Merge branch 'for-linux-next' of git://people.freedesktop.org/~danvet/drm-intel into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /**
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
112 * @msg: skb_over_panic or skb_under_panic
113 *
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
118 */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 const char msg[])
121 {
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg, addr, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 skb_panic(skb, sz, addr, __func__);
132 }
133
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 skb_panic(skb, sz, addr, __func__);
137 }
138
139 /*
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
145 */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
151 {
152 void *obj;
153 bool ret_pfmemalloc = false;
154
155 /*
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
158 */
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
164
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
168
169 out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
172
173 return obj;
174 }
175
176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
179 *
180 */
181
182 /**
183 * __alloc_skb - allocate a network buffer
184 * @size: size to allocate
185 * @gfp_mask: allocation mask
186 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
187 * instead of head cache and allocate a cloned (child) skb.
188 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
189 * allocations in case the data is required for writeback
190 * @node: numa node to allocate memory on
191 *
192 * Allocate a new &sk_buff. The returned buffer has no headroom and a
193 * tail room of at least size bytes. The object has a reference count
194 * of one. The return is the buffer. On a failure the return is %NULL.
195 *
196 * Buffers may only be allocated from interrupts using a @gfp_mask of
197 * %GFP_ATOMIC.
198 */
199 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
200 int flags, int node)
201 {
202 struct kmem_cache *cache;
203 struct skb_shared_info *shinfo;
204 struct sk_buff *skb;
205 u8 *data;
206 bool pfmemalloc;
207
208 cache = (flags & SKB_ALLOC_FCLONE)
209 ? skbuff_fclone_cache : skbuff_head_cache;
210
211 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
212 gfp_mask |= __GFP_MEMALLOC;
213
214 /* Get the HEAD */
215 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
216 if (!skb)
217 goto out;
218 prefetchw(skb);
219
220 /* We do our best to align skb_shared_info on a separate cache
221 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
222 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
223 * Both skb->head and skb_shared_info are cache line aligned.
224 */
225 size = SKB_DATA_ALIGN(size);
226 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
227 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
228 if (!data)
229 goto nodata;
230 /* kmalloc(size) might give us more room than requested.
231 * Put skb_shared_info exactly at the end of allocated zone,
232 * to allow max possible filling before reallocation.
233 */
234 size = SKB_WITH_OVERHEAD(ksize(data));
235 prefetchw(data + size);
236
237 /*
238 * Only clear those fields we need to clear, not those that we will
239 * actually initialise below. Hence, don't put any more fields after
240 * the tail pointer in struct sk_buff!
241 */
242 memset(skb, 0, offsetof(struct sk_buff, tail));
243 /* Account for allocated memory : skb + skb->head */
244 skb->truesize = SKB_TRUESIZE(size);
245 skb->pfmemalloc = pfmemalloc;
246 atomic_set(&skb->users, 1);
247 skb->head = data;
248 skb->data = data;
249 skb_reset_tail_pointer(skb);
250 skb->end = skb->tail + size;
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 skb->mac_header = ~0U;
253 skb->transport_header = ~0U;
254 #endif
255
256 /* make sure we initialize shinfo sequentially */
257 shinfo = skb_shinfo(skb);
258 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
259 atomic_set(&shinfo->dataref, 1);
260 kmemcheck_annotate_variable(shinfo->destructor_arg);
261
262 if (flags & SKB_ALLOC_FCLONE) {
263 struct sk_buff *child = skb + 1;
264 atomic_t *fclone_ref = (atomic_t *) (child + 1);
265
266 kmemcheck_annotate_bitfield(child, flags1);
267 kmemcheck_annotate_bitfield(child, flags2);
268 skb->fclone = SKB_FCLONE_ORIG;
269 atomic_set(fclone_ref, 1);
270
271 child->fclone = SKB_FCLONE_UNAVAILABLE;
272 child->pfmemalloc = pfmemalloc;
273 }
274 out:
275 return skb;
276 nodata:
277 kmem_cache_free(cache, skb);
278 skb = NULL;
279 goto out;
280 }
281 EXPORT_SYMBOL(__alloc_skb);
282
283 /**
284 * build_skb - build a network buffer
285 * @data: data buffer provided by caller
286 * @frag_size: size of fragment, or 0 if head was kmalloced
287 *
288 * Allocate a new &sk_buff. Caller provides space holding head and
289 * skb_shared_info. @data must have been allocated by kmalloc()
290 * The return is the new skb buffer.
291 * On a failure the return is %NULL, and @data is not freed.
292 * Notes :
293 * Before IO, driver allocates only data buffer where NIC put incoming frame
294 * Driver should add room at head (NET_SKB_PAD) and
295 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
296 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
297 * before giving packet to stack.
298 * RX rings only contains data buffers, not full skbs.
299 */
300 struct sk_buff *build_skb(void *data, unsigned int frag_size)
301 {
302 struct skb_shared_info *shinfo;
303 struct sk_buff *skb;
304 unsigned int size = frag_size ? : ksize(data);
305
306 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
307 if (!skb)
308 return NULL;
309
310 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
311
312 memset(skb, 0, offsetof(struct sk_buff, tail));
313 skb->truesize = SKB_TRUESIZE(size);
314 skb->head_frag = frag_size != 0;
315 atomic_set(&skb->users, 1);
316 skb->head = data;
317 skb->data = data;
318 skb_reset_tail_pointer(skb);
319 skb->end = skb->tail + size;
320 #ifdef NET_SKBUFF_DATA_USES_OFFSET
321 skb->mac_header = ~0U;
322 skb->transport_header = ~0U;
323 #endif
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333 EXPORT_SYMBOL(build_skb);
334
335 struct netdev_alloc_cache {
336 struct page_frag frag;
337 /* we maintain a pagecount bias, so that we dont dirty cache line
338 * containing page->_count every time we allocate a fragment.
339 */
340 unsigned int pagecnt_bias;
341 };
342 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
343
344 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
345 {
346 struct netdev_alloc_cache *nc;
347 void *data = NULL;
348 int order;
349 unsigned long flags;
350
351 local_irq_save(flags);
352 nc = &__get_cpu_var(netdev_alloc_cache);
353 if (unlikely(!nc->frag.page)) {
354 refill:
355 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
356 gfp_t gfp = gfp_mask;
357
358 if (order)
359 gfp |= __GFP_COMP | __GFP_NOWARN;
360 nc->frag.page = alloc_pages(gfp, order);
361 if (likely(nc->frag.page))
362 break;
363 if (--order < 0)
364 goto end;
365 }
366 nc->frag.size = PAGE_SIZE << order;
367 recycle:
368 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
369 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
370 nc->frag.offset = 0;
371 }
372
373 if (nc->frag.offset + fragsz > nc->frag.size) {
374 /* avoid unnecessary locked operations if possible */
375 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
376 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
377 goto recycle;
378 goto refill;
379 }
380
381 data = page_address(nc->frag.page) + nc->frag.offset;
382 nc->frag.offset += fragsz;
383 nc->pagecnt_bias--;
384 end:
385 local_irq_restore(flags);
386 return data;
387 }
388
389 /**
390 * netdev_alloc_frag - allocate a page fragment
391 * @fragsz: fragment size
392 *
393 * Allocates a frag from a page for receive buffer.
394 * Uses GFP_ATOMIC allocations.
395 */
396 void *netdev_alloc_frag(unsigned int fragsz)
397 {
398 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(netdev_alloc_frag);
401
402 /**
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @length: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 *
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has unspecified headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
412 *
413 * %NULL is returned if there is no free memory.
414 */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
416 unsigned int length, gfp_t gfp_mask)
417 {
418 struct sk_buff *skb = NULL;
419 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
420 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
421
422 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
423 void *data;
424
425 if (sk_memalloc_socks())
426 gfp_mask |= __GFP_MEMALLOC;
427
428 data = __netdev_alloc_frag(fragsz, gfp_mask);
429
430 if (likely(data)) {
431 skb = build_skb(data, fragsz);
432 if (unlikely(!skb))
433 put_page(virt_to_head_page(data));
434 }
435 } else {
436 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
437 SKB_ALLOC_RX, NUMA_NO_NODE);
438 }
439 if (likely(skb)) {
440 skb_reserve(skb, NET_SKB_PAD);
441 skb->dev = dev;
442 }
443 return skb;
444 }
445 EXPORT_SYMBOL(__netdev_alloc_skb);
446
447 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
448 int size, unsigned int truesize)
449 {
450 skb_fill_page_desc(skb, i, page, off, size);
451 skb->len += size;
452 skb->data_len += size;
453 skb->truesize += truesize;
454 }
455 EXPORT_SYMBOL(skb_add_rx_frag);
456
457 static void skb_drop_list(struct sk_buff **listp)
458 {
459 struct sk_buff *list = *listp;
460
461 *listp = NULL;
462
463 do {
464 struct sk_buff *this = list;
465 list = list->next;
466 kfree_skb(this);
467 } while (list);
468 }
469
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 struct sk_buff *list;
478
479 skb_walk_frags(skb, list)
480 skb_get(list);
481 }
482
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 if (skb->head_frag)
486 put_page(virt_to_head_page(skb->head));
487 else
488 kfree(skb->head);
489 }
490
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 if (!skb->cloned ||
494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 &skb_shinfo(skb)->dataref)) {
496 if (skb_shinfo(skb)->nr_frags) {
497 int i;
498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 skb_frag_unref(skb, i);
500 }
501
502 /*
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
505 */
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 struct ubuf_info *uarg;
508
509 uarg = skb_shinfo(skb)->destructor_arg;
510 if (uarg->callback)
511 uarg->callback(uarg, true);
512 }
513
514 if (skb_has_frag_list(skb))
515 skb_drop_fraglist(skb);
516
517 skb_free_head(skb);
518 }
519 }
520
521 /*
522 * Free an skbuff by memory without cleaning the state.
523 */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 struct sk_buff *other;
527 atomic_t *fclone_ref;
528
529 switch (skb->fclone) {
530 case SKB_FCLONE_UNAVAILABLE:
531 kmem_cache_free(skbuff_head_cache, skb);
532 break;
533
534 case SKB_FCLONE_ORIG:
535 fclone_ref = (atomic_t *) (skb + 2);
536 if (atomic_dec_and_test(fclone_ref))
537 kmem_cache_free(skbuff_fclone_cache, skb);
538 break;
539
540 case SKB_FCLONE_CLONE:
541 fclone_ref = (atomic_t *) (skb + 1);
542 other = skb - 1;
543
544 /* The clone portion is available for
545 * fast-cloning again.
546 */
547 skb->fclone = SKB_FCLONE_UNAVAILABLE;
548
549 if (atomic_dec_and_test(fclone_ref))
550 kmem_cache_free(skbuff_fclone_cache, other);
551 break;
552 }
553 }
554
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 secpath_put(skb->sp);
560 #endif
561 if (skb->destructor) {
562 WARN_ON(in_irq());
563 skb->destructor(skb);
564 }
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
569 nf_conntrack_put_reasm(skb->nfct_reasm);
570 #endif
571 #ifdef CONFIG_BRIDGE_NETFILTER
572 nf_bridge_put(skb->nf_bridge);
573 #endif
574 /* XXX: IS this still necessary? - JHS */
575 #ifdef CONFIG_NET_SCHED
576 skb->tc_index = 0;
577 #ifdef CONFIG_NET_CLS_ACT
578 skb->tc_verd = 0;
579 #endif
580 #endif
581 }
582
583 /* Free everything but the sk_buff shell. */
584 static void skb_release_all(struct sk_buff *skb)
585 {
586 skb_release_head_state(skb);
587 skb_release_data(skb);
588 }
589
590 /**
591 * __kfree_skb - private function
592 * @skb: buffer
593 *
594 * Free an sk_buff. Release anything attached to the buffer.
595 * Clean the state. This is an internal helper function. Users should
596 * always call kfree_skb
597 */
598
599 void __kfree_skb(struct sk_buff *skb)
600 {
601 skb_release_all(skb);
602 kfree_skbmem(skb);
603 }
604 EXPORT_SYMBOL(__kfree_skb);
605
606 /**
607 * kfree_skb - free an sk_buff
608 * @skb: buffer to free
609 *
610 * Drop a reference to the buffer and free it if the usage count has
611 * hit zero.
612 */
613 void kfree_skb(struct sk_buff *skb)
614 {
615 if (unlikely(!skb))
616 return;
617 if (likely(atomic_read(&skb->users) == 1))
618 smp_rmb();
619 else if (likely(!atomic_dec_and_test(&skb->users)))
620 return;
621 trace_kfree_skb(skb, __builtin_return_address(0));
622 __kfree_skb(skb);
623 }
624 EXPORT_SYMBOL(kfree_skb);
625
626 /**
627 * skb_tx_error - report an sk_buff xmit error
628 * @skb: buffer that triggered an error
629 *
630 * Report xmit error if a device callback is tracking this skb.
631 * skb must be freed afterwards.
632 */
633 void skb_tx_error(struct sk_buff *skb)
634 {
635 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
636 struct ubuf_info *uarg;
637
638 uarg = skb_shinfo(skb)->destructor_arg;
639 if (uarg->callback)
640 uarg->callback(uarg, false);
641 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
642 }
643 }
644 EXPORT_SYMBOL(skb_tx_error);
645
646 /**
647 * consume_skb - free an skbuff
648 * @skb: buffer to free
649 *
650 * Drop a ref to the buffer and free it if the usage count has hit zero
651 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
652 * is being dropped after a failure and notes that
653 */
654 void consume_skb(struct sk_buff *skb)
655 {
656 if (unlikely(!skb))
657 return;
658 if (likely(atomic_read(&skb->users) == 1))
659 smp_rmb();
660 else if (likely(!atomic_dec_and_test(&skb->users)))
661 return;
662 trace_consume_skb(skb);
663 __kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(consume_skb);
666
667 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
668 {
669 new->tstamp = old->tstamp;
670 new->dev = old->dev;
671 new->transport_header = old->transport_header;
672 new->network_header = old->network_header;
673 new->mac_header = old->mac_header;
674 new->inner_transport_header = old->inner_transport_header;
675 new->inner_network_header = old->inner_network_header;
676 skb_dst_copy(new, old);
677 new->rxhash = old->rxhash;
678 new->ooo_okay = old->ooo_okay;
679 new->l4_rxhash = old->l4_rxhash;
680 new->no_fcs = old->no_fcs;
681 new->encapsulation = old->encapsulation;
682 #ifdef CONFIG_XFRM
683 new->sp = secpath_get(old->sp);
684 #endif
685 memcpy(new->cb, old->cb, sizeof(old->cb));
686 new->csum = old->csum;
687 new->local_df = old->local_df;
688 new->pkt_type = old->pkt_type;
689 new->ip_summed = old->ip_summed;
690 skb_copy_queue_mapping(new, old);
691 new->priority = old->priority;
692 #if IS_ENABLED(CONFIG_IP_VS)
693 new->ipvs_property = old->ipvs_property;
694 #endif
695 new->pfmemalloc = old->pfmemalloc;
696 new->protocol = old->protocol;
697 new->mark = old->mark;
698 new->skb_iif = old->skb_iif;
699 __nf_copy(new, old);
700 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
701 new->nf_trace = old->nf_trace;
702 #endif
703 #ifdef CONFIG_NET_SCHED
704 new->tc_index = old->tc_index;
705 #ifdef CONFIG_NET_CLS_ACT
706 new->tc_verd = old->tc_verd;
707 #endif
708 #endif
709 new->vlan_tci = old->vlan_tci;
710
711 skb_copy_secmark(new, old);
712 }
713
714 /*
715 * You should not add any new code to this function. Add it to
716 * __copy_skb_header above instead.
717 */
718 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
719 {
720 #define C(x) n->x = skb->x
721
722 n->next = n->prev = NULL;
723 n->sk = NULL;
724 __copy_skb_header(n, skb);
725
726 C(len);
727 C(data_len);
728 C(mac_len);
729 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
730 n->cloned = 1;
731 n->nohdr = 0;
732 n->destructor = NULL;
733 C(tail);
734 C(end);
735 C(head);
736 C(head_frag);
737 C(data);
738 C(truesize);
739 atomic_set(&n->users, 1);
740
741 atomic_inc(&(skb_shinfo(skb)->dataref));
742 skb->cloned = 1;
743
744 return n;
745 #undef C
746 }
747
748 /**
749 * skb_morph - morph one skb into another
750 * @dst: the skb to receive the contents
751 * @src: the skb to supply the contents
752 *
753 * This is identical to skb_clone except that the target skb is
754 * supplied by the user.
755 *
756 * The target skb is returned upon exit.
757 */
758 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
759 {
760 skb_release_all(dst);
761 return __skb_clone(dst, src);
762 }
763 EXPORT_SYMBOL_GPL(skb_morph);
764
765 /**
766 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
767 * @skb: the skb to modify
768 * @gfp_mask: allocation priority
769 *
770 * This must be called on SKBTX_DEV_ZEROCOPY skb.
771 * It will copy all frags into kernel and drop the reference
772 * to userspace pages.
773 *
774 * If this function is called from an interrupt gfp_mask() must be
775 * %GFP_ATOMIC.
776 *
777 * Returns 0 on success or a negative error code on failure
778 * to allocate kernel memory to copy to.
779 */
780 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
781 {
782 int i;
783 int num_frags = skb_shinfo(skb)->nr_frags;
784 struct page *page, *head = NULL;
785 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
786
787 for (i = 0; i < num_frags; i++) {
788 u8 *vaddr;
789 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
790
791 page = alloc_page(gfp_mask);
792 if (!page) {
793 while (head) {
794 struct page *next = (struct page *)head->private;
795 put_page(head);
796 head = next;
797 }
798 return -ENOMEM;
799 }
800 vaddr = kmap_atomic(skb_frag_page(f));
801 memcpy(page_address(page),
802 vaddr + f->page_offset, skb_frag_size(f));
803 kunmap_atomic(vaddr);
804 page->private = (unsigned long)head;
805 head = page;
806 }
807
808 /* skb frags release userspace buffers */
809 for (i = 0; i < num_frags; i++)
810 skb_frag_unref(skb, i);
811
812 uarg->callback(uarg, false);
813
814 /* skb frags point to kernel buffers */
815 for (i = num_frags - 1; i >= 0; i--) {
816 __skb_fill_page_desc(skb, i, head, 0,
817 skb_shinfo(skb)->frags[i].size);
818 head = (struct page *)head->private;
819 }
820
821 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
825
826 /**
827 * skb_clone - duplicate an sk_buff
828 * @skb: buffer to clone
829 * @gfp_mask: allocation priority
830 *
831 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
832 * copies share the same packet data but not structure. The new
833 * buffer has a reference count of 1. If the allocation fails the
834 * function returns %NULL otherwise the new buffer is returned.
835 *
836 * If this function is called from an interrupt gfp_mask() must be
837 * %GFP_ATOMIC.
838 */
839
840 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
841 {
842 struct sk_buff *n;
843
844 if (skb_orphan_frags(skb, gfp_mask))
845 return NULL;
846
847 n = skb + 1;
848 if (skb->fclone == SKB_FCLONE_ORIG &&
849 n->fclone == SKB_FCLONE_UNAVAILABLE) {
850 atomic_t *fclone_ref = (atomic_t *) (n + 1);
851 n->fclone = SKB_FCLONE_CLONE;
852 atomic_inc(fclone_ref);
853 } else {
854 if (skb_pfmemalloc(skb))
855 gfp_mask |= __GFP_MEMALLOC;
856
857 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
858 if (!n)
859 return NULL;
860
861 kmemcheck_annotate_bitfield(n, flags1);
862 kmemcheck_annotate_bitfield(n, flags2);
863 n->fclone = SKB_FCLONE_UNAVAILABLE;
864 }
865
866 return __skb_clone(n, skb);
867 }
868 EXPORT_SYMBOL(skb_clone);
869
870 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
871 {
872 #ifndef NET_SKBUFF_DATA_USES_OFFSET
873 /*
874 * Shift between the two data areas in bytes
875 */
876 unsigned long offset = new->data - old->data;
877 #endif
878
879 __copy_skb_header(new, old);
880
881 #ifndef NET_SKBUFF_DATA_USES_OFFSET
882 /* {transport,network,mac}_header are relative to skb->head */
883 new->transport_header += offset;
884 new->network_header += offset;
885 if (skb_mac_header_was_set(new))
886 new->mac_header += offset;
887 new->inner_transport_header += offset;
888 new->inner_network_header += offset;
889 #endif
890 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
891 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
892 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
893 }
894
895 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
896 {
897 if (skb_pfmemalloc(skb))
898 return SKB_ALLOC_RX;
899 return 0;
900 }
901
902 /**
903 * skb_copy - create private copy of an sk_buff
904 * @skb: buffer to copy
905 * @gfp_mask: allocation priority
906 *
907 * Make a copy of both an &sk_buff and its data. This is used when the
908 * caller wishes to modify the data and needs a private copy of the
909 * data to alter. Returns %NULL on failure or the pointer to the buffer
910 * on success. The returned buffer has a reference count of 1.
911 *
912 * As by-product this function converts non-linear &sk_buff to linear
913 * one, so that &sk_buff becomes completely private and caller is allowed
914 * to modify all the data of returned buffer. This means that this
915 * function is not recommended for use in circumstances when only
916 * header is going to be modified. Use pskb_copy() instead.
917 */
918
919 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
920 {
921 int headerlen = skb_headroom(skb);
922 unsigned int size = skb_end_offset(skb) + skb->data_len;
923 struct sk_buff *n = __alloc_skb(size, gfp_mask,
924 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
925
926 if (!n)
927 return NULL;
928
929 /* Set the data pointer */
930 skb_reserve(n, headerlen);
931 /* Set the tail pointer and length */
932 skb_put(n, skb->len);
933
934 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
935 BUG();
936
937 copy_skb_header(n, skb);
938 return n;
939 }
940 EXPORT_SYMBOL(skb_copy);
941
942 /**
943 * __pskb_copy - create copy of an sk_buff with private head.
944 * @skb: buffer to copy
945 * @headroom: headroom of new skb
946 * @gfp_mask: allocation priority
947 *
948 * Make a copy of both an &sk_buff and part of its data, located
949 * in header. Fragmented data remain shared. This is used when
950 * the caller wishes to modify only header of &sk_buff and needs
951 * private copy of the header to alter. Returns %NULL on failure
952 * or the pointer to the buffer on success.
953 * The returned buffer has a reference count of 1.
954 */
955
956 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
957 {
958 unsigned int size = skb_headlen(skb) + headroom;
959 struct sk_buff *n = __alloc_skb(size, gfp_mask,
960 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
961
962 if (!n)
963 goto out;
964
965 /* Set the data pointer */
966 skb_reserve(n, headroom);
967 /* Set the tail pointer and length */
968 skb_put(n, skb_headlen(skb));
969 /* Copy the bytes */
970 skb_copy_from_linear_data(skb, n->data, n->len);
971
972 n->truesize += skb->data_len;
973 n->data_len = skb->data_len;
974 n->len = skb->len;
975
976 if (skb_shinfo(skb)->nr_frags) {
977 int i;
978
979 if (skb_orphan_frags(skb, gfp_mask)) {
980 kfree_skb(n);
981 n = NULL;
982 goto out;
983 }
984 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
985 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
986 skb_frag_ref(skb, i);
987 }
988 skb_shinfo(n)->nr_frags = i;
989 }
990
991 if (skb_has_frag_list(skb)) {
992 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
993 skb_clone_fraglist(n);
994 }
995
996 copy_skb_header(n, skb);
997 out:
998 return n;
999 }
1000 EXPORT_SYMBOL(__pskb_copy);
1001
1002 /**
1003 * pskb_expand_head - reallocate header of &sk_buff
1004 * @skb: buffer to reallocate
1005 * @nhead: room to add at head
1006 * @ntail: room to add at tail
1007 * @gfp_mask: allocation priority
1008 *
1009 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1010 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1011 * reference count of 1. Returns zero in the case of success or error,
1012 * if expansion failed. In the last case, &sk_buff is not changed.
1013 *
1014 * All the pointers pointing into skb header may change and must be
1015 * reloaded after call to this function.
1016 */
1017
1018 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1019 gfp_t gfp_mask)
1020 {
1021 int i;
1022 u8 *data;
1023 int size = nhead + skb_end_offset(skb) + ntail;
1024 long off;
1025
1026 BUG_ON(nhead < 0);
1027
1028 if (skb_shared(skb))
1029 BUG();
1030
1031 size = SKB_DATA_ALIGN(size);
1032
1033 if (skb_pfmemalloc(skb))
1034 gfp_mask |= __GFP_MEMALLOC;
1035 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1036 gfp_mask, NUMA_NO_NODE, NULL);
1037 if (!data)
1038 goto nodata;
1039 size = SKB_WITH_OVERHEAD(ksize(data));
1040
1041 /* Copy only real data... and, alas, header. This should be
1042 * optimized for the cases when header is void.
1043 */
1044 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1045
1046 memcpy((struct skb_shared_info *)(data + size),
1047 skb_shinfo(skb),
1048 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1049
1050 /*
1051 * if shinfo is shared we must drop the old head gracefully, but if it
1052 * is not we can just drop the old head and let the existing refcount
1053 * be since all we did is relocate the values
1054 */
1055 if (skb_cloned(skb)) {
1056 /* copy this zero copy skb frags */
1057 if (skb_orphan_frags(skb, gfp_mask))
1058 goto nofrags;
1059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1060 skb_frag_ref(skb, i);
1061
1062 if (skb_has_frag_list(skb))
1063 skb_clone_fraglist(skb);
1064
1065 skb_release_data(skb);
1066 } else {
1067 skb_free_head(skb);
1068 }
1069 off = (data + nhead) - skb->head;
1070
1071 skb->head = data;
1072 skb->head_frag = 0;
1073 skb->data += off;
1074 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1075 skb->end = size;
1076 off = nhead;
1077 #else
1078 skb->end = skb->head + size;
1079 #endif
1080 /* {transport,network,mac}_header and tail are relative to skb->head */
1081 skb->tail += off;
1082 skb->transport_header += off;
1083 skb->network_header += off;
1084 if (skb_mac_header_was_set(skb))
1085 skb->mac_header += off;
1086 skb->inner_transport_header += off;
1087 skb->inner_network_header += off;
1088 /* Only adjust this if it actually is csum_start rather than csum */
1089 if (skb->ip_summed == CHECKSUM_PARTIAL)
1090 skb->csum_start += nhead;
1091 skb->cloned = 0;
1092 skb->hdr_len = 0;
1093 skb->nohdr = 0;
1094 atomic_set(&skb_shinfo(skb)->dataref, 1);
1095 return 0;
1096
1097 nofrags:
1098 kfree(data);
1099 nodata:
1100 return -ENOMEM;
1101 }
1102 EXPORT_SYMBOL(pskb_expand_head);
1103
1104 /* Make private copy of skb with writable head and some headroom */
1105
1106 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1107 {
1108 struct sk_buff *skb2;
1109 int delta = headroom - skb_headroom(skb);
1110
1111 if (delta <= 0)
1112 skb2 = pskb_copy(skb, GFP_ATOMIC);
1113 else {
1114 skb2 = skb_clone(skb, GFP_ATOMIC);
1115 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1116 GFP_ATOMIC)) {
1117 kfree_skb(skb2);
1118 skb2 = NULL;
1119 }
1120 }
1121 return skb2;
1122 }
1123 EXPORT_SYMBOL(skb_realloc_headroom);
1124
1125 /**
1126 * skb_copy_expand - copy and expand sk_buff
1127 * @skb: buffer to copy
1128 * @newheadroom: new free bytes at head
1129 * @newtailroom: new free bytes at tail
1130 * @gfp_mask: allocation priority
1131 *
1132 * Make a copy of both an &sk_buff and its data and while doing so
1133 * allocate additional space.
1134 *
1135 * This is used when the caller wishes to modify the data and needs a
1136 * private copy of the data to alter as well as more space for new fields.
1137 * Returns %NULL on failure or the pointer to the buffer
1138 * on success. The returned buffer has a reference count of 1.
1139 *
1140 * You must pass %GFP_ATOMIC as the allocation priority if this function
1141 * is called from an interrupt.
1142 */
1143 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1144 int newheadroom, int newtailroom,
1145 gfp_t gfp_mask)
1146 {
1147 /*
1148 * Allocate the copy buffer
1149 */
1150 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1151 gfp_mask, skb_alloc_rx_flag(skb),
1152 NUMA_NO_NODE);
1153 int oldheadroom = skb_headroom(skb);
1154 int head_copy_len, head_copy_off;
1155 int off;
1156
1157 if (!n)
1158 return NULL;
1159
1160 skb_reserve(n, newheadroom);
1161
1162 /* Set the tail pointer and length */
1163 skb_put(n, skb->len);
1164
1165 head_copy_len = oldheadroom;
1166 head_copy_off = 0;
1167 if (newheadroom <= head_copy_len)
1168 head_copy_len = newheadroom;
1169 else
1170 head_copy_off = newheadroom - head_copy_len;
1171
1172 /* Copy the linear header and data. */
1173 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1174 skb->len + head_copy_len))
1175 BUG();
1176
1177 copy_skb_header(n, skb);
1178
1179 off = newheadroom - oldheadroom;
1180 if (n->ip_summed == CHECKSUM_PARTIAL)
1181 n->csum_start += off;
1182 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1183 n->transport_header += off;
1184 n->network_header += off;
1185 if (skb_mac_header_was_set(skb))
1186 n->mac_header += off;
1187 n->inner_transport_header += off;
1188 n->inner_network_header += off;
1189 #endif
1190
1191 return n;
1192 }
1193 EXPORT_SYMBOL(skb_copy_expand);
1194
1195 /**
1196 * skb_pad - zero pad the tail of an skb
1197 * @skb: buffer to pad
1198 * @pad: space to pad
1199 *
1200 * Ensure that a buffer is followed by a padding area that is zero
1201 * filled. Used by network drivers which may DMA or transfer data
1202 * beyond the buffer end onto the wire.
1203 *
1204 * May return error in out of memory cases. The skb is freed on error.
1205 */
1206
1207 int skb_pad(struct sk_buff *skb, int pad)
1208 {
1209 int err;
1210 int ntail;
1211
1212 /* If the skbuff is non linear tailroom is always zero.. */
1213 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1214 memset(skb->data+skb->len, 0, pad);
1215 return 0;
1216 }
1217
1218 ntail = skb->data_len + pad - (skb->end - skb->tail);
1219 if (likely(skb_cloned(skb) || ntail > 0)) {
1220 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1221 if (unlikely(err))
1222 goto free_skb;
1223 }
1224
1225 /* FIXME: The use of this function with non-linear skb's really needs
1226 * to be audited.
1227 */
1228 err = skb_linearize(skb);
1229 if (unlikely(err))
1230 goto free_skb;
1231
1232 memset(skb->data + skb->len, 0, pad);
1233 return 0;
1234
1235 free_skb:
1236 kfree_skb(skb);
1237 return err;
1238 }
1239 EXPORT_SYMBOL(skb_pad);
1240
1241 /**
1242 * skb_put - add data to a buffer
1243 * @skb: buffer to use
1244 * @len: amount of data to add
1245 *
1246 * This function extends the used data area of the buffer. If this would
1247 * exceed the total buffer size the kernel will panic. A pointer to the
1248 * first byte of the extra data is returned.
1249 */
1250 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1251 {
1252 unsigned char *tmp = skb_tail_pointer(skb);
1253 SKB_LINEAR_ASSERT(skb);
1254 skb->tail += len;
1255 skb->len += len;
1256 if (unlikely(skb->tail > skb->end))
1257 skb_over_panic(skb, len, __builtin_return_address(0));
1258 return tmp;
1259 }
1260 EXPORT_SYMBOL(skb_put);
1261
1262 /**
1263 * skb_push - add data to the start of a buffer
1264 * @skb: buffer to use
1265 * @len: amount of data to add
1266 *
1267 * This function extends the used data area of the buffer at the buffer
1268 * start. If this would exceed the total buffer headroom the kernel will
1269 * panic. A pointer to the first byte of the extra data is returned.
1270 */
1271 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1272 {
1273 skb->data -= len;
1274 skb->len += len;
1275 if (unlikely(skb->data<skb->head))
1276 skb_under_panic(skb, len, __builtin_return_address(0));
1277 return skb->data;
1278 }
1279 EXPORT_SYMBOL(skb_push);
1280
1281 /**
1282 * skb_pull - remove data from the start of a buffer
1283 * @skb: buffer to use
1284 * @len: amount of data to remove
1285 *
1286 * This function removes data from the start of a buffer, returning
1287 * the memory to the headroom. A pointer to the next data in the buffer
1288 * is returned. Once the data has been pulled future pushes will overwrite
1289 * the old data.
1290 */
1291 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1292 {
1293 return skb_pull_inline(skb, len);
1294 }
1295 EXPORT_SYMBOL(skb_pull);
1296
1297 /**
1298 * skb_trim - remove end from a buffer
1299 * @skb: buffer to alter
1300 * @len: new length
1301 *
1302 * Cut the length of a buffer down by removing data from the tail. If
1303 * the buffer is already under the length specified it is not modified.
1304 * The skb must be linear.
1305 */
1306 void skb_trim(struct sk_buff *skb, unsigned int len)
1307 {
1308 if (skb->len > len)
1309 __skb_trim(skb, len);
1310 }
1311 EXPORT_SYMBOL(skb_trim);
1312
1313 /* Trims skb to length len. It can change skb pointers.
1314 */
1315
1316 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1317 {
1318 struct sk_buff **fragp;
1319 struct sk_buff *frag;
1320 int offset = skb_headlen(skb);
1321 int nfrags = skb_shinfo(skb)->nr_frags;
1322 int i;
1323 int err;
1324
1325 if (skb_cloned(skb) &&
1326 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1327 return err;
1328
1329 i = 0;
1330 if (offset >= len)
1331 goto drop_pages;
1332
1333 for (; i < nfrags; i++) {
1334 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1335
1336 if (end < len) {
1337 offset = end;
1338 continue;
1339 }
1340
1341 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1342
1343 drop_pages:
1344 skb_shinfo(skb)->nr_frags = i;
1345
1346 for (; i < nfrags; i++)
1347 skb_frag_unref(skb, i);
1348
1349 if (skb_has_frag_list(skb))
1350 skb_drop_fraglist(skb);
1351 goto done;
1352 }
1353
1354 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1355 fragp = &frag->next) {
1356 int end = offset + frag->len;
1357
1358 if (skb_shared(frag)) {
1359 struct sk_buff *nfrag;
1360
1361 nfrag = skb_clone(frag, GFP_ATOMIC);
1362 if (unlikely(!nfrag))
1363 return -ENOMEM;
1364
1365 nfrag->next = frag->next;
1366 consume_skb(frag);
1367 frag = nfrag;
1368 *fragp = frag;
1369 }
1370
1371 if (end < len) {
1372 offset = end;
1373 continue;
1374 }
1375
1376 if (end > len &&
1377 unlikely((err = pskb_trim(frag, len - offset))))
1378 return err;
1379
1380 if (frag->next)
1381 skb_drop_list(&frag->next);
1382 break;
1383 }
1384
1385 done:
1386 if (len > skb_headlen(skb)) {
1387 skb->data_len -= skb->len - len;
1388 skb->len = len;
1389 } else {
1390 skb->len = len;
1391 skb->data_len = 0;
1392 skb_set_tail_pointer(skb, len);
1393 }
1394
1395 return 0;
1396 }
1397 EXPORT_SYMBOL(___pskb_trim);
1398
1399 /**
1400 * __pskb_pull_tail - advance tail of skb header
1401 * @skb: buffer to reallocate
1402 * @delta: number of bytes to advance tail
1403 *
1404 * The function makes a sense only on a fragmented &sk_buff,
1405 * it expands header moving its tail forward and copying necessary
1406 * data from fragmented part.
1407 *
1408 * &sk_buff MUST have reference count of 1.
1409 *
1410 * Returns %NULL (and &sk_buff does not change) if pull failed
1411 * or value of new tail of skb in the case of success.
1412 *
1413 * All the pointers pointing into skb header may change and must be
1414 * reloaded after call to this function.
1415 */
1416
1417 /* Moves tail of skb head forward, copying data from fragmented part,
1418 * when it is necessary.
1419 * 1. It may fail due to malloc failure.
1420 * 2. It may change skb pointers.
1421 *
1422 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1423 */
1424 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1425 {
1426 /* If skb has not enough free space at tail, get new one
1427 * plus 128 bytes for future expansions. If we have enough
1428 * room at tail, reallocate without expansion only if skb is cloned.
1429 */
1430 int i, k, eat = (skb->tail + delta) - skb->end;
1431
1432 if (eat > 0 || skb_cloned(skb)) {
1433 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1434 GFP_ATOMIC))
1435 return NULL;
1436 }
1437
1438 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1439 BUG();
1440
1441 /* Optimization: no fragments, no reasons to preestimate
1442 * size of pulled pages. Superb.
1443 */
1444 if (!skb_has_frag_list(skb))
1445 goto pull_pages;
1446
1447 /* Estimate size of pulled pages. */
1448 eat = delta;
1449 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1450 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1451
1452 if (size >= eat)
1453 goto pull_pages;
1454 eat -= size;
1455 }
1456
1457 /* If we need update frag list, we are in troubles.
1458 * Certainly, it possible to add an offset to skb data,
1459 * but taking into account that pulling is expected to
1460 * be very rare operation, it is worth to fight against
1461 * further bloating skb head and crucify ourselves here instead.
1462 * Pure masohism, indeed. 8)8)
1463 */
1464 if (eat) {
1465 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1466 struct sk_buff *clone = NULL;
1467 struct sk_buff *insp = NULL;
1468
1469 do {
1470 BUG_ON(!list);
1471
1472 if (list->len <= eat) {
1473 /* Eaten as whole. */
1474 eat -= list->len;
1475 list = list->next;
1476 insp = list;
1477 } else {
1478 /* Eaten partially. */
1479
1480 if (skb_shared(list)) {
1481 /* Sucks! We need to fork list. :-( */
1482 clone = skb_clone(list, GFP_ATOMIC);
1483 if (!clone)
1484 return NULL;
1485 insp = list->next;
1486 list = clone;
1487 } else {
1488 /* This may be pulled without
1489 * problems. */
1490 insp = list;
1491 }
1492 if (!pskb_pull(list, eat)) {
1493 kfree_skb(clone);
1494 return NULL;
1495 }
1496 break;
1497 }
1498 } while (eat);
1499
1500 /* Free pulled out fragments. */
1501 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1502 skb_shinfo(skb)->frag_list = list->next;
1503 kfree_skb(list);
1504 }
1505 /* And insert new clone at head. */
1506 if (clone) {
1507 clone->next = list;
1508 skb_shinfo(skb)->frag_list = clone;
1509 }
1510 }
1511 /* Success! Now we may commit changes to skb data. */
1512
1513 pull_pages:
1514 eat = delta;
1515 k = 0;
1516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1517 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1518
1519 if (size <= eat) {
1520 skb_frag_unref(skb, i);
1521 eat -= size;
1522 } else {
1523 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1524 if (eat) {
1525 skb_shinfo(skb)->frags[k].page_offset += eat;
1526 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1527 eat = 0;
1528 }
1529 k++;
1530 }
1531 }
1532 skb_shinfo(skb)->nr_frags = k;
1533
1534 skb->tail += delta;
1535 skb->data_len -= delta;
1536
1537 return skb_tail_pointer(skb);
1538 }
1539 EXPORT_SYMBOL(__pskb_pull_tail);
1540
1541 /**
1542 * skb_copy_bits - copy bits from skb to kernel buffer
1543 * @skb: source skb
1544 * @offset: offset in source
1545 * @to: destination buffer
1546 * @len: number of bytes to copy
1547 *
1548 * Copy the specified number of bytes from the source skb to the
1549 * destination buffer.
1550 *
1551 * CAUTION ! :
1552 * If its prototype is ever changed,
1553 * check arch/{*}/net/{*}.S files,
1554 * since it is called from BPF assembly code.
1555 */
1556 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1557 {
1558 int start = skb_headlen(skb);
1559 struct sk_buff *frag_iter;
1560 int i, copy;
1561
1562 if (offset > (int)skb->len - len)
1563 goto fault;
1564
1565 /* Copy header. */
1566 if ((copy = start - offset) > 0) {
1567 if (copy > len)
1568 copy = len;
1569 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1570 if ((len -= copy) == 0)
1571 return 0;
1572 offset += copy;
1573 to += copy;
1574 }
1575
1576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1577 int end;
1578 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1579
1580 WARN_ON(start > offset + len);
1581
1582 end = start + skb_frag_size(f);
1583 if ((copy = end - offset) > 0) {
1584 u8 *vaddr;
1585
1586 if (copy > len)
1587 copy = len;
1588
1589 vaddr = kmap_atomic(skb_frag_page(f));
1590 memcpy(to,
1591 vaddr + f->page_offset + offset - start,
1592 copy);
1593 kunmap_atomic(vaddr);
1594
1595 if ((len -= copy) == 0)
1596 return 0;
1597 offset += copy;
1598 to += copy;
1599 }
1600 start = end;
1601 }
1602
1603 skb_walk_frags(skb, frag_iter) {
1604 int end;
1605
1606 WARN_ON(start > offset + len);
1607
1608 end = start + frag_iter->len;
1609 if ((copy = end - offset) > 0) {
1610 if (copy > len)
1611 copy = len;
1612 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1613 goto fault;
1614 if ((len -= copy) == 0)
1615 return 0;
1616 offset += copy;
1617 to += copy;
1618 }
1619 start = end;
1620 }
1621
1622 if (!len)
1623 return 0;
1624
1625 fault:
1626 return -EFAULT;
1627 }
1628 EXPORT_SYMBOL(skb_copy_bits);
1629
1630 /*
1631 * Callback from splice_to_pipe(), if we need to release some pages
1632 * at the end of the spd in case we error'ed out in filling the pipe.
1633 */
1634 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1635 {
1636 put_page(spd->pages[i]);
1637 }
1638
1639 static struct page *linear_to_page(struct page *page, unsigned int *len,
1640 unsigned int *offset,
1641 struct sock *sk)
1642 {
1643 struct page_frag *pfrag = sk_page_frag(sk);
1644
1645 if (!sk_page_frag_refill(sk, pfrag))
1646 return NULL;
1647
1648 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1649
1650 memcpy(page_address(pfrag->page) + pfrag->offset,
1651 page_address(page) + *offset, *len);
1652 *offset = pfrag->offset;
1653 pfrag->offset += *len;
1654
1655 return pfrag->page;
1656 }
1657
1658 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1659 struct page *page,
1660 unsigned int offset)
1661 {
1662 return spd->nr_pages &&
1663 spd->pages[spd->nr_pages - 1] == page &&
1664 (spd->partial[spd->nr_pages - 1].offset +
1665 spd->partial[spd->nr_pages - 1].len == offset);
1666 }
1667
1668 /*
1669 * Fill page/offset/length into spd, if it can hold more pages.
1670 */
1671 static bool spd_fill_page(struct splice_pipe_desc *spd,
1672 struct pipe_inode_info *pipe, struct page *page,
1673 unsigned int *len, unsigned int offset,
1674 bool linear,
1675 struct sock *sk)
1676 {
1677 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1678 return true;
1679
1680 if (linear) {
1681 page = linear_to_page(page, len, &offset, sk);
1682 if (!page)
1683 return true;
1684 }
1685 if (spd_can_coalesce(spd, page, offset)) {
1686 spd->partial[spd->nr_pages - 1].len += *len;
1687 return false;
1688 }
1689 get_page(page);
1690 spd->pages[spd->nr_pages] = page;
1691 spd->partial[spd->nr_pages].len = *len;
1692 spd->partial[spd->nr_pages].offset = offset;
1693 spd->nr_pages++;
1694
1695 return false;
1696 }
1697
1698 static bool __splice_segment(struct page *page, unsigned int poff,
1699 unsigned int plen, unsigned int *off,
1700 unsigned int *len,
1701 struct splice_pipe_desc *spd, bool linear,
1702 struct sock *sk,
1703 struct pipe_inode_info *pipe)
1704 {
1705 if (!*len)
1706 return true;
1707
1708 /* skip this segment if already processed */
1709 if (*off >= plen) {
1710 *off -= plen;
1711 return false;
1712 }
1713
1714 /* ignore any bits we already processed */
1715 poff += *off;
1716 plen -= *off;
1717 *off = 0;
1718
1719 do {
1720 unsigned int flen = min(*len, plen);
1721
1722 if (spd_fill_page(spd, pipe, page, &flen, poff,
1723 linear, sk))
1724 return true;
1725 poff += flen;
1726 plen -= flen;
1727 *len -= flen;
1728 } while (*len && plen);
1729
1730 return false;
1731 }
1732
1733 /*
1734 * Map linear and fragment data from the skb to spd. It reports true if the
1735 * pipe is full or if we already spliced the requested length.
1736 */
1737 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1738 unsigned int *offset, unsigned int *len,
1739 struct splice_pipe_desc *spd, struct sock *sk)
1740 {
1741 int seg;
1742
1743 /* map the linear part :
1744 * If skb->head_frag is set, this 'linear' part is backed by a
1745 * fragment, and if the head is not shared with any clones then
1746 * we can avoid a copy since we own the head portion of this page.
1747 */
1748 if (__splice_segment(virt_to_page(skb->data),
1749 (unsigned long) skb->data & (PAGE_SIZE - 1),
1750 skb_headlen(skb),
1751 offset, len, spd,
1752 skb_head_is_locked(skb),
1753 sk, pipe))
1754 return true;
1755
1756 /*
1757 * then map the fragments
1758 */
1759 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1760 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1761
1762 if (__splice_segment(skb_frag_page(f),
1763 f->page_offset, skb_frag_size(f),
1764 offset, len, spd, false, sk, pipe))
1765 return true;
1766 }
1767
1768 return false;
1769 }
1770
1771 /*
1772 * Map data from the skb to a pipe. Should handle both the linear part,
1773 * the fragments, and the frag list. It does NOT handle frag lists within
1774 * the frag list, if such a thing exists. We'd probably need to recurse to
1775 * handle that cleanly.
1776 */
1777 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1778 struct pipe_inode_info *pipe, unsigned int tlen,
1779 unsigned int flags)
1780 {
1781 struct partial_page partial[MAX_SKB_FRAGS];
1782 struct page *pages[MAX_SKB_FRAGS];
1783 struct splice_pipe_desc spd = {
1784 .pages = pages,
1785 .partial = partial,
1786 .nr_pages_max = MAX_SKB_FRAGS,
1787 .flags = flags,
1788 .ops = &sock_pipe_buf_ops,
1789 .spd_release = sock_spd_release,
1790 };
1791 struct sk_buff *frag_iter;
1792 struct sock *sk = skb->sk;
1793 int ret = 0;
1794
1795 /*
1796 * __skb_splice_bits() only fails if the output has no room left,
1797 * so no point in going over the frag_list for the error case.
1798 */
1799 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1800 goto done;
1801 else if (!tlen)
1802 goto done;
1803
1804 /*
1805 * now see if we have a frag_list to map
1806 */
1807 skb_walk_frags(skb, frag_iter) {
1808 if (!tlen)
1809 break;
1810 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1811 break;
1812 }
1813
1814 done:
1815 if (spd.nr_pages) {
1816 /*
1817 * Drop the socket lock, otherwise we have reverse
1818 * locking dependencies between sk_lock and i_mutex
1819 * here as compared to sendfile(). We enter here
1820 * with the socket lock held, and splice_to_pipe() will
1821 * grab the pipe inode lock. For sendfile() emulation,
1822 * we call into ->sendpage() with the i_mutex lock held
1823 * and networking will grab the socket lock.
1824 */
1825 release_sock(sk);
1826 ret = splice_to_pipe(pipe, &spd);
1827 lock_sock(sk);
1828 }
1829
1830 return ret;
1831 }
1832
1833 /**
1834 * skb_store_bits - store bits from kernel buffer to skb
1835 * @skb: destination buffer
1836 * @offset: offset in destination
1837 * @from: source buffer
1838 * @len: number of bytes to copy
1839 *
1840 * Copy the specified number of bytes from the source buffer to the
1841 * destination skb. This function handles all the messy bits of
1842 * traversing fragment lists and such.
1843 */
1844
1845 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1846 {
1847 int start = skb_headlen(skb);
1848 struct sk_buff *frag_iter;
1849 int i, copy;
1850
1851 if (offset > (int)skb->len - len)
1852 goto fault;
1853
1854 if ((copy = start - offset) > 0) {
1855 if (copy > len)
1856 copy = len;
1857 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1858 if ((len -= copy) == 0)
1859 return 0;
1860 offset += copy;
1861 from += copy;
1862 }
1863
1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1866 int end;
1867
1868 WARN_ON(start > offset + len);
1869
1870 end = start + skb_frag_size(frag);
1871 if ((copy = end - offset) > 0) {
1872 u8 *vaddr;
1873
1874 if (copy > len)
1875 copy = len;
1876
1877 vaddr = kmap_atomic(skb_frag_page(frag));
1878 memcpy(vaddr + frag->page_offset + offset - start,
1879 from, copy);
1880 kunmap_atomic(vaddr);
1881
1882 if ((len -= copy) == 0)
1883 return 0;
1884 offset += copy;
1885 from += copy;
1886 }
1887 start = end;
1888 }
1889
1890 skb_walk_frags(skb, frag_iter) {
1891 int end;
1892
1893 WARN_ON(start > offset + len);
1894
1895 end = start + frag_iter->len;
1896 if ((copy = end - offset) > 0) {
1897 if (copy > len)
1898 copy = len;
1899 if (skb_store_bits(frag_iter, offset - start,
1900 from, copy))
1901 goto fault;
1902 if ((len -= copy) == 0)
1903 return 0;
1904 offset += copy;
1905 from += copy;
1906 }
1907 start = end;
1908 }
1909 if (!len)
1910 return 0;
1911
1912 fault:
1913 return -EFAULT;
1914 }
1915 EXPORT_SYMBOL(skb_store_bits);
1916
1917 /* Checksum skb data. */
1918
1919 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1920 int len, __wsum csum)
1921 {
1922 int start = skb_headlen(skb);
1923 int i, copy = start - offset;
1924 struct sk_buff *frag_iter;
1925 int pos = 0;
1926
1927 /* Checksum header. */
1928 if (copy > 0) {
1929 if (copy > len)
1930 copy = len;
1931 csum = csum_partial(skb->data + offset, copy, csum);
1932 if ((len -= copy) == 0)
1933 return csum;
1934 offset += copy;
1935 pos = copy;
1936 }
1937
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 int end;
1940 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1941
1942 WARN_ON(start > offset + len);
1943
1944 end = start + skb_frag_size(frag);
1945 if ((copy = end - offset) > 0) {
1946 __wsum csum2;
1947 u8 *vaddr;
1948
1949 if (copy > len)
1950 copy = len;
1951 vaddr = kmap_atomic(skb_frag_page(frag));
1952 csum2 = csum_partial(vaddr + frag->page_offset +
1953 offset - start, copy, 0);
1954 kunmap_atomic(vaddr);
1955 csum = csum_block_add(csum, csum2, pos);
1956 if (!(len -= copy))
1957 return csum;
1958 offset += copy;
1959 pos += copy;
1960 }
1961 start = end;
1962 }
1963
1964 skb_walk_frags(skb, frag_iter) {
1965 int end;
1966
1967 WARN_ON(start > offset + len);
1968
1969 end = start + frag_iter->len;
1970 if ((copy = end - offset) > 0) {
1971 __wsum csum2;
1972 if (copy > len)
1973 copy = len;
1974 csum2 = skb_checksum(frag_iter, offset - start,
1975 copy, 0);
1976 csum = csum_block_add(csum, csum2, pos);
1977 if ((len -= copy) == 0)
1978 return csum;
1979 offset += copy;
1980 pos += copy;
1981 }
1982 start = end;
1983 }
1984 BUG_ON(len);
1985
1986 return csum;
1987 }
1988 EXPORT_SYMBOL(skb_checksum);
1989
1990 /* Both of above in one bottle. */
1991
1992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1993 u8 *to, int len, __wsum csum)
1994 {
1995 int start = skb_headlen(skb);
1996 int i, copy = start - offset;
1997 struct sk_buff *frag_iter;
1998 int pos = 0;
1999
2000 /* Copy header. */
2001 if (copy > 0) {
2002 if (copy > len)
2003 copy = len;
2004 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2005 copy, csum);
2006 if ((len -= copy) == 0)
2007 return csum;
2008 offset += copy;
2009 to += copy;
2010 pos = copy;
2011 }
2012
2013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2014 int end;
2015
2016 WARN_ON(start > offset + len);
2017
2018 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2019 if ((copy = end - offset) > 0) {
2020 __wsum csum2;
2021 u8 *vaddr;
2022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2023
2024 if (copy > len)
2025 copy = len;
2026 vaddr = kmap_atomic(skb_frag_page(frag));
2027 csum2 = csum_partial_copy_nocheck(vaddr +
2028 frag->page_offset +
2029 offset - start, to,
2030 copy, 0);
2031 kunmap_atomic(vaddr);
2032 csum = csum_block_add(csum, csum2, pos);
2033 if (!(len -= copy))
2034 return csum;
2035 offset += copy;
2036 to += copy;
2037 pos += copy;
2038 }
2039 start = end;
2040 }
2041
2042 skb_walk_frags(skb, frag_iter) {
2043 __wsum csum2;
2044 int end;
2045
2046 WARN_ON(start > offset + len);
2047
2048 end = start + frag_iter->len;
2049 if ((copy = end - offset) > 0) {
2050 if (copy > len)
2051 copy = len;
2052 csum2 = skb_copy_and_csum_bits(frag_iter,
2053 offset - start,
2054 to, copy, 0);
2055 csum = csum_block_add(csum, csum2, pos);
2056 if ((len -= copy) == 0)
2057 return csum;
2058 offset += copy;
2059 to += copy;
2060 pos += copy;
2061 }
2062 start = end;
2063 }
2064 BUG_ON(len);
2065 return csum;
2066 }
2067 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2068
2069 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2070 {
2071 __wsum csum;
2072 long csstart;
2073
2074 if (skb->ip_summed == CHECKSUM_PARTIAL)
2075 csstart = skb_checksum_start_offset(skb);
2076 else
2077 csstart = skb_headlen(skb);
2078
2079 BUG_ON(csstart > skb_headlen(skb));
2080
2081 skb_copy_from_linear_data(skb, to, csstart);
2082
2083 csum = 0;
2084 if (csstart != skb->len)
2085 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2086 skb->len - csstart, 0);
2087
2088 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 long csstuff = csstart + skb->csum_offset;
2090
2091 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2092 }
2093 }
2094 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2095
2096 /**
2097 * skb_dequeue - remove from the head of the queue
2098 * @list: list to dequeue from
2099 *
2100 * Remove the head of the list. The list lock is taken so the function
2101 * may be used safely with other locking list functions. The head item is
2102 * returned or %NULL if the list is empty.
2103 */
2104
2105 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2106 {
2107 unsigned long flags;
2108 struct sk_buff *result;
2109
2110 spin_lock_irqsave(&list->lock, flags);
2111 result = __skb_dequeue(list);
2112 spin_unlock_irqrestore(&list->lock, flags);
2113 return result;
2114 }
2115 EXPORT_SYMBOL(skb_dequeue);
2116
2117 /**
2118 * skb_dequeue_tail - remove from the tail of the queue
2119 * @list: list to dequeue from
2120 *
2121 * Remove the tail of the list. The list lock is taken so the function
2122 * may be used safely with other locking list functions. The tail item is
2123 * returned or %NULL if the list is empty.
2124 */
2125 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2126 {
2127 unsigned long flags;
2128 struct sk_buff *result;
2129
2130 spin_lock_irqsave(&list->lock, flags);
2131 result = __skb_dequeue_tail(list);
2132 spin_unlock_irqrestore(&list->lock, flags);
2133 return result;
2134 }
2135 EXPORT_SYMBOL(skb_dequeue_tail);
2136
2137 /**
2138 * skb_queue_purge - empty a list
2139 * @list: list to empty
2140 *
2141 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2142 * the list and one reference dropped. This function takes the list
2143 * lock and is atomic with respect to other list locking functions.
2144 */
2145 void skb_queue_purge(struct sk_buff_head *list)
2146 {
2147 struct sk_buff *skb;
2148 while ((skb = skb_dequeue(list)) != NULL)
2149 kfree_skb(skb);
2150 }
2151 EXPORT_SYMBOL(skb_queue_purge);
2152
2153 /**
2154 * skb_queue_head - queue a buffer at the list head
2155 * @list: list to use
2156 * @newsk: buffer to queue
2157 *
2158 * Queue a buffer at the start of the list. This function takes the
2159 * list lock and can be used safely with other locking &sk_buff functions
2160 * safely.
2161 *
2162 * A buffer cannot be placed on two lists at the same time.
2163 */
2164 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166 unsigned long flags;
2167
2168 spin_lock_irqsave(&list->lock, flags);
2169 __skb_queue_head(list, newsk);
2170 spin_unlock_irqrestore(&list->lock, flags);
2171 }
2172 EXPORT_SYMBOL(skb_queue_head);
2173
2174 /**
2175 * skb_queue_tail - queue a buffer at the list tail
2176 * @list: list to use
2177 * @newsk: buffer to queue
2178 *
2179 * Queue a buffer at the tail of the list. This function takes the
2180 * list lock and can be used safely with other locking &sk_buff functions
2181 * safely.
2182 *
2183 * A buffer cannot be placed on two lists at the same time.
2184 */
2185 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2186 {
2187 unsigned long flags;
2188
2189 spin_lock_irqsave(&list->lock, flags);
2190 __skb_queue_tail(list, newsk);
2191 spin_unlock_irqrestore(&list->lock, flags);
2192 }
2193 EXPORT_SYMBOL(skb_queue_tail);
2194
2195 /**
2196 * skb_unlink - remove a buffer from a list
2197 * @skb: buffer to remove
2198 * @list: list to use
2199 *
2200 * Remove a packet from a list. The list locks are taken and this
2201 * function is atomic with respect to other list locked calls
2202 *
2203 * You must know what list the SKB is on.
2204 */
2205 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2206 {
2207 unsigned long flags;
2208
2209 spin_lock_irqsave(&list->lock, flags);
2210 __skb_unlink(skb, list);
2211 spin_unlock_irqrestore(&list->lock, flags);
2212 }
2213 EXPORT_SYMBOL(skb_unlink);
2214
2215 /**
2216 * skb_append - append a buffer
2217 * @old: buffer to insert after
2218 * @newsk: buffer to insert
2219 * @list: list to use
2220 *
2221 * Place a packet after a given packet in a list. The list locks are taken
2222 * and this function is atomic with respect to other list locked calls.
2223 * A buffer cannot be placed on two lists at the same time.
2224 */
2225 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2226 {
2227 unsigned long flags;
2228
2229 spin_lock_irqsave(&list->lock, flags);
2230 __skb_queue_after(list, old, newsk);
2231 spin_unlock_irqrestore(&list->lock, flags);
2232 }
2233 EXPORT_SYMBOL(skb_append);
2234
2235 /**
2236 * skb_insert - insert a buffer
2237 * @old: buffer to insert before
2238 * @newsk: buffer to insert
2239 * @list: list to use
2240 *
2241 * Place a packet before a given packet in a list. The list locks are
2242 * taken and this function is atomic with respect to other list locked
2243 * calls.
2244 *
2245 * A buffer cannot be placed on two lists at the same time.
2246 */
2247 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2248 {
2249 unsigned long flags;
2250
2251 spin_lock_irqsave(&list->lock, flags);
2252 __skb_insert(newsk, old->prev, old, list);
2253 spin_unlock_irqrestore(&list->lock, flags);
2254 }
2255 EXPORT_SYMBOL(skb_insert);
2256
2257 static inline void skb_split_inside_header(struct sk_buff *skb,
2258 struct sk_buff* skb1,
2259 const u32 len, const int pos)
2260 {
2261 int i;
2262
2263 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2264 pos - len);
2265 /* And move data appendix as is. */
2266 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2267 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2268
2269 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2270 skb_shinfo(skb)->nr_frags = 0;
2271 skb1->data_len = skb->data_len;
2272 skb1->len += skb1->data_len;
2273 skb->data_len = 0;
2274 skb->len = len;
2275 skb_set_tail_pointer(skb, len);
2276 }
2277
2278 static inline void skb_split_no_header(struct sk_buff *skb,
2279 struct sk_buff* skb1,
2280 const u32 len, int pos)
2281 {
2282 int i, k = 0;
2283 const int nfrags = skb_shinfo(skb)->nr_frags;
2284
2285 skb_shinfo(skb)->nr_frags = 0;
2286 skb1->len = skb1->data_len = skb->len - len;
2287 skb->len = len;
2288 skb->data_len = len - pos;
2289
2290 for (i = 0; i < nfrags; i++) {
2291 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2292
2293 if (pos + size > len) {
2294 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2295
2296 if (pos < len) {
2297 /* Split frag.
2298 * We have two variants in this case:
2299 * 1. Move all the frag to the second
2300 * part, if it is possible. F.e.
2301 * this approach is mandatory for TUX,
2302 * where splitting is expensive.
2303 * 2. Split is accurately. We make this.
2304 */
2305 skb_frag_ref(skb, i);
2306 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2307 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2308 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2309 skb_shinfo(skb)->nr_frags++;
2310 }
2311 k++;
2312 } else
2313 skb_shinfo(skb)->nr_frags++;
2314 pos += size;
2315 }
2316 skb_shinfo(skb1)->nr_frags = k;
2317 }
2318
2319 /**
2320 * skb_split - Split fragmented skb to two parts at length len.
2321 * @skb: the buffer to split
2322 * @skb1: the buffer to receive the second part
2323 * @len: new length for skb
2324 */
2325 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2326 {
2327 int pos = skb_headlen(skb);
2328
2329 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2330 if (len < pos) /* Split line is inside header. */
2331 skb_split_inside_header(skb, skb1, len, pos);
2332 else /* Second chunk has no header, nothing to copy. */
2333 skb_split_no_header(skb, skb1, len, pos);
2334 }
2335 EXPORT_SYMBOL(skb_split);
2336
2337 /* Shifting from/to a cloned skb is a no-go.
2338 *
2339 * Caller cannot keep skb_shinfo related pointers past calling here!
2340 */
2341 static int skb_prepare_for_shift(struct sk_buff *skb)
2342 {
2343 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2344 }
2345
2346 /**
2347 * skb_shift - Shifts paged data partially from skb to another
2348 * @tgt: buffer into which tail data gets added
2349 * @skb: buffer from which the paged data comes from
2350 * @shiftlen: shift up to this many bytes
2351 *
2352 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2353 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2354 * It's up to caller to free skb if everything was shifted.
2355 *
2356 * If @tgt runs out of frags, the whole operation is aborted.
2357 *
2358 * Skb cannot include anything else but paged data while tgt is allowed
2359 * to have non-paged data as well.
2360 *
2361 * TODO: full sized shift could be optimized but that would need
2362 * specialized skb free'er to handle frags without up-to-date nr_frags.
2363 */
2364 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2365 {
2366 int from, to, merge, todo;
2367 struct skb_frag_struct *fragfrom, *fragto;
2368
2369 BUG_ON(shiftlen > skb->len);
2370 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2371
2372 todo = shiftlen;
2373 from = 0;
2374 to = skb_shinfo(tgt)->nr_frags;
2375 fragfrom = &skb_shinfo(skb)->frags[from];
2376
2377 /* Actual merge is delayed until the point when we know we can
2378 * commit all, so that we don't have to undo partial changes
2379 */
2380 if (!to ||
2381 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2382 fragfrom->page_offset)) {
2383 merge = -1;
2384 } else {
2385 merge = to - 1;
2386
2387 todo -= skb_frag_size(fragfrom);
2388 if (todo < 0) {
2389 if (skb_prepare_for_shift(skb) ||
2390 skb_prepare_for_shift(tgt))
2391 return 0;
2392
2393 /* All previous frag pointers might be stale! */
2394 fragfrom = &skb_shinfo(skb)->frags[from];
2395 fragto = &skb_shinfo(tgt)->frags[merge];
2396
2397 skb_frag_size_add(fragto, shiftlen);
2398 skb_frag_size_sub(fragfrom, shiftlen);
2399 fragfrom->page_offset += shiftlen;
2400
2401 goto onlymerged;
2402 }
2403
2404 from++;
2405 }
2406
2407 /* Skip full, not-fitting skb to avoid expensive operations */
2408 if ((shiftlen == skb->len) &&
2409 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2410 return 0;
2411
2412 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2413 return 0;
2414
2415 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2416 if (to == MAX_SKB_FRAGS)
2417 return 0;
2418
2419 fragfrom = &skb_shinfo(skb)->frags[from];
2420 fragto = &skb_shinfo(tgt)->frags[to];
2421
2422 if (todo >= skb_frag_size(fragfrom)) {
2423 *fragto = *fragfrom;
2424 todo -= skb_frag_size(fragfrom);
2425 from++;
2426 to++;
2427
2428 } else {
2429 __skb_frag_ref(fragfrom);
2430 fragto->page = fragfrom->page;
2431 fragto->page_offset = fragfrom->page_offset;
2432 skb_frag_size_set(fragto, todo);
2433
2434 fragfrom->page_offset += todo;
2435 skb_frag_size_sub(fragfrom, todo);
2436 todo = 0;
2437
2438 to++;
2439 break;
2440 }
2441 }
2442
2443 /* Ready to "commit" this state change to tgt */
2444 skb_shinfo(tgt)->nr_frags = to;
2445
2446 if (merge >= 0) {
2447 fragfrom = &skb_shinfo(skb)->frags[0];
2448 fragto = &skb_shinfo(tgt)->frags[merge];
2449
2450 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2451 __skb_frag_unref(fragfrom);
2452 }
2453
2454 /* Reposition in the original skb */
2455 to = 0;
2456 while (from < skb_shinfo(skb)->nr_frags)
2457 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2458 skb_shinfo(skb)->nr_frags = to;
2459
2460 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2461
2462 onlymerged:
2463 /* Most likely the tgt won't ever need its checksum anymore, skb on
2464 * the other hand might need it if it needs to be resent
2465 */
2466 tgt->ip_summed = CHECKSUM_PARTIAL;
2467 skb->ip_summed = CHECKSUM_PARTIAL;
2468
2469 /* Yak, is it really working this way? Some helper please? */
2470 skb->len -= shiftlen;
2471 skb->data_len -= shiftlen;
2472 skb->truesize -= shiftlen;
2473 tgt->len += shiftlen;
2474 tgt->data_len += shiftlen;
2475 tgt->truesize += shiftlen;
2476
2477 return shiftlen;
2478 }
2479
2480 /**
2481 * skb_prepare_seq_read - Prepare a sequential read of skb data
2482 * @skb: the buffer to read
2483 * @from: lower offset of data to be read
2484 * @to: upper offset of data to be read
2485 * @st: state variable
2486 *
2487 * Initializes the specified state variable. Must be called before
2488 * invoking skb_seq_read() for the first time.
2489 */
2490 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2491 unsigned int to, struct skb_seq_state *st)
2492 {
2493 st->lower_offset = from;
2494 st->upper_offset = to;
2495 st->root_skb = st->cur_skb = skb;
2496 st->frag_idx = st->stepped_offset = 0;
2497 st->frag_data = NULL;
2498 }
2499 EXPORT_SYMBOL(skb_prepare_seq_read);
2500
2501 /**
2502 * skb_seq_read - Sequentially read skb data
2503 * @consumed: number of bytes consumed by the caller so far
2504 * @data: destination pointer for data to be returned
2505 * @st: state variable
2506 *
2507 * Reads a block of skb data at &consumed relative to the
2508 * lower offset specified to skb_prepare_seq_read(). Assigns
2509 * the head of the data block to &data and returns the length
2510 * of the block or 0 if the end of the skb data or the upper
2511 * offset has been reached.
2512 *
2513 * The caller is not required to consume all of the data
2514 * returned, i.e. &consumed is typically set to the number
2515 * of bytes already consumed and the next call to
2516 * skb_seq_read() will return the remaining part of the block.
2517 *
2518 * Note 1: The size of each block of data returned can be arbitrary,
2519 * this limitation is the cost for zerocopy seqeuental
2520 * reads of potentially non linear data.
2521 *
2522 * Note 2: Fragment lists within fragments are not implemented
2523 * at the moment, state->root_skb could be replaced with
2524 * a stack for this purpose.
2525 */
2526 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2527 struct skb_seq_state *st)
2528 {
2529 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2530 skb_frag_t *frag;
2531
2532 if (unlikely(abs_offset >= st->upper_offset))
2533 return 0;
2534
2535 next_skb:
2536 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2537
2538 if (abs_offset < block_limit && !st->frag_data) {
2539 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2540 return block_limit - abs_offset;
2541 }
2542
2543 if (st->frag_idx == 0 && !st->frag_data)
2544 st->stepped_offset += skb_headlen(st->cur_skb);
2545
2546 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2547 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2548 block_limit = skb_frag_size(frag) + st->stepped_offset;
2549
2550 if (abs_offset < block_limit) {
2551 if (!st->frag_data)
2552 st->frag_data = kmap_atomic(skb_frag_page(frag));
2553
2554 *data = (u8 *) st->frag_data + frag->page_offset +
2555 (abs_offset - st->stepped_offset);
2556
2557 return block_limit - abs_offset;
2558 }
2559
2560 if (st->frag_data) {
2561 kunmap_atomic(st->frag_data);
2562 st->frag_data = NULL;
2563 }
2564
2565 st->frag_idx++;
2566 st->stepped_offset += skb_frag_size(frag);
2567 }
2568
2569 if (st->frag_data) {
2570 kunmap_atomic(st->frag_data);
2571 st->frag_data = NULL;
2572 }
2573
2574 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2575 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2576 st->frag_idx = 0;
2577 goto next_skb;
2578 } else if (st->cur_skb->next) {
2579 st->cur_skb = st->cur_skb->next;
2580 st->frag_idx = 0;
2581 goto next_skb;
2582 }
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL(skb_seq_read);
2587
2588 /**
2589 * skb_abort_seq_read - Abort a sequential read of skb data
2590 * @st: state variable
2591 *
2592 * Must be called if skb_seq_read() was not called until it
2593 * returned 0.
2594 */
2595 void skb_abort_seq_read(struct skb_seq_state *st)
2596 {
2597 if (st->frag_data)
2598 kunmap_atomic(st->frag_data);
2599 }
2600 EXPORT_SYMBOL(skb_abort_seq_read);
2601
2602 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2603
2604 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2605 struct ts_config *conf,
2606 struct ts_state *state)
2607 {
2608 return skb_seq_read(offset, text, TS_SKB_CB(state));
2609 }
2610
2611 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2612 {
2613 skb_abort_seq_read(TS_SKB_CB(state));
2614 }
2615
2616 /**
2617 * skb_find_text - Find a text pattern in skb data
2618 * @skb: the buffer to look in
2619 * @from: search offset
2620 * @to: search limit
2621 * @config: textsearch configuration
2622 * @state: uninitialized textsearch state variable
2623 *
2624 * Finds a pattern in the skb data according to the specified
2625 * textsearch configuration. Use textsearch_next() to retrieve
2626 * subsequent occurrences of the pattern. Returns the offset
2627 * to the first occurrence or UINT_MAX if no match was found.
2628 */
2629 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2630 unsigned int to, struct ts_config *config,
2631 struct ts_state *state)
2632 {
2633 unsigned int ret;
2634
2635 config->get_next_block = skb_ts_get_next_block;
2636 config->finish = skb_ts_finish;
2637
2638 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2639
2640 ret = textsearch_find(config, state);
2641 return (ret <= to - from ? ret : UINT_MAX);
2642 }
2643 EXPORT_SYMBOL(skb_find_text);
2644
2645 /**
2646 * skb_append_datato_frags - append the user data to a skb
2647 * @sk: sock structure
2648 * @skb: skb structure to be appened with user data.
2649 * @getfrag: call back function to be used for getting the user data
2650 * @from: pointer to user message iov
2651 * @length: length of the iov message
2652 *
2653 * Description: This procedure append the user data in the fragment part
2654 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2655 */
2656 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2657 int (*getfrag)(void *from, char *to, int offset,
2658 int len, int odd, struct sk_buff *skb),
2659 void *from, int length)
2660 {
2661 int frg_cnt = skb_shinfo(skb)->nr_frags;
2662 int copy;
2663 int offset = 0;
2664 int ret;
2665 struct page_frag *pfrag = &current->task_frag;
2666
2667 do {
2668 /* Return error if we don't have space for new frag */
2669 if (frg_cnt >= MAX_SKB_FRAGS)
2670 return -EMSGSIZE;
2671
2672 if (!sk_page_frag_refill(sk, pfrag))
2673 return -ENOMEM;
2674
2675 /* copy the user data to page */
2676 copy = min_t(int, length, pfrag->size - pfrag->offset);
2677
2678 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2679 offset, copy, 0, skb);
2680 if (ret < 0)
2681 return -EFAULT;
2682
2683 /* copy was successful so update the size parameters */
2684 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2685 copy);
2686 frg_cnt++;
2687 pfrag->offset += copy;
2688 get_page(pfrag->page);
2689
2690 skb->truesize += copy;
2691 atomic_add(copy, &sk->sk_wmem_alloc);
2692 skb->len += copy;
2693 skb->data_len += copy;
2694 offset += copy;
2695 length -= copy;
2696
2697 } while (length > 0);
2698
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(skb_append_datato_frags);
2702
2703 /**
2704 * skb_pull_rcsum - pull skb and update receive checksum
2705 * @skb: buffer to update
2706 * @len: length of data pulled
2707 *
2708 * This function performs an skb_pull on the packet and updates
2709 * the CHECKSUM_COMPLETE checksum. It should be used on
2710 * receive path processing instead of skb_pull unless you know
2711 * that the checksum difference is zero (e.g., a valid IP header)
2712 * or you are setting ip_summed to CHECKSUM_NONE.
2713 */
2714 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2715 {
2716 BUG_ON(len > skb->len);
2717 skb->len -= len;
2718 BUG_ON(skb->len < skb->data_len);
2719 skb_postpull_rcsum(skb, skb->data, len);
2720 return skb->data += len;
2721 }
2722 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2723
2724 /**
2725 * skb_segment - Perform protocol segmentation on skb.
2726 * @skb: buffer to segment
2727 * @features: features for the output path (see dev->features)
2728 *
2729 * This function performs segmentation on the given skb. It returns
2730 * a pointer to the first in a list of new skbs for the segments.
2731 * In case of error it returns ERR_PTR(err).
2732 */
2733 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2734 {
2735 struct sk_buff *segs = NULL;
2736 struct sk_buff *tail = NULL;
2737 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2738 unsigned int mss = skb_shinfo(skb)->gso_size;
2739 unsigned int doffset = skb->data - skb_mac_header(skb);
2740 unsigned int offset = doffset;
2741 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2742 unsigned int headroom;
2743 unsigned int len;
2744 int sg = !!(features & NETIF_F_SG);
2745 int nfrags = skb_shinfo(skb)->nr_frags;
2746 int err = -ENOMEM;
2747 int i = 0;
2748 int pos;
2749
2750 __skb_push(skb, doffset);
2751 headroom = skb_headroom(skb);
2752 pos = skb_headlen(skb);
2753
2754 do {
2755 struct sk_buff *nskb;
2756 skb_frag_t *frag;
2757 int hsize;
2758 int size;
2759
2760 len = skb->len - offset;
2761 if (len > mss)
2762 len = mss;
2763
2764 hsize = skb_headlen(skb) - offset;
2765 if (hsize < 0)
2766 hsize = 0;
2767 if (hsize > len || !sg)
2768 hsize = len;
2769
2770 if (!hsize && i >= nfrags) {
2771 BUG_ON(fskb->len != len);
2772
2773 pos += len;
2774 nskb = skb_clone(fskb, GFP_ATOMIC);
2775 fskb = fskb->next;
2776
2777 if (unlikely(!nskb))
2778 goto err;
2779
2780 hsize = skb_end_offset(nskb);
2781 if (skb_cow_head(nskb, doffset + headroom)) {
2782 kfree_skb(nskb);
2783 goto err;
2784 }
2785
2786 nskb->truesize += skb_end_offset(nskb) - hsize;
2787 skb_release_head_state(nskb);
2788 __skb_push(nskb, doffset);
2789 } else {
2790 nskb = __alloc_skb(hsize + doffset + headroom,
2791 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2792 NUMA_NO_NODE);
2793
2794 if (unlikely(!nskb))
2795 goto err;
2796
2797 skb_reserve(nskb, headroom);
2798 __skb_put(nskb, doffset);
2799 }
2800
2801 if (segs)
2802 tail->next = nskb;
2803 else
2804 segs = nskb;
2805 tail = nskb;
2806
2807 __copy_skb_header(nskb, skb);
2808 nskb->mac_len = skb->mac_len;
2809
2810 /* nskb and skb might have different headroom */
2811 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2812 nskb->csum_start += skb_headroom(nskb) - headroom;
2813
2814 skb_reset_mac_header(nskb);
2815 skb_set_network_header(nskb, skb->mac_len);
2816 nskb->transport_header = (nskb->network_header +
2817 skb_network_header_len(skb));
2818
2819 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2820 nskb->data - tnl_hlen,
2821 doffset + tnl_hlen);
2822
2823 if (fskb != skb_shinfo(skb)->frag_list)
2824 continue;
2825
2826 if (!sg) {
2827 nskb->ip_summed = CHECKSUM_NONE;
2828 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2829 skb_put(nskb, len),
2830 len, 0);
2831 continue;
2832 }
2833
2834 frag = skb_shinfo(nskb)->frags;
2835
2836 skb_copy_from_linear_data_offset(skb, offset,
2837 skb_put(nskb, hsize), hsize);
2838
2839 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2840
2841 while (pos < offset + len && i < nfrags) {
2842 *frag = skb_shinfo(skb)->frags[i];
2843 __skb_frag_ref(frag);
2844 size = skb_frag_size(frag);
2845
2846 if (pos < offset) {
2847 frag->page_offset += offset - pos;
2848 skb_frag_size_sub(frag, offset - pos);
2849 }
2850
2851 skb_shinfo(nskb)->nr_frags++;
2852
2853 if (pos + size <= offset + len) {
2854 i++;
2855 pos += size;
2856 } else {
2857 skb_frag_size_sub(frag, pos + size - (offset + len));
2858 goto skip_fraglist;
2859 }
2860
2861 frag++;
2862 }
2863
2864 if (pos < offset + len) {
2865 struct sk_buff *fskb2 = fskb;
2866
2867 BUG_ON(pos + fskb->len != offset + len);
2868
2869 pos += fskb->len;
2870 fskb = fskb->next;
2871
2872 if (fskb2->next) {
2873 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2874 if (!fskb2)
2875 goto err;
2876 } else
2877 skb_get(fskb2);
2878
2879 SKB_FRAG_ASSERT(nskb);
2880 skb_shinfo(nskb)->frag_list = fskb2;
2881 }
2882
2883 skip_fraglist:
2884 nskb->data_len = len - hsize;
2885 nskb->len += nskb->data_len;
2886 nskb->truesize += nskb->data_len;
2887 } while ((offset += len) < skb->len);
2888
2889 return segs;
2890
2891 err:
2892 while ((skb = segs)) {
2893 segs = skb->next;
2894 kfree_skb(skb);
2895 }
2896 return ERR_PTR(err);
2897 }
2898 EXPORT_SYMBOL_GPL(skb_segment);
2899
2900 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2901 {
2902 struct sk_buff *p = *head;
2903 struct sk_buff *nskb;
2904 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2905 struct skb_shared_info *pinfo = skb_shinfo(p);
2906 unsigned int headroom;
2907 unsigned int len = skb_gro_len(skb);
2908 unsigned int offset = skb_gro_offset(skb);
2909 unsigned int headlen = skb_headlen(skb);
2910 unsigned int delta_truesize;
2911
2912 if (p->len + len >= 65536)
2913 return -E2BIG;
2914
2915 if (pinfo->frag_list)
2916 goto merge;
2917 else if (headlen <= offset) {
2918 skb_frag_t *frag;
2919 skb_frag_t *frag2;
2920 int i = skbinfo->nr_frags;
2921 int nr_frags = pinfo->nr_frags + i;
2922
2923 offset -= headlen;
2924
2925 if (nr_frags > MAX_SKB_FRAGS)
2926 return -E2BIG;
2927
2928 pinfo->nr_frags = nr_frags;
2929 skbinfo->nr_frags = 0;
2930
2931 frag = pinfo->frags + nr_frags;
2932 frag2 = skbinfo->frags + i;
2933 do {
2934 *--frag = *--frag2;
2935 } while (--i);
2936
2937 frag->page_offset += offset;
2938 skb_frag_size_sub(frag, offset);
2939
2940 /* all fragments truesize : remove (head size + sk_buff) */
2941 delta_truesize = skb->truesize -
2942 SKB_TRUESIZE(skb_end_offset(skb));
2943
2944 skb->truesize -= skb->data_len;
2945 skb->len -= skb->data_len;
2946 skb->data_len = 0;
2947
2948 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2949 goto done;
2950 } else if (skb->head_frag) {
2951 int nr_frags = pinfo->nr_frags;
2952 skb_frag_t *frag = pinfo->frags + nr_frags;
2953 struct page *page = virt_to_head_page(skb->head);
2954 unsigned int first_size = headlen - offset;
2955 unsigned int first_offset;
2956
2957 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2958 return -E2BIG;
2959
2960 first_offset = skb->data -
2961 (unsigned char *)page_address(page) +
2962 offset;
2963
2964 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2965
2966 frag->page.p = page;
2967 frag->page_offset = first_offset;
2968 skb_frag_size_set(frag, first_size);
2969
2970 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2971 /* We dont need to clear skbinfo->nr_frags here */
2972
2973 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2974 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2975 goto done;
2976 } else if (skb_gro_len(p) != pinfo->gso_size)
2977 return -E2BIG;
2978
2979 headroom = skb_headroom(p);
2980 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2981 if (unlikely(!nskb))
2982 return -ENOMEM;
2983
2984 __copy_skb_header(nskb, p);
2985 nskb->mac_len = p->mac_len;
2986
2987 skb_reserve(nskb, headroom);
2988 __skb_put(nskb, skb_gro_offset(p));
2989
2990 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2991 skb_set_network_header(nskb, skb_network_offset(p));
2992 skb_set_transport_header(nskb, skb_transport_offset(p));
2993
2994 __skb_pull(p, skb_gro_offset(p));
2995 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2996 p->data - skb_mac_header(p));
2997
2998 skb_shinfo(nskb)->frag_list = p;
2999 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3000 pinfo->gso_size = 0;
3001 skb_header_release(p);
3002 NAPI_GRO_CB(nskb)->last = p;
3003
3004 nskb->data_len += p->len;
3005 nskb->truesize += p->truesize;
3006 nskb->len += p->len;
3007
3008 *head = nskb;
3009 nskb->next = p->next;
3010 p->next = NULL;
3011
3012 p = nskb;
3013
3014 merge:
3015 delta_truesize = skb->truesize;
3016 if (offset > headlen) {
3017 unsigned int eat = offset - headlen;
3018
3019 skbinfo->frags[0].page_offset += eat;
3020 skb_frag_size_sub(&skbinfo->frags[0], eat);
3021 skb->data_len -= eat;
3022 skb->len -= eat;
3023 offset = headlen;
3024 }
3025
3026 __skb_pull(skb, offset);
3027
3028 NAPI_GRO_CB(p)->last->next = skb;
3029 NAPI_GRO_CB(p)->last = skb;
3030 skb_header_release(skb);
3031
3032 done:
3033 NAPI_GRO_CB(p)->count++;
3034 p->data_len += len;
3035 p->truesize += delta_truesize;
3036 p->len += len;
3037
3038 NAPI_GRO_CB(skb)->same_flow = 1;
3039 return 0;
3040 }
3041 EXPORT_SYMBOL_GPL(skb_gro_receive);
3042
3043 void __init skb_init(void)
3044 {
3045 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3046 sizeof(struct sk_buff),
3047 0,
3048 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3049 NULL);
3050 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3051 (2*sizeof(struct sk_buff)) +
3052 sizeof(atomic_t),
3053 0,
3054 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3055 NULL);
3056 }
3057
3058 /**
3059 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3060 * @skb: Socket buffer containing the buffers to be mapped
3061 * @sg: The scatter-gather list to map into
3062 * @offset: The offset into the buffer's contents to start mapping
3063 * @len: Length of buffer space to be mapped
3064 *
3065 * Fill the specified scatter-gather list with mappings/pointers into a
3066 * region of the buffer space attached to a socket buffer.
3067 */
3068 static int
3069 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3070 {
3071 int start = skb_headlen(skb);
3072 int i, copy = start - offset;
3073 struct sk_buff *frag_iter;
3074 int elt = 0;
3075
3076 if (copy > 0) {
3077 if (copy > len)
3078 copy = len;
3079 sg_set_buf(sg, skb->data + offset, copy);
3080 elt++;
3081 if ((len -= copy) == 0)
3082 return elt;
3083 offset += copy;
3084 }
3085
3086 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3087 int end;
3088
3089 WARN_ON(start > offset + len);
3090
3091 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3092 if ((copy = end - offset) > 0) {
3093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3094
3095 if (copy > len)
3096 copy = len;
3097 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3098 frag->page_offset+offset-start);
3099 elt++;
3100 if (!(len -= copy))
3101 return elt;
3102 offset += copy;
3103 }
3104 start = end;
3105 }
3106
3107 skb_walk_frags(skb, frag_iter) {
3108 int end;
3109
3110 WARN_ON(start > offset + len);
3111
3112 end = start + frag_iter->len;
3113 if ((copy = end - offset) > 0) {
3114 if (copy > len)
3115 copy = len;
3116 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3117 copy);
3118 if ((len -= copy) == 0)
3119 return elt;
3120 offset += copy;
3121 }
3122 start = end;
3123 }
3124 BUG_ON(len);
3125 return elt;
3126 }
3127
3128 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3129 {
3130 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3131
3132 sg_mark_end(&sg[nsg - 1]);
3133
3134 return nsg;
3135 }
3136 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3137
3138 /**
3139 * skb_cow_data - Check that a socket buffer's data buffers are writable
3140 * @skb: The socket buffer to check.
3141 * @tailbits: Amount of trailing space to be added
3142 * @trailer: Returned pointer to the skb where the @tailbits space begins
3143 *
3144 * Make sure that the data buffers attached to a socket buffer are
3145 * writable. If they are not, private copies are made of the data buffers
3146 * and the socket buffer is set to use these instead.
3147 *
3148 * If @tailbits is given, make sure that there is space to write @tailbits
3149 * bytes of data beyond current end of socket buffer. @trailer will be
3150 * set to point to the skb in which this space begins.
3151 *
3152 * The number of scatterlist elements required to completely map the
3153 * COW'd and extended socket buffer will be returned.
3154 */
3155 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3156 {
3157 int copyflag;
3158 int elt;
3159 struct sk_buff *skb1, **skb_p;
3160
3161 /* If skb is cloned or its head is paged, reallocate
3162 * head pulling out all the pages (pages are considered not writable
3163 * at the moment even if they are anonymous).
3164 */
3165 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3166 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3167 return -ENOMEM;
3168
3169 /* Easy case. Most of packets will go this way. */
3170 if (!skb_has_frag_list(skb)) {
3171 /* A little of trouble, not enough of space for trailer.
3172 * This should not happen, when stack is tuned to generate
3173 * good frames. OK, on miss we reallocate and reserve even more
3174 * space, 128 bytes is fair. */
3175
3176 if (skb_tailroom(skb) < tailbits &&
3177 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3178 return -ENOMEM;
3179
3180 /* Voila! */
3181 *trailer = skb;
3182 return 1;
3183 }
3184
3185 /* Misery. We are in troubles, going to mincer fragments... */
3186
3187 elt = 1;
3188 skb_p = &skb_shinfo(skb)->frag_list;
3189 copyflag = 0;
3190
3191 while ((skb1 = *skb_p) != NULL) {
3192 int ntail = 0;
3193
3194 /* The fragment is partially pulled by someone,
3195 * this can happen on input. Copy it and everything
3196 * after it. */
3197
3198 if (skb_shared(skb1))
3199 copyflag = 1;
3200
3201 /* If the skb is the last, worry about trailer. */
3202
3203 if (skb1->next == NULL && tailbits) {
3204 if (skb_shinfo(skb1)->nr_frags ||
3205 skb_has_frag_list(skb1) ||
3206 skb_tailroom(skb1) < tailbits)
3207 ntail = tailbits + 128;
3208 }
3209
3210 if (copyflag ||
3211 skb_cloned(skb1) ||
3212 ntail ||
3213 skb_shinfo(skb1)->nr_frags ||
3214 skb_has_frag_list(skb1)) {
3215 struct sk_buff *skb2;
3216
3217 /* Fuck, we are miserable poor guys... */
3218 if (ntail == 0)
3219 skb2 = skb_copy(skb1, GFP_ATOMIC);
3220 else
3221 skb2 = skb_copy_expand(skb1,
3222 skb_headroom(skb1),
3223 ntail,
3224 GFP_ATOMIC);
3225 if (unlikely(skb2 == NULL))
3226 return -ENOMEM;
3227
3228 if (skb1->sk)
3229 skb_set_owner_w(skb2, skb1->sk);
3230
3231 /* Looking around. Are we still alive?
3232 * OK, link new skb, drop old one */
3233
3234 skb2->next = skb1->next;
3235 *skb_p = skb2;
3236 kfree_skb(skb1);
3237 skb1 = skb2;
3238 }
3239 elt++;
3240 *trailer = skb1;
3241 skb_p = &skb1->next;
3242 }
3243
3244 return elt;
3245 }
3246 EXPORT_SYMBOL_GPL(skb_cow_data);
3247
3248 static void sock_rmem_free(struct sk_buff *skb)
3249 {
3250 struct sock *sk = skb->sk;
3251
3252 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3253 }
3254
3255 /*
3256 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3257 */
3258 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3259 {
3260 int len = skb->len;
3261
3262 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3263 (unsigned int)sk->sk_rcvbuf)
3264 return -ENOMEM;
3265
3266 skb_orphan(skb);
3267 skb->sk = sk;
3268 skb->destructor = sock_rmem_free;
3269 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3270
3271 /* before exiting rcu section, make sure dst is refcounted */
3272 skb_dst_force(skb);
3273
3274 skb_queue_tail(&sk->sk_error_queue, skb);
3275 if (!sock_flag(sk, SOCK_DEAD))
3276 sk->sk_data_ready(sk, len);
3277 return 0;
3278 }
3279 EXPORT_SYMBOL(sock_queue_err_skb);
3280
3281 void skb_tstamp_tx(struct sk_buff *orig_skb,
3282 struct skb_shared_hwtstamps *hwtstamps)
3283 {
3284 struct sock *sk = orig_skb->sk;
3285 struct sock_exterr_skb *serr;
3286 struct sk_buff *skb;
3287 int err;
3288
3289 if (!sk)
3290 return;
3291
3292 skb = skb_clone(orig_skb, GFP_ATOMIC);
3293 if (!skb)
3294 return;
3295
3296 if (hwtstamps) {
3297 *skb_hwtstamps(skb) =
3298 *hwtstamps;
3299 } else {
3300 /*
3301 * no hardware time stamps available,
3302 * so keep the shared tx_flags and only
3303 * store software time stamp
3304 */
3305 skb->tstamp = ktime_get_real();
3306 }
3307
3308 serr = SKB_EXT_ERR(skb);
3309 memset(serr, 0, sizeof(*serr));
3310 serr->ee.ee_errno = ENOMSG;
3311 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3312
3313 err = sock_queue_err_skb(sk, skb);
3314
3315 if (err)
3316 kfree_skb(skb);
3317 }
3318 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3319
3320 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3321 {
3322 struct sock *sk = skb->sk;
3323 struct sock_exterr_skb *serr;
3324 int err;
3325
3326 skb->wifi_acked_valid = 1;
3327 skb->wifi_acked = acked;
3328
3329 serr = SKB_EXT_ERR(skb);
3330 memset(serr, 0, sizeof(*serr));
3331 serr->ee.ee_errno = ENOMSG;
3332 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3333
3334 err = sock_queue_err_skb(sk, skb);
3335 if (err)
3336 kfree_skb(skb);
3337 }
3338 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3339
3340
3341 /**
3342 * skb_partial_csum_set - set up and verify partial csum values for packet
3343 * @skb: the skb to set
3344 * @start: the number of bytes after skb->data to start checksumming.
3345 * @off: the offset from start to place the checksum.
3346 *
3347 * For untrusted partially-checksummed packets, we need to make sure the values
3348 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3349 *
3350 * This function checks and sets those values and skb->ip_summed: if this
3351 * returns false you should drop the packet.
3352 */
3353 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3354 {
3355 if (unlikely(start > skb_headlen(skb)) ||
3356 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3357 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3358 start, off, skb_headlen(skb));
3359 return false;
3360 }
3361 skb->ip_summed = CHECKSUM_PARTIAL;
3362 skb->csum_start = skb_headroom(skb) + start;
3363 skb->csum_offset = off;
3364 return true;
3365 }
3366 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3367
3368 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3369 {
3370 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3371 skb->dev->name);
3372 }
3373 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3374
3375 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3376 {
3377 if (head_stolen) {
3378 skb_release_head_state(skb);
3379 kmem_cache_free(skbuff_head_cache, skb);
3380 } else {
3381 __kfree_skb(skb);
3382 }
3383 }
3384 EXPORT_SYMBOL(kfree_skb_partial);
3385
3386 /**
3387 * skb_try_coalesce - try to merge skb to prior one
3388 * @to: prior buffer
3389 * @from: buffer to add
3390 * @fragstolen: pointer to boolean
3391 * @delta_truesize: how much more was allocated than was requested
3392 */
3393 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3394 bool *fragstolen, int *delta_truesize)
3395 {
3396 int i, delta, len = from->len;
3397
3398 *fragstolen = false;
3399
3400 if (skb_cloned(to))
3401 return false;
3402
3403 if (len <= skb_tailroom(to)) {
3404 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3405 *delta_truesize = 0;
3406 return true;
3407 }
3408
3409 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3410 return false;
3411
3412 if (skb_headlen(from) != 0) {
3413 struct page *page;
3414 unsigned int offset;
3415
3416 if (skb_shinfo(to)->nr_frags +
3417 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3418 return false;
3419
3420 if (skb_head_is_locked(from))
3421 return false;
3422
3423 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3424
3425 page = virt_to_head_page(from->head);
3426 offset = from->data - (unsigned char *)page_address(page);
3427
3428 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3429 page, offset, skb_headlen(from));
3430 *fragstolen = true;
3431 } else {
3432 if (skb_shinfo(to)->nr_frags +
3433 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3434 return false;
3435
3436 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3437 }
3438
3439 WARN_ON_ONCE(delta < len);
3440
3441 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3442 skb_shinfo(from)->frags,
3443 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3444 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3445
3446 if (!skb_cloned(from))
3447 skb_shinfo(from)->nr_frags = 0;
3448
3449 /* if the skb is not cloned this does nothing
3450 * since we set nr_frags to 0.
3451 */
3452 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3453 skb_frag_ref(from, i);
3454
3455 to->truesize += delta;
3456 to->len += len;
3457 to->data_len += len;
3458
3459 *delta_truesize = delta;
3460 return true;
3461 }
3462 EXPORT_SYMBOL(skb_try_coalesce);