Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
71
72 #include "kmap_skb.h"
73
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
129 }
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
193
194 /*
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
198 */
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
209
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
224
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
226 }
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
233 }
234 EXPORT_SYMBOL(__alloc_skb);
235
236 /**
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 *
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
246 *
247 * %NULL is returned if there is no free memory.
248 */
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
251 {
252 struct sk_buff *skb;
253
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
258 }
259 return skb;
260 }
261 EXPORT_SYMBOL(__netdev_alloc_skb);
262
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
265 {
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
270 }
271 EXPORT_SYMBOL(skb_add_rx_frag);
272
273 /**
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
276 *
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
281 *
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
284 */
285 struct sk_buff *dev_alloc_skb(unsigned int length)
286 {
287 /*
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
290 */
291 return __dev_alloc_skb(length, GFP_ATOMIC);
292 }
293 EXPORT_SYMBOL(dev_alloc_skb);
294
295 static void skb_drop_list(struct sk_buff **listp)
296 {
297 struct sk_buff *list = *listp;
298
299 *listp = NULL;
300
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
306 }
307
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
309 {
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
311 }
312
313 static void skb_clone_fraglist(struct sk_buff *skb)
314 {
315 struct sk_buff *list;
316
317 skb_walk_frags(skb, list)
318 skb_get(list);
319 }
320
321 static void skb_release_data(struct sk_buff *skb)
322 {
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 put_page(skb_shinfo(skb)->frags[i].page);
330 }
331
332 if (skb_has_frag_list(skb))
333 skb_drop_fraglist(skb);
334
335 kfree(skb->head);
336 }
337 }
338
339 /*
340 * Free an skbuff by memory without cleaning the state.
341 */
342 static void kfree_skbmem(struct sk_buff *skb)
343 {
344 struct sk_buff *other;
345 atomic_t *fclone_ref;
346
347 switch (skb->fclone) {
348 case SKB_FCLONE_UNAVAILABLE:
349 kmem_cache_free(skbuff_head_cache, skb);
350 break;
351
352 case SKB_FCLONE_ORIG:
353 fclone_ref = (atomic_t *) (skb + 2);
354 if (atomic_dec_and_test(fclone_ref))
355 kmem_cache_free(skbuff_fclone_cache, skb);
356 break;
357
358 case SKB_FCLONE_CLONE:
359 fclone_ref = (atomic_t *) (skb + 1);
360 other = skb - 1;
361
362 /* The clone portion is available for
363 * fast-cloning again.
364 */
365 skb->fclone = SKB_FCLONE_UNAVAILABLE;
366
367 if (atomic_dec_and_test(fclone_ref))
368 kmem_cache_free(skbuff_fclone_cache, other);
369 break;
370 }
371 }
372
373 static void skb_release_head_state(struct sk_buff *skb)
374 {
375 skb_dst_drop(skb);
376 #ifdef CONFIG_XFRM
377 secpath_put(skb->sp);
378 #endif
379 if (skb->destructor) {
380 WARN_ON(in_irq());
381 skb->destructor(skb);
382 }
383 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
384 nf_conntrack_put(skb->nfct);
385 #endif
386 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
387 nf_conntrack_put_reasm(skb->nfct_reasm);
388 #endif
389 #ifdef CONFIG_BRIDGE_NETFILTER
390 nf_bridge_put(skb->nf_bridge);
391 #endif
392 /* XXX: IS this still necessary? - JHS */
393 #ifdef CONFIG_NET_SCHED
394 skb->tc_index = 0;
395 #ifdef CONFIG_NET_CLS_ACT
396 skb->tc_verd = 0;
397 #endif
398 #endif
399 }
400
401 /* Free everything but the sk_buff shell. */
402 static void skb_release_all(struct sk_buff *skb)
403 {
404 skb_release_head_state(skb);
405 skb_release_data(skb);
406 }
407
408 /**
409 * __kfree_skb - private function
410 * @skb: buffer
411 *
412 * Free an sk_buff. Release anything attached to the buffer.
413 * Clean the state. This is an internal helper function. Users should
414 * always call kfree_skb
415 */
416
417 void __kfree_skb(struct sk_buff *skb)
418 {
419 skb_release_all(skb);
420 kfree_skbmem(skb);
421 }
422 EXPORT_SYMBOL(__kfree_skb);
423
424 /**
425 * kfree_skb - free an sk_buff
426 * @skb: buffer to free
427 *
428 * Drop a reference to the buffer and free it if the usage count has
429 * hit zero.
430 */
431 void kfree_skb(struct sk_buff *skb)
432 {
433 if (unlikely(!skb))
434 return;
435 if (likely(atomic_read(&skb->users) == 1))
436 smp_rmb();
437 else if (likely(!atomic_dec_and_test(&skb->users)))
438 return;
439 trace_kfree_skb(skb, __builtin_return_address(0));
440 __kfree_skb(skb);
441 }
442 EXPORT_SYMBOL(kfree_skb);
443
444 /**
445 * consume_skb - free an skbuff
446 * @skb: buffer to free
447 *
448 * Drop a ref to the buffer and free it if the usage count has hit zero
449 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
450 * is being dropped after a failure and notes that
451 */
452 void consume_skb(struct sk_buff *skb)
453 {
454 if (unlikely(!skb))
455 return;
456 if (likely(atomic_read(&skb->users) == 1))
457 smp_rmb();
458 else if (likely(!atomic_dec_and_test(&skb->users)))
459 return;
460 trace_consume_skb(skb);
461 __kfree_skb(skb);
462 }
463 EXPORT_SYMBOL(consume_skb);
464
465 /**
466 * skb_recycle_check - check if skb can be reused for receive
467 * @skb: buffer
468 * @skb_size: minimum receive buffer size
469 *
470 * Checks that the skb passed in is not shared or cloned, and
471 * that it is linear and its head portion at least as large as
472 * skb_size so that it can be recycled as a receive buffer.
473 * If these conditions are met, this function does any necessary
474 * reference count dropping and cleans up the skbuff as if it
475 * just came from __alloc_skb().
476 */
477 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
478 {
479 struct skb_shared_info *shinfo;
480
481 if (irqs_disabled())
482 return false;
483
484 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
485 return false;
486
487 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
488 if (skb_end_pointer(skb) - skb->head < skb_size)
489 return false;
490
491 if (skb_shared(skb) || skb_cloned(skb))
492 return false;
493
494 skb_release_head_state(skb);
495
496 shinfo = skb_shinfo(skb);
497 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
498 atomic_set(&shinfo->dataref, 1);
499
500 memset(skb, 0, offsetof(struct sk_buff, tail));
501 skb->data = skb->head + NET_SKB_PAD;
502 skb_reset_tail_pointer(skb);
503
504 return true;
505 }
506 EXPORT_SYMBOL(skb_recycle_check);
507
508 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
509 {
510 new->tstamp = old->tstamp;
511 new->dev = old->dev;
512 new->transport_header = old->transport_header;
513 new->network_header = old->network_header;
514 new->mac_header = old->mac_header;
515 skb_dst_copy(new, old);
516 new->rxhash = old->rxhash;
517 #ifdef CONFIG_XFRM
518 new->sp = secpath_get(old->sp);
519 #endif
520 memcpy(new->cb, old->cb, sizeof(old->cb));
521 new->csum = old->csum;
522 new->local_df = old->local_df;
523 new->pkt_type = old->pkt_type;
524 new->ip_summed = old->ip_summed;
525 skb_copy_queue_mapping(new, old);
526 new->priority = old->priority;
527 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
528 new->ipvs_property = old->ipvs_property;
529 #endif
530 new->protocol = old->protocol;
531 new->mark = old->mark;
532 new->skb_iif = old->skb_iif;
533 __nf_copy(new, old);
534 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
535 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
536 new->nf_trace = old->nf_trace;
537 #endif
538 #ifdef CONFIG_NET_SCHED
539 new->tc_index = old->tc_index;
540 #ifdef CONFIG_NET_CLS_ACT
541 new->tc_verd = old->tc_verd;
542 #endif
543 #endif
544 new->vlan_tci = old->vlan_tci;
545
546 skb_copy_secmark(new, old);
547 }
548
549 /*
550 * You should not add any new code to this function. Add it to
551 * __copy_skb_header above instead.
552 */
553 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
554 {
555 #define C(x) n->x = skb->x
556
557 n->next = n->prev = NULL;
558 n->sk = NULL;
559 __copy_skb_header(n, skb);
560
561 C(len);
562 C(data_len);
563 C(mac_len);
564 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
565 n->cloned = 1;
566 n->nohdr = 0;
567 n->destructor = NULL;
568 C(tail);
569 C(end);
570 C(head);
571 C(data);
572 C(truesize);
573 atomic_set(&n->users, 1);
574
575 atomic_inc(&(skb_shinfo(skb)->dataref));
576 skb->cloned = 1;
577
578 return n;
579 #undef C
580 }
581
582 /**
583 * skb_morph - morph one skb into another
584 * @dst: the skb to receive the contents
585 * @src: the skb to supply the contents
586 *
587 * This is identical to skb_clone except that the target skb is
588 * supplied by the user.
589 *
590 * The target skb is returned upon exit.
591 */
592 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
593 {
594 skb_release_all(dst);
595 return __skb_clone(dst, src);
596 }
597 EXPORT_SYMBOL_GPL(skb_morph);
598
599 /**
600 * skb_clone - duplicate an sk_buff
601 * @skb: buffer to clone
602 * @gfp_mask: allocation priority
603 *
604 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
605 * copies share the same packet data but not structure. The new
606 * buffer has a reference count of 1. If the allocation fails the
607 * function returns %NULL otherwise the new buffer is returned.
608 *
609 * If this function is called from an interrupt gfp_mask() must be
610 * %GFP_ATOMIC.
611 */
612
613 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
614 {
615 struct sk_buff *n;
616
617 n = skb + 1;
618 if (skb->fclone == SKB_FCLONE_ORIG &&
619 n->fclone == SKB_FCLONE_UNAVAILABLE) {
620 atomic_t *fclone_ref = (atomic_t *) (n + 1);
621 n->fclone = SKB_FCLONE_CLONE;
622 atomic_inc(fclone_ref);
623 } else {
624 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
625 if (!n)
626 return NULL;
627
628 kmemcheck_annotate_bitfield(n, flags1);
629 kmemcheck_annotate_bitfield(n, flags2);
630 n->fclone = SKB_FCLONE_UNAVAILABLE;
631 }
632
633 return __skb_clone(n, skb);
634 }
635 EXPORT_SYMBOL(skb_clone);
636
637 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
638 {
639 #ifndef NET_SKBUFF_DATA_USES_OFFSET
640 /*
641 * Shift between the two data areas in bytes
642 */
643 unsigned long offset = new->data - old->data;
644 #endif
645
646 __copy_skb_header(new, old);
647
648 #ifndef NET_SKBUFF_DATA_USES_OFFSET
649 /* {transport,network,mac}_header are relative to skb->head */
650 new->transport_header += offset;
651 new->network_header += offset;
652 if (skb_mac_header_was_set(new))
653 new->mac_header += offset;
654 #endif
655 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
656 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
657 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
658 }
659
660 /**
661 * skb_copy - create private copy of an sk_buff
662 * @skb: buffer to copy
663 * @gfp_mask: allocation priority
664 *
665 * Make a copy of both an &sk_buff and its data. This is used when the
666 * caller wishes to modify the data and needs a private copy of the
667 * data to alter. Returns %NULL on failure or the pointer to the buffer
668 * on success. The returned buffer has a reference count of 1.
669 *
670 * As by-product this function converts non-linear &sk_buff to linear
671 * one, so that &sk_buff becomes completely private and caller is allowed
672 * to modify all the data of returned buffer. This means that this
673 * function is not recommended for use in circumstances when only
674 * header is going to be modified. Use pskb_copy() instead.
675 */
676
677 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
678 {
679 int headerlen = skb_headroom(skb);
680 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
681 struct sk_buff *n = alloc_skb(size, gfp_mask);
682
683 if (!n)
684 return NULL;
685
686 /* Set the data pointer */
687 skb_reserve(n, headerlen);
688 /* Set the tail pointer and length */
689 skb_put(n, skb->len);
690
691 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
692 BUG();
693
694 copy_skb_header(n, skb);
695 return n;
696 }
697 EXPORT_SYMBOL(skb_copy);
698
699 /**
700 * pskb_copy - create copy of an sk_buff with private head.
701 * @skb: buffer to copy
702 * @gfp_mask: allocation priority
703 *
704 * Make a copy of both an &sk_buff and part of its data, located
705 * in header. Fragmented data remain shared. This is used when
706 * the caller wishes to modify only header of &sk_buff and needs
707 * private copy of the header to alter. Returns %NULL on failure
708 * or the pointer to the buffer on success.
709 * The returned buffer has a reference count of 1.
710 */
711
712 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
713 {
714 unsigned int size = skb_end_pointer(skb) - skb->head;
715 struct sk_buff *n = alloc_skb(size, gfp_mask);
716
717 if (!n)
718 goto out;
719
720 /* Set the data pointer */
721 skb_reserve(n, skb_headroom(skb));
722 /* Set the tail pointer and length */
723 skb_put(n, skb_headlen(skb));
724 /* Copy the bytes */
725 skb_copy_from_linear_data(skb, n->data, n->len);
726
727 n->truesize += skb->data_len;
728 n->data_len = skb->data_len;
729 n->len = skb->len;
730
731 if (skb_shinfo(skb)->nr_frags) {
732 int i;
733
734 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
735 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
736 get_page(skb_shinfo(n)->frags[i].page);
737 }
738 skb_shinfo(n)->nr_frags = i;
739 }
740
741 if (skb_has_frag_list(skb)) {
742 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
743 skb_clone_fraglist(n);
744 }
745
746 copy_skb_header(n, skb);
747 out:
748 return n;
749 }
750 EXPORT_SYMBOL(pskb_copy);
751
752 /**
753 * pskb_expand_head - reallocate header of &sk_buff
754 * @skb: buffer to reallocate
755 * @nhead: room to add at head
756 * @ntail: room to add at tail
757 * @gfp_mask: allocation priority
758 *
759 * Expands (or creates identical copy, if &nhead and &ntail are zero)
760 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
761 * reference count of 1. Returns zero in the case of success or error,
762 * if expansion failed. In the last case, &sk_buff is not changed.
763 *
764 * All the pointers pointing into skb header may change and must be
765 * reloaded after call to this function.
766 */
767
768 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
769 gfp_t gfp_mask)
770 {
771 int i;
772 u8 *data;
773 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
774 long off;
775 bool fastpath;
776
777 BUG_ON(nhead < 0);
778
779 if (skb_shared(skb))
780 BUG();
781
782 size = SKB_DATA_ALIGN(size);
783
784 /* Check if we can avoid taking references on fragments if we own
785 * the last reference on skb->head. (see skb_release_data())
786 */
787 if (!skb->cloned)
788 fastpath = true;
789 else {
790 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
791
792 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
793 }
794
795 if (fastpath &&
796 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
797 memmove(skb->head + size, skb_shinfo(skb),
798 offsetof(struct skb_shared_info,
799 frags[skb_shinfo(skb)->nr_frags]));
800 memmove(skb->head + nhead, skb->head,
801 skb_tail_pointer(skb) - skb->head);
802 off = nhead;
803 goto adjust_others;
804 }
805
806 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
807 if (!data)
808 goto nodata;
809
810 /* Copy only real data... and, alas, header. This should be
811 * optimized for the cases when header is void.
812 */
813 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
814
815 memcpy((struct skb_shared_info *)(data + size),
816 skb_shinfo(skb),
817 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
818
819 if (fastpath) {
820 kfree(skb->head);
821 } else {
822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
823 get_page(skb_shinfo(skb)->frags[i].page);
824
825 if (skb_has_frag_list(skb))
826 skb_clone_fraglist(skb);
827
828 skb_release_data(skb);
829 }
830 off = (data + nhead) - skb->head;
831
832 skb->head = data;
833 adjust_others:
834 skb->data += off;
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 skb->end = size;
837 off = nhead;
838 #else
839 skb->end = skb->head + size;
840 #endif
841 /* {transport,network,mac}_header and tail are relative to skb->head */
842 skb->tail += off;
843 skb->transport_header += off;
844 skb->network_header += off;
845 if (skb_mac_header_was_set(skb))
846 skb->mac_header += off;
847 /* Only adjust this if it actually is csum_start rather than csum */
848 if (skb->ip_summed == CHECKSUM_PARTIAL)
849 skb->csum_start += nhead;
850 skb->cloned = 0;
851 skb->hdr_len = 0;
852 skb->nohdr = 0;
853 atomic_set(&skb_shinfo(skb)->dataref, 1);
854 return 0;
855
856 nodata:
857 return -ENOMEM;
858 }
859 EXPORT_SYMBOL(pskb_expand_head);
860
861 /* Make private copy of skb with writable head and some headroom */
862
863 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
864 {
865 struct sk_buff *skb2;
866 int delta = headroom - skb_headroom(skb);
867
868 if (delta <= 0)
869 skb2 = pskb_copy(skb, GFP_ATOMIC);
870 else {
871 skb2 = skb_clone(skb, GFP_ATOMIC);
872 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
873 GFP_ATOMIC)) {
874 kfree_skb(skb2);
875 skb2 = NULL;
876 }
877 }
878 return skb2;
879 }
880 EXPORT_SYMBOL(skb_realloc_headroom);
881
882 /**
883 * skb_copy_expand - copy and expand sk_buff
884 * @skb: buffer to copy
885 * @newheadroom: new free bytes at head
886 * @newtailroom: new free bytes at tail
887 * @gfp_mask: allocation priority
888 *
889 * Make a copy of both an &sk_buff and its data and while doing so
890 * allocate additional space.
891 *
892 * This is used when the caller wishes to modify the data and needs a
893 * private copy of the data to alter as well as more space for new fields.
894 * Returns %NULL on failure or the pointer to the buffer
895 * on success. The returned buffer has a reference count of 1.
896 *
897 * You must pass %GFP_ATOMIC as the allocation priority if this function
898 * is called from an interrupt.
899 */
900 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
901 int newheadroom, int newtailroom,
902 gfp_t gfp_mask)
903 {
904 /*
905 * Allocate the copy buffer
906 */
907 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
908 gfp_mask);
909 int oldheadroom = skb_headroom(skb);
910 int head_copy_len, head_copy_off;
911 int off;
912
913 if (!n)
914 return NULL;
915
916 skb_reserve(n, newheadroom);
917
918 /* Set the tail pointer and length */
919 skb_put(n, skb->len);
920
921 head_copy_len = oldheadroom;
922 head_copy_off = 0;
923 if (newheadroom <= head_copy_len)
924 head_copy_len = newheadroom;
925 else
926 head_copy_off = newheadroom - head_copy_len;
927
928 /* Copy the linear header and data. */
929 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
930 skb->len + head_copy_len))
931 BUG();
932
933 copy_skb_header(n, skb);
934
935 off = newheadroom - oldheadroom;
936 if (n->ip_summed == CHECKSUM_PARTIAL)
937 n->csum_start += off;
938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
939 n->transport_header += off;
940 n->network_header += off;
941 if (skb_mac_header_was_set(skb))
942 n->mac_header += off;
943 #endif
944
945 return n;
946 }
947 EXPORT_SYMBOL(skb_copy_expand);
948
949 /**
950 * skb_pad - zero pad the tail of an skb
951 * @skb: buffer to pad
952 * @pad: space to pad
953 *
954 * Ensure that a buffer is followed by a padding area that is zero
955 * filled. Used by network drivers which may DMA or transfer data
956 * beyond the buffer end onto the wire.
957 *
958 * May return error in out of memory cases. The skb is freed on error.
959 */
960
961 int skb_pad(struct sk_buff *skb, int pad)
962 {
963 int err;
964 int ntail;
965
966 /* If the skbuff is non linear tailroom is always zero.. */
967 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
968 memset(skb->data+skb->len, 0, pad);
969 return 0;
970 }
971
972 ntail = skb->data_len + pad - (skb->end - skb->tail);
973 if (likely(skb_cloned(skb) || ntail > 0)) {
974 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
975 if (unlikely(err))
976 goto free_skb;
977 }
978
979 /* FIXME: The use of this function with non-linear skb's really needs
980 * to be audited.
981 */
982 err = skb_linearize(skb);
983 if (unlikely(err))
984 goto free_skb;
985
986 memset(skb->data + skb->len, 0, pad);
987 return 0;
988
989 free_skb:
990 kfree_skb(skb);
991 return err;
992 }
993 EXPORT_SYMBOL(skb_pad);
994
995 /**
996 * skb_put - add data to a buffer
997 * @skb: buffer to use
998 * @len: amount of data to add
999 *
1000 * This function extends the used data area of the buffer. If this would
1001 * exceed the total buffer size the kernel will panic. A pointer to the
1002 * first byte of the extra data is returned.
1003 */
1004 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1005 {
1006 unsigned char *tmp = skb_tail_pointer(skb);
1007 SKB_LINEAR_ASSERT(skb);
1008 skb->tail += len;
1009 skb->len += len;
1010 if (unlikely(skb->tail > skb->end))
1011 skb_over_panic(skb, len, __builtin_return_address(0));
1012 return tmp;
1013 }
1014 EXPORT_SYMBOL(skb_put);
1015
1016 /**
1017 * skb_push - add data to the start of a buffer
1018 * @skb: buffer to use
1019 * @len: amount of data to add
1020 *
1021 * This function extends the used data area of the buffer at the buffer
1022 * start. If this would exceed the total buffer headroom the kernel will
1023 * panic. A pointer to the first byte of the extra data is returned.
1024 */
1025 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1026 {
1027 skb->data -= len;
1028 skb->len += len;
1029 if (unlikely(skb->data<skb->head))
1030 skb_under_panic(skb, len, __builtin_return_address(0));
1031 return skb->data;
1032 }
1033 EXPORT_SYMBOL(skb_push);
1034
1035 /**
1036 * skb_pull - remove data from the start of a buffer
1037 * @skb: buffer to use
1038 * @len: amount of data to remove
1039 *
1040 * This function removes data from the start of a buffer, returning
1041 * the memory to the headroom. A pointer to the next data in the buffer
1042 * is returned. Once the data has been pulled future pushes will overwrite
1043 * the old data.
1044 */
1045 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1046 {
1047 return skb_pull_inline(skb, len);
1048 }
1049 EXPORT_SYMBOL(skb_pull);
1050
1051 /**
1052 * skb_trim - remove end from a buffer
1053 * @skb: buffer to alter
1054 * @len: new length
1055 *
1056 * Cut the length of a buffer down by removing data from the tail. If
1057 * the buffer is already under the length specified it is not modified.
1058 * The skb must be linear.
1059 */
1060 void skb_trim(struct sk_buff *skb, unsigned int len)
1061 {
1062 if (skb->len > len)
1063 __skb_trim(skb, len);
1064 }
1065 EXPORT_SYMBOL(skb_trim);
1066
1067 /* Trims skb to length len. It can change skb pointers.
1068 */
1069
1070 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1071 {
1072 struct sk_buff **fragp;
1073 struct sk_buff *frag;
1074 int offset = skb_headlen(skb);
1075 int nfrags = skb_shinfo(skb)->nr_frags;
1076 int i;
1077 int err;
1078
1079 if (skb_cloned(skb) &&
1080 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1081 return err;
1082
1083 i = 0;
1084 if (offset >= len)
1085 goto drop_pages;
1086
1087 for (; i < nfrags; i++) {
1088 int end = offset + skb_shinfo(skb)->frags[i].size;
1089
1090 if (end < len) {
1091 offset = end;
1092 continue;
1093 }
1094
1095 skb_shinfo(skb)->frags[i++].size = len - offset;
1096
1097 drop_pages:
1098 skb_shinfo(skb)->nr_frags = i;
1099
1100 for (; i < nfrags; i++)
1101 put_page(skb_shinfo(skb)->frags[i].page);
1102
1103 if (skb_has_frag_list(skb))
1104 skb_drop_fraglist(skb);
1105 goto done;
1106 }
1107
1108 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1109 fragp = &frag->next) {
1110 int end = offset + frag->len;
1111
1112 if (skb_shared(frag)) {
1113 struct sk_buff *nfrag;
1114
1115 nfrag = skb_clone(frag, GFP_ATOMIC);
1116 if (unlikely(!nfrag))
1117 return -ENOMEM;
1118
1119 nfrag->next = frag->next;
1120 kfree_skb(frag);
1121 frag = nfrag;
1122 *fragp = frag;
1123 }
1124
1125 if (end < len) {
1126 offset = end;
1127 continue;
1128 }
1129
1130 if (end > len &&
1131 unlikely((err = pskb_trim(frag, len - offset))))
1132 return err;
1133
1134 if (frag->next)
1135 skb_drop_list(&frag->next);
1136 break;
1137 }
1138
1139 done:
1140 if (len > skb_headlen(skb)) {
1141 skb->data_len -= skb->len - len;
1142 skb->len = len;
1143 } else {
1144 skb->len = len;
1145 skb->data_len = 0;
1146 skb_set_tail_pointer(skb, len);
1147 }
1148
1149 return 0;
1150 }
1151 EXPORT_SYMBOL(___pskb_trim);
1152
1153 /**
1154 * __pskb_pull_tail - advance tail of skb header
1155 * @skb: buffer to reallocate
1156 * @delta: number of bytes to advance tail
1157 *
1158 * The function makes a sense only on a fragmented &sk_buff,
1159 * it expands header moving its tail forward and copying necessary
1160 * data from fragmented part.
1161 *
1162 * &sk_buff MUST have reference count of 1.
1163 *
1164 * Returns %NULL (and &sk_buff does not change) if pull failed
1165 * or value of new tail of skb in the case of success.
1166 *
1167 * All the pointers pointing into skb header may change and must be
1168 * reloaded after call to this function.
1169 */
1170
1171 /* Moves tail of skb head forward, copying data from fragmented part,
1172 * when it is necessary.
1173 * 1. It may fail due to malloc failure.
1174 * 2. It may change skb pointers.
1175 *
1176 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1177 */
1178 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1179 {
1180 /* If skb has not enough free space at tail, get new one
1181 * plus 128 bytes for future expansions. If we have enough
1182 * room at tail, reallocate without expansion only if skb is cloned.
1183 */
1184 int i, k, eat = (skb->tail + delta) - skb->end;
1185
1186 if (eat > 0 || skb_cloned(skb)) {
1187 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1188 GFP_ATOMIC))
1189 return NULL;
1190 }
1191
1192 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1193 BUG();
1194
1195 /* Optimization: no fragments, no reasons to preestimate
1196 * size of pulled pages. Superb.
1197 */
1198 if (!skb_has_frag_list(skb))
1199 goto pull_pages;
1200
1201 /* Estimate size of pulled pages. */
1202 eat = delta;
1203 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1204 if (skb_shinfo(skb)->frags[i].size >= eat)
1205 goto pull_pages;
1206 eat -= skb_shinfo(skb)->frags[i].size;
1207 }
1208
1209 /* If we need update frag list, we are in troubles.
1210 * Certainly, it possible to add an offset to skb data,
1211 * but taking into account that pulling is expected to
1212 * be very rare operation, it is worth to fight against
1213 * further bloating skb head and crucify ourselves here instead.
1214 * Pure masohism, indeed. 8)8)
1215 */
1216 if (eat) {
1217 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1218 struct sk_buff *clone = NULL;
1219 struct sk_buff *insp = NULL;
1220
1221 do {
1222 BUG_ON(!list);
1223
1224 if (list->len <= eat) {
1225 /* Eaten as whole. */
1226 eat -= list->len;
1227 list = list->next;
1228 insp = list;
1229 } else {
1230 /* Eaten partially. */
1231
1232 if (skb_shared(list)) {
1233 /* Sucks! We need to fork list. :-( */
1234 clone = skb_clone(list, GFP_ATOMIC);
1235 if (!clone)
1236 return NULL;
1237 insp = list->next;
1238 list = clone;
1239 } else {
1240 /* This may be pulled without
1241 * problems. */
1242 insp = list;
1243 }
1244 if (!pskb_pull(list, eat)) {
1245 kfree_skb(clone);
1246 return NULL;
1247 }
1248 break;
1249 }
1250 } while (eat);
1251
1252 /* Free pulled out fragments. */
1253 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1254 skb_shinfo(skb)->frag_list = list->next;
1255 kfree_skb(list);
1256 }
1257 /* And insert new clone at head. */
1258 if (clone) {
1259 clone->next = list;
1260 skb_shinfo(skb)->frag_list = clone;
1261 }
1262 }
1263 /* Success! Now we may commit changes to skb data. */
1264
1265 pull_pages:
1266 eat = delta;
1267 k = 0;
1268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1269 if (skb_shinfo(skb)->frags[i].size <= eat) {
1270 put_page(skb_shinfo(skb)->frags[i].page);
1271 eat -= skb_shinfo(skb)->frags[i].size;
1272 } else {
1273 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1274 if (eat) {
1275 skb_shinfo(skb)->frags[k].page_offset += eat;
1276 skb_shinfo(skb)->frags[k].size -= eat;
1277 eat = 0;
1278 }
1279 k++;
1280 }
1281 }
1282 skb_shinfo(skb)->nr_frags = k;
1283
1284 skb->tail += delta;
1285 skb->data_len -= delta;
1286
1287 return skb_tail_pointer(skb);
1288 }
1289 EXPORT_SYMBOL(__pskb_pull_tail);
1290
1291 /* Copy some data bits from skb to kernel buffer. */
1292
1293 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1294 {
1295 int start = skb_headlen(skb);
1296 struct sk_buff *frag_iter;
1297 int i, copy;
1298
1299 if (offset > (int)skb->len - len)
1300 goto fault;
1301
1302 /* Copy header. */
1303 if ((copy = start - offset) > 0) {
1304 if (copy > len)
1305 copy = len;
1306 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1307 if ((len -= copy) == 0)
1308 return 0;
1309 offset += copy;
1310 to += copy;
1311 }
1312
1313 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1314 int end;
1315
1316 WARN_ON(start > offset + len);
1317
1318 end = start + skb_shinfo(skb)->frags[i].size;
1319 if ((copy = end - offset) > 0) {
1320 u8 *vaddr;
1321
1322 if (copy > len)
1323 copy = len;
1324
1325 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1326 memcpy(to,
1327 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1328 offset - start, copy);
1329 kunmap_skb_frag(vaddr);
1330
1331 if ((len -= copy) == 0)
1332 return 0;
1333 offset += copy;
1334 to += copy;
1335 }
1336 start = end;
1337 }
1338
1339 skb_walk_frags(skb, frag_iter) {
1340 int end;
1341
1342 WARN_ON(start > offset + len);
1343
1344 end = start + frag_iter->len;
1345 if ((copy = end - offset) > 0) {
1346 if (copy > len)
1347 copy = len;
1348 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1349 goto fault;
1350 if ((len -= copy) == 0)
1351 return 0;
1352 offset += copy;
1353 to += copy;
1354 }
1355 start = end;
1356 }
1357 if (!len)
1358 return 0;
1359
1360 fault:
1361 return -EFAULT;
1362 }
1363 EXPORT_SYMBOL(skb_copy_bits);
1364
1365 /*
1366 * Callback from splice_to_pipe(), if we need to release some pages
1367 * at the end of the spd in case we error'ed out in filling the pipe.
1368 */
1369 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1370 {
1371 put_page(spd->pages[i]);
1372 }
1373
1374 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1375 unsigned int *offset,
1376 struct sk_buff *skb, struct sock *sk)
1377 {
1378 struct page *p = sk->sk_sndmsg_page;
1379 unsigned int off;
1380
1381 if (!p) {
1382 new_page:
1383 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1384 if (!p)
1385 return NULL;
1386
1387 off = sk->sk_sndmsg_off = 0;
1388 /* hold one ref to this page until it's full */
1389 } else {
1390 unsigned int mlen;
1391
1392 off = sk->sk_sndmsg_off;
1393 mlen = PAGE_SIZE - off;
1394 if (mlen < 64 && mlen < *len) {
1395 put_page(p);
1396 goto new_page;
1397 }
1398
1399 *len = min_t(unsigned int, *len, mlen);
1400 }
1401
1402 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1403 sk->sk_sndmsg_off += *len;
1404 *offset = off;
1405 get_page(p);
1406
1407 return p;
1408 }
1409
1410 /*
1411 * Fill page/offset/length into spd, if it can hold more pages.
1412 */
1413 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1414 struct pipe_inode_info *pipe, struct page *page,
1415 unsigned int *len, unsigned int offset,
1416 struct sk_buff *skb, int linear,
1417 struct sock *sk)
1418 {
1419 if (unlikely(spd->nr_pages == pipe->buffers))
1420 return 1;
1421
1422 if (linear) {
1423 page = linear_to_page(page, len, &offset, skb, sk);
1424 if (!page)
1425 return 1;
1426 } else
1427 get_page(page);
1428
1429 spd->pages[spd->nr_pages] = page;
1430 spd->partial[spd->nr_pages].len = *len;
1431 spd->partial[spd->nr_pages].offset = offset;
1432 spd->nr_pages++;
1433
1434 return 0;
1435 }
1436
1437 static inline void __segment_seek(struct page **page, unsigned int *poff,
1438 unsigned int *plen, unsigned int off)
1439 {
1440 unsigned long n;
1441
1442 *poff += off;
1443 n = *poff / PAGE_SIZE;
1444 if (n)
1445 *page = nth_page(*page, n);
1446
1447 *poff = *poff % PAGE_SIZE;
1448 *plen -= off;
1449 }
1450
1451 static inline int __splice_segment(struct page *page, unsigned int poff,
1452 unsigned int plen, unsigned int *off,
1453 unsigned int *len, struct sk_buff *skb,
1454 struct splice_pipe_desc *spd, int linear,
1455 struct sock *sk,
1456 struct pipe_inode_info *pipe)
1457 {
1458 if (!*len)
1459 return 1;
1460
1461 /* skip this segment if already processed */
1462 if (*off >= plen) {
1463 *off -= plen;
1464 return 0;
1465 }
1466
1467 /* ignore any bits we already processed */
1468 if (*off) {
1469 __segment_seek(&page, &poff, &plen, *off);
1470 *off = 0;
1471 }
1472
1473 do {
1474 unsigned int flen = min(*len, plen);
1475
1476 /* the linear region may spread across several pages */
1477 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1478
1479 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1480 return 1;
1481
1482 __segment_seek(&page, &poff, &plen, flen);
1483 *len -= flen;
1484
1485 } while (*len && plen);
1486
1487 return 0;
1488 }
1489
1490 /*
1491 * Map linear and fragment data from the skb to spd. It reports failure if the
1492 * pipe is full or if we already spliced the requested length.
1493 */
1494 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1495 unsigned int *offset, unsigned int *len,
1496 struct splice_pipe_desc *spd, struct sock *sk)
1497 {
1498 int seg;
1499
1500 /*
1501 * map the linear part
1502 */
1503 if (__splice_segment(virt_to_page(skb->data),
1504 (unsigned long) skb->data & (PAGE_SIZE - 1),
1505 skb_headlen(skb),
1506 offset, len, skb, spd, 1, sk, pipe))
1507 return 1;
1508
1509 /*
1510 * then map the fragments
1511 */
1512 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1513 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1514
1515 if (__splice_segment(f->page, f->page_offset, f->size,
1516 offset, len, skb, spd, 0, sk, pipe))
1517 return 1;
1518 }
1519
1520 return 0;
1521 }
1522
1523 /*
1524 * Map data from the skb to a pipe. Should handle both the linear part,
1525 * the fragments, and the frag list. It does NOT handle frag lists within
1526 * the frag list, if such a thing exists. We'd probably need to recurse to
1527 * handle that cleanly.
1528 */
1529 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1530 struct pipe_inode_info *pipe, unsigned int tlen,
1531 unsigned int flags)
1532 {
1533 struct partial_page partial[PIPE_DEF_BUFFERS];
1534 struct page *pages[PIPE_DEF_BUFFERS];
1535 struct splice_pipe_desc spd = {
1536 .pages = pages,
1537 .partial = partial,
1538 .flags = flags,
1539 .ops = &sock_pipe_buf_ops,
1540 .spd_release = sock_spd_release,
1541 };
1542 struct sk_buff *frag_iter;
1543 struct sock *sk = skb->sk;
1544 int ret = 0;
1545
1546 if (splice_grow_spd(pipe, &spd))
1547 return -ENOMEM;
1548
1549 /*
1550 * __skb_splice_bits() only fails if the output has no room left,
1551 * so no point in going over the frag_list for the error case.
1552 */
1553 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1554 goto done;
1555 else if (!tlen)
1556 goto done;
1557
1558 /*
1559 * now see if we have a frag_list to map
1560 */
1561 skb_walk_frags(skb, frag_iter) {
1562 if (!tlen)
1563 break;
1564 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1565 break;
1566 }
1567
1568 done:
1569 if (spd.nr_pages) {
1570 /*
1571 * Drop the socket lock, otherwise we have reverse
1572 * locking dependencies between sk_lock and i_mutex
1573 * here as compared to sendfile(). We enter here
1574 * with the socket lock held, and splice_to_pipe() will
1575 * grab the pipe inode lock. For sendfile() emulation,
1576 * we call into ->sendpage() with the i_mutex lock held
1577 * and networking will grab the socket lock.
1578 */
1579 release_sock(sk);
1580 ret = splice_to_pipe(pipe, &spd);
1581 lock_sock(sk);
1582 }
1583
1584 splice_shrink_spd(pipe, &spd);
1585 return ret;
1586 }
1587
1588 /**
1589 * skb_store_bits - store bits from kernel buffer to skb
1590 * @skb: destination buffer
1591 * @offset: offset in destination
1592 * @from: source buffer
1593 * @len: number of bytes to copy
1594 *
1595 * Copy the specified number of bytes from the source buffer to the
1596 * destination skb. This function handles all the messy bits of
1597 * traversing fragment lists and such.
1598 */
1599
1600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1601 {
1602 int start = skb_headlen(skb);
1603 struct sk_buff *frag_iter;
1604 int i, copy;
1605
1606 if (offset > (int)skb->len - len)
1607 goto fault;
1608
1609 if ((copy = start - offset) > 0) {
1610 if (copy > len)
1611 copy = len;
1612 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1613 if ((len -= copy) == 0)
1614 return 0;
1615 offset += copy;
1616 from += copy;
1617 }
1618
1619 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1620 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1621 int end;
1622
1623 WARN_ON(start > offset + len);
1624
1625 end = start + frag->size;
1626 if ((copy = end - offset) > 0) {
1627 u8 *vaddr;
1628
1629 if (copy > len)
1630 copy = len;
1631
1632 vaddr = kmap_skb_frag(frag);
1633 memcpy(vaddr + frag->page_offset + offset - start,
1634 from, copy);
1635 kunmap_skb_frag(vaddr);
1636
1637 if ((len -= copy) == 0)
1638 return 0;
1639 offset += copy;
1640 from += copy;
1641 }
1642 start = end;
1643 }
1644
1645 skb_walk_frags(skb, frag_iter) {
1646 int end;
1647
1648 WARN_ON(start > offset + len);
1649
1650 end = start + frag_iter->len;
1651 if ((copy = end - offset) > 0) {
1652 if (copy > len)
1653 copy = len;
1654 if (skb_store_bits(frag_iter, offset - start,
1655 from, copy))
1656 goto fault;
1657 if ((len -= copy) == 0)
1658 return 0;
1659 offset += copy;
1660 from += copy;
1661 }
1662 start = end;
1663 }
1664 if (!len)
1665 return 0;
1666
1667 fault:
1668 return -EFAULT;
1669 }
1670 EXPORT_SYMBOL(skb_store_bits);
1671
1672 /* Checksum skb data. */
1673
1674 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1675 int len, __wsum csum)
1676 {
1677 int start = skb_headlen(skb);
1678 int i, copy = start - offset;
1679 struct sk_buff *frag_iter;
1680 int pos = 0;
1681
1682 /* Checksum header. */
1683 if (copy > 0) {
1684 if (copy > len)
1685 copy = len;
1686 csum = csum_partial(skb->data + offset, copy, csum);
1687 if ((len -= copy) == 0)
1688 return csum;
1689 offset += copy;
1690 pos = copy;
1691 }
1692
1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 int end;
1695
1696 WARN_ON(start > offset + len);
1697
1698 end = start + skb_shinfo(skb)->frags[i].size;
1699 if ((copy = end - offset) > 0) {
1700 __wsum csum2;
1701 u8 *vaddr;
1702 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703
1704 if (copy > len)
1705 copy = len;
1706 vaddr = kmap_skb_frag(frag);
1707 csum2 = csum_partial(vaddr + frag->page_offset +
1708 offset - start, copy, 0);
1709 kunmap_skb_frag(vaddr);
1710 csum = csum_block_add(csum, csum2, pos);
1711 if (!(len -= copy))
1712 return csum;
1713 offset += copy;
1714 pos += copy;
1715 }
1716 start = end;
1717 }
1718
1719 skb_walk_frags(skb, frag_iter) {
1720 int end;
1721
1722 WARN_ON(start > offset + len);
1723
1724 end = start + frag_iter->len;
1725 if ((copy = end - offset) > 0) {
1726 __wsum csum2;
1727 if (copy > len)
1728 copy = len;
1729 csum2 = skb_checksum(frag_iter, offset - start,
1730 copy, 0);
1731 csum = csum_block_add(csum, csum2, pos);
1732 if ((len -= copy) == 0)
1733 return csum;
1734 offset += copy;
1735 pos += copy;
1736 }
1737 start = end;
1738 }
1739 BUG_ON(len);
1740
1741 return csum;
1742 }
1743 EXPORT_SYMBOL(skb_checksum);
1744
1745 /* Both of above in one bottle. */
1746
1747 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1748 u8 *to, int len, __wsum csum)
1749 {
1750 int start = skb_headlen(skb);
1751 int i, copy = start - offset;
1752 struct sk_buff *frag_iter;
1753 int pos = 0;
1754
1755 /* Copy header. */
1756 if (copy > 0) {
1757 if (copy > len)
1758 copy = len;
1759 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1760 copy, csum);
1761 if ((len -= copy) == 0)
1762 return csum;
1763 offset += copy;
1764 to += copy;
1765 pos = copy;
1766 }
1767
1768 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1769 int end;
1770
1771 WARN_ON(start > offset + len);
1772
1773 end = start + skb_shinfo(skb)->frags[i].size;
1774 if ((copy = end - offset) > 0) {
1775 __wsum csum2;
1776 u8 *vaddr;
1777 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778
1779 if (copy > len)
1780 copy = len;
1781 vaddr = kmap_skb_frag(frag);
1782 csum2 = csum_partial_copy_nocheck(vaddr +
1783 frag->page_offset +
1784 offset - start, to,
1785 copy, 0);
1786 kunmap_skb_frag(vaddr);
1787 csum = csum_block_add(csum, csum2, pos);
1788 if (!(len -= copy))
1789 return csum;
1790 offset += copy;
1791 to += copy;
1792 pos += copy;
1793 }
1794 start = end;
1795 }
1796
1797 skb_walk_frags(skb, frag_iter) {
1798 __wsum csum2;
1799 int end;
1800
1801 WARN_ON(start > offset + len);
1802
1803 end = start + frag_iter->len;
1804 if ((copy = end - offset) > 0) {
1805 if (copy > len)
1806 copy = len;
1807 csum2 = skb_copy_and_csum_bits(frag_iter,
1808 offset - start,
1809 to, copy, 0);
1810 csum = csum_block_add(csum, csum2, pos);
1811 if ((len -= copy) == 0)
1812 return csum;
1813 offset += copy;
1814 to += copy;
1815 pos += copy;
1816 }
1817 start = end;
1818 }
1819 BUG_ON(len);
1820 return csum;
1821 }
1822 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1823
1824 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1825 {
1826 __wsum csum;
1827 long csstart;
1828
1829 if (skb->ip_summed == CHECKSUM_PARTIAL)
1830 csstart = skb_checksum_start_offset(skb);
1831 else
1832 csstart = skb_headlen(skb);
1833
1834 BUG_ON(csstart > skb_headlen(skb));
1835
1836 skb_copy_from_linear_data(skb, to, csstart);
1837
1838 csum = 0;
1839 if (csstart != skb->len)
1840 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1841 skb->len - csstart, 0);
1842
1843 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 long csstuff = csstart + skb->csum_offset;
1845
1846 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1847 }
1848 }
1849 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1850
1851 /**
1852 * skb_dequeue - remove from the head of the queue
1853 * @list: list to dequeue from
1854 *
1855 * Remove the head of the list. The list lock is taken so the function
1856 * may be used safely with other locking list functions. The head item is
1857 * returned or %NULL if the list is empty.
1858 */
1859
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1861 {
1862 unsigned long flags;
1863 struct sk_buff *result;
1864
1865 spin_lock_irqsave(&list->lock, flags);
1866 result = __skb_dequeue(list);
1867 spin_unlock_irqrestore(&list->lock, flags);
1868 return result;
1869 }
1870 EXPORT_SYMBOL(skb_dequeue);
1871
1872 /**
1873 * skb_dequeue_tail - remove from the tail of the queue
1874 * @list: list to dequeue from
1875 *
1876 * Remove the tail of the list. The list lock is taken so the function
1877 * may be used safely with other locking list functions. The tail item is
1878 * returned or %NULL if the list is empty.
1879 */
1880 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1881 {
1882 unsigned long flags;
1883 struct sk_buff *result;
1884
1885 spin_lock_irqsave(&list->lock, flags);
1886 result = __skb_dequeue_tail(list);
1887 spin_unlock_irqrestore(&list->lock, flags);
1888 return result;
1889 }
1890 EXPORT_SYMBOL(skb_dequeue_tail);
1891
1892 /**
1893 * skb_queue_purge - empty a list
1894 * @list: list to empty
1895 *
1896 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1897 * the list and one reference dropped. This function takes the list
1898 * lock and is atomic with respect to other list locking functions.
1899 */
1900 void skb_queue_purge(struct sk_buff_head *list)
1901 {
1902 struct sk_buff *skb;
1903 while ((skb = skb_dequeue(list)) != NULL)
1904 kfree_skb(skb);
1905 }
1906 EXPORT_SYMBOL(skb_queue_purge);
1907
1908 /**
1909 * skb_queue_head - queue a buffer at the list head
1910 * @list: list to use
1911 * @newsk: buffer to queue
1912 *
1913 * Queue a buffer at the start of the list. This function takes the
1914 * list lock and can be used safely with other locking &sk_buff functions
1915 * safely.
1916 *
1917 * A buffer cannot be placed on two lists at the same time.
1918 */
1919 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1920 {
1921 unsigned long flags;
1922
1923 spin_lock_irqsave(&list->lock, flags);
1924 __skb_queue_head(list, newsk);
1925 spin_unlock_irqrestore(&list->lock, flags);
1926 }
1927 EXPORT_SYMBOL(skb_queue_head);
1928
1929 /**
1930 * skb_queue_tail - queue a buffer at the list tail
1931 * @list: list to use
1932 * @newsk: buffer to queue
1933 *
1934 * Queue a buffer at the tail of the list. This function takes the
1935 * list lock and can be used safely with other locking &sk_buff functions
1936 * safely.
1937 *
1938 * A buffer cannot be placed on two lists at the same time.
1939 */
1940 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1941 {
1942 unsigned long flags;
1943
1944 spin_lock_irqsave(&list->lock, flags);
1945 __skb_queue_tail(list, newsk);
1946 spin_unlock_irqrestore(&list->lock, flags);
1947 }
1948 EXPORT_SYMBOL(skb_queue_tail);
1949
1950 /**
1951 * skb_unlink - remove a buffer from a list
1952 * @skb: buffer to remove
1953 * @list: list to use
1954 *
1955 * Remove a packet from a list. The list locks are taken and this
1956 * function is atomic with respect to other list locked calls
1957 *
1958 * You must know what list the SKB is on.
1959 */
1960 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1961 {
1962 unsigned long flags;
1963
1964 spin_lock_irqsave(&list->lock, flags);
1965 __skb_unlink(skb, list);
1966 spin_unlock_irqrestore(&list->lock, flags);
1967 }
1968 EXPORT_SYMBOL(skb_unlink);
1969
1970 /**
1971 * skb_append - append a buffer
1972 * @old: buffer to insert after
1973 * @newsk: buffer to insert
1974 * @list: list to use
1975 *
1976 * Place a packet after a given packet in a list. The list locks are taken
1977 * and this function is atomic with respect to other list locked calls.
1978 * A buffer cannot be placed on two lists at the same time.
1979 */
1980 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1981 {
1982 unsigned long flags;
1983
1984 spin_lock_irqsave(&list->lock, flags);
1985 __skb_queue_after(list, old, newsk);
1986 spin_unlock_irqrestore(&list->lock, flags);
1987 }
1988 EXPORT_SYMBOL(skb_append);
1989
1990 /**
1991 * skb_insert - insert a buffer
1992 * @old: buffer to insert before
1993 * @newsk: buffer to insert
1994 * @list: list to use
1995 *
1996 * Place a packet before a given packet in a list. The list locks are
1997 * taken and this function is atomic with respect to other list locked
1998 * calls.
1999 *
2000 * A buffer cannot be placed on two lists at the same time.
2001 */
2002 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2003 {
2004 unsigned long flags;
2005
2006 spin_lock_irqsave(&list->lock, flags);
2007 __skb_insert(newsk, old->prev, old, list);
2008 spin_unlock_irqrestore(&list->lock, flags);
2009 }
2010 EXPORT_SYMBOL(skb_insert);
2011
2012 static inline void skb_split_inside_header(struct sk_buff *skb,
2013 struct sk_buff* skb1,
2014 const u32 len, const int pos)
2015 {
2016 int i;
2017
2018 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2019 pos - len);
2020 /* And move data appendix as is. */
2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2022 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2023
2024 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2025 skb_shinfo(skb)->nr_frags = 0;
2026 skb1->data_len = skb->data_len;
2027 skb1->len += skb1->data_len;
2028 skb->data_len = 0;
2029 skb->len = len;
2030 skb_set_tail_pointer(skb, len);
2031 }
2032
2033 static inline void skb_split_no_header(struct sk_buff *skb,
2034 struct sk_buff* skb1,
2035 const u32 len, int pos)
2036 {
2037 int i, k = 0;
2038 const int nfrags = skb_shinfo(skb)->nr_frags;
2039
2040 skb_shinfo(skb)->nr_frags = 0;
2041 skb1->len = skb1->data_len = skb->len - len;
2042 skb->len = len;
2043 skb->data_len = len - pos;
2044
2045 for (i = 0; i < nfrags; i++) {
2046 int size = skb_shinfo(skb)->frags[i].size;
2047
2048 if (pos + size > len) {
2049 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2050
2051 if (pos < len) {
2052 /* Split frag.
2053 * We have two variants in this case:
2054 * 1. Move all the frag to the second
2055 * part, if it is possible. F.e.
2056 * this approach is mandatory for TUX,
2057 * where splitting is expensive.
2058 * 2. Split is accurately. We make this.
2059 */
2060 get_page(skb_shinfo(skb)->frags[i].page);
2061 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2062 skb_shinfo(skb1)->frags[0].size -= len - pos;
2063 skb_shinfo(skb)->frags[i].size = len - pos;
2064 skb_shinfo(skb)->nr_frags++;
2065 }
2066 k++;
2067 } else
2068 skb_shinfo(skb)->nr_frags++;
2069 pos += size;
2070 }
2071 skb_shinfo(skb1)->nr_frags = k;
2072 }
2073
2074 /**
2075 * skb_split - Split fragmented skb to two parts at length len.
2076 * @skb: the buffer to split
2077 * @skb1: the buffer to receive the second part
2078 * @len: new length for skb
2079 */
2080 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2081 {
2082 int pos = skb_headlen(skb);
2083
2084 if (len < pos) /* Split line is inside header. */
2085 skb_split_inside_header(skb, skb1, len, pos);
2086 else /* Second chunk has no header, nothing to copy. */
2087 skb_split_no_header(skb, skb1, len, pos);
2088 }
2089 EXPORT_SYMBOL(skb_split);
2090
2091 /* Shifting from/to a cloned skb is a no-go.
2092 *
2093 * Caller cannot keep skb_shinfo related pointers past calling here!
2094 */
2095 static int skb_prepare_for_shift(struct sk_buff *skb)
2096 {
2097 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2098 }
2099
2100 /**
2101 * skb_shift - Shifts paged data partially from skb to another
2102 * @tgt: buffer into which tail data gets added
2103 * @skb: buffer from which the paged data comes from
2104 * @shiftlen: shift up to this many bytes
2105 *
2106 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2107 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2108 * It's up to caller to free skb if everything was shifted.
2109 *
2110 * If @tgt runs out of frags, the whole operation is aborted.
2111 *
2112 * Skb cannot include anything else but paged data while tgt is allowed
2113 * to have non-paged data as well.
2114 *
2115 * TODO: full sized shift could be optimized but that would need
2116 * specialized skb free'er to handle frags without up-to-date nr_frags.
2117 */
2118 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2119 {
2120 int from, to, merge, todo;
2121 struct skb_frag_struct *fragfrom, *fragto;
2122
2123 BUG_ON(shiftlen > skb->len);
2124 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2125
2126 todo = shiftlen;
2127 from = 0;
2128 to = skb_shinfo(tgt)->nr_frags;
2129 fragfrom = &skb_shinfo(skb)->frags[from];
2130
2131 /* Actual merge is delayed until the point when we know we can
2132 * commit all, so that we don't have to undo partial changes
2133 */
2134 if (!to ||
2135 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2136 merge = -1;
2137 } else {
2138 merge = to - 1;
2139
2140 todo -= fragfrom->size;
2141 if (todo < 0) {
2142 if (skb_prepare_for_shift(skb) ||
2143 skb_prepare_for_shift(tgt))
2144 return 0;
2145
2146 /* All previous frag pointers might be stale! */
2147 fragfrom = &skb_shinfo(skb)->frags[from];
2148 fragto = &skb_shinfo(tgt)->frags[merge];
2149
2150 fragto->size += shiftlen;
2151 fragfrom->size -= shiftlen;
2152 fragfrom->page_offset += shiftlen;
2153
2154 goto onlymerged;
2155 }
2156
2157 from++;
2158 }
2159
2160 /* Skip full, not-fitting skb to avoid expensive operations */
2161 if ((shiftlen == skb->len) &&
2162 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2163 return 0;
2164
2165 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2166 return 0;
2167
2168 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2169 if (to == MAX_SKB_FRAGS)
2170 return 0;
2171
2172 fragfrom = &skb_shinfo(skb)->frags[from];
2173 fragto = &skb_shinfo(tgt)->frags[to];
2174
2175 if (todo >= fragfrom->size) {
2176 *fragto = *fragfrom;
2177 todo -= fragfrom->size;
2178 from++;
2179 to++;
2180
2181 } else {
2182 get_page(fragfrom->page);
2183 fragto->page = fragfrom->page;
2184 fragto->page_offset = fragfrom->page_offset;
2185 fragto->size = todo;
2186
2187 fragfrom->page_offset += todo;
2188 fragfrom->size -= todo;
2189 todo = 0;
2190
2191 to++;
2192 break;
2193 }
2194 }
2195
2196 /* Ready to "commit" this state change to tgt */
2197 skb_shinfo(tgt)->nr_frags = to;
2198
2199 if (merge >= 0) {
2200 fragfrom = &skb_shinfo(skb)->frags[0];
2201 fragto = &skb_shinfo(tgt)->frags[merge];
2202
2203 fragto->size += fragfrom->size;
2204 put_page(fragfrom->page);
2205 }
2206
2207 /* Reposition in the original skb */
2208 to = 0;
2209 while (from < skb_shinfo(skb)->nr_frags)
2210 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2211 skb_shinfo(skb)->nr_frags = to;
2212
2213 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2214
2215 onlymerged:
2216 /* Most likely the tgt won't ever need its checksum anymore, skb on
2217 * the other hand might need it if it needs to be resent
2218 */
2219 tgt->ip_summed = CHECKSUM_PARTIAL;
2220 skb->ip_summed = CHECKSUM_PARTIAL;
2221
2222 /* Yak, is it really working this way? Some helper please? */
2223 skb->len -= shiftlen;
2224 skb->data_len -= shiftlen;
2225 skb->truesize -= shiftlen;
2226 tgt->len += shiftlen;
2227 tgt->data_len += shiftlen;
2228 tgt->truesize += shiftlen;
2229
2230 return shiftlen;
2231 }
2232
2233 /**
2234 * skb_prepare_seq_read - Prepare a sequential read of skb data
2235 * @skb: the buffer to read
2236 * @from: lower offset of data to be read
2237 * @to: upper offset of data to be read
2238 * @st: state variable
2239 *
2240 * Initializes the specified state variable. Must be called before
2241 * invoking skb_seq_read() for the first time.
2242 */
2243 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2244 unsigned int to, struct skb_seq_state *st)
2245 {
2246 st->lower_offset = from;
2247 st->upper_offset = to;
2248 st->root_skb = st->cur_skb = skb;
2249 st->frag_idx = st->stepped_offset = 0;
2250 st->frag_data = NULL;
2251 }
2252 EXPORT_SYMBOL(skb_prepare_seq_read);
2253
2254 /**
2255 * skb_seq_read - Sequentially read skb data
2256 * @consumed: number of bytes consumed by the caller so far
2257 * @data: destination pointer for data to be returned
2258 * @st: state variable
2259 *
2260 * Reads a block of skb data at &consumed relative to the
2261 * lower offset specified to skb_prepare_seq_read(). Assigns
2262 * the head of the data block to &data and returns the length
2263 * of the block or 0 if the end of the skb data or the upper
2264 * offset has been reached.
2265 *
2266 * The caller is not required to consume all of the data
2267 * returned, i.e. &consumed is typically set to the number
2268 * of bytes already consumed and the next call to
2269 * skb_seq_read() will return the remaining part of the block.
2270 *
2271 * Note 1: The size of each block of data returned can be arbitrary,
2272 * this limitation is the cost for zerocopy seqeuental
2273 * reads of potentially non linear data.
2274 *
2275 * Note 2: Fragment lists within fragments are not implemented
2276 * at the moment, state->root_skb could be replaced with
2277 * a stack for this purpose.
2278 */
2279 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2280 struct skb_seq_state *st)
2281 {
2282 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2283 skb_frag_t *frag;
2284
2285 if (unlikely(abs_offset >= st->upper_offset))
2286 return 0;
2287
2288 next_skb:
2289 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2290
2291 if (abs_offset < block_limit && !st->frag_data) {
2292 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2293 return block_limit - abs_offset;
2294 }
2295
2296 if (st->frag_idx == 0 && !st->frag_data)
2297 st->stepped_offset += skb_headlen(st->cur_skb);
2298
2299 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2300 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2301 block_limit = frag->size + st->stepped_offset;
2302
2303 if (abs_offset < block_limit) {
2304 if (!st->frag_data)
2305 st->frag_data = kmap_skb_frag(frag);
2306
2307 *data = (u8 *) st->frag_data + frag->page_offset +
2308 (abs_offset - st->stepped_offset);
2309
2310 return block_limit - abs_offset;
2311 }
2312
2313 if (st->frag_data) {
2314 kunmap_skb_frag(st->frag_data);
2315 st->frag_data = NULL;
2316 }
2317
2318 st->frag_idx++;
2319 st->stepped_offset += frag->size;
2320 }
2321
2322 if (st->frag_data) {
2323 kunmap_skb_frag(st->frag_data);
2324 st->frag_data = NULL;
2325 }
2326
2327 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2328 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2329 st->frag_idx = 0;
2330 goto next_skb;
2331 } else if (st->cur_skb->next) {
2332 st->cur_skb = st->cur_skb->next;
2333 st->frag_idx = 0;
2334 goto next_skb;
2335 }
2336
2337 return 0;
2338 }
2339 EXPORT_SYMBOL(skb_seq_read);
2340
2341 /**
2342 * skb_abort_seq_read - Abort a sequential read of skb data
2343 * @st: state variable
2344 *
2345 * Must be called if skb_seq_read() was not called until it
2346 * returned 0.
2347 */
2348 void skb_abort_seq_read(struct skb_seq_state *st)
2349 {
2350 if (st->frag_data)
2351 kunmap_skb_frag(st->frag_data);
2352 }
2353 EXPORT_SYMBOL(skb_abort_seq_read);
2354
2355 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2356
2357 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2358 struct ts_config *conf,
2359 struct ts_state *state)
2360 {
2361 return skb_seq_read(offset, text, TS_SKB_CB(state));
2362 }
2363
2364 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2365 {
2366 skb_abort_seq_read(TS_SKB_CB(state));
2367 }
2368
2369 /**
2370 * skb_find_text - Find a text pattern in skb data
2371 * @skb: the buffer to look in
2372 * @from: search offset
2373 * @to: search limit
2374 * @config: textsearch configuration
2375 * @state: uninitialized textsearch state variable
2376 *
2377 * Finds a pattern in the skb data according to the specified
2378 * textsearch configuration. Use textsearch_next() to retrieve
2379 * subsequent occurrences of the pattern. Returns the offset
2380 * to the first occurrence or UINT_MAX if no match was found.
2381 */
2382 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2383 unsigned int to, struct ts_config *config,
2384 struct ts_state *state)
2385 {
2386 unsigned int ret;
2387
2388 config->get_next_block = skb_ts_get_next_block;
2389 config->finish = skb_ts_finish;
2390
2391 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2392
2393 ret = textsearch_find(config, state);
2394 return (ret <= to - from ? ret : UINT_MAX);
2395 }
2396 EXPORT_SYMBOL(skb_find_text);
2397
2398 /**
2399 * skb_append_datato_frags: - append the user data to a skb
2400 * @sk: sock structure
2401 * @skb: skb structure to be appened with user data.
2402 * @getfrag: call back function to be used for getting the user data
2403 * @from: pointer to user message iov
2404 * @length: length of the iov message
2405 *
2406 * Description: This procedure append the user data in the fragment part
2407 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2408 */
2409 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2410 int (*getfrag)(void *from, char *to, int offset,
2411 int len, int odd, struct sk_buff *skb),
2412 void *from, int length)
2413 {
2414 int frg_cnt = 0;
2415 skb_frag_t *frag = NULL;
2416 struct page *page = NULL;
2417 int copy, left;
2418 int offset = 0;
2419 int ret;
2420
2421 do {
2422 /* Return error if we don't have space for new frag */
2423 frg_cnt = skb_shinfo(skb)->nr_frags;
2424 if (frg_cnt >= MAX_SKB_FRAGS)
2425 return -EFAULT;
2426
2427 /* allocate a new page for next frag */
2428 page = alloc_pages(sk->sk_allocation, 0);
2429
2430 /* If alloc_page fails just return failure and caller will
2431 * free previous allocated pages by doing kfree_skb()
2432 */
2433 if (page == NULL)
2434 return -ENOMEM;
2435
2436 /* initialize the next frag */
2437 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2438 skb->truesize += PAGE_SIZE;
2439 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2440
2441 /* get the new initialized frag */
2442 frg_cnt = skb_shinfo(skb)->nr_frags;
2443 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2444
2445 /* copy the user data to page */
2446 left = PAGE_SIZE - frag->page_offset;
2447 copy = (length > left)? left : length;
2448
2449 ret = getfrag(from, (page_address(frag->page) +
2450 frag->page_offset + frag->size),
2451 offset, copy, 0, skb);
2452 if (ret < 0)
2453 return -EFAULT;
2454
2455 /* copy was successful so update the size parameters */
2456 frag->size += copy;
2457 skb->len += copy;
2458 skb->data_len += copy;
2459 offset += copy;
2460 length -= copy;
2461
2462 } while (length > 0);
2463
2464 return 0;
2465 }
2466 EXPORT_SYMBOL(skb_append_datato_frags);
2467
2468 /**
2469 * skb_pull_rcsum - pull skb and update receive checksum
2470 * @skb: buffer to update
2471 * @len: length of data pulled
2472 *
2473 * This function performs an skb_pull on the packet and updates
2474 * the CHECKSUM_COMPLETE checksum. It should be used on
2475 * receive path processing instead of skb_pull unless you know
2476 * that the checksum difference is zero (e.g., a valid IP header)
2477 * or you are setting ip_summed to CHECKSUM_NONE.
2478 */
2479 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2480 {
2481 BUG_ON(len > skb->len);
2482 skb->len -= len;
2483 BUG_ON(skb->len < skb->data_len);
2484 skb_postpull_rcsum(skb, skb->data, len);
2485 return skb->data += len;
2486 }
2487 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2488
2489 /**
2490 * skb_segment - Perform protocol segmentation on skb.
2491 * @skb: buffer to segment
2492 * @features: features for the output path (see dev->features)
2493 *
2494 * This function performs segmentation on the given skb. It returns
2495 * a pointer to the first in a list of new skbs for the segments.
2496 * In case of error it returns ERR_PTR(err).
2497 */
2498 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2499 {
2500 struct sk_buff *segs = NULL;
2501 struct sk_buff *tail = NULL;
2502 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2503 unsigned int mss = skb_shinfo(skb)->gso_size;
2504 unsigned int doffset = skb->data - skb_mac_header(skb);
2505 unsigned int offset = doffset;
2506 unsigned int headroom;
2507 unsigned int len;
2508 int sg = !!(features & NETIF_F_SG);
2509 int nfrags = skb_shinfo(skb)->nr_frags;
2510 int err = -ENOMEM;
2511 int i = 0;
2512 int pos;
2513
2514 __skb_push(skb, doffset);
2515 headroom = skb_headroom(skb);
2516 pos = skb_headlen(skb);
2517
2518 do {
2519 struct sk_buff *nskb;
2520 skb_frag_t *frag;
2521 int hsize;
2522 int size;
2523
2524 len = skb->len - offset;
2525 if (len > mss)
2526 len = mss;
2527
2528 hsize = skb_headlen(skb) - offset;
2529 if (hsize < 0)
2530 hsize = 0;
2531 if (hsize > len || !sg)
2532 hsize = len;
2533
2534 if (!hsize && i >= nfrags) {
2535 BUG_ON(fskb->len != len);
2536
2537 pos += len;
2538 nskb = skb_clone(fskb, GFP_ATOMIC);
2539 fskb = fskb->next;
2540
2541 if (unlikely(!nskb))
2542 goto err;
2543
2544 hsize = skb_end_pointer(nskb) - nskb->head;
2545 if (skb_cow_head(nskb, doffset + headroom)) {
2546 kfree_skb(nskb);
2547 goto err;
2548 }
2549
2550 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2551 hsize;
2552 skb_release_head_state(nskb);
2553 __skb_push(nskb, doffset);
2554 } else {
2555 nskb = alloc_skb(hsize + doffset + headroom,
2556 GFP_ATOMIC);
2557
2558 if (unlikely(!nskb))
2559 goto err;
2560
2561 skb_reserve(nskb, headroom);
2562 __skb_put(nskb, doffset);
2563 }
2564
2565 if (segs)
2566 tail->next = nskb;
2567 else
2568 segs = nskb;
2569 tail = nskb;
2570
2571 __copy_skb_header(nskb, skb);
2572 nskb->mac_len = skb->mac_len;
2573
2574 /* nskb and skb might have different headroom */
2575 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2576 nskb->csum_start += skb_headroom(nskb) - headroom;
2577
2578 skb_reset_mac_header(nskb);
2579 skb_set_network_header(nskb, skb->mac_len);
2580 nskb->transport_header = (nskb->network_header +
2581 skb_network_header_len(skb));
2582 skb_copy_from_linear_data(skb, nskb->data, doffset);
2583
2584 if (fskb != skb_shinfo(skb)->frag_list)
2585 continue;
2586
2587 if (!sg) {
2588 nskb->ip_summed = CHECKSUM_NONE;
2589 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2590 skb_put(nskb, len),
2591 len, 0);
2592 continue;
2593 }
2594
2595 frag = skb_shinfo(nskb)->frags;
2596
2597 skb_copy_from_linear_data_offset(skb, offset,
2598 skb_put(nskb, hsize), hsize);
2599
2600 while (pos < offset + len && i < nfrags) {
2601 *frag = skb_shinfo(skb)->frags[i];
2602 get_page(frag->page);
2603 size = frag->size;
2604
2605 if (pos < offset) {
2606 frag->page_offset += offset - pos;
2607 frag->size -= offset - pos;
2608 }
2609
2610 skb_shinfo(nskb)->nr_frags++;
2611
2612 if (pos + size <= offset + len) {
2613 i++;
2614 pos += size;
2615 } else {
2616 frag->size -= pos + size - (offset + len);
2617 goto skip_fraglist;
2618 }
2619
2620 frag++;
2621 }
2622
2623 if (pos < offset + len) {
2624 struct sk_buff *fskb2 = fskb;
2625
2626 BUG_ON(pos + fskb->len != offset + len);
2627
2628 pos += fskb->len;
2629 fskb = fskb->next;
2630
2631 if (fskb2->next) {
2632 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2633 if (!fskb2)
2634 goto err;
2635 } else
2636 skb_get(fskb2);
2637
2638 SKB_FRAG_ASSERT(nskb);
2639 skb_shinfo(nskb)->frag_list = fskb2;
2640 }
2641
2642 skip_fraglist:
2643 nskb->data_len = len - hsize;
2644 nskb->len += nskb->data_len;
2645 nskb->truesize += nskb->data_len;
2646 } while ((offset += len) < skb->len);
2647
2648 return segs;
2649
2650 err:
2651 while ((skb = segs)) {
2652 segs = skb->next;
2653 kfree_skb(skb);
2654 }
2655 return ERR_PTR(err);
2656 }
2657 EXPORT_SYMBOL_GPL(skb_segment);
2658
2659 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2660 {
2661 struct sk_buff *p = *head;
2662 struct sk_buff *nskb;
2663 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2664 struct skb_shared_info *pinfo = skb_shinfo(p);
2665 unsigned int headroom;
2666 unsigned int len = skb_gro_len(skb);
2667 unsigned int offset = skb_gro_offset(skb);
2668 unsigned int headlen = skb_headlen(skb);
2669
2670 if (p->len + len >= 65536)
2671 return -E2BIG;
2672
2673 if (pinfo->frag_list)
2674 goto merge;
2675 else if (headlen <= offset) {
2676 skb_frag_t *frag;
2677 skb_frag_t *frag2;
2678 int i = skbinfo->nr_frags;
2679 int nr_frags = pinfo->nr_frags + i;
2680
2681 offset -= headlen;
2682
2683 if (nr_frags > MAX_SKB_FRAGS)
2684 return -E2BIG;
2685
2686 pinfo->nr_frags = nr_frags;
2687 skbinfo->nr_frags = 0;
2688
2689 frag = pinfo->frags + nr_frags;
2690 frag2 = skbinfo->frags + i;
2691 do {
2692 *--frag = *--frag2;
2693 } while (--i);
2694
2695 frag->page_offset += offset;
2696 frag->size -= offset;
2697
2698 skb->truesize -= skb->data_len;
2699 skb->len -= skb->data_len;
2700 skb->data_len = 0;
2701
2702 NAPI_GRO_CB(skb)->free = 1;
2703 goto done;
2704 } else if (skb_gro_len(p) != pinfo->gso_size)
2705 return -E2BIG;
2706
2707 headroom = skb_headroom(p);
2708 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2709 if (unlikely(!nskb))
2710 return -ENOMEM;
2711
2712 __copy_skb_header(nskb, p);
2713 nskb->mac_len = p->mac_len;
2714
2715 skb_reserve(nskb, headroom);
2716 __skb_put(nskb, skb_gro_offset(p));
2717
2718 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2719 skb_set_network_header(nskb, skb_network_offset(p));
2720 skb_set_transport_header(nskb, skb_transport_offset(p));
2721
2722 __skb_pull(p, skb_gro_offset(p));
2723 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2724 p->data - skb_mac_header(p));
2725
2726 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2727 skb_shinfo(nskb)->frag_list = p;
2728 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2729 pinfo->gso_size = 0;
2730 skb_header_release(p);
2731 nskb->prev = p;
2732
2733 nskb->data_len += p->len;
2734 nskb->truesize += p->len;
2735 nskb->len += p->len;
2736
2737 *head = nskb;
2738 nskb->next = p->next;
2739 p->next = NULL;
2740
2741 p = nskb;
2742
2743 merge:
2744 if (offset > headlen) {
2745 unsigned int eat = offset - headlen;
2746
2747 skbinfo->frags[0].page_offset += eat;
2748 skbinfo->frags[0].size -= eat;
2749 skb->data_len -= eat;
2750 skb->len -= eat;
2751 offset = headlen;
2752 }
2753
2754 __skb_pull(skb, offset);
2755
2756 p->prev->next = skb;
2757 p->prev = skb;
2758 skb_header_release(skb);
2759
2760 done:
2761 NAPI_GRO_CB(p)->count++;
2762 p->data_len += len;
2763 p->truesize += len;
2764 p->len += len;
2765
2766 NAPI_GRO_CB(skb)->same_flow = 1;
2767 return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(skb_gro_receive);
2770
2771 void __init skb_init(void)
2772 {
2773 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2774 sizeof(struct sk_buff),
2775 0,
2776 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2777 NULL);
2778 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2779 (2*sizeof(struct sk_buff)) +
2780 sizeof(atomic_t),
2781 0,
2782 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2783 NULL);
2784 }
2785
2786 /**
2787 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2788 * @skb: Socket buffer containing the buffers to be mapped
2789 * @sg: The scatter-gather list to map into
2790 * @offset: The offset into the buffer's contents to start mapping
2791 * @len: Length of buffer space to be mapped
2792 *
2793 * Fill the specified scatter-gather list with mappings/pointers into a
2794 * region of the buffer space attached to a socket buffer.
2795 */
2796 static int
2797 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2798 {
2799 int start = skb_headlen(skb);
2800 int i, copy = start - offset;
2801 struct sk_buff *frag_iter;
2802 int elt = 0;
2803
2804 if (copy > 0) {
2805 if (copy > len)
2806 copy = len;
2807 sg_set_buf(sg, skb->data + offset, copy);
2808 elt++;
2809 if ((len -= copy) == 0)
2810 return elt;
2811 offset += copy;
2812 }
2813
2814 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2815 int end;
2816
2817 WARN_ON(start > offset + len);
2818
2819 end = start + skb_shinfo(skb)->frags[i].size;
2820 if ((copy = end - offset) > 0) {
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823 if (copy > len)
2824 copy = len;
2825 sg_set_page(&sg[elt], frag->page, copy,
2826 frag->page_offset+offset-start);
2827 elt++;
2828 if (!(len -= copy))
2829 return elt;
2830 offset += copy;
2831 }
2832 start = end;
2833 }
2834
2835 skb_walk_frags(skb, frag_iter) {
2836 int end;
2837
2838 WARN_ON(start > offset + len);
2839
2840 end = start + frag_iter->len;
2841 if ((copy = end - offset) > 0) {
2842 if (copy > len)
2843 copy = len;
2844 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2845 copy);
2846 if ((len -= copy) == 0)
2847 return elt;
2848 offset += copy;
2849 }
2850 start = end;
2851 }
2852 BUG_ON(len);
2853 return elt;
2854 }
2855
2856 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2857 {
2858 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2859
2860 sg_mark_end(&sg[nsg - 1]);
2861
2862 return nsg;
2863 }
2864 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2865
2866 /**
2867 * skb_cow_data - Check that a socket buffer's data buffers are writable
2868 * @skb: The socket buffer to check.
2869 * @tailbits: Amount of trailing space to be added
2870 * @trailer: Returned pointer to the skb where the @tailbits space begins
2871 *
2872 * Make sure that the data buffers attached to a socket buffer are
2873 * writable. If they are not, private copies are made of the data buffers
2874 * and the socket buffer is set to use these instead.
2875 *
2876 * If @tailbits is given, make sure that there is space to write @tailbits
2877 * bytes of data beyond current end of socket buffer. @trailer will be
2878 * set to point to the skb in which this space begins.
2879 *
2880 * The number of scatterlist elements required to completely map the
2881 * COW'd and extended socket buffer will be returned.
2882 */
2883 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2884 {
2885 int copyflag;
2886 int elt;
2887 struct sk_buff *skb1, **skb_p;
2888
2889 /* If skb is cloned or its head is paged, reallocate
2890 * head pulling out all the pages (pages are considered not writable
2891 * at the moment even if they are anonymous).
2892 */
2893 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2894 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2895 return -ENOMEM;
2896
2897 /* Easy case. Most of packets will go this way. */
2898 if (!skb_has_frag_list(skb)) {
2899 /* A little of trouble, not enough of space for trailer.
2900 * This should not happen, when stack is tuned to generate
2901 * good frames. OK, on miss we reallocate and reserve even more
2902 * space, 128 bytes is fair. */
2903
2904 if (skb_tailroom(skb) < tailbits &&
2905 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2906 return -ENOMEM;
2907
2908 /* Voila! */
2909 *trailer = skb;
2910 return 1;
2911 }
2912
2913 /* Misery. We are in troubles, going to mincer fragments... */
2914
2915 elt = 1;
2916 skb_p = &skb_shinfo(skb)->frag_list;
2917 copyflag = 0;
2918
2919 while ((skb1 = *skb_p) != NULL) {
2920 int ntail = 0;
2921
2922 /* The fragment is partially pulled by someone,
2923 * this can happen on input. Copy it and everything
2924 * after it. */
2925
2926 if (skb_shared(skb1))
2927 copyflag = 1;
2928
2929 /* If the skb is the last, worry about trailer. */
2930
2931 if (skb1->next == NULL && tailbits) {
2932 if (skb_shinfo(skb1)->nr_frags ||
2933 skb_has_frag_list(skb1) ||
2934 skb_tailroom(skb1) < tailbits)
2935 ntail = tailbits + 128;
2936 }
2937
2938 if (copyflag ||
2939 skb_cloned(skb1) ||
2940 ntail ||
2941 skb_shinfo(skb1)->nr_frags ||
2942 skb_has_frag_list(skb1)) {
2943 struct sk_buff *skb2;
2944
2945 /* Fuck, we are miserable poor guys... */
2946 if (ntail == 0)
2947 skb2 = skb_copy(skb1, GFP_ATOMIC);
2948 else
2949 skb2 = skb_copy_expand(skb1,
2950 skb_headroom(skb1),
2951 ntail,
2952 GFP_ATOMIC);
2953 if (unlikely(skb2 == NULL))
2954 return -ENOMEM;
2955
2956 if (skb1->sk)
2957 skb_set_owner_w(skb2, skb1->sk);
2958
2959 /* Looking around. Are we still alive?
2960 * OK, link new skb, drop old one */
2961
2962 skb2->next = skb1->next;
2963 *skb_p = skb2;
2964 kfree_skb(skb1);
2965 skb1 = skb2;
2966 }
2967 elt++;
2968 *trailer = skb1;
2969 skb_p = &skb1->next;
2970 }
2971
2972 return elt;
2973 }
2974 EXPORT_SYMBOL_GPL(skb_cow_data);
2975
2976 static void sock_rmem_free(struct sk_buff *skb)
2977 {
2978 struct sock *sk = skb->sk;
2979
2980 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2981 }
2982
2983 /*
2984 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2985 */
2986 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2987 {
2988 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2989 (unsigned)sk->sk_rcvbuf)
2990 return -ENOMEM;
2991
2992 skb_orphan(skb);
2993 skb->sk = sk;
2994 skb->destructor = sock_rmem_free;
2995 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2996
2997 /* before exiting rcu section, make sure dst is refcounted */
2998 skb_dst_force(skb);
2999
3000 skb_queue_tail(&sk->sk_error_queue, skb);
3001 if (!sock_flag(sk, SOCK_DEAD))
3002 sk->sk_data_ready(sk, skb->len);
3003 return 0;
3004 }
3005 EXPORT_SYMBOL(sock_queue_err_skb);
3006
3007 void skb_tstamp_tx(struct sk_buff *orig_skb,
3008 struct skb_shared_hwtstamps *hwtstamps)
3009 {
3010 struct sock *sk = orig_skb->sk;
3011 struct sock_exterr_skb *serr;
3012 struct sk_buff *skb;
3013 int err;
3014
3015 if (!sk)
3016 return;
3017
3018 skb = skb_clone(orig_skb, GFP_ATOMIC);
3019 if (!skb)
3020 return;
3021
3022 if (hwtstamps) {
3023 *skb_hwtstamps(skb) =
3024 *hwtstamps;
3025 } else {
3026 /*
3027 * no hardware time stamps available,
3028 * so keep the shared tx_flags and only
3029 * store software time stamp
3030 */
3031 skb->tstamp = ktime_get_real();
3032 }
3033
3034 serr = SKB_EXT_ERR(skb);
3035 memset(serr, 0, sizeof(*serr));
3036 serr->ee.ee_errno = ENOMSG;
3037 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3038
3039 err = sock_queue_err_skb(sk, skb);
3040
3041 if (err)
3042 kfree_skb(skb);
3043 }
3044 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3045
3046
3047 /**
3048 * skb_partial_csum_set - set up and verify partial csum values for packet
3049 * @skb: the skb to set
3050 * @start: the number of bytes after skb->data to start checksumming.
3051 * @off: the offset from start to place the checksum.
3052 *
3053 * For untrusted partially-checksummed packets, we need to make sure the values
3054 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3055 *
3056 * This function checks and sets those values and skb->ip_summed: if this
3057 * returns false you should drop the packet.
3058 */
3059 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3060 {
3061 if (unlikely(start > skb_headlen(skb)) ||
3062 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3063 if (net_ratelimit())
3064 printk(KERN_WARNING
3065 "bad partial csum: csum=%u/%u len=%u\n",
3066 start, off, skb_headlen(skb));
3067 return false;
3068 }
3069 skb->ip_summed = CHECKSUM_PARTIAL;
3070 skb->csum_start = skb_headroom(skb) + start;
3071 skb->csum_offset = off;
3072 return true;
3073 }
3074 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3075
3076 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3077 {
3078 if (net_ratelimit())
3079 pr_warning("%s: received packets cannot be forwarded"
3080 " while LRO is enabled\n", skb->dev->name);
3081 }
3082 EXPORT_SYMBOL(__skb_warn_lro_forwarding);