
649 new->skb_iif = old->skb_iif;
650 __nf_copy(new, old);
651 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
652 new->nf_trace = old->nf_trace;
653 #endif
654 #ifdef CONFIG_NET_SCHED
655 new->tc_index = old->tc_index;
656 #ifdef CONFIG_NET_CLS_ACT
657 new->tc_verd = old->tc_verd;
658 #endif
659 #endif
660 new->vlan_tci = old->vlan_tci;
661
662 skb_copy_secmark(new, old);
663 }
664
665 /*
666 * You should not add any new code to this function. Add it to
667 * __copy_skb_header above instead.
668 */
669 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
670 {
671 #define C(x) n->x = skb->x
672
673 n->next = n->prev = NULL;
674 n->sk = NULL;
675 __copy_skb_header(n, skb);
676
677 C(len);
678 C(data_len);
679 C(mac_len);
680 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
681 n->cloned = 1;
682 n->nohdr = 0;
683 n->destructor = NULL;
684 C(tail);
685 C(end);
686 C(head);
687 C(head_frag);
688 C(data);
689 C(truesize);
690 atomic_set(&n->users, 1);
691
692 atomic_inc(&(skb_shinfo(skb)->dataref));
693 skb->cloned = 1;
694
695 return n;
696 #undef C
697 }
698
699 /**
700 * skb_morph - morph one skb into another
701 * @dst: the skb to receive the contents
702 * @src: the skb to supply the contents
703 *
704 * This is identical to skb_clone except that the target skb is
705 * supplied by the user.
706 *
707 * The target skb is returned upon exit.
708 */
709 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
710 {
711 skb_release_all(dst);
712 return __skb_clone(dst, src);
713 }
714 EXPORT_SYMBOL_GPL(skb_morph);
715
716 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
717 * @skb: the skb to modify
718 * @gfp_mask: allocation priority
719 *
720 * This must be called on SKBTX_DEV_ZEROCOPY skb.
721 * It will copy all frags into kernel and drop the reference
722 * to userspace pages.
723 *
724 * If this function is called from an interrupt gfp_mask() must be
725 * %GFP_ATOMIC.
726 *
727 * Returns 0 on success or a negative error code on failure
728 * to allocate kernel memory to copy to.
729 */
730 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
731 {
732 int i;
733 int num_frags = skb_shinfo(skb)->nr_frags;
734 struct page *page, *head = NULL;
735 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
736
737 for (i = 0; i < num_frags; i++) {
738 u8 *vaddr;
739 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
740
741 page = alloc_page(GFP_ATOMIC);
742 if (!page) {
743 while (head) {
744 struct page *next = (struct page *)head->private;
745 put_page(head);
746 head = next;
747 }
748 return -ENOMEM;
749 }
750 vaddr = kmap_atomic(skb_frag_page(f));
751 memcpy(page_address(page),
752 vaddr + f->page_offset, skb_frag_size(f));
753 kunmap_atomic(vaddr);
754 page->private = (unsigned long)head;
755 head = page;
756 }
757
758 /* skb frags release userspace buffers */
759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
760 skb_frag_unref(skb, i);
761
762 uarg->callback(uarg);
763
764 /* skb frags point to kernel buffers */
765 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
766 __skb_fill_page_desc(skb, i-1, head, 0,
767 skb_shinfo(skb)->frags[i - 1].size);
768 head = (struct page *)head->private;
769 }
770
771 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
772 return 0;
773 }
774
775
776 /**
777 * skb_clone - duplicate an sk_buff
778 * @skb: buffer to clone
779 * @gfp_mask: allocation priority
780 *
781 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
782 * copies share the same packet data but not structure. The new
783 * buffer has a reference count of 1. If the allocation fails the
784 * function returns %NULL otherwise the new buffer is returned.
785 *
786 * If this function is called from an interrupt gfp_mask() must be
787 * %GFP_ATOMIC.
788 */
789
790 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
791 {
792 struct sk_buff *n;
793
794 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
795 if (skb_copy_ubufs(skb, gfp_mask))
796 return NULL;
797 }
798
799 n = skb + 1;
800 if (skb->fclone == SKB_FCLONE_ORIG &&
801 n->fclone == SKB_FCLONE_UNAVAILABLE) {
802 atomic_t *fclone_ref = (atomic_t *) (n + 1);
803 n->fclone = SKB_FCLONE_CLONE;
804 atomic_inc(fclone_ref);
805 } else {
806 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
807 if (!n)
808 return NULL;
809
810 kmemcheck_annotate_bitfield(n, flags1);
811 kmemcheck_annotate_bitfield(n, flags2);
812 n->fclone = SKB_FCLONE_UNAVAILABLE;
813 }
814
815 return __skb_clone(n, skb);
816 }
817 EXPORT_SYMBOL(skb_clone);
818
819 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
820 {
821 #ifndef NET_SKBUFF_DATA_USES_OFFSET
822 /*
823 * Shift between the two data areas in bytes
824 */
825 unsigned long offset = new->data - old->data;
826 #endif
827
828 __copy_skb_header(new, old);
829
830 #ifndef NET_SKBUFF_DATA_USES_OFFSET
831 /* {transport,network,mac}_header are relative to skb->head */
832 new->transport_header += offset;
833 new->network_header += offset;
834 if (skb_mac_header_was_set(new))
835 new->mac_header += offset;
836 #endif
837 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
838 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
839 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
840 }
841
842 /**
843 * skb_copy - create private copy of an sk_buff
844 * @skb: buffer to copy
845 * @gfp_mask: allocation priority
846 *
847 * Make a copy of both an &sk_buff and its data. This is used when the
848 * caller wishes to modify the data and needs a private copy of the
849 * data to alter. Returns %NULL on failure or the pointer to the buffer
850 * on success. The returned buffer has a reference count of 1.
851 *
852 * As by-product this function converts non-linear &sk_buff to linear
853 * one, so that &sk_buff becomes completely private and caller is allowed
854 * to modify all the data of returned buffer. This means that this
855 * function is not recommended for use in circumstances when only
856 * header is going to be modified. Use pskb_copy() instead.
857 */
858
859 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
860 {
861 int headerlen = skb_headroom(skb);
862 unsigned int size = skb_end_offset(skb) + skb->data_len;
863 struct sk_buff *n = alloc_skb(size, gfp_mask);
864
865 if (!n)
866 return NULL;
867
868 /* Set the data pointer */
869 skb_reserve(n, headerlen);
870 /* Set the tail pointer and length */
871 skb_put(n, skb->len);
872
873 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
874 BUG();
875
876 copy_skb_header(n, skb);
877 return n;
878 }
879 EXPORT_SYMBOL(skb_copy);
880
881 /**
882 * __pskb_copy - create copy of an sk_buff with private head.
883 * @skb: buffer to copy
884 * @headroom: headroom of new skb
885 * @gfp_mask: allocation priority
886 *
887 * Make a copy of both an &sk_buff and part of its data, located
888 * in header. Fragmented data remain shared. This is used when
889 * the caller wishes to modify only header of &sk_buff and needs
890 * private copy of the header to alter. Returns %NULL on failure
891 * or the pointer to the buffer on success.
892 * The returned buffer has a reference count of 1.
893 */
894
895 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
896 {
897 unsigned int size = skb_headlen(skb) + headroom;
898 struct sk_buff *n = alloc_skb(size, gfp_mask);
899
900 if (!n)
901 goto out;
902
903 /* Set the data pointer */
904 skb_reserve(n, headroom);
905 /* Set the tail pointer and length */
906 skb_put(n, skb_headlen(skb));
907 /* Copy the bytes */
908 skb_copy_from_linear_data(skb, n->data, n->len);
909
910 n->truesize += skb->data_len;
911 n->data_len = skb->data_len;
912 n->len = skb->len;
913
914 if (skb_shinfo(skb)->nr_frags) {
915 int i;
916
917 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
918 if (skb_copy_ubufs(skb, gfp_mask)) {
919 kfree_skb(n);
920 n = NULL;
921 goto out;
922 }
923 }
924 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
925 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
926 skb_frag_ref(skb, i);
927 }
928 skb_shinfo(n)->nr_frags = i;
929 }
930
931 if (skb_has_frag_list(skb)) {
932 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
933 skb_clone_fraglist(n);
934 }
935
936 copy_skb_header(n, skb);
937 out:
938 return n;
939 }
940 EXPORT_SYMBOL(__pskb_copy);
941
942 /**
943 * pskb_expand_head - reallocate header of &sk_buff
944 * @skb: buffer to reallocate
945 * @nhead: room to add at head
946 * @ntail: room to add at tail
947 * @gfp_mask: allocation priority
948 *
949 * Expands (or creates identical copy, if &nhead and &ntail are zero)
950 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
951 * reference count of 1. Returns zero in the case of success or error,
952 * if expansion failed. In the last case, &sk_buff is not changed.
953 *
954 * All the pointers pointing into skb header may change and must be
955 * reloaded after call to this function.
956 */
957
958 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
959 gfp_t gfp_mask)
960 {
961 int i;
962 u8 *data;
963 int size = nhead + skb_end_offset(skb) + ntail;
964 long off;
965
966 BUG_ON(nhead < 0);
967
968 if (skb_shared(skb))
969 BUG();
970
971 size = SKB_DATA_ALIGN(size);
972
973 data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
974 gfp_mask);
975 if (!data)
976 goto nodata;
977 size = SKB_WITH_OVERHEAD(ksize(data));
978
979 /* Copy only real data... and, alas, header. This should be
980 * optimized for the cases when header is void.
981 */
982 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
983
984 memcpy((struct skb_shared_info *)(data + size),
985 skb_shinfo(skb),
986 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
987
988 /*
989 * if shinfo is shared we must drop the old head gracefully, but if it
990 * is not we can just drop the old head and let the existing refcount
991 * be since all we did is relocate the values
992 */
993 if (skb_cloned(skb)) {
994 /* copy this zero copy skb frags */
995 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
996 if (skb_copy_ubufs(skb, gfp_mask))
997 goto nofrags;
998 }
999 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1000 skb_frag_ref(skb, i);
1001
1002 if (skb_has_frag_list(skb))
1003 skb_clone_fraglist(skb);
1004
1005 skb_release_data(skb);
1006 } else {
1007 skb_free_head(skb);
1008 }
1009 off = (data + nhead) - skb->head;
1010
1011 skb->head = data;
1012 skb->head_frag = 0;
1013 skb->data += off;
1014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1015 skb->end = size;
1016 off = nhead;
1017 #else
1018 skb->end = skb->head + size;
1019 #endif
1020 /* {transport,network,mac}_header and tail are relative to skb->head */
1021 skb->tail += off;
1022 skb->transport_header += off;
1023 skb->network_header += off;
1024 if (skb_mac_header_was_set(skb))
1025 skb->mac_header += off;
1026 /* Only adjust this if it actually is csum_start rather than csum */
1027 if (skb->ip_summed == CHECKSUM_PARTIAL)
1028 skb->csum_start += nhead;
1029 skb->cloned = 0;
1030 skb->hdr_len = 0;
1031 skb->nohdr = 0;
1032 atomic_set(&skb_shinfo(skb)->dataref, 1);
1033 return 0;
1034
1035 nofrags:
1036 kfree(data);
1037 nodata:
1038 return -ENOMEM;
1039 }
1040 EXPORT_SYMBOL(pskb_expand_head);
1041
1042 /* Make private copy of skb with writable head and some headroom */
1043
1044 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1045 {
1046 struct sk_buff *skb2;
1047 int delta = headroom - skb_headroom(skb);
1048
1049 if (delta <= 0)
1050 skb2 = pskb_copy(skb, GFP_ATOMIC);
1051 else {
1052 skb2 = skb_clone(skb, GFP_ATOMIC);
1053 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1054 GFP_ATOMIC)) {
1055 kfree_skb(skb2);
1056 skb2 = NULL;
1057 }
1058 }
1059 return skb2;
1060 }
1061 EXPORT_SYMBOL(skb_realloc_headroom);
1062
1063 /**
1064 * skb_copy_expand - copy and expand sk_buff
1065 * @skb: buffer to copy
1066 * @newheadroom: new free bytes at head
1067 * @newtailroom: new free bytes at tail
1068 * @gfp_mask: allocation priority
1069 *
1070 * Make a copy of both an &sk_buff and its data and while doing so
1071 * allocate additional space.
1072 *
1073 * This is used when the caller wishes to modify the data and needs a
1074 * private copy of the data to alter as well as more space for new fields.
1075 * Returns %NULL on failure or the pointer to the buffer
1076 * on success. The returned buffer has a reference count of 1.
1077 *
1078 * You must pass %GFP_ATOMIC as the allocation priority if this function
1079 * is called from an interrupt.
1080 */
1081 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1082 int newheadroom, int newtailroom,
1083 gfp_t gfp_mask)
1084 {
1085 /*
1086 * Allocate the copy buffer
1087 */
1088 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1089 gfp_mask);
1090 int oldheadroom = skb_headroom(skb);
1091 int head_copy_len, head_copy_off;
1092 int off;
1093
1094 if (!n)
1095 return NULL;
1096
1097 skb_reserve(n, newheadroom);
1098
1099 /* Set the tail pointer and length */
1100 skb_put(n, skb->len);
1101
1102 head_copy_len = oldheadroom;
1103 head_copy_off = 0;
1104 if (newheadroom <= head_copy_len)
1105 head_copy_len = newheadroom;
1106 else
1107 head_copy_off = newheadroom - head_copy_len;
1108
1109 /* Copy the linear header and data. */
1110 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1111 skb->len + head_copy_len))
1112 BUG();
1113
1114 copy_skb_header(n, skb);
1115
1116 off = newheadroom - oldheadroom;
1117 if (n->ip_summed == CHECKSUM_PARTIAL)
1118 n->csum_start += off;
1119 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1120 n->transport_header += off;
1121 n->network_header += off;
1122 if (skb_mac_header_was_set(skb))
1123 n->mac_header += off;
1124 #endif
1125
1126 return n;
1127 }
1128 EXPORT_SYMBOL(skb_copy_expand);
1129
1130 /**
1131 * skb_pad - zero pad the tail of an skb
1132 * @skb: buffer to pad
1133 * @pad: space to pad
1134 *
1135 * Ensure that a buffer is followed by a padding area that is zero
1136 * filled. Used by network drivers which may DMA or transfer data
1137 * beyond the buffer end onto the wire.
1138 *
1139 * May return error in out of memory cases. The skb is freed on error.
1140 */
1141
1142 int skb_pad(struct sk_buff *skb, int pad)
1143 {
1144 int err;
1145 int ntail;
1146
1147 /* If the skbuff is non linear tailroom is always zero.. */
1148 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1149 memset(skb->data+skb->len, 0, pad);
1150 return 0;
1151 }
1152
1153 ntail = skb->data_len + pad - (skb->end - skb->tail);
1154 if (likely(skb_cloned(skb) || ntail > 0)) {
1155 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1156 if (unlikely(err))
1157 goto free_skb;
1158 }
1159
1160 /* FIXME: The use of this function with non-linear skb's really needs
1161 * to be audited.
1162 */
1163 err = skb_linearize(skb);
1164 if (unlikely(err))
1165 goto free_skb;
1166
1167 memset(skb->data + skb->len, 0, pad);
1168 return 0;
1169
1170 free_skb:
1171 kfree_skb(skb);
1172 return err;
1173 }
1174 EXPORT_SYMBOL(skb_pad);
1175
1176 /**
1177 * skb_put - add data to a buffer
1178 * @skb: buffer to use
1179 * @len: amount of data to add
1180 *
1181 * This function extends the used data area of the buffer. If this would
1182 * exceed the total buffer size the kernel will panic. A pointer to the
1183 * first byte of the extra data is returned.
1184 */
1185 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1186 {
1187 unsigned char *tmp = skb_tail_pointer(skb);
1188 SKB_LINEAR_ASSERT(skb);
1189 skb->tail += len;
1190 skb->len += len;
1191 if (unlikely(skb->tail > skb->end))
1192 skb_over_panic(skb, len, __builtin_return_address(0));
1193 return tmp;
1194 }
1195 EXPORT_SYMBOL(skb_put);
1196
1197 /**
1198 * skb_push - add data to the start of a buffer
1199 * @skb: buffer to use
1200 * @len: amount of data to add
1201 *
1202 * This function extends the used data area of the buffer at the buffer
1203 * start. If this would exceed the total buffer headroom the kernel will
1204 * panic. A pointer to the first byte of the extra data is returned.
1205 */
1206 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1207 {
1208 skb->data -= len;
1209 skb->len += len;
1210 if (unlikely(skb->data<skb->head))
1211 skb_under_panic(skb, len, __builtin_return_address(0));
1212 return skb->data;
1213 }
1214 EXPORT_SYMBOL(skb_push);
1215
1216 /**
1217 * skb_pull - remove data from the start of a buffer
1218 * @skb: buffer to use
1219 * @len: amount of data to remove
1220 *
1221 * This function removes data from the start of a buffer, returning
1222 * the memory to the headroom. A pointer to the next data in the buffer
1223 * is returned. Once the data has been pulled future pushes will overwrite
1224 * the old data.
1225 */
1226 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1227 {
1228 return skb_pull_inline(skb, len);
1229 }
1230 EXPORT_SYMBOL(skb_pull);
1231
1232 /**
1233 * skb_trim - remove end from a buffer
1234 * @skb: buffer to alter
1235 * @len: new length
1236 *
1237 * Cut the length of a buffer down by removing data from the tail. If
1238 * the buffer is already under the length specified it is not modified.
1239 * The skb must be linear.
1240 */
1241 void skb_trim(struct sk_buff *skb, unsigned int len)
1242 {
1243 if (skb->len > len)
1244 __skb_trim(skb, len);
1245 }
1246 EXPORT_SYMBOL(skb_trim);
1247
1248 /* Trims skb to length len. It can change skb pointers.
1249 */
1250
1251 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1252 {
1253 struct sk_buff **fragp;
1254 struct sk_buff *frag;
1255 int offset = skb_headlen(skb);
1256 int nfrags = skb_shinfo(skb)->nr_frags;
1257 int i;
1258 int err;
1259
1260 if (skb_cloned(skb) &&
1261 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1262 return err;
1263
1264 i = 0;
1265 if (offset >= len)
1266 goto drop_pages;
1267
1268 for (; i < nfrags; i++) {
1269 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1270
1271 if (end < len) {
1272 offset = end;
1273 continue;
1274 }
1275
1276 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1277
1278 drop_pages:
1279 skb_shinfo(skb)->nr_frags = i;
1280
1281 for (; i < nfrags; i++)
1282 skb_frag_unref(skb, i);
1283
1284 if (skb_has_frag_list(skb))
1285 skb_drop_fraglist(skb);
1286 goto done;
1287 }
1288
1289 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1290 fragp = &frag->next) {
1291 int end = offset + frag->len;
1292
1293 if (skb_shared(frag)) {
1294 struct sk_buff *nfrag;
1295
1296 nfrag = skb_clone(frag, GFP_ATOMIC);
1297 if (unlikely(!nfrag))
1298 return -ENOMEM;
1299
1300 nfrag->next = frag->next;
1301 consume_skb(frag);
1302 frag = nfrag;
1303 *fragp = frag;
1304 }
1305
1306 if (end < len) {
1307 offset = end;
1308 continue;
1309 }
1310
1311 if (end > len &&
1312 unlikely((err = pskb_trim(frag, len - offset))))
1313 return err;
1314
1315 if (frag->next)
1316 skb_drop_list(&frag->next);
1317 break;
1318 }
1319
1320 done:
1321 if (len > skb_headlen(skb)) {
1322 skb->data_len -= skb->len - len;
1323 skb->len = len;
1324 } else {
1325 skb->len = len;
1326 skb->data_len = 0;
1327 skb_set_tail_pointer(skb, len);
1328 }
1329
1330 return 0;
1331 }
1332 EXPORT_SYMBOL(___pskb_trim);
1333
1334 /**
1335 * __pskb_pull_tail - advance tail of skb header
1336 * @skb: buffer to reallocate
1337 * @delta: number of bytes to advance tail
1338 *
1339 * The function makes a sense only on a fragmented &sk_buff,
1340 * it expands header moving its tail forward and copying necessary
1341 * data from fragmented part.
1342 *
1343 * &sk_buff MUST have reference count of 1.
1344 *
1345 * Returns %NULL (and &sk_buff does not change) if pull failed
1346 * or value of new tail of skb in the case of success.
1347 *
1348 * All the pointers pointing into skb header may change and must be
1349 * reloaded after call to this function.
1350 */
1351
1352 /* Moves tail of skb head forward, copying data from fragmented part,
1353 * when it is necessary.
1354 * 1. It may fail due to malloc failure.
1355 * 2. It may change skb pointers.
1356 *
1357 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1358 */
1359 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1360 {
1361 /* If skb has not enough free space at tail, get new one
1362 * plus 128 bytes for future expansions. If we have enough
1363 * room at tail, reallocate without expansion only if skb is cloned.
1364 */
1365 int i, k, eat = (skb->tail + delta) - skb->end;
1366
1367 if (eat > 0 || skb_cloned(skb)) {
1368 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1369 GFP_ATOMIC))
1370 return NULL;
1371 }
1372
1373 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1374 BUG();
1375
1376 /* Optimization: no fragments, no reasons to preestimate
1377 * size of pulled pages. Superb.
1378 */
1379 if (!skb_has_frag_list(skb))
1380 goto pull_pages;
1381
1382 /* Estimate size of pulled pages. */
1383 eat = delta;
1384 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1385 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1386
1387 if (size >= eat)
1388 goto pull_pages;
1389 eat -= size;
1390 }
1391
1392 /* If we need update frag list, we are in troubles.
1393 * Certainly, it possible to add an offset to skb data,
1394 * but taking into account that pulling is expected to
1395 * be very rare operation, it is worth to fight against
1396 * further bloating skb head and crucify ourselves here instead.
1397 * Pure masohism, indeed. 8)8)
1398 */
1399 if (eat) {
1400 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1401 struct sk_buff *clone = NULL;
1402 struct sk_buff *insp = NULL;
1403
1404 do {
1405 BUG_ON(!list);
1406
1407 if (list->len <= eat) {
1408 /* Eaten as whole. */
1409 eat -= list->len;
1410 list = list->next;
1411 insp = list;
1412 } else {
1413 /* Eaten partially. */
1414
1415 if (skb_shared(list)) {
1416 /* Sucks! We need to fork list. :-( */
1417 clone = skb_clone(list, GFP_ATOMIC);
1418 if (!clone)
1419 return NULL;
1420 insp = list->next;
1421 list = clone;
1422 } else {
1423 /* This may be pulled without
1424 * problems. */
1425 insp = list;
1426 }
1427 if (!pskb_pull(list, eat)) {
1428 kfree_skb(clone);
1429 return NULL;
1430 }
1431 break;
1432 }
1433 } while (eat);
1434
1435 /* Free pulled out fragments. */
1436 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1437 skb_shinfo(skb)->frag_list = list->next;
1438 kfree_skb(list);
1439 }
1440 /* And insert new clone at head. */
1441 if (clone) {
1442 clone->next = list;
1443 skb_shinfo(skb)->frag_list = clone;
1444 }
1445 }
1446 /* Success! Now we may commit changes to skb data. */
1447
1448 pull_pages:
1449 eat = delta;
1450 k = 0;
1451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1452 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1453
1454 if (size <= eat) {
1455 skb_frag_unref(skb, i);
1456 eat -= size;
1457 } else {
1458 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1459 if (eat) {
1460 skb_shinfo(skb)->frags[k].page_offset += eat;
1461 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1462 eat = 0;
1463 }
1464 k++;
1465 }
1466 }
1467 skb_shinfo(skb)->nr_frags = k;
1468
1469 skb->tail += delta;
1470 skb->data_len -= delta;
1471
1472 return skb_tail_pointer(skb);
1473 }
1474 EXPORT_SYMBOL(__pskb_pull_tail);
1475
1476 /**
1477 * skb_copy_bits - copy bits from skb to kernel buffer
1478 * @skb: source skb
1479 * @offset: offset in source
1480 * @to: destination buffer
1481 * @len: number of bytes to copy
1482 *
1483 * Copy the specified number of bytes from the source skb to the
1484 * destination buffer.
1485 *
1486 * CAUTION ! :
1487 * If its prototype is ever changed,
1488 * check arch/{*}/net/{*}.S files,
1489 * since it is called from BPF assembly code.
1490 */
1491 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1492 {
1493 int start = skb_headlen(skb);
1494 struct sk_buff *frag_iter;
1495 int i, copy;
1496
1497 if (offset > (int)skb->len - len)
1498 goto fault;
1499
1500 /* Copy header. */
1501 if ((copy = start - offset) > 0) {
1502 if (copy > len)
1503 copy = len;
1504 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1505 if ((len -= copy) == 0)
1506 return 0;
1507 offset += copy;
1508 to += copy;
1509 }
1510
1511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1512 int end;
1513 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1514
1515 WARN_ON(start > offset + len);
1516
1517 end = start + skb_frag_size(f);
1518 if ((copy = end - offset) > 0) {
1519 u8 *vaddr;
1520
1521 if (copy > len)
1522 copy = len;
1523
1524 vaddr = kmap_atomic(skb_frag_page(f));
1525 memcpy(to,
1526 vaddr + f->page_offset + offset - start,
1527 copy);
1528 kunmap_atomic(vaddr);
1529
1530 if ((len -= copy) == 0)
1531 return 0;
1532 offset += copy;
1533 to += copy;
1534 }
1535 start = end;
1536 }
1537
1538 skb_walk_frags(skb, frag_iter) {
1539 int end;
1540
1541 WARN_ON(start > offset + len);
1542
1543 end = start + frag_iter->len;
1544 if ((copy = end - offset) > 0) {
1545 if (copy > len)
1546 copy = len;
1547 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1548 goto fault;
1549 if ((len -= copy) == 0)
1550 return 0;
1551 offset += copy;
1552 to += copy;
1553 }
1554 start = end;
1555 }
1556
1557 if (!len)
1558 return 0;
1559
1560 fault:
1561 return -EFAULT;
1562 }
1563 EXPORT_SYMBOL(skb_copy_bits);
1564
1565 /*
1566 * Callback from splice_to_pipe(), if we need to release some pages
1567 * at the end of the spd in case we error'ed out in filling the pipe.
1568 */
1569 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1570 {
1571 put_page(spd->pages[i]);
1572 }
1573
1574 static struct page *linear_to_page(struct page *page, unsigned int *len,
1575 unsigned int *offset,
1576 struct sk_buff *skb, struct sock *sk)
1577 {
1578 struct page *p = sk->sk_sndmsg_page;
1579 unsigned int off;
1580
1581 if (!p) {
1582 new_page:
1583 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1584 if (!p)
1585 return NULL;
1586
1587 off = sk->sk_sndmsg_off = 0;
1588 /* hold one ref to this page until it's full */
1589 } else {
1590 unsigned int mlen;
1591
1592 /* If we are the only user of the page, we can reset offset */
1593 if (page_count(p) == 1)
1594 sk->sk_sndmsg_off = 0;
1595 off = sk->sk_sndmsg_off;
1596 mlen = PAGE_SIZE - off;
1597 if (mlen < 64 && mlen < *len) {
1598 put_page(p);
1599 goto new_page;
1600 }
1601
1602 *len = min_t(unsigned int, *len, mlen);
1603 }
1604
1605 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1606 sk->sk_sndmsg_off += *len;
1607 *offset = off;
1608
1609 return p;
1610 }
1611
1612 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1613 struct page *page,
1614 unsigned int offset)
1615 {
1616 return spd->nr_pages &&
1617 spd->pages[spd->nr_pages - 1] == page &&
1618 (spd->partial[spd->nr_pages - 1].offset +
1619 spd->partial[spd->nr_pages - 1].len == offset);
1620 }
1621
1622 /*
1623 * Fill page/offset/length into spd, if it can hold more pages.
1624 */
1625 static bool spd_fill_page(struct splice_pipe_desc *spd,
1626 struct pipe_inode_info *pipe, struct page *page,
1627 unsigned int *len, unsigned int offset,
1628 struct sk_buff *skb, bool linear,
1629 struct sock *sk)
1630 {
1631 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1632 return true;
1633
1634 if (linear) {
1635 page = linear_to_page(page, len, &offset, skb, sk);
1636 if (!page)
1637 return true;
1638 }
1639 if (spd_can_coalesce(spd, page, offset)) {
1640 spd->partial[spd->nr_pages - 1].len += *len;
1641 return false;
1642 }
1643 get_page(page);
1644 spd->pages[spd->nr_pages] = page;
1645 spd->partial[spd->nr_pages].len = *len;
1646 spd->partial[spd->nr_pages].offset = offset;
1647 spd->nr_pages++;
1648
1649 return false;
1650 }
1651
1652 static inline void __segment_seek(struct page **page, unsigned int *poff,
1653 unsigned int *plen, unsigned int off)
1654 {
1655 unsigned long n;
1656
1657 *poff += off;
1658 n = *poff / PAGE_SIZE;
1659 if (n)
1660 *page = nth_page(*page, n);
1661
1662 *poff = *poff % PAGE_SIZE;
1663 *plen -= off;
1664 }
1665
1666 static bool __splice_segment(struct page *page, unsigned int poff,
1667 unsigned int plen, unsigned int *off,
1668 unsigned int *len, struct sk_buff *skb,
1669 struct splice_pipe_desc *spd, bool linear,
1670 struct sock *sk,
1671 struct pipe_inode_info *pipe)
1672 {
1673 if (!*len)
1674 return true;
1675
1676 /* skip this segment if already processed */
1677 if (*off >= plen) {
1678 *off -= plen;
1679 return false;
1680 }
1681
1682 /* ignore any bits we already processed */
1683 if (*off) {
1684 __segment_seek(&page, &poff, &plen, *off);
1685 *off = 0;
1686 }
1687
1688 do {
1689 unsigned int flen = min(*len, plen);
1690
1691 /* the linear region may spread across several pages */
1692 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1693
1694 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1695 return true;
1696
1697 __segment_seek(&page, &poff, &plen, flen);
1698 *len -= flen;
1699
1700 } while (*len && plen);
1701
1702 return false;
1703 }
1704
1705 /*
1706 * Map linear and fragment data from the skb to spd. It reports true if the
1707 * pipe is full or if we already spliced the requested length.
1708 */
1709 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1710 unsigned int *offset, unsigned int *len,
1711 struct splice_pipe_desc *spd, struct sock *sk)
1712 {
1713 int seg;
1714
1715 /* map the linear part :
1716 * If skb->head_frag is set, this 'linear' part is backed by a
1717 * fragment, and if the head is not shared with any clones then
1718 * we can avoid a copy since we own the head portion of this page.
1719 */
1720 if (__splice_segment(virt_to_page(skb->data),
1721 (unsigned long) skb->data & (PAGE_SIZE - 1),
1722 skb_headlen(skb),
1723 offset, len, skb, spd,
1724 skb_head_is_locked(skb),
1725 sk, pipe))
1726 return true;
1727
1728 /*
1729 * then map the fragments
1730 */
1731 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1732 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1733
1734 if (__splice_segment(skb_frag_page(f),
1735 f->page_offset, skb_frag_size(f),
1736 offset, len, skb, spd, false, sk, pipe))
1737 return true;
1738 }
1739
1740 return false;
1741 }
1742
1743 /*
1744 * Map data from the skb to a pipe. Should handle both the linear part,
1745 * the fragments, and the frag list. It does NOT handle frag lists within
1746 * the frag list, if such a thing exists. We'd probably need to recurse to
1747 * handle that cleanly.
1748 */
1749 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1750 struct pipe_inode_info *pipe, unsigned int tlen,
1751 unsigned int flags)
1752 {
1753 struct partial_page partial[MAX_SKB_FRAGS];
1754 struct page *pages[MAX_SKB_FRAGS];
1755 struct splice_pipe_desc spd = {
1756 .pages = pages,
1757 .partial = partial,
1758 .flags = flags,
1759 .ops = &sock_pipe_buf_ops,
1760 .spd_release = sock_spd_release,
1761 };
1762 struct sk_buff *frag_iter;
1763 struct sock *sk = skb->sk;
1764 int ret = 0;
1765
1766 /*
1767 * __skb_splice_bits() only fails if the output has no room left,
1768 * so no point in going over the frag_list for the error case.
1769 */
1770 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1771 goto done;
1772 else if (!tlen)
1773 goto done;
1774
1775 /*
1776 * now see if we have a frag_list to map
1777 */
1778 skb_walk_frags(skb, frag_iter) {
1779 if (!tlen)
1780 break;
1781 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1782 break;
1783 }
1784
1785 done:
1786 if (spd.nr_pages) {
1787 /*
1788 * Drop the socket lock, otherwise we have reverse
1789 * locking dependencies between sk_lock and i_mutex
1790 * here as compared to sendfile(). We enter here
1791 * with the socket lock held, and splice_to_pipe() will
1792 * grab the pipe inode lock. For sendfile() emulation,
1793 * we call into ->sendpage() with the i_mutex lock held
1794 * and networking will grab the socket lock.
1795 */
1796 release_sock(sk);
1797 ret = splice_to_pipe(pipe, &spd);
1798 lock_sock(sk);
1799 }
1800
1801 return ret;
1802 }
1803
1804 /**
1805 * skb_store_bits - store bits from kernel buffer to skb
1806 * @skb: destination buffer
1807 * @offset: offset in destination
1808 * @from: source buffer
1809 * @len: number of bytes to copy
1810 *
1811 * Copy the specified number of bytes from the source buffer to the
1812 * destination skb. This function handles all the messy bits of
1813 * traversing fragment lists and such.
1814 */
1815
1816 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1817 {
1818 int start = skb_headlen(skb);
1819 struct sk_buff *frag_iter;
1820 int i, copy;
1821
1822 if (offset > (int)skb->len - len)
1823 goto fault;
1824
1825 if ((copy = start - offset) > 0) {
1826 if (copy > len)
1827 copy = len;
1828 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1829 if ((len -= copy) == 0)
1830 return 0;
1831 offset += copy;
1832 from += copy;
1833 }
1834
1835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1836 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1837 int end;
1838
1839 WARN_ON(start > offset + len);
1840
1841 end = start + skb_frag_size(frag);
1842 if ((copy = end - offset) > 0) {
1843 u8 *vaddr;
1844
1845 if (copy > len)
1846 copy = len;
1847
1848 vaddr = kmap_atomic(skb_frag_page(frag));
1849 memcpy(vaddr + frag->page_offset + offset - start,
1850 from, copy);
1851 kunmap_atomic(vaddr);
1852
1853 if ((len -= copy) == 0)
1854 return 0;
1855 offset += copy;
1856 from += copy;
1857 }
1858 start = end;
1859 }
1860
1861 skb_walk_frags(skb, frag_iter) {
1862 int end;
1863
1864 WARN_ON(start > offset + len);
1865
1866 end = start + frag_iter->len;
1867 if ((copy = end - offset) > 0) {
1868 if (copy > len)
1869 copy = len;
1870 if (skb_store_bits(frag_iter, offset - start,
1871 from, copy))
1872 goto fault;
1873 if ((len -= copy) == 0)
1874 return 0;
1875 offset += copy;
1876 from += copy;
1877 }
1878 start = end;
1879 }
1880 if (!len)
1881 return 0;
1882
1883 fault:
1884 return -EFAULT;
1885 }
1886 EXPORT_SYMBOL(skb_store_bits);
1887
1888 /* Checksum skb data. */
1889
1890 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1891 int len, __wsum csum)
1892 {
1893 int start = skb_headlen(skb);
1894 int i, copy = start - offset;
1895 struct sk_buff *frag_iter;
1896 int pos = 0;
1897
1898 /* Checksum header. */
1899 if (copy > 0) {
1900 if (copy > len)
1901 copy = len;
1902 csum = csum_partial(skb->data + offset, copy, csum);
1903 if ((len -= copy) == 0)
1904 return csum;
1905 offset += copy;
1906 pos = copy;
1907 }
1908
1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 int end;
1911 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1912
1913 WARN_ON(start > offset + len);
1914
1915 end = start + skb_frag_size(frag);
1916 if ((copy = end - offset) > 0) {
1917 __wsum csum2;
1918 u8 *vaddr;
1919
1920 if (copy > len)
1921 copy = len;
1922 vaddr = kmap_atomic(skb_frag_page(frag));
1923 csum2 = csum_partial(vaddr + frag->page_offset +
1924 offset - start, copy, 0);
1925 kunmap_atomic(vaddr);
1926 csum = csum_block_add(csum, csum2, pos);
1927 if (!(len -= copy))
1928 return csum;
1929 offset += copy;
1930 pos += copy;
1931 }
1932 start = end;
1933 }
1934
1935 skb_walk_frags(skb, frag_iter) {
1936 int end;
1937
1938 WARN_ON(start > offset + len);
1939
1940 end = start + frag_iter->len;
1941 if ((copy = end - offset) > 0) {
1942 __wsum csum2;
1943 if (copy > len)
1944 copy = len;
1945 csum2 = skb_checksum(frag_iter, offset - start,
1946 copy, 0);
1947 csum = csum_block_add(csum, csum2, pos);
1948 if ((len -= copy) == 0)
1949 return csum;
1950 offset += copy;
1951 pos += copy;
1952 }
1953 start = end;
1954 }
1955 BUG_ON(len);
1956
1957 return csum;
1958 }
1959 EXPORT_SYMBOL(skb_checksum);
1960
1961 /* Both of above in one bottle. */
1962
1963 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1964 u8 *to, int len, __wsum csum)
1965 {
1966 int start = skb_headlen(skb);
1967 int i, copy = start - offset;
1968 struct sk_buff *frag_iter;
1969 int pos = 0;
1970
1971 /* Copy header. */
1972 if (copy > 0) {
1973 if (copy > len)
1974 copy = len;
1975 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1976 copy, csum);
1977 if ((len -= copy) == 0)
1978 return csum;
1979 offset += copy;
1980 to += copy;
1981 pos = copy;
1982 }
1983
1984 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1985 int end;
1986
1987 WARN_ON(start > offset + len);
1988
1989 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1990 if ((copy = end - offset) > 0) {
1991 __wsum csum2;
1992 u8 *vaddr;
1993 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1994
1995 if (copy > len)
1996 copy = len;
1997 vaddr = kmap_atomic(skb_frag_page(frag));
1998 csum2 = csum_partial_copy_nocheck(vaddr +
1999 frag->page_offset +
2000 offset - start, to,
2001 copy, 0);
2002 kunmap_atomic(vaddr);
2003 csum = csum_block_add(csum, csum2, pos);
2004 if (!(len -= copy))
2005 return csum;
2006 offset += copy;
2007 to += copy;
2008 pos += copy;
2009 }
2010 start = end;
2011 }
2012
2013 skb_walk_frags(skb, frag_iter) {
2014 __wsum csum2;
2015 int end;
2016
2017 WARN_ON(start > offset + len);
2018
2019 end = start + frag_iter->len;
2020 if ((copy = end - offset) > 0) {
2021 if (copy > len)
2022 copy = len;
2023 csum2 = skb_copy_and_csum_bits(frag_iter,
2024 offset - start,
2025 to, copy, 0);
2026 csum = csum_block_add(csum, csum2, pos);
2027 if ((len -= copy) == 0)
2028 return csum;
2029 offset += copy;
2030 to += copy;
2031 pos += copy;
2032 }
2033 start = end;
2034 }
2035 BUG_ON(len);
2036 return csum;
2037 }
2038 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2039
2040 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2041 {
2042 __wsum csum;
2043 long csstart;
2044
2045 if (skb->ip_summed == CHECKSUM_PARTIAL)
2046 csstart = skb_checksum_start_offset(skb);
2047 else
2048 csstart = skb_headlen(skb);
2049
2050 BUG_ON(csstart > skb_headlen(skb));
2051
2052 skb_copy_from_linear_data(skb, to, csstart);
2053
2054 csum = 0;
2055 if (csstart != skb->len)
2056 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2057 skb->len - csstart, 0);
2058
2059 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2060 long csstuff = csstart + skb->csum_offset;
2061
2062 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2063 }
2064 }
2065 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2066
2067 /**
2068 * skb_dequeue - remove from the head of the queue
2069 * @list: list to dequeue from
2070 *
2071 * Remove the head of the list. The list lock is taken so the function
2072 * may be used safely with other locking list functions. The head item is
2073 * returned or %NULL if the list is empty.
2074 */
2075
2076 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2077 {
2078 unsigned long flags;
2079 struct sk_buff *result;
2080
2081 spin_lock_irqsave(&list->lock, flags);
2082 result = __skb_dequeue(list);
2083 spin_unlock_irqrestore(&list->lock, flags);
2084 return result;
2085 }
2086 EXPORT_SYMBOL(skb_dequeue);
2087
2088 /**
2089 * skb_dequeue_tail - remove from the tail of the queue
2090 * @list: list to dequeue from
2091 *
2092 * Remove the tail of the list. The list lock is taken so the function
2093 * may be used safely with other locking list functions. The tail item is
2094 * returned or %NULL if the list is empty.
2095 */
2096 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2097 {
2098 unsigned long flags;
2099 struct sk_buff *result;
2100
2101 spin_lock_irqsave(&list->lock, flags);
2102 result = __skb_dequeue_tail(list);
2103 spin_unlock_irqrestore(&list->lock, flags);
2104 return result;
2105 }
2106 EXPORT_SYMBOL(skb_dequeue_tail);
2107
2108 /**
2109 * skb_queue_purge - empty a list
2110 * @list: list to empty
2111 *
2112 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2113 * the list and one reference dropped. This function takes the list
2114 * lock and is atomic with respect to other list locking functions.
2115 */
2116 void skb_queue_purge(struct sk_buff_head *list)
2117 {
2118 struct sk_buff *skb;
2119 while ((skb = skb_dequeue(list)) != NULL)
2120 kfree_skb(skb);
2121 }
2122 EXPORT_SYMBOL(skb_queue_purge);
2123
2124 /**
2125 * skb_queue_head - queue a buffer at the list head
2126 * @list: list to use
2127 * @newsk: buffer to queue
2128 *
2129 * Queue a buffer at the start of the list. This function takes the
2130 * list lock and can be used safely with other locking &sk_buff functions
2131 * safely.
2132 *
2133 * A buffer cannot be placed on two lists at the same time.
2134 */
2135 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2136 {
2137 unsigned long flags;
2138
2139 spin_lock_irqsave(&list->lock, flags);
2140 __skb_queue_head(list, newsk);
2141 spin_unlock_irqrestore(&list->lock, flags);
2142 }
2143 EXPORT_SYMBOL(skb_queue_head);
2144
2145 /**
2146 * skb_queue_tail - queue a buffer at the list tail
2147 * @list: list to use
2148 * @newsk: buffer to queue
2149 *
2150 * Queue a buffer at the tail of the list. This function takes the
2151 * list lock and can be used safely with other locking &sk_buff functions
2152 * safely.
2153 *
2154 * A buffer cannot be placed on two lists at the same time.
2155 */
2156 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2157 {
2158 unsigned long flags;
2159
2160 spin_lock_irqsave(&list->lock, flags);
2161 __skb_queue_tail(list, newsk);
2162 spin_unlock_irqrestore(&list->lock, flags);
2163 }
2164 EXPORT_SYMBOL(skb_queue_tail);
2165
2166 /**
2167 * skb_unlink - remove a buffer from a list
2168 * @skb: buffer to remove
2169 * @list: list to use
2170 *
2171 * Remove a packet from a list. The list locks are taken and this
2172 * function is atomic with respect to other list locked calls
2173 *
2174 * You must know what list the SKB is on.
2175 */
2176 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2177 {
2178 unsigned long flags;
2179
2180 spin_lock_irqsave(&list->lock, flags);
2181 __skb_unlink(skb, list);
2182 spin_unlock_irqrestore(&list->lock, flags);
2183 }
2184 EXPORT_SYMBOL(skb_unlink);
2185
2186 /**
2187 * skb_append - append a buffer
2188 * @old: buffer to insert after
2189 * @newsk: buffer to insert
2190 * @list: list to use
2191 *
2192 * Place a packet after a given packet in a list. The list locks are taken
2193 * and this function is atomic with respect to other list locked calls.
2194 * A buffer cannot be placed on two lists at the same time.
2195 */
2196 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2197 {
2198 unsigned long flags;
2199
2200 spin_lock_irqsave(&list->lock, flags);
2201 __skb_queue_after(list, old, newsk);
2202 spin_unlock_irqrestore(&list->lock, flags);
2203 }
2204 EXPORT_SYMBOL(skb_append);
2205
2206 /**
2207 * skb_insert - insert a buffer
2208 * @old: buffer to insert before
2209 * @newsk: buffer to insert
2210 * @list: list to use
2211 *
2212 * Place a packet before a given packet in a list. The list locks are
2213 * taken and this function is atomic with respect to other list locked
2214 * calls.
2215 *
2216 * A buffer cannot be placed on two lists at the same time.
2217 */
2218 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2219 {
2220 unsigned long flags;
2221
2222 spin_lock_irqsave(&list->lock, flags);
2223 __skb_insert(newsk, old->prev, old, list);
2224 spin_unlock_irqrestore(&list->lock, flags);
2225 }
2226 EXPORT_SYMBOL(skb_insert);
2227
2228 static inline void skb_split_inside_header(struct sk_buff *skb,
2229 struct sk_buff* skb1,
2230 const u32 len, const int pos)
2231 {
2232 int i;
2233
2234 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2235 pos - len);
2236 /* And move data appendix as is. */
2237 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2238 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2239
2240 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2241 skb_shinfo(skb)->nr_frags = 0;
2242 skb1->data_len = skb->data_len;
2243 skb1->len += skb1->data_len;
2244 skb->data_len = 0;
2245 skb->len = len;
2246 skb_set_tail_pointer(skb, len);
2247 }
2248
2249 static inline void skb_split_no_header(struct sk_buff *skb,
2250 struct sk_buff* skb1,
2251 const u32 len, int pos)
2252 {
2253 int i, k = 0;
2254 const int nfrags = skb_shinfo(skb)->nr_frags;
2255
2256 skb_shinfo(skb)->nr_frags = 0;
2257 skb1->len = skb1->data_len = skb->len - len;
2258 skb->len = len;
2259 skb->data_len = len - pos;
2260
2261 for (i = 0; i < nfrags; i++) {
2262 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2263
2264 if (pos + size > len) {
2265 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2266
2267 if (pos < len) {
2268 /* Split frag.
2269 * We have two variants in this case:
2270 * 1. Move all the frag to the second
2271 * part, if it is possible. F.e.
2272 * this approach is mandatory for TUX,
2273 * where splitting is expensive.
2274 * 2. Split is accurately. We make this.
2275 */
2276 skb_frag_ref(skb, i);
2277 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2278 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2279 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2280 skb_shinfo(skb)->nr_frags++;
2281 }
2282 k++;
2283 } else
2284 skb_shinfo(skb)->nr_frags++;
2285 pos += size;
2286 }
2287 skb_shinfo(skb1)->nr_frags = k;
2288 }
2289
2290 /**
2291 * skb_split - Split fragmented skb to two parts at length len.
2292 * @skb: the buffer to split
2293 * @skb1: the buffer to receive the second part
2294 * @len: new length for skb
2295 */
2296 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2297 {
2298 int pos = skb_headlen(skb);
2299
2300 if (len < pos) /* Split line is inside header. */
2301 skb_split_inside_header(skb, skb1, len, pos);
2302 else /* Second chunk has no header, nothing to copy. */
2303 skb_split_no_header(skb, skb1, len, pos);
2304 }
2305 EXPORT_SYMBOL(skb_split);
2306
2307 /* Shifting from/to a cloned skb is a no-go.
2308 *
2309 * Caller cannot keep skb_shinfo related pointers past calling here!
2310 */
2311 static int skb_prepare_for_shift(struct sk_buff *skb)
2312 {
2313 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2314 }
2315
2316 /**
2317 * skb_shift - Shifts paged data partially from skb to another
2318 * @tgt: buffer into which tail data gets added
2319 * @skb: buffer from which the paged data comes from
2320 * @shiftlen: shift up to this many bytes
2321 *
2322 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2323 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2324 * It's up to caller to free skb if everything was shifted.
2325 *
2326 * If @tgt runs out of frags, the whole operation is aborted.
2327 *
2328 * Skb cannot include anything else but paged data while tgt is allowed
2329 * to have non-paged data as well.
2330 *
2331 * TODO: full sized shift could be optimized but that would need
2332 * specialized skb free'er to handle frags without up-to-date nr_frags.
2333 */
2334 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2335 {
2336 int from, to, merge, todo;
2337 struct skb_frag_struct *fragfrom, *fragto;
2338
2339 BUG_ON(shiftlen > skb->len);
2340 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2341
2342 todo = shiftlen;
2343 from = 0;
2344 to = skb_shinfo(tgt)->nr_frags;
2345 fragfrom = &skb_shinfo(skb)->frags[from];
2346
2347 /* Actual merge is delayed until the point when we know we can
2348 * commit all, so that we don't have to undo partial changes
2349 */
2350 if (!to ||
2351 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2352 fragfrom->page_offset)) {
2353 merge = -1;
2354 } else {
2355 merge = to - 1;
2356
2357 todo -= skb_frag_size(fragfrom);
2358 if (todo < 0) {
2359 if (skb_prepare_for_shift(skb) ||
2360 skb_prepare_for_shift(tgt))
2361 return 0;
2362
2363 /* All previous frag pointers might be stale! */
2364 fragfrom = &skb_shinfo(skb)->frags[from];
2365 fragto = &skb_shinfo(tgt)->frags[merge];
2366
2367 skb_frag_size_add(fragto, shiftlen);
2368 skb_frag_size_sub(fragfrom, shiftlen);
2369 fragfrom->page_offset += shiftlen;
2370
2371 goto onlymerged;
2372 }
2373
2374 from++;
2375 }
2376
2377 /* Skip full, not-fitting skb to avoid expensive operations */
2378 if ((shiftlen == skb->len) &&
2379 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2380 return 0;
2381
2382 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2383 return 0;
2384
2385 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2386 if (to == MAX_SKB_FRAGS)
2387 return 0;
2388
2389 fragfrom = &skb_shinfo(skb)->frags[from];
2390 fragto = &skb_shinfo(tgt)->frags[to];
2391
2392 if (todo >= skb_frag_size(fragfrom)) {
2393 *fragto = *fragfrom;
2394 todo -= skb_frag_size(fragfrom);
2395 from++;
2396 to++;
2397
2398 } else {
2399 __skb_frag_ref(fragfrom);
2400 fragto->page = fragfrom->page;
2401 fragto->page_offset = fragfrom->page_offset;
2402 skb_frag_size_set(fragto, todo);
2403
2404 fragfrom->page_offset += todo;
2405 skb_frag_size_sub(fragfrom, todo);
2406 todo = 0;
2407
2408 to++;
2409 break;
2410 }
2411 }
2412
2413 /* Ready to "commit" this state change to tgt */
2414 skb_shinfo(tgt)->nr_frags = to;
2415
2416 if (merge >= 0) {
2417 fragfrom = &skb_shinfo(skb)->frags[0];
2418 fragto = &skb_shinfo(tgt)->frags[merge];
2419
2420 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2421 __skb_frag_unref(fragfrom);
2422 }
2423
2424 /* Reposition in the original skb */
2425 to = 0;
2426 while (from < skb_shinfo(skb)->nr_frags)
2427 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2428 skb_shinfo(skb)->nr_frags = to;
2429
2430 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2431
2432 onlymerged:
2433 /* Most likely the tgt won't ever need its checksum anymore, skb on
2434 * the other hand might need it if it needs to be resent
2435 */
2436 tgt->ip_summed = CHECKSUM_PARTIAL;
2437 skb->ip_summed = CHECKSUM_PARTIAL;
2438
2439 /* Yak, is it really working this way? Some helper please? */
2440 skb->len -= shiftlen;
2441 skb->data_len -= shiftlen;
2442 skb->truesize -= shiftlen;
2443 tgt->len += shiftlen;
2444 tgt->data_len += shiftlen;
2445 tgt->truesize += shiftlen;
2446
2447 return shiftlen;
2448 }
2449
2450 /**
2451 * skb_prepare_seq_read - Prepare a sequential read of skb data
2452 * @skb: the buffer to read
2453 * @from: lower offset of data to be read
2454 * @to: upper offset of data to be read
2455 * @st: state variable
2456 *
2457 * Initializes the specified state variable. Must be called before
2458 * invoking skb_seq_read() for the first time.
2459 */
2460 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2461 unsigned int to, struct skb_seq_state *st)
2462 {
2463 st->lower_offset = from;
2464 st->upper_offset = to;
2465 st->root_skb = st->cur_skb = skb;
2466 st->frag_idx = st->stepped_offset = 0;
2467 st->frag_data = NULL;
2468 }
2469 EXPORT_SYMBOL(skb_prepare_seq_read);
2470
2471 /**
2472 * skb_seq_read - Sequentially read skb data
2473 * @consumed: number of bytes consumed by the caller so far
2474 * @data: destination pointer for data to be returned
2475 * @st: state variable
2476 *
2477 * Reads a block of skb data at &consumed relative to the
2478 * lower offset specified to skb_prepare_seq_read(). Assigns
2479 * the head of the data block to &data and returns the length
2480 * of the block or 0 if the end of the skb data or the upper
2481 * offset has been reached.
2482 *
2483 * The caller is not required to consume all of the data
2484 * returned, i.e. &consumed is typically set to the number
2485 * of bytes already consumed and the next call to
2486 * skb_seq_read() will return the remaining part of the block.
2487 *
2488 * Note 1: The size of each block of data returned can be arbitrary,
2489 * this limitation is the cost for zerocopy seqeuental
2490 * reads of potentially non linear data.
2491 *
2492 * Note 2: Fragment lists within fragments are not implemented
2493 * at the moment, state->root_skb could be replaced with
2494 * a stack for this purpose.
2495 */
2496 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2497 struct skb_seq_state *st)
2498 {
2499 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2500 skb_frag_t *frag;
2501
2502 if (unlikely(abs_offset >= st->upper_offset))
2503 return 0;
2504
2505 next_skb:
2506 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2507
2508 if (abs_offset < block_limit && !st->frag_data) {
2509 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2510 return block_limit - abs_offset;
2511 }
2512
2513 if (st->frag_idx == 0 && !st->frag_data)
2514 st->stepped_offset += skb_headlen(st->cur_skb);
2515
2516 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2517 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2518 block_limit = skb_frag_size(frag) + st->stepped_offset;
2519
2520 if (abs_offset < block_limit) {
2521 if (!st->frag_data)
2522 st->frag_data = kmap_atomic(skb_frag_page(frag));
2523
2524 *data = (u8 *) st->frag_data + frag->page_offset +
2525 (abs_offset - st->stepped_offset);
2526
2527 return block_limit - abs_offset;
2528 }
2529
2530 if (st->frag_data) {
2531 kunmap_atomic(st->frag_data);
2532 st->frag_data = NULL;
2533 }
2534
2535 st->frag_idx++;
2536 st->stepped_offset += skb_frag_size(frag);
2537 }
2538
2539 if (st->frag_data) {
2540 kunmap_atomic(st->frag_data);
2541 st->frag_data = NULL;
2542 }
2543
2544 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2545 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2546 st->frag_idx = 0;
2547 goto next_skb;
2548 } else if (st->cur_skb->next) {
2549 st->cur_skb = st->cur_skb->next;
2550 st->frag_idx = 0;
2551 goto next_skb;
2552 }
2553
2554 return 0;
2555 }
2556 EXPORT_SYMBOL(skb_seq_read);
2557
2558 /**
2559 * skb_abort_seq_read - Abort a sequential read of skb data
2560 * @st: state variable
2561 *
2562 * Must be called if skb_seq_read() was not called until it
2563 * returned 0.
2564 */
2565 void skb_abort_seq_read(struct skb_seq_state *st)
2566 {
2567 if (st->frag_data)
2568 kunmap_atomic(st->frag_data);
2569 }
2570 EXPORT_SYMBOL(skb_abort_seq_read);
2571
2572 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2573
2574 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2575 struct ts_config *conf,
2576 struct ts_state *state)
2577 {
2578 return skb_seq_read(offset, text, TS_SKB_CB(state));
2579 }
2580
2581 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2582 {
2583 skb_abort_seq_read(TS_SKB_CB(state));
2584 }
2585
2586 /**
2587 * skb_find_text - Find a text pattern in skb data
2588 * @skb: the buffer to look in
2589 * @from: search offset
2590 * @to: search limit
2591 * @config: textsearch configuration
2592 * @state: uninitialized textsearch state variable
2593 *
2594 * Finds a pattern in the skb data according to the specified
2595 * textsearch configuration. Use textsearch_next() to retrieve
2596 * subsequent occurrences of the pattern. Returns the offset
2597 * to the first occurrence or UINT_MAX if no match was found.
2598 */
2599 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2600 unsigned int to, struct ts_config *config,
2601 struct ts_state *state)
2602 {
2603 unsigned int ret;
2604
2605 config->get_next_block = skb_ts_get_next_block;
2606 config->finish = skb_ts_finish;
2607
2608 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2609
2610 ret = textsearch_find(config, state);
2611 return (ret <= to - from ? ret : UINT_MAX);
2612 }
2613 EXPORT_SYMBOL(skb_find_text);
2614
2615 /**
2616 * skb_append_datato_frags: - append the user data to a skb
2617 * @sk: sock structure
2618 * @skb: skb structure to be appened with user data.
2619 * @getfrag: call back function to be used for getting the user data
2620 * @from: pointer to user message iov
2621 * @length: length of the iov message
2622 *
2623 * Description: This procedure append the user data in the fragment part
2624 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2625 */
2626 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2627 int (*getfrag)(void *from, char *to, int offset,
2628 int len, int odd, struct sk_buff *skb),
2629 void *from, int length)
2630 {
2631 int frg_cnt = 0;
2632 skb_frag_t *frag = NULL;
2633 struct page *page = NULL;
2634 int copy, left;
2635 int offset = 0;
2636 int ret;
2637
2638 do {
2639 /* Return error if we don't have space for new frag */
2640 frg_cnt = skb_shinfo(skb)->nr_frags;
2641 if (frg_cnt >= MAX_SKB_FRAGS)
2642 return -EFAULT;
2643
2644 /* allocate a new page for next frag */
2645 page = alloc_pages(sk->sk_allocation, 0);
2646
2647 /* If alloc_page fails just return failure and caller will
2648 * free previous allocated pages by doing kfree_skb()
2649 */
2650 if (page == NULL)
2651 return -ENOMEM;
2652
2653 /* initialize the next frag */
2654 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2655 skb->truesize += PAGE_SIZE;
2656 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2657
2658 /* get the new initialized frag */
2659 frg_cnt = skb_shinfo(skb)->nr_frags;
2660 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2661
2662 /* copy the user data to page */
2663 left = PAGE_SIZE - frag->page_offset;
2664 copy = (length > left)? left : length;
2665
2666 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2667 offset, copy, 0, skb);
2668 if (ret < 0)
2669 return -EFAULT;
2670
2671 /* copy was successful so update the size parameters */
2672 skb_frag_size_add(frag, copy);
2673 skb->len += copy;
2674 skb->data_len += copy;
2675 offset += copy;
2676 length -= copy;
2677
2678 } while (length > 0);
2679
2680 return 0;
2681 }
2682 EXPORT_SYMBOL(skb_append_datato_frags);
2683
2684 /**
2685 * skb_pull_rcsum - pull skb and update receive checksum
2686 * @skb: buffer to update
2687 * @len: length of data pulled
2688 *
2689 * This function performs an skb_pull on the packet and updates
2690 * the CHECKSUM_COMPLETE checksum. It should be used on
2691 * receive path processing instead of skb_pull unless you know
2692 * that the checksum difference is zero (e.g., a valid IP header)
2693 * or you are setting ip_summed to CHECKSUM_NONE.
2694 */
2695 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2696 {
2697 BUG_ON(len > skb->len);
2698 skb->len -= len;
2699 BUG_ON(skb->len < skb->data_len);
2700 skb_postpull_rcsum(skb, skb->data, len);
2701 return skb->data += len;
2702 }
2703 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2704
2705 /**
2706 * skb_segment - Perform protocol segmentation on skb.
2707 * @skb: buffer to segment
2708 * @features: features for the output path (see dev->features)
2709 *
2710 * This function performs segmentation on the given skb. It returns
2711 * a pointer to the first in a list of new skbs for the segments.
2712 * In case of error it returns ERR_PTR(err).
2713 */
2714 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2715 {
2716 struct sk_buff *segs = NULL;
2717 struct sk_buff *tail = NULL;
2718 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2719 unsigned int mss = skb_shinfo(skb)->gso_size;
2720 unsigned int doffset = skb->data - skb_mac_header(skb);
2721 unsigned int offset = doffset;
2722 unsigned int headroom;
2723 unsigned int len;
2724 int sg = !!(features & NETIF_F_SG);
2725 int nfrags = skb_shinfo(skb)->nr_frags;
2726 int err = -ENOMEM;
2727 int i = 0;
2728 int pos;
2729
2730 __skb_push(skb, doffset);
2731 headroom = skb_headroom(skb);
2732 pos = skb_headlen(skb);
2733
2734 do {
2735 struct sk_buff *nskb;
2736 skb_frag_t *frag;
2737 int hsize;
2738 int size;
2739
2740 len = skb->len - offset;
2741 if (len > mss)
2742 len = mss;
2743
2744 hsize = skb_headlen(skb) - offset;
2745 if (hsize < 0)
2746 hsize = 0;
2747 if (hsize > len || !sg)
2748 hsize = len;
2749
2750 if (!hsize && i >= nfrags) {
2751 BUG_ON(fskb->len != len);
2752
2753 pos += len;
2754 nskb = skb_clone(fskb, GFP_ATOMIC);
2755 fskb = fskb->next;
2756
2757 if (unlikely(!nskb))
2758 goto err;
2759
2760 hsize = skb_end_offset(nskb);
2761 if (skb_cow_head(nskb, doffset + headroom)) {
2762 kfree_skb(nskb);
2763 goto err;
2764 }
2765
2766 nskb->truesize += skb_end_offset(nskb) - hsize;
2767 skb_release_head_state(nskb);
2768 __skb_push(nskb, doffset);
2769 } else {
2770 nskb = alloc_skb(hsize + doffset + headroom,
2771 GFP_ATOMIC);
2772
2773 if (unlikely(!nskb))
2774 goto err;
2775
2776 skb_reserve(nskb, headroom);
2777 __skb_put(nskb, doffset);
2778 }
2779
2780 if (segs)
2781 tail->next = nskb;
2782 else
2783 segs = nskb;
2784 tail = nskb;
2785
2786 __copy_skb_header(nskb, skb);
2787 nskb->mac_len = skb->mac_len;
2788
2789 /* nskb and skb might have different headroom */
2790 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2791 nskb->csum_start += skb_headroom(nskb) - headroom;
2792
2793 skb_reset_mac_header(nskb);
2794 skb_set_network_header(nskb, skb->mac_len);
2795 nskb->transport_header = (nskb->network_header +
2796 skb_network_header_len(skb));
2797 skb_copy_from_linear_data(skb, nskb->data, doffset);
2798
2799 if (fskb != skb_shinfo(skb)->frag_list)
2800 continue;
2801
2802 if (!sg) {
2803 nskb->ip_summed = CHECKSUM_NONE;
2804 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2805 skb_put(nskb, len),
2806 len, 0);
2807 continue;
2808 }
2809
2810 frag = skb_shinfo(nskb)->frags;
2811
2812 skb_copy_from_linear_data_offset(skb, offset,
2813 skb_put(nskb, hsize), hsize);
2814
2815 while (pos < offset + len && i < nfrags) {
2816 *frag = skb_shinfo(skb)->frags[i];
2817 __skb_frag_ref(frag);
2818 size = skb_frag_size(frag);
2819
2820 if (pos < offset) {
2821 frag->page_offset += offset - pos;
2822 skb_frag_size_sub(frag, offset - pos);
2823 }
2824
2825 skb_shinfo(nskb)->nr_frags++;
2826
2827 if (pos + size <= offset + len) {
2828 i++;
2829 pos += size;
2830 } else {
2831 skb_frag_size_sub(frag, pos + size - (offset + len));
2832 goto skip_fraglist;
2833 }
2834
2835 frag++;
2836 }
2837
2838 if (pos < offset + len) {
2839 struct sk_buff *fskb2 = fskb;
2840
2841 BUG_ON(pos + fskb->len != offset + len);
2842
2843 pos += fskb->len;
2844 fskb = fskb->next;
2845
2846 if (fskb2->next) {
2847 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2848 if (!fskb2)
2849 goto err;
2850 } else
2851 skb_get(fskb2);
2852
2853 SKB_FRAG_ASSERT(nskb);
2854 skb_shinfo(nskb)->frag_list = fskb2;
2855 }
2856
2857 skip_fraglist:
2858 nskb->data_len = len - hsize;
2859 nskb->len += nskb->data_len;
2860 nskb->truesize += nskb->data_len;
2861 } while ((offset += len) < skb->len);
2862
2863 return segs;
2864
2865 err:
2866 while ((skb = segs)) {
2867 segs = skb->next;
2868 kfree_skb(skb);
2869 }
2870 return ERR_PTR(err);
2871 }
2872 EXPORT_SYMBOL_GPL(skb_segment);
2873
2874 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2875 {
2876 struct sk_buff *p = *head;
2877 struct sk_buff *nskb;
2878 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2879 struct skb_shared_info *pinfo = skb_shinfo(p);
2880 unsigned int headroom;
2881 unsigned int len = skb_gro_len(skb);
2882 unsigned int offset = skb_gro_offset(skb);
2883 unsigned int headlen = skb_headlen(skb);
2884 unsigned int delta_truesize;
2885
2886 if (p->len + len >= 65536)
2887 return -E2BIG;
2888
2889 if (pinfo->frag_list)
2890 goto merge;
2891 else if (headlen <= offset) {
2892 skb_frag_t *frag;
2893 skb_frag_t *frag2;
2894 int i = skbinfo->nr_frags;
2895 int nr_frags = pinfo->nr_frags + i;
2896
2897 offset -= headlen;
2898
2899 if (nr_frags > MAX_SKB_FRAGS)
2900 return -E2BIG;
2901
2902 pinfo->nr_frags = nr_frags;
2903 skbinfo->nr_frags = 0;
2904
2905 frag = pinfo->frags + nr_frags;
2906 frag2 = skbinfo->frags + i;
2907 do {
2908 *--frag = *--frag2;
2909 } while (--i);
2910
2911 frag->page_offset += offset;
2912 skb_frag_size_sub(frag, offset);
2913
2914 /* all fragments truesize : remove (head size + sk_buff) */
2915 delta_truesize = skb->truesize -
2916 SKB_TRUESIZE(skb_end_offset(skb));
2917
2918 skb->truesize -= skb->data_len;
2919 skb->len -= skb->data_len;
2920 skb->data_len = 0;
2921
2922 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2923 goto done;
2924 } else if (skb->head_frag) {
2925 int nr_frags = pinfo->nr_frags;
2926 skb_frag_t *frag = pinfo->frags + nr_frags;
2927 struct page *page = virt_to_head_page(skb->head);
2928 unsigned int first_size = headlen - offset;
2929 unsigned int first_offset;
2930
2931 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2932 return -E2BIG;
2933
2934 first_offset = skb->data -
2935 (unsigned char *)page_address(page) +
2936 offset;
2937
2938 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2939
2940 frag->page.p = page;
2941 frag->page_offset = first_offset;
2942 skb_frag_size_set(frag, first_size);
2943
2944 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2945 /* We dont need to clear skbinfo->nr_frags here */
2946
2947 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2948 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2949 goto done;
2950 } else if (skb_gro_len(p) != pinfo->gso_size)
2951 return -E2BIG;
2952
2953 headroom = skb_headroom(p);
2954 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2955 if (unlikely(!nskb))
2956 return -ENOMEM;
2957
2958 __copy_skb_header(nskb, p);
2959 nskb->mac_len = p->mac_len;
2960
2961 skb_reserve(nskb, headroom);
2962 __skb_put(nskb, skb_gro_offset(p));
2963
2964 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2965 skb_set_network_header(nskb, skb_network_offset(p));
2966 skb_set_transport_header(nskb, skb_transport_offset(p));
2967
2968 __skb_pull(p, skb_gro_offset(p));
2969 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2970 p->data - skb_mac_header(p));
2971
2972 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2973 skb_shinfo(nskb)->frag_list = p;
2974 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2975 pinfo->gso_size = 0;
2976 skb_header_release(p);
2977 nskb->prev = p;
2978
2979 nskb->data_len += p->len;
2980 nskb->truesize += p->truesize;
2981 nskb->len += p->len;
2982
2983 *head = nskb;
2984 nskb->next = p->next;
2985 p->next = NULL;
2986
2987 p = nskb;
2988
2989 merge:
2990 delta_truesize = skb->truesize;
2991 if (offset > headlen) {
2992 unsigned int eat = offset - headlen;
2993
2994 skbinfo->frags[0].page_offset += eat;
2995 skb_frag_size_sub(&skbinfo->frags[0], eat);
2996 skb->data_len -= eat;
2997 skb->len -= eat;
2998 offset = headlen;
2999 }
3000
3001 __skb_pull(skb, offset);
3002
3003 p->prev->next = skb;
3004 p->prev = skb;
3005 skb_header_release(skb);
3006
3007 done:
3008 NAPI_GRO_CB(p)->count++;
3009 p->data_len += len;
3010 p->truesize += delta_truesize;
3011 p->len += len;
3012
3013 NAPI_GRO_CB(skb)->same_flow = 1;
3014 return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_gro_receive);
3017
3018 void __init skb_init(void)
3019 {
3020 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3021 sizeof(struct sk_buff),
3022 0,
3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3024 NULL);
3025 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3026 (2*sizeof(struct sk_buff)) +
3027 sizeof(atomic_t),
3028 0,
3029 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3030 NULL);
3031 }
3032
3033 /**
3034 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3035 * @skb: Socket buffer containing the buffers to be mapped
3036 * @sg: The scatter-gather list to map into
3037 * @offset: The offset into the buffer's contents to start mapping
3038 * @len: Length of buffer space to be mapped
3039 *
3040 * Fill the specified scatter-gather list with mappings/pointers into a
3041 * region of the buffer space attached to a socket buffer.
3042 */
3043 static int
3044 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3045 {
3046 int start = skb_headlen(skb);
3047 int i, copy = start - offset;
3048 struct sk_buff *frag_iter;
3049 int elt = 0;
3050
3051 if (copy > 0) {
3052 if (copy > len)
3053 copy = len;
3054 sg_set_buf(sg, skb->data + offset, copy);
3055 elt++;
3056 if ((len -= copy) == 0)
3057 return elt;
3058 offset += copy;
3059 }
3060
3061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3062 int end;
3063
3064 WARN_ON(start > offset + len);
3065
3066 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3067 if ((copy = end - offset) > 0) {
3068 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3069
3070 if (copy > len)
3071 copy = len;
3072 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3073 frag->page_offset+offset-start);
3074 elt++;
3075 if (!(len -= copy))
3076 return elt;
3077 offset += copy;
3078 }
3079 start = end;
3080 }
3081
3082 skb_walk_frags(skb, frag_iter) {
3083 int end;
3084
3085 WARN_ON(start > offset + len);
3086
3087 end = start + frag_iter->len;
3088 if ((copy = end - offset) > 0) {
3089 if (copy > len)
3090 copy = len;
3091 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3092 copy);
3093 if ((len -= copy) == 0)
3094 return elt;
3095 offset += copy;
3096 }
3097 start = end;
3098 }
3099 BUG_ON(len);
3100 return elt;
3101 }
3102
3103 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3104 {
3105 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3106
3107 sg_mark_end(&sg[nsg - 1]);
3108
3109 return nsg;
3110 }
3111 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3112
3113 /**
3114 * skb_cow_data - Check that a socket buffer's data buffers are writable
3115 * @skb: The socket buffer to check.
3116 * @tailbits: Amount of trailing space to be added
3117 * @trailer: Returned pointer to the skb where the @tailbits space begins
3118 *
3119 * Make sure that the data buffers attached to a socket buffer are
3120 * writable. If they are not, private copies are made of the data buffers
3121 * and the socket buffer is set to use these instead.
3122 *
3123 * If @tailbits is given, make sure that there is space to write @tailbits
3124 * bytes of data beyond current end of socket buffer. @trailer will be
3125 * set to point to the skb in which this space begins.
3126 *
3127 * The number of scatterlist elements required to completely map the
3128 * COW'd and extended socket buffer will be returned.
3129 */
3130 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3131 {
3132 int copyflag;
3133 int elt;
3134 struct sk_buff *skb1, **skb_p;
3135
3136 /* If skb is cloned or its head is paged, reallocate
3137 * head pulling out all the pages (pages are considered not writable
3138 * at the moment even if they are anonymous).
3139 */
3140 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3141 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3142 return -ENOMEM;
3143
3144 /* Easy case. Most of packets will go this way. */
3145 if (!skb_has_frag_list(skb)) {
3146 /* A little of trouble, not enough of space for trailer.
3147 * This should not happen, when stack is tuned to generate
3148 * good frames. OK, on miss we reallocate and reserve even more
3149 * space, 128 bytes is fair. */
3150
3151 if (skb_tailroom(skb) < tailbits &&
3152 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3153 return -ENOMEM;
3154
3155 /* Voila! */
3156 *trailer = skb;
3157 return 1;
3158 }
3159
3160 /* Misery. We are in troubles, going to mincer fragments... */
3161
3162 elt = 1;
3163 skb_p = &skb_shinfo(skb)->frag_list;
3164 copyflag = 0;
3165
3166 while ((skb1 = *skb_p) != NULL) {
3167 int ntail = 0;
3168
3169 /* The fragment is partially pulled by someone,
3170 * this can happen on input. Copy it and everything
3171 * after it. */
3172
3173 if (skb_shared(skb1))
3174 copyflag = 1;
3175
3176 /* If the skb is the last, worry about trailer. */
3177
3178 if (skb1->next == NULL && tailbits) {
3179 if (skb_shinfo(skb1)->nr_frags ||
3180 skb_has_frag_list(skb1) ||
3181 skb_tailroom(skb1) < tailbits)
3182 ntail = tailbits + 128;
3183 }
3184
3185 if (copyflag ||
3186 skb_cloned(skb1) ||
3187 ntail ||
3188 skb_shinfo(skb1)->nr_frags ||
3189 skb_has_frag_list(skb1)) {
3190 struct sk_buff *skb2;
3191
3192 /* Fuck, we are miserable poor guys... */
3193 if (ntail == 0)
3194 skb2 = skb_copy(skb1, GFP_ATOMIC);
3195 else
3196 skb2 = skb_copy_expand(skb1,
3197 skb_headroom(skb1),
3198 ntail,
3199 GFP_ATOMIC);
3200 if (unlikely(skb2 == NULL))
3201 return -ENOMEM;
3202
3203 if (skb1->sk)
3204 skb_set_owner_w(skb2, skb1->sk);
3205
3206 /* Looking around. Are we still alive?
3207 * OK, link new skb, drop old one */
3208
3209 skb2->next = skb1->next;
3210 *skb_p = skb2;
3211 kfree_skb(skb1);
3212 skb1 = skb2;
3213 }
3214 elt++;
3215 *trailer = skb1;
3216 skb_p = &skb1->next;
3217 }
3218
3219 return elt;
3220 }
3221 EXPORT_SYMBOL_GPL(skb_cow_data);
3222
3223 static void sock_rmem_free(struct sk_buff *skb)
3224 {
3225 struct sock *sk = skb->sk;
3226
3227 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3228 }
3229
3230 /*
3231 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3232 */
3233 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3234 {
3235 int len = skb->len;
3236
3237 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3238 (unsigned int)sk->sk_rcvbuf)
3239 return -ENOMEM;
3240
3241 skb_orphan(skb);
3242 skb->sk = sk;
3243 skb->destructor = sock_rmem_free;
3244 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3245
3246 /* before exiting rcu section, make sure dst is refcounted */
3247 skb_dst_force(skb);
3248
3249 skb_queue_tail(&sk->sk_error_queue, skb);
3250 if (!sock_flag(sk, SOCK_DEAD))
3251 sk->sk_data_ready(sk, len);
3252 return 0;
3253 }
3254 EXPORT_SYMBOL(sock_queue_err_skb);
3255
3256 void skb_tstamp_tx(struct sk_buff *orig_skb,
3257 struct skb_shared_hwtstamps *hwtstamps)
3258 {
3259 struct sock *sk = orig_skb->sk;
3260 struct sock_exterr_skb *serr;
3261 struct sk_buff *skb;
3262 int err;
3263
3264 if (!sk)
3265 return;
3266
3267 skb = skb_clone(orig_skb, GFP_ATOMIC);
3268 if (!skb)
3269 return;
3270
3271 if (hwtstamps) {
3272 *skb_hwtstamps(skb) =
3273 *hwtstamps;
3274 } else {
3275 /*
3276 * no hardware time stamps available,
3277 * so keep the shared tx_flags and only
3278 * store software time stamp
3279 */
3280 skb->tstamp = ktime_get_real();
3281 }
3282
3283 serr = SKB_EXT_ERR(skb);
3284 memset(serr, 0, sizeof(*serr));
3285 serr->ee.ee_errno = ENOMSG;
3286 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3287
3288 err = sock_queue_err_skb(sk, skb);
3289
3290 if (err)
3291 kfree_skb(skb);
3292 }
3293 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3294
3295 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3296 {
3297 struct sock *sk = skb->sk;
3298 struct sock_exterr_skb *serr;
3299 int err;
3300
3301 skb->wifi_acked_valid = 1;
3302 skb->wifi_acked = acked;
3303
3304 serr = SKB_EXT_ERR(skb);
3305 memset(serr, 0, sizeof(*serr));
3306 serr->ee.ee_errno = ENOMSG;
3307 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3308
3309 err = sock_queue_err_skb(sk, skb);
3310 if (err)
3311 kfree_skb(skb);
3312 }
3313 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3314
3315
3316 /**
3317 * skb_partial_csum_set - set up and verify partial csum values for packet
3318 * @skb: the skb to set
3319 * @start: the number of bytes after skb->data to start checksumming.
3320 * @off: the offset from start to place the checksum.
3321 *
3322 * For untrusted partially-checksummed packets, we need to make sure the values
3323 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3324 *
3325 * This function checks and sets those values and skb->ip_summed: if this
3326 * returns false you should drop the packet.
3327 */
3328 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3329 {
3330 if (unlikely(start > skb_headlen(skb)) ||
3331 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3332 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3333 start, off, skb_headlen(skb));
3334 return false;
3335 }
3336 skb->ip_summed = CHECKSUM_PARTIAL;
3337 skb->csum_start = skb_headroom(skb) + start;
3338 skb->csum_offset = off;
3339 return true;
3340 }
3341 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3342
3343 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3344 {
3345 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3346 skb->dev->name);
3347 }
3348 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3349
3350 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3351 {
3352 if (head_stolen)
3353 kmem_cache_free(skbuff_head_cache, skb);
3354 else
3355 __kfree_skb(skb);
3356 }
3357 EXPORT_SYMBOL(kfree_skb_partial);
3358
3359 /**
3360 * skb_try_coalesce - try to merge skb to prior one
3361 * @to: prior buffer
3362 * @from: buffer to add
3363 * @fragstolen: pointer to boolean
3364 * @delta_truesize: how much more was allocated than was requested
3365 */
3366 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3367 bool *fragstolen, int *delta_truesize)
3368 {
3369 int i, delta, len = from->len;
3370
3371 *fragstolen = false;
3372
3373 if (skb_cloned(to))
3374 return false;
3375
3376 if (len <= skb_tailroom(to)) {
3377 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3378 *delta_truesize = 0;
3379 return true;
3380 }
3381
3382 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3383 return false;
3384
3385 if (skb_headlen(from) != 0) {
3386 struct page *page;
3387 unsigned int offset;
3388
3389 if (skb_shinfo(to)->nr_frags +
3390 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3391 return false;
3392
3393 if (skb_head_is_locked(from))
3394 return false;
3395
3396 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3397
3398 page = virt_to_head_page(from->head);
3399 offset = from->data - (unsigned char *)page_address(page);
3400
3401 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3402 page, offset, skb_headlen(from));
3403 *fragstolen = true;
3404 } else {
3405 if (skb_shinfo(to)->nr_frags +
3406 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3407 return false;
3408
3409 delta = from->truesize -
3410 SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3411 }
3412
3413 WARN_ON_ONCE(delta < len);
3414
3415 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3416 skb_shinfo(from)->frags,
3417 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3418 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3419
3420 if (!skb_cloned(from))
3421 skb_shinfo(from)->nr_frags = 0;
3422
3423 /* if the skb is cloned this does nothing since we set nr_frags to 0 */
3424 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3425 skb_frag_ref(from, i);
3426
3427 to->truesize += delta;
3428 to->len += len;
3429 to->data_len += len;
3430
3431 *delta_truesize = delta;
3432 return true;
3433 }
3434 EXPORT_SYMBOL(skb_try_coalesce);