16df7bd77e78828441db6dfe9a721d6632d1cad2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8 *
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
24 *
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
35 */
36
37 /*
38 * The functions in this file will not compile correctly with gcc 2.4.x
39 */
40
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70
71 static kmem_cache_t *skbuff_head_cache;
72
73 /*
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
76 * reliable.
77 */
78
79 /**
80 * skb_over_panic - private function
81 * @skb: buffer
82 * @sz: size
83 * @here: address
84 *
85 * Out of line support code for skb_put(). Not user callable.
86 */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
93 BUG();
94 }
95
96 /**
97 * skb_under_panic - private function
98 * @skb: buffer
99 * @sz: size
100 * @here: address
101 *
102 * Out of line support code for skb_push(). Not user callable.
103 */
104
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
111 BUG();
112 }
113
114 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
115 * 'private' fields and also do memory statistics to find all the
116 * [BEEP] leaks.
117 *
118 */
119
120 /**
121 * alloc_skb - allocate a network buffer
122 * @size: size to allocate
123 * @gfp_mask: allocation mask
124 *
125 * Allocate a new &sk_buff. The returned buffer has no headroom and a
126 * tail room of size bytes. The object has a reference count of one.
127 * The return is the buffer. On a failure the return is %NULL.
128 *
129 * Buffers may only be allocated from interrupts using a @gfp_mask of
130 * %GFP_ATOMIC.
131 */
132 struct sk_buff *alloc_skb(unsigned int size, unsigned int __nocast gfp_mask)
133 {
134 struct sk_buff *skb;
135 u8 *data;
136
137 /* Get the HEAD */
138 skb = kmem_cache_alloc(skbuff_head_cache,
139 gfp_mask & ~__GFP_DMA);
140 if (!skb)
141 goto out;
142
143 /* Get the DATA. Size must match skb_add_mtu(). */
144 size = SKB_DATA_ALIGN(size);
145 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
146 if (!data)
147 goto nodata;
148
149 memset(skb, 0, offsetof(struct sk_buff, truesize));
150 skb->truesize = size + sizeof(struct sk_buff);
151 atomic_set(&skb->users, 1);
152 skb->head = data;
153 skb->data = data;
154 skb->tail = data;
155 skb->end = data + size;
156
157 atomic_set(&(skb_shinfo(skb)->dataref), 1);
158 skb_shinfo(skb)->nr_frags = 0;
159 skb_shinfo(skb)->tso_size = 0;
160 skb_shinfo(skb)->tso_segs = 0;
161 skb_shinfo(skb)->frag_list = NULL;
162 out:
163 return skb;
164 nodata:
165 kmem_cache_free(skbuff_head_cache, skb);
166 skb = NULL;
167 goto out;
168 }
169
170 /**
171 * alloc_skb_from_cache - allocate a network buffer
172 * @cp: kmem_cache from which to allocate the data area
173 * (object size must be big enough for @size bytes + skb overheads)
174 * @size: size to allocate
175 * @gfp_mask: allocation mask
176 *
177 * Allocate a new &sk_buff. The returned buffer has no headroom and
178 * tail room of size bytes. The object has a reference count of one.
179 * The return is the buffer. On a failure the return is %NULL.
180 *
181 * Buffers may only be allocated from interrupts using a @gfp_mask of
182 * %GFP_ATOMIC.
183 */
184 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
185 unsigned int size,
186 unsigned int __nocast gfp_mask)
187 {
188 struct sk_buff *skb;
189 u8 *data;
190
191 /* Get the HEAD */
192 skb = kmem_cache_alloc(skbuff_head_cache,
193 gfp_mask & ~__GFP_DMA);
194 if (!skb)
195 goto out;
196
197 /* Get the DATA. */
198 size = SKB_DATA_ALIGN(size);
199 data = kmem_cache_alloc(cp, gfp_mask);
200 if (!data)
201 goto nodata;
202
203 memset(skb, 0, offsetof(struct sk_buff, truesize));
204 skb->truesize = size + sizeof(struct sk_buff);
205 atomic_set(&skb->users, 1);
206 skb->head = data;
207 skb->data = data;
208 skb->tail = data;
209 skb->end = data + size;
210
211 atomic_set(&(skb_shinfo(skb)->dataref), 1);
212 skb_shinfo(skb)->nr_frags = 0;
213 skb_shinfo(skb)->tso_size = 0;
214 skb_shinfo(skb)->tso_segs = 0;
215 skb_shinfo(skb)->frag_list = NULL;
216 out:
217 return skb;
218 nodata:
219 kmem_cache_free(skbuff_head_cache, skb);
220 skb = NULL;
221 goto out;
222 }
223
224
225 static void skb_drop_fraglist(struct sk_buff *skb)
226 {
227 struct sk_buff *list = skb_shinfo(skb)->frag_list;
228
229 skb_shinfo(skb)->frag_list = NULL;
230
231 do {
232 struct sk_buff *this = list;
233 list = list->next;
234 kfree_skb(this);
235 } while (list);
236 }
237
238 static void skb_clone_fraglist(struct sk_buff *skb)
239 {
240 struct sk_buff *list;
241
242 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
243 skb_get(list);
244 }
245
246 void skb_release_data(struct sk_buff *skb)
247 {
248 if (!skb->cloned ||
249 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
250 &skb_shinfo(skb)->dataref)) {
251 if (skb_shinfo(skb)->nr_frags) {
252 int i;
253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
254 put_page(skb_shinfo(skb)->frags[i].page);
255 }
256
257 if (skb_shinfo(skb)->frag_list)
258 skb_drop_fraglist(skb);
259
260 kfree(skb->head);
261 }
262 }
263
264 /*
265 * Free an skbuff by memory without cleaning the state.
266 */
267 void kfree_skbmem(struct sk_buff *skb)
268 {
269 skb_release_data(skb);
270 kmem_cache_free(skbuff_head_cache, skb);
271 }
272
273 /**
274 * __kfree_skb - private function
275 * @skb: buffer
276 *
277 * Free an sk_buff. Release anything attached to the buffer.
278 * Clean the state. This is an internal helper function. Users should
279 * always call kfree_skb
280 */
281
282 void __kfree_skb(struct sk_buff *skb)
283 {
284 dst_release(skb->dst);
285 #ifdef CONFIG_XFRM
286 secpath_put(skb->sp);
287 #endif
288 if (skb->destructor) {
289 WARN_ON(in_irq());
290 skb->destructor(skb);
291 }
292 #ifdef CONFIG_NETFILTER
293 nf_conntrack_put(skb->nfct);
294 #ifdef CONFIG_BRIDGE_NETFILTER
295 nf_bridge_put(skb->nf_bridge);
296 #endif
297 #endif
298 /* XXX: IS this still necessary? - JHS */
299 #ifdef CONFIG_NET_SCHED
300 skb->tc_index = 0;
301 #ifdef CONFIG_NET_CLS_ACT
302 skb->tc_verd = 0;
303 #endif
304 #endif
305
306 kfree_skbmem(skb);
307 }
308
309 /**
310 * skb_clone - duplicate an sk_buff
311 * @skb: buffer to clone
312 * @gfp_mask: allocation priority
313 *
314 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
315 * copies share the same packet data but not structure. The new
316 * buffer has a reference count of 1. If the allocation fails the
317 * function returns %NULL otherwise the new buffer is returned.
318 *
319 * If this function is called from an interrupt gfp_mask() must be
320 * %GFP_ATOMIC.
321 */
322
323 struct sk_buff *skb_clone(struct sk_buff *skb, unsigned int __nocast gfp_mask)
324 {
325 struct sk_buff *n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
326
327 if (!n)
328 return NULL;
329
330 #define C(x) n->x = skb->x
331
332 n->next = n->prev = NULL;
333 n->sk = NULL;
334 C(stamp);
335 C(dev);
336 C(real_dev);
337 C(h);
338 C(nh);
339 C(mac);
340 C(dst);
341 dst_clone(skb->dst);
342 C(sp);
343 #ifdef CONFIG_INET
344 secpath_get(skb->sp);
345 #endif
346 memcpy(n->cb, skb->cb, sizeof(skb->cb));
347 C(len);
348 C(data_len);
349 C(csum);
350 C(local_df);
351 n->cloned = 1;
352 n->nohdr = 0;
353 C(pkt_type);
354 C(ip_summed);
355 C(priority);
356 C(protocol);
357 n->destructor = NULL;
358 #ifdef CONFIG_NETFILTER
359 C(nfmark);
360 C(nfct);
361 nf_conntrack_get(skb->nfct);
362 C(nfctinfo);
363 #ifdef CONFIG_BRIDGE_NETFILTER
364 C(nf_bridge);
365 nf_bridge_get(skb->nf_bridge);
366 #endif
367 #endif /*CONFIG_NETFILTER*/
368 #ifdef CONFIG_NET_SCHED
369 C(tc_index);
370 #ifdef CONFIG_NET_CLS_ACT
371 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
372 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
373 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
374 C(input_dev);
375 #endif
376
377 #endif
378 C(truesize);
379 atomic_set(&n->users, 1);
380 C(head);
381 C(data);
382 C(tail);
383 C(end);
384
385 atomic_inc(&(skb_shinfo(skb)->dataref));
386 skb->cloned = 1;
387
388 return n;
389 }
390
391 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
392 {
393 /*
394 * Shift between the two data areas in bytes
395 */
396 unsigned long offset = new->data - old->data;
397
398 new->sk = NULL;
399 new->dev = old->dev;
400 new->real_dev = old->real_dev;
401 new->priority = old->priority;
402 new->protocol = old->protocol;
403 new->dst = dst_clone(old->dst);
404 #ifdef CONFIG_INET
405 new->sp = secpath_get(old->sp);
406 #endif
407 new->h.raw = old->h.raw + offset;
408 new->nh.raw = old->nh.raw + offset;
409 new->mac.raw = old->mac.raw + offset;
410 memcpy(new->cb, old->cb, sizeof(old->cb));
411 new->local_df = old->local_df;
412 new->pkt_type = old->pkt_type;
413 new->stamp = old->stamp;
414 new->destructor = NULL;
415 #ifdef CONFIG_NETFILTER
416 new->nfmark = old->nfmark;
417 new->nfct = old->nfct;
418 nf_conntrack_get(old->nfct);
419 new->nfctinfo = old->nfctinfo;
420 #ifdef CONFIG_BRIDGE_NETFILTER
421 new->nf_bridge = old->nf_bridge;
422 nf_bridge_get(old->nf_bridge);
423 #endif
424 #endif
425 #ifdef CONFIG_NET_SCHED
426 #ifdef CONFIG_NET_CLS_ACT
427 new->tc_verd = old->tc_verd;
428 #endif
429 new->tc_index = old->tc_index;
430 #endif
431 atomic_set(&new->users, 1);
432 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
433 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
434 }
435
436 /**
437 * skb_copy - create private copy of an sk_buff
438 * @skb: buffer to copy
439 * @gfp_mask: allocation priority
440 *
441 * Make a copy of both an &sk_buff and its data. This is used when the
442 * caller wishes to modify the data and needs a private copy of the
443 * data to alter. Returns %NULL on failure or the pointer to the buffer
444 * on success. The returned buffer has a reference count of 1.
445 *
446 * As by-product this function converts non-linear &sk_buff to linear
447 * one, so that &sk_buff becomes completely private and caller is allowed
448 * to modify all the data of returned buffer. This means that this
449 * function is not recommended for use in circumstances when only
450 * header is going to be modified. Use pskb_copy() instead.
451 */
452
453 struct sk_buff *skb_copy(const struct sk_buff *skb, unsigned int __nocast gfp_mask)
454 {
455 int headerlen = skb->data - skb->head;
456 /*
457 * Allocate the copy buffer
458 */
459 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
460 gfp_mask);
461 if (!n)
462 return NULL;
463
464 /* Set the data pointer */
465 skb_reserve(n, headerlen);
466 /* Set the tail pointer and length */
467 skb_put(n, skb->len);
468 n->csum = skb->csum;
469 n->ip_summed = skb->ip_summed;
470
471 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
472 BUG();
473
474 copy_skb_header(n, skb);
475 return n;
476 }
477
478
479 /**
480 * pskb_copy - create copy of an sk_buff with private head.
481 * @skb: buffer to copy
482 * @gfp_mask: allocation priority
483 *
484 * Make a copy of both an &sk_buff and part of its data, located
485 * in header. Fragmented data remain shared. This is used when
486 * the caller wishes to modify only header of &sk_buff and needs
487 * private copy of the header to alter. Returns %NULL on failure
488 * or the pointer to the buffer on success.
489 * The returned buffer has a reference count of 1.
490 */
491
492 struct sk_buff *pskb_copy(struct sk_buff *skb, unsigned int __nocast gfp_mask)
493 {
494 /*
495 * Allocate the copy buffer
496 */
497 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
498
499 if (!n)
500 goto out;
501
502 /* Set the data pointer */
503 skb_reserve(n, skb->data - skb->head);
504 /* Set the tail pointer and length */
505 skb_put(n, skb_headlen(skb));
506 /* Copy the bytes */
507 memcpy(n->data, skb->data, n->len);
508 n->csum = skb->csum;
509 n->ip_summed = skb->ip_summed;
510
511 n->data_len = skb->data_len;
512 n->len = skb->len;
513
514 if (skb_shinfo(skb)->nr_frags) {
515 int i;
516
517 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
518 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
519 get_page(skb_shinfo(n)->frags[i].page);
520 }
521 skb_shinfo(n)->nr_frags = i;
522 }
523
524 if (skb_shinfo(skb)->frag_list) {
525 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
526 skb_clone_fraglist(n);
527 }
528
529 copy_skb_header(n, skb);
530 out:
531 return n;
532 }
533
534 /**
535 * pskb_expand_head - reallocate header of &sk_buff
536 * @skb: buffer to reallocate
537 * @nhead: room to add at head
538 * @ntail: room to add at tail
539 * @gfp_mask: allocation priority
540 *
541 * Expands (or creates identical copy, if &nhead and &ntail are zero)
542 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
543 * reference count of 1. Returns zero in the case of success or error,
544 * if expansion failed. In the last case, &sk_buff is not changed.
545 *
546 * All the pointers pointing into skb header may change and must be
547 * reloaded after call to this function.
548 */
549
550 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
551 unsigned int __nocast gfp_mask)
552 {
553 int i;
554 u8 *data;
555 int size = nhead + (skb->end - skb->head) + ntail;
556 long off;
557
558 if (skb_shared(skb))
559 BUG();
560
561 size = SKB_DATA_ALIGN(size);
562
563 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
564 if (!data)
565 goto nodata;
566
567 /* Copy only real data... and, alas, header. This should be
568 * optimized for the cases when header is void. */
569 memcpy(data + nhead, skb->head, skb->tail - skb->head);
570 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
571
572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
573 get_page(skb_shinfo(skb)->frags[i].page);
574
575 if (skb_shinfo(skb)->frag_list)
576 skb_clone_fraglist(skb);
577
578 skb_release_data(skb);
579
580 off = (data + nhead) - skb->head;
581
582 skb->head = data;
583 skb->end = data + size;
584 skb->data += off;
585 skb->tail += off;
586 skb->mac.raw += off;
587 skb->h.raw += off;
588 skb->nh.raw += off;
589 skb->cloned = 0;
590 skb->nohdr = 0;
591 atomic_set(&skb_shinfo(skb)->dataref, 1);
592 return 0;
593
594 nodata:
595 return -ENOMEM;
596 }
597
598 /* Make private copy of skb with writable head and some headroom */
599
600 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
601 {
602 struct sk_buff *skb2;
603 int delta = headroom - skb_headroom(skb);
604
605 if (delta <= 0)
606 skb2 = pskb_copy(skb, GFP_ATOMIC);
607 else {
608 skb2 = skb_clone(skb, GFP_ATOMIC);
609 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
610 GFP_ATOMIC)) {
611 kfree_skb(skb2);
612 skb2 = NULL;
613 }
614 }
615 return skb2;
616 }
617
618
619 /**
620 * skb_copy_expand - copy and expand sk_buff
621 * @skb: buffer to copy
622 * @newheadroom: new free bytes at head
623 * @newtailroom: new free bytes at tail
624 * @gfp_mask: allocation priority
625 *
626 * Make a copy of both an &sk_buff and its data and while doing so
627 * allocate additional space.
628 *
629 * This is used when the caller wishes to modify the data and needs a
630 * private copy of the data to alter as well as more space for new fields.
631 * Returns %NULL on failure or the pointer to the buffer
632 * on success. The returned buffer has a reference count of 1.
633 *
634 * You must pass %GFP_ATOMIC as the allocation priority if this function
635 * is called from an interrupt.
636 *
637 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
638 * only by netfilter in the cases when checksum is recalculated? --ANK
639 */
640 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
641 int newheadroom, int newtailroom,
642 unsigned int __nocast gfp_mask)
643 {
644 /*
645 * Allocate the copy buffer
646 */
647 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
648 gfp_mask);
649 int head_copy_len, head_copy_off;
650
651 if (!n)
652 return NULL;
653
654 skb_reserve(n, newheadroom);
655
656 /* Set the tail pointer and length */
657 skb_put(n, skb->len);
658
659 head_copy_len = skb_headroom(skb);
660 head_copy_off = 0;
661 if (newheadroom <= head_copy_len)
662 head_copy_len = newheadroom;
663 else
664 head_copy_off = newheadroom - head_copy_len;
665
666 /* Copy the linear header and data. */
667 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
668 skb->len + head_copy_len))
669 BUG();
670
671 copy_skb_header(n, skb);
672
673 return n;
674 }
675
676 /**
677 * skb_pad - zero pad the tail of an skb
678 * @skb: buffer to pad
679 * @pad: space to pad
680 *
681 * Ensure that a buffer is followed by a padding area that is zero
682 * filled. Used by network drivers which may DMA or transfer data
683 * beyond the buffer end onto the wire.
684 *
685 * May return NULL in out of memory cases.
686 */
687
688 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
689 {
690 struct sk_buff *nskb;
691
692 /* If the skbuff is non linear tailroom is always zero.. */
693 if (skb_tailroom(skb) >= pad) {
694 memset(skb->data+skb->len, 0, pad);
695 return skb;
696 }
697
698 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
699 kfree_skb(skb);
700 if (nskb)
701 memset(nskb->data+nskb->len, 0, pad);
702 return nskb;
703 }
704
705 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
706 * If realloc==0 and trimming is impossible without change of data,
707 * it is BUG().
708 */
709
710 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
711 {
712 int offset = skb_headlen(skb);
713 int nfrags = skb_shinfo(skb)->nr_frags;
714 int i;
715
716 for (i = 0; i < nfrags; i++) {
717 int end = offset + skb_shinfo(skb)->frags[i].size;
718 if (end > len) {
719 if (skb_cloned(skb)) {
720 if (!realloc)
721 BUG();
722 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
723 return -ENOMEM;
724 }
725 if (len <= offset) {
726 put_page(skb_shinfo(skb)->frags[i].page);
727 skb_shinfo(skb)->nr_frags--;
728 } else {
729 skb_shinfo(skb)->frags[i].size = len - offset;
730 }
731 }
732 offset = end;
733 }
734
735 if (offset < len) {
736 skb->data_len -= skb->len - len;
737 skb->len = len;
738 } else {
739 if (len <= skb_headlen(skb)) {
740 skb->len = len;
741 skb->data_len = 0;
742 skb->tail = skb->data + len;
743 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
744 skb_drop_fraglist(skb);
745 } else {
746 skb->data_len -= skb->len - len;
747 skb->len = len;
748 }
749 }
750
751 return 0;
752 }
753
754 /**
755 * __pskb_pull_tail - advance tail of skb header
756 * @skb: buffer to reallocate
757 * @delta: number of bytes to advance tail
758 *
759 * The function makes a sense only on a fragmented &sk_buff,
760 * it expands header moving its tail forward and copying necessary
761 * data from fragmented part.
762 *
763 * &sk_buff MUST have reference count of 1.
764 *
765 * Returns %NULL (and &sk_buff does not change) if pull failed
766 * or value of new tail of skb in the case of success.
767 *
768 * All the pointers pointing into skb header may change and must be
769 * reloaded after call to this function.
770 */
771
772 /* Moves tail of skb head forward, copying data from fragmented part,
773 * when it is necessary.
774 * 1. It may fail due to malloc failure.
775 * 2. It may change skb pointers.
776 *
777 * It is pretty complicated. Luckily, it is called only in exceptional cases.
778 */
779 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
780 {
781 /* If skb has not enough free space at tail, get new one
782 * plus 128 bytes for future expansions. If we have enough
783 * room at tail, reallocate without expansion only if skb is cloned.
784 */
785 int i, k, eat = (skb->tail + delta) - skb->end;
786
787 if (eat > 0 || skb_cloned(skb)) {
788 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
789 GFP_ATOMIC))
790 return NULL;
791 }
792
793 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
794 BUG();
795
796 /* Optimization: no fragments, no reasons to preestimate
797 * size of pulled pages. Superb.
798 */
799 if (!skb_shinfo(skb)->frag_list)
800 goto pull_pages;
801
802 /* Estimate size of pulled pages. */
803 eat = delta;
804 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
805 if (skb_shinfo(skb)->frags[i].size >= eat)
806 goto pull_pages;
807 eat -= skb_shinfo(skb)->frags[i].size;
808 }
809
810 /* If we need update frag list, we are in troubles.
811 * Certainly, it possible to add an offset to skb data,
812 * but taking into account that pulling is expected to
813 * be very rare operation, it is worth to fight against
814 * further bloating skb head and crucify ourselves here instead.
815 * Pure masohism, indeed. 8)8)
816 */
817 if (eat) {
818 struct sk_buff *list = skb_shinfo(skb)->frag_list;
819 struct sk_buff *clone = NULL;
820 struct sk_buff *insp = NULL;
821
822 do {
823 if (!list)
824 BUG();
825
826 if (list->len <= eat) {
827 /* Eaten as whole. */
828 eat -= list->len;
829 list = list->next;
830 insp = list;
831 } else {
832 /* Eaten partially. */
833
834 if (skb_shared(list)) {
835 /* Sucks! We need to fork list. :-( */
836 clone = skb_clone(list, GFP_ATOMIC);
837 if (!clone)
838 return NULL;
839 insp = list->next;
840 list = clone;
841 } else {
842 /* This may be pulled without
843 * problems. */
844 insp = list;
845 }
846 if (!pskb_pull(list, eat)) {
847 if (clone)
848 kfree_skb(clone);
849 return NULL;
850 }
851 break;
852 }
853 } while (eat);
854
855 /* Free pulled out fragments. */
856 while ((list = skb_shinfo(skb)->frag_list) != insp) {
857 skb_shinfo(skb)->frag_list = list->next;
858 kfree_skb(list);
859 }
860 /* And insert new clone at head. */
861 if (clone) {
862 clone->next = list;
863 skb_shinfo(skb)->frag_list = clone;
864 }
865 }
866 /* Success! Now we may commit changes to skb data. */
867
868 pull_pages:
869 eat = delta;
870 k = 0;
871 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
872 if (skb_shinfo(skb)->frags[i].size <= eat) {
873 put_page(skb_shinfo(skb)->frags[i].page);
874 eat -= skb_shinfo(skb)->frags[i].size;
875 } else {
876 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
877 if (eat) {
878 skb_shinfo(skb)->frags[k].page_offset += eat;
879 skb_shinfo(skb)->frags[k].size -= eat;
880 eat = 0;
881 }
882 k++;
883 }
884 }
885 skb_shinfo(skb)->nr_frags = k;
886
887 skb->tail += delta;
888 skb->data_len -= delta;
889
890 return skb->tail;
891 }
892
893 /* Copy some data bits from skb to kernel buffer. */
894
895 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
896 {
897 int i, copy;
898 int start = skb_headlen(skb);
899
900 if (offset > (int)skb->len - len)
901 goto fault;
902
903 /* Copy header. */
904 if ((copy = start - offset) > 0) {
905 if (copy > len)
906 copy = len;
907 memcpy(to, skb->data + offset, copy);
908 if ((len -= copy) == 0)
909 return 0;
910 offset += copy;
911 to += copy;
912 }
913
914 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
915 int end;
916
917 BUG_TRAP(start <= offset + len);
918
919 end = start + skb_shinfo(skb)->frags[i].size;
920 if ((copy = end - offset) > 0) {
921 u8 *vaddr;
922
923 if (copy > len)
924 copy = len;
925
926 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
927 memcpy(to,
928 vaddr + skb_shinfo(skb)->frags[i].page_offset+
929 offset - start, copy);
930 kunmap_skb_frag(vaddr);
931
932 if ((len -= copy) == 0)
933 return 0;
934 offset += copy;
935 to += copy;
936 }
937 start = end;
938 }
939
940 if (skb_shinfo(skb)->frag_list) {
941 struct sk_buff *list = skb_shinfo(skb)->frag_list;
942
943 for (; list; list = list->next) {
944 int end;
945
946 BUG_TRAP(start <= offset + len);
947
948 end = start + list->len;
949 if ((copy = end - offset) > 0) {
950 if (copy > len)
951 copy = len;
952 if (skb_copy_bits(list, offset - start,
953 to, copy))
954 goto fault;
955 if ((len -= copy) == 0)
956 return 0;
957 offset += copy;
958 to += copy;
959 }
960 start = end;
961 }
962 }
963 if (!len)
964 return 0;
965
966 fault:
967 return -EFAULT;
968 }
969
970 /**
971 * skb_store_bits - store bits from kernel buffer to skb
972 * @skb: destination buffer
973 * @offset: offset in destination
974 * @from: source buffer
975 * @len: number of bytes to copy
976 *
977 * Copy the specified number of bytes from the source buffer to the
978 * destination skb. This function handles all the messy bits of
979 * traversing fragment lists and such.
980 */
981
982 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
983 {
984 int i, copy;
985 int start = skb_headlen(skb);
986
987 if (offset > (int)skb->len - len)
988 goto fault;
989
990 if ((copy = start - offset) > 0) {
991 if (copy > len)
992 copy = len;
993 memcpy(skb->data + offset, from, copy);
994 if ((len -= copy) == 0)
995 return 0;
996 offset += copy;
997 from += copy;
998 }
999
1000 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1001 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1002 int end;
1003
1004 BUG_TRAP(start <= offset + len);
1005
1006 end = start + frag->size;
1007 if ((copy = end - offset) > 0) {
1008 u8 *vaddr;
1009
1010 if (copy > len)
1011 copy = len;
1012
1013 vaddr = kmap_skb_frag(frag);
1014 memcpy(vaddr + frag->page_offset + offset - start,
1015 from, copy);
1016 kunmap_skb_frag(vaddr);
1017
1018 if ((len -= copy) == 0)
1019 return 0;
1020 offset += copy;
1021 from += copy;
1022 }
1023 start = end;
1024 }
1025
1026 if (skb_shinfo(skb)->frag_list) {
1027 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1028
1029 for (; list; list = list->next) {
1030 int end;
1031
1032 BUG_TRAP(start <= offset + len);
1033
1034 end = start + list->len;
1035 if ((copy = end - offset) > 0) {
1036 if (copy > len)
1037 copy = len;
1038 if (skb_store_bits(list, offset - start,
1039 from, copy))
1040 goto fault;
1041 if ((len -= copy) == 0)
1042 return 0;
1043 offset += copy;
1044 from += copy;
1045 }
1046 start = end;
1047 }
1048 }
1049 if (!len)
1050 return 0;
1051
1052 fault:
1053 return -EFAULT;
1054 }
1055
1056 EXPORT_SYMBOL(skb_store_bits);
1057
1058 /* Checksum skb data. */
1059
1060 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1061 int len, unsigned int csum)
1062 {
1063 int start = skb_headlen(skb);
1064 int i, copy = start - offset;
1065 int pos = 0;
1066
1067 /* Checksum header. */
1068 if (copy > 0) {
1069 if (copy > len)
1070 copy = len;
1071 csum = csum_partial(skb->data + offset, copy, csum);
1072 if ((len -= copy) == 0)
1073 return csum;
1074 offset += copy;
1075 pos = copy;
1076 }
1077
1078 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1079 int end;
1080
1081 BUG_TRAP(start <= offset + len);
1082
1083 end = start + skb_shinfo(skb)->frags[i].size;
1084 if ((copy = end - offset) > 0) {
1085 unsigned int csum2;
1086 u8 *vaddr;
1087 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1088
1089 if (copy > len)
1090 copy = len;
1091 vaddr = kmap_skb_frag(frag);
1092 csum2 = csum_partial(vaddr + frag->page_offset +
1093 offset - start, copy, 0);
1094 kunmap_skb_frag(vaddr);
1095 csum = csum_block_add(csum, csum2, pos);
1096 if (!(len -= copy))
1097 return csum;
1098 offset += copy;
1099 pos += copy;
1100 }
1101 start = end;
1102 }
1103
1104 if (skb_shinfo(skb)->frag_list) {
1105 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1106
1107 for (; list; list = list->next) {
1108 int end;
1109
1110 BUG_TRAP(start <= offset + len);
1111
1112 end = start + list->len;
1113 if ((copy = end - offset) > 0) {
1114 unsigned int csum2;
1115 if (copy > len)
1116 copy = len;
1117 csum2 = skb_checksum(list, offset - start,
1118 copy, 0);
1119 csum = csum_block_add(csum, csum2, pos);
1120 if ((len -= copy) == 0)
1121 return csum;
1122 offset += copy;
1123 pos += copy;
1124 }
1125 start = end;
1126 }
1127 }
1128 if (len)
1129 BUG();
1130
1131 return csum;
1132 }
1133
1134 /* Both of above in one bottle. */
1135
1136 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1137 u8 *to, int len, unsigned int csum)
1138 {
1139 int start = skb_headlen(skb);
1140 int i, copy = start - offset;
1141 int pos = 0;
1142
1143 /* Copy header. */
1144 if (copy > 0) {
1145 if (copy > len)
1146 copy = len;
1147 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1148 copy, csum);
1149 if ((len -= copy) == 0)
1150 return csum;
1151 offset += copy;
1152 to += copy;
1153 pos = copy;
1154 }
1155
1156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1157 int end;
1158
1159 BUG_TRAP(start <= offset + len);
1160
1161 end = start + skb_shinfo(skb)->frags[i].size;
1162 if ((copy = end - offset) > 0) {
1163 unsigned int csum2;
1164 u8 *vaddr;
1165 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1166
1167 if (copy > len)
1168 copy = len;
1169 vaddr = kmap_skb_frag(frag);
1170 csum2 = csum_partial_copy_nocheck(vaddr +
1171 frag->page_offset +
1172 offset - start, to,
1173 copy, 0);
1174 kunmap_skb_frag(vaddr);
1175 csum = csum_block_add(csum, csum2, pos);
1176 if (!(len -= copy))
1177 return csum;
1178 offset += copy;
1179 to += copy;
1180 pos += copy;
1181 }
1182 start = end;
1183 }
1184
1185 if (skb_shinfo(skb)->frag_list) {
1186 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1187
1188 for (; list; list = list->next) {
1189 unsigned int csum2;
1190 int end;
1191
1192 BUG_TRAP(start <= offset + len);
1193
1194 end = start + list->len;
1195 if ((copy = end - offset) > 0) {
1196 if (copy > len)
1197 copy = len;
1198 csum2 = skb_copy_and_csum_bits(list,
1199 offset - start,
1200 to, copy, 0);
1201 csum = csum_block_add(csum, csum2, pos);
1202 if ((len -= copy) == 0)
1203 return csum;
1204 offset += copy;
1205 to += copy;
1206 pos += copy;
1207 }
1208 start = end;
1209 }
1210 }
1211 if (len)
1212 BUG();
1213 return csum;
1214 }
1215
1216 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1217 {
1218 unsigned int csum;
1219 long csstart;
1220
1221 if (skb->ip_summed == CHECKSUM_HW)
1222 csstart = skb->h.raw - skb->data;
1223 else
1224 csstart = skb_headlen(skb);
1225
1226 if (csstart > skb_headlen(skb))
1227 BUG();
1228
1229 memcpy(to, skb->data, csstart);
1230
1231 csum = 0;
1232 if (csstart != skb->len)
1233 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1234 skb->len - csstart, 0);
1235
1236 if (skb->ip_summed == CHECKSUM_HW) {
1237 long csstuff = csstart + skb->csum;
1238
1239 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1240 }
1241 }
1242
1243 /**
1244 * skb_dequeue - remove from the head of the queue
1245 * @list: list to dequeue from
1246 *
1247 * Remove the head of the list. The list lock is taken so the function
1248 * may be used safely with other locking list functions. The head item is
1249 * returned or %NULL if the list is empty.
1250 */
1251
1252 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1253 {
1254 unsigned long flags;
1255 struct sk_buff *result;
1256
1257 spin_lock_irqsave(&list->lock, flags);
1258 result = __skb_dequeue(list);
1259 spin_unlock_irqrestore(&list->lock, flags);
1260 return result;
1261 }
1262
1263 /**
1264 * skb_dequeue_tail - remove from the tail of the queue
1265 * @list: list to dequeue from
1266 *
1267 * Remove the tail of the list. The list lock is taken so the function
1268 * may be used safely with other locking list functions. The tail item is
1269 * returned or %NULL if the list is empty.
1270 */
1271 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1272 {
1273 unsigned long flags;
1274 struct sk_buff *result;
1275
1276 spin_lock_irqsave(&list->lock, flags);
1277 result = __skb_dequeue_tail(list);
1278 spin_unlock_irqrestore(&list->lock, flags);
1279 return result;
1280 }
1281
1282 /**
1283 * skb_queue_purge - empty a list
1284 * @list: list to empty
1285 *
1286 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1287 * the list and one reference dropped. This function takes the list
1288 * lock and is atomic with respect to other list locking functions.
1289 */
1290 void skb_queue_purge(struct sk_buff_head *list)
1291 {
1292 struct sk_buff *skb;
1293 while ((skb = skb_dequeue(list)) != NULL)
1294 kfree_skb(skb);
1295 }
1296
1297 /**
1298 * skb_queue_head - queue a buffer at the list head
1299 * @list: list to use
1300 * @newsk: buffer to queue
1301 *
1302 * Queue a buffer at the start of the list. This function takes the
1303 * list lock and can be used safely with other locking &sk_buff functions
1304 * safely.
1305 *
1306 * A buffer cannot be placed on two lists at the same time.
1307 */
1308 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1309 {
1310 unsigned long flags;
1311
1312 spin_lock_irqsave(&list->lock, flags);
1313 __skb_queue_head(list, newsk);
1314 spin_unlock_irqrestore(&list->lock, flags);
1315 }
1316
1317 /**
1318 * skb_queue_tail - queue a buffer at the list tail
1319 * @list: list to use
1320 * @newsk: buffer to queue
1321 *
1322 * Queue a buffer at the tail of the list. This function takes the
1323 * list lock and can be used safely with other locking &sk_buff functions
1324 * safely.
1325 *
1326 * A buffer cannot be placed on two lists at the same time.
1327 */
1328 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1329 {
1330 unsigned long flags;
1331
1332 spin_lock_irqsave(&list->lock, flags);
1333 __skb_queue_tail(list, newsk);
1334 spin_unlock_irqrestore(&list->lock, flags);
1335 }
1336
1337 /**
1338 * skb_unlink - remove a buffer from a list
1339 * @skb: buffer to remove
1340 * @list: list to use
1341 *
1342 * Remove a packet from a list. The list locks are taken and this
1343 * function is atomic with respect to other list locked calls
1344 *
1345 * You must know what list the SKB is on.
1346 */
1347 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1348 {
1349 unsigned long flags;
1350
1351 spin_lock_irqsave(&list->lock, flags);
1352 __skb_unlink(skb, list);
1353 spin_unlock_irqrestore(&list->lock, flags);
1354 }
1355
1356 /**
1357 * skb_append - append a buffer
1358 * @old: buffer to insert after
1359 * @newsk: buffer to insert
1360 * @list: list to use
1361 *
1362 * Place a packet after a given packet in a list. The list locks are taken
1363 * and this function is atomic with respect to other list locked calls.
1364 * A buffer cannot be placed on two lists at the same time.
1365 */
1366 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1367 {
1368 unsigned long flags;
1369
1370 spin_lock_irqsave(&list->lock, flags);
1371 __skb_append(old, newsk, list);
1372 spin_unlock_irqrestore(&list->lock, flags);
1373 }
1374
1375
1376 /**
1377 * skb_insert - insert a buffer
1378 * @old: buffer to insert before
1379 * @newsk: buffer to insert
1380 * @list: list to use
1381 *
1382 * Place a packet before a given packet in a list. The list locks are
1383 * taken and this function is atomic with respect to other list locked
1384 * calls.
1385 *
1386 * A buffer cannot be placed on two lists at the same time.
1387 */
1388 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1389 {
1390 unsigned long flags;
1391
1392 spin_lock_irqsave(&list->lock, flags);
1393 __skb_insert(newsk, old->prev, old, list);
1394 spin_unlock_irqrestore(&list->lock, flags);
1395 }
1396
1397 #if 0
1398 /*
1399 * Tune the memory allocator for a new MTU size.
1400 */
1401 void skb_add_mtu(int mtu)
1402 {
1403 /* Must match allocation in alloc_skb */
1404 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1405
1406 kmem_add_cache_size(mtu);
1407 }
1408 #endif
1409
1410 static inline void skb_split_inside_header(struct sk_buff *skb,
1411 struct sk_buff* skb1,
1412 const u32 len, const int pos)
1413 {
1414 int i;
1415
1416 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1417
1418 /* And move data appendix as is. */
1419 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1420 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1421
1422 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1423 skb_shinfo(skb)->nr_frags = 0;
1424 skb1->data_len = skb->data_len;
1425 skb1->len += skb1->data_len;
1426 skb->data_len = 0;
1427 skb->len = len;
1428 skb->tail = skb->data + len;
1429 }
1430
1431 static inline void skb_split_no_header(struct sk_buff *skb,
1432 struct sk_buff* skb1,
1433 const u32 len, int pos)
1434 {
1435 int i, k = 0;
1436 const int nfrags = skb_shinfo(skb)->nr_frags;
1437
1438 skb_shinfo(skb)->nr_frags = 0;
1439 skb1->len = skb1->data_len = skb->len - len;
1440 skb->len = len;
1441 skb->data_len = len - pos;
1442
1443 for (i = 0; i < nfrags; i++) {
1444 int size = skb_shinfo(skb)->frags[i].size;
1445
1446 if (pos + size > len) {
1447 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1448
1449 if (pos < len) {
1450 /* Split frag.
1451 * We have two variants in this case:
1452 * 1. Move all the frag to the second
1453 * part, if it is possible. F.e.
1454 * this approach is mandatory for TUX,
1455 * where splitting is expensive.
1456 * 2. Split is accurately. We make this.
1457 */
1458 get_page(skb_shinfo(skb)->frags[i].page);
1459 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1460 skb_shinfo(skb1)->frags[0].size -= len - pos;
1461 skb_shinfo(skb)->frags[i].size = len - pos;
1462 skb_shinfo(skb)->nr_frags++;
1463 }
1464 k++;
1465 } else
1466 skb_shinfo(skb)->nr_frags++;
1467 pos += size;
1468 }
1469 skb_shinfo(skb1)->nr_frags = k;
1470 }
1471
1472 /**
1473 * skb_split - Split fragmented skb to two parts at length len.
1474 * @skb: the buffer to split
1475 * @skb1: the buffer to receive the second part
1476 * @len: new length for skb
1477 */
1478 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1479 {
1480 int pos = skb_headlen(skb);
1481
1482 if (len < pos) /* Split line is inside header. */
1483 skb_split_inside_header(skb, skb1, len, pos);
1484 else /* Second chunk has no header, nothing to copy. */
1485 skb_split_no_header(skb, skb1, len, pos);
1486 }
1487
1488 /**
1489 * skb_prepare_seq_read - Prepare a sequential read of skb data
1490 * @skb: the buffer to read
1491 * @from: lower offset of data to be read
1492 * @to: upper offset of data to be read
1493 * @st: state variable
1494 *
1495 * Initializes the specified state variable. Must be called before
1496 * invoking skb_seq_read() for the first time.
1497 */
1498 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1499 unsigned int to, struct skb_seq_state *st)
1500 {
1501 st->lower_offset = from;
1502 st->upper_offset = to;
1503 st->root_skb = st->cur_skb = skb;
1504 st->frag_idx = st->stepped_offset = 0;
1505 st->frag_data = NULL;
1506 }
1507
1508 /**
1509 * skb_seq_read - Sequentially read skb data
1510 * @consumed: number of bytes consumed by the caller so far
1511 * @data: destination pointer for data to be returned
1512 * @st: state variable
1513 *
1514 * Reads a block of skb data at &consumed relative to the
1515 * lower offset specified to skb_prepare_seq_read(). Assigns
1516 * the head of the data block to &data and returns the length
1517 * of the block or 0 if the end of the skb data or the upper
1518 * offset has been reached.
1519 *
1520 * The caller is not required to consume all of the data
1521 * returned, i.e. &consumed is typically set to the number
1522 * of bytes already consumed and the next call to
1523 * skb_seq_read() will return the remaining part of the block.
1524 *
1525 * Note: The size of each block of data returned can be arbitary,
1526 * this limitation is the cost for zerocopy seqeuental
1527 * reads of potentially non linear data.
1528 *
1529 * Note: Fragment lists within fragments are not implemented
1530 * at the moment, state->root_skb could be replaced with
1531 * a stack for this purpose.
1532 */
1533 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1534 struct skb_seq_state *st)
1535 {
1536 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1537 skb_frag_t *frag;
1538
1539 if (unlikely(abs_offset >= st->upper_offset))
1540 return 0;
1541
1542 next_skb:
1543 block_limit = skb_headlen(st->cur_skb);
1544
1545 if (abs_offset < block_limit) {
1546 *data = st->cur_skb->data + abs_offset;
1547 return block_limit - abs_offset;
1548 }
1549
1550 if (st->frag_idx == 0 && !st->frag_data)
1551 st->stepped_offset += skb_headlen(st->cur_skb);
1552
1553 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1554 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1555 block_limit = frag->size + st->stepped_offset;
1556
1557 if (abs_offset < block_limit) {
1558 if (!st->frag_data)
1559 st->frag_data = kmap_skb_frag(frag);
1560
1561 *data = (u8 *) st->frag_data + frag->page_offset +
1562 (abs_offset - st->stepped_offset);
1563
1564 return block_limit - abs_offset;
1565 }
1566
1567 if (st->frag_data) {
1568 kunmap_skb_frag(st->frag_data);
1569 st->frag_data = NULL;
1570 }
1571
1572 st->frag_idx++;
1573 st->stepped_offset += frag->size;
1574 }
1575
1576 if (st->cur_skb->next) {
1577 st->cur_skb = st->cur_skb->next;
1578 st->frag_idx = 0;
1579 goto next_skb;
1580 } else if (st->root_skb == st->cur_skb &&
1581 skb_shinfo(st->root_skb)->frag_list) {
1582 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1583 goto next_skb;
1584 }
1585
1586 return 0;
1587 }
1588
1589 /**
1590 * skb_abort_seq_read - Abort a sequential read of skb data
1591 * @st: state variable
1592 *
1593 * Must be called if skb_seq_read() was not called until it
1594 * returned 0.
1595 */
1596 void skb_abort_seq_read(struct skb_seq_state *st)
1597 {
1598 if (st->frag_data)
1599 kunmap_skb_frag(st->frag_data);
1600 }
1601
1602 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1603
1604 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1605 struct ts_config *conf,
1606 struct ts_state *state)
1607 {
1608 return skb_seq_read(offset, text, TS_SKB_CB(state));
1609 }
1610
1611 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1612 {
1613 skb_abort_seq_read(TS_SKB_CB(state));
1614 }
1615
1616 /**
1617 * skb_find_text - Find a text pattern in skb data
1618 * @skb: the buffer to look in
1619 * @from: search offset
1620 * @to: search limit
1621 * @config: textsearch configuration
1622 * @state: uninitialized textsearch state variable
1623 *
1624 * Finds a pattern in the skb data according to the specified
1625 * textsearch configuration. Use textsearch_next() to retrieve
1626 * subsequent occurrences of the pattern. Returns the offset
1627 * to the first occurrence or UINT_MAX if no match was found.
1628 */
1629 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1630 unsigned int to, struct ts_config *config,
1631 struct ts_state *state)
1632 {
1633 config->get_next_block = skb_ts_get_next_block;
1634 config->finish = skb_ts_finish;
1635
1636 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1637
1638 return textsearch_find(config, state);
1639 }
1640
1641 void __init skb_init(void)
1642 {
1643 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1644 sizeof(struct sk_buff),
1645 0,
1646 SLAB_HWCACHE_ALIGN,
1647 NULL, NULL);
1648 if (!skbuff_head_cache)
1649 panic("cannot create skbuff cache");
1650 }
1651
1652 EXPORT_SYMBOL(___pskb_trim);
1653 EXPORT_SYMBOL(__kfree_skb);
1654 EXPORT_SYMBOL(__pskb_pull_tail);
1655 EXPORT_SYMBOL(alloc_skb);
1656 EXPORT_SYMBOL(pskb_copy);
1657 EXPORT_SYMBOL(pskb_expand_head);
1658 EXPORT_SYMBOL(skb_checksum);
1659 EXPORT_SYMBOL(skb_clone);
1660 EXPORT_SYMBOL(skb_clone_fraglist);
1661 EXPORT_SYMBOL(skb_copy);
1662 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1663 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1664 EXPORT_SYMBOL(skb_copy_bits);
1665 EXPORT_SYMBOL(skb_copy_expand);
1666 EXPORT_SYMBOL(skb_over_panic);
1667 EXPORT_SYMBOL(skb_pad);
1668 EXPORT_SYMBOL(skb_realloc_headroom);
1669 EXPORT_SYMBOL(skb_under_panic);
1670 EXPORT_SYMBOL(skb_dequeue);
1671 EXPORT_SYMBOL(skb_dequeue_tail);
1672 EXPORT_SYMBOL(skb_insert);
1673 EXPORT_SYMBOL(skb_queue_purge);
1674 EXPORT_SYMBOL(skb_queue_head);
1675 EXPORT_SYMBOL(skb_queue_tail);
1676 EXPORT_SYMBOL(skb_unlink);
1677 EXPORT_SYMBOL(skb_append);
1678 EXPORT_SYMBOL(skb_split);
1679 EXPORT_SYMBOL(skb_prepare_seq_read);
1680 EXPORT_SYMBOL(skb_seq_read);
1681 EXPORT_SYMBOL(skb_abort_seq_read);
1682 EXPORT_SYMBOL(skb_find_text);