Merge tag 'tty-3.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /**
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
112 * @msg: skb_over_panic or skb_under_panic
113 *
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
118 */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 const char msg[])
121 {
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg, addr, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 skb_panic(skb, sz, addr, __func__);
132 }
133
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 skb_panic(skb, sz, addr, __func__);
137 }
138
139 /*
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
145 */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
151 {
152 void *obj;
153 bool ret_pfmemalloc = false;
154
155 /*
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
158 */
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
164
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
168
169 out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
172
173 return obj;
174 }
175
176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
179 *
180 */
181
182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 struct sk_buff *skb;
185
186 /* Get the HEAD */
187 skb = kmem_cache_alloc_node(skbuff_head_cache,
188 gfp_mask & ~__GFP_DMA, node);
189 if (!skb)
190 goto out;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->head = NULL;
199 skb->truesize = sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201
202 #ifdef NET_SKBUFF_DATA_USES_OFFSET
203 skb->mac_header = ~0U;
204 #endif
205 out:
206 return skb;
207 }
208
209 /**
210 * __alloc_skb - allocate a network buffer
211 * @size: size to allocate
212 * @gfp_mask: allocation mask
213 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
214 * instead of head cache and allocate a cloned (child) skb.
215 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
216 * allocations in case the data is required for writeback
217 * @node: numa node to allocate memory on
218 *
219 * Allocate a new &sk_buff. The returned buffer has no headroom and a
220 * tail room of at least size bytes. The object has a reference count
221 * of one. The return is the buffer. On a failure the return is %NULL.
222 *
223 * Buffers may only be allocated from interrupts using a @gfp_mask of
224 * %GFP_ATOMIC.
225 */
226 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
227 int flags, int node)
228 {
229 struct kmem_cache *cache;
230 struct skb_shared_info *shinfo;
231 struct sk_buff *skb;
232 u8 *data;
233 bool pfmemalloc;
234
235 cache = (flags & SKB_ALLOC_FCLONE)
236 ? skbuff_fclone_cache : skbuff_head_cache;
237
238 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
239 gfp_mask |= __GFP_MEMALLOC;
240
241 /* Get the HEAD */
242 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
243 if (!skb)
244 goto out;
245 prefetchw(skb);
246
247 /* We do our best to align skb_shared_info on a separate cache
248 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
249 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
250 * Both skb->head and skb_shared_info are cache line aligned.
251 */
252 size = SKB_DATA_ALIGN(size);
253 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
254 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
255 if (!data)
256 goto nodata;
257 /* kmalloc(size) might give us more room than requested.
258 * Put skb_shared_info exactly at the end of allocated zone,
259 * to allow max possible filling before reallocation.
260 */
261 size = SKB_WITH_OVERHEAD(ksize(data));
262 prefetchw(data + size);
263
264 /*
265 * Only clear those fields we need to clear, not those that we will
266 * actually initialise below. Hence, don't put any more fields after
267 * the tail pointer in struct sk_buff!
268 */
269 memset(skb, 0, offsetof(struct sk_buff, tail));
270 /* Account for allocated memory : skb + skb->head */
271 skb->truesize = SKB_TRUESIZE(size);
272 skb->pfmemalloc = pfmemalloc;
273 atomic_set(&skb->users, 1);
274 skb->head = data;
275 skb->data = data;
276 skb_reset_tail_pointer(skb);
277 skb->end = skb->tail + size;
278 #ifdef NET_SKBUFF_DATA_USES_OFFSET
279 skb->mac_header = ~0U;
280 skb->transport_header = ~0U;
281 #endif
282
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 atomic_set(&shinfo->dataref, 1);
287 kmemcheck_annotate_variable(shinfo->destructor_arg);
288
289 if (flags & SKB_ALLOC_FCLONE) {
290 struct sk_buff *child = skb + 1;
291 atomic_t *fclone_ref = (atomic_t *) (child + 1);
292
293 kmemcheck_annotate_bitfield(child, flags1);
294 kmemcheck_annotate_bitfield(child, flags2);
295 skb->fclone = SKB_FCLONE_ORIG;
296 atomic_set(fclone_ref, 1);
297
298 child->fclone = SKB_FCLONE_UNAVAILABLE;
299 child->pfmemalloc = pfmemalloc;
300 }
301 out:
302 return skb;
303 nodata:
304 kmem_cache_free(cache, skb);
305 skb = NULL;
306 goto out;
307 }
308 EXPORT_SYMBOL(__alloc_skb);
309
310 /**
311 * build_skb - build a network buffer
312 * @data: data buffer provided by caller
313 * @frag_size: size of fragment, or 0 if head was kmalloced
314 *
315 * Allocate a new &sk_buff. Caller provides space holding head and
316 * skb_shared_info. @data must have been allocated by kmalloc()
317 * The return is the new skb buffer.
318 * On a failure the return is %NULL, and @data is not freed.
319 * Notes :
320 * Before IO, driver allocates only data buffer where NIC put incoming frame
321 * Driver should add room at head (NET_SKB_PAD) and
322 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
323 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
324 * before giving packet to stack.
325 * RX rings only contains data buffers, not full skbs.
326 */
327 struct sk_buff *build_skb(void *data, unsigned int frag_size)
328 {
329 struct skb_shared_info *shinfo;
330 struct sk_buff *skb;
331 unsigned int size = frag_size ? : ksize(data);
332
333 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
334 if (!skb)
335 return NULL;
336
337 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
338
339 memset(skb, 0, offsetof(struct sk_buff, tail));
340 skb->truesize = SKB_TRUESIZE(size);
341 skb->head_frag = frag_size != 0;
342 atomic_set(&skb->users, 1);
343 skb->head = data;
344 skb->data = data;
345 skb_reset_tail_pointer(skb);
346 skb->end = skb->tail + size;
347 #ifdef NET_SKBUFF_DATA_USES_OFFSET
348 skb->mac_header = ~0U;
349 skb->transport_header = ~0U;
350 #endif
351
352 /* make sure we initialize shinfo sequentially */
353 shinfo = skb_shinfo(skb);
354 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
355 atomic_set(&shinfo->dataref, 1);
356 kmemcheck_annotate_variable(shinfo->destructor_arg);
357
358 return skb;
359 }
360 EXPORT_SYMBOL(build_skb);
361
362 struct netdev_alloc_cache {
363 struct page_frag frag;
364 /* we maintain a pagecount bias, so that we dont dirty cache line
365 * containing page->_count every time we allocate a fragment.
366 */
367 unsigned int pagecnt_bias;
368 };
369 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
370
371 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 struct netdev_alloc_cache *nc;
374 void *data = NULL;
375 int order;
376 unsigned long flags;
377
378 local_irq_save(flags);
379 nc = &__get_cpu_var(netdev_alloc_cache);
380 if (unlikely(!nc->frag.page)) {
381 refill:
382 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
383 gfp_t gfp = gfp_mask;
384
385 if (order)
386 gfp |= __GFP_COMP | __GFP_NOWARN;
387 nc->frag.page = alloc_pages(gfp, order);
388 if (likely(nc->frag.page))
389 break;
390 if (--order < 0)
391 goto end;
392 }
393 nc->frag.size = PAGE_SIZE << order;
394 recycle:
395 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
396 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
397 nc->frag.offset = 0;
398 }
399
400 if (nc->frag.offset + fragsz > nc->frag.size) {
401 /* avoid unnecessary locked operations if possible */
402 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
403 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
404 goto recycle;
405 goto refill;
406 }
407
408 data = page_address(nc->frag.page) + nc->frag.offset;
409 nc->frag.offset += fragsz;
410 nc->pagecnt_bias--;
411 end:
412 local_irq_restore(flags);
413 return data;
414 }
415
416 /**
417 * netdev_alloc_frag - allocate a page fragment
418 * @fragsz: fragment size
419 *
420 * Allocates a frag from a page for receive buffer.
421 * Uses GFP_ATOMIC allocations.
422 */
423 void *netdev_alloc_frag(unsigned int fragsz)
424 {
425 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
426 }
427 EXPORT_SYMBOL(netdev_alloc_frag);
428
429 /**
430 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
431 * @dev: network device to receive on
432 * @length: length to allocate
433 * @gfp_mask: get_free_pages mask, passed to alloc_skb
434 *
435 * Allocate a new &sk_buff and assign it a usage count of one. The
436 * buffer has unspecified headroom built in. Users should allocate
437 * the headroom they think they need without accounting for the
438 * built in space. The built in space is used for optimisations.
439 *
440 * %NULL is returned if there is no free memory.
441 */
442 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
443 unsigned int length, gfp_t gfp_mask)
444 {
445 struct sk_buff *skb = NULL;
446 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448
449 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
450 void *data;
451
452 if (sk_memalloc_socks())
453 gfp_mask |= __GFP_MEMALLOC;
454
455 data = __netdev_alloc_frag(fragsz, gfp_mask);
456
457 if (likely(data)) {
458 skb = build_skb(data, fragsz);
459 if (unlikely(!skb))
460 put_page(virt_to_head_page(data));
461 }
462 } else {
463 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
464 SKB_ALLOC_RX, NUMA_NO_NODE);
465 }
466 if (likely(skb)) {
467 skb_reserve(skb, NET_SKB_PAD);
468 skb->dev = dev;
469 }
470 return skb;
471 }
472 EXPORT_SYMBOL(__netdev_alloc_skb);
473
474 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
475 int size, unsigned int truesize)
476 {
477 skb_fill_page_desc(skb, i, page, off, size);
478 skb->len += size;
479 skb->data_len += size;
480 skb->truesize += truesize;
481 }
482 EXPORT_SYMBOL(skb_add_rx_frag);
483
484 static void skb_drop_list(struct sk_buff **listp)
485 {
486 struct sk_buff *list = *listp;
487
488 *listp = NULL;
489
490 do {
491 struct sk_buff *this = list;
492 list = list->next;
493 kfree_skb(this);
494 } while (list);
495 }
496
497 static inline void skb_drop_fraglist(struct sk_buff *skb)
498 {
499 skb_drop_list(&skb_shinfo(skb)->frag_list);
500 }
501
502 static void skb_clone_fraglist(struct sk_buff *skb)
503 {
504 struct sk_buff *list;
505
506 skb_walk_frags(skb, list)
507 skb_get(list);
508 }
509
510 static void skb_free_head(struct sk_buff *skb)
511 {
512 if (skb->head_frag)
513 put_page(virt_to_head_page(skb->head));
514 else
515 kfree(skb->head);
516 }
517
518 static void skb_release_data(struct sk_buff *skb)
519 {
520 if (!skb->cloned ||
521 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
522 &skb_shinfo(skb)->dataref)) {
523 if (skb_shinfo(skb)->nr_frags) {
524 int i;
525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
526 skb_frag_unref(skb, i);
527 }
528
529 /*
530 * If skb buf is from userspace, we need to notify the caller
531 * the lower device DMA has done;
532 */
533 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
534 struct ubuf_info *uarg;
535
536 uarg = skb_shinfo(skb)->destructor_arg;
537 if (uarg->callback)
538 uarg->callback(uarg, true);
539 }
540
541 if (skb_has_frag_list(skb))
542 skb_drop_fraglist(skb);
543
544 skb_free_head(skb);
545 }
546 }
547
548 /*
549 * Free an skbuff by memory without cleaning the state.
550 */
551 static void kfree_skbmem(struct sk_buff *skb)
552 {
553 struct sk_buff *other;
554 atomic_t *fclone_ref;
555
556 switch (skb->fclone) {
557 case SKB_FCLONE_UNAVAILABLE:
558 kmem_cache_free(skbuff_head_cache, skb);
559 break;
560
561 case SKB_FCLONE_ORIG:
562 fclone_ref = (atomic_t *) (skb + 2);
563 if (atomic_dec_and_test(fclone_ref))
564 kmem_cache_free(skbuff_fclone_cache, skb);
565 break;
566
567 case SKB_FCLONE_CLONE:
568 fclone_ref = (atomic_t *) (skb + 1);
569 other = skb - 1;
570
571 /* The clone portion is available for
572 * fast-cloning again.
573 */
574 skb->fclone = SKB_FCLONE_UNAVAILABLE;
575
576 if (atomic_dec_and_test(fclone_ref))
577 kmem_cache_free(skbuff_fclone_cache, other);
578 break;
579 }
580 }
581
582 static void skb_release_head_state(struct sk_buff *skb)
583 {
584 skb_dst_drop(skb);
585 #ifdef CONFIG_XFRM
586 secpath_put(skb->sp);
587 #endif
588 if (skb->destructor) {
589 WARN_ON(in_irq());
590 skb->destructor(skb);
591 }
592 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
593 nf_conntrack_put(skb->nfct);
594 #endif
595 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
596 nf_conntrack_put_reasm(skb->nfct_reasm);
597 #endif
598 #ifdef CONFIG_BRIDGE_NETFILTER
599 nf_bridge_put(skb->nf_bridge);
600 #endif
601 /* XXX: IS this still necessary? - JHS */
602 #ifdef CONFIG_NET_SCHED
603 skb->tc_index = 0;
604 #ifdef CONFIG_NET_CLS_ACT
605 skb->tc_verd = 0;
606 #endif
607 #endif
608 }
609
610 /* Free everything but the sk_buff shell. */
611 static void skb_release_all(struct sk_buff *skb)
612 {
613 skb_release_head_state(skb);
614 if (likely(skb->head))
615 skb_release_data(skb);
616 }
617
618 /**
619 * __kfree_skb - private function
620 * @skb: buffer
621 *
622 * Free an sk_buff. Release anything attached to the buffer.
623 * Clean the state. This is an internal helper function. Users should
624 * always call kfree_skb
625 */
626
627 void __kfree_skb(struct sk_buff *skb)
628 {
629 skb_release_all(skb);
630 kfree_skbmem(skb);
631 }
632 EXPORT_SYMBOL(__kfree_skb);
633
634 /**
635 * kfree_skb - free an sk_buff
636 * @skb: buffer to free
637 *
638 * Drop a reference to the buffer and free it if the usage count has
639 * hit zero.
640 */
641 void kfree_skb(struct sk_buff *skb)
642 {
643 if (unlikely(!skb))
644 return;
645 if (likely(atomic_read(&skb->users) == 1))
646 smp_rmb();
647 else if (likely(!atomic_dec_and_test(&skb->users)))
648 return;
649 trace_kfree_skb(skb, __builtin_return_address(0));
650 __kfree_skb(skb);
651 }
652 EXPORT_SYMBOL(kfree_skb);
653
654 /**
655 * skb_tx_error - report an sk_buff xmit error
656 * @skb: buffer that triggered an error
657 *
658 * Report xmit error if a device callback is tracking this skb.
659 * skb must be freed afterwards.
660 */
661 void skb_tx_error(struct sk_buff *skb)
662 {
663 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
664 struct ubuf_info *uarg;
665
666 uarg = skb_shinfo(skb)->destructor_arg;
667 if (uarg->callback)
668 uarg->callback(uarg, false);
669 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
670 }
671 }
672 EXPORT_SYMBOL(skb_tx_error);
673
674 /**
675 * consume_skb - free an skbuff
676 * @skb: buffer to free
677 *
678 * Drop a ref to the buffer and free it if the usage count has hit zero
679 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
680 * is being dropped after a failure and notes that
681 */
682 void consume_skb(struct sk_buff *skb)
683 {
684 if (unlikely(!skb))
685 return;
686 if (likely(atomic_read(&skb->users) == 1))
687 smp_rmb();
688 else if (likely(!atomic_dec_and_test(&skb->users)))
689 return;
690 trace_consume_skb(skb);
691 __kfree_skb(skb);
692 }
693 EXPORT_SYMBOL(consume_skb);
694
695 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
696 {
697 new->tstamp = old->tstamp;
698 new->dev = old->dev;
699 new->transport_header = old->transport_header;
700 new->network_header = old->network_header;
701 new->mac_header = old->mac_header;
702 new->inner_transport_header = old->inner_transport_header;
703 new->inner_network_header = old->inner_network_header;
704 new->inner_mac_header = old->inner_mac_header;
705 skb_dst_copy(new, old);
706 new->rxhash = old->rxhash;
707 new->ooo_okay = old->ooo_okay;
708 new->l4_rxhash = old->l4_rxhash;
709 new->no_fcs = old->no_fcs;
710 new->encapsulation = old->encapsulation;
711 #ifdef CONFIG_XFRM
712 new->sp = secpath_get(old->sp);
713 #endif
714 memcpy(new->cb, old->cb, sizeof(old->cb));
715 new->csum = old->csum;
716 new->local_df = old->local_df;
717 new->pkt_type = old->pkt_type;
718 new->ip_summed = old->ip_summed;
719 skb_copy_queue_mapping(new, old);
720 new->priority = old->priority;
721 #if IS_ENABLED(CONFIG_IP_VS)
722 new->ipvs_property = old->ipvs_property;
723 #endif
724 new->pfmemalloc = old->pfmemalloc;
725 new->protocol = old->protocol;
726 new->mark = old->mark;
727 new->skb_iif = old->skb_iif;
728 __nf_copy(new, old);
729 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
730 new->nf_trace = old->nf_trace;
731 #endif
732 #ifdef CONFIG_NET_SCHED
733 new->tc_index = old->tc_index;
734 #ifdef CONFIG_NET_CLS_ACT
735 new->tc_verd = old->tc_verd;
736 #endif
737 #endif
738 new->vlan_proto = old->vlan_proto;
739 new->vlan_tci = old->vlan_tci;
740
741 skb_copy_secmark(new, old);
742 }
743
744 /*
745 * You should not add any new code to this function. Add it to
746 * __copy_skb_header above instead.
747 */
748 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
749 {
750 #define C(x) n->x = skb->x
751
752 n->next = n->prev = NULL;
753 n->sk = NULL;
754 __copy_skb_header(n, skb);
755
756 C(len);
757 C(data_len);
758 C(mac_len);
759 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
760 n->cloned = 1;
761 n->nohdr = 0;
762 n->destructor = NULL;
763 C(tail);
764 C(end);
765 C(head);
766 C(head_frag);
767 C(data);
768 C(truesize);
769 atomic_set(&n->users, 1);
770
771 atomic_inc(&(skb_shinfo(skb)->dataref));
772 skb->cloned = 1;
773
774 return n;
775 #undef C
776 }
777
778 /**
779 * skb_morph - morph one skb into another
780 * @dst: the skb to receive the contents
781 * @src: the skb to supply the contents
782 *
783 * This is identical to skb_clone except that the target skb is
784 * supplied by the user.
785 *
786 * The target skb is returned upon exit.
787 */
788 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
789 {
790 skb_release_all(dst);
791 return __skb_clone(dst, src);
792 }
793 EXPORT_SYMBOL_GPL(skb_morph);
794
795 /**
796 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
797 * @skb: the skb to modify
798 * @gfp_mask: allocation priority
799 *
800 * This must be called on SKBTX_DEV_ZEROCOPY skb.
801 * It will copy all frags into kernel and drop the reference
802 * to userspace pages.
803 *
804 * If this function is called from an interrupt gfp_mask() must be
805 * %GFP_ATOMIC.
806 *
807 * Returns 0 on success or a negative error code on failure
808 * to allocate kernel memory to copy to.
809 */
810 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
811 {
812 int i;
813 int num_frags = skb_shinfo(skb)->nr_frags;
814 struct page *page, *head = NULL;
815 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
816
817 for (i = 0; i < num_frags; i++) {
818 u8 *vaddr;
819 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
820
821 page = alloc_page(gfp_mask);
822 if (!page) {
823 while (head) {
824 struct page *next = (struct page *)head->private;
825 put_page(head);
826 head = next;
827 }
828 return -ENOMEM;
829 }
830 vaddr = kmap_atomic(skb_frag_page(f));
831 memcpy(page_address(page),
832 vaddr + f->page_offset, skb_frag_size(f));
833 kunmap_atomic(vaddr);
834 page->private = (unsigned long)head;
835 head = page;
836 }
837
838 /* skb frags release userspace buffers */
839 for (i = 0; i < num_frags; i++)
840 skb_frag_unref(skb, i);
841
842 uarg->callback(uarg, false);
843
844 /* skb frags point to kernel buffers */
845 for (i = num_frags - 1; i >= 0; i--) {
846 __skb_fill_page_desc(skb, i, head, 0,
847 skb_shinfo(skb)->frags[i].size);
848 head = (struct page *)head->private;
849 }
850
851 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
852 return 0;
853 }
854 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
855
856 /**
857 * skb_clone - duplicate an sk_buff
858 * @skb: buffer to clone
859 * @gfp_mask: allocation priority
860 *
861 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
862 * copies share the same packet data but not structure. The new
863 * buffer has a reference count of 1. If the allocation fails the
864 * function returns %NULL otherwise the new buffer is returned.
865 *
866 * If this function is called from an interrupt gfp_mask() must be
867 * %GFP_ATOMIC.
868 */
869
870 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
871 {
872 struct sk_buff *n;
873
874 if (skb_orphan_frags(skb, gfp_mask))
875 return NULL;
876
877 n = skb + 1;
878 if (skb->fclone == SKB_FCLONE_ORIG &&
879 n->fclone == SKB_FCLONE_UNAVAILABLE) {
880 atomic_t *fclone_ref = (atomic_t *) (n + 1);
881 n->fclone = SKB_FCLONE_CLONE;
882 atomic_inc(fclone_ref);
883 } else {
884 if (skb_pfmemalloc(skb))
885 gfp_mask |= __GFP_MEMALLOC;
886
887 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
888 if (!n)
889 return NULL;
890
891 kmemcheck_annotate_bitfield(n, flags1);
892 kmemcheck_annotate_bitfield(n, flags2);
893 n->fclone = SKB_FCLONE_UNAVAILABLE;
894 }
895
896 return __skb_clone(n, skb);
897 }
898 EXPORT_SYMBOL(skb_clone);
899
900 static void skb_headers_offset_update(struct sk_buff *skb, int off)
901 {
902 /* {transport,network,mac}_header and tail are relative to skb->head */
903 skb->transport_header += off;
904 skb->network_header += off;
905 if (skb_mac_header_was_set(skb))
906 skb->mac_header += off;
907 skb->inner_transport_header += off;
908 skb->inner_network_header += off;
909 skb->inner_mac_header += off;
910 }
911
912 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
913 {
914 #ifndef NET_SKBUFF_DATA_USES_OFFSET
915 /*
916 * Shift between the two data areas in bytes
917 */
918 unsigned long offset = new->data - old->data;
919 #endif
920
921 __copy_skb_header(new, old);
922
923 #ifndef NET_SKBUFF_DATA_USES_OFFSET
924 skb_headers_offset_update(new, offset);
925 #endif
926 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
927 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
928 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
929 }
930
931 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
932 {
933 if (skb_pfmemalloc(skb))
934 return SKB_ALLOC_RX;
935 return 0;
936 }
937
938 /**
939 * skb_copy - create private copy of an sk_buff
940 * @skb: buffer to copy
941 * @gfp_mask: allocation priority
942 *
943 * Make a copy of both an &sk_buff and its data. This is used when the
944 * caller wishes to modify the data and needs a private copy of the
945 * data to alter. Returns %NULL on failure or the pointer to the buffer
946 * on success. The returned buffer has a reference count of 1.
947 *
948 * As by-product this function converts non-linear &sk_buff to linear
949 * one, so that &sk_buff becomes completely private and caller is allowed
950 * to modify all the data of returned buffer. This means that this
951 * function is not recommended for use in circumstances when only
952 * header is going to be modified. Use pskb_copy() instead.
953 */
954
955 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
956 {
957 int headerlen = skb_headroom(skb);
958 unsigned int size = skb_end_offset(skb) + skb->data_len;
959 struct sk_buff *n = __alloc_skb(size, gfp_mask,
960 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
961
962 if (!n)
963 return NULL;
964
965 /* Set the data pointer */
966 skb_reserve(n, headerlen);
967 /* Set the tail pointer and length */
968 skb_put(n, skb->len);
969
970 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
971 BUG();
972
973 copy_skb_header(n, skb);
974 return n;
975 }
976 EXPORT_SYMBOL(skb_copy);
977
978 /**
979 * __pskb_copy - create copy of an sk_buff with private head.
980 * @skb: buffer to copy
981 * @headroom: headroom of new skb
982 * @gfp_mask: allocation priority
983 *
984 * Make a copy of both an &sk_buff and part of its data, located
985 * in header. Fragmented data remain shared. This is used when
986 * the caller wishes to modify only header of &sk_buff and needs
987 * private copy of the header to alter. Returns %NULL on failure
988 * or the pointer to the buffer on success.
989 * The returned buffer has a reference count of 1.
990 */
991
992 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
993 {
994 unsigned int size = skb_headlen(skb) + headroom;
995 struct sk_buff *n = __alloc_skb(size, gfp_mask,
996 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
997
998 if (!n)
999 goto out;
1000
1001 /* Set the data pointer */
1002 skb_reserve(n, headroom);
1003 /* Set the tail pointer and length */
1004 skb_put(n, skb_headlen(skb));
1005 /* Copy the bytes */
1006 skb_copy_from_linear_data(skb, n->data, n->len);
1007
1008 n->truesize += skb->data_len;
1009 n->data_len = skb->data_len;
1010 n->len = skb->len;
1011
1012 if (skb_shinfo(skb)->nr_frags) {
1013 int i;
1014
1015 if (skb_orphan_frags(skb, gfp_mask)) {
1016 kfree_skb(n);
1017 n = NULL;
1018 goto out;
1019 }
1020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1021 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1022 skb_frag_ref(skb, i);
1023 }
1024 skb_shinfo(n)->nr_frags = i;
1025 }
1026
1027 if (skb_has_frag_list(skb)) {
1028 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1029 skb_clone_fraglist(n);
1030 }
1031
1032 copy_skb_header(n, skb);
1033 out:
1034 return n;
1035 }
1036 EXPORT_SYMBOL(__pskb_copy);
1037
1038 /**
1039 * pskb_expand_head - reallocate header of &sk_buff
1040 * @skb: buffer to reallocate
1041 * @nhead: room to add at head
1042 * @ntail: room to add at tail
1043 * @gfp_mask: allocation priority
1044 *
1045 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1046 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1047 * reference count of 1. Returns zero in the case of success or error,
1048 * if expansion failed. In the last case, &sk_buff is not changed.
1049 *
1050 * All the pointers pointing into skb header may change and must be
1051 * reloaded after call to this function.
1052 */
1053
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1055 gfp_t gfp_mask)
1056 {
1057 int i;
1058 u8 *data;
1059 int size = nhead + skb_end_offset(skb) + ntail;
1060 long off;
1061
1062 BUG_ON(nhead < 0);
1063
1064 if (skb_shared(skb))
1065 BUG();
1066
1067 size = SKB_DATA_ALIGN(size);
1068
1069 if (skb_pfmemalloc(skb))
1070 gfp_mask |= __GFP_MEMALLOC;
1071 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1072 gfp_mask, NUMA_NO_NODE, NULL);
1073 if (!data)
1074 goto nodata;
1075 size = SKB_WITH_OVERHEAD(ksize(data));
1076
1077 /* Copy only real data... and, alas, header. This should be
1078 * optimized for the cases when header is void.
1079 */
1080 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1081
1082 memcpy((struct skb_shared_info *)(data + size),
1083 skb_shinfo(skb),
1084 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1085
1086 /*
1087 * if shinfo is shared we must drop the old head gracefully, but if it
1088 * is not we can just drop the old head and let the existing refcount
1089 * be since all we did is relocate the values
1090 */
1091 if (skb_cloned(skb)) {
1092 /* copy this zero copy skb frags */
1093 if (skb_orphan_frags(skb, gfp_mask))
1094 goto nofrags;
1095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1096 skb_frag_ref(skb, i);
1097
1098 if (skb_has_frag_list(skb))
1099 skb_clone_fraglist(skb);
1100
1101 skb_release_data(skb);
1102 } else {
1103 skb_free_head(skb);
1104 }
1105 off = (data + nhead) - skb->head;
1106
1107 skb->head = data;
1108 skb->head_frag = 0;
1109 skb->data += off;
1110 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1111 skb->end = size;
1112 off = nhead;
1113 #else
1114 skb->end = skb->head + size;
1115 #endif
1116 skb->tail += off;
1117 skb_headers_offset_update(skb, off);
1118 /* Only adjust this if it actually is csum_start rather than csum */
1119 if (skb->ip_summed == CHECKSUM_PARTIAL)
1120 skb->csum_start += nhead;
1121 skb->cloned = 0;
1122 skb->hdr_len = 0;
1123 skb->nohdr = 0;
1124 atomic_set(&skb_shinfo(skb)->dataref, 1);
1125 return 0;
1126
1127 nofrags:
1128 kfree(data);
1129 nodata:
1130 return -ENOMEM;
1131 }
1132 EXPORT_SYMBOL(pskb_expand_head);
1133
1134 /* Make private copy of skb with writable head and some headroom */
1135
1136 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1137 {
1138 struct sk_buff *skb2;
1139 int delta = headroom - skb_headroom(skb);
1140
1141 if (delta <= 0)
1142 skb2 = pskb_copy(skb, GFP_ATOMIC);
1143 else {
1144 skb2 = skb_clone(skb, GFP_ATOMIC);
1145 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1146 GFP_ATOMIC)) {
1147 kfree_skb(skb2);
1148 skb2 = NULL;
1149 }
1150 }
1151 return skb2;
1152 }
1153 EXPORT_SYMBOL(skb_realloc_headroom);
1154
1155 /**
1156 * skb_copy_expand - copy and expand sk_buff
1157 * @skb: buffer to copy
1158 * @newheadroom: new free bytes at head
1159 * @newtailroom: new free bytes at tail
1160 * @gfp_mask: allocation priority
1161 *
1162 * Make a copy of both an &sk_buff and its data and while doing so
1163 * allocate additional space.
1164 *
1165 * This is used when the caller wishes to modify the data and needs a
1166 * private copy of the data to alter as well as more space for new fields.
1167 * Returns %NULL on failure or the pointer to the buffer
1168 * on success. The returned buffer has a reference count of 1.
1169 *
1170 * You must pass %GFP_ATOMIC as the allocation priority if this function
1171 * is called from an interrupt.
1172 */
1173 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1174 int newheadroom, int newtailroom,
1175 gfp_t gfp_mask)
1176 {
1177 /*
1178 * Allocate the copy buffer
1179 */
1180 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1181 gfp_mask, skb_alloc_rx_flag(skb),
1182 NUMA_NO_NODE);
1183 int oldheadroom = skb_headroom(skb);
1184 int head_copy_len, head_copy_off;
1185 int off;
1186
1187 if (!n)
1188 return NULL;
1189
1190 skb_reserve(n, newheadroom);
1191
1192 /* Set the tail pointer and length */
1193 skb_put(n, skb->len);
1194
1195 head_copy_len = oldheadroom;
1196 head_copy_off = 0;
1197 if (newheadroom <= head_copy_len)
1198 head_copy_len = newheadroom;
1199 else
1200 head_copy_off = newheadroom - head_copy_len;
1201
1202 /* Copy the linear header and data. */
1203 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1204 skb->len + head_copy_len))
1205 BUG();
1206
1207 copy_skb_header(n, skb);
1208
1209 off = newheadroom - oldheadroom;
1210 if (n->ip_summed == CHECKSUM_PARTIAL)
1211 n->csum_start += off;
1212 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1213 skb_headers_offset_update(n, off);
1214 #endif
1215
1216 return n;
1217 }
1218 EXPORT_SYMBOL(skb_copy_expand);
1219
1220 /**
1221 * skb_pad - zero pad the tail of an skb
1222 * @skb: buffer to pad
1223 * @pad: space to pad
1224 *
1225 * Ensure that a buffer is followed by a padding area that is zero
1226 * filled. Used by network drivers which may DMA or transfer data
1227 * beyond the buffer end onto the wire.
1228 *
1229 * May return error in out of memory cases. The skb is freed on error.
1230 */
1231
1232 int skb_pad(struct sk_buff *skb, int pad)
1233 {
1234 int err;
1235 int ntail;
1236
1237 /* If the skbuff is non linear tailroom is always zero.. */
1238 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1239 memset(skb->data+skb->len, 0, pad);
1240 return 0;
1241 }
1242
1243 ntail = skb->data_len + pad - (skb->end - skb->tail);
1244 if (likely(skb_cloned(skb) || ntail > 0)) {
1245 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1246 if (unlikely(err))
1247 goto free_skb;
1248 }
1249
1250 /* FIXME: The use of this function with non-linear skb's really needs
1251 * to be audited.
1252 */
1253 err = skb_linearize(skb);
1254 if (unlikely(err))
1255 goto free_skb;
1256
1257 memset(skb->data + skb->len, 0, pad);
1258 return 0;
1259
1260 free_skb:
1261 kfree_skb(skb);
1262 return err;
1263 }
1264 EXPORT_SYMBOL(skb_pad);
1265
1266 /**
1267 * skb_put - add data to a buffer
1268 * @skb: buffer to use
1269 * @len: amount of data to add
1270 *
1271 * This function extends the used data area of the buffer. If this would
1272 * exceed the total buffer size the kernel will panic. A pointer to the
1273 * first byte of the extra data is returned.
1274 */
1275 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1276 {
1277 unsigned char *tmp = skb_tail_pointer(skb);
1278 SKB_LINEAR_ASSERT(skb);
1279 skb->tail += len;
1280 skb->len += len;
1281 if (unlikely(skb->tail > skb->end))
1282 skb_over_panic(skb, len, __builtin_return_address(0));
1283 return tmp;
1284 }
1285 EXPORT_SYMBOL(skb_put);
1286
1287 /**
1288 * skb_push - add data to the start of a buffer
1289 * @skb: buffer to use
1290 * @len: amount of data to add
1291 *
1292 * This function extends the used data area of the buffer at the buffer
1293 * start. If this would exceed the total buffer headroom the kernel will
1294 * panic. A pointer to the first byte of the extra data is returned.
1295 */
1296 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1297 {
1298 skb->data -= len;
1299 skb->len += len;
1300 if (unlikely(skb->data<skb->head))
1301 skb_under_panic(skb, len, __builtin_return_address(0));
1302 return skb->data;
1303 }
1304 EXPORT_SYMBOL(skb_push);
1305
1306 /**
1307 * skb_pull - remove data from the start of a buffer
1308 * @skb: buffer to use
1309 * @len: amount of data to remove
1310 *
1311 * This function removes data from the start of a buffer, returning
1312 * the memory to the headroom. A pointer to the next data in the buffer
1313 * is returned. Once the data has been pulled future pushes will overwrite
1314 * the old data.
1315 */
1316 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1317 {
1318 return skb_pull_inline(skb, len);
1319 }
1320 EXPORT_SYMBOL(skb_pull);
1321
1322 /**
1323 * skb_trim - remove end from a buffer
1324 * @skb: buffer to alter
1325 * @len: new length
1326 *
1327 * Cut the length of a buffer down by removing data from the tail. If
1328 * the buffer is already under the length specified it is not modified.
1329 * The skb must be linear.
1330 */
1331 void skb_trim(struct sk_buff *skb, unsigned int len)
1332 {
1333 if (skb->len > len)
1334 __skb_trim(skb, len);
1335 }
1336 EXPORT_SYMBOL(skb_trim);
1337
1338 /* Trims skb to length len. It can change skb pointers.
1339 */
1340
1341 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1342 {
1343 struct sk_buff **fragp;
1344 struct sk_buff *frag;
1345 int offset = skb_headlen(skb);
1346 int nfrags = skb_shinfo(skb)->nr_frags;
1347 int i;
1348 int err;
1349
1350 if (skb_cloned(skb) &&
1351 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1352 return err;
1353
1354 i = 0;
1355 if (offset >= len)
1356 goto drop_pages;
1357
1358 for (; i < nfrags; i++) {
1359 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1360
1361 if (end < len) {
1362 offset = end;
1363 continue;
1364 }
1365
1366 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1367
1368 drop_pages:
1369 skb_shinfo(skb)->nr_frags = i;
1370
1371 for (; i < nfrags; i++)
1372 skb_frag_unref(skb, i);
1373
1374 if (skb_has_frag_list(skb))
1375 skb_drop_fraglist(skb);
1376 goto done;
1377 }
1378
1379 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1380 fragp = &frag->next) {
1381 int end = offset + frag->len;
1382
1383 if (skb_shared(frag)) {
1384 struct sk_buff *nfrag;
1385
1386 nfrag = skb_clone(frag, GFP_ATOMIC);
1387 if (unlikely(!nfrag))
1388 return -ENOMEM;
1389
1390 nfrag->next = frag->next;
1391 consume_skb(frag);
1392 frag = nfrag;
1393 *fragp = frag;
1394 }
1395
1396 if (end < len) {
1397 offset = end;
1398 continue;
1399 }
1400
1401 if (end > len &&
1402 unlikely((err = pskb_trim(frag, len - offset))))
1403 return err;
1404
1405 if (frag->next)
1406 skb_drop_list(&frag->next);
1407 break;
1408 }
1409
1410 done:
1411 if (len > skb_headlen(skb)) {
1412 skb->data_len -= skb->len - len;
1413 skb->len = len;
1414 } else {
1415 skb->len = len;
1416 skb->data_len = 0;
1417 skb_set_tail_pointer(skb, len);
1418 }
1419
1420 return 0;
1421 }
1422 EXPORT_SYMBOL(___pskb_trim);
1423
1424 /**
1425 * __pskb_pull_tail - advance tail of skb header
1426 * @skb: buffer to reallocate
1427 * @delta: number of bytes to advance tail
1428 *
1429 * The function makes a sense only on a fragmented &sk_buff,
1430 * it expands header moving its tail forward and copying necessary
1431 * data from fragmented part.
1432 *
1433 * &sk_buff MUST have reference count of 1.
1434 *
1435 * Returns %NULL (and &sk_buff does not change) if pull failed
1436 * or value of new tail of skb in the case of success.
1437 *
1438 * All the pointers pointing into skb header may change and must be
1439 * reloaded after call to this function.
1440 */
1441
1442 /* Moves tail of skb head forward, copying data from fragmented part,
1443 * when it is necessary.
1444 * 1. It may fail due to malloc failure.
1445 * 2. It may change skb pointers.
1446 *
1447 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1448 */
1449 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1450 {
1451 /* If skb has not enough free space at tail, get new one
1452 * plus 128 bytes for future expansions. If we have enough
1453 * room at tail, reallocate without expansion only if skb is cloned.
1454 */
1455 int i, k, eat = (skb->tail + delta) - skb->end;
1456
1457 if (eat > 0 || skb_cloned(skb)) {
1458 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1459 GFP_ATOMIC))
1460 return NULL;
1461 }
1462
1463 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1464 BUG();
1465
1466 /* Optimization: no fragments, no reasons to preestimate
1467 * size of pulled pages. Superb.
1468 */
1469 if (!skb_has_frag_list(skb))
1470 goto pull_pages;
1471
1472 /* Estimate size of pulled pages. */
1473 eat = delta;
1474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1475 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1476
1477 if (size >= eat)
1478 goto pull_pages;
1479 eat -= size;
1480 }
1481
1482 /* If we need update frag list, we are in troubles.
1483 * Certainly, it possible to add an offset to skb data,
1484 * but taking into account that pulling is expected to
1485 * be very rare operation, it is worth to fight against
1486 * further bloating skb head and crucify ourselves here instead.
1487 * Pure masohism, indeed. 8)8)
1488 */
1489 if (eat) {
1490 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1491 struct sk_buff *clone = NULL;
1492 struct sk_buff *insp = NULL;
1493
1494 do {
1495 BUG_ON(!list);
1496
1497 if (list->len <= eat) {
1498 /* Eaten as whole. */
1499 eat -= list->len;
1500 list = list->next;
1501 insp = list;
1502 } else {
1503 /* Eaten partially. */
1504
1505 if (skb_shared(list)) {
1506 /* Sucks! We need to fork list. :-( */
1507 clone = skb_clone(list, GFP_ATOMIC);
1508 if (!clone)
1509 return NULL;
1510 insp = list->next;
1511 list = clone;
1512 } else {
1513 /* This may be pulled without
1514 * problems. */
1515 insp = list;
1516 }
1517 if (!pskb_pull(list, eat)) {
1518 kfree_skb(clone);
1519 return NULL;
1520 }
1521 break;
1522 }
1523 } while (eat);
1524
1525 /* Free pulled out fragments. */
1526 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1527 skb_shinfo(skb)->frag_list = list->next;
1528 kfree_skb(list);
1529 }
1530 /* And insert new clone at head. */
1531 if (clone) {
1532 clone->next = list;
1533 skb_shinfo(skb)->frag_list = clone;
1534 }
1535 }
1536 /* Success! Now we may commit changes to skb data. */
1537
1538 pull_pages:
1539 eat = delta;
1540 k = 0;
1541 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1542 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1543
1544 if (size <= eat) {
1545 skb_frag_unref(skb, i);
1546 eat -= size;
1547 } else {
1548 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1549 if (eat) {
1550 skb_shinfo(skb)->frags[k].page_offset += eat;
1551 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1552 eat = 0;
1553 }
1554 k++;
1555 }
1556 }
1557 skb_shinfo(skb)->nr_frags = k;
1558
1559 skb->tail += delta;
1560 skb->data_len -= delta;
1561
1562 return skb_tail_pointer(skb);
1563 }
1564 EXPORT_SYMBOL(__pskb_pull_tail);
1565
1566 /**
1567 * skb_copy_bits - copy bits from skb to kernel buffer
1568 * @skb: source skb
1569 * @offset: offset in source
1570 * @to: destination buffer
1571 * @len: number of bytes to copy
1572 *
1573 * Copy the specified number of bytes from the source skb to the
1574 * destination buffer.
1575 *
1576 * CAUTION ! :
1577 * If its prototype is ever changed,
1578 * check arch/{*}/net/{*}.S files,
1579 * since it is called from BPF assembly code.
1580 */
1581 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1582 {
1583 int start = skb_headlen(skb);
1584 struct sk_buff *frag_iter;
1585 int i, copy;
1586
1587 if (offset > (int)skb->len - len)
1588 goto fault;
1589
1590 /* Copy header. */
1591 if ((copy = start - offset) > 0) {
1592 if (copy > len)
1593 copy = len;
1594 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1595 if ((len -= copy) == 0)
1596 return 0;
1597 offset += copy;
1598 to += copy;
1599 }
1600
1601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1602 int end;
1603 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1604
1605 WARN_ON(start > offset + len);
1606
1607 end = start + skb_frag_size(f);
1608 if ((copy = end - offset) > 0) {
1609 u8 *vaddr;
1610
1611 if (copy > len)
1612 copy = len;
1613
1614 vaddr = kmap_atomic(skb_frag_page(f));
1615 memcpy(to,
1616 vaddr + f->page_offset + offset - start,
1617 copy);
1618 kunmap_atomic(vaddr);
1619
1620 if ((len -= copy) == 0)
1621 return 0;
1622 offset += copy;
1623 to += copy;
1624 }
1625 start = end;
1626 }
1627
1628 skb_walk_frags(skb, frag_iter) {
1629 int end;
1630
1631 WARN_ON(start > offset + len);
1632
1633 end = start + frag_iter->len;
1634 if ((copy = end - offset) > 0) {
1635 if (copy > len)
1636 copy = len;
1637 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1638 goto fault;
1639 if ((len -= copy) == 0)
1640 return 0;
1641 offset += copy;
1642 to += copy;
1643 }
1644 start = end;
1645 }
1646
1647 if (!len)
1648 return 0;
1649
1650 fault:
1651 return -EFAULT;
1652 }
1653 EXPORT_SYMBOL(skb_copy_bits);
1654
1655 /*
1656 * Callback from splice_to_pipe(), if we need to release some pages
1657 * at the end of the spd in case we error'ed out in filling the pipe.
1658 */
1659 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1660 {
1661 put_page(spd->pages[i]);
1662 }
1663
1664 static struct page *linear_to_page(struct page *page, unsigned int *len,
1665 unsigned int *offset,
1666 struct sock *sk)
1667 {
1668 struct page_frag *pfrag = sk_page_frag(sk);
1669
1670 if (!sk_page_frag_refill(sk, pfrag))
1671 return NULL;
1672
1673 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1674
1675 memcpy(page_address(pfrag->page) + pfrag->offset,
1676 page_address(page) + *offset, *len);
1677 *offset = pfrag->offset;
1678 pfrag->offset += *len;
1679
1680 return pfrag->page;
1681 }
1682
1683 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1684 struct page *page,
1685 unsigned int offset)
1686 {
1687 return spd->nr_pages &&
1688 spd->pages[spd->nr_pages - 1] == page &&
1689 (spd->partial[spd->nr_pages - 1].offset +
1690 spd->partial[spd->nr_pages - 1].len == offset);
1691 }
1692
1693 /*
1694 * Fill page/offset/length into spd, if it can hold more pages.
1695 */
1696 static bool spd_fill_page(struct splice_pipe_desc *spd,
1697 struct pipe_inode_info *pipe, struct page *page,
1698 unsigned int *len, unsigned int offset,
1699 bool linear,
1700 struct sock *sk)
1701 {
1702 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1703 return true;
1704
1705 if (linear) {
1706 page = linear_to_page(page, len, &offset, sk);
1707 if (!page)
1708 return true;
1709 }
1710 if (spd_can_coalesce(spd, page, offset)) {
1711 spd->partial[spd->nr_pages - 1].len += *len;
1712 return false;
1713 }
1714 get_page(page);
1715 spd->pages[spd->nr_pages] = page;
1716 spd->partial[spd->nr_pages].len = *len;
1717 spd->partial[spd->nr_pages].offset = offset;
1718 spd->nr_pages++;
1719
1720 return false;
1721 }
1722
1723 static bool __splice_segment(struct page *page, unsigned int poff,
1724 unsigned int plen, unsigned int *off,
1725 unsigned int *len,
1726 struct splice_pipe_desc *spd, bool linear,
1727 struct sock *sk,
1728 struct pipe_inode_info *pipe)
1729 {
1730 if (!*len)
1731 return true;
1732
1733 /* skip this segment if already processed */
1734 if (*off >= plen) {
1735 *off -= plen;
1736 return false;
1737 }
1738
1739 /* ignore any bits we already processed */
1740 poff += *off;
1741 plen -= *off;
1742 *off = 0;
1743
1744 do {
1745 unsigned int flen = min(*len, plen);
1746
1747 if (spd_fill_page(spd, pipe, page, &flen, poff,
1748 linear, sk))
1749 return true;
1750 poff += flen;
1751 plen -= flen;
1752 *len -= flen;
1753 } while (*len && plen);
1754
1755 return false;
1756 }
1757
1758 /*
1759 * Map linear and fragment data from the skb to spd. It reports true if the
1760 * pipe is full or if we already spliced the requested length.
1761 */
1762 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1763 unsigned int *offset, unsigned int *len,
1764 struct splice_pipe_desc *spd, struct sock *sk)
1765 {
1766 int seg;
1767
1768 /* map the linear part :
1769 * If skb->head_frag is set, this 'linear' part is backed by a
1770 * fragment, and if the head is not shared with any clones then
1771 * we can avoid a copy since we own the head portion of this page.
1772 */
1773 if (__splice_segment(virt_to_page(skb->data),
1774 (unsigned long) skb->data & (PAGE_SIZE - 1),
1775 skb_headlen(skb),
1776 offset, len, spd,
1777 skb_head_is_locked(skb),
1778 sk, pipe))
1779 return true;
1780
1781 /*
1782 * then map the fragments
1783 */
1784 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1785 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1786
1787 if (__splice_segment(skb_frag_page(f),
1788 f->page_offset, skb_frag_size(f),
1789 offset, len, spd, false, sk, pipe))
1790 return true;
1791 }
1792
1793 return false;
1794 }
1795
1796 /*
1797 * Map data from the skb to a pipe. Should handle both the linear part,
1798 * the fragments, and the frag list. It does NOT handle frag lists within
1799 * the frag list, if such a thing exists. We'd probably need to recurse to
1800 * handle that cleanly.
1801 */
1802 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1803 struct pipe_inode_info *pipe, unsigned int tlen,
1804 unsigned int flags)
1805 {
1806 struct partial_page partial[MAX_SKB_FRAGS];
1807 struct page *pages[MAX_SKB_FRAGS];
1808 struct splice_pipe_desc spd = {
1809 .pages = pages,
1810 .partial = partial,
1811 .nr_pages_max = MAX_SKB_FRAGS,
1812 .flags = flags,
1813 .ops = &sock_pipe_buf_ops,
1814 .spd_release = sock_spd_release,
1815 };
1816 struct sk_buff *frag_iter;
1817 struct sock *sk = skb->sk;
1818 int ret = 0;
1819
1820 /*
1821 * __skb_splice_bits() only fails if the output has no room left,
1822 * so no point in going over the frag_list for the error case.
1823 */
1824 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1825 goto done;
1826 else if (!tlen)
1827 goto done;
1828
1829 /*
1830 * now see if we have a frag_list to map
1831 */
1832 skb_walk_frags(skb, frag_iter) {
1833 if (!tlen)
1834 break;
1835 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1836 break;
1837 }
1838
1839 done:
1840 if (spd.nr_pages) {
1841 /*
1842 * Drop the socket lock, otherwise we have reverse
1843 * locking dependencies between sk_lock and i_mutex
1844 * here as compared to sendfile(). We enter here
1845 * with the socket lock held, and splice_to_pipe() will
1846 * grab the pipe inode lock. For sendfile() emulation,
1847 * we call into ->sendpage() with the i_mutex lock held
1848 * and networking will grab the socket lock.
1849 */
1850 release_sock(sk);
1851 ret = splice_to_pipe(pipe, &spd);
1852 lock_sock(sk);
1853 }
1854
1855 return ret;
1856 }
1857
1858 /**
1859 * skb_store_bits - store bits from kernel buffer to skb
1860 * @skb: destination buffer
1861 * @offset: offset in destination
1862 * @from: source buffer
1863 * @len: number of bytes to copy
1864 *
1865 * Copy the specified number of bytes from the source buffer to the
1866 * destination skb. This function handles all the messy bits of
1867 * traversing fragment lists and such.
1868 */
1869
1870 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1871 {
1872 int start = skb_headlen(skb);
1873 struct sk_buff *frag_iter;
1874 int i, copy;
1875
1876 if (offset > (int)skb->len - len)
1877 goto fault;
1878
1879 if ((copy = start - offset) > 0) {
1880 if (copy > len)
1881 copy = len;
1882 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1883 if ((len -= copy) == 0)
1884 return 0;
1885 offset += copy;
1886 from += copy;
1887 }
1888
1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1891 int end;
1892
1893 WARN_ON(start > offset + len);
1894
1895 end = start + skb_frag_size(frag);
1896 if ((copy = end - offset) > 0) {
1897 u8 *vaddr;
1898
1899 if (copy > len)
1900 copy = len;
1901
1902 vaddr = kmap_atomic(skb_frag_page(frag));
1903 memcpy(vaddr + frag->page_offset + offset - start,
1904 from, copy);
1905 kunmap_atomic(vaddr);
1906
1907 if ((len -= copy) == 0)
1908 return 0;
1909 offset += copy;
1910 from += copy;
1911 }
1912 start = end;
1913 }
1914
1915 skb_walk_frags(skb, frag_iter) {
1916 int end;
1917
1918 WARN_ON(start > offset + len);
1919
1920 end = start + frag_iter->len;
1921 if ((copy = end - offset) > 0) {
1922 if (copy > len)
1923 copy = len;
1924 if (skb_store_bits(frag_iter, offset - start,
1925 from, copy))
1926 goto fault;
1927 if ((len -= copy) == 0)
1928 return 0;
1929 offset += copy;
1930 from += copy;
1931 }
1932 start = end;
1933 }
1934 if (!len)
1935 return 0;
1936
1937 fault:
1938 return -EFAULT;
1939 }
1940 EXPORT_SYMBOL(skb_store_bits);
1941
1942 /* Checksum skb data. */
1943
1944 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1945 int len, __wsum csum)
1946 {
1947 int start = skb_headlen(skb);
1948 int i, copy = start - offset;
1949 struct sk_buff *frag_iter;
1950 int pos = 0;
1951
1952 /* Checksum header. */
1953 if (copy > 0) {
1954 if (copy > len)
1955 copy = len;
1956 csum = csum_partial(skb->data + offset, copy, csum);
1957 if ((len -= copy) == 0)
1958 return csum;
1959 offset += copy;
1960 pos = copy;
1961 }
1962
1963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1964 int end;
1965 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1966
1967 WARN_ON(start > offset + len);
1968
1969 end = start + skb_frag_size(frag);
1970 if ((copy = end - offset) > 0) {
1971 __wsum csum2;
1972 u8 *vaddr;
1973
1974 if (copy > len)
1975 copy = len;
1976 vaddr = kmap_atomic(skb_frag_page(frag));
1977 csum2 = csum_partial(vaddr + frag->page_offset +
1978 offset - start, copy, 0);
1979 kunmap_atomic(vaddr);
1980 csum = csum_block_add(csum, csum2, pos);
1981 if (!(len -= copy))
1982 return csum;
1983 offset += copy;
1984 pos += copy;
1985 }
1986 start = end;
1987 }
1988
1989 skb_walk_frags(skb, frag_iter) {
1990 int end;
1991
1992 WARN_ON(start > offset + len);
1993
1994 end = start + frag_iter->len;
1995 if ((copy = end - offset) > 0) {
1996 __wsum csum2;
1997 if (copy > len)
1998 copy = len;
1999 csum2 = skb_checksum(frag_iter, offset - start,
2000 copy, 0);
2001 csum = csum_block_add(csum, csum2, pos);
2002 if ((len -= copy) == 0)
2003 return csum;
2004 offset += copy;
2005 pos += copy;
2006 }
2007 start = end;
2008 }
2009 BUG_ON(len);
2010
2011 return csum;
2012 }
2013 EXPORT_SYMBOL(skb_checksum);
2014
2015 /* Both of above in one bottle. */
2016
2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018 u8 *to, int len, __wsum csum)
2019 {
2020 int start = skb_headlen(skb);
2021 int i, copy = start - offset;
2022 struct sk_buff *frag_iter;
2023 int pos = 0;
2024
2025 /* Copy header. */
2026 if (copy > 0) {
2027 if (copy > len)
2028 copy = len;
2029 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2030 copy, csum);
2031 if ((len -= copy) == 0)
2032 return csum;
2033 offset += copy;
2034 to += copy;
2035 pos = copy;
2036 }
2037
2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 int end;
2040
2041 WARN_ON(start > offset + len);
2042
2043 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044 if ((copy = end - offset) > 0) {
2045 __wsum csum2;
2046 u8 *vaddr;
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048
2049 if (copy > len)
2050 copy = len;
2051 vaddr = kmap_atomic(skb_frag_page(frag));
2052 csum2 = csum_partial_copy_nocheck(vaddr +
2053 frag->page_offset +
2054 offset - start, to,
2055 copy, 0);
2056 kunmap_atomic(vaddr);
2057 csum = csum_block_add(csum, csum2, pos);
2058 if (!(len -= copy))
2059 return csum;
2060 offset += copy;
2061 to += copy;
2062 pos += copy;
2063 }
2064 start = end;
2065 }
2066
2067 skb_walk_frags(skb, frag_iter) {
2068 __wsum csum2;
2069 int end;
2070
2071 WARN_ON(start > offset + len);
2072
2073 end = start + frag_iter->len;
2074 if ((copy = end - offset) > 0) {
2075 if (copy > len)
2076 copy = len;
2077 csum2 = skb_copy_and_csum_bits(frag_iter,
2078 offset - start,
2079 to, copy, 0);
2080 csum = csum_block_add(csum, csum2, pos);
2081 if ((len -= copy) == 0)
2082 return csum;
2083 offset += copy;
2084 to += copy;
2085 pos += copy;
2086 }
2087 start = end;
2088 }
2089 BUG_ON(len);
2090 return csum;
2091 }
2092 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2093
2094 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2095 {
2096 __wsum csum;
2097 long csstart;
2098
2099 if (skb->ip_summed == CHECKSUM_PARTIAL)
2100 csstart = skb_checksum_start_offset(skb);
2101 else
2102 csstart = skb_headlen(skb);
2103
2104 BUG_ON(csstart > skb_headlen(skb));
2105
2106 skb_copy_from_linear_data(skb, to, csstart);
2107
2108 csum = 0;
2109 if (csstart != skb->len)
2110 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2111 skb->len - csstart, 0);
2112
2113 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2114 long csstuff = csstart + skb->csum_offset;
2115
2116 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2117 }
2118 }
2119 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2120
2121 /**
2122 * skb_dequeue - remove from the head of the queue
2123 * @list: list to dequeue from
2124 *
2125 * Remove the head of the list. The list lock is taken so the function
2126 * may be used safely with other locking list functions. The head item is
2127 * returned or %NULL if the list is empty.
2128 */
2129
2130 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2131 {
2132 unsigned long flags;
2133 struct sk_buff *result;
2134
2135 spin_lock_irqsave(&list->lock, flags);
2136 result = __skb_dequeue(list);
2137 spin_unlock_irqrestore(&list->lock, flags);
2138 return result;
2139 }
2140 EXPORT_SYMBOL(skb_dequeue);
2141
2142 /**
2143 * skb_dequeue_tail - remove from the tail of the queue
2144 * @list: list to dequeue from
2145 *
2146 * Remove the tail of the list. The list lock is taken so the function
2147 * may be used safely with other locking list functions. The tail item is
2148 * returned or %NULL if the list is empty.
2149 */
2150 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2151 {
2152 unsigned long flags;
2153 struct sk_buff *result;
2154
2155 spin_lock_irqsave(&list->lock, flags);
2156 result = __skb_dequeue_tail(list);
2157 spin_unlock_irqrestore(&list->lock, flags);
2158 return result;
2159 }
2160 EXPORT_SYMBOL(skb_dequeue_tail);
2161
2162 /**
2163 * skb_queue_purge - empty a list
2164 * @list: list to empty
2165 *
2166 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2167 * the list and one reference dropped. This function takes the list
2168 * lock and is atomic with respect to other list locking functions.
2169 */
2170 void skb_queue_purge(struct sk_buff_head *list)
2171 {
2172 struct sk_buff *skb;
2173 while ((skb = skb_dequeue(list)) != NULL)
2174 kfree_skb(skb);
2175 }
2176 EXPORT_SYMBOL(skb_queue_purge);
2177
2178 /**
2179 * skb_queue_head - queue a buffer at the list head
2180 * @list: list to use
2181 * @newsk: buffer to queue
2182 *
2183 * Queue a buffer at the start of the list. This function takes the
2184 * list lock and can be used safely with other locking &sk_buff functions
2185 * safely.
2186 *
2187 * A buffer cannot be placed on two lists at the same time.
2188 */
2189 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2190 {
2191 unsigned long flags;
2192
2193 spin_lock_irqsave(&list->lock, flags);
2194 __skb_queue_head(list, newsk);
2195 spin_unlock_irqrestore(&list->lock, flags);
2196 }
2197 EXPORT_SYMBOL(skb_queue_head);
2198
2199 /**
2200 * skb_queue_tail - queue a buffer at the list tail
2201 * @list: list to use
2202 * @newsk: buffer to queue
2203 *
2204 * Queue a buffer at the tail of the list. This function takes the
2205 * list lock and can be used safely with other locking &sk_buff functions
2206 * safely.
2207 *
2208 * A buffer cannot be placed on two lists at the same time.
2209 */
2210 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2211 {
2212 unsigned long flags;
2213
2214 spin_lock_irqsave(&list->lock, flags);
2215 __skb_queue_tail(list, newsk);
2216 spin_unlock_irqrestore(&list->lock, flags);
2217 }
2218 EXPORT_SYMBOL(skb_queue_tail);
2219
2220 /**
2221 * skb_unlink - remove a buffer from a list
2222 * @skb: buffer to remove
2223 * @list: list to use
2224 *
2225 * Remove a packet from a list. The list locks are taken and this
2226 * function is atomic with respect to other list locked calls
2227 *
2228 * You must know what list the SKB is on.
2229 */
2230 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2231 {
2232 unsigned long flags;
2233
2234 spin_lock_irqsave(&list->lock, flags);
2235 __skb_unlink(skb, list);
2236 spin_unlock_irqrestore(&list->lock, flags);
2237 }
2238 EXPORT_SYMBOL(skb_unlink);
2239
2240 /**
2241 * skb_append - append a buffer
2242 * @old: buffer to insert after
2243 * @newsk: buffer to insert
2244 * @list: list to use
2245 *
2246 * Place a packet after a given packet in a list. The list locks are taken
2247 * and this function is atomic with respect to other list locked calls.
2248 * A buffer cannot be placed on two lists at the same time.
2249 */
2250 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2251 {
2252 unsigned long flags;
2253
2254 spin_lock_irqsave(&list->lock, flags);
2255 __skb_queue_after(list, old, newsk);
2256 spin_unlock_irqrestore(&list->lock, flags);
2257 }
2258 EXPORT_SYMBOL(skb_append);
2259
2260 /**
2261 * skb_insert - insert a buffer
2262 * @old: buffer to insert before
2263 * @newsk: buffer to insert
2264 * @list: list to use
2265 *
2266 * Place a packet before a given packet in a list. The list locks are
2267 * taken and this function is atomic with respect to other list locked
2268 * calls.
2269 *
2270 * A buffer cannot be placed on two lists at the same time.
2271 */
2272 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2273 {
2274 unsigned long flags;
2275
2276 spin_lock_irqsave(&list->lock, flags);
2277 __skb_insert(newsk, old->prev, old, list);
2278 spin_unlock_irqrestore(&list->lock, flags);
2279 }
2280 EXPORT_SYMBOL(skb_insert);
2281
2282 static inline void skb_split_inside_header(struct sk_buff *skb,
2283 struct sk_buff* skb1,
2284 const u32 len, const int pos)
2285 {
2286 int i;
2287
2288 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2289 pos - len);
2290 /* And move data appendix as is. */
2291 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2292 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2293
2294 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2295 skb_shinfo(skb)->nr_frags = 0;
2296 skb1->data_len = skb->data_len;
2297 skb1->len += skb1->data_len;
2298 skb->data_len = 0;
2299 skb->len = len;
2300 skb_set_tail_pointer(skb, len);
2301 }
2302
2303 static inline void skb_split_no_header(struct sk_buff *skb,
2304 struct sk_buff* skb1,
2305 const u32 len, int pos)
2306 {
2307 int i, k = 0;
2308 const int nfrags = skb_shinfo(skb)->nr_frags;
2309
2310 skb_shinfo(skb)->nr_frags = 0;
2311 skb1->len = skb1->data_len = skb->len - len;
2312 skb->len = len;
2313 skb->data_len = len - pos;
2314
2315 for (i = 0; i < nfrags; i++) {
2316 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2317
2318 if (pos + size > len) {
2319 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2320
2321 if (pos < len) {
2322 /* Split frag.
2323 * We have two variants in this case:
2324 * 1. Move all the frag to the second
2325 * part, if it is possible. F.e.
2326 * this approach is mandatory for TUX,
2327 * where splitting is expensive.
2328 * 2. Split is accurately. We make this.
2329 */
2330 skb_frag_ref(skb, i);
2331 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2332 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2333 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2334 skb_shinfo(skb)->nr_frags++;
2335 }
2336 k++;
2337 } else
2338 skb_shinfo(skb)->nr_frags++;
2339 pos += size;
2340 }
2341 skb_shinfo(skb1)->nr_frags = k;
2342 }
2343
2344 /**
2345 * skb_split - Split fragmented skb to two parts at length len.
2346 * @skb: the buffer to split
2347 * @skb1: the buffer to receive the second part
2348 * @len: new length for skb
2349 */
2350 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2351 {
2352 int pos = skb_headlen(skb);
2353
2354 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2355 if (len < pos) /* Split line is inside header. */
2356 skb_split_inside_header(skb, skb1, len, pos);
2357 else /* Second chunk has no header, nothing to copy. */
2358 skb_split_no_header(skb, skb1, len, pos);
2359 }
2360 EXPORT_SYMBOL(skb_split);
2361
2362 /* Shifting from/to a cloned skb is a no-go.
2363 *
2364 * Caller cannot keep skb_shinfo related pointers past calling here!
2365 */
2366 static int skb_prepare_for_shift(struct sk_buff *skb)
2367 {
2368 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2369 }
2370
2371 /**
2372 * skb_shift - Shifts paged data partially from skb to another
2373 * @tgt: buffer into which tail data gets added
2374 * @skb: buffer from which the paged data comes from
2375 * @shiftlen: shift up to this many bytes
2376 *
2377 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2378 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2379 * It's up to caller to free skb if everything was shifted.
2380 *
2381 * If @tgt runs out of frags, the whole operation is aborted.
2382 *
2383 * Skb cannot include anything else but paged data while tgt is allowed
2384 * to have non-paged data as well.
2385 *
2386 * TODO: full sized shift could be optimized but that would need
2387 * specialized skb free'er to handle frags without up-to-date nr_frags.
2388 */
2389 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2390 {
2391 int from, to, merge, todo;
2392 struct skb_frag_struct *fragfrom, *fragto;
2393
2394 BUG_ON(shiftlen > skb->len);
2395 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2396
2397 todo = shiftlen;
2398 from = 0;
2399 to = skb_shinfo(tgt)->nr_frags;
2400 fragfrom = &skb_shinfo(skb)->frags[from];
2401
2402 /* Actual merge is delayed until the point when we know we can
2403 * commit all, so that we don't have to undo partial changes
2404 */
2405 if (!to ||
2406 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2407 fragfrom->page_offset)) {
2408 merge = -1;
2409 } else {
2410 merge = to - 1;
2411
2412 todo -= skb_frag_size(fragfrom);
2413 if (todo < 0) {
2414 if (skb_prepare_for_shift(skb) ||
2415 skb_prepare_for_shift(tgt))
2416 return 0;
2417
2418 /* All previous frag pointers might be stale! */
2419 fragfrom = &skb_shinfo(skb)->frags[from];
2420 fragto = &skb_shinfo(tgt)->frags[merge];
2421
2422 skb_frag_size_add(fragto, shiftlen);
2423 skb_frag_size_sub(fragfrom, shiftlen);
2424 fragfrom->page_offset += shiftlen;
2425
2426 goto onlymerged;
2427 }
2428
2429 from++;
2430 }
2431
2432 /* Skip full, not-fitting skb to avoid expensive operations */
2433 if ((shiftlen == skb->len) &&
2434 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2435 return 0;
2436
2437 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2438 return 0;
2439
2440 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2441 if (to == MAX_SKB_FRAGS)
2442 return 0;
2443
2444 fragfrom = &skb_shinfo(skb)->frags[from];
2445 fragto = &skb_shinfo(tgt)->frags[to];
2446
2447 if (todo >= skb_frag_size(fragfrom)) {
2448 *fragto = *fragfrom;
2449 todo -= skb_frag_size(fragfrom);
2450 from++;
2451 to++;
2452
2453 } else {
2454 __skb_frag_ref(fragfrom);
2455 fragto->page = fragfrom->page;
2456 fragto->page_offset = fragfrom->page_offset;
2457 skb_frag_size_set(fragto, todo);
2458
2459 fragfrom->page_offset += todo;
2460 skb_frag_size_sub(fragfrom, todo);
2461 todo = 0;
2462
2463 to++;
2464 break;
2465 }
2466 }
2467
2468 /* Ready to "commit" this state change to tgt */
2469 skb_shinfo(tgt)->nr_frags = to;
2470
2471 if (merge >= 0) {
2472 fragfrom = &skb_shinfo(skb)->frags[0];
2473 fragto = &skb_shinfo(tgt)->frags[merge];
2474
2475 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2476 __skb_frag_unref(fragfrom);
2477 }
2478
2479 /* Reposition in the original skb */
2480 to = 0;
2481 while (from < skb_shinfo(skb)->nr_frags)
2482 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2483 skb_shinfo(skb)->nr_frags = to;
2484
2485 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2486
2487 onlymerged:
2488 /* Most likely the tgt won't ever need its checksum anymore, skb on
2489 * the other hand might need it if it needs to be resent
2490 */
2491 tgt->ip_summed = CHECKSUM_PARTIAL;
2492 skb->ip_summed = CHECKSUM_PARTIAL;
2493
2494 /* Yak, is it really working this way? Some helper please? */
2495 skb->len -= shiftlen;
2496 skb->data_len -= shiftlen;
2497 skb->truesize -= shiftlen;
2498 tgt->len += shiftlen;
2499 tgt->data_len += shiftlen;
2500 tgt->truesize += shiftlen;
2501
2502 return shiftlen;
2503 }
2504
2505 /**
2506 * skb_prepare_seq_read - Prepare a sequential read of skb data
2507 * @skb: the buffer to read
2508 * @from: lower offset of data to be read
2509 * @to: upper offset of data to be read
2510 * @st: state variable
2511 *
2512 * Initializes the specified state variable. Must be called before
2513 * invoking skb_seq_read() for the first time.
2514 */
2515 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2516 unsigned int to, struct skb_seq_state *st)
2517 {
2518 st->lower_offset = from;
2519 st->upper_offset = to;
2520 st->root_skb = st->cur_skb = skb;
2521 st->frag_idx = st->stepped_offset = 0;
2522 st->frag_data = NULL;
2523 }
2524 EXPORT_SYMBOL(skb_prepare_seq_read);
2525
2526 /**
2527 * skb_seq_read - Sequentially read skb data
2528 * @consumed: number of bytes consumed by the caller so far
2529 * @data: destination pointer for data to be returned
2530 * @st: state variable
2531 *
2532 * Reads a block of skb data at &consumed relative to the
2533 * lower offset specified to skb_prepare_seq_read(). Assigns
2534 * the head of the data block to &data and returns the length
2535 * of the block or 0 if the end of the skb data or the upper
2536 * offset has been reached.
2537 *
2538 * The caller is not required to consume all of the data
2539 * returned, i.e. &consumed is typically set to the number
2540 * of bytes already consumed and the next call to
2541 * skb_seq_read() will return the remaining part of the block.
2542 *
2543 * Note 1: The size of each block of data returned can be arbitrary,
2544 * this limitation is the cost for zerocopy seqeuental
2545 * reads of potentially non linear data.
2546 *
2547 * Note 2: Fragment lists within fragments are not implemented
2548 * at the moment, state->root_skb could be replaced with
2549 * a stack for this purpose.
2550 */
2551 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2552 struct skb_seq_state *st)
2553 {
2554 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2555 skb_frag_t *frag;
2556
2557 if (unlikely(abs_offset >= st->upper_offset))
2558 return 0;
2559
2560 next_skb:
2561 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2562
2563 if (abs_offset < block_limit && !st->frag_data) {
2564 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2565 return block_limit - abs_offset;
2566 }
2567
2568 if (st->frag_idx == 0 && !st->frag_data)
2569 st->stepped_offset += skb_headlen(st->cur_skb);
2570
2571 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2572 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2573 block_limit = skb_frag_size(frag) + st->stepped_offset;
2574
2575 if (abs_offset < block_limit) {
2576 if (!st->frag_data)
2577 st->frag_data = kmap_atomic(skb_frag_page(frag));
2578
2579 *data = (u8 *) st->frag_data + frag->page_offset +
2580 (abs_offset - st->stepped_offset);
2581
2582 return block_limit - abs_offset;
2583 }
2584
2585 if (st->frag_data) {
2586 kunmap_atomic(st->frag_data);
2587 st->frag_data = NULL;
2588 }
2589
2590 st->frag_idx++;
2591 st->stepped_offset += skb_frag_size(frag);
2592 }
2593
2594 if (st->frag_data) {
2595 kunmap_atomic(st->frag_data);
2596 st->frag_data = NULL;
2597 }
2598
2599 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2600 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2601 st->frag_idx = 0;
2602 goto next_skb;
2603 } else if (st->cur_skb->next) {
2604 st->cur_skb = st->cur_skb->next;
2605 st->frag_idx = 0;
2606 goto next_skb;
2607 }
2608
2609 return 0;
2610 }
2611 EXPORT_SYMBOL(skb_seq_read);
2612
2613 /**
2614 * skb_abort_seq_read - Abort a sequential read of skb data
2615 * @st: state variable
2616 *
2617 * Must be called if skb_seq_read() was not called until it
2618 * returned 0.
2619 */
2620 void skb_abort_seq_read(struct skb_seq_state *st)
2621 {
2622 if (st->frag_data)
2623 kunmap_atomic(st->frag_data);
2624 }
2625 EXPORT_SYMBOL(skb_abort_seq_read);
2626
2627 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2628
2629 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2630 struct ts_config *conf,
2631 struct ts_state *state)
2632 {
2633 return skb_seq_read(offset, text, TS_SKB_CB(state));
2634 }
2635
2636 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2637 {
2638 skb_abort_seq_read(TS_SKB_CB(state));
2639 }
2640
2641 /**
2642 * skb_find_text - Find a text pattern in skb data
2643 * @skb: the buffer to look in
2644 * @from: search offset
2645 * @to: search limit
2646 * @config: textsearch configuration
2647 * @state: uninitialized textsearch state variable
2648 *
2649 * Finds a pattern in the skb data according to the specified
2650 * textsearch configuration. Use textsearch_next() to retrieve
2651 * subsequent occurrences of the pattern. Returns the offset
2652 * to the first occurrence or UINT_MAX if no match was found.
2653 */
2654 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2655 unsigned int to, struct ts_config *config,
2656 struct ts_state *state)
2657 {
2658 unsigned int ret;
2659
2660 config->get_next_block = skb_ts_get_next_block;
2661 config->finish = skb_ts_finish;
2662
2663 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2664
2665 ret = textsearch_find(config, state);
2666 return (ret <= to - from ? ret : UINT_MAX);
2667 }
2668 EXPORT_SYMBOL(skb_find_text);
2669
2670 /**
2671 * skb_append_datato_frags - append the user data to a skb
2672 * @sk: sock structure
2673 * @skb: skb structure to be appened with user data.
2674 * @getfrag: call back function to be used for getting the user data
2675 * @from: pointer to user message iov
2676 * @length: length of the iov message
2677 *
2678 * Description: This procedure append the user data in the fragment part
2679 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2680 */
2681 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2682 int (*getfrag)(void *from, char *to, int offset,
2683 int len, int odd, struct sk_buff *skb),
2684 void *from, int length)
2685 {
2686 int frg_cnt = skb_shinfo(skb)->nr_frags;
2687 int copy;
2688 int offset = 0;
2689 int ret;
2690 struct page_frag *pfrag = &current->task_frag;
2691
2692 do {
2693 /* Return error if we don't have space for new frag */
2694 if (frg_cnt >= MAX_SKB_FRAGS)
2695 return -EMSGSIZE;
2696
2697 if (!sk_page_frag_refill(sk, pfrag))
2698 return -ENOMEM;
2699
2700 /* copy the user data to page */
2701 copy = min_t(int, length, pfrag->size - pfrag->offset);
2702
2703 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2704 offset, copy, 0, skb);
2705 if (ret < 0)
2706 return -EFAULT;
2707
2708 /* copy was successful so update the size parameters */
2709 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2710 copy);
2711 frg_cnt++;
2712 pfrag->offset += copy;
2713 get_page(pfrag->page);
2714
2715 skb->truesize += copy;
2716 atomic_add(copy, &sk->sk_wmem_alloc);
2717 skb->len += copy;
2718 skb->data_len += copy;
2719 offset += copy;
2720 length -= copy;
2721
2722 } while (length > 0);
2723
2724 return 0;
2725 }
2726 EXPORT_SYMBOL(skb_append_datato_frags);
2727
2728 /**
2729 * skb_pull_rcsum - pull skb and update receive checksum
2730 * @skb: buffer to update
2731 * @len: length of data pulled
2732 *
2733 * This function performs an skb_pull on the packet and updates
2734 * the CHECKSUM_COMPLETE checksum. It should be used on
2735 * receive path processing instead of skb_pull unless you know
2736 * that the checksum difference is zero (e.g., a valid IP header)
2737 * or you are setting ip_summed to CHECKSUM_NONE.
2738 */
2739 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2740 {
2741 BUG_ON(len > skb->len);
2742 skb->len -= len;
2743 BUG_ON(skb->len < skb->data_len);
2744 skb_postpull_rcsum(skb, skb->data, len);
2745 return skb->data += len;
2746 }
2747 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2748
2749 /**
2750 * skb_segment - Perform protocol segmentation on skb.
2751 * @skb: buffer to segment
2752 * @features: features for the output path (see dev->features)
2753 *
2754 * This function performs segmentation on the given skb. It returns
2755 * a pointer to the first in a list of new skbs for the segments.
2756 * In case of error it returns ERR_PTR(err).
2757 */
2758 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2759 {
2760 struct sk_buff *segs = NULL;
2761 struct sk_buff *tail = NULL;
2762 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2763 unsigned int mss = skb_shinfo(skb)->gso_size;
2764 unsigned int doffset = skb->data - skb_mac_header(skb);
2765 unsigned int offset = doffset;
2766 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2767 unsigned int headroom;
2768 unsigned int len;
2769 __be16 proto;
2770 bool csum;
2771 int sg = !!(features & NETIF_F_SG);
2772 int nfrags = skb_shinfo(skb)->nr_frags;
2773 int err = -ENOMEM;
2774 int i = 0;
2775 int pos;
2776
2777 proto = skb_network_protocol(skb);
2778 if (unlikely(!proto))
2779 return ERR_PTR(-EINVAL);
2780
2781 csum = !!can_checksum_protocol(features, proto);
2782 __skb_push(skb, doffset);
2783 headroom = skb_headroom(skb);
2784 pos = skb_headlen(skb);
2785
2786 do {
2787 struct sk_buff *nskb;
2788 skb_frag_t *frag;
2789 int hsize;
2790 int size;
2791
2792 len = skb->len - offset;
2793 if (len > mss)
2794 len = mss;
2795
2796 hsize = skb_headlen(skb) - offset;
2797 if (hsize < 0)
2798 hsize = 0;
2799 if (hsize > len || !sg)
2800 hsize = len;
2801
2802 if (!hsize && i >= nfrags) {
2803 BUG_ON(fskb->len != len);
2804
2805 pos += len;
2806 nskb = skb_clone(fskb, GFP_ATOMIC);
2807 fskb = fskb->next;
2808
2809 if (unlikely(!nskb))
2810 goto err;
2811
2812 hsize = skb_end_offset(nskb);
2813 if (skb_cow_head(nskb, doffset + headroom)) {
2814 kfree_skb(nskb);
2815 goto err;
2816 }
2817
2818 nskb->truesize += skb_end_offset(nskb) - hsize;
2819 skb_release_head_state(nskb);
2820 __skb_push(nskb, doffset);
2821 } else {
2822 nskb = __alloc_skb(hsize + doffset + headroom,
2823 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2824 NUMA_NO_NODE);
2825
2826 if (unlikely(!nskb))
2827 goto err;
2828
2829 skb_reserve(nskb, headroom);
2830 __skb_put(nskb, doffset);
2831 }
2832
2833 if (segs)
2834 tail->next = nskb;
2835 else
2836 segs = nskb;
2837 tail = nskb;
2838
2839 __copy_skb_header(nskb, skb);
2840 nskb->mac_len = skb->mac_len;
2841
2842 /* nskb and skb might have different headroom */
2843 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2844 nskb->csum_start += skb_headroom(nskb) - headroom;
2845
2846 skb_reset_mac_header(nskb);
2847 skb_set_network_header(nskb, skb->mac_len);
2848 nskb->transport_header = (nskb->network_header +
2849 skb_network_header_len(skb));
2850
2851 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2852 nskb->data - tnl_hlen,
2853 doffset + tnl_hlen);
2854
2855 if (fskb != skb_shinfo(skb)->frag_list)
2856 continue;
2857
2858 if (!sg) {
2859 nskb->ip_summed = CHECKSUM_NONE;
2860 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2861 skb_put(nskb, len),
2862 len, 0);
2863 continue;
2864 }
2865
2866 frag = skb_shinfo(nskb)->frags;
2867
2868 skb_copy_from_linear_data_offset(skb, offset,
2869 skb_put(nskb, hsize), hsize);
2870
2871 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2872
2873 while (pos < offset + len && i < nfrags) {
2874 *frag = skb_shinfo(skb)->frags[i];
2875 __skb_frag_ref(frag);
2876 size = skb_frag_size(frag);
2877
2878 if (pos < offset) {
2879 frag->page_offset += offset - pos;
2880 skb_frag_size_sub(frag, offset - pos);
2881 }
2882
2883 skb_shinfo(nskb)->nr_frags++;
2884
2885 if (pos + size <= offset + len) {
2886 i++;
2887 pos += size;
2888 } else {
2889 skb_frag_size_sub(frag, pos + size - (offset + len));
2890 goto skip_fraglist;
2891 }
2892
2893 frag++;
2894 }
2895
2896 if (pos < offset + len) {
2897 struct sk_buff *fskb2 = fskb;
2898
2899 BUG_ON(pos + fskb->len != offset + len);
2900
2901 pos += fskb->len;
2902 fskb = fskb->next;
2903
2904 if (fskb2->next) {
2905 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2906 if (!fskb2)
2907 goto err;
2908 } else
2909 skb_get(fskb2);
2910
2911 SKB_FRAG_ASSERT(nskb);
2912 skb_shinfo(nskb)->frag_list = fskb2;
2913 }
2914
2915 skip_fraglist:
2916 nskb->data_len = len - hsize;
2917 nskb->len += nskb->data_len;
2918 nskb->truesize += nskb->data_len;
2919
2920 if (!csum) {
2921 nskb->csum = skb_checksum(nskb, doffset,
2922 nskb->len - doffset, 0);
2923 nskb->ip_summed = CHECKSUM_NONE;
2924 }
2925 } while ((offset += len) < skb->len);
2926
2927 return segs;
2928
2929 err:
2930 while ((skb = segs)) {
2931 segs = skb->next;
2932 kfree_skb(skb);
2933 }
2934 return ERR_PTR(err);
2935 }
2936 EXPORT_SYMBOL_GPL(skb_segment);
2937
2938 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2939 {
2940 struct sk_buff *p = *head;
2941 struct sk_buff *nskb;
2942 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2943 struct skb_shared_info *pinfo = skb_shinfo(p);
2944 unsigned int headroom;
2945 unsigned int len = skb_gro_len(skb);
2946 unsigned int offset = skb_gro_offset(skb);
2947 unsigned int headlen = skb_headlen(skb);
2948 unsigned int delta_truesize;
2949
2950 if (p->len + len >= 65536)
2951 return -E2BIG;
2952
2953 if (pinfo->frag_list)
2954 goto merge;
2955 else if (headlen <= offset) {
2956 skb_frag_t *frag;
2957 skb_frag_t *frag2;
2958 int i = skbinfo->nr_frags;
2959 int nr_frags = pinfo->nr_frags + i;
2960
2961 offset -= headlen;
2962
2963 if (nr_frags > MAX_SKB_FRAGS)
2964 return -E2BIG;
2965
2966 pinfo->nr_frags = nr_frags;
2967 skbinfo->nr_frags = 0;
2968
2969 frag = pinfo->frags + nr_frags;
2970 frag2 = skbinfo->frags + i;
2971 do {
2972 *--frag = *--frag2;
2973 } while (--i);
2974
2975 frag->page_offset += offset;
2976 skb_frag_size_sub(frag, offset);
2977
2978 /* all fragments truesize : remove (head size + sk_buff) */
2979 delta_truesize = skb->truesize -
2980 SKB_TRUESIZE(skb_end_offset(skb));
2981
2982 skb->truesize -= skb->data_len;
2983 skb->len -= skb->data_len;
2984 skb->data_len = 0;
2985
2986 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2987 goto done;
2988 } else if (skb->head_frag) {
2989 int nr_frags = pinfo->nr_frags;
2990 skb_frag_t *frag = pinfo->frags + nr_frags;
2991 struct page *page = virt_to_head_page(skb->head);
2992 unsigned int first_size = headlen - offset;
2993 unsigned int first_offset;
2994
2995 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2996 return -E2BIG;
2997
2998 first_offset = skb->data -
2999 (unsigned char *)page_address(page) +
3000 offset;
3001
3002 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3003
3004 frag->page.p = page;
3005 frag->page_offset = first_offset;
3006 skb_frag_size_set(frag, first_size);
3007
3008 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3009 /* We dont need to clear skbinfo->nr_frags here */
3010
3011 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3012 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3013 goto done;
3014 } else if (skb_gro_len(p) != pinfo->gso_size)
3015 return -E2BIG;
3016
3017 headroom = skb_headroom(p);
3018 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3019 if (unlikely(!nskb))
3020 return -ENOMEM;
3021
3022 __copy_skb_header(nskb, p);
3023 nskb->mac_len = p->mac_len;
3024
3025 skb_reserve(nskb, headroom);
3026 __skb_put(nskb, skb_gro_offset(p));
3027
3028 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3029 skb_set_network_header(nskb, skb_network_offset(p));
3030 skb_set_transport_header(nskb, skb_transport_offset(p));
3031
3032 __skb_pull(p, skb_gro_offset(p));
3033 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3034 p->data - skb_mac_header(p));
3035
3036 skb_shinfo(nskb)->frag_list = p;
3037 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3038 pinfo->gso_size = 0;
3039 skb_header_release(p);
3040 NAPI_GRO_CB(nskb)->last = p;
3041
3042 nskb->data_len += p->len;
3043 nskb->truesize += p->truesize;
3044 nskb->len += p->len;
3045
3046 *head = nskb;
3047 nskb->next = p->next;
3048 p->next = NULL;
3049
3050 p = nskb;
3051
3052 merge:
3053 delta_truesize = skb->truesize;
3054 if (offset > headlen) {
3055 unsigned int eat = offset - headlen;
3056
3057 skbinfo->frags[0].page_offset += eat;
3058 skb_frag_size_sub(&skbinfo->frags[0], eat);
3059 skb->data_len -= eat;
3060 skb->len -= eat;
3061 offset = headlen;
3062 }
3063
3064 __skb_pull(skb, offset);
3065
3066 NAPI_GRO_CB(p)->last->next = skb;
3067 NAPI_GRO_CB(p)->last = skb;
3068 skb_header_release(skb);
3069
3070 done:
3071 NAPI_GRO_CB(p)->count++;
3072 p->data_len += len;
3073 p->truesize += delta_truesize;
3074 p->len += len;
3075
3076 NAPI_GRO_CB(skb)->same_flow = 1;
3077 return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(skb_gro_receive);
3080
3081 void __init skb_init(void)
3082 {
3083 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3084 sizeof(struct sk_buff),
3085 0,
3086 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3087 NULL);
3088 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3089 (2*sizeof(struct sk_buff)) +
3090 sizeof(atomic_t),
3091 0,
3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3093 NULL);
3094 }
3095
3096 /**
3097 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3098 * @skb: Socket buffer containing the buffers to be mapped
3099 * @sg: The scatter-gather list to map into
3100 * @offset: The offset into the buffer's contents to start mapping
3101 * @len: Length of buffer space to be mapped
3102 *
3103 * Fill the specified scatter-gather list with mappings/pointers into a
3104 * region of the buffer space attached to a socket buffer.
3105 */
3106 static int
3107 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3108 {
3109 int start = skb_headlen(skb);
3110 int i, copy = start - offset;
3111 struct sk_buff *frag_iter;
3112 int elt = 0;
3113
3114 if (copy > 0) {
3115 if (copy > len)
3116 copy = len;
3117 sg_set_buf(sg, skb->data + offset, copy);
3118 elt++;
3119 if ((len -= copy) == 0)
3120 return elt;
3121 offset += copy;
3122 }
3123
3124 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3125 int end;
3126
3127 WARN_ON(start > offset + len);
3128
3129 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3130 if ((copy = end - offset) > 0) {
3131 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3132
3133 if (copy > len)
3134 copy = len;
3135 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3136 frag->page_offset+offset-start);
3137 elt++;
3138 if (!(len -= copy))
3139 return elt;
3140 offset += copy;
3141 }
3142 start = end;
3143 }
3144
3145 skb_walk_frags(skb, frag_iter) {
3146 int end;
3147
3148 WARN_ON(start > offset + len);
3149
3150 end = start + frag_iter->len;
3151 if ((copy = end - offset) > 0) {
3152 if (copy > len)
3153 copy = len;
3154 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3155 copy);
3156 if ((len -= copy) == 0)
3157 return elt;
3158 offset += copy;
3159 }
3160 start = end;
3161 }
3162 BUG_ON(len);
3163 return elt;
3164 }
3165
3166 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3167 {
3168 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3169
3170 sg_mark_end(&sg[nsg - 1]);
3171
3172 return nsg;
3173 }
3174 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3175
3176 /**
3177 * skb_cow_data - Check that a socket buffer's data buffers are writable
3178 * @skb: The socket buffer to check.
3179 * @tailbits: Amount of trailing space to be added
3180 * @trailer: Returned pointer to the skb where the @tailbits space begins
3181 *
3182 * Make sure that the data buffers attached to a socket buffer are
3183 * writable. If they are not, private copies are made of the data buffers
3184 * and the socket buffer is set to use these instead.
3185 *
3186 * If @tailbits is given, make sure that there is space to write @tailbits
3187 * bytes of data beyond current end of socket buffer. @trailer will be
3188 * set to point to the skb in which this space begins.
3189 *
3190 * The number of scatterlist elements required to completely map the
3191 * COW'd and extended socket buffer will be returned.
3192 */
3193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3194 {
3195 int copyflag;
3196 int elt;
3197 struct sk_buff *skb1, **skb_p;
3198
3199 /* If skb is cloned or its head is paged, reallocate
3200 * head pulling out all the pages (pages are considered not writable
3201 * at the moment even if they are anonymous).
3202 */
3203 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3204 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3205 return -ENOMEM;
3206
3207 /* Easy case. Most of packets will go this way. */
3208 if (!skb_has_frag_list(skb)) {
3209 /* A little of trouble, not enough of space for trailer.
3210 * This should not happen, when stack is tuned to generate
3211 * good frames. OK, on miss we reallocate and reserve even more
3212 * space, 128 bytes is fair. */
3213
3214 if (skb_tailroom(skb) < tailbits &&
3215 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3216 return -ENOMEM;
3217
3218 /* Voila! */
3219 *trailer = skb;
3220 return 1;
3221 }
3222
3223 /* Misery. We are in troubles, going to mincer fragments... */
3224
3225 elt = 1;
3226 skb_p = &skb_shinfo(skb)->frag_list;
3227 copyflag = 0;
3228
3229 while ((skb1 = *skb_p) != NULL) {
3230 int ntail = 0;
3231
3232 /* The fragment is partially pulled by someone,
3233 * this can happen on input. Copy it and everything
3234 * after it. */
3235
3236 if (skb_shared(skb1))
3237 copyflag = 1;
3238
3239 /* If the skb is the last, worry about trailer. */
3240
3241 if (skb1->next == NULL && tailbits) {
3242 if (skb_shinfo(skb1)->nr_frags ||
3243 skb_has_frag_list(skb1) ||
3244 skb_tailroom(skb1) < tailbits)
3245 ntail = tailbits + 128;
3246 }
3247
3248 if (copyflag ||
3249 skb_cloned(skb1) ||
3250 ntail ||
3251 skb_shinfo(skb1)->nr_frags ||
3252 skb_has_frag_list(skb1)) {
3253 struct sk_buff *skb2;
3254
3255 /* Fuck, we are miserable poor guys... */
3256 if (ntail == 0)
3257 skb2 = skb_copy(skb1, GFP_ATOMIC);
3258 else
3259 skb2 = skb_copy_expand(skb1,
3260 skb_headroom(skb1),
3261 ntail,
3262 GFP_ATOMIC);
3263 if (unlikely(skb2 == NULL))
3264 return -ENOMEM;
3265
3266 if (skb1->sk)
3267 skb_set_owner_w(skb2, skb1->sk);
3268
3269 /* Looking around. Are we still alive?
3270 * OK, link new skb, drop old one */
3271
3272 skb2->next = skb1->next;
3273 *skb_p = skb2;
3274 kfree_skb(skb1);
3275 skb1 = skb2;
3276 }
3277 elt++;
3278 *trailer = skb1;
3279 skb_p = &skb1->next;
3280 }
3281
3282 return elt;
3283 }
3284 EXPORT_SYMBOL_GPL(skb_cow_data);
3285
3286 static void sock_rmem_free(struct sk_buff *skb)
3287 {
3288 struct sock *sk = skb->sk;
3289
3290 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3291 }
3292
3293 /*
3294 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3295 */
3296 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3297 {
3298 int len = skb->len;
3299
3300 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3301 (unsigned int)sk->sk_rcvbuf)
3302 return -ENOMEM;
3303
3304 skb_orphan(skb);
3305 skb->sk = sk;
3306 skb->destructor = sock_rmem_free;
3307 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3308
3309 /* before exiting rcu section, make sure dst is refcounted */
3310 skb_dst_force(skb);
3311
3312 skb_queue_tail(&sk->sk_error_queue, skb);
3313 if (!sock_flag(sk, SOCK_DEAD))
3314 sk->sk_data_ready(sk, len);
3315 return 0;
3316 }
3317 EXPORT_SYMBOL(sock_queue_err_skb);
3318
3319 void skb_tstamp_tx(struct sk_buff *orig_skb,
3320 struct skb_shared_hwtstamps *hwtstamps)
3321 {
3322 struct sock *sk = orig_skb->sk;
3323 struct sock_exterr_skb *serr;
3324 struct sk_buff *skb;
3325 int err;
3326
3327 if (!sk)
3328 return;
3329
3330 if (hwtstamps) {
3331 *skb_hwtstamps(orig_skb) =
3332 *hwtstamps;
3333 } else {
3334 /*
3335 * no hardware time stamps available,
3336 * so keep the shared tx_flags and only
3337 * store software time stamp
3338 */
3339 orig_skb->tstamp = ktime_get_real();
3340 }
3341
3342 skb = skb_clone(orig_skb, GFP_ATOMIC);
3343 if (!skb)
3344 return;
3345
3346 serr = SKB_EXT_ERR(skb);
3347 memset(serr, 0, sizeof(*serr));
3348 serr->ee.ee_errno = ENOMSG;
3349 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3350
3351 err = sock_queue_err_skb(sk, skb);
3352
3353 if (err)
3354 kfree_skb(skb);
3355 }
3356 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3357
3358 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3359 {
3360 struct sock *sk = skb->sk;
3361 struct sock_exterr_skb *serr;
3362 int err;
3363
3364 skb->wifi_acked_valid = 1;
3365 skb->wifi_acked = acked;
3366
3367 serr = SKB_EXT_ERR(skb);
3368 memset(serr, 0, sizeof(*serr));
3369 serr->ee.ee_errno = ENOMSG;
3370 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3371
3372 err = sock_queue_err_skb(sk, skb);
3373 if (err)
3374 kfree_skb(skb);
3375 }
3376 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3377
3378
3379 /**
3380 * skb_partial_csum_set - set up and verify partial csum values for packet
3381 * @skb: the skb to set
3382 * @start: the number of bytes after skb->data to start checksumming.
3383 * @off: the offset from start to place the checksum.
3384 *
3385 * For untrusted partially-checksummed packets, we need to make sure the values
3386 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3387 *
3388 * This function checks and sets those values and skb->ip_summed: if this
3389 * returns false you should drop the packet.
3390 */
3391 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3392 {
3393 if (unlikely(start > skb_headlen(skb)) ||
3394 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3395 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3396 start, off, skb_headlen(skb));
3397 return false;
3398 }
3399 skb->ip_summed = CHECKSUM_PARTIAL;
3400 skb->csum_start = skb_headroom(skb) + start;
3401 skb->csum_offset = off;
3402 skb_set_transport_header(skb, start);
3403 return true;
3404 }
3405 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3406
3407 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3408 {
3409 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3410 skb->dev->name);
3411 }
3412 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3413
3414 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3415 {
3416 if (head_stolen) {
3417 skb_release_head_state(skb);
3418 kmem_cache_free(skbuff_head_cache, skb);
3419 } else {
3420 __kfree_skb(skb);
3421 }
3422 }
3423 EXPORT_SYMBOL(kfree_skb_partial);
3424
3425 /**
3426 * skb_try_coalesce - try to merge skb to prior one
3427 * @to: prior buffer
3428 * @from: buffer to add
3429 * @fragstolen: pointer to boolean
3430 * @delta_truesize: how much more was allocated than was requested
3431 */
3432 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3433 bool *fragstolen, int *delta_truesize)
3434 {
3435 int i, delta, len = from->len;
3436
3437 *fragstolen = false;
3438
3439 if (skb_cloned(to))
3440 return false;
3441
3442 if (len <= skb_tailroom(to)) {
3443 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3444 *delta_truesize = 0;
3445 return true;
3446 }
3447
3448 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3449 return false;
3450
3451 if (skb_headlen(from) != 0) {
3452 struct page *page;
3453 unsigned int offset;
3454
3455 if (skb_shinfo(to)->nr_frags +
3456 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3457 return false;
3458
3459 if (skb_head_is_locked(from))
3460 return false;
3461
3462 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3463
3464 page = virt_to_head_page(from->head);
3465 offset = from->data - (unsigned char *)page_address(page);
3466
3467 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3468 page, offset, skb_headlen(from));
3469 *fragstolen = true;
3470 } else {
3471 if (skb_shinfo(to)->nr_frags +
3472 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3473 return false;
3474
3475 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3476 }
3477
3478 WARN_ON_ONCE(delta < len);
3479
3480 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3481 skb_shinfo(from)->frags,
3482 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3483 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3484
3485 if (!skb_cloned(from))
3486 skb_shinfo(from)->nr_frags = 0;
3487
3488 /* if the skb is not cloned this does nothing
3489 * since we set nr_frags to 0.
3490 */
3491 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3492 skb_frag_ref(from, i);
3493
3494 to->truesize += delta;
3495 to->len += len;
3496 to->data_len += len;
3497
3498 *delta_truesize = delta;
3499 return true;
3500 }
3501 EXPORT_SYMBOL(skb_try_coalesce);