Merge tag 'driver-core-3.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 static_key_slow_inc(&netstamp_needed);
1549 }
1550 EXPORT_SYMBOL(net_enable_timestamp);
1551
1552 void net_disable_timestamp(void)
1553 {
1554 #ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1558 }
1559 #endif
1560 static_key_slow_dec(&netstamp_needed);
1561 }
1562 EXPORT_SYMBOL(net_disable_timestamp);
1563
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1565 {
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1569 }
1570
1571 #define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1575 } \
1576
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1579 {
1580 unsigned int len;
1581
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1584
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1588
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1591 */
1592 if (skb_is_gso(skb))
1593 return true;
1594
1595 return false;
1596 }
1597
1598 /**
1599 * dev_forward_skb - loopback an skb to another netif
1600 *
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1603 *
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1607 *
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1611 *
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1615 */
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617 {
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1623 }
1624 }
1625
1626 skb_orphan(skb);
1627 nf_reset(skb);
1628
1629 if (unlikely(!is_skb_forwardable(dev, skb))) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 skb->skb_iif = 0;
1635 skb->dev = dev;
1636 skb_dst_drop(skb);
1637 skb->tstamp.tv64 = 0;
1638 skb->pkt_type = PACKET_HOST;
1639 skb->protocol = eth_type_trans(skb, dev);
1640 skb->mark = 0;
1641 secpath_reset(skb);
1642 nf_reset(skb);
1643 return netif_rx(skb);
1644 }
1645 EXPORT_SYMBOL_GPL(dev_forward_skb);
1646
1647 static inline int deliver_skb(struct sk_buff *skb,
1648 struct packet_type *pt_prev,
1649 struct net_device *orig_dev)
1650 {
1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1652 return -ENOMEM;
1653 atomic_inc(&skb->users);
1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1655 }
1656
1657 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658 {
1659 if (!ptype->af_packet_priv || !skb->sk)
1660 return false;
1661
1662 if (ptype->id_match)
1663 return ptype->id_match(ptype, skb->sk);
1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1665 return true;
1666
1667 return false;
1668 }
1669
1670 /*
1671 * Support routine. Sends outgoing frames to any network
1672 * taps currently in use.
1673 */
1674
1675 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676 {
1677 struct packet_type *ptype;
1678 struct sk_buff *skb2 = NULL;
1679 struct packet_type *pt_prev = NULL;
1680
1681 rcu_read_lock();
1682 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 /* Never send packets back to the socket
1684 * they originated from - MvS (miquels@drinkel.ow.org)
1685 */
1686 if ((ptype->dev == dev || !ptype->dev) &&
1687 (!skb_loop_sk(ptype, skb))) {
1688 if (pt_prev) {
1689 deliver_skb(skb2, pt_prev, skb->dev);
1690 pt_prev = ptype;
1691 continue;
1692 }
1693
1694 skb2 = skb_clone(skb, GFP_ATOMIC);
1695 if (!skb2)
1696 break;
1697
1698 net_timestamp_set(skb2);
1699
1700 /* skb->nh should be correctly
1701 set by sender, so that the second statement is
1702 just protection against buggy protocols.
1703 */
1704 skb_reset_mac_header(skb2);
1705
1706 if (skb_network_header(skb2) < skb2->data ||
1707 skb2->network_header > skb2->tail) {
1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 ntohs(skb2->protocol),
1710 dev->name);
1711 skb_reset_network_header(skb2);
1712 }
1713
1714 skb2->transport_header = skb2->network_header;
1715 skb2->pkt_type = PACKET_OUTGOING;
1716 pt_prev = ptype;
1717 }
1718 }
1719 if (pt_prev)
1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1721 rcu_read_unlock();
1722 }
1723
1724 /**
1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726 * @dev: Network device
1727 * @txq: number of queues available
1728 *
1729 * If real_num_tx_queues is changed the tc mappings may no longer be
1730 * valid. To resolve this verify the tc mapping remains valid and if
1731 * not NULL the mapping. With no priorities mapping to this
1732 * offset/count pair it will no longer be used. In the worst case TC0
1733 * is invalid nothing can be done so disable priority mappings. If is
1734 * expected that drivers will fix this mapping if they can before
1735 * calling netif_set_real_num_tx_queues.
1736 */
1737 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738 {
1739 int i;
1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741
1742 /* If TC0 is invalidated disable TC mapping */
1743 if (tc->offset + tc->count > txq) {
1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1745 dev->num_tc = 0;
1746 return;
1747 }
1748
1749 /* Invalidated prio to tc mappings set to TC0 */
1750 for (i = 1; i < TC_BITMASK + 1; i++) {
1751 int q = netdev_get_prio_tc_map(dev, i);
1752
1753 tc = &dev->tc_to_txq[q];
1754 if (tc->offset + tc->count > txq) {
1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1756 i, q);
1757 netdev_set_prio_tc_map(dev, i, 0);
1758 }
1759 }
1760 }
1761
1762 #ifdef CONFIG_XPS
1763 static DEFINE_MUTEX(xps_map_mutex);
1764 #define xmap_dereference(P) \
1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766
1767 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1768 int cpu, u16 index)
1769 {
1770 struct xps_map *map = NULL;
1771 int pos;
1772
1773 if (dev_maps)
1774 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775
1776 for (pos = 0; map && pos < map->len; pos++) {
1777 if (map->queues[pos] == index) {
1778 if (map->len > 1) {
1779 map->queues[pos] = map->queues[--map->len];
1780 } else {
1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 kfree_rcu(map, rcu);
1783 map = NULL;
1784 }
1785 break;
1786 }
1787 }
1788
1789 return map;
1790 }
1791
1792 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793 {
1794 struct xps_dev_maps *dev_maps;
1795 int cpu, i;
1796 bool active = false;
1797
1798 mutex_lock(&xps_map_mutex);
1799 dev_maps = xmap_dereference(dev->xps_maps);
1800
1801 if (!dev_maps)
1802 goto out_no_maps;
1803
1804 for_each_possible_cpu(cpu) {
1805 for (i = index; i < dev->num_tx_queues; i++) {
1806 if (!remove_xps_queue(dev_maps, cpu, i))
1807 break;
1808 }
1809 if (i == dev->num_tx_queues)
1810 active = true;
1811 }
1812
1813 if (!active) {
1814 RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 kfree_rcu(dev_maps, rcu);
1816 }
1817
1818 for (i = index; i < dev->num_tx_queues; i++)
1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1820 NUMA_NO_NODE);
1821
1822 out_no_maps:
1823 mutex_unlock(&xps_map_mutex);
1824 }
1825
1826 static struct xps_map *expand_xps_map(struct xps_map *map,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *new_map;
1830 int alloc_len = XPS_MIN_MAP_ALLOC;
1831 int i, pos;
1832
1833 for (pos = 0; map && pos < map->len; pos++) {
1834 if (map->queues[pos] != index)
1835 continue;
1836 return map;
1837 }
1838
1839 /* Need to add queue to this CPU's existing map */
1840 if (map) {
1841 if (pos < map->alloc_len)
1842 return map;
1843
1844 alloc_len = map->alloc_len * 2;
1845 }
1846
1847 /* Need to allocate new map to store queue on this CPU's map */
1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1849 cpu_to_node(cpu));
1850 if (!new_map)
1851 return NULL;
1852
1853 for (i = 0; i < pos; i++)
1854 new_map->queues[i] = map->queues[i];
1855 new_map->alloc_len = alloc_len;
1856 new_map->len = pos;
1857
1858 return new_map;
1859 }
1860
1861 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862 {
1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 struct xps_map *map, *new_map;
1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 int cpu, numa_node_id = -2;
1867 bool active = false;
1868
1869 mutex_lock(&xps_map_mutex);
1870
1871 dev_maps = xmap_dereference(dev->xps_maps);
1872
1873 /* allocate memory for queue storage */
1874 for_each_online_cpu(cpu) {
1875 if (!cpumask_test_cpu(cpu, mask))
1876 continue;
1877
1878 if (!new_dev_maps)
1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 if (!new_dev_maps) {
1881 mutex_unlock(&xps_map_mutex);
1882 return -ENOMEM;
1883 }
1884
1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1886 NULL;
1887
1888 map = expand_xps_map(map, cpu, index);
1889 if (!map)
1890 goto error;
1891
1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1893 }
1894
1895 if (!new_dev_maps)
1896 goto out_no_new_maps;
1897
1898 for_each_possible_cpu(cpu) {
1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 /* add queue to CPU maps */
1901 int pos = 0;
1902
1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 while ((pos < map->len) && (map->queues[pos] != index))
1905 pos++;
1906
1907 if (pos == map->len)
1908 map->queues[map->len++] = index;
1909 #ifdef CONFIG_NUMA
1910 if (numa_node_id == -2)
1911 numa_node_id = cpu_to_node(cpu);
1912 else if (numa_node_id != cpu_to_node(cpu))
1913 numa_node_id = -1;
1914 #endif
1915 } else if (dev_maps) {
1916 /* fill in the new device map from the old device map */
1917 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 }
1920
1921 }
1922
1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924
1925 /* Cleanup old maps */
1926 if (dev_maps) {
1927 for_each_possible_cpu(cpu) {
1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 if (map && map != new_map)
1931 kfree_rcu(map, rcu);
1932 }
1933
1934 kfree_rcu(dev_maps, rcu);
1935 }
1936
1937 dev_maps = new_dev_maps;
1938 active = true;
1939
1940 out_no_new_maps:
1941 /* update Tx queue numa node */
1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 (numa_node_id >= 0) ? numa_node_id :
1944 NUMA_NO_NODE);
1945
1946 if (!dev_maps)
1947 goto out_no_maps;
1948
1949 /* removes queue from unused CPUs */
1950 for_each_possible_cpu(cpu) {
1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1952 continue;
1953
1954 if (remove_xps_queue(dev_maps, cpu, index))
1955 active = true;
1956 }
1957
1958 /* free map if not active */
1959 if (!active) {
1960 RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 kfree_rcu(dev_maps, rcu);
1962 }
1963
1964 out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966
1967 return 0;
1968 error:
1969 /* remove any maps that we added */
1970 for_each_possible_cpu(cpu) {
1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1973 NULL;
1974 if (new_map && new_map != map)
1975 kfree(new_map);
1976 }
1977
1978 mutex_unlock(&xps_map_mutex);
1979
1980 kfree(new_dev_maps);
1981 return -ENOMEM;
1982 }
1983 EXPORT_SYMBOL(netif_set_xps_queue);
1984
1985 #endif
1986 /*
1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989 */
1990 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991 {
1992 int rc;
1993
1994 if (txq < 1 || txq > dev->num_tx_queues)
1995 return -EINVAL;
1996
1997 if (dev->reg_state == NETREG_REGISTERED ||
1998 dev->reg_state == NETREG_UNREGISTERING) {
1999 ASSERT_RTNL();
2000
2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2002 txq);
2003 if (rc)
2004 return rc;
2005
2006 if (dev->num_tc)
2007 netif_setup_tc(dev, txq);
2008
2009 if (txq < dev->real_num_tx_queues) {
2010 qdisc_reset_all_tx_gt(dev, txq);
2011 #ifdef CONFIG_XPS
2012 netif_reset_xps_queues_gt(dev, txq);
2013 #endif
2014 }
2015 }
2016
2017 dev->real_num_tx_queues = txq;
2018 return 0;
2019 }
2020 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021
2022 #ifdef CONFIG_RPS
2023 /**
2024 * netif_set_real_num_rx_queues - set actual number of RX queues used
2025 * @dev: Network device
2026 * @rxq: Actual number of RX queues
2027 *
2028 * This must be called either with the rtnl_lock held or before
2029 * registration of the net device. Returns 0 on success, or a
2030 * negative error code. If called before registration, it always
2031 * succeeds.
2032 */
2033 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034 {
2035 int rc;
2036
2037 if (rxq < 1 || rxq > dev->num_rx_queues)
2038 return -EINVAL;
2039
2040 if (dev->reg_state == NETREG_REGISTERED) {
2041 ASSERT_RTNL();
2042
2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2044 rxq);
2045 if (rc)
2046 return rc;
2047 }
2048
2049 dev->real_num_rx_queues = rxq;
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2053 #endif
2054
2055 /**
2056 * netif_get_num_default_rss_queues - default number of RSS queues
2057 *
2058 * This routine should set an upper limit on the number of RSS queues
2059 * used by default by multiqueue devices.
2060 */
2061 int netif_get_num_default_rss_queues(void)
2062 {
2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064 }
2065 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066
2067 static inline void __netif_reschedule(struct Qdisc *q)
2068 {
2069 struct softnet_data *sd;
2070 unsigned long flags;
2071
2072 local_irq_save(flags);
2073 sd = &__get_cpu_var(softnet_data);
2074 q->next_sched = NULL;
2075 *sd->output_queue_tailp = q;
2076 sd->output_queue_tailp = &q->next_sched;
2077 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 local_irq_restore(flags);
2079 }
2080
2081 void __netif_schedule(struct Qdisc *q)
2082 {
2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 __netif_reschedule(q);
2085 }
2086 EXPORT_SYMBOL(__netif_schedule);
2087
2088 void dev_kfree_skb_irq(struct sk_buff *skb)
2089 {
2090 if (atomic_dec_and_test(&skb->users)) {
2091 struct softnet_data *sd;
2092 unsigned long flags;
2093
2094 local_irq_save(flags);
2095 sd = &__get_cpu_var(softnet_data);
2096 skb->next = sd->completion_queue;
2097 sd->completion_queue = skb;
2098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 local_irq_restore(flags);
2100 }
2101 }
2102 EXPORT_SYMBOL(dev_kfree_skb_irq);
2103
2104 void dev_kfree_skb_any(struct sk_buff *skb)
2105 {
2106 if (in_irq() || irqs_disabled())
2107 dev_kfree_skb_irq(skb);
2108 else
2109 dev_kfree_skb(skb);
2110 }
2111 EXPORT_SYMBOL(dev_kfree_skb_any);
2112
2113
2114 /**
2115 * netif_device_detach - mark device as removed
2116 * @dev: network device
2117 *
2118 * Mark device as removed from system and therefore no longer available.
2119 */
2120 void netif_device_detach(struct net_device *dev)
2121 {
2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 netif_running(dev)) {
2124 netif_tx_stop_all_queues(dev);
2125 }
2126 }
2127 EXPORT_SYMBOL(netif_device_detach);
2128
2129 /**
2130 * netif_device_attach - mark device as attached
2131 * @dev: network device
2132 *
2133 * Mark device as attached from system and restart if needed.
2134 */
2135 void netif_device_attach(struct net_device *dev)
2136 {
2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 netif_running(dev)) {
2139 netif_tx_wake_all_queues(dev);
2140 __netdev_watchdog_up(dev);
2141 }
2142 }
2143 EXPORT_SYMBOL(netif_device_attach);
2144
2145 static void skb_warn_bad_offload(const struct sk_buff *skb)
2146 {
2147 static const netdev_features_t null_features = 0;
2148 struct net_device *dev = skb->dev;
2149 const char *driver = "";
2150
2151 if (dev && dev->dev.parent)
2152 driver = dev_driver_string(dev->dev.parent);
2153
2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2155 "gso_type=%d ip_summed=%d\n",
2156 driver, dev ? &dev->features : &null_features,
2157 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2159 skb_shinfo(skb)->gso_type, skb->ip_summed);
2160 }
2161
2162 /*
2163 * Invalidate hardware checksum when packet is to be mangled, and
2164 * complete checksum manually on outgoing path.
2165 */
2166 int skb_checksum_help(struct sk_buff *skb)
2167 {
2168 __wsum csum;
2169 int ret = 0, offset;
2170
2171 if (skb->ip_summed == CHECKSUM_COMPLETE)
2172 goto out_set_summed;
2173
2174 if (unlikely(skb_shinfo(skb)->gso_size)) {
2175 skb_warn_bad_offload(skb);
2176 return -EINVAL;
2177 }
2178
2179 /* Before computing a checksum, we should make sure no frag could
2180 * be modified by an external entity : checksum could be wrong.
2181 */
2182 if (skb_has_shared_frag(skb)) {
2183 ret = __skb_linearize(skb);
2184 if (ret)
2185 goto out;
2186 }
2187
2188 offset = skb_checksum_start_offset(skb);
2189 BUG_ON(offset >= skb_headlen(skb));
2190 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2191
2192 offset += skb->csum_offset;
2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2194
2195 if (skb_cloned(skb) &&
2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2198 if (ret)
2199 goto out;
2200 }
2201
2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2203 out_set_summed:
2204 skb->ip_summed = CHECKSUM_NONE;
2205 out:
2206 return ret;
2207 }
2208 EXPORT_SYMBOL(skb_checksum_help);
2209
2210 /**
2211 * skb_mac_gso_segment - mac layer segmentation handler.
2212 * @skb: buffer to segment
2213 * @features: features for the output path (see dev->features)
2214 */
2215 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2216 netdev_features_t features)
2217 {
2218 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2219 struct packet_offload *ptype;
2220 __be16 type = skb->protocol;
2221 int vlan_depth = ETH_HLEN;
2222
2223 while (type == htons(ETH_P_8021Q)) {
2224 struct vlan_hdr *vh;
2225
2226 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2227 return ERR_PTR(-EINVAL);
2228
2229 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2230 type = vh->h_vlan_encapsulated_proto;
2231 vlan_depth += VLAN_HLEN;
2232 }
2233
2234 __skb_pull(skb, skb->mac_len);
2235
2236 rcu_read_lock();
2237 list_for_each_entry_rcu(ptype, &offload_base, list) {
2238 if (ptype->type == type && ptype->callbacks.gso_segment) {
2239 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2240 int err;
2241
2242 err = ptype->callbacks.gso_send_check(skb);
2243 segs = ERR_PTR(err);
2244 if (err || skb_gso_ok(skb, features))
2245 break;
2246 __skb_push(skb, (skb->data -
2247 skb_network_header(skb)));
2248 }
2249 segs = ptype->callbacks.gso_segment(skb, features);
2250 break;
2251 }
2252 }
2253 rcu_read_unlock();
2254
2255 __skb_push(skb, skb->data - skb_mac_header(skb));
2256
2257 return segs;
2258 }
2259 EXPORT_SYMBOL(skb_mac_gso_segment);
2260
2261
2262 /* openvswitch calls this on rx path, so we need a different check.
2263 */
2264 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2265 {
2266 if (tx_path)
2267 return skb->ip_summed != CHECKSUM_PARTIAL;
2268 else
2269 return skb->ip_summed == CHECKSUM_NONE;
2270 }
2271
2272 /**
2273 * __skb_gso_segment - Perform segmentation on skb.
2274 * @skb: buffer to segment
2275 * @features: features for the output path (see dev->features)
2276 * @tx_path: whether it is called in TX path
2277 *
2278 * This function segments the given skb and returns a list of segments.
2279 *
2280 * It may return NULL if the skb requires no segmentation. This is
2281 * only possible when GSO is used for verifying header integrity.
2282 */
2283 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2284 netdev_features_t features, bool tx_path)
2285 {
2286 if (unlikely(skb_needs_check(skb, tx_path))) {
2287 int err;
2288
2289 skb_warn_bad_offload(skb);
2290
2291 if (skb_header_cloned(skb) &&
2292 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2293 return ERR_PTR(err);
2294 }
2295
2296 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2297 skb_reset_mac_header(skb);
2298 skb_reset_mac_len(skb);
2299
2300 return skb_mac_gso_segment(skb, features);
2301 }
2302 EXPORT_SYMBOL(__skb_gso_segment);
2303
2304 /* Take action when hardware reception checksum errors are detected. */
2305 #ifdef CONFIG_BUG
2306 void netdev_rx_csum_fault(struct net_device *dev)
2307 {
2308 if (net_ratelimit()) {
2309 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2310 dump_stack();
2311 }
2312 }
2313 EXPORT_SYMBOL(netdev_rx_csum_fault);
2314 #endif
2315
2316 /* Actually, we should eliminate this check as soon as we know, that:
2317 * 1. IOMMU is present and allows to map all the memory.
2318 * 2. No high memory really exists on this machine.
2319 */
2320
2321 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2322 {
2323 #ifdef CONFIG_HIGHMEM
2324 int i;
2325 if (!(dev->features & NETIF_F_HIGHDMA)) {
2326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2328 if (PageHighMem(skb_frag_page(frag)))
2329 return 1;
2330 }
2331 }
2332
2333 if (PCI_DMA_BUS_IS_PHYS) {
2334 struct device *pdev = dev->dev.parent;
2335
2336 if (!pdev)
2337 return 0;
2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2340 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2341 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2342 return 1;
2343 }
2344 }
2345 #endif
2346 return 0;
2347 }
2348
2349 struct dev_gso_cb {
2350 void (*destructor)(struct sk_buff *skb);
2351 };
2352
2353 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2354
2355 static void dev_gso_skb_destructor(struct sk_buff *skb)
2356 {
2357 struct dev_gso_cb *cb;
2358
2359 do {
2360 struct sk_buff *nskb = skb->next;
2361
2362 skb->next = nskb->next;
2363 nskb->next = NULL;
2364 kfree_skb(nskb);
2365 } while (skb->next);
2366
2367 cb = DEV_GSO_CB(skb);
2368 if (cb->destructor)
2369 cb->destructor(skb);
2370 }
2371
2372 /**
2373 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2374 * @skb: buffer to segment
2375 * @features: device features as applicable to this skb
2376 *
2377 * This function segments the given skb and stores the list of segments
2378 * in skb->next.
2379 */
2380 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2381 {
2382 struct sk_buff *segs;
2383
2384 segs = skb_gso_segment(skb, features);
2385
2386 /* Verifying header integrity only. */
2387 if (!segs)
2388 return 0;
2389
2390 if (IS_ERR(segs))
2391 return PTR_ERR(segs);
2392
2393 skb->next = segs;
2394 DEV_GSO_CB(skb)->destructor = skb->destructor;
2395 skb->destructor = dev_gso_skb_destructor;
2396
2397 return 0;
2398 }
2399
2400 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2401 {
2402 return ((features & NETIF_F_GEN_CSUM) ||
2403 ((features & NETIF_F_V4_CSUM) &&
2404 protocol == htons(ETH_P_IP)) ||
2405 ((features & NETIF_F_V6_CSUM) &&
2406 protocol == htons(ETH_P_IPV6)) ||
2407 ((features & NETIF_F_FCOE_CRC) &&
2408 protocol == htons(ETH_P_FCOE)));
2409 }
2410
2411 static netdev_features_t harmonize_features(struct sk_buff *skb,
2412 __be16 protocol, netdev_features_t features)
2413 {
2414 if (skb->ip_summed != CHECKSUM_NONE &&
2415 !can_checksum_protocol(features, protocol)) {
2416 features &= ~NETIF_F_ALL_CSUM;
2417 features &= ~NETIF_F_SG;
2418 } else if (illegal_highdma(skb->dev, skb)) {
2419 features &= ~NETIF_F_SG;
2420 }
2421
2422 return features;
2423 }
2424
2425 netdev_features_t netif_skb_features(struct sk_buff *skb)
2426 {
2427 __be16 protocol = skb->protocol;
2428 netdev_features_t features = skb->dev->features;
2429
2430 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2431 features &= ~NETIF_F_GSO_MASK;
2432
2433 if (protocol == htons(ETH_P_8021Q)) {
2434 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2435 protocol = veh->h_vlan_encapsulated_proto;
2436 } else if (!vlan_tx_tag_present(skb)) {
2437 return harmonize_features(skb, protocol, features);
2438 }
2439
2440 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2441
2442 if (protocol != htons(ETH_P_8021Q)) {
2443 return harmonize_features(skb, protocol, features);
2444 } else {
2445 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2446 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2447 return harmonize_features(skb, protocol, features);
2448 }
2449 }
2450 EXPORT_SYMBOL(netif_skb_features);
2451
2452 /*
2453 * Returns true if either:
2454 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2455 * 2. skb is fragmented and the device does not support SG.
2456 */
2457 static inline int skb_needs_linearize(struct sk_buff *skb,
2458 int features)
2459 {
2460 return skb_is_nonlinear(skb) &&
2461 ((skb_has_frag_list(skb) &&
2462 !(features & NETIF_F_FRAGLIST)) ||
2463 (skb_shinfo(skb)->nr_frags &&
2464 !(features & NETIF_F_SG)));
2465 }
2466
2467 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2468 struct netdev_queue *txq)
2469 {
2470 const struct net_device_ops *ops = dev->netdev_ops;
2471 int rc = NETDEV_TX_OK;
2472 unsigned int skb_len;
2473
2474 if (likely(!skb->next)) {
2475 netdev_features_t features;
2476
2477 /*
2478 * If device doesn't need skb->dst, release it right now while
2479 * its hot in this cpu cache
2480 */
2481 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2482 skb_dst_drop(skb);
2483
2484 features = netif_skb_features(skb);
2485
2486 if (vlan_tx_tag_present(skb) &&
2487 !(features & NETIF_F_HW_VLAN_TX)) {
2488 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2489 if (unlikely(!skb))
2490 goto out;
2491
2492 skb->vlan_tci = 0;
2493 }
2494
2495 /* If encapsulation offload request, verify we are testing
2496 * hardware encapsulation features instead of standard
2497 * features for the netdev
2498 */
2499 if (skb->encapsulation)
2500 features &= dev->hw_enc_features;
2501
2502 if (netif_needs_gso(skb, features)) {
2503 if (unlikely(dev_gso_segment(skb, features)))
2504 goto out_kfree_skb;
2505 if (skb->next)
2506 goto gso;
2507 } else {
2508 if (skb_needs_linearize(skb, features) &&
2509 __skb_linearize(skb))
2510 goto out_kfree_skb;
2511
2512 /* If packet is not checksummed and device does not
2513 * support checksumming for this protocol, complete
2514 * checksumming here.
2515 */
2516 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2517 if (skb->encapsulation)
2518 skb_set_inner_transport_header(skb,
2519 skb_checksum_start_offset(skb));
2520 else
2521 skb_set_transport_header(skb,
2522 skb_checksum_start_offset(skb));
2523 if (!(features & NETIF_F_ALL_CSUM) &&
2524 skb_checksum_help(skb))
2525 goto out_kfree_skb;
2526 }
2527 }
2528
2529 if (!list_empty(&ptype_all))
2530 dev_queue_xmit_nit(skb, dev);
2531
2532 skb_len = skb->len;
2533 rc = ops->ndo_start_xmit(skb, dev);
2534 trace_net_dev_xmit(skb, rc, dev, skb_len);
2535 if (rc == NETDEV_TX_OK)
2536 txq_trans_update(txq);
2537 return rc;
2538 }
2539
2540 gso:
2541 do {
2542 struct sk_buff *nskb = skb->next;
2543
2544 skb->next = nskb->next;
2545 nskb->next = NULL;
2546
2547 /*
2548 * If device doesn't need nskb->dst, release it right now while
2549 * its hot in this cpu cache
2550 */
2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 skb_dst_drop(nskb);
2553
2554 if (!list_empty(&ptype_all))
2555 dev_queue_xmit_nit(nskb, dev);
2556
2557 skb_len = nskb->len;
2558 rc = ops->ndo_start_xmit(nskb, dev);
2559 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2560 if (unlikely(rc != NETDEV_TX_OK)) {
2561 if (rc & ~NETDEV_TX_MASK)
2562 goto out_kfree_gso_skb;
2563 nskb->next = skb->next;
2564 skb->next = nskb;
2565 return rc;
2566 }
2567 txq_trans_update(txq);
2568 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2569 return NETDEV_TX_BUSY;
2570 } while (skb->next);
2571
2572 out_kfree_gso_skb:
2573 if (likely(skb->next == NULL))
2574 skb->destructor = DEV_GSO_CB(skb)->destructor;
2575 out_kfree_skb:
2576 kfree_skb(skb);
2577 out:
2578 return rc;
2579 }
2580
2581 static void qdisc_pkt_len_init(struct sk_buff *skb)
2582 {
2583 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2584
2585 qdisc_skb_cb(skb)->pkt_len = skb->len;
2586
2587 /* To get more precise estimation of bytes sent on wire,
2588 * we add to pkt_len the headers size of all segments
2589 */
2590 if (shinfo->gso_size) {
2591 unsigned int hdr_len;
2592
2593 /* mac layer + network layer */
2594 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2595
2596 /* + transport layer */
2597 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2598 hdr_len += tcp_hdrlen(skb);
2599 else
2600 hdr_len += sizeof(struct udphdr);
2601 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2602 }
2603 }
2604
2605 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2606 struct net_device *dev,
2607 struct netdev_queue *txq)
2608 {
2609 spinlock_t *root_lock = qdisc_lock(q);
2610 bool contended;
2611 int rc;
2612
2613 qdisc_pkt_len_init(skb);
2614 qdisc_calculate_pkt_len(skb, q);
2615 /*
2616 * Heuristic to force contended enqueues to serialize on a
2617 * separate lock before trying to get qdisc main lock.
2618 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2619 * and dequeue packets faster.
2620 */
2621 contended = qdisc_is_running(q);
2622 if (unlikely(contended))
2623 spin_lock(&q->busylock);
2624
2625 spin_lock(root_lock);
2626 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2627 kfree_skb(skb);
2628 rc = NET_XMIT_DROP;
2629 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2630 qdisc_run_begin(q)) {
2631 /*
2632 * This is a work-conserving queue; there are no old skbs
2633 * waiting to be sent out; and the qdisc is not running -
2634 * xmit the skb directly.
2635 */
2636 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2637 skb_dst_force(skb);
2638
2639 qdisc_bstats_update(q, skb);
2640
2641 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2642 if (unlikely(contended)) {
2643 spin_unlock(&q->busylock);
2644 contended = false;
2645 }
2646 __qdisc_run(q);
2647 } else
2648 qdisc_run_end(q);
2649
2650 rc = NET_XMIT_SUCCESS;
2651 } else {
2652 skb_dst_force(skb);
2653 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2654 if (qdisc_run_begin(q)) {
2655 if (unlikely(contended)) {
2656 spin_unlock(&q->busylock);
2657 contended = false;
2658 }
2659 __qdisc_run(q);
2660 }
2661 }
2662 spin_unlock(root_lock);
2663 if (unlikely(contended))
2664 spin_unlock(&q->busylock);
2665 return rc;
2666 }
2667
2668 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2669 static void skb_update_prio(struct sk_buff *skb)
2670 {
2671 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2672
2673 if (!skb->priority && skb->sk && map) {
2674 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2675
2676 if (prioidx < map->priomap_len)
2677 skb->priority = map->priomap[prioidx];
2678 }
2679 }
2680 #else
2681 #define skb_update_prio(skb)
2682 #endif
2683
2684 static DEFINE_PER_CPU(int, xmit_recursion);
2685 #define RECURSION_LIMIT 10
2686
2687 /**
2688 * dev_loopback_xmit - loop back @skb
2689 * @skb: buffer to transmit
2690 */
2691 int dev_loopback_xmit(struct sk_buff *skb)
2692 {
2693 skb_reset_mac_header(skb);
2694 __skb_pull(skb, skb_network_offset(skb));
2695 skb->pkt_type = PACKET_LOOPBACK;
2696 skb->ip_summed = CHECKSUM_UNNECESSARY;
2697 WARN_ON(!skb_dst(skb));
2698 skb_dst_force(skb);
2699 netif_rx_ni(skb);
2700 return 0;
2701 }
2702 EXPORT_SYMBOL(dev_loopback_xmit);
2703
2704 /**
2705 * dev_queue_xmit - transmit a buffer
2706 * @skb: buffer to transmit
2707 *
2708 * Queue a buffer for transmission to a network device. The caller must
2709 * have set the device and priority and built the buffer before calling
2710 * this function. The function can be called from an interrupt.
2711 *
2712 * A negative errno code is returned on a failure. A success does not
2713 * guarantee the frame will be transmitted as it may be dropped due
2714 * to congestion or traffic shaping.
2715 *
2716 * -----------------------------------------------------------------------------------
2717 * I notice this method can also return errors from the queue disciplines,
2718 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2719 * be positive.
2720 *
2721 * Regardless of the return value, the skb is consumed, so it is currently
2722 * difficult to retry a send to this method. (You can bump the ref count
2723 * before sending to hold a reference for retry if you are careful.)
2724 *
2725 * When calling this method, interrupts MUST be enabled. This is because
2726 * the BH enable code must have IRQs enabled so that it will not deadlock.
2727 * --BLG
2728 */
2729 int dev_queue_xmit(struct sk_buff *skb)
2730 {
2731 struct net_device *dev = skb->dev;
2732 struct netdev_queue *txq;
2733 struct Qdisc *q;
2734 int rc = -ENOMEM;
2735
2736 skb_reset_mac_header(skb);
2737
2738 /* Disable soft irqs for various locks below. Also
2739 * stops preemption for RCU.
2740 */
2741 rcu_read_lock_bh();
2742
2743 skb_update_prio(skb);
2744
2745 txq = netdev_pick_tx(dev, skb);
2746 q = rcu_dereference_bh(txq->qdisc);
2747
2748 #ifdef CONFIG_NET_CLS_ACT
2749 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2750 #endif
2751 trace_net_dev_queue(skb);
2752 if (q->enqueue) {
2753 rc = __dev_xmit_skb(skb, q, dev, txq);
2754 goto out;
2755 }
2756
2757 /* The device has no queue. Common case for software devices:
2758 loopback, all the sorts of tunnels...
2759
2760 Really, it is unlikely that netif_tx_lock protection is necessary
2761 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2762 counters.)
2763 However, it is possible, that they rely on protection
2764 made by us here.
2765
2766 Check this and shot the lock. It is not prone from deadlocks.
2767 Either shot noqueue qdisc, it is even simpler 8)
2768 */
2769 if (dev->flags & IFF_UP) {
2770 int cpu = smp_processor_id(); /* ok because BHs are off */
2771
2772 if (txq->xmit_lock_owner != cpu) {
2773
2774 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2775 goto recursion_alert;
2776
2777 HARD_TX_LOCK(dev, txq, cpu);
2778
2779 if (!netif_xmit_stopped(txq)) {
2780 __this_cpu_inc(xmit_recursion);
2781 rc = dev_hard_start_xmit(skb, dev, txq);
2782 __this_cpu_dec(xmit_recursion);
2783 if (dev_xmit_complete(rc)) {
2784 HARD_TX_UNLOCK(dev, txq);
2785 goto out;
2786 }
2787 }
2788 HARD_TX_UNLOCK(dev, txq);
2789 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2790 dev->name);
2791 } else {
2792 /* Recursion is detected! It is possible,
2793 * unfortunately
2794 */
2795 recursion_alert:
2796 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2797 dev->name);
2798 }
2799 }
2800
2801 rc = -ENETDOWN;
2802 rcu_read_unlock_bh();
2803
2804 kfree_skb(skb);
2805 return rc;
2806 out:
2807 rcu_read_unlock_bh();
2808 return rc;
2809 }
2810 EXPORT_SYMBOL(dev_queue_xmit);
2811
2812
2813 /*=======================================================================
2814 Receiver routines
2815 =======================================================================*/
2816
2817 int netdev_max_backlog __read_mostly = 1000;
2818 EXPORT_SYMBOL(netdev_max_backlog);
2819
2820 int netdev_tstamp_prequeue __read_mostly = 1;
2821 int netdev_budget __read_mostly = 300;
2822 int weight_p __read_mostly = 64; /* old backlog weight */
2823
2824 /* Called with irq disabled */
2825 static inline void ____napi_schedule(struct softnet_data *sd,
2826 struct napi_struct *napi)
2827 {
2828 list_add_tail(&napi->poll_list, &sd->poll_list);
2829 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2830 }
2831
2832 #ifdef CONFIG_RPS
2833
2834 /* One global table that all flow-based protocols share. */
2835 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2836 EXPORT_SYMBOL(rps_sock_flow_table);
2837
2838 struct static_key rps_needed __read_mostly;
2839
2840 static struct rps_dev_flow *
2841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2842 struct rps_dev_flow *rflow, u16 next_cpu)
2843 {
2844 if (next_cpu != RPS_NO_CPU) {
2845 #ifdef CONFIG_RFS_ACCEL
2846 struct netdev_rx_queue *rxqueue;
2847 struct rps_dev_flow_table *flow_table;
2848 struct rps_dev_flow *old_rflow;
2849 u32 flow_id;
2850 u16 rxq_index;
2851 int rc;
2852
2853 /* Should we steer this flow to a different hardware queue? */
2854 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2855 !(dev->features & NETIF_F_NTUPLE))
2856 goto out;
2857 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2858 if (rxq_index == skb_get_rx_queue(skb))
2859 goto out;
2860
2861 rxqueue = dev->_rx + rxq_index;
2862 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2863 if (!flow_table)
2864 goto out;
2865 flow_id = skb->rxhash & flow_table->mask;
2866 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2867 rxq_index, flow_id);
2868 if (rc < 0)
2869 goto out;
2870 old_rflow = rflow;
2871 rflow = &flow_table->flows[flow_id];
2872 rflow->filter = rc;
2873 if (old_rflow->filter == rflow->filter)
2874 old_rflow->filter = RPS_NO_FILTER;
2875 out:
2876 #endif
2877 rflow->last_qtail =
2878 per_cpu(softnet_data, next_cpu).input_queue_head;
2879 }
2880
2881 rflow->cpu = next_cpu;
2882 return rflow;
2883 }
2884
2885 /*
2886 * get_rps_cpu is called from netif_receive_skb and returns the target
2887 * CPU from the RPS map of the receiving queue for a given skb.
2888 * rcu_read_lock must be held on entry.
2889 */
2890 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2891 struct rps_dev_flow **rflowp)
2892 {
2893 struct netdev_rx_queue *rxqueue;
2894 struct rps_map *map;
2895 struct rps_dev_flow_table *flow_table;
2896 struct rps_sock_flow_table *sock_flow_table;
2897 int cpu = -1;
2898 u16 tcpu;
2899
2900 if (skb_rx_queue_recorded(skb)) {
2901 u16 index = skb_get_rx_queue(skb);
2902 if (unlikely(index >= dev->real_num_rx_queues)) {
2903 WARN_ONCE(dev->real_num_rx_queues > 1,
2904 "%s received packet on queue %u, but number "
2905 "of RX queues is %u\n",
2906 dev->name, index, dev->real_num_rx_queues);
2907 goto done;
2908 }
2909 rxqueue = dev->_rx + index;
2910 } else
2911 rxqueue = dev->_rx;
2912
2913 map = rcu_dereference(rxqueue->rps_map);
2914 if (map) {
2915 if (map->len == 1 &&
2916 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2917 tcpu = map->cpus[0];
2918 if (cpu_online(tcpu))
2919 cpu = tcpu;
2920 goto done;
2921 }
2922 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2923 goto done;
2924 }
2925
2926 skb_reset_network_header(skb);
2927 if (!skb_get_rxhash(skb))
2928 goto done;
2929
2930 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2931 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2932 if (flow_table && sock_flow_table) {
2933 u16 next_cpu;
2934 struct rps_dev_flow *rflow;
2935
2936 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2937 tcpu = rflow->cpu;
2938
2939 next_cpu = sock_flow_table->ents[skb->rxhash &
2940 sock_flow_table->mask];
2941
2942 /*
2943 * If the desired CPU (where last recvmsg was done) is
2944 * different from current CPU (one in the rx-queue flow
2945 * table entry), switch if one of the following holds:
2946 * - Current CPU is unset (equal to RPS_NO_CPU).
2947 * - Current CPU is offline.
2948 * - The current CPU's queue tail has advanced beyond the
2949 * last packet that was enqueued using this table entry.
2950 * This guarantees that all previous packets for the flow
2951 * have been dequeued, thus preserving in order delivery.
2952 */
2953 if (unlikely(tcpu != next_cpu) &&
2954 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2955 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2956 rflow->last_qtail)) >= 0)) {
2957 tcpu = next_cpu;
2958 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2959 }
2960
2961 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2962 *rflowp = rflow;
2963 cpu = tcpu;
2964 goto done;
2965 }
2966 }
2967
2968 if (map) {
2969 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2970
2971 if (cpu_online(tcpu)) {
2972 cpu = tcpu;
2973 goto done;
2974 }
2975 }
2976
2977 done:
2978 return cpu;
2979 }
2980
2981 #ifdef CONFIG_RFS_ACCEL
2982
2983 /**
2984 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2985 * @dev: Device on which the filter was set
2986 * @rxq_index: RX queue index
2987 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2988 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2989 *
2990 * Drivers that implement ndo_rx_flow_steer() should periodically call
2991 * this function for each installed filter and remove the filters for
2992 * which it returns %true.
2993 */
2994 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2995 u32 flow_id, u16 filter_id)
2996 {
2997 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2998 struct rps_dev_flow_table *flow_table;
2999 struct rps_dev_flow *rflow;
3000 bool expire = true;
3001 int cpu;
3002
3003 rcu_read_lock();
3004 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3005 if (flow_table && flow_id <= flow_table->mask) {
3006 rflow = &flow_table->flows[flow_id];
3007 cpu = ACCESS_ONCE(rflow->cpu);
3008 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3009 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3010 rflow->last_qtail) <
3011 (int)(10 * flow_table->mask)))
3012 expire = false;
3013 }
3014 rcu_read_unlock();
3015 return expire;
3016 }
3017 EXPORT_SYMBOL(rps_may_expire_flow);
3018
3019 #endif /* CONFIG_RFS_ACCEL */
3020
3021 /* Called from hardirq (IPI) context */
3022 static void rps_trigger_softirq(void *data)
3023 {
3024 struct softnet_data *sd = data;
3025
3026 ____napi_schedule(sd, &sd->backlog);
3027 sd->received_rps++;
3028 }
3029
3030 #endif /* CONFIG_RPS */
3031
3032 /*
3033 * Check if this softnet_data structure is another cpu one
3034 * If yes, queue it to our IPI list and return 1
3035 * If no, return 0
3036 */
3037 static int rps_ipi_queued(struct softnet_data *sd)
3038 {
3039 #ifdef CONFIG_RPS
3040 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3041
3042 if (sd != mysd) {
3043 sd->rps_ipi_next = mysd->rps_ipi_list;
3044 mysd->rps_ipi_list = sd;
3045
3046 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3047 return 1;
3048 }
3049 #endif /* CONFIG_RPS */
3050 return 0;
3051 }
3052
3053 /*
3054 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3055 * queue (may be a remote CPU queue).
3056 */
3057 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3058 unsigned int *qtail)
3059 {
3060 struct softnet_data *sd;
3061 unsigned long flags;
3062
3063 sd = &per_cpu(softnet_data, cpu);
3064
3065 local_irq_save(flags);
3066
3067 rps_lock(sd);
3068 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3069 if (skb_queue_len(&sd->input_pkt_queue)) {
3070 enqueue:
3071 __skb_queue_tail(&sd->input_pkt_queue, skb);
3072 input_queue_tail_incr_save(sd, qtail);
3073 rps_unlock(sd);
3074 local_irq_restore(flags);
3075 return NET_RX_SUCCESS;
3076 }
3077
3078 /* Schedule NAPI for backlog device
3079 * We can use non atomic operation since we own the queue lock
3080 */
3081 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3082 if (!rps_ipi_queued(sd))
3083 ____napi_schedule(sd, &sd->backlog);
3084 }
3085 goto enqueue;
3086 }
3087
3088 sd->dropped++;
3089 rps_unlock(sd);
3090
3091 local_irq_restore(flags);
3092
3093 atomic_long_inc(&skb->dev->rx_dropped);
3094 kfree_skb(skb);
3095 return NET_RX_DROP;
3096 }
3097
3098 /**
3099 * netif_rx - post buffer to the network code
3100 * @skb: buffer to post
3101 *
3102 * This function receives a packet from a device driver and queues it for
3103 * the upper (protocol) levels to process. It always succeeds. The buffer
3104 * may be dropped during processing for congestion control or by the
3105 * protocol layers.
3106 *
3107 * return values:
3108 * NET_RX_SUCCESS (no congestion)
3109 * NET_RX_DROP (packet was dropped)
3110 *
3111 */
3112
3113 int netif_rx(struct sk_buff *skb)
3114 {
3115 int ret;
3116
3117 /* if netpoll wants it, pretend we never saw it */
3118 if (netpoll_rx(skb))
3119 return NET_RX_DROP;
3120
3121 net_timestamp_check(netdev_tstamp_prequeue, skb);
3122
3123 trace_netif_rx(skb);
3124 #ifdef CONFIG_RPS
3125 if (static_key_false(&rps_needed)) {
3126 struct rps_dev_flow voidflow, *rflow = &voidflow;
3127 int cpu;
3128
3129 preempt_disable();
3130 rcu_read_lock();
3131
3132 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3133 if (cpu < 0)
3134 cpu = smp_processor_id();
3135
3136 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3137
3138 rcu_read_unlock();
3139 preempt_enable();
3140 } else
3141 #endif
3142 {
3143 unsigned int qtail;
3144 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3145 put_cpu();
3146 }
3147 return ret;
3148 }
3149 EXPORT_SYMBOL(netif_rx);
3150
3151 int netif_rx_ni(struct sk_buff *skb)
3152 {
3153 int err;
3154
3155 preempt_disable();
3156 err = netif_rx(skb);
3157 if (local_softirq_pending())
3158 do_softirq();
3159 preempt_enable();
3160
3161 return err;
3162 }
3163 EXPORT_SYMBOL(netif_rx_ni);
3164
3165 static void net_tx_action(struct softirq_action *h)
3166 {
3167 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3168
3169 if (sd->completion_queue) {
3170 struct sk_buff *clist;
3171
3172 local_irq_disable();
3173 clist = sd->completion_queue;
3174 sd->completion_queue = NULL;
3175 local_irq_enable();
3176
3177 while (clist) {
3178 struct sk_buff *skb = clist;
3179 clist = clist->next;
3180
3181 WARN_ON(atomic_read(&skb->users));
3182 trace_kfree_skb(skb, net_tx_action);
3183 __kfree_skb(skb);
3184 }
3185 }
3186
3187 if (sd->output_queue) {
3188 struct Qdisc *head;
3189
3190 local_irq_disable();
3191 head = sd->output_queue;
3192 sd->output_queue = NULL;
3193 sd->output_queue_tailp = &sd->output_queue;
3194 local_irq_enable();
3195
3196 while (head) {
3197 struct Qdisc *q = head;
3198 spinlock_t *root_lock;
3199
3200 head = head->next_sched;
3201
3202 root_lock = qdisc_lock(q);
3203 if (spin_trylock(root_lock)) {
3204 smp_mb__before_clear_bit();
3205 clear_bit(__QDISC_STATE_SCHED,
3206 &q->state);
3207 qdisc_run(q);
3208 spin_unlock(root_lock);
3209 } else {
3210 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3211 &q->state)) {
3212 __netif_reschedule(q);
3213 } else {
3214 smp_mb__before_clear_bit();
3215 clear_bit(__QDISC_STATE_SCHED,
3216 &q->state);
3217 }
3218 }
3219 }
3220 }
3221 }
3222
3223 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3224 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3225 /* This hook is defined here for ATM LANE */
3226 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3227 unsigned char *addr) __read_mostly;
3228 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3229 #endif
3230
3231 #ifdef CONFIG_NET_CLS_ACT
3232 /* TODO: Maybe we should just force sch_ingress to be compiled in
3233 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3234 * a compare and 2 stores extra right now if we dont have it on
3235 * but have CONFIG_NET_CLS_ACT
3236 * NOTE: This doesn't stop any functionality; if you dont have
3237 * the ingress scheduler, you just can't add policies on ingress.
3238 *
3239 */
3240 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3241 {
3242 struct net_device *dev = skb->dev;
3243 u32 ttl = G_TC_RTTL(skb->tc_verd);
3244 int result = TC_ACT_OK;
3245 struct Qdisc *q;
3246
3247 if (unlikely(MAX_RED_LOOP < ttl++)) {
3248 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3249 skb->skb_iif, dev->ifindex);
3250 return TC_ACT_SHOT;
3251 }
3252
3253 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3254 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3255
3256 q = rxq->qdisc;
3257 if (q != &noop_qdisc) {
3258 spin_lock(qdisc_lock(q));
3259 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3260 result = qdisc_enqueue_root(skb, q);
3261 spin_unlock(qdisc_lock(q));
3262 }
3263
3264 return result;
3265 }
3266
3267 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3268 struct packet_type **pt_prev,
3269 int *ret, struct net_device *orig_dev)
3270 {
3271 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3272
3273 if (!rxq || rxq->qdisc == &noop_qdisc)
3274 goto out;
3275
3276 if (*pt_prev) {
3277 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3278 *pt_prev = NULL;
3279 }
3280
3281 switch (ing_filter(skb, rxq)) {
3282 case TC_ACT_SHOT:
3283 case TC_ACT_STOLEN:
3284 kfree_skb(skb);
3285 return NULL;
3286 }
3287
3288 out:
3289 skb->tc_verd = 0;
3290 return skb;
3291 }
3292 #endif
3293
3294 /**
3295 * netdev_rx_handler_register - register receive handler
3296 * @dev: device to register a handler for
3297 * @rx_handler: receive handler to register
3298 * @rx_handler_data: data pointer that is used by rx handler
3299 *
3300 * Register a receive hander for a device. This handler will then be
3301 * called from __netif_receive_skb. A negative errno code is returned
3302 * on a failure.
3303 *
3304 * The caller must hold the rtnl_mutex.
3305 *
3306 * For a general description of rx_handler, see enum rx_handler_result.
3307 */
3308 int netdev_rx_handler_register(struct net_device *dev,
3309 rx_handler_func_t *rx_handler,
3310 void *rx_handler_data)
3311 {
3312 ASSERT_RTNL();
3313
3314 if (dev->rx_handler)
3315 return -EBUSY;
3316
3317 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3318 rcu_assign_pointer(dev->rx_handler, rx_handler);
3319
3320 return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3323
3324 /**
3325 * netdev_rx_handler_unregister - unregister receive handler
3326 * @dev: device to unregister a handler from
3327 *
3328 * Unregister a receive hander from a device.
3329 *
3330 * The caller must hold the rtnl_mutex.
3331 */
3332 void netdev_rx_handler_unregister(struct net_device *dev)
3333 {
3334
3335 ASSERT_RTNL();
3336 RCU_INIT_POINTER(dev->rx_handler, NULL);
3337 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3338 }
3339 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3340
3341 /*
3342 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3343 * the special handling of PFMEMALLOC skbs.
3344 */
3345 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3346 {
3347 switch (skb->protocol) {
3348 case __constant_htons(ETH_P_ARP):
3349 case __constant_htons(ETH_P_IP):
3350 case __constant_htons(ETH_P_IPV6):
3351 case __constant_htons(ETH_P_8021Q):
3352 return true;
3353 default:
3354 return false;
3355 }
3356 }
3357
3358 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3359 {
3360 struct packet_type *ptype, *pt_prev;
3361 rx_handler_func_t *rx_handler;
3362 struct net_device *orig_dev;
3363 struct net_device *null_or_dev;
3364 bool deliver_exact = false;
3365 int ret = NET_RX_DROP;
3366 __be16 type;
3367
3368 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3369
3370 trace_netif_receive_skb(skb);
3371
3372 /* if we've gotten here through NAPI, check netpoll */
3373 if (netpoll_receive_skb(skb))
3374 goto out;
3375
3376 orig_dev = skb->dev;
3377
3378 skb_reset_network_header(skb);
3379 if (!skb_transport_header_was_set(skb))
3380 skb_reset_transport_header(skb);
3381 skb_reset_mac_len(skb);
3382
3383 pt_prev = NULL;
3384
3385 rcu_read_lock();
3386
3387 another_round:
3388 skb->skb_iif = skb->dev->ifindex;
3389
3390 __this_cpu_inc(softnet_data.processed);
3391
3392 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3393 skb = vlan_untag(skb);
3394 if (unlikely(!skb))
3395 goto unlock;
3396 }
3397
3398 #ifdef CONFIG_NET_CLS_ACT
3399 if (skb->tc_verd & TC_NCLS) {
3400 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3401 goto ncls;
3402 }
3403 #endif
3404
3405 if (pfmemalloc)
3406 goto skip_taps;
3407
3408 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3409 if (!ptype->dev || ptype->dev == skb->dev) {
3410 if (pt_prev)
3411 ret = deliver_skb(skb, pt_prev, orig_dev);
3412 pt_prev = ptype;
3413 }
3414 }
3415
3416 skip_taps:
3417 #ifdef CONFIG_NET_CLS_ACT
3418 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3419 if (!skb)
3420 goto unlock;
3421 ncls:
3422 #endif
3423
3424 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3425 goto drop;
3426
3427 if (vlan_tx_tag_present(skb)) {
3428 if (pt_prev) {
3429 ret = deliver_skb(skb, pt_prev, orig_dev);
3430 pt_prev = NULL;
3431 }
3432 if (vlan_do_receive(&skb))
3433 goto another_round;
3434 else if (unlikely(!skb))
3435 goto unlock;
3436 }
3437
3438 rx_handler = rcu_dereference(skb->dev->rx_handler);
3439 if (rx_handler) {
3440 if (pt_prev) {
3441 ret = deliver_skb(skb, pt_prev, orig_dev);
3442 pt_prev = NULL;
3443 }
3444 switch (rx_handler(&skb)) {
3445 case RX_HANDLER_CONSUMED:
3446 ret = NET_RX_SUCCESS;
3447 goto unlock;
3448 case RX_HANDLER_ANOTHER:
3449 goto another_round;
3450 case RX_HANDLER_EXACT:
3451 deliver_exact = true;
3452 case RX_HANDLER_PASS:
3453 break;
3454 default:
3455 BUG();
3456 }
3457 }
3458
3459 if (vlan_tx_nonzero_tag_present(skb))
3460 skb->pkt_type = PACKET_OTHERHOST;
3461
3462 /* deliver only exact match when indicated */
3463 null_or_dev = deliver_exact ? skb->dev : NULL;
3464
3465 type = skb->protocol;
3466 list_for_each_entry_rcu(ptype,
3467 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3468 if (ptype->type == type &&
3469 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3470 ptype->dev == orig_dev)) {
3471 if (pt_prev)
3472 ret = deliver_skb(skb, pt_prev, orig_dev);
3473 pt_prev = ptype;
3474 }
3475 }
3476
3477 if (pt_prev) {
3478 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3479 goto drop;
3480 else
3481 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3482 } else {
3483 drop:
3484 atomic_long_inc(&skb->dev->rx_dropped);
3485 kfree_skb(skb);
3486 /* Jamal, now you will not able to escape explaining
3487 * me how you were going to use this. :-)
3488 */
3489 ret = NET_RX_DROP;
3490 }
3491
3492 unlock:
3493 rcu_read_unlock();
3494 out:
3495 return ret;
3496 }
3497
3498 static int __netif_receive_skb(struct sk_buff *skb)
3499 {
3500 int ret;
3501
3502 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3503 unsigned long pflags = current->flags;
3504
3505 /*
3506 * PFMEMALLOC skbs are special, they should
3507 * - be delivered to SOCK_MEMALLOC sockets only
3508 * - stay away from userspace
3509 * - have bounded memory usage
3510 *
3511 * Use PF_MEMALLOC as this saves us from propagating the allocation
3512 * context down to all allocation sites.
3513 */
3514 current->flags |= PF_MEMALLOC;
3515 ret = __netif_receive_skb_core(skb, true);
3516 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3517 } else
3518 ret = __netif_receive_skb_core(skb, false);
3519
3520 return ret;
3521 }
3522
3523 /**
3524 * netif_receive_skb - process receive buffer from network
3525 * @skb: buffer to process
3526 *
3527 * netif_receive_skb() is the main receive data processing function.
3528 * It always succeeds. The buffer may be dropped during processing
3529 * for congestion control or by the protocol layers.
3530 *
3531 * This function may only be called from softirq context and interrupts
3532 * should be enabled.
3533 *
3534 * Return values (usually ignored):
3535 * NET_RX_SUCCESS: no congestion
3536 * NET_RX_DROP: packet was dropped
3537 */
3538 int netif_receive_skb(struct sk_buff *skb)
3539 {
3540 net_timestamp_check(netdev_tstamp_prequeue, skb);
3541
3542 if (skb_defer_rx_timestamp(skb))
3543 return NET_RX_SUCCESS;
3544
3545 #ifdef CONFIG_RPS
3546 if (static_key_false(&rps_needed)) {
3547 struct rps_dev_flow voidflow, *rflow = &voidflow;
3548 int cpu, ret;
3549
3550 rcu_read_lock();
3551
3552 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3553
3554 if (cpu >= 0) {
3555 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3556 rcu_read_unlock();
3557 return ret;
3558 }
3559 rcu_read_unlock();
3560 }
3561 #endif
3562 return __netif_receive_skb(skb);
3563 }
3564 EXPORT_SYMBOL(netif_receive_skb);
3565
3566 /* Network device is going away, flush any packets still pending
3567 * Called with irqs disabled.
3568 */
3569 static void flush_backlog(void *arg)
3570 {
3571 struct net_device *dev = arg;
3572 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3573 struct sk_buff *skb, *tmp;
3574
3575 rps_lock(sd);
3576 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3577 if (skb->dev == dev) {
3578 __skb_unlink(skb, &sd->input_pkt_queue);
3579 kfree_skb(skb);
3580 input_queue_head_incr(sd);
3581 }
3582 }
3583 rps_unlock(sd);
3584
3585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3586 if (skb->dev == dev) {
3587 __skb_unlink(skb, &sd->process_queue);
3588 kfree_skb(skb);
3589 input_queue_head_incr(sd);
3590 }
3591 }
3592 }
3593
3594 static int napi_gro_complete(struct sk_buff *skb)
3595 {
3596 struct packet_offload *ptype;
3597 __be16 type = skb->protocol;
3598 struct list_head *head = &offload_base;
3599 int err = -ENOENT;
3600
3601 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3602
3603 if (NAPI_GRO_CB(skb)->count == 1) {
3604 skb_shinfo(skb)->gso_size = 0;
3605 goto out;
3606 }
3607
3608 rcu_read_lock();
3609 list_for_each_entry_rcu(ptype, head, list) {
3610 if (ptype->type != type || !ptype->callbacks.gro_complete)
3611 continue;
3612
3613 err = ptype->callbacks.gro_complete(skb);
3614 break;
3615 }
3616 rcu_read_unlock();
3617
3618 if (err) {
3619 WARN_ON(&ptype->list == head);
3620 kfree_skb(skb);
3621 return NET_RX_SUCCESS;
3622 }
3623
3624 out:
3625 return netif_receive_skb(skb);
3626 }
3627
3628 /* napi->gro_list contains packets ordered by age.
3629 * youngest packets at the head of it.
3630 * Complete skbs in reverse order to reduce latencies.
3631 */
3632 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3633 {
3634 struct sk_buff *skb, *prev = NULL;
3635
3636 /* scan list and build reverse chain */
3637 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3638 skb->prev = prev;
3639 prev = skb;
3640 }
3641
3642 for (skb = prev; skb; skb = prev) {
3643 skb->next = NULL;
3644
3645 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3646 return;
3647
3648 prev = skb->prev;
3649 napi_gro_complete(skb);
3650 napi->gro_count--;
3651 }
3652
3653 napi->gro_list = NULL;
3654 }
3655 EXPORT_SYMBOL(napi_gro_flush);
3656
3657 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3658 {
3659 struct sk_buff *p;
3660 unsigned int maclen = skb->dev->hard_header_len;
3661
3662 for (p = napi->gro_list; p; p = p->next) {
3663 unsigned long diffs;
3664
3665 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3666 diffs |= p->vlan_tci ^ skb->vlan_tci;
3667 if (maclen == ETH_HLEN)
3668 diffs |= compare_ether_header(skb_mac_header(p),
3669 skb_gro_mac_header(skb));
3670 else if (!diffs)
3671 diffs = memcmp(skb_mac_header(p),
3672 skb_gro_mac_header(skb),
3673 maclen);
3674 NAPI_GRO_CB(p)->same_flow = !diffs;
3675 NAPI_GRO_CB(p)->flush = 0;
3676 }
3677 }
3678
3679 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3680 {
3681 struct sk_buff **pp = NULL;
3682 struct packet_offload *ptype;
3683 __be16 type = skb->protocol;
3684 struct list_head *head = &offload_base;
3685 int same_flow;
3686 enum gro_result ret;
3687
3688 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3689 goto normal;
3690
3691 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3692 goto normal;
3693
3694 gro_list_prepare(napi, skb);
3695
3696 rcu_read_lock();
3697 list_for_each_entry_rcu(ptype, head, list) {
3698 if (ptype->type != type || !ptype->callbacks.gro_receive)
3699 continue;
3700
3701 skb_set_network_header(skb, skb_gro_offset(skb));
3702 skb_reset_mac_len(skb);
3703 NAPI_GRO_CB(skb)->same_flow = 0;
3704 NAPI_GRO_CB(skb)->flush = 0;
3705 NAPI_GRO_CB(skb)->free = 0;
3706
3707 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3708 break;
3709 }
3710 rcu_read_unlock();
3711
3712 if (&ptype->list == head)
3713 goto normal;
3714
3715 same_flow = NAPI_GRO_CB(skb)->same_flow;
3716 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3717
3718 if (pp) {
3719 struct sk_buff *nskb = *pp;
3720
3721 *pp = nskb->next;
3722 nskb->next = NULL;
3723 napi_gro_complete(nskb);
3724 napi->gro_count--;
3725 }
3726
3727 if (same_flow)
3728 goto ok;
3729
3730 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3731 goto normal;
3732
3733 napi->gro_count++;
3734 NAPI_GRO_CB(skb)->count = 1;
3735 NAPI_GRO_CB(skb)->age = jiffies;
3736 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3737 skb->next = napi->gro_list;
3738 napi->gro_list = skb;
3739 ret = GRO_HELD;
3740
3741 pull:
3742 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3743 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3744
3745 BUG_ON(skb->end - skb->tail < grow);
3746
3747 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3748
3749 skb->tail += grow;
3750 skb->data_len -= grow;
3751
3752 skb_shinfo(skb)->frags[0].page_offset += grow;
3753 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3754
3755 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3756 skb_frag_unref(skb, 0);
3757 memmove(skb_shinfo(skb)->frags,
3758 skb_shinfo(skb)->frags + 1,
3759 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3760 }
3761 }
3762
3763 ok:
3764 return ret;
3765
3766 normal:
3767 ret = GRO_NORMAL;
3768 goto pull;
3769 }
3770
3771
3772 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3773 {
3774 switch (ret) {
3775 case GRO_NORMAL:
3776 if (netif_receive_skb(skb))
3777 ret = GRO_DROP;
3778 break;
3779
3780 case GRO_DROP:
3781 kfree_skb(skb);
3782 break;
3783
3784 case GRO_MERGED_FREE:
3785 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3786 kmem_cache_free(skbuff_head_cache, skb);
3787 else
3788 __kfree_skb(skb);
3789 break;
3790
3791 case GRO_HELD:
3792 case GRO_MERGED:
3793 break;
3794 }
3795
3796 return ret;
3797 }
3798
3799 static void skb_gro_reset_offset(struct sk_buff *skb)
3800 {
3801 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3802 const skb_frag_t *frag0 = &pinfo->frags[0];
3803
3804 NAPI_GRO_CB(skb)->data_offset = 0;
3805 NAPI_GRO_CB(skb)->frag0 = NULL;
3806 NAPI_GRO_CB(skb)->frag0_len = 0;
3807
3808 if (skb->mac_header == skb->tail &&
3809 pinfo->nr_frags &&
3810 !PageHighMem(skb_frag_page(frag0))) {
3811 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3812 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3813 }
3814 }
3815
3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 skb_gro_reset_offset(skb);
3819
3820 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3821 }
3822 EXPORT_SYMBOL(napi_gro_receive);
3823
3824 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3825 {
3826 __skb_pull(skb, skb_headlen(skb));
3827 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3828 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3829 skb->vlan_tci = 0;
3830 skb->dev = napi->dev;
3831 skb->skb_iif = 0;
3832
3833 napi->skb = skb;
3834 }
3835
3836 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3837 {
3838 struct sk_buff *skb = napi->skb;
3839
3840 if (!skb) {
3841 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3842 if (skb)
3843 napi->skb = skb;
3844 }
3845 return skb;
3846 }
3847 EXPORT_SYMBOL(napi_get_frags);
3848
3849 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3850 gro_result_t ret)
3851 {
3852 switch (ret) {
3853 case GRO_NORMAL:
3854 case GRO_HELD:
3855 skb->protocol = eth_type_trans(skb, skb->dev);
3856
3857 if (ret == GRO_HELD)
3858 skb_gro_pull(skb, -ETH_HLEN);
3859 else if (netif_receive_skb(skb))
3860 ret = GRO_DROP;
3861 break;
3862
3863 case GRO_DROP:
3864 case GRO_MERGED_FREE:
3865 napi_reuse_skb(napi, skb);
3866 break;
3867
3868 case GRO_MERGED:
3869 break;
3870 }
3871
3872 return ret;
3873 }
3874
3875 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3876 {
3877 struct sk_buff *skb = napi->skb;
3878 struct ethhdr *eth;
3879 unsigned int hlen;
3880 unsigned int off;
3881
3882 napi->skb = NULL;
3883
3884 skb_reset_mac_header(skb);
3885 skb_gro_reset_offset(skb);
3886
3887 off = skb_gro_offset(skb);
3888 hlen = off + sizeof(*eth);
3889 eth = skb_gro_header_fast(skb, off);
3890 if (skb_gro_header_hard(skb, hlen)) {
3891 eth = skb_gro_header_slow(skb, hlen, off);
3892 if (unlikely(!eth)) {
3893 napi_reuse_skb(napi, skb);
3894 skb = NULL;
3895 goto out;
3896 }
3897 }
3898
3899 skb_gro_pull(skb, sizeof(*eth));
3900
3901 /*
3902 * This works because the only protocols we care about don't require
3903 * special handling. We'll fix it up properly at the end.
3904 */
3905 skb->protocol = eth->h_proto;
3906
3907 out:
3908 return skb;
3909 }
3910
3911 gro_result_t napi_gro_frags(struct napi_struct *napi)
3912 {
3913 struct sk_buff *skb = napi_frags_skb(napi);
3914
3915 if (!skb)
3916 return GRO_DROP;
3917
3918 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3919 }
3920 EXPORT_SYMBOL(napi_gro_frags);
3921
3922 /*
3923 * net_rps_action sends any pending IPI's for rps.
3924 * Note: called with local irq disabled, but exits with local irq enabled.
3925 */
3926 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3927 {
3928 #ifdef CONFIG_RPS
3929 struct softnet_data *remsd = sd->rps_ipi_list;
3930
3931 if (remsd) {
3932 sd->rps_ipi_list = NULL;
3933
3934 local_irq_enable();
3935
3936 /* Send pending IPI's to kick RPS processing on remote cpus. */
3937 while (remsd) {
3938 struct softnet_data *next = remsd->rps_ipi_next;
3939
3940 if (cpu_online(remsd->cpu))
3941 __smp_call_function_single(remsd->cpu,
3942 &remsd->csd, 0);
3943 remsd = next;
3944 }
3945 } else
3946 #endif
3947 local_irq_enable();
3948 }
3949
3950 static int process_backlog(struct napi_struct *napi, int quota)
3951 {
3952 int work = 0;
3953 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3954
3955 #ifdef CONFIG_RPS
3956 /* Check if we have pending ipi, its better to send them now,
3957 * not waiting net_rx_action() end.
3958 */
3959 if (sd->rps_ipi_list) {
3960 local_irq_disable();
3961 net_rps_action_and_irq_enable(sd);
3962 }
3963 #endif
3964 napi->weight = weight_p;
3965 local_irq_disable();
3966 while (work < quota) {
3967 struct sk_buff *skb;
3968 unsigned int qlen;
3969
3970 while ((skb = __skb_dequeue(&sd->process_queue))) {
3971 local_irq_enable();
3972 __netif_receive_skb(skb);
3973 local_irq_disable();
3974 input_queue_head_incr(sd);
3975 if (++work >= quota) {
3976 local_irq_enable();
3977 return work;
3978 }
3979 }
3980
3981 rps_lock(sd);
3982 qlen = skb_queue_len(&sd->input_pkt_queue);
3983 if (qlen)
3984 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3985 &sd->process_queue);
3986
3987 if (qlen < quota - work) {
3988 /*
3989 * Inline a custom version of __napi_complete().
3990 * only current cpu owns and manipulates this napi,
3991 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3992 * we can use a plain write instead of clear_bit(),
3993 * and we dont need an smp_mb() memory barrier.
3994 */
3995 list_del(&napi->poll_list);
3996 napi->state = 0;
3997
3998 quota = work + qlen;
3999 }
4000 rps_unlock(sd);
4001 }
4002 local_irq_enable();
4003
4004 return work;
4005 }
4006
4007 /**
4008 * __napi_schedule - schedule for receive
4009 * @n: entry to schedule
4010 *
4011 * The entry's receive function will be scheduled to run
4012 */
4013 void __napi_schedule(struct napi_struct *n)
4014 {
4015 unsigned long flags;
4016
4017 local_irq_save(flags);
4018 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4019 local_irq_restore(flags);
4020 }
4021 EXPORT_SYMBOL(__napi_schedule);
4022
4023 void __napi_complete(struct napi_struct *n)
4024 {
4025 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4026 BUG_ON(n->gro_list);
4027
4028 list_del(&n->poll_list);
4029 smp_mb__before_clear_bit();
4030 clear_bit(NAPI_STATE_SCHED, &n->state);
4031 }
4032 EXPORT_SYMBOL(__napi_complete);
4033
4034 void napi_complete(struct napi_struct *n)
4035 {
4036 unsigned long flags;
4037
4038 /*
4039 * don't let napi dequeue from the cpu poll list
4040 * just in case its running on a different cpu
4041 */
4042 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4043 return;
4044
4045 napi_gro_flush(n, false);
4046 local_irq_save(flags);
4047 __napi_complete(n);
4048 local_irq_restore(flags);
4049 }
4050 EXPORT_SYMBOL(napi_complete);
4051
4052 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4053 int (*poll)(struct napi_struct *, int), int weight)
4054 {
4055 INIT_LIST_HEAD(&napi->poll_list);
4056 napi->gro_count = 0;
4057 napi->gro_list = NULL;
4058 napi->skb = NULL;
4059 napi->poll = poll;
4060 napi->weight = weight;
4061 list_add(&napi->dev_list, &dev->napi_list);
4062 napi->dev = dev;
4063 #ifdef CONFIG_NETPOLL
4064 spin_lock_init(&napi->poll_lock);
4065 napi->poll_owner = -1;
4066 #endif
4067 set_bit(NAPI_STATE_SCHED, &napi->state);
4068 }
4069 EXPORT_SYMBOL(netif_napi_add);
4070
4071 void netif_napi_del(struct napi_struct *napi)
4072 {
4073 struct sk_buff *skb, *next;
4074
4075 list_del_init(&napi->dev_list);
4076 napi_free_frags(napi);
4077
4078 for (skb = napi->gro_list; skb; skb = next) {
4079 next = skb->next;
4080 skb->next = NULL;
4081 kfree_skb(skb);
4082 }
4083
4084 napi->gro_list = NULL;
4085 napi->gro_count = 0;
4086 }
4087 EXPORT_SYMBOL(netif_napi_del);
4088
4089 static void net_rx_action(struct softirq_action *h)
4090 {
4091 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4092 unsigned long time_limit = jiffies + 2;
4093 int budget = netdev_budget;
4094 void *have;
4095
4096 local_irq_disable();
4097
4098 while (!list_empty(&sd->poll_list)) {
4099 struct napi_struct *n;
4100 int work, weight;
4101
4102 /* If softirq window is exhuasted then punt.
4103 * Allow this to run for 2 jiffies since which will allow
4104 * an average latency of 1.5/HZ.
4105 */
4106 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4107 goto softnet_break;
4108
4109 local_irq_enable();
4110
4111 /* Even though interrupts have been re-enabled, this
4112 * access is safe because interrupts can only add new
4113 * entries to the tail of this list, and only ->poll()
4114 * calls can remove this head entry from the list.
4115 */
4116 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4117
4118 have = netpoll_poll_lock(n);
4119
4120 weight = n->weight;
4121
4122 /* This NAPI_STATE_SCHED test is for avoiding a race
4123 * with netpoll's poll_napi(). Only the entity which
4124 * obtains the lock and sees NAPI_STATE_SCHED set will
4125 * actually make the ->poll() call. Therefore we avoid
4126 * accidentally calling ->poll() when NAPI is not scheduled.
4127 */
4128 work = 0;
4129 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4130 work = n->poll(n, weight);
4131 trace_napi_poll(n);
4132 }
4133
4134 WARN_ON_ONCE(work > weight);
4135
4136 budget -= work;
4137
4138 local_irq_disable();
4139
4140 /* Drivers must not modify the NAPI state if they
4141 * consume the entire weight. In such cases this code
4142 * still "owns" the NAPI instance and therefore can
4143 * move the instance around on the list at-will.
4144 */
4145 if (unlikely(work == weight)) {
4146 if (unlikely(napi_disable_pending(n))) {
4147 local_irq_enable();
4148 napi_complete(n);
4149 local_irq_disable();
4150 } else {
4151 if (n->gro_list) {
4152 /* flush too old packets
4153 * If HZ < 1000, flush all packets.
4154 */
4155 local_irq_enable();
4156 napi_gro_flush(n, HZ >= 1000);
4157 local_irq_disable();
4158 }
4159 list_move_tail(&n->poll_list, &sd->poll_list);
4160 }
4161 }
4162
4163 netpoll_poll_unlock(have);
4164 }
4165 out:
4166 net_rps_action_and_irq_enable(sd);
4167
4168 #ifdef CONFIG_NET_DMA
4169 /*
4170 * There may not be any more sk_buffs coming right now, so push
4171 * any pending DMA copies to hardware
4172 */
4173 dma_issue_pending_all();
4174 #endif
4175
4176 return;
4177
4178 softnet_break:
4179 sd->time_squeeze++;
4180 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4181 goto out;
4182 }
4183
4184 struct netdev_upper {
4185 struct net_device *dev;
4186 bool master;
4187 struct list_head list;
4188 struct rcu_head rcu;
4189 struct list_head search_list;
4190 };
4191
4192 static void __append_search_uppers(struct list_head *search_list,
4193 struct net_device *dev)
4194 {
4195 struct netdev_upper *upper;
4196
4197 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4198 /* check if this upper is not already in search list */
4199 if (list_empty(&upper->search_list))
4200 list_add_tail(&upper->search_list, search_list);
4201 }
4202 }
4203
4204 static bool __netdev_search_upper_dev(struct net_device *dev,
4205 struct net_device *upper_dev)
4206 {
4207 LIST_HEAD(search_list);
4208 struct netdev_upper *upper;
4209 struct netdev_upper *tmp;
4210 bool ret = false;
4211
4212 __append_search_uppers(&search_list, dev);
4213 list_for_each_entry(upper, &search_list, search_list) {
4214 if (upper->dev == upper_dev) {
4215 ret = true;
4216 break;
4217 }
4218 __append_search_uppers(&search_list, upper->dev);
4219 }
4220 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4221 INIT_LIST_HEAD(&upper->search_list);
4222 return ret;
4223 }
4224
4225 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4226 struct net_device *upper_dev)
4227 {
4228 struct netdev_upper *upper;
4229
4230 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4231 if (upper->dev == upper_dev)
4232 return upper;
4233 }
4234 return NULL;
4235 }
4236
4237 /**
4238 * netdev_has_upper_dev - Check if device is linked to an upper device
4239 * @dev: device
4240 * @upper_dev: upper device to check
4241 *
4242 * Find out if a device is linked to specified upper device and return true
4243 * in case it is. Note that this checks only immediate upper device,
4244 * not through a complete stack of devices. The caller must hold the RTNL lock.
4245 */
4246 bool netdev_has_upper_dev(struct net_device *dev,
4247 struct net_device *upper_dev)
4248 {
4249 ASSERT_RTNL();
4250
4251 return __netdev_find_upper(dev, upper_dev);
4252 }
4253 EXPORT_SYMBOL(netdev_has_upper_dev);
4254
4255 /**
4256 * netdev_has_any_upper_dev - Check if device is linked to some device
4257 * @dev: device
4258 *
4259 * Find out if a device is linked to an upper device and return true in case
4260 * it is. The caller must hold the RTNL lock.
4261 */
4262 bool netdev_has_any_upper_dev(struct net_device *dev)
4263 {
4264 ASSERT_RTNL();
4265
4266 return !list_empty(&dev->upper_dev_list);
4267 }
4268 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4269
4270 /**
4271 * netdev_master_upper_dev_get - Get master upper device
4272 * @dev: device
4273 *
4274 * Find a master upper device and return pointer to it or NULL in case
4275 * it's not there. The caller must hold the RTNL lock.
4276 */
4277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4278 {
4279 struct netdev_upper *upper;
4280
4281 ASSERT_RTNL();
4282
4283 if (list_empty(&dev->upper_dev_list))
4284 return NULL;
4285
4286 upper = list_first_entry(&dev->upper_dev_list,
4287 struct netdev_upper, list);
4288 if (likely(upper->master))
4289 return upper->dev;
4290 return NULL;
4291 }
4292 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4293
4294 /**
4295 * netdev_master_upper_dev_get_rcu - Get master upper device
4296 * @dev: device
4297 *
4298 * Find a master upper device and return pointer to it or NULL in case
4299 * it's not there. The caller must hold the RCU read lock.
4300 */
4301 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4302 {
4303 struct netdev_upper *upper;
4304
4305 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4306 struct netdev_upper, list);
4307 if (upper && likely(upper->master))
4308 return upper->dev;
4309 return NULL;
4310 }
4311 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4312
4313 static int __netdev_upper_dev_link(struct net_device *dev,
4314 struct net_device *upper_dev, bool master)
4315 {
4316 struct netdev_upper *upper;
4317
4318 ASSERT_RTNL();
4319
4320 if (dev == upper_dev)
4321 return -EBUSY;
4322
4323 /* To prevent loops, check if dev is not upper device to upper_dev. */
4324 if (__netdev_search_upper_dev(upper_dev, dev))
4325 return -EBUSY;
4326
4327 if (__netdev_find_upper(dev, upper_dev))
4328 return -EEXIST;
4329
4330 if (master && netdev_master_upper_dev_get(dev))
4331 return -EBUSY;
4332
4333 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4334 if (!upper)
4335 return -ENOMEM;
4336
4337 upper->dev = upper_dev;
4338 upper->master = master;
4339 INIT_LIST_HEAD(&upper->search_list);
4340
4341 /* Ensure that master upper link is always the first item in list. */
4342 if (master)
4343 list_add_rcu(&upper->list, &dev->upper_dev_list);
4344 else
4345 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4346 dev_hold(upper_dev);
4347
4348 return 0;
4349 }
4350
4351 /**
4352 * netdev_upper_dev_link - Add a link to the upper device
4353 * @dev: device
4354 * @upper_dev: new upper device
4355 *
4356 * Adds a link to device which is upper to this one. The caller must hold
4357 * the RTNL lock. On a failure a negative errno code is returned.
4358 * On success the reference counts are adjusted and the function
4359 * returns zero.
4360 */
4361 int netdev_upper_dev_link(struct net_device *dev,
4362 struct net_device *upper_dev)
4363 {
4364 return __netdev_upper_dev_link(dev, upper_dev, false);
4365 }
4366 EXPORT_SYMBOL(netdev_upper_dev_link);
4367
4368 /**
4369 * netdev_master_upper_dev_link - Add a master link to the upper device
4370 * @dev: device
4371 * @upper_dev: new upper device
4372 *
4373 * Adds a link to device which is upper to this one. In this case, only
4374 * one master upper device can be linked, although other non-master devices
4375 * might be linked as well. The caller must hold the RTNL lock.
4376 * On a failure a negative errno code is returned. On success the reference
4377 * counts are adjusted and the function returns zero.
4378 */
4379 int netdev_master_upper_dev_link(struct net_device *dev,
4380 struct net_device *upper_dev)
4381 {
4382 return __netdev_upper_dev_link(dev, upper_dev, true);
4383 }
4384 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4385
4386 /**
4387 * netdev_upper_dev_unlink - Removes a link to upper device
4388 * @dev: device
4389 * @upper_dev: new upper device
4390 *
4391 * Removes a link to device which is upper to this one. The caller must hold
4392 * the RTNL lock.
4393 */
4394 void netdev_upper_dev_unlink(struct net_device *dev,
4395 struct net_device *upper_dev)
4396 {
4397 struct netdev_upper *upper;
4398
4399 ASSERT_RTNL();
4400
4401 upper = __netdev_find_upper(dev, upper_dev);
4402 if (!upper)
4403 return;
4404 list_del_rcu(&upper->list);
4405 dev_put(upper_dev);
4406 kfree_rcu(upper, rcu);
4407 }
4408 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4409
4410 static void dev_change_rx_flags(struct net_device *dev, int flags)
4411 {
4412 const struct net_device_ops *ops = dev->netdev_ops;
4413
4414 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4415 ops->ndo_change_rx_flags(dev, flags);
4416 }
4417
4418 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4419 {
4420 unsigned int old_flags = dev->flags;
4421 kuid_t uid;
4422 kgid_t gid;
4423
4424 ASSERT_RTNL();
4425
4426 dev->flags |= IFF_PROMISC;
4427 dev->promiscuity += inc;
4428 if (dev->promiscuity == 0) {
4429 /*
4430 * Avoid overflow.
4431 * If inc causes overflow, untouch promisc and return error.
4432 */
4433 if (inc < 0)
4434 dev->flags &= ~IFF_PROMISC;
4435 else {
4436 dev->promiscuity -= inc;
4437 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4438 dev->name);
4439 return -EOVERFLOW;
4440 }
4441 }
4442 if (dev->flags != old_flags) {
4443 pr_info("device %s %s promiscuous mode\n",
4444 dev->name,
4445 dev->flags & IFF_PROMISC ? "entered" : "left");
4446 if (audit_enabled) {
4447 current_uid_gid(&uid, &gid);
4448 audit_log(current->audit_context, GFP_ATOMIC,
4449 AUDIT_ANOM_PROMISCUOUS,
4450 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4451 dev->name, (dev->flags & IFF_PROMISC),
4452 (old_flags & IFF_PROMISC),
4453 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4454 from_kuid(&init_user_ns, uid),
4455 from_kgid(&init_user_ns, gid),
4456 audit_get_sessionid(current));
4457 }
4458
4459 dev_change_rx_flags(dev, IFF_PROMISC);
4460 }
4461 return 0;
4462 }
4463
4464 /**
4465 * dev_set_promiscuity - update promiscuity count on a device
4466 * @dev: device
4467 * @inc: modifier
4468 *
4469 * Add or remove promiscuity from a device. While the count in the device
4470 * remains above zero the interface remains promiscuous. Once it hits zero
4471 * the device reverts back to normal filtering operation. A negative inc
4472 * value is used to drop promiscuity on the device.
4473 * Return 0 if successful or a negative errno code on error.
4474 */
4475 int dev_set_promiscuity(struct net_device *dev, int inc)
4476 {
4477 unsigned int old_flags = dev->flags;
4478 int err;
4479
4480 err = __dev_set_promiscuity(dev, inc);
4481 if (err < 0)
4482 return err;
4483 if (dev->flags != old_flags)
4484 dev_set_rx_mode(dev);
4485 return err;
4486 }
4487 EXPORT_SYMBOL(dev_set_promiscuity);
4488
4489 /**
4490 * dev_set_allmulti - update allmulti count on a device
4491 * @dev: device
4492 * @inc: modifier
4493 *
4494 * Add or remove reception of all multicast frames to a device. While the
4495 * count in the device remains above zero the interface remains listening
4496 * to all interfaces. Once it hits zero the device reverts back to normal
4497 * filtering operation. A negative @inc value is used to drop the counter
4498 * when releasing a resource needing all multicasts.
4499 * Return 0 if successful or a negative errno code on error.
4500 */
4501
4502 int dev_set_allmulti(struct net_device *dev, int inc)
4503 {
4504 unsigned int old_flags = dev->flags;
4505
4506 ASSERT_RTNL();
4507
4508 dev->flags |= IFF_ALLMULTI;
4509 dev->allmulti += inc;
4510 if (dev->allmulti == 0) {
4511 /*
4512 * Avoid overflow.
4513 * If inc causes overflow, untouch allmulti and return error.
4514 */
4515 if (inc < 0)
4516 dev->flags &= ~IFF_ALLMULTI;
4517 else {
4518 dev->allmulti -= inc;
4519 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4520 dev->name);
4521 return -EOVERFLOW;
4522 }
4523 }
4524 if (dev->flags ^ old_flags) {
4525 dev_change_rx_flags(dev, IFF_ALLMULTI);
4526 dev_set_rx_mode(dev);
4527 }
4528 return 0;
4529 }
4530 EXPORT_SYMBOL(dev_set_allmulti);
4531
4532 /*
4533 * Upload unicast and multicast address lists to device and
4534 * configure RX filtering. When the device doesn't support unicast
4535 * filtering it is put in promiscuous mode while unicast addresses
4536 * are present.
4537 */
4538 void __dev_set_rx_mode(struct net_device *dev)
4539 {
4540 const struct net_device_ops *ops = dev->netdev_ops;
4541
4542 /* dev_open will call this function so the list will stay sane. */
4543 if (!(dev->flags&IFF_UP))
4544 return;
4545
4546 if (!netif_device_present(dev))
4547 return;
4548
4549 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4550 /* Unicast addresses changes may only happen under the rtnl,
4551 * therefore calling __dev_set_promiscuity here is safe.
4552 */
4553 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4554 __dev_set_promiscuity(dev, 1);
4555 dev->uc_promisc = true;
4556 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4557 __dev_set_promiscuity(dev, -1);
4558 dev->uc_promisc = false;
4559 }
4560 }
4561
4562 if (ops->ndo_set_rx_mode)
4563 ops->ndo_set_rx_mode(dev);
4564 }
4565
4566 void dev_set_rx_mode(struct net_device *dev)
4567 {
4568 netif_addr_lock_bh(dev);
4569 __dev_set_rx_mode(dev);
4570 netif_addr_unlock_bh(dev);
4571 }
4572
4573 /**
4574 * dev_get_flags - get flags reported to userspace
4575 * @dev: device
4576 *
4577 * Get the combination of flag bits exported through APIs to userspace.
4578 */
4579 unsigned int dev_get_flags(const struct net_device *dev)
4580 {
4581 unsigned int flags;
4582
4583 flags = (dev->flags & ~(IFF_PROMISC |
4584 IFF_ALLMULTI |
4585 IFF_RUNNING |
4586 IFF_LOWER_UP |
4587 IFF_DORMANT)) |
4588 (dev->gflags & (IFF_PROMISC |
4589 IFF_ALLMULTI));
4590
4591 if (netif_running(dev)) {
4592 if (netif_oper_up(dev))
4593 flags |= IFF_RUNNING;
4594 if (netif_carrier_ok(dev))
4595 flags |= IFF_LOWER_UP;
4596 if (netif_dormant(dev))
4597 flags |= IFF_DORMANT;
4598 }
4599
4600 return flags;
4601 }
4602 EXPORT_SYMBOL(dev_get_flags);
4603
4604 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4605 {
4606 unsigned int old_flags = dev->flags;
4607 int ret;
4608
4609 ASSERT_RTNL();
4610
4611 /*
4612 * Set the flags on our device.
4613 */
4614
4615 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4616 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4617 IFF_AUTOMEDIA)) |
4618 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4619 IFF_ALLMULTI));
4620
4621 /*
4622 * Load in the correct multicast list now the flags have changed.
4623 */
4624
4625 if ((old_flags ^ flags) & IFF_MULTICAST)
4626 dev_change_rx_flags(dev, IFF_MULTICAST);
4627
4628 dev_set_rx_mode(dev);
4629
4630 /*
4631 * Have we downed the interface. We handle IFF_UP ourselves
4632 * according to user attempts to set it, rather than blindly
4633 * setting it.
4634 */
4635
4636 ret = 0;
4637 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4638 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4639
4640 if (!ret)
4641 dev_set_rx_mode(dev);
4642 }
4643
4644 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4645 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4646
4647 dev->gflags ^= IFF_PROMISC;
4648 dev_set_promiscuity(dev, inc);
4649 }
4650
4651 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4652 is important. Some (broken) drivers set IFF_PROMISC, when
4653 IFF_ALLMULTI is requested not asking us and not reporting.
4654 */
4655 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4656 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4657
4658 dev->gflags ^= IFF_ALLMULTI;
4659 dev_set_allmulti(dev, inc);
4660 }
4661
4662 return ret;
4663 }
4664
4665 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4666 {
4667 unsigned int changes = dev->flags ^ old_flags;
4668
4669 if (changes & IFF_UP) {
4670 if (dev->flags & IFF_UP)
4671 call_netdevice_notifiers(NETDEV_UP, dev);
4672 else
4673 call_netdevice_notifiers(NETDEV_DOWN, dev);
4674 }
4675
4676 if (dev->flags & IFF_UP &&
4677 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4678 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4679 }
4680
4681 /**
4682 * dev_change_flags - change device settings
4683 * @dev: device
4684 * @flags: device state flags
4685 *
4686 * Change settings on device based state flags. The flags are
4687 * in the userspace exported format.
4688 */
4689 int dev_change_flags(struct net_device *dev, unsigned int flags)
4690 {
4691 int ret;
4692 unsigned int changes, old_flags = dev->flags;
4693
4694 ret = __dev_change_flags(dev, flags);
4695 if (ret < 0)
4696 return ret;
4697
4698 changes = old_flags ^ dev->flags;
4699 if (changes)
4700 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4701
4702 __dev_notify_flags(dev, old_flags);
4703 return ret;
4704 }
4705 EXPORT_SYMBOL(dev_change_flags);
4706
4707 /**
4708 * dev_set_mtu - Change maximum transfer unit
4709 * @dev: device
4710 * @new_mtu: new transfer unit
4711 *
4712 * Change the maximum transfer size of the network device.
4713 */
4714 int dev_set_mtu(struct net_device *dev, int new_mtu)
4715 {
4716 const struct net_device_ops *ops = dev->netdev_ops;
4717 int err;
4718
4719 if (new_mtu == dev->mtu)
4720 return 0;
4721
4722 /* MTU must be positive. */
4723 if (new_mtu < 0)
4724 return -EINVAL;
4725
4726 if (!netif_device_present(dev))
4727 return -ENODEV;
4728
4729 err = 0;
4730 if (ops->ndo_change_mtu)
4731 err = ops->ndo_change_mtu(dev, new_mtu);
4732 else
4733 dev->mtu = new_mtu;
4734
4735 if (!err)
4736 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4737 return err;
4738 }
4739 EXPORT_SYMBOL(dev_set_mtu);
4740
4741 /**
4742 * dev_set_group - Change group this device belongs to
4743 * @dev: device
4744 * @new_group: group this device should belong to
4745 */
4746 void dev_set_group(struct net_device *dev, int new_group)
4747 {
4748 dev->group = new_group;
4749 }
4750 EXPORT_SYMBOL(dev_set_group);
4751
4752 /**
4753 * dev_set_mac_address - Change Media Access Control Address
4754 * @dev: device
4755 * @sa: new address
4756 *
4757 * Change the hardware (MAC) address of the device
4758 */
4759 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4760 {
4761 const struct net_device_ops *ops = dev->netdev_ops;
4762 int err;
4763
4764 if (!ops->ndo_set_mac_address)
4765 return -EOPNOTSUPP;
4766 if (sa->sa_family != dev->type)
4767 return -EINVAL;
4768 if (!netif_device_present(dev))
4769 return -ENODEV;
4770 err = ops->ndo_set_mac_address(dev, sa);
4771 if (err)
4772 return err;
4773 dev->addr_assign_type = NET_ADDR_SET;
4774 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4775 add_device_randomness(dev->dev_addr, dev->addr_len);
4776 return 0;
4777 }
4778 EXPORT_SYMBOL(dev_set_mac_address);
4779
4780 /**
4781 * dev_change_carrier - Change device carrier
4782 * @dev: device
4783 * @new_carrier: new value
4784 *
4785 * Change device carrier
4786 */
4787 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4788 {
4789 const struct net_device_ops *ops = dev->netdev_ops;
4790
4791 if (!ops->ndo_change_carrier)
4792 return -EOPNOTSUPP;
4793 if (!netif_device_present(dev))
4794 return -ENODEV;
4795 return ops->ndo_change_carrier(dev, new_carrier);
4796 }
4797 EXPORT_SYMBOL(dev_change_carrier);
4798
4799 /**
4800 * dev_new_index - allocate an ifindex
4801 * @net: the applicable net namespace
4802 *
4803 * Returns a suitable unique value for a new device interface
4804 * number. The caller must hold the rtnl semaphore or the
4805 * dev_base_lock to be sure it remains unique.
4806 */
4807 static int dev_new_index(struct net *net)
4808 {
4809 int ifindex = net->ifindex;
4810 for (;;) {
4811 if (++ifindex <= 0)
4812 ifindex = 1;
4813 if (!__dev_get_by_index(net, ifindex))
4814 return net->ifindex = ifindex;
4815 }
4816 }
4817
4818 /* Delayed registration/unregisteration */
4819 static LIST_HEAD(net_todo_list);
4820
4821 static void net_set_todo(struct net_device *dev)
4822 {
4823 list_add_tail(&dev->todo_list, &net_todo_list);
4824 }
4825
4826 static void rollback_registered_many(struct list_head *head)
4827 {
4828 struct net_device *dev, *tmp;
4829
4830 BUG_ON(dev_boot_phase);
4831 ASSERT_RTNL();
4832
4833 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4834 /* Some devices call without registering
4835 * for initialization unwind. Remove those
4836 * devices and proceed with the remaining.
4837 */
4838 if (dev->reg_state == NETREG_UNINITIALIZED) {
4839 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4840 dev->name, dev);
4841
4842 WARN_ON(1);
4843 list_del(&dev->unreg_list);
4844 continue;
4845 }
4846 dev->dismantle = true;
4847 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4848 }
4849
4850 /* If device is running, close it first. */
4851 dev_close_many(head);
4852
4853 list_for_each_entry(dev, head, unreg_list) {
4854 /* And unlink it from device chain. */
4855 unlist_netdevice(dev);
4856
4857 dev->reg_state = NETREG_UNREGISTERING;
4858 }
4859
4860 synchronize_net();
4861
4862 list_for_each_entry(dev, head, unreg_list) {
4863 /* Shutdown queueing discipline. */
4864 dev_shutdown(dev);
4865
4866
4867 /* Notify protocols, that we are about to destroy
4868 this device. They should clean all the things.
4869 */
4870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4871
4872 if (!dev->rtnl_link_ops ||
4873 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4874 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4875
4876 /*
4877 * Flush the unicast and multicast chains
4878 */
4879 dev_uc_flush(dev);
4880 dev_mc_flush(dev);
4881
4882 if (dev->netdev_ops->ndo_uninit)
4883 dev->netdev_ops->ndo_uninit(dev);
4884
4885 /* Notifier chain MUST detach us all upper devices. */
4886 WARN_ON(netdev_has_any_upper_dev(dev));
4887
4888 /* Remove entries from kobject tree */
4889 netdev_unregister_kobject(dev);
4890 #ifdef CONFIG_XPS
4891 /* Remove XPS queueing entries */
4892 netif_reset_xps_queues_gt(dev, 0);
4893 #endif
4894 }
4895
4896 synchronize_net();
4897
4898 list_for_each_entry(dev, head, unreg_list)
4899 dev_put(dev);
4900 }
4901
4902 static void rollback_registered(struct net_device *dev)
4903 {
4904 LIST_HEAD(single);
4905
4906 list_add(&dev->unreg_list, &single);
4907 rollback_registered_many(&single);
4908 list_del(&single);
4909 }
4910
4911 static netdev_features_t netdev_fix_features(struct net_device *dev,
4912 netdev_features_t features)
4913 {
4914 /* Fix illegal checksum combinations */
4915 if ((features & NETIF_F_HW_CSUM) &&
4916 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4917 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4918 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4919 }
4920
4921 /* Fix illegal SG+CSUM combinations. */
4922 if ((features & NETIF_F_SG) &&
4923 !(features & NETIF_F_ALL_CSUM)) {
4924 netdev_dbg(dev,
4925 "Dropping NETIF_F_SG since no checksum feature.\n");
4926 features &= ~NETIF_F_SG;
4927 }
4928
4929 /* TSO requires that SG is present as well. */
4930 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4931 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4932 features &= ~NETIF_F_ALL_TSO;
4933 }
4934
4935 /* TSO ECN requires that TSO is present as well. */
4936 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4937 features &= ~NETIF_F_TSO_ECN;
4938
4939 /* Software GSO depends on SG. */
4940 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4941 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4942 features &= ~NETIF_F_GSO;
4943 }
4944
4945 /* UFO needs SG and checksumming */
4946 if (features & NETIF_F_UFO) {
4947 /* maybe split UFO into V4 and V6? */
4948 if (!((features & NETIF_F_GEN_CSUM) ||
4949 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4950 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4951 netdev_dbg(dev,
4952 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4953 features &= ~NETIF_F_UFO;
4954 }
4955
4956 if (!(features & NETIF_F_SG)) {
4957 netdev_dbg(dev,
4958 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4959 features &= ~NETIF_F_UFO;
4960 }
4961 }
4962
4963 return features;
4964 }
4965
4966 int __netdev_update_features(struct net_device *dev)
4967 {
4968 netdev_features_t features;
4969 int err = 0;
4970
4971 ASSERT_RTNL();
4972
4973 features = netdev_get_wanted_features(dev);
4974
4975 if (dev->netdev_ops->ndo_fix_features)
4976 features = dev->netdev_ops->ndo_fix_features(dev, features);
4977
4978 /* driver might be less strict about feature dependencies */
4979 features = netdev_fix_features(dev, features);
4980
4981 if (dev->features == features)
4982 return 0;
4983
4984 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4985 &dev->features, &features);
4986
4987 if (dev->netdev_ops->ndo_set_features)
4988 err = dev->netdev_ops->ndo_set_features(dev, features);
4989
4990 if (unlikely(err < 0)) {
4991 netdev_err(dev,
4992 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4993 err, &features, &dev->features);
4994 return -1;
4995 }
4996
4997 if (!err)
4998 dev->features = features;
4999
5000 return 1;
5001 }
5002
5003 /**
5004 * netdev_update_features - recalculate device features
5005 * @dev: the device to check
5006 *
5007 * Recalculate dev->features set and send notifications if it
5008 * has changed. Should be called after driver or hardware dependent
5009 * conditions might have changed that influence the features.
5010 */
5011 void netdev_update_features(struct net_device *dev)
5012 {
5013 if (__netdev_update_features(dev))
5014 netdev_features_change(dev);
5015 }
5016 EXPORT_SYMBOL(netdev_update_features);
5017
5018 /**
5019 * netdev_change_features - recalculate device features
5020 * @dev: the device to check
5021 *
5022 * Recalculate dev->features set and send notifications even
5023 * if they have not changed. Should be called instead of
5024 * netdev_update_features() if also dev->vlan_features might
5025 * have changed to allow the changes to be propagated to stacked
5026 * VLAN devices.
5027 */
5028 void netdev_change_features(struct net_device *dev)
5029 {
5030 __netdev_update_features(dev);
5031 netdev_features_change(dev);
5032 }
5033 EXPORT_SYMBOL(netdev_change_features);
5034
5035 /**
5036 * netif_stacked_transfer_operstate - transfer operstate
5037 * @rootdev: the root or lower level device to transfer state from
5038 * @dev: the device to transfer operstate to
5039 *
5040 * Transfer operational state from root to device. This is normally
5041 * called when a stacking relationship exists between the root
5042 * device and the device(a leaf device).
5043 */
5044 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5045 struct net_device *dev)
5046 {
5047 if (rootdev->operstate == IF_OPER_DORMANT)
5048 netif_dormant_on(dev);
5049 else
5050 netif_dormant_off(dev);
5051
5052 if (netif_carrier_ok(rootdev)) {
5053 if (!netif_carrier_ok(dev))
5054 netif_carrier_on(dev);
5055 } else {
5056 if (netif_carrier_ok(dev))
5057 netif_carrier_off(dev);
5058 }
5059 }
5060 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5061
5062 #ifdef CONFIG_RPS
5063 static int netif_alloc_rx_queues(struct net_device *dev)
5064 {
5065 unsigned int i, count = dev->num_rx_queues;
5066 struct netdev_rx_queue *rx;
5067
5068 BUG_ON(count < 1);
5069
5070 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5071 if (!rx)
5072 return -ENOMEM;
5073
5074 dev->_rx = rx;
5075
5076 for (i = 0; i < count; i++)
5077 rx[i].dev = dev;
5078 return 0;
5079 }
5080 #endif
5081
5082 static void netdev_init_one_queue(struct net_device *dev,
5083 struct netdev_queue *queue, void *_unused)
5084 {
5085 /* Initialize queue lock */
5086 spin_lock_init(&queue->_xmit_lock);
5087 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5088 queue->xmit_lock_owner = -1;
5089 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5090 queue->dev = dev;
5091 #ifdef CONFIG_BQL
5092 dql_init(&queue->dql, HZ);
5093 #endif
5094 }
5095
5096 static int netif_alloc_netdev_queues(struct net_device *dev)
5097 {
5098 unsigned int count = dev->num_tx_queues;
5099 struct netdev_queue *tx;
5100
5101 BUG_ON(count < 1);
5102
5103 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5104 if (!tx)
5105 return -ENOMEM;
5106
5107 dev->_tx = tx;
5108
5109 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5110 spin_lock_init(&dev->tx_global_lock);
5111
5112 return 0;
5113 }
5114
5115 /**
5116 * register_netdevice - register a network device
5117 * @dev: device to register
5118 *
5119 * Take a completed network device structure and add it to the kernel
5120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5121 * chain. 0 is returned on success. A negative errno code is returned
5122 * on a failure to set up the device, or if the name is a duplicate.
5123 *
5124 * Callers must hold the rtnl semaphore. You may want
5125 * register_netdev() instead of this.
5126 *
5127 * BUGS:
5128 * The locking appears insufficient to guarantee two parallel registers
5129 * will not get the same name.
5130 */
5131
5132 int register_netdevice(struct net_device *dev)
5133 {
5134 int ret;
5135 struct net *net = dev_net(dev);
5136
5137 BUG_ON(dev_boot_phase);
5138 ASSERT_RTNL();
5139
5140 might_sleep();
5141
5142 /* When net_device's are persistent, this will be fatal. */
5143 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5144 BUG_ON(!net);
5145
5146 spin_lock_init(&dev->addr_list_lock);
5147 netdev_set_addr_lockdep_class(dev);
5148
5149 dev->iflink = -1;
5150
5151 ret = dev_get_valid_name(net, dev, dev->name);
5152 if (ret < 0)
5153 goto out;
5154
5155 /* Init, if this function is available */
5156 if (dev->netdev_ops->ndo_init) {
5157 ret = dev->netdev_ops->ndo_init(dev);
5158 if (ret) {
5159 if (ret > 0)
5160 ret = -EIO;
5161 goto out;
5162 }
5163 }
5164
5165 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5166 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5167 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5168 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5169 ret = -EINVAL;
5170 goto err_uninit;
5171 }
5172
5173 ret = -EBUSY;
5174 if (!dev->ifindex)
5175 dev->ifindex = dev_new_index(net);
5176 else if (__dev_get_by_index(net, dev->ifindex))
5177 goto err_uninit;
5178
5179 if (dev->iflink == -1)
5180 dev->iflink = dev->ifindex;
5181
5182 /* Transfer changeable features to wanted_features and enable
5183 * software offloads (GSO and GRO).
5184 */
5185 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5186 dev->features |= NETIF_F_SOFT_FEATURES;
5187 dev->wanted_features = dev->features & dev->hw_features;
5188
5189 /* Turn on no cache copy if HW is doing checksum */
5190 if (!(dev->flags & IFF_LOOPBACK)) {
5191 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5192 if (dev->features & NETIF_F_ALL_CSUM) {
5193 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5194 dev->features |= NETIF_F_NOCACHE_COPY;
5195 }
5196 }
5197
5198 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5199 */
5200 dev->vlan_features |= NETIF_F_HIGHDMA;
5201
5202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5203 ret = notifier_to_errno(ret);
5204 if (ret)
5205 goto err_uninit;
5206
5207 ret = netdev_register_kobject(dev);
5208 if (ret)
5209 goto err_uninit;
5210 dev->reg_state = NETREG_REGISTERED;
5211
5212 __netdev_update_features(dev);
5213
5214 /*
5215 * Default initial state at registry is that the
5216 * device is present.
5217 */
5218
5219 set_bit(__LINK_STATE_PRESENT, &dev->state);
5220
5221 linkwatch_init_dev(dev);
5222
5223 dev_init_scheduler(dev);
5224 dev_hold(dev);
5225 list_netdevice(dev);
5226 add_device_randomness(dev->dev_addr, dev->addr_len);
5227
5228 /* If the device has permanent device address, driver should
5229 * set dev_addr and also addr_assign_type should be set to
5230 * NET_ADDR_PERM (default value).
5231 */
5232 if (dev->addr_assign_type == NET_ADDR_PERM)
5233 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5234
5235 /* Notify protocols, that a new device appeared. */
5236 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5237 ret = notifier_to_errno(ret);
5238 if (ret) {
5239 rollback_registered(dev);
5240 dev->reg_state = NETREG_UNREGISTERED;
5241 }
5242 /*
5243 * Prevent userspace races by waiting until the network
5244 * device is fully setup before sending notifications.
5245 */
5246 if (!dev->rtnl_link_ops ||
5247 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5249
5250 out:
5251 return ret;
5252
5253 err_uninit:
5254 if (dev->netdev_ops->ndo_uninit)
5255 dev->netdev_ops->ndo_uninit(dev);
5256 goto out;
5257 }
5258 EXPORT_SYMBOL(register_netdevice);
5259
5260 /**
5261 * init_dummy_netdev - init a dummy network device for NAPI
5262 * @dev: device to init
5263 *
5264 * This takes a network device structure and initialize the minimum
5265 * amount of fields so it can be used to schedule NAPI polls without
5266 * registering a full blown interface. This is to be used by drivers
5267 * that need to tie several hardware interfaces to a single NAPI
5268 * poll scheduler due to HW limitations.
5269 */
5270 int init_dummy_netdev(struct net_device *dev)
5271 {
5272 /* Clear everything. Note we don't initialize spinlocks
5273 * are they aren't supposed to be taken by any of the
5274 * NAPI code and this dummy netdev is supposed to be
5275 * only ever used for NAPI polls
5276 */
5277 memset(dev, 0, sizeof(struct net_device));
5278
5279 /* make sure we BUG if trying to hit standard
5280 * register/unregister code path
5281 */
5282 dev->reg_state = NETREG_DUMMY;
5283
5284 /* NAPI wants this */
5285 INIT_LIST_HEAD(&dev->napi_list);
5286
5287 /* a dummy interface is started by default */
5288 set_bit(__LINK_STATE_PRESENT, &dev->state);
5289 set_bit(__LINK_STATE_START, &dev->state);
5290
5291 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5292 * because users of this 'device' dont need to change
5293 * its refcount.
5294 */
5295
5296 return 0;
5297 }
5298 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5299
5300
5301 /**
5302 * register_netdev - register a network device
5303 * @dev: device to register
5304 *
5305 * Take a completed network device structure and add it to the kernel
5306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5307 * chain. 0 is returned on success. A negative errno code is returned
5308 * on a failure to set up the device, or if the name is a duplicate.
5309 *
5310 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5311 * and expands the device name if you passed a format string to
5312 * alloc_netdev.
5313 */
5314 int register_netdev(struct net_device *dev)
5315 {
5316 int err;
5317
5318 rtnl_lock();
5319 err = register_netdevice(dev);
5320 rtnl_unlock();
5321 return err;
5322 }
5323 EXPORT_SYMBOL(register_netdev);
5324
5325 int netdev_refcnt_read(const struct net_device *dev)
5326 {
5327 int i, refcnt = 0;
5328
5329 for_each_possible_cpu(i)
5330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5331 return refcnt;
5332 }
5333 EXPORT_SYMBOL(netdev_refcnt_read);
5334
5335 /**
5336 * netdev_wait_allrefs - wait until all references are gone.
5337 * @dev: target net_device
5338 *
5339 * This is called when unregistering network devices.
5340 *
5341 * Any protocol or device that holds a reference should register
5342 * for netdevice notification, and cleanup and put back the
5343 * reference if they receive an UNREGISTER event.
5344 * We can get stuck here if buggy protocols don't correctly
5345 * call dev_put.
5346 */
5347 static void netdev_wait_allrefs(struct net_device *dev)
5348 {
5349 unsigned long rebroadcast_time, warning_time;
5350 int refcnt;
5351
5352 linkwatch_forget_dev(dev);
5353
5354 rebroadcast_time = warning_time = jiffies;
5355 refcnt = netdev_refcnt_read(dev);
5356
5357 while (refcnt != 0) {
5358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5359 rtnl_lock();
5360
5361 /* Rebroadcast unregister notification */
5362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5363
5364 __rtnl_unlock();
5365 rcu_barrier();
5366 rtnl_lock();
5367
5368 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5369 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5370 &dev->state)) {
5371 /* We must not have linkwatch events
5372 * pending on unregister. If this
5373 * happens, we simply run the queue
5374 * unscheduled, resulting in a noop
5375 * for this device.
5376 */
5377 linkwatch_run_queue();
5378 }
5379
5380 __rtnl_unlock();
5381
5382 rebroadcast_time = jiffies;
5383 }
5384
5385 msleep(250);
5386
5387 refcnt = netdev_refcnt_read(dev);
5388
5389 if (time_after(jiffies, warning_time + 10 * HZ)) {
5390 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5391 dev->name, refcnt);
5392 warning_time = jiffies;
5393 }
5394 }
5395 }
5396
5397 /* The sequence is:
5398 *
5399 * rtnl_lock();
5400 * ...
5401 * register_netdevice(x1);
5402 * register_netdevice(x2);
5403 * ...
5404 * unregister_netdevice(y1);
5405 * unregister_netdevice(y2);
5406 * ...
5407 * rtnl_unlock();
5408 * free_netdev(y1);
5409 * free_netdev(y2);
5410 *
5411 * We are invoked by rtnl_unlock().
5412 * This allows us to deal with problems:
5413 * 1) We can delete sysfs objects which invoke hotplug
5414 * without deadlocking with linkwatch via keventd.
5415 * 2) Since we run with the RTNL semaphore not held, we can sleep
5416 * safely in order to wait for the netdev refcnt to drop to zero.
5417 *
5418 * We must not return until all unregister events added during
5419 * the interval the lock was held have been completed.
5420 */
5421 void netdev_run_todo(void)
5422 {
5423 struct list_head list;
5424
5425 /* Snapshot list, allow later requests */
5426 list_replace_init(&net_todo_list, &list);
5427
5428 __rtnl_unlock();
5429
5430
5431 /* Wait for rcu callbacks to finish before next phase */
5432 if (!list_empty(&list))
5433 rcu_barrier();
5434
5435 while (!list_empty(&list)) {
5436 struct net_device *dev
5437 = list_first_entry(&list, struct net_device, todo_list);
5438 list_del(&dev->todo_list);
5439
5440 rtnl_lock();
5441 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5442 __rtnl_unlock();
5443
5444 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5445 pr_err("network todo '%s' but state %d\n",
5446 dev->name, dev->reg_state);
5447 dump_stack();
5448 continue;
5449 }
5450
5451 dev->reg_state = NETREG_UNREGISTERED;
5452
5453 on_each_cpu(flush_backlog, dev, 1);
5454
5455 netdev_wait_allrefs(dev);
5456
5457 /* paranoia */
5458 BUG_ON(netdev_refcnt_read(dev));
5459 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5460 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5461 WARN_ON(dev->dn_ptr);
5462
5463 if (dev->destructor)
5464 dev->destructor(dev);
5465
5466 /* Free network device */
5467 kobject_put(&dev->dev.kobj);
5468 }
5469 }
5470
5471 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5472 * fields in the same order, with only the type differing.
5473 */
5474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5475 const struct net_device_stats *netdev_stats)
5476 {
5477 #if BITS_PER_LONG == 64
5478 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5479 memcpy(stats64, netdev_stats, sizeof(*stats64));
5480 #else
5481 size_t i, n = sizeof(*stats64) / sizeof(u64);
5482 const unsigned long *src = (const unsigned long *)netdev_stats;
5483 u64 *dst = (u64 *)stats64;
5484
5485 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5486 sizeof(*stats64) / sizeof(u64));
5487 for (i = 0; i < n; i++)
5488 dst[i] = src[i];
5489 #endif
5490 }
5491 EXPORT_SYMBOL(netdev_stats_to_stats64);
5492
5493 /**
5494 * dev_get_stats - get network device statistics
5495 * @dev: device to get statistics from
5496 * @storage: place to store stats
5497 *
5498 * Get network statistics from device. Return @storage.
5499 * The device driver may provide its own method by setting
5500 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5501 * otherwise the internal statistics structure is used.
5502 */
5503 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5504 struct rtnl_link_stats64 *storage)
5505 {
5506 const struct net_device_ops *ops = dev->netdev_ops;
5507
5508 if (ops->ndo_get_stats64) {
5509 memset(storage, 0, sizeof(*storage));
5510 ops->ndo_get_stats64(dev, storage);
5511 } else if (ops->ndo_get_stats) {
5512 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5513 } else {
5514 netdev_stats_to_stats64(storage, &dev->stats);
5515 }
5516 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5517 return storage;
5518 }
5519 EXPORT_SYMBOL(dev_get_stats);
5520
5521 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5522 {
5523 struct netdev_queue *queue = dev_ingress_queue(dev);
5524
5525 #ifdef CONFIG_NET_CLS_ACT
5526 if (queue)
5527 return queue;
5528 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5529 if (!queue)
5530 return NULL;
5531 netdev_init_one_queue(dev, queue, NULL);
5532 queue->qdisc = &noop_qdisc;
5533 queue->qdisc_sleeping = &noop_qdisc;
5534 rcu_assign_pointer(dev->ingress_queue, queue);
5535 #endif
5536 return queue;
5537 }
5538
5539 static const struct ethtool_ops default_ethtool_ops;
5540
5541 void netdev_set_default_ethtool_ops(struct net_device *dev,
5542 const struct ethtool_ops *ops)
5543 {
5544 if (dev->ethtool_ops == &default_ethtool_ops)
5545 dev->ethtool_ops = ops;
5546 }
5547 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5548
5549 /**
5550 * alloc_netdev_mqs - allocate network device
5551 * @sizeof_priv: size of private data to allocate space for
5552 * @name: device name format string
5553 * @setup: callback to initialize device
5554 * @txqs: the number of TX subqueues to allocate
5555 * @rxqs: the number of RX subqueues to allocate
5556 *
5557 * Allocates a struct net_device with private data area for driver use
5558 * and performs basic initialization. Also allocates subquue structs
5559 * for each queue on the device.
5560 */
5561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5562 void (*setup)(struct net_device *),
5563 unsigned int txqs, unsigned int rxqs)
5564 {
5565 struct net_device *dev;
5566 size_t alloc_size;
5567 struct net_device *p;
5568
5569 BUG_ON(strlen(name) >= sizeof(dev->name));
5570
5571 if (txqs < 1) {
5572 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5573 return NULL;
5574 }
5575
5576 #ifdef CONFIG_RPS
5577 if (rxqs < 1) {
5578 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5579 return NULL;
5580 }
5581 #endif
5582
5583 alloc_size = sizeof(struct net_device);
5584 if (sizeof_priv) {
5585 /* ensure 32-byte alignment of private area */
5586 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5587 alloc_size += sizeof_priv;
5588 }
5589 /* ensure 32-byte alignment of whole construct */
5590 alloc_size += NETDEV_ALIGN - 1;
5591
5592 p = kzalloc(alloc_size, GFP_KERNEL);
5593 if (!p)
5594 return NULL;
5595
5596 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5597 dev->padded = (char *)dev - (char *)p;
5598
5599 dev->pcpu_refcnt = alloc_percpu(int);
5600 if (!dev->pcpu_refcnt)
5601 goto free_p;
5602
5603 if (dev_addr_init(dev))
5604 goto free_pcpu;
5605
5606 dev_mc_init(dev);
5607 dev_uc_init(dev);
5608
5609 dev_net_set(dev, &init_net);
5610
5611 dev->gso_max_size = GSO_MAX_SIZE;
5612 dev->gso_max_segs = GSO_MAX_SEGS;
5613
5614 INIT_LIST_HEAD(&dev->napi_list);
5615 INIT_LIST_HEAD(&dev->unreg_list);
5616 INIT_LIST_HEAD(&dev->link_watch_list);
5617 INIT_LIST_HEAD(&dev->upper_dev_list);
5618 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5619 setup(dev);
5620
5621 dev->num_tx_queues = txqs;
5622 dev->real_num_tx_queues = txqs;
5623 if (netif_alloc_netdev_queues(dev))
5624 goto free_all;
5625
5626 #ifdef CONFIG_RPS
5627 dev->num_rx_queues = rxqs;
5628 dev->real_num_rx_queues = rxqs;
5629 if (netif_alloc_rx_queues(dev))
5630 goto free_all;
5631 #endif
5632
5633 strcpy(dev->name, name);
5634 dev->group = INIT_NETDEV_GROUP;
5635 if (!dev->ethtool_ops)
5636 dev->ethtool_ops = &default_ethtool_ops;
5637 return dev;
5638
5639 free_all:
5640 free_netdev(dev);
5641 return NULL;
5642
5643 free_pcpu:
5644 free_percpu(dev->pcpu_refcnt);
5645 kfree(dev->_tx);
5646 #ifdef CONFIG_RPS
5647 kfree(dev->_rx);
5648 #endif
5649
5650 free_p:
5651 kfree(p);
5652 return NULL;
5653 }
5654 EXPORT_SYMBOL(alloc_netdev_mqs);
5655
5656 /**
5657 * free_netdev - free network device
5658 * @dev: device
5659 *
5660 * This function does the last stage of destroying an allocated device
5661 * interface. The reference to the device object is released.
5662 * If this is the last reference then it will be freed.
5663 */
5664 void free_netdev(struct net_device *dev)
5665 {
5666 struct napi_struct *p, *n;
5667
5668 release_net(dev_net(dev));
5669
5670 kfree(dev->_tx);
5671 #ifdef CONFIG_RPS
5672 kfree(dev->_rx);
5673 #endif
5674
5675 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5676
5677 /* Flush device addresses */
5678 dev_addr_flush(dev);
5679
5680 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5681 netif_napi_del(p);
5682
5683 free_percpu(dev->pcpu_refcnt);
5684 dev->pcpu_refcnt = NULL;
5685
5686 /* Compatibility with error handling in drivers */
5687 if (dev->reg_state == NETREG_UNINITIALIZED) {
5688 kfree((char *)dev - dev->padded);
5689 return;
5690 }
5691
5692 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5693 dev->reg_state = NETREG_RELEASED;
5694
5695 /* will free via device release */
5696 put_device(&dev->dev);
5697 }
5698 EXPORT_SYMBOL(free_netdev);
5699
5700 /**
5701 * synchronize_net - Synchronize with packet receive processing
5702 *
5703 * Wait for packets currently being received to be done.
5704 * Does not block later packets from starting.
5705 */
5706 void synchronize_net(void)
5707 {
5708 might_sleep();
5709 if (rtnl_is_locked())
5710 synchronize_rcu_expedited();
5711 else
5712 synchronize_rcu();
5713 }
5714 EXPORT_SYMBOL(synchronize_net);
5715
5716 /**
5717 * unregister_netdevice_queue - remove device from the kernel
5718 * @dev: device
5719 * @head: list
5720 *
5721 * This function shuts down a device interface and removes it
5722 * from the kernel tables.
5723 * If head not NULL, device is queued to be unregistered later.
5724 *
5725 * Callers must hold the rtnl semaphore. You may want
5726 * unregister_netdev() instead of this.
5727 */
5728
5729 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5730 {
5731 ASSERT_RTNL();
5732
5733 if (head) {
5734 list_move_tail(&dev->unreg_list, head);
5735 } else {
5736 rollback_registered(dev);
5737 /* Finish processing unregister after unlock */
5738 net_set_todo(dev);
5739 }
5740 }
5741 EXPORT_SYMBOL(unregister_netdevice_queue);
5742
5743 /**
5744 * unregister_netdevice_many - unregister many devices
5745 * @head: list of devices
5746 */
5747 void unregister_netdevice_many(struct list_head *head)
5748 {
5749 struct net_device *dev;
5750
5751 if (!list_empty(head)) {
5752 rollback_registered_many(head);
5753 list_for_each_entry(dev, head, unreg_list)
5754 net_set_todo(dev);
5755 }
5756 }
5757 EXPORT_SYMBOL(unregister_netdevice_many);
5758
5759 /**
5760 * unregister_netdev - remove device from the kernel
5761 * @dev: device
5762 *
5763 * This function shuts down a device interface and removes it
5764 * from the kernel tables.
5765 *
5766 * This is just a wrapper for unregister_netdevice that takes
5767 * the rtnl semaphore. In general you want to use this and not
5768 * unregister_netdevice.
5769 */
5770 void unregister_netdev(struct net_device *dev)
5771 {
5772 rtnl_lock();
5773 unregister_netdevice(dev);
5774 rtnl_unlock();
5775 }
5776 EXPORT_SYMBOL(unregister_netdev);
5777
5778 /**
5779 * dev_change_net_namespace - move device to different nethost namespace
5780 * @dev: device
5781 * @net: network namespace
5782 * @pat: If not NULL name pattern to try if the current device name
5783 * is already taken in the destination network namespace.
5784 *
5785 * This function shuts down a device interface and moves it
5786 * to a new network namespace. On success 0 is returned, on
5787 * a failure a netagive errno code is returned.
5788 *
5789 * Callers must hold the rtnl semaphore.
5790 */
5791
5792 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5793 {
5794 int err;
5795
5796 ASSERT_RTNL();
5797
5798 /* Don't allow namespace local devices to be moved. */
5799 err = -EINVAL;
5800 if (dev->features & NETIF_F_NETNS_LOCAL)
5801 goto out;
5802
5803 /* Ensure the device has been registrered */
5804 if (dev->reg_state != NETREG_REGISTERED)
5805 goto out;
5806
5807 /* Get out if there is nothing todo */
5808 err = 0;
5809 if (net_eq(dev_net(dev), net))
5810 goto out;
5811
5812 /* Pick the destination device name, and ensure
5813 * we can use it in the destination network namespace.
5814 */
5815 err = -EEXIST;
5816 if (__dev_get_by_name(net, dev->name)) {
5817 /* We get here if we can't use the current device name */
5818 if (!pat)
5819 goto out;
5820 if (dev_get_valid_name(net, dev, pat) < 0)
5821 goto out;
5822 }
5823
5824 /*
5825 * And now a mini version of register_netdevice unregister_netdevice.
5826 */
5827
5828 /* If device is running close it first. */
5829 dev_close(dev);
5830
5831 /* And unlink it from device chain */
5832 err = -ENODEV;
5833 unlist_netdevice(dev);
5834
5835 synchronize_net();
5836
5837 /* Shutdown queueing discipline. */
5838 dev_shutdown(dev);
5839
5840 /* Notify protocols, that we are about to destroy
5841 this device. They should clean all the things.
5842
5843 Note that dev->reg_state stays at NETREG_REGISTERED.
5844 This is wanted because this way 8021q and macvlan know
5845 the device is just moving and can keep their slaves up.
5846 */
5847 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5848 rcu_barrier();
5849 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5850 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5851
5852 /*
5853 * Flush the unicast and multicast chains
5854 */
5855 dev_uc_flush(dev);
5856 dev_mc_flush(dev);
5857
5858 /* Send a netdev-removed uevent to the old namespace */
5859 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5860
5861 /* Actually switch the network namespace */
5862 dev_net_set(dev, net);
5863
5864 /* If there is an ifindex conflict assign a new one */
5865 if (__dev_get_by_index(net, dev->ifindex)) {
5866 int iflink = (dev->iflink == dev->ifindex);
5867 dev->ifindex = dev_new_index(net);
5868 if (iflink)
5869 dev->iflink = dev->ifindex;
5870 }
5871
5872 /* Send a netdev-add uevent to the new namespace */
5873 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5874
5875 /* Fixup kobjects */
5876 err = device_rename(&dev->dev, dev->name);
5877 WARN_ON(err);
5878
5879 /* Add the device back in the hashes */
5880 list_netdevice(dev);
5881
5882 /* Notify protocols, that a new device appeared. */
5883 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5884
5885 /*
5886 * Prevent userspace races by waiting until the network
5887 * device is fully setup before sending notifications.
5888 */
5889 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5890
5891 synchronize_net();
5892 err = 0;
5893 out:
5894 return err;
5895 }
5896 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5897
5898 static int dev_cpu_callback(struct notifier_block *nfb,
5899 unsigned long action,
5900 void *ocpu)
5901 {
5902 struct sk_buff **list_skb;
5903 struct sk_buff *skb;
5904 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5905 struct softnet_data *sd, *oldsd;
5906
5907 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5908 return NOTIFY_OK;
5909
5910 local_irq_disable();
5911 cpu = smp_processor_id();
5912 sd = &per_cpu(softnet_data, cpu);
5913 oldsd = &per_cpu(softnet_data, oldcpu);
5914
5915 /* Find end of our completion_queue. */
5916 list_skb = &sd->completion_queue;
5917 while (*list_skb)
5918 list_skb = &(*list_skb)->next;
5919 /* Append completion queue from offline CPU. */
5920 *list_skb = oldsd->completion_queue;
5921 oldsd->completion_queue = NULL;
5922
5923 /* Append output queue from offline CPU. */
5924 if (oldsd->output_queue) {
5925 *sd->output_queue_tailp = oldsd->output_queue;
5926 sd->output_queue_tailp = oldsd->output_queue_tailp;
5927 oldsd->output_queue = NULL;
5928 oldsd->output_queue_tailp = &oldsd->output_queue;
5929 }
5930 /* Append NAPI poll list from offline CPU. */
5931 if (!list_empty(&oldsd->poll_list)) {
5932 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5933 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5934 }
5935
5936 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5937 local_irq_enable();
5938
5939 /* Process offline CPU's input_pkt_queue */
5940 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5941 netif_rx(skb);
5942 input_queue_head_incr(oldsd);
5943 }
5944 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5945 netif_rx(skb);
5946 input_queue_head_incr(oldsd);
5947 }
5948
5949 return NOTIFY_OK;
5950 }
5951
5952
5953 /**
5954 * netdev_increment_features - increment feature set by one
5955 * @all: current feature set
5956 * @one: new feature set
5957 * @mask: mask feature set
5958 *
5959 * Computes a new feature set after adding a device with feature set
5960 * @one to the master device with current feature set @all. Will not
5961 * enable anything that is off in @mask. Returns the new feature set.
5962 */
5963 netdev_features_t netdev_increment_features(netdev_features_t all,
5964 netdev_features_t one, netdev_features_t mask)
5965 {
5966 if (mask & NETIF_F_GEN_CSUM)
5967 mask |= NETIF_F_ALL_CSUM;
5968 mask |= NETIF_F_VLAN_CHALLENGED;
5969
5970 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5971 all &= one | ~NETIF_F_ALL_FOR_ALL;
5972
5973 /* If one device supports hw checksumming, set for all. */
5974 if (all & NETIF_F_GEN_CSUM)
5975 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5976
5977 return all;
5978 }
5979 EXPORT_SYMBOL(netdev_increment_features);
5980
5981 static struct hlist_head *netdev_create_hash(void)
5982 {
5983 int i;
5984 struct hlist_head *hash;
5985
5986 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5987 if (hash != NULL)
5988 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5989 INIT_HLIST_HEAD(&hash[i]);
5990
5991 return hash;
5992 }
5993
5994 /* Initialize per network namespace state */
5995 static int __net_init netdev_init(struct net *net)
5996 {
5997 if (net != &init_net)
5998 INIT_LIST_HEAD(&net->dev_base_head);
5999
6000 net->dev_name_head = netdev_create_hash();
6001 if (net->dev_name_head == NULL)
6002 goto err_name;
6003
6004 net->dev_index_head = netdev_create_hash();
6005 if (net->dev_index_head == NULL)
6006 goto err_idx;
6007
6008 return 0;
6009
6010 err_idx:
6011 kfree(net->dev_name_head);
6012 err_name:
6013 return -ENOMEM;
6014 }
6015
6016 /**
6017 * netdev_drivername - network driver for the device
6018 * @dev: network device
6019 *
6020 * Determine network driver for device.
6021 */
6022 const char *netdev_drivername(const struct net_device *dev)
6023 {
6024 const struct device_driver *driver;
6025 const struct device *parent;
6026 const char *empty = "";
6027
6028 parent = dev->dev.parent;
6029 if (!parent)
6030 return empty;
6031
6032 driver = parent->driver;
6033 if (driver && driver->name)
6034 return driver->name;
6035 return empty;
6036 }
6037
6038 static int __netdev_printk(const char *level, const struct net_device *dev,
6039 struct va_format *vaf)
6040 {
6041 int r;
6042
6043 if (dev && dev->dev.parent) {
6044 r = dev_printk_emit(level[1] - '0',
6045 dev->dev.parent,
6046 "%s %s %s: %pV",
6047 dev_driver_string(dev->dev.parent),
6048 dev_name(dev->dev.parent),
6049 netdev_name(dev), vaf);
6050 } else if (dev) {
6051 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6052 } else {
6053 r = printk("%s(NULL net_device): %pV", level, vaf);
6054 }
6055
6056 return r;
6057 }
6058
6059 int netdev_printk(const char *level, const struct net_device *dev,
6060 const char *format, ...)
6061 {
6062 struct va_format vaf;
6063 va_list args;
6064 int r;
6065
6066 va_start(args, format);
6067
6068 vaf.fmt = format;
6069 vaf.va = &args;
6070
6071 r = __netdev_printk(level, dev, &vaf);
6072
6073 va_end(args);
6074
6075 return r;
6076 }
6077 EXPORT_SYMBOL(netdev_printk);
6078
6079 #define define_netdev_printk_level(func, level) \
6080 int func(const struct net_device *dev, const char *fmt, ...) \
6081 { \
6082 int r; \
6083 struct va_format vaf; \
6084 va_list args; \
6085 \
6086 va_start(args, fmt); \
6087 \
6088 vaf.fmt = fmt; \
6089 vaf.va = &args; \
6090 \
6091 r = __netdev_printk(level, dev, &vaf); \
6092 \
6093 va_end(args); \
6094 \
6095 return r; \
6096 } \
6097 EXPORT_SYMBOL(func);
6098
6099 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6100 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6101 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6102 define_netdev_printk_level(netdev_err, KERN_ERR);
6103 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6104 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6105 define_netdev_printk_level(netdev_info, KERN_INFO);
6106
6107 static void __net_exit netdev_exit(struct net *net)
6108 {
6109 kfree(net->dev_name_head);
6110 kfree(net->dev_index_head);
6111 }
6112
6113 static struct pernet_operations __net_initdata netdev_net_ops = {
6114 .init = netdev_init,
6115 .exit = netdev_exit,
6116 };
6117
6118 static void __net_exit default_device_exit(struct net *net)
6119 {
6120 struct net_device *dev, *aux;
6121 /*
6122 * Push all migratable network devices back to the
6123 * initial network namespace
6124 */
6125 rtnl_lock();
6126 for_each_netdev_safe(net, dev, aux) {
6127 int err;
6128 char fb_name[IFNAMSIZ];
6129
6130 /* Ignore unmoveable devices (i.e. loopback) */
6131 if (dev->features & NETIF_F_NETNS_LOCAL)
6132 continue;
6133
6134 /* Leave virtual devices for the generic cleanup */
6135 if (dev->rtnl_link_ops)
6136 continue;
6137
6138 /* Push remaining network devices to init_net */
6139 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6140 err = dev_change_net_namespace(dev, &init_net, fb_name);
6141 if (err) {
6142 pr_emerg("%s: failed to move %s to init_net: %d\n",
6143 __func__, dev->name, err);
6144 BUG();
6145 }
6146 }
6147 rtnl_unlock();
6148 }
6149
6150 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6151 {
6152 /* At exit all network devices most be removed from a network
6153 * namespace. Do this in the reverse order of registration.
6154 * Do this across as many network namespaces as possible to
6155 * improve batching efficiency.
6156 */
6157 struct net_device *dev;
6158 struct net *net;
6159 LIST_HEAD(dev_kill_list);
6160
6161 rtnl_lock();
6162 list_for_each_entry(net, net_list, exit_list) {
6163 for_each_netdev_reverse(net, dev) {
6164 if (dev->rtnl_link_ops)
6165 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6166 else
6167 unregister_netdevice_queue(dev, &dev_kill_list);
6168 }
6169 }
6170 unregister_netdevice_many(&dev_kill_list);
6171 list_del(&dev_kill_list);
6172 rtnl_unlock();
6173 }
6174
6175 static struct pernet_operations __net_initdata default_device_ops = {
6176 .exit = default_device_exit,
6177 .exit_batch = default_device_exit_batch,
6178 };
6179
6180 /*
6181 * Initialize the DEV module. At boot time this walks the device list and
6182 * unhooks any devices that fail to initialise (normally hardware not
6183 * present) and leaves us with a valid list of present and active devices.
6184 *
6185 */
6186
6187 /*
6188 * This is called single threaded during boot, so no need
6189 * to take the rtnl semaphore.
6190 */
6191 static int __init net_dev_init(void)
6192 {
6193 int i, rc = -ENOMEM;
6194
6195 BUG_ON(!dev_boot_phase);
6196
6197 if (dev_proc_init())
6198 goto out;
6199
6200 if (netdev_kobject_init())
6201 goto out;
6202
6203 INIT_LIST_HEAD(&ptype_all);
6204 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6205 INIT_LIST_HEAD(&ptype_base[i]);
6206
6207 INIT_LIST_HEAD(&offload_base);
6208
6209 if (register_pernet_subsys(&netdev_net_ops))
6210 goto out;
6211
6212 /*
6213 * Initialise the packet receive queues.
6214 */
6215
6216 for_each_possible_cpu(i) {
6217 struct softnet_data *sd = &per_cpu(softnet_data, i);
6218
6219 memset(sd, 0, sizeof(*sd));
6220 skb_queue_head_init(&sd->input_pkt_queue);
6221 skb_queue_head_init(&sd->process_queue);
6222 sd->completion_queue = NULL;
6223 INIT_LIST_HEAD(&sd->poll_list);
6224 sd->output_queue = NULL;
6225 sd->output_queue_tailp = &sd->output_queue;
6226 #ifdef CONFIG_RPS
6227 sd->csd.func = rps_trigger_softirq;
6228 sd->csd.info = sd;
6229 sd->csd.flags = 0;
6230 sd->cpu = i;
6231 #endif
6232
6233 sd->backlog.poll = process_backlog;
6234 sd->backlog.weight = weight_p;
6235 sd->backlog.gro_list = NULL;
6236 sd->backlog.gro_count = 0;
6237 }
6238
6239 dev_boot_phase = 0;
6240
6241 /* The loopback device is special if any other network devices
6242 * is present in a network namespace the loopback device must
6243 * be present. Since we now dynamically allocate and free the
6244 * loopback device ensure this invariant is maintained by
6245 * keeping the loopback device as the first device on the
6246 * list of network devices. Ensuring the loopback devices
6247 * is the first device that appears and the last network device
6248 * that disappears.
6249 */
6250 if (register_pernet_device(&loopback_net_ops))
6251 goto out;
6252
6253 if (register_pernet_device(&default_device_ops))
6254 goto out;
6255
6256 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6257 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6258
6259 hotcpu_notifier(dev_cpu_callback, 0);
6260 dst_init();
6261 rc = 0;
6262 out:
6263 return rc;
6264 }
6265
6266 subsys_initcall(net_dev_init);