Merge branch 'upstream' into bugfix-video
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 name);
1141 }
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 const struct net_device_ops *ops = dev->netdev_ops;
1148 int ret;
1149
1150 ASSERT_RTNL();
1151
1152 if (!netif_device_present(dev))
1153 return -ENODEV;
1154
1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 ret = notifier_to_errno(ret);
1157 if (ret)
1158 return ret;
1159
1160 set_bit(__LINK_STATE_START, &dev->state);
1161
1162 if (ops->ndo_validate_addr)
1163 ret = ops->ndo_validate_addr(dev);
1164
1165 if (!ret && ops->ndo_open)
1166 ret = ops->ndo_open(dev);
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 dev->flags |= IFF_UP;
1172 net_dmaengine_get();
1173 dev_set_rx_mode(dev);
1174 dev_activate(dev);
1175 }
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * dev_open - prepare an interface for use.
1182 * @dev: device to open
1183 *
1184 * Takes a device from down to up state. The device's private open
1185 * function is invoked and then the multicast lists are loaded. Finally
1186 * the device is moved into the up state and a %NETDEV_UP message is
1187 * sent to the netdev notifier chain.
1188 *
1189 * Calling this function on an active interface is a nop. On a failure
1190 * a negative errno code is returned.
1191 */
1192 int dev_open(struct net_device *dev)
1193 {
1194 int ret;
1195
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 ret = __dev_open(dev);
1200 if (ret < 0)
1201 return ret;
1202
1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 call_netdevice_notifiers(NETDEV_UP, dev);
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 struct net_device *dev;
1213
1214 ASSERT_RTNL();
1215 might_sleep();
1216
1217 list_for_each_entry(dev, head, unreg_list) {
1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219
1220 clear_bit(__LINK_STATE_START, &dev->state);
1221
1222 /* Synchronize to scheduled poll. We cannot touch poll list, it
1223 * can be even on different cpu. So just clear netif_running().
1224 *
1225 * dev->stop() will invoke napi_disable() on all of it's
1226 * napi_struct instances on this device.
1227 */
1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 }
1230
1231 dev_deactivate_many(head);
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 const struct net_device_ops *ops = dev->netdev_ops;
1235
1236 /*
1237 * Call the device specific close. This cannot fail.
1238 * Only if device is UP
1239 *
1240 * We allow it to be called even after a DETACH hot-plug
1241 * event.
1242 */
1243 if (ops->ndo_stop)
1244 ops->ndo_stop(dev);
1245
1246 dev->flags &= ~IFF_UP;
1247 net_dmaengine_put();
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 int retval;
1256 LIST_HEAD(single);
1257
1258 list_add(&dev->unreg_list, &single);
1259 retval = __dev_close_many(&single);
1260 list_del(&single);
1261 return retval;
1262 }
1263
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 struct net_device *dev, *tmp;
1267 LIST_HEAD(tmp_list);
1268
1269 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 if (!(dev->flags & IFF_UP))
1271 list_move(&dev->unreg_list, &tmp_list);
1272
1273 __dev_close_many(head);
1274
1275 list_for_each_entry(dev, head, unreg_list) {
1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 }
1279
1280 /* rollback_registered_many needs the complete original list */
1281 list_splice(&tmp_list, head);
1282 return 0;
1283 }
1284
1285 /**
1286 * dev_close - shutdown an interface.
1287 * @dev: device to shutdown
1288 *
1289 * This function moves an active device into down state. A
1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292 * chain.
1293 */
1294 int dev_close(struct net_device *dev)
1295 {
1296 if (dev->flags & IFF_UP) {
1297 LIST_HEAD(single);
1298
1299 list_add(&dev->unreg_list, &single);
1300 dev_close_many(&single);
1301 list_del(&single);
1302 }
1303 return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306
1307
1308 /**
1309 * dev_disable_lro - disable Large Receive Offload on a device
1310 * @dev: device
1311 *
1312 * Disable Large Receive Offload (LRO) on a net device. Must be
1313 * called under RTNL. This is needed if received packets may be
1314 * forwarded to another interface.
1315 */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 /*
1319 * If we're trying to disable lro on a vlan device
1320 * use the underlying physical device instead
1321 */
1322 if (is_vlan_dev(dev))
1323 dev = vlan_dev_real_dev(dev);
1324
1325 dev->wanted_features &= ~NETIF_F_LRO;
1326 netdev_update_features(dev);
1327
1328 if (unlikely(dev->features & NETIF_F_LRO))
1329 netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332
1333
1334 static int dev_boot_phase = 1;
1335
1336 /**
1337 * register_netdevice_notifier - register a network notifier block
1338 * @nb: notifier
1339 *
1340 * Register a notifier to be called when network device events occur.
1341 * The notifier passed is linked into the kernel structures and must
1342 * not be reused until it has been unregistered. A negative errno code
1343 * is returned on a failure.
1344 *
1345 * When registered all registration and up events are replayed
1346 * to the new notifier to allow device to have a race free
1347 * view of the network device list.
1348 */
1349
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 struct net_device *dev;
1353 struct net_device *last;
1354 struct net *net;
1355 int err;
1356
1357 rtnl_lock();
1358 err = raw_notifier_chain_register(&netdev_chain, nb);
1359 if (err)
1360 goto unlock;
1361 if (dev_boot_phase)
1362 goto unlock;
1363 for_each_net(net) {
1364 for_each_netdev(net, dev) {
1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 err = notifier_to_errno(err);
1367 if (err)
1368 goto rollback;
1369
1370 if (!(dev->flags & IFF_UP))
1371 continue;
1372
1373 nb->notifier_call(nb, NETDEV_UP, dev);
1374 }
1375 }
1376
1377 unlock:
1378 rtnl_unlock();
1379 return err;
1380
1381 rollback:
1382 last = dev;
1383 for_each_net(net) {
1384 for_each_netdev(net, dev) {
1385 if (dev == last)
1386 goto outroll;
1387
1388 if (dev->flags & IFF_UP) {
1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 }
1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 }
1395 }
1396
1397 outroll:
1398 raw_notifier_chain_unregister(&netdev_chain, nb);
1399 goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402
1403 /**
1404 * unregister_netdevice_notifier - unregister a network notifier block
1405 * @nb: notifier
1406 *
1407 * Unregister a notifier previously registered by
1408 * register_netdevice_notifier(). The notifier is unlinked into the
1409 * kernel structures and may then be reused. A negative errno code
1410 * is returned on a failure.
1411 *
1412 * After unregistering unregister and down device events are synthesized
1413 * for all devices on the device list to the removed notifier to remove
1414 * the need for special case cleanup code.
1415 */
1416
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 struct net_device *dev;
1420 struct net *net;
1421 int err;
1422
1423 rtnl_lock();
1424 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 if (err)
1426 goto unlock;
1427
1428 for_each_net(net) {
1429 for_each_netdev(net, dev) {
1430 if (dev->flags & IFF_UP) {
1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 }
1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 }
1437 }
1438 unlock:
1439 rtnl_unlock();
1440 return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443
1444 /**
1445 * call_netdevice_notifiers - call all network notifier blocks
1446 * @val: value passed unmodified to notifier function
1447 * @dev: net_device pointer passed unmodified to notifier function
1448 *
1449 * Call all network notifier blocks. Parameters and return value
1450 * are as for raw_notifier_call_chain().
1451 */
1452
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 ASSERT_RTNL();
1456 return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463 * If net_disable_timestamp() is called from irq context, defer the
1464 * static_key_slow_dec() calls.
1465 */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473
1474 if (deferred) {
1475 while (--deferred)
1476 static_key_slow_dec(&netstamp_needed);
1477 return;
1478 }
1479 #endif
1480 WARN_ON(in_interrupt());
1481 static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 if (in_interrupt()) {
1489 atomic_inc(&netstamp_needed_deferred);
1490 return;
1491 }
1492 #endif
1493 static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 skb->tstamp.tv64 = 0;
1500 if (static_key_false(&netstamp_needed))
1501 __net_timestamp(skb);
1502 }
1503
1504 #define net_timestamp_check(COND, SKB) \
1505 if (static_key_false(&netstamp_needed)) { \
1506 if ((COND) && !(SKB)->tstamp.tv64) \
1507 __net_timestamp(SKB); \
1508 } \
1509
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 struct hwtstamp_config cfg;
1513 enum hwtstamp_tx_types tx_type;
1514 enum hwtstamp_rx_filters rx_filter;
1515 int tx_type_valid = 0;
1516 int rx_filter_valid = 0;
1517
1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 return -EFAULT;
1520
1521 if (cfg.flags) /* reserved for future extensions */
1522 return -EINVAL;
1523
1524 tx_type = cfg.tx_type;
1525 rx_filter = cfg.rx_filter;
1526
1527 switch (tx_type) {
1528 case HWTSTAMP_TX_OFF:
1529 case HWTSTAMP_TX_ON:
1530 case HWTSTAMP_TX_ONESTEP_SYNC:
1531 tx_type_valid = 1;
1532 break;
1533 }
1534
1535 switch (rx_filter) {
1536 case HWTSTAMP_FILTER_NONE:
1537 case HWTSTAMP_FILTER_ALL:
1538 case HWTSTAMP_FILTER_SOME:
1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 rx_filter_valid = 1;
1552 break;
1553 }
1554
1555 if (!tx_type_valid || !rx_filter_valid)
1556 return -ERANGE;
1557
1558 return 0;
1559 }
1560
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 struct sk_buff *skb)
1563 {
1564 unsigned int len;
1565
1566 if (!(dev->flags & IFF_UP))
1567 return false;
1568
1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 if (skb->len <= len)
1571 return true;
1572
1573 /* if TSO is enabled, we don't care about the length as the packet
1574 * could be forwarded without being segmented before
1575 */
1576 if (skb_is_gso(skb))
1577 return true;
1578
1579 return false;
1580 }
1581
1582 /**
1583 * dev_forward_skb - loopback an skb to another netif
1584 *
1585 * @dev: destination network device
1586 * @skb: buffer to forward
1587 *
1588 * return values:
1589 * NET_RX_SUCCESS (no congestion)
1590 * NET_RX_DROP (packet was dropped, but freed)
1591 *
1592 * dev_forward_skb can be used for injecting an skb from the
1593 * start_xmit function of one device into the receive queue
1594 * of another device.
1595 *
1596 * The receiving device may be in another namespace, so
1597 * we have to clear all information in the skb that could
1598 * impact namespace isolation.
1599 */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 atomic_long_inc(&dev->rx_dropped);
1605 kfree_skb(skb);
1606 return NET_RX_DROP;
1607 }
1608 }
1609
1610 skb_orphan(skb);
1611 nf_reset(skb);
1612
1613 if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 atomic_long_inc(&dev->rx_dropped);
1615 kfree_skb(skb);
1616 return NET_RX_DROP;
1617 }
1618 skb->skb_iif = 0;
1619 skb->dev = dev;
1620 skb_dst_drop(skb);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 skb->mark = 0;
1625 secpath_reset(skb);
1626 nf_reset(skb);
1627 return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 struct packet_type *pt_prev,
1633 struct net_device *orig_dev)
1634 {
1635 atomic_inc(&skb->users);
1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 }
1638
1639 /*
1640 * Support routine. Sends outgoing frames to any network
1641 * taps currently in use.
1642 */
1643
1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 {
1646 struct packet_type *ptype;
1647 struct sk_buff *skb2 = NULL;
1648 struct packet_type *pt_prev = NULL;
1649
1650 rcu_read_lock();
1651 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1652 /* Never send packets back to the socket
1653 * they originated from - MvS (miquels@drinkel.ow.org)
1654 */
1655 if ((ptype->dev == dev || !ptype->dev) &&
1656 (ptype->af_packet_priv == NULL ||
1657 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1658 if (pt_prev) {
1659 deliver_skb(skb2, pt_prev, skb->dev);
1660 pt_prev = ptype;
1661 continue;
1662 }
1663
1664 skb2 = skb_clone(skb, GFP_ATOMIC);
1665 if (!skb2)
1666 break;
1667
1668 net_timestamp_set(skb2);
1669
1670 /* skb->nh should be correctly
1671 set by sender, so that the second statement is
1672 just protection against buggy protocols.
1673 */
1674 skb_reset_mac_header(skb2);
1675
1676 if (skb_network_header(skb2) < skb2->data ||
1677 skb2->network_header > skb2->tail) {
1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1679 ntohs(skb2->protocol),
1680 dev->name);
1681 skb_reset_network_header(skb2);
1682 }
1683
1684 skb2->transport_header = skb2->network_header;
1685 skb2->pkt_type = PACKET_OUTGOING;
1686 pt_prev = ptype;
1687 }
1688 }
1689 if (pt_prev)
1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1691 rcu_read_unlock();
1692 }
1693
1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1695 * @dev: Network device
1696 * @txq: number of queues available
1697 *
1698 * If real_num_tx_queues is changed the tc mappings may no longer be
1699 * valid. To resolve this verify the tc mapping remains valid and if
1700 * not NULL the mapping. With no priorities mapping to this
1701 * offset/count pair it will no longer be used. In the worst case TC0
1702 * is invalid nothing can be done so disable priority mappings. If is
1703 * expected that drivers will fix this mapping if they can before
1704 * calling netif_set_real_num_tx_queues.
1705 */
1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 {
1708 int i;
1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1710
1711 /* If TC0 is invalidated disable TC mapping */
1712 if (tc->offset + tc->count > txq) {
1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1714 dev->num_tc = 0;
1715 return;
1716 }
1717
1718 /* Invalidated prio to tc mappings set to TC0 */
1719 for (i = 1; i < TC_BITMASK + 1; i++) {
1720 int q = netdev_get_prio_tc_map(dev, i);
1721
1722 tc = &dev->tc_to_txq[q];
1723 if (tc->offset + tc->count > txq) {
1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1725 i, q);
1726 netdev_set_prio_tc_map(dev, i, 0);
1727 }
1728 }
1729 }
1730
1731 /*
1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1734 */
1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1736 {
1737 int rc;
1738
1739 if (txq < 1 || txq > dev->num_tx_queues)
1740 return -EINVAL;
1741
1742 if (dev->reg_state == NETREG_REGISTERED ||
1743 dev->reg_state == NETREG_UNREGISTERING) {
1744 ASSERT_RTNL();
1745
1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1747 txq);
1748 if (rc)
1749 return rc;
1750
1751 if (dev->num_tc)
1752 netif_setup_tc(dev, txq);
1753
1754 if (txq < dev->real_num_tx_queues)
1755 qdisc_reset_all_tx_gt(dev, txq);
1756 }
1757
1758 dev->real_num_tx_queues = txq;
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1762
1763 #ifdef CONFIG_RPS
1764 /**
1765 * netif_set_real_num_rx_queues - set actual number of RX queues used
1766 * @dev: Network device
1767 * @rxq: Actual number of RX queues
1768 *
1769 * This must be called either with the rtnl_lock held or before
1770 * registration of the net device. Returns 0 on success, or a
1771 * negative error code. If called before registration, it always
1772 * succeeds.
1773 */
1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1775 {
1776 int rc;
1777
1778 if (rxq < 1 || rxq > dev->num_rx_queues)
1779 return -EINVAL;
1780
1781 if (dev->reg_state == NETREG_REGISTERED) {
1782 ASSERT_RTNL();
1783
1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1785 rxq);
1786 if (rc)
1787 return rc;
1788 }
1789
1790 dev->real_num_rx_queues = rxq;
1791 return 0;
1792 }
1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 #endif
1795
1796 static inline void __netif_reschedule(struct Qdisc *q)
1797 {
1798 struct softnet_data *sd;
1799 unsigned long flags;
1800
1801 local_irq_save(flags);
1802 sd = &__get_cpu_var(softnet_data);
1803 q->next_sched = NULL;
1804 *sd->output_queue_tailp = q;
1805 sd->output_queue_tailp = &q->next_sched;
1806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1807 local_irq_restore(flags);
1808 }
1809
1810 void __netif_schedule(struct Qdisc *q)
1811 {
1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1813 __netif_reschedule(q);
1814 }
1815 EXPORT_SYMBOL(__netif_schedule);
1816
1817 void dev_kfree_skb_irq(struct sk_buff *skb)
1818 {
1819 if (atomic_dec_and_test(&skb->users)) {
1820 struct softnet_data *sd;
1821 unsigned long flags;
1822
1823 local_irq_save(flags);
1824 sd = &__get_cpu_var(softnet_data);
1825 skb->next = sd->completion_queue;
1826 sd->completion_queue = skb;
1827 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1828 local_irq_restore(flags);
1829 }
1830 }
1831 EXPORT_SYMBOL(dev_kfree_skb_irq);
1832
1833 void dev_kfree_skb_any(struct sk_buff *skb)
1834 {
1835 if (in_irq() || irqs_disabled())
1836 dev_kfree_skb_irq(skb);
1837 else
1838 dev_kfree_skb(skb);
1839 }
1840 EXPORT_SYMBOL(dev_kfree_skb_any);
1841
1842
1843 /**
1844 * netif_device_detach - mark device as removed
1845 * @dev: network device
1846 *
1847 * Mark device as removed from system and therefore no longer available.
1848 */
1849 void netif_device_detach(struct net_device *dev)
1850 {
1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1852 netif_running(dev)) {
1853 netif_tx_stop_all_queues(dev);
1854 }
1855 }
1856 EXPORT_SYMBOL(netif_device_detach);
1857
1858 /**
1859 * netif_device_attach - mark device as attached
1860 * @dev: network device
1861 *
1862 * Mark device as attached from system and restart if needed.
1863 */
1864 void netif_device_attach(struct net_device *dev)
1865 {
1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 netif_running(dev)) {
1868 netif_tx_wake_all_queues(dev);
1869 __netdev_watchdog_up(dev);
1870 }
1871 }
1872 EXPORT_SYMBOL(netif_device_attach);
1873
1874 static void skb_warn_bad_offload(const struct sk_buff *skb)
1875 {
1876 static const netdev_features_t null_features = 0;
1877 struct net_device *dev = skb->dev;
1878 const char *driver = "";
1879
1880 if (dev && dev->dev.parent)
1881 driver = dev_driver_string(dev->dev.parent);
1882
1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1884 "gso_type=%d ip_summed=%d\n",
1885 driver, dev ? &dev->features : &null_features,
1886 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1888 skb_shinfo(skb)->gso_type, skb->ip_summed);
1889 }
1890
1891 /*
1892 * Invalidate hardware checksum when packet is to be mangled, and
1893 * complete checksum manually on outgoing path.
1894 */
1895 int skb_checksum_help(struct sk_buff *skb)
1896 {
1897 __wsum csum;
1898 int ret = 0, offset;
1899
1900 if (skb->ip_summed == CHECKSUM_COMPLETE)
1901 goto out_set_summed;
1902
1903 if (unlikely(skb_shinfo(skb)->gso_size)) {
1904 skb_warn_bad_offload(skb);
1905 return -EINVAL;
1906 }
1907
1908 offset = skb_checksum_start_offset(skb);
1909 BUG_ON(offset >= skb_headlen(skb));
1910 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1911
1912 offset += skb->csum_offset;
1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1914
1915 if (skb_cloned(skb) &&
1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1918 if (ret)
1919 goto out;
1920 }
1921
1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1923 out_set_summed:
1924 skb->ip_summed = CHECKSUM_NONE;
1925 out:
1926 return ret;
1927 }
1928 EXPORT_SYMBOL(skb_checksum_help);
1929
1930 /**
1931 * skb_gso_segment - Perform segmentation on skb.
1932 * @skb: buffer to segment
1933 * @features: features for the output path (see dev->features)
1934 *
1935 * This function segments the given skb and returns a list of segments.
1936 *
1937 * It may return NULL if the skb requires no segmentation. This is
1938 * only possible when GSO is used for verifying header integrity.
1939 */
1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1941 netdev_features_t features)
1942 {
1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1944 struct packet_type *ptype;
1945 __be16 type = skb->protocol;
1946 int vlan_depth = ETH_HLEN;
1947 int err;
1948
1949 while (type == htons(ETH_P_8021Q)) {
1950 struct vlan_hdr *vh;
1951
1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1953 return ERR_PTR(-EINVAL);
1954
1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1956 type = vh->h_vlan_encapsulated_proto;
1957 vlan_depth += VLAN_HLEN;
1958 }
1959
1960 skb_reset_mac_header(skb);
1961 skb->mac_len = skb->network_header - skb->mac_header;
1962 __skb_pull(skb, skb->mac_len);
1963
1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1965 skb_warn_bad_offload(skb);
1966
1967 if (skb_header_cloned(skb) &&
1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1969 return ERR_PTR(err);
1970 }
1971
1972 rcu_read_lock();
1973 list_for_each_entry_rcu(ptype,
1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1977 err = ptype->gso_send_check(skb);
1978 segs = ERR_PTR(err);
1979 if (err || skb_gso_ok(skb, features))
1980 break;
1981 __skb_push(skb, (skb->data -
1982 skb_network_header(skb)));
1983 }
1984 segs = ptype->gso_segment(skb, features);
1985 break;
1986 }
1987 }
1988 rcu_read_unlock();
1989
1990 __skb_push(skb, skb->data - skb_mac_header(skb));
1991
1992 return segs;
1993 }
1994 EXPORT_SYMBOL(skb_gso_segment);
1995
1996 /* Take action when hardware reception checksum errors are detected. */
1997 #ifdef CONFIG_BUG
1998 void netdev_rx_csum_fault(struct net_device *dev)
1999 {
2000 if (net_ratelimit()) {
2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2002 dump_stack();
2003 }
2004 }
2005 EXPORT_SYMBOL(netdev_rx_csum_fault);
2006 #endif
2007
2008 /* Actually, we should eliminate this check as soon as we know, that:
2009 * 1. IOMMU is present and allows to map all the memory.
2010 * 2. No high memory really exists on this machine.
2011 */
2012
2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2014 {
2015 #ifdef CONFIG_HIGHMEM
2016 int i;
2017 if (!(dev->features & NETIF_F_HIGHDMA)) {
2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2020 if (PageHighMem(skb_frag_page(frag)))
2021 return 1;
2022 }
2023 }
2024
2025 if (PCI_DMA_BUS_IS_PHYS) {
2026 struct device *pdev = dev->dev.parent;
2027
2028 if (!pdev)
2029 return 0;
2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2034 return 1;
2035 }
2036 }
2037 #endif
2038 return 0;
2039 }
2040
2041 struct dev_gso_cb {
2042 void (*destructor)(struct sk_buff *skb);
2043 };
2044
2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2046
2047 static void dev_gso_skb_destructor(struct sk_buff *skb)
2048 {
2049 struct dev_gso_cb *cb;
2050
2051 do {
2052 struct sk_buff *nskb = skb->next;
2053
2054 skb->next = nskb->next;
2055 nskb->next = NULL;
2056 kfree_skb(nskb);
2057 } while (skb->next);
2058
2059 cb = DEV_GSO_CB(skb);
2060 if (cb->destructor)
2061 cb->destructor(skb);
2062 }
2063
2064 /**
2065 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2066 * @skb: buffer to segment
2067 * @features: device features as applicable to this skb
2068 *
2069 * This function segments the given skb and stores the list of segments
2070 * in skb->next.
2071 */
2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2073 {
2074 struct sk_buff *segs;
2075
2076 segs = skb_gso_segment(skb, features);
2077
2078 /* Verifying header integrity only. */
2079 if (!segs)
2080 return 0;
2081
2082 if (IS_ERR(segs))
2083 return PTR_ERR(segs);
2084
2085 skb->next = segs;
2086 DEV_GSO_CB(skb)->destructor = skb->destructor;
2087 skb->destructor = dev_gso_skb_destructor;
2088
2089 return 0;
2090 }
2091
2092 /*
2093 * Try to orphan skb early, right before transmission by the device.
2094 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2095 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2096 */
2097 static inline void skb_orphan_try(struct sk_buff *skb)
2098 {
2099 struct sock *sk = skb->sk;
2100
2101 if (sk && !skb_shinfo(skb)->tx_flags) {
2102 /* skb_tx_hash() wont be able to get sk.
2103 * We copy sk_hash into skb->rxhash
2104 */
2105 if (!skb->rxhash)
2106 skb->rxhash = sk->sk_hash;
2107 skb_orphan(skb);
2108 }
2109 }
2110
2111 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2112 {
2113 return ((features & NETIF_F_GEN_CSUM) ||
2114 ((features & NETIF_F_V4_CSUM) &&
2115 protocol == htons(ETH_P_IP)) ||
2116 ((features & NETIF_F_V6_CSUM) &&
2117 protocol == htons(ETH_P_IPV6)) ||
2118 ((features & NETIF_F_FCOE_CRC) &&
2119 protocol == htons(ETH_P_FCOE)));
2120 }
2121
2122 static netdev_features_t harmonize_features(struct sk_buff *skb,
2123 __be16 protocol, netdev_features_t features)
2124 {
2125 if (!can_checksum_protocol(features, protocol)) {
2126 features &= ~NETIF_F_ALL_CSUM;
2127 features &= ~NETIF_F_SG;
2128 } else if (illegal_highdma(skb->dev, skb)) {
2129 features &= ~NETIF_F_SG;
2130 }
2131
2132 return features;
2133 }
2134
2135 netdev_features_t netif_skb_features(struct sk_buff *skb)
2136 {
2137 __be16 protocol = skb->protocol;
2138 netdev_features_t features = skb->dev->features;
2139
2140 if (protocol == htons(ETH_P_8021Q)) {
2141 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2142 protocol = veh->h_vlan_encapsulated_proto;
2143 } else if (!vlan_tx_tag_present(skb)) {
2144 return harmonize_features(skb, protocol, features);
2145 }
2146
2147 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2148
2149 if (protocol != htons(ETH_P_8021Q)) {
2150 return harmonize_features(skb, protocol, features);
2151 } else {
2152 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2153 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2154 return harmonize_features(skb, protocol, features);
2155 }
2156 }
2157 EXPORT_SYMBOL(netif_skb_features);
2158
2159 /*
2160 * Returns true if either:
2161 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2162 * 2. skb is fragmented and the device does not support SG, or if
2163 * at least one of fragments is in highmem and device does not
2164 * support DMA from it.
2165 */
2166 static inline int skb_needs_linearize(struct sk_buff *skb,
2167 int features)
2168 {
2169 return skb_is_nonlinear(skb) &&
2170 ((skb_has_frag_list(skb) &&
2171 !(features & NETIF_F_FRAGLIST)) ||
2172 (skb_shinfo(skb)->nr_frags &&
2173 !(features & NETIF_F_SG)));
2174 }
2175
2176 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2177 struct netdev_queue *txq)
2178 {
2179 const struct net_device_ops *ops = dev->netdev_ops;
2180 int rc = NETDEV_TX_OK;
2181 unsigned int skb_len;
2182
2183 if (likely(!skb->next)) {
2184 netdev_features_t features;
2185
2186 /*
2187 * If device doesn't need skb->dst, release it right now while
2188 * its hot in this cpu cache
2189 */
2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2191 skb_dst_drop(skb);
2192
2193 if (!list_empty(&ptype_all))
2194 dev_queue_xmit_nit(skb, dev);
2195
2196 skb_orphan_try(skb);
2197
2198 features = netif_skb_features(skb);
2199
2200 if (vlan_tx_tag_present(skb) &&
2201 !(features & NETIF_F_HW_VLAN_TX)) {
2202 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2203 if (unlikely(!skb))
2204 goto out;
2205
2206 skb->vlan_tci = 0;
2207 }
2208
2209 if (netif_needs_gso(skb, features)) {
2210 if (unlikely(dev_gso_segment(skb, features)))
2211 goto out_kfree_skb;
2212 if (skb->next)
2213 goto gso;
2214 } else {
2215 if (skb_needs_linearize(skb, features) &&
2216 __skb_linearize(skb))
2217 goto out_kfree_skb;
2218
2219 /* If packet is not checksummed and device does not
2220 * support checksumming for this protocol, complete
2221 * checksumming here.
2222 */
2223 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2224 skb_set_transport_header(skb,
2225 skb_checksum_start_offset(skb));
2226 if (!(features & NETIF_F_ALL_CSUM) &&
2227 skb_checksum_help(skb))
2228 goto out_kfree_skb;
2229 }
2230 }
2231
2232 skb_len = skb->len;
2233 rc = ops->ndo_start_xmit(skb, dev);
2234 trace_net_dev_xmit(skb, rc, dev, skb_len);
2235 if (rc == NETDEV_TX_OK)
2236 txq_trans_update(txq);
2237 return rc;
2238 }
2239
2240 gso:
2241 do {
2242 struct sk_buff *nskb = skb->next;
2243
2244 skb->next = nskb->next;
2245 nskb->next = NULL;
2246
2247 /*
2248 * If device doesn't need nskb->dst, release it right now while
2249 * its hot in this cpu cache
2250 */
2251 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2252 skb_dst_drop(nskb);
2253
2254 skb_len = nskb->len;
2255 rc = ops->ndo_start_xmit(nskb, dev);
2256 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2257 if (unlikely(rc != NETDEV_TX_OK)) {
2258 if (rc & ~NETDEV_TX_MASK)
2259 goto out_kfree_gso_skb;
2260 nskb->next = skb->next;
2261 skb->next = nskb;
2262 return rc;
2263 }
2264 txq_trans_update(txq);
2265 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2266 return NETDEV_TX_BUSY;
2267 } while (skb->next);
2268
2269 out_kfree_gso_skb:
2270 if (likely(skb->next == NULL))
2271 skb->destructor = DEV_GSO_CB(skb)->destructor;
2272 out_kfree_skb:
2273 kfree_skb(skb);
2274 out:
2275 return rc;
2276 }
2277
2278 static u32 hashrnd __read_mostly;
2279
2280 /*
2281 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2282 * to be used as a distribution range.
2283 */
2284 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2285 unsigned int num_tx_queues)
2286 {
2287 u32 hash;
2288 u16 qoffset = 0;
2289 u16 qcount = num_tx_queues;
2290
2291 if (skb_rx_queue_recorded(skb)) {
2292 hash = skb_get_rx_queue(skb);
2293 while (unlikely(hash >= num_tx_queues))
2294 hash -= num_tx_queues;
2295 return hash;
2296 }
2297
2298 if (dev->num_tc) {
2299 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2300 qoffset = dev->tc_to_txq[tc].offset;
2301 qcount = dev->tc_to_txq[tc].count;
2302 }
2303
2304 if (skb->sk && skb->sk->sk_hash)
2305 hash = skb->sk->sk_hash;
2306 else
2307 hash = (__force u16) skb->protocol ^ skb->rxhash;
2308 hash = jhash_1word(hash, hashrnd);
2309
2310 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2311 }
2312 EXPORT_SYMBOL(__skb_tx_hash);
2313
2314 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2315 {
2316 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2317 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2318 dev->name, queue_index,
2319 dev->real_num_tx_queues);
2320 return 0;
2321 }
2322 return queue_index;
2323 }
2324
2325 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 #ifdef CONFIG_XPS
2328 struct xps_dev_maps *dev_maps;
2329 struct xps_map *map;
2330 int queue_index = -1;
2331
2332 rcu_read_lock();
2333 dev_maps = rcu_dereference(dev->xps_maps);
2334 if (dev_maps) {
2335 map = rcu_dereference(
2336 dev_maps->cpu_map[raw_smp_processor_id()]);
2337 if (map) {
2338 if (map->len == 1)
2339 queue_index = map->queues[0];
2340 else {
2341 u32 hash;
2342 if (skb->sk && skb->sk->sk_hash)
2343 hash = skb->sk->sk_hash;
2344 else
2345 hash = (__force u16) skb->protocol ^
2346 skb->rxhash;
2347 hash = jhash_1word(hash, hashrnd);
2348 queue_index = map->queues[
2349 ((u64)hash * map->len) >> 32];
2350 }
2351 if (unlikely(queue_index >= dev->real_num_tx_queues))
2352 queue_index = -1;
2353 }
2354 }
2355 rcu_read_unlock();
2356
2357 return queue_index;
2358 #else
2359 return -1;
2360 #endif
2361 }
2362
2363 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2364 struct sk_buff *skb)
2365 {
2366 int queue_index;
2367 const struct net_device_ops *ops = dev->netdev_ops;
2368
2369 if (dev->real_num_tx_queues == 1)
2370 queue_index = 0;
2371 else if (ops->ndo_select_queue) {
2372 queue_index = ops->ndo_select_queue(dev, skb);
2373 queue_index = dev_cap_txqueue(dev, queue_index);
2374 } else {
2375 struct sock *sk = skb->sk;
2376 queue_index = sk_tx_queue_get(sk);
2377
2378 if (queue_index < 0 || skb->ooo_okay ||
2379 queue_index >= dev->real_num_tx_queues) {
2380 int old_index = queue_index;
2381
2382 queue_index = get_xps_queue(dev, skb);
2383 if (queue_index < 0)
2384 queue_index = skb_tx_hash(dev, skb);
2385
2386 if (queue_index != old_index && sk) {
2387 struct dst_entry *dst =
2388 rcu_dereference_check(sk->sk_dst_cache, 1);
2389
2390 if (dst && skb_dst(skb) == dst)
2391 sk_tx_queue_set(sk, queue_index);
2392 }
2393 }
2394 }
2395
2396 skb_set_queue_mapping(skb, queue_index);
2397 return netdev_get_tx_queue(dev, queue_index);
2398 }
2399
2400 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2401 struct net_device *dev,
2402 struct netdev_queue *txq)
2403 {
2404 spinlock_t *root_lock = qdisc_lock(q);
2405 bool contended;
2406 int rc;
2407
2408 qdisc_skb_cb(skb)->pkt_len = skb->len;
2409 qdisc_calculate_pkt_len(skb, q);
2410 /*
2411 * Heuristic to force contended enqueues to serialize on a
2412 * separate lock before trying to get qdisc main lock.
2413 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2414 * and dequeue packets faster.
2415 */
2416 contended = qdisc_is_running(q);
2417 if (unlikely(contended))
2418 spin_lock(&q->busylock);
2419
2420 spin_lock(root_lock);
2421 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2422 kfree_skb(skb);
2423 rc = NET_XMIT_DROP;
2424 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2425 qdisc_run_begin(q)) {
2426 /*
2427 * This is a work-conserving queue; there are no old skbs
2428 * waiting to be sent out; and the qdisc is not running -
2429 * xmit the skb directly.
2430 */
2431 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2432 skb_dst_force(skb);
2433
2434 qdisc_bstats_update(q, skb);
2435
2436 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2437 if (unlikely(contended)) {
2438 spin_unlock(&q->busylock);
2439 contended = false;
2440 }
2441 __qdisc_run(q);
2442 } else
2443 qdisc_run_end(q);
2444
2445 rc = NET_XMIT_SUCCESS;
2446 } else {
2447 skb_dst_force(skb);
2448 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2449 if (qdisc_run_begin(q)) {
2450 if (unlikely(contended)) {
2451 spin_unlock(&q->busylock);
2452 contended = false;
2453 }
2454 __qdisc_run(q);
2455 }
2456 }
2457 spin_unlock(root_lock);
2458 if (unlikely(contended))
2459 spin_unlock(&q->busylock);
2460 return rc;
2461 }
2462
2463 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2464 static void skb_update_prio(struct sk_buff *skb)
2465 {
2466 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2467
2468 if ((!skb->priority) && (skb->sk) && map)
2469 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2470 }
2471 #else
2472 #define skb_update_prio(skb)
2473 #endif
2474
2475 static DEFINE_PER_CPU(int, xmit_recursion);
2476 #define RECURSION_LIMIT 10
2477
2478 /**
2479 * dev_queue_xmit - transmit a buffer
2480 * @skb: buffer to transmit
2481 *
2482 * Queue a buffer for transmission to a network device. The caller must
2483 * have set the device and priority and built the buffer before calling
2484 * this function. The function can be called from an interrupt.
2485 *
2486 * A negative errno code is returned on a failure. A success does not
2487 * guarantee the frame will be transmitted as it may be dropped due
2488 * to congestion or traffic shaping.
2489 *
2490 * -----------------------------------------------------------------------------------
2491 * I notice this method can also return errors from the queue disciplines,
2492 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2493 * be positive.
2494 *
2495 * Regardless of the return value, the skb is consumed, so it is currently
2496 * difficult to retry a send to this method. (You can bump the ref count
2497 * before sending to hold a reference for retry if you are careful.)
2498 *
2499 * When calling this method, interrupts MUST be enabled. This is because
2500 * the BH enable code must have IRQs enabled so that it will not deadlock.
2501 * --BLG
2502 */
2503 int dev_queue_xmit(struct sk_buff *skb)
2504 {
2505 struct net_device *dev = skb->dev;
2506 struct netdev_queue *txq;
2507 struct Qdisc *q;
2508 int rc = -ENOMEM;
2509
2510 /* Disable soft irqs for various locks below. Also
2511 * stops preemption for RCU.
2512 */
2513 rcu_read_lock_bh();
2514
2515 skb_update_prio(skb);
2516
2517 txq = dev_pick_tx(dev, skb);
2518 q = rcu_dereference_bh(txq->qdisc);
2519
2520 #ifdef CONFIG_NET_CLS_ACT
2521 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2522 #endif
2523 trace_net_dev_queue(skb);
2524 if (q->enqueue) {
2525 rc = __dev_xmit_skb(skb, q, dev, txq);
2526 goto out;
2527 }
2528
2529 /* The device has no queue. Common case for software devices:
2530 loopback, all the sorts of tunnels...
2531
2532 Really, it is unlikely that netif_tx_lock protection is necessary
2533 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2534 counters.)
2535 However, it is possible, that they rely on protection
2536 made by us here.
2537
2538 Check this and shot the lock. It is not prone from deadlocks.
2539 Either shot noqueue qdisc, it is even simpler 8)
2540 */
2541 if (dev->flags & IFF_UP) {
2542 int cpu = smp_processor_id(); /* ok because BHs are off */
2543
2544 if (txq->xmit_lock_owner != cpu) {
2545
2546 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2547 goto recursion_alert;
2548
2549 HARD_TX_LOCK(dev, txq, cpu);
2550
2551 if (!netif_xmit_stopped(txq)) {
2552 __this_cpu_inc(xmit_recursion);
2553 rc = dev_hard_start_xmit(skb, dev, txq);
2554 __this_cpu_dec(xmit_recursion);
2555 if (dev_xmit_complete(rc)) {
2556 HARD_TX_UNLOCK(dev, txq);
2557 goto out;
2558 }
2559 }
2560 HARD_TX_UNLOCK(dev, txq);
2561 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2562 dev->name);
2563 } else {
2564 /* Recursion is detected! It is possible,
2565 * unfortunately
2566 */
2567 recursion_alert:
2568 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2569 dev->name);
2570 }
2571 }
2572
2573 rc = -ENETDOWN;
2574 rcu_read_unlock_bh();
2575
2576 kfree_skb(skb);
2577 return rc;
2578 out:
2579 rcu_read_unlock_bh();
2580 return rc;
2581 }
2582 EXPORT_SYMBOL(dev_queue_xmit);
2583
2584
2585 /*=======================================================================
2586 Receiver routines
2587 =======================================================================*/
2588
2589 int netdev_max_backlog __read_mostly = 1000;
2590 int netdev_tstamp_prequeue __read_mostly = 1;
2591 int netdev_budget __read_mostly = 300;
2592 int weight_p __read_mostly = 64; /* old backlog weight */
2593
2594 /* Called with irq disabled */
2595 static inline void ____napi_schedule(struct softnet_data *sd,
2596 struct napi_struct *napi)
2597 {
2598 list_add_tail(&napi->poll_list, &sd->poll_list);
2599 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2600 }
2601
2602 /*
2603 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2604 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2605 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2606 * if hash is a canonical 4-tuple hash over transport ports.
2607 */
2608 void __skb_get_rxhash(struct sk_buff *skb)
2609 {
2610 struct flow_keys keys;
2611 u32 hash;
2612
2613 if (!skb_flow_dissect(skb, &keys))
2614 return;
2615
2616 if (keys.ports) {
2617 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2618 swap(keys.port16[0], keys.port16[1]);
2619 skb->l4_rxhash = 1;
2620 }
2621
2622 /* get a consistent hash (same value on both flow directions) */
2623 if ((__force u32)keys.dst < (__force u32)keys.src)
2624 swap(keys.dst, keys.src);
2625
2626 hash = jhash_3words((__force u32)keys.dst,
2627 (__force u32)keys.src,
2628 (__force u32)keys.ports, hashrnd);
2629 if (!hash)
2630 hash = 1;
2631
2632 skb->rxhash = hash;
2633 }
2634 EXPORT_SYMBOL(__skb_get_rxhash);
2635
2636 #ifdef CONFIG_RPS
2637
2638 /* One global table that all flow-based protocols share. */
2639 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2640 EXPORT_SYMBOL(rps_sock_flow_table);
2641
2642 struct static_key rps_needed __read_mostly;
2643
2644 static struct rps_dev_flow *
2645 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2646 struct rps_dev_flow *rflow, u16 next_cpu)
2647 {
2648 if (next_cpu != RPS_NO_CPU) {
2649 #ifdef CONFIG_RFS_ACCEL
2650 struct netdev_rx_queue *rxqueue;
2651 struct rps_dev_flow_table *flow_table;
2652 struct rps_dev_flow *old_rflow;
2653 u32 flow_id;
2654 u16 rxq_index;
2655 int rc;
2656
2657 /* Should we steer this flow to a different hardware queue? */
2658 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2659 !(dev->features & NETIF_F_NTUPLE))
2660 goto out;
2661 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2662 if (rxq_index == skb_get_rx_queue(skb))
2663 goto out;
2664
2665 rxqueue = dev->_rx + rxq_index;
2666 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2667 if (!flow_table)
2668 goto out;
2669 flow_id = skb->rxhash & flow_table->mask;
2670 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2671 rxq_index, flow_id);
2672 if (rc < 0)
2673 goto out;
2674 old_rflow = rflow;
2675 rflow = &flow_table->flows[flow_id];
2676 rflow->filter = rc;
2677 if (old_rflow->filter == rflow->filter)
2678 old_rflow->filter = RPS_NO_FILTER;
2679 out:
2680 #endif
2681 rflow->last_qtail =
2682 per_cpu(softnet_data, next_cpu).input_queue_head;
2683 }
2684
2685 rflow->cpu = next_cpu;
2686 return rflow;
2687 }
2688
2689 /*
2690 * get_rps_cpu is called from netif_receive_skb and returns the target
2691 * CPU from the RPS map of the receiving queue for a given skb.
2692 * rcu_read_lock must be held on entry.
2693 */
2694 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2695 struct rps_dev_flow **rflowp)
2696 {
2697 struct netdev_rx_queue *rxqueue;
2698 struct rps_map *map;
2699 struct rps_dev_flow_table *flow_table;
2700 struct rps_sock_flow_table *sock_flow_table;
2701 int cpu = -1;
2702 u16 tcpu;
2703
2704 if (skb_rx_queue_recorded(skb)) {
2705 u16 index = skb_get_rx_queue(skb);
2706 if (unlikely(index >= dev->real_num_rx_queues)) {
2707 WARN_ONCE(dev->real_num_rx_queues > 1,
2708 "%s received packet on queue %u, but number "
2709 "of RX queues is %u\n",
2710 dev->name, index, dev->real_num_rx_queues);
2711 goto done;
2712 }
2713 rxqueue = dev->_rx + index;
2714 } else
2715 rxqueue = dev->_rx;
2716
2717 map = rcu_dereference(rxqueue->rps_map);
2718 if (map) {
2719 if (map->len == 1 &&
2720 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2721 tcpu = map->cpus[0];
2722 if (cpu_online(tcpu))
2723 cpu = tcpu;
2724 goto done;
2725 }
2726 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2727 goto done;
2728 }
2729
2730 skb_reset_network_header(skb);
2731 if (!skb_get_rxhash(skb))
2732 goto done;
2733
2734 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2735 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2736 if (flow_table && sock_flow_table) {
2737 u16 next_cpu;
2738 struct rps_dev_flow *rflow;
2739
2740 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2741 tcpu = rflow->cpu;
2742
2743 next_cpu = sock_flow_table->ents[skb->rxhash &
2744 sock_flow_table->mask];
2745
2746 /*
2747 * If the desired CPU (where last recvmsg was done) is
2748 * different from current CPU (one in the rx-queue flow
2749 * table entry), switch if one of the following holds:
2750 * - Current CPU is unset (equal to RPS_NO_CPU).
2751 * - Current CPU is offline.
2752 * - The current CPU's queue tail has advanced beyond the
2753 * last packet that was enqueued using this table entry.
2754 * This guarantees that all previous packets for the flow
2755 * have been dequeued, thus preserving in order delivery.
2756 */
2757 if (unlikely(tcpu != next_cpu) &&
2758 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2759 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2760 rflow->last_qtail)) >= 0))
2761 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2762
2763 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2764 *rflowp = rflow;
2765 cpu = tcpu;
2766 goto done;
2767 }
2768 }
2769
2770 if (map) {
2771 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2772
2773 if (cpu_online(tcpu)) {
2774 cpu = tcpu;
2775 goto done;
2776 }
2777 }
2778
2779 done:
2780 return cpu;
2781 }
2782
2783 #ifdef CONFIG_RFS_ACCEL
2784
2785 /**
2786 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2787 * @dev: Device on which the filter was set
2788 * @rxq_index: RX queue index
2789 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2790 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2791 *
2792 * Drivers that implement ndo_rx_flow_steer() should periodically call
2793 * this function for each installed filter and remove the filters for
2794 * which it returns %true.
2795 */
2796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2797 u32 flow_id, u16 filter_id)
2798 {
2799 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2800 struct rps_dev_flow_table *flow_table;
2801 struct rps_dev_flow *rflow;
2802 bool expire = true;
2803 int cpu;
2804
2805 rcu_read_lock();
2806 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2807 if (flow_table && flow_id <= flow_table->mask) {
2808 rflow = &flow_table->flows[flow_id];
2809 cpu = ACCESS_ONCE(rflow->cpu);
2810 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2811 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2812 rflow->last_qtail) <
2813 (int)(10 * flow_table->mask)))
2814 expire = false;
2815 }
2816 rcu_read_unlock();
2817 return expire;
2818 }
2819 EXPORT_SYMBOL(rps_may_expire_flow);
2820
2821 #endif /* CONFIG_RFS_ACCEL */
2822
2823 /* Called from hardirq (IPI) context */
2824 static void rps_trigger_softirq(void *data)
2825 {
2826 struct softnet_data *sd = data;
2827
2828 ____napi_schedule(sd, &sd->backlog);
2829 sd->received_rps++;
2830 }
2831
2832 #endif /* CONFIG_RPS */
2833
2834 /*
2835 * Check if this softnet_data structure is another cpu one
2836 * If yes, queue it to our IPI list and return 1
2837 * If no, return 0
2838 */
2839 static int rps_ipi_queued(struct softnet_data *sd)
2840 {
2841 #ifdef CONFIG_RPS
2842 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2843
2844 if (sd != mysd) {
2845 sd->rps_ipi_next = mysd->rps_ipi_list;
2846 mysd->rps_ipi_list = sd;
2847
2848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2849 return 1;
2850 }
2851 #endif /* CONFIG_RPS */
2852 return 0;
2853 }
2854
2855 /*
2856 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2857 * queue (may be a remote CPU queue).
2858 */
2859 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2860 unsigned int *qtail)
2861 {
2862 struct softnet_data *sd;
2863 unsigned long flags;
2864
2865 sd = &per_cpu(softnet_data, cpu);
2866
2867 local_irq_save(flags);
2868
2869 rps_lock(sd);
2870 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2871 if (skb_queue_len(&sd->input_pkt_queue)) {
2872 enqueue:
2873 __skb_queue_tail(&sd->input_pkt_queue, skb);
2874 input_queue_tail_incr_save(sd, qtail);
2875 rps_unlock(sd);
2876 local_irq_restore(flags);
2877 return NET_RX_SUCCESS;
2878 }
2879
2880 /* Schedule NAPI for backlog device
2881 * We can use non atomic operation since we own the queue lock
2882 */
2883 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2884 if (!rps_ipi_queued(sd))
2885 ____napi_schedule(sd, &sd->backlog);
2886 }
2887 goto enqueue;
2888 }
2889
2890 sd->dropped++;
2891 rps_unlock(sd);
2892
2893 local_irq_restore(flags);
2894
2895 atomic_long_inc(&skb->dev->rx_dropped);
2896 kfree_skb(skb);
2897 return NET_RX_DROP;
2898 }
2899
2900 /**
2901 * netif_rx - post buffer to the network code
2902 * @skb: buffer to post
2903 *
2904 * This function receives a packet from a device driver and queues it for
2905 * the upper (protocol) levels to process. It always succeeds. The buffer
2906 * may be dropped during processing for congestion control or by the
2907 * protocol layers.
2908 *
2909 * return values:
2910 * NET_RX_SUCCESS (no congestion)
2911 * NET_RX_DROP (packet was dropped)
2912 *
2913 */
2914
2915 int netif_rx(struct sk_buff *skb)
2916 {
2917 int ret;
2918
2919 /* if netpoll wants it, pretend we never saw it */
2920 if (netpoll_rx(skb))
2921 return NET_RX_DROP;
2922
2923 net_timestamp_check(netdev_tstamp_prequeue, skb);
2924
2925 trace_netif_rx(skb);
2926 #ifdef CONFIG_RPS
2927 if (static_key_false(&rps_needed)) {
2928 struct rps_dev_flow voidflow, *rflow = &voidflow;
2929 int cpu;
2930
2931 preempt_disable();
2932 rcu_read_lock();
2933
2934 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2935 if (cpu < 0)
2936 cpu = smp_processor_id();
2937
2938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2939
2940 rcu_read_unlock();
2941 preempt_enable();
2942 } else
2943 #endif
2944 {
2945 unsigned int qtail;
2946 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2947 put_cpu();
2948 }
2949 return ret;
2950 }
2951 EXPORT_SYMBOL(netif_rx);
2952
2953 int netif_rx_ni(struct sk_buff *skb)
2954 {
2955 int err;
2956
2957 preempt_disable();
2958 err = netif_rx(skb);
2959 if (local_softirq_pending())
2960 do_softirq();
2961 preempt_enable();
2962
2963 return err;
2964 }
2965 EXPORT_SYMBOL(netif_rx_ni);
2966
2967 static void net_tx_action(struct softirq_action *h)
2968 {
2969 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2970
2971 if (sd->completion_queue) {
2972 struct sk_buff *clist;
2973
2974 local_irq_disable();
2975 clist = sd->completion_queue;
2976 sd->completion_queue = NULL;
2977 local_irq_enable();
2978
2979 while (clist) {
2980 struct sk_buff *skb = clist;
2981 clist = clist->next;
2982
2983 WARN_ON(atomic_read(&skb->users));
2984 trace_kfree_skb(skb, net_tx_action);
2985 __kfree_skb(skb);
2986 }
2987 }
2988
2989 if (sd->output_queue) {
2990 struct Qdisc *head;
2991
2992 local_irq_disable();
2993 head = sd->output_queue;
2994 sd->output_queue = NULL;
2995 sd->output_queue_tailp = &sd->output_queue;
2996 local_irq_enable();
2997
2998 while (head) {
2999 struct Qdisc *q = head;
3000 spinlock_t *root_lock;
3001
3002 head = head->next_sched;
3003
3004 root_lock = qdisc_lock(q);
3005 if (spin_trylock(root_lock)) {
3006 smp_mb__before_clear_bit();
3007 clear_bit(__QDISC_STATE_SCHED,
3008 &q->state);
3009 qdisc_run(q);
3010 spin_unlock(root_lock);
3011 } else {
3012 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3013 &q->state)) {
3014 __netif_reschedule(q);
3015 } else {
3016 smp_mb__before_clear_bit();
3017 clear_bit(__QDISC_STATE_SCHED,
3018 &q->state);
3019 }
3020 }
3021 }
3022 }
3023 }
3024
3025 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3026 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3027 /* This hook is defined here for ATM LANE */
3028 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3029 unsigned char *addr) __read_mostly;
3030 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3031 #endif
3032
3033 #ifdef CONFIG_NET_CLS_ACT
3034 /* TODO: Maybe we should just force sch_ingress to be compiled in
3035 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3036 * a compare and 2 stores extra right now if we dont have it on
3037 * but have CONFIG_NET_CLS_ACT
3038 * NOTE: This doesn't stop any functionality; if you dont have
3039 * the ingress scheduler, you just can't add policies on ingress.
3040 *
3041 */
3042 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3043 {
3044 struct net_device *dev = skb->dev;
3045 u32 ttl = G_TC_RTTL(skb->tc_verd);
3046 int result = TC_ACT_OK;
3047 struct Qdisc *q;
3048
3049 if (unlikely(MAX_RED_LOOP < ttl++)) {
3050 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3051 skb->skb_iif, dev->ifindex);
3052 return TC_ACT_SHOT;
3053 }
3054
3055 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3056 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3057
3058 q = rxq->qdisc;
3059 if (q != &noop_qdisc) {
3060 spin_lock(qdisc_lock(q));
3061 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3062 result = qdisc_enqueue_root(skb, q);
3063 spin_unlock(qdisc_lock(q));
3064 }
3065
3066 return result;
3067 }
3068
3069 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3070 struct packet_type **pt_prev,
3071 int *ret, struct net_device *orig_dev)
3072 {
3073 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3074
3075 if (!rxq || rxq->qdisc == &noop_qdisc)
3076 goto out;
3077
3078 if (*pt_prev) {
3079 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3080 *pt_prev = NULL;
3081 }
3082
3083 switch (ing_filter(skb, rxq)) {
3084 case TC_ACT_SHOT:
3085 case TC_ACT_STOLEN:
3086 kfree_skb(skb);
3087 return NULL;
3088 }
3089
3090 out:
3091 skb->tc_verd = 0;
3092 return skb;
3093 }
3094 #endif
3095
3096 /**
3097 * netdev_rx_handler_register - register receive handler
3098 * @dev: device to register a handler for
3099 * @rx_handler: receive handler to register
3100 * @rx_handler_data: data pointer that is used by rx handler
3101 *
3102 * Register a receive hander for a device. This handler will then be
3103 * called from __netif_receive_skb. A negative errno code is returned
3104 * on a failure.
3105 *
3106 * The caller must hold the rtnl_mutex.
3107 *
3108 * For a general description of rx_handler, see enum rx_handler_result.
3109 */
3110 int netdev_rx_handler_register(struct net_device *dev,
3111 rx_handler_func_t *rx_handler,
3112 void *rx_handler_data)
3113 {
3114 ASSERT_RTNL();
3115
3116 if (dev->rx_handler)
3117 return -EBUSY;
3118
3119 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3120 rcu_assign_pointer(dev->rx_handler, rx_handler);
3121
3122 return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3125
3126 /**
3127 * netdev_rx_handler_unregister - unregister receive handler
3128 * @dev: device to unregister a handler from
3129 *
3130 * Unregister a receive hander from a device.
3131 *
3132 * The caller must hold the rtnl_mutex.
3133 */
3134 void netdev_rx_handler_unregister(struct net_device *dev)
3135 {
3136
3137 ASSERT_RTNL();
3138 RCU_INIT_POINTER(dev->rx_handler, NULL);
3139 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3140 }
3141 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3142
3143 static int __netif_receive_skb(struct sk_buff *skb)
3144 {
3145 struct packet_type *ptype, *pt_prev;
3146 rx_handler_func_t *rx_handler;
3147 struct net_device *orig_dev;
3148 struct net_device *null_or_dev;
3149 bool deliver_exact = false;
3150 int ret = NET_RX_DROP;
3151 __be16 type;
3152
3153 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3154
3155 trace_netif_receive_skb(skb);
3156
3157 /* if we've gotten here through NAPI, check netpoll */
3158 if (netpoll_receive_skb(skb))
3159 return NET_RX_DROP;
3160
3161 if (!skb->skb_iif)
3162 skb->skb_iif = skb->dev->ifindex;
3163 orig_dev = skb->dev;
3164
3165 skb_reset_network_header(skb);
3166 skb_reset_transport_header(skb);
3167 skb_reset_mac_len(skb);
3168
3169 pt_prev = NULL;
3170
3171 rcu_read_lock();
3172
3173 another_round:
3174
3175 __this_cpu_inc(softnet_data.processed);
3176
3177 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3178 skb = vlan_untag(skb);
3179 if (unlikely(!skb))
3180 goto out;
3181 }
3182
3183 #ifdef CONFIG_NET_CLS_ACT
3184 if (skb->tc_verd & TC_NCLS) {
3185 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3186 goto ncls;
3187 }
3188 #endif
3189
3190 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3191 if (!ptype->dev || ptype->dev == skb->dev) {
3192 if (pt_prev)
3193 ret = deliver_skb(skb, pt_prev, orig_dev);
3194 pt_prev = ptype;
3195 }
3196 }
3197
3198 #ifdef CONFIG_NET_CLS_ACT
3199 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3200 if (!skb)
3201 goto out;
3202 ncls:
3203 #endif
3204
3205 rx_handler = rcu_dereference(skb->dev->rx_handler);
3206 if (vlan_tx_tag_present(skb)) {
3207 if (pt_prev) {
3208 ret = deliver_skb(skb, pt_prev, orig_dev);
3209 pt_prev = NULL;
3210 }
3211 if (vlan_do_receive(&skb, !rx_handler))
3212 goto another_round;
3213 else if (unlikely(!skb))
3214 goto out;
3215 }
3216
3217 if (rx_handler) {
3218 if (pt_prev) {
3219 ret = deliver_skb(skb, pt_prev, orig_dev);
3220 pt_prev = NULL;
3221 }
3222 switch (rx_handler(&skb)) {
3223 case RX_HANDLER_CONSUMED:
3224 goto out;
3225 case RX_HANDLER_ANOTHER:
3226 goto another_round;
3227 case RX_HANDLER_EXACT:
3228 deliver_exact = true;
3229 case RX_HANDLER_PASS:
3230 break;
3231 default:
3232 BUG();
3233 }
3234 }
3235
3236 /* deliver only exact match when indicated */
3237 null_or_dev = deliver_exact ? skb->dev : NULL;
3238
3239 type = skb->protocol;
3240 list_for_each_entry_rcu(ptype,
3241 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3242 if (ptype->type == type &&
3243 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3244 ptype->dev == orig_dev)) {
3245 if (pt_prev)
3246 ret = deliver_skb(skb, pt_prev, orig_dev);
3247 pt_prev = ptype;
3248 }
3249 }
3250
3251 if (pt_prev) {
3252 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3253 } else {
3254 atomic_long_inc(&skb->dev->rx_dropped);
3255 kfree_skb(skb);
3256 /* Jamal, now you will not able to escape explaining
3257 * me how you were going to use this. :-)
3258 */
3259 ret = NET_RX_DROP;
3260 }
3261
3262 out:
3263 rcu_read_unlock();
3264 return ret;
3265 }
3266
3267 /**
3268 * netif_receive_skb - process receive buffer from network
3269 * @skb: buffer to process
3270 *
3271 * netif_receive_skb() is the main receive data processing function.
3272 * It always succeeds. The buffer may be dropped during processing
3273 * for congestion control or by the protocol layers.
3274 *
3275 * This function may only be called from softirq context and interrupts
3276 * should be enabled.
3277 *
3278 * Return values (usually ignored):
3279 * NET_RX_SUCCESS: no congestion
3280 * NET_RX_DROP: packet was dropped
3281 */
3282 int netif_receive_skb(struct sk_buff *skb)
3283 {
3284 net_timestamp_check(netdev_tstamp_prequeue, skb);
3285
3286 if (skb_defer_rx_timestamp(skb))
3287 return NET_RX_SUCCESS;
3288
3289 #ifdef CONFIG_RPS
3290 if (static_key_false(&rps_needed)) {
3291 struct rps_dev_flow voidflow, *rflow = &voidflow;
3292 int cpu, ret;
3293
3294 rcu_read_lock();
3295
3296 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3297
3298 if (cpu >= 0) {
3299 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3300 rcu_read_unlock();
3301 return ret;
3302 }
3303 rcu_read_unlock();
3304 }
3305 #endif
3306 return __netif_receive_skb(skb);
3307 }
3308 EXPORT_SYMBOL(netif_receive_skb);
3309
3310 /* Network device is going away, flush any packets still pending
3311 * Called with irqs disabled.
3312 */
3313 static void flush_backlog(void *arg)
3314 {
3315 struct net_device *dev = arg;
3316 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3317 struct sk_buff *skb, *tmp;
3318
3319 rps_lock(sd);
3320 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3321 if (skb->dev == dev) {
3322 __skb_unlink(skb, &sd->input_pkt_queue);
3323 kfree_skb(skb);
3324 input_queue_head_incr(sd);
3325 }
3326 }
3327 rps_unlock(sd);
3328
3329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3330 if (skb->dev == dev) {
3331 __skb_unlink(skb, &sd->process_queue);
3332 kfree_skb(skb);
3333 input_queue_head_incr(sd);
3334 }
3335 }
3336 }
3337
3338 static int napi_gro_complete(struct sk_buff *skb)
3339 {
3340 struct packet_type *ptype;
3341 __be16 type = skb->protocol;
3342 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3343 int err = -ENOENT;
3344
3345 if (NAPI_GRO_CB(skb)->count == 1) {
3346 skb_shinfo(skb)->gso_size = 0;
3347 goto out;
3348 }
3349
3350 rcu_read_lock();
3351 list_for_each_entry_rcu(ptype, head, list) {
3352 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3353 continue;
3354
3355 err = ptype->gro_complete(skb);
3356 break;
3357 }
3358 rcu_read_unlock();
3359
3360 if (err) {
3361 WARN_ON(&ptype->list == head);
3362 kfree_skb(skb);
3363 return NET_RX_SUCCESS;
3364 }
3365
3366 out:
3367 return netif_receive_skb(skb);
3368 }
3369
3370 inline void napi_gro_flush(struct napi_struct *napi)
3371 {
3372 struct sk_buff *skb, *next;
3373
3374 for (skb = napi->gro_list; skb; skb = next) {
3375 next = skb->next;
3376 skb->next = NULL;
3377 napi_gro_complete(skb);
3378 }
3379
3380 napi->gro_count = 0;
3381 napi->gro_list = NULL;
3382 }
3383 EXPORT_SYMBOL(napi_gro_flush);
3384
3385 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3386 {
3387 struct sk_buff **pp = NULL;
3388 struct packet_type *ptype;
3389 __be16 type = skb->protocol;
3390 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3391 int same_flow;
3392 int mac_len;
3393 enum gro_result ret;
3394
3395 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3396 goto normal;
3397
3398 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3399 goto normal;
3400
3401 rcu_read_lock();
3402 list_for_each_entry_rcu(ptype, head, list) {
3403 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3404 continue;
3405
3406 skb_set_network_header(skb, skb_gro_offset(skb));
3407 mac_len = skb->network_header - skb->mac_header;
3408 skb->mac_len = mac_len;
3409 NAPI_GRO_CB(skb)->same_flow = 0;
3410 NAPI_GRO_CB(skb)->flush = 0;
3411 NAPI_GRO_CB(skb)->free = 0;
3412
3413 pp = ptype->gro_receive(&napi->gro_list, skb);
3414 break;
3415 }
3416 rcu_read_unlock();
3417
3418 if (&ptype->list == head)
3419 goto normal;
3420
3421 same_flow = NAPI_GRO_CB(skb)->same_flow;
3422 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3423
3424 if (pp) {
3425 struct sk_buff *nskb = *pp;
3426
3427 *pp = nskb->next;
3428 nskb->next = NULL;
3429 napi_gro_complete(nskb);
3430 napi->gro_count--;
3431 }
3432
3433 if (same_flow)
3434 goto ok;
3435
3436 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3437 goto normal;
3438
3439 napi->gro_count++;
3440 NAPI_GRO_CB(skb)->count = 1;
3441 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3442 skb->next = napi->gro_list;
3443 napi->gro_list = skb;
3444 ret = GRO_HELD;
3445
3446 pull:
3447 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3448 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3449
3450 BUG_ON(skb->end - skb->tail < grow);
3451
3452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3453
3454 skb->tail += grow;
3455 skb->data_len -= grow;
3456
3457 skb_shinfo(skb)->frags[0].page_offset += grow;
3458 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3459
3460 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3461 skb_frag_unref(skb, 0);
3462 memmove(skb_shinfo(skb)->frags,
3463 skb_shinfo(skb)->frags + 1,
3464 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3465 }
3466 }
3467
3468 ok:
3469 return ret;
3470
3471 normal:
3472 ret = GRO_NORMAL;
3473 goto pull;
3474 }
3475 EXPORT_SYMBOL(dev_gro_receive);
3476
3477 static inline gro_result_t
3478 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3479 {
3480 struct sk_buff *p;
3481 unsigned int maclen = skb->dev->hard_header_len;
3482
3483 for (p = napi->gro_list; p; p = p->next) {
3484 unsigned long diffs;
3485
3486 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3487 diffs |= p->vlan_tci ^ skb->vlan_tci;
3488 if (maclen == ETH_HLEN)
3489 diffs |= compare_ether_header(skb_mac_header(p),
3490 skb_gro_mac_header(skb));
3491 else if (!diffs)
3492 diffs = memcmp(skb_mac_header(p),
3493 skb_gro_mac_header(skb),
3494 maclen);
3495 NAPI_GRO_CB(p)->same_flow = !diffs;
3496 NAPI_GRO_CB(p)->flush = 0;
3497 }
3498
3499 return dev_gro_receive(napi, skb);
3500 }
3501
3502 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3503 {
3504 switch (ret) {
3505 case GRO_NORMAL:
3506 if (netif_receive_skb(skb))
3507 ret = GRO_DROP;
3508 break;
3509
3510 case GRO_DROP:
3511 kfree_skb(skb);
3512 break;
3513
3514 case GRO_MERGED_FREE:
3515 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3516 kmem_cache_free(skbuff_head_cache, skb);
3517 else
3518 __kfree_skb(skb);
3519 break;
3520
3521 case GRO_HELD:
3522 case GRO_MERGED:
3523 break;
3524 }
3525
3526 return ret;
3527 }
3528 EXPORT_SYMBOL(napi_skb_finish);
3529
3530 void skb_gro_reset_offset(struct sk_buff *skb)
3531 {
3532 NAPI_GRO_CB(skb)->data_offset = 0;
3533 NAPI_GRO_CB(skb)->frag0 = NULL;
3534 NAPI_GRO_CB(skb)->frag0_len = 0;
3535
3536 if (skb->mac_header == skb->tail &&
3537 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3538 NAPI_GRO_CB(skb)->frag0 =
3539 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3540 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3541 }
3542 }
3543 EXPORT_SYMBOL(skb_gro_reset_offset);
3544
3545 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3546 {
3547 skb_gro_reset_offset(skb);
3548
3549 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3550 }
3551 EXPORT_SYMBOL(napi_gro_receive);
3552
3553 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3554 {
3555 __skb_pull(skb, skb_headlen(skb));
3556 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3557 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3558 skb->vlan_tci = 0;
3559 skb->dev = napi->dev;
3560 skb->skb_iif = 0;
3561
3562 napi->skb = skb;
3563 }
3564
3565 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3566 {
3567 struct sk_buff *skb = napi->skb;
3568
3569 if (!skb) {
3570 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3571 if (skb)
3572 napi->skb = skb;
3573 }
3574 return skb;
3575 }
3576 EXPORT_SYMBOL(napi_get_frags);
3577
3578 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3579 gro_result_t ret)
3580 {
3581 switch (ret) {
3582 case GRO_NORMAL:
3583 case GRO_HELD:
3584 skb->protocol = eth_type_trans(skb, skb->dev);
3585
3586 if (ret == GRO_HELD)
3587 skb_gro_pull(skb, -ETH_HLEN);
3588 else if (netif_receive_skb(skb))
3589 ret = GRO_DROP;
3590 break;
3591
3592 case GRO_DROP:
3593 case GRO_MERGED_FREE:
3594 napi_reuse_skb(napi, skb);
3595 break;
3596
3597 case GRO_MERGED:
3598 break;
3599 }
3600
3601 return ret;
3602 }
3603 EXPORT_SYMBOL(napi_frags_finish);
3604
3605 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3606 {
3607 struct sk_buff *skb = napi->skb;
3608 struct ethhdr *eth;
3609 unsigned int hlen;
3610 unsigned int off;
3611
3612 napi->skb = NULL;
3613
3614 skb_reset_mac_header(skb);
3615 skb_gro_reset_offset(skb);
3616
3617 off = skb_gro_offset(skb);
3618 hlen = off + sizeof(*eth);
3619 eth = skb_gro_header_fast(skb, off);
3620 if (skb_gro_header_hard(skb, hlen)) {
3621 eth = skb_gro_header_slow(skb, hlen, off);
3622 if (unlikely(!eth)) {
3623 napi_reuse_skb(napi, skb);
3624 skb = NULL;
3625 goto out;
3626 }
3627 }
3628
3629 skb_gro_pull(skb, sizeof(*eth));
3630
3631 /*
3632 * This works because the only protocols we care about don't require
3633 * special handling. We'll fix it up properly at the end.
3634 */
3635 skb->protocol = eth->h_proto;
3636
3637 out:
3638 return skb;
3639 }
3640
3641 gro_result_t napi_gro_frags(struct napi_struct *napi)
3642 {
3643 struct sk_buff *skb = napi_frags_skb(napi);
3644
3645 if (!skb)
3646 return GRO_DROP;
3647
3648 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3649 }
3650 EXPORT_SYMBOL(napi_gro_frags);
3651
3652 /*
3653 * net_rps_action sends any pending IPI's for rps.
3654 * Note: called with local irq disabled, but exits with local irq enabled.
3655 */
3656 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3657 {
3658 #ifdef CONFIG_RPS
3659 struct softnet_data *remsd = sd->rps_ipi_list;
3660
3661 if (remsd) {
3662 sd->rps_ipi_list = NULL;
3663
3664 local_irq_enable();
3665
3666 /* Send pending IPI's to kick RPS processing on remote cpus. */
3667 while (remsd) {
3668 struct softnet_data *next = remsd->rps_ipi_next;
3669
3670 if (cpu_online(remsd->cpu))
3671 __smp_call_function_single(remsd->cpu,
3672 &remsd->csd, 0);
3673 remsd = next;
3674 }
3675 } else
3676 #endif
3677 local_irq_enable();
3678 }
3679
3680 static int process_backlog(struct napi_struct *napi, int quota)
3681 {
3682 int work = 0;
3683 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3684
3685 #ifdef CONFIG_RPS
3686 /* Check if we have pending ipi, its better to send them now,
3687 * not waiting net_rx_action() end.
3688 */
3689 if (sd->rps_ipi_list) {
3690 local_irq_disable();
3691 net_rps_action_and_irq_enable(sd);
3692 }
3693 #endif
3694 napi->weight = weight_p;
3695 local_irq_disable();
3696 while (work < quota) {
3697 struct sk_buff *skb;
3698 unsigned int qlen;
3699
3700 while ((skb = __skb_dequeue(&sd->process_queue))) {
3701 local_irq_enable();
3702 __netif_receive_skb(skb);
3703 local_irq_disable();
3704 input_queue_head_incr(sd);
3705 if (++work >= quota) {
3706 local_irq_enable();
3707 return work;
3708 }
3709 }
3710
3711 rps_lock(sd);
3712 qlen = skb_queue_len(&sd->input_pkt_queue);
3713 if (qlen)
3714 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3715 &sd->process_queue);
3716
3717 if (qlen < quota - work) {
3718 /*
3719 * Inline a custom version of __napi_complete().
3720 * only current cpu owns and manipulates this napi,
3721 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3722 * we can use a plain write instead of clear_bit(),
3723 * and we dont need an smp_mb() memory barrier.
3724 */
3725 list_del(&napi->poll_list);
3726 napi->state = 0;
3727
3728 quota = work + qlen;
3729 }
3730 rps_unlock(sd);
3731 }
3732 local_irq_enable();
3733
3734 return work;
3735 }
3736
3737 /**
3738 * __napi_schedule - schedule for receive
3739 * @n: entry to schedule
3740 *
3741 * The entry's receive function will be scheduled to run
3742 */
3743 void __napi_schedule(struct napi_struct *n)
3744 {
3745 unsigned long flags;
3746
3747 local_irq_save(flags);
3748 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3749 local_irq_restore(flags);
3750 }
3751 EXPORT_SYMBOL(__napi_schedule);
3752
3753 void __napi_complete(struct napi_struct *n)
3754 {
3755 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3756 BUG_ON(n->gro_list);
3757
3758 list_del(&n->poll_list);
3759 smp_mb__before_clear_bit();
3760 clear_bit(NAPI_STATE_SCHED, &n->state);
3761 }
3762 EXPORT_SYMBOL(__napi_complete);
3763
3764 void napi_complete(struct napi_struct *n)
3765 {
3766 unsigned long flags;
3767
3768 /*
3769 * don't let napi dequeue from the cpu poll list
3770 * just in case its running on a different cpu
3771 */
3772 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3773 return;
3774
3775 napi_gro_flush(n);
3776 local_irq_save(flags);
3777 __napi_complete(n);
3778 local_irq_restore(flags);
3779 }
3780 EXPORT_SYMBOL(napi_complete);
3781
3782 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3783 int (*poll)(struct napi_struct *, int), int weight)
3784 {
3785 INIT_LIST_HEAD(&napi->poll_list);
3786 napi->gro_count = 0;
3787 napi->gro_list = NULL;
3788 napi->skb = NULL;
3789 napi->poll = poll;
3790 napi->weight = weight;
3791 list_add(&napi->dev_list, &dev->napi_list);
3792 napi->dev = dev;
3793 #ifdef CONFIG_NETPOLL
3794 spin_lock_init(&napi->poll_lock);
3795 napi->poll_owner = -1;
3796 #endif
3797 set_bit(NAPI_STATE_SCHED, &napi->state);
3798 }
3799 EXPORT_SYMBOL(netif_napi_add);
3800
3801 void netif_napi_del(struct napi_struct *napi)
3802 {
3803 struct sk_buff *skb, *next;
3804
3805 list_del_init(&napi->dev_list);
3806 napi_free_frags(napi);
3807
3808 for (skb = napi->gro_list; skb; skb = next) {
3809 next = skb->next;
3810 skb->next = NULL;
3811 kfree_skb(skb);
3812 }
3813
3814 napi->gro_list = NULL;
3815 napi->gro_count = 0;
3816 }
3817 EXPORT_SYMBOL(netif_napi_del);
3818
3819 static void net_rx_action(struct softirq_action *h)
3820 {
3821 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3822 unsigned long time_limit = jiffies + 2;
3823 int budget = netdev_budget;
3824 void *have;
3825
3826 local_irq_disable();
3827
3828 while (!list_empty(&sd->poll_list)) {
3829 struct napi_struct *n;
3830 int work, weight;
3831
3832 /* If softirq window is exhuasted then punt.
3833 * Allow this to run for 2 jiffies since which will allow
3834 * an average latency of 1.5/HZ.
3835 */
3836 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3837 goto softnet_break;
3838
3839 local_irq_enable();
3840
3841 /* Even though interrupts have been re-enabled, this
3842 * access is safe because interrupts can only add new
3843 * entries to the tail of this list, and only ->poll()
3844 * calls can remove this head entry from the list.
3845 */
3846 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3847
3848 have = netpoll_poll_lock(n);
3849
3850 weight = n->weight;
3851
3852 /* This NAPI_STATE_SCHED test is for avoiding a race
3853 * with netpoll's poll_napi(). Only the entity which
3854 * obtains the lock and sees NAPI_STATE_SCHED set will
3855 * actually make the ->poll() call. Therefore we avoid
3856 * accidentally calling ->poll() when NAPI is not scheduled.
3857 */
3858 work = 0;
3859 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3860 work = n->poll(n, weight);
3861 trace_napi_poll(n);
3862 }
3863
3864 WARN_ON_ONCE(work > weight);
3865
3866 budget -= work;
3867
3868 local_irq_disable();
3869
3870 /* Drivers must not modify the NAPI state if they
3871 * consume the entire weight. In such cases this code
3872 * still "owns" the NAPI instance and therefore can
3873 * move the instance around on the list at-will.
3874 */
3875 if (unlikely(work == weight)) {
3876 if (unlikely(napi_disable_pending(n))) {
3877 local_irq_enable();
3878 napi_complete(n);
3879 local_irq_disable();
3880 } else
3881 list_move_tail(&n->poll_list, &sd->poll_list);
3882 }
3883
3884 netpoll_poll_unlock(have);
3885 }
3886 out:
3887 net_rps_action_and_irq_enable(sd);
3888
3889 #ifdef CONFIG_NET_DMA
3890 /*
3891 * There may not be any more sk_buffs coming right now, so push
3892 * any pending DMA copies to hardware
3893 */
3894 dma_issue_pending_all();
3895 #endif
3896
3897 return;
3898
3899 softnet_break:
3900 sd->time_squeeze++;
3901 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3902 goto out;
3903 }
3904
3905 static gifconf_func_t *gifconf_list[NPROTO];
3906
3907 /**
3908 * register_gifconf - register a SIOCGIF handler
3909 * @family: Address family
3910 * @gifconf: Function handler
3911 *
3912 * Register protocol dependent address dumping routines. The handler
3913 * that is passed must not be freed or reused until it has been replaced
3914 * by another handler.
3915 */
3916 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3917 {
3918 if (family >= NPROTO)
3919 return -EINVAL;
3920 gifconf_list[family] = gifconf;
3921 return 0;
3922 }
3923 EXPORT_SYMBOL(register_gifconf);
3924
3925
3926 /*
3927 * Map an interface index to its name (SIOCGIFNAME)
3928 */
3929
3930 /*
3931 * We need this ioctl for efficient implementation of the
3932 * if_indextoname() function required by the IPv6 API. Without
3933 * it, we would have to search all the interfaces to find a
3934 * match. --pb
3935 */
3936
3937 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3938 {
3939 struct net_device *dev;
3940 struct ifreq ifr;
3941
3942 /*
3943 * Fetch the caller's info block.
3944 */
3945
3946 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3947 return -EFAULT;
3948
3949 rcu_read_lock();
3950 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3951 if (!dev) {
3952 rcu_read_unlock();
3953 return -ENODEV;
3954 }
3955
3956 strcpy(ifr.ifr_name, dev->name);
3957 rcu_read_unlock();
3958
3959 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3960 return -EFAULT;
3961 return 0;
3962 }
3963
3964 /*
3965 * Perform a SIOCGIFCONF call. This structure will change
3966 * size eventually, and there is nothing I can do about it.
3967 * Thus we will need a 'compatibility mode'.
3968 */
3969
3970 static int dev_ifconf(struct net *net, char __user *arg)
3971 {
3972 struct ifconf ifc;
3973 struct net_device *dev;
3974 char __user *pos;
3975 int len;
3976 int total;
3977 int i;
3978
3979 /*
3980 * Fetch the caller's info block.
3981 */
3982
3983 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3984 return -EFAULT;
3985
3986 pos = ifc.ifc_buf;
3987 len = ifc.ifc_len;
3988
3989 /*
3990 * Loop over the interfaces, and write an info block for each.
3991 */
3992
3993 total = 0;
3994 for_each_netdev(net, dev) {
3995 for (i = 0; i < NPROTO; i++) {
3996 if (gifconf_list[i]) {
3997 int done;
3998 if (!pos)
3999 done = gifconf_list[i](dev, NULL, 0);
4000 else
4001 done = gifconf_list[i](dev, pos + total,
4002 len - total);
4003 if (done < 0)
4004 return -EFAULT;
4005 total += done;
4006 }
4007 }
4008 }
4009
4010 /*
4011 * All done. Write the updated control block back to the caller.
4012 */
4013 ifc.ifc_len = total;
4014
4015 /*
4016 * Both BSD and Solaris return 0 here, so we do too.
4017 */
4018 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4019 }
4020
4021 #ifdef CONFIG_PROC_FS
4022
4023 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4024
4025 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4026 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4027 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4028
4029 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4030 {
4031 struct net *net = seq_file_net(seq);
4032 struct net_device *dev;
4033 struct hlist_node *p;
4034 struct hlist_head *h;
4035 unsigned int count = 0, offset = get_offset(*pos);
4036
4037 h = &net->dev_name_head[get_bucket(*pos)];
4038 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4039 if (++count == offset)
4040 return dev;
4041 }
4042
4043 return NULL;
4044 }
4045
4046 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4047 {
4048 struct net_device *dev;
4049 unsigned int bucket;
4050
4051 do {
4052 dev = dev_from_same_bucket(seq, pos);
4053 if (dev)
4054 return dev;
4055
4056 bucket = get_bucket(*pos) + 1;
4057 *pos = set_bucket_offset(bucket, 1);
4058 } while (bucket < NETDEV_HASHENTRIES);
4059
4060 return NULL;
4061 }
4062
4063 /*
4064 * This is invoked by the /proc filesystem handler to display a device
4065 * in detail.
4066 */
4067 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4068 __acquires(RCU)
4069 {
4070 rcu_read_lock();
4071 if (!*pos)
4072 return SEQ_START_TOKEN;
4073
4074 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4075 return NULL;
4076
4077 return dev_from_bucket(seq, pos);
4078 }
4079
4080 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4081 {
4082 ++*pos;
4083 return dev_from_bucket(seq, pos);
4084 }
4085
4086 void dev_seq_stop(struct seq_file *seq, void *v)
4087 __releases(RCU)
4088 {
4089 rcu_read_unlock();
4090 }
4091
4092 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4093 {
4094 struct rtnl_link_stats64 temp;
4095 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4096
4097 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4098 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4099 dev->name, stats->rx_bytes, stats->rx_packets,
4100 stats->rx_errors,
4101 stats->rx_dropped + stats->rx_missed_errors,
4102 stats->rx_fifo_errors,
4103 stats->rx_length_errors + stats->rx_over_errors +
4104 stats->rx_crc_errors + stats->rx_frame_errors,
4105 stats->rx_compressed, stats->multicast,
4106 stats->tx_bytes, stats->tx_packets,
4107 stats->tx_errors, stats->tx_dropped,
4108 stats->tx_fifo_errors, stats->collisions,
4109 stats->tx_carrier_errors +
4110 stats->tx_aborted_errors +
4111 stats->tx_window_errors +
4112 stats->tx_heartbeat_errors,
4113 stats->tx_compressed);
4114 }
4115
4116 /*
4117 * Called from the PROCfs module. This now uses the new arbitrary sized
4118 * /proc/net interface to create /proc/net/dev
4119 */
4120 static int dev_seq_show(struct seq_file *seq, void *v)
4121 {
4122 if (v == SEQ_START_TOKEN)
4123 seq_puts(seq, "Inter-| Receive "
4124 " | Transmit\n"
4125 " face |bytes packets errs drop fifo frame "
4126 "compressed multicast|bytes packets errs "
4127 "drop fifo colls carrier compressed\n");
4128 else
4129 dev_seq_printf_stats(seq, v);
4130 return 0;
4131 }
4132
4133 static struct softnet_data *softnet_get_online(loff_t *pos)
4134 {
4135 struct softnet_data *sd = NULL;
4136
4137 while (*pos < nr_cpu_ids)
4138 if (cpu_online(*pos)) {
4139 sd = &per_cpu(softnet_data, *pos);
4140 break;
4141 } else
4142 ++*pos;
4143 return sd;
4144 }
4145
4146 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4147 {
4148 return softnet_get_online(pos);
4149 }
4150
4151 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4152 {
4153 ++*pos;
4154 return softnet_get_online(pos);
4155 }
4156
4157 static void softnet_seq_stop(struct seq_file *seq, void *v)
4158 {
4159 }
4160
4161 static int softnet_seq_show(struct seq_file *seq, void *v)
4162 {
4163 struct softnet_data *sd = v;
4164
4165 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4166 sd->processed, sd->dropped, sd->time_squeeze, 0,
4167 0, 0, 0, 0, /* was fastroute */
4168 sd->cpu_collision, sd->received_rps);
4169 return 0;
4170 }
4171
4172 static const struct seq_operations dev_seq_ops = {
4173 .start = dev_seq_start,
4174 .next = dev_seq_next,
4175 .stop = dev_seq_stop,
4176 .show = dev_seq_show,
4177 };
4178
4179 static int dev_seq_open(struct inode *inode, struct file *file)
4180 {
4181 return seq_open_net(inode, file, &dev_seq_ops,
4182 sizeof(struct seq_net_private));
4183 }
4184
4185 static const struct file_operations dev_seq_fops = {
4186 .owner = THIS_MODULE,
4187 .open = dev_seq_open,
4188 .read = seq_read,
4189 .llseek = seq_lseek,
4190 .release = seq_release_net,
4191 };
4192
4193 static const struct seq_operations softnet_seq_ops = {
4194 .start = softnet_seq_start,
4195 .next = softnet_seq_next,
4196 .stop = softnet_seq_stop,
4197 .show = softnet_seq_show,
4198 };
4199
4200 static int softnet_seq_open(struct inode *inode, struct file *file)
4201 {
4202 return seq_open(file, &softnet_seq_ops);
4203 }
4204
4205 static const struct file_operations softnet_seq_fops = {
4206 .owner = THIS_MODULE,
4207 .open = softnet_seq_open,
4208 .read = seq_read,
4209 .llseek = seq_lseek,
4210 .release = seq_release,
4211 };
4212
4213 static void *ptype_get_idx(loff_t pos)
4214 {
4215 struct packet_type *pt = NULL;
4216 loff_t i = 0;
4217 int t;
4218
4219 list_for_each_entry_rcu(pt, &ptype_all, list) {
4220 if (i == pos)
4221 return pt;
4222 ++i;
4223 }
4224
4225 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4226 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4227 if (i == pos)
4228 return pt;
4229 ++i;
4230 }
4231 }
4232 return NULL;
4233 }
4234
4235 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4236 __acquires(RCU)
4237 {
4238 rcu_read_lock();
4239 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4240 }
4241
4242 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4243 {
4244 struct packet_type *pt;
4245 struct list_head *nxt;
4246 int hash;
4247
4248 ++*pos;
4249 if (v == SEQ_START_TOKEN)
4250 return ptype_get_idx(0);
4251
4252 pt = v;
4253 nxt = pt->list.next;
4254 if (pt->type == htons(ETH_P_ALL)) {
4255 if (nxt != &ptype_all)
4256 goto found;
4257 hash = 0;
4258 nxt = ptype_base[0].next;
4259 } else
4260 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4261
4262 while (nxt == &ptype_base[hash]) {
4263 if (++hash >= PTYPE_HASH_SIZE)
4264 return NULL;
4265 nxt = ptype_base[hash].next;
4266 }
4267 found:
4268 return list_entry(nxt, struct packet_type, list);
4269 }
4270
4271 static void ptype_seq_stop(struct seq_file *seq, void *v)
4272 __releases(RCU)
4273 {
4274 rcu_read_unlock();
4275 }
4276
4277 static int ptype_seq_show(struct seq_file *seq, void *v)
4278 {
4279 struct packet_type *pt = v;
4280
4281 if (v == SEQ_START_TOKEN)
4282 seq_puts(seq, "Type Device Function\n");
4283 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4284 if (pt->type == htons(ETH_P_ALL))
4285 seq_puts(seq, "ALL ");
4286 else
4287 seq_printf(seq, "%04x", ntohs(pt->type));
4288
4289 seq_printf(seq, " %-8s %pF\n",
4290 pt->dev ? pt->dev->name : "", pt->func);
4291 }
4292
4293 return 0;
4294 }
4295
4296 static const struct seq_operations ptype_seq_ops = {
4297 .start = ptype_seq_start,
4298 .next = ptype_seq_next,
4299 .stop = ptype_seq_stop,
4300 .show = ptype_seq_show,
4301 };
4302
4303 static int ptype_seq_open(struct inode *inode, struct file *file)
4304 {
4305 return seq_open_net(inode, file, &ptype_seq_ops,
4306 sizeof(struct seq_net_private));
4307 }
4308
4309 static const struct file_operations ptype_seq_fops = {
4310 .owner = THIS_MODULE,
4311 .open = ptype_seq_open,
4312 .read = seq_read,
4313 .llseek = seq_lseek,
4314 .release = seq_release_net,
4315 };
4316
4317
4318 static int __net_init dev_proc_net_init(struct net *net)
4319 {
4320 int rc = -ENOMEM;
4321
4322 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4323 goto out;
4324 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4325 goto out_dev;
4326 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4327 goto out_softnet;
4328
4329 if (wext_proc_init(net))
4330 goto out_ptype;
4331 rc = 0;
4332 out:
4333 return rc;
4334 out_ptype:
4335 proc_net_remove(net, "ptype");
4336 out_softnet:
4337 proc_net_remove(net, "softnet_stat");
4338 out_dev:
4339 proc_net_remove(net, "dev");
4340 goto out;
4341 }
4342
4343 static void __net_exit dev_proc_net_exit(struct net *net)
4344 {
4345 wext_proc_exit(net);
4346
4347 proc_net_remove(net, "ptype");
4348 proc_net_remove(net, "softnet_stat");
4349 proc_net_remove(net, "dev");
4350 }
4351
4352 static struct pernet_operations __net_initdata dev_proc_ops = {
4353 .init = dev_proc_net_init,
4354 .exit = dev_proc_net_exit,
4355 };
4356
4357 static int __init dev_proc_init(void)
4358 {
4359 return register_pernet_subsys(&dev_proc_ops);
4360 }
4361 #else
4362 #define dev_proc_init() 0
4363 #endif /* CONFIG_PROC_FS */
4364
4365
4366 /**
4367 * netdev_set_master - set up master pointer
4368 * @slave: slave device
4369 * @master: new master device
4370 *
4371 * Changes the master device of the slave. Pass %NULL to break the
4372 * bonding. The caller must hold the RTNL semaphore. On a failure
4373 * a negative errno code is returned. On success the reference counts
4374 * are adjusted and the function returns zero.
4375 */
4376 int netdev_set_master(struct net_device *slave, struct net_device *master)
4377 {
4378 struct net_device *old = slave->master;
4379
4380 ASSERT_RTNL();
4381
4382 if (master) {
4383 if (old)
4384 return -EBUSY;
4385 dev_hold(master);
4386 }
4387
4388 slave->master = master;
4389
4390 if (old)
4391 dev_put(old);
4392 return 0;
4393 }
4394 EXPORT_SYMBOL(netdev_set_master);
4395
4396 /**
4397 * netdev_set_bond_master - set up bonding master/slave pair
4398 * @slave: slave device
4399 * @master: new master device
4400 *
4401 * Changes the master device of the slave. Pass %NULL to break the
4402 * bonding. The caller must hold the RTNL semaphore. On a failure
4403 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4404 * to the routing socket and the function returns zero.
4405 */
4406 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4407 {
4408 int err;
4409
4410 ASSERT_RTNL();
4411
4412 err = netdev_set_master(slave, master);
4413 if (err)
4414 return err;
4415 if (master)
4416 slave->flags |= IFF_SLAVE;
4417 else
4418 slave->flags &= ~IFF_SLAVE;
4419
4420 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4421 return 0;
4422 }
4423 EXPORT_SYMBOL(netdev_set_bond_master);
4424
4425 static void dev_change_rx_flags(struct net_device *dev, int flags)
4426 {
4427 const struct net_device_ops *ops = dev->netdev_ops;
4428
4429 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4430 ops->ndo_change_rx_flags(dev, flags);
4431 }
4432
4433 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4434 {
4435 unsigned int old_flags = dev->flags;
4436 uid_t uid;
4437 gid_t gid;
4438
4439 ASSERT_RTNL();
4440
4441 dev->flags |= IFF_PROMISC;
4442 dev->promiscuity += inc;
4443 if (dev->promiscuity == 0) {
4444 /*
4445 * Avoid overflow.
4446 * If inc causes overflow, untouch promisc and return error.
4447 */
4448 if (inc < 0)
4449 dev->flags &= ~IFF_PROMISC;
4450 else {
4451 dev->promiscuity -= inc;
4452 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4453 dev->name);
4454 return -EOVERFLOW;
4455 }
4456 }
4457 if (dev->flags != old_flags) {
4458 pr_info("device %s %s promiscuous mode\n",
4459 dev->name,
4460 dev->flags & IFF_PROMISC ? "entered" : "left");
4461 if (audit_enabled) {
4462 current_uid_gid(&uid, &gid);
4463 audit_log(current->audit_context, GFP_ATOMIC,
4464 AUDIT_ANOM_PROMISCUOUS,
4465 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4466 dev->name, (dev->flags & IFF_PROMISC),
4467 (old_flags & IFF_PROMISC),
4468 audit_get_loginuid(current),
4469 uid, gid,
4470 audit_get_sessionid(current));
4471 }
4472
4473 dev_change_rx_flags(dev, IFF_PROMISC);
4474 }
4475 return 0;
4476 }
4477
4478 /**
4479 * dev_set_promiscuity - update promiscuity count on a device
4480 * @dev: device
4481 * @inc: modifier
4482 *
4483 * Add or remove promiscuity from a device. While the count in the device
4484 * remains above zero the interface remains promiscuous. Once it hits zero
4485 * the device reverts back to normal filtering operation. A negative inc
4486 * value is used to drop promiscuity on the device.
4487 * Return 0 if successful or a negative errno code on error.
4488 */
4489 int dev_set_promiscuity(struct net_device *dev, int inc)
4490 {
4491 unsigned int old_flags = dev->flags;
4492 int err;
4493
4494 err = __dev_set_promiscuity(dev, inc);
4495 if (err < 0)
4496 return err;
4497 if (dev->flags != old_flags)
4498 dev_set_rx_mode(dev);
4499 return err;
4500 }
4501 EXPORT_SYMBOL(dev_set_promiscuity);
4502
4503 /**
4504 * dev_set_allmulti - update allmulti count on a device
4505 * @dev: device
4506 * @inc: modifier
4507 *
4508 * Add or remove reception of all multicast frames to a device. While the
4509 * count in the device remains above zero the interface remains listening
4510 * to all interfaces. Once it hits zero the device reverts back to normal
4511 * filtering operation. A negative @inc value is used to drop the counter
4512 * when releasing a resource needing all multicasts.
4513 * Return 0 if successful or a negative errno code on error.
4514 */
4515
4516 int dev_set_allmulti(struct net_device *dev, int inc)
4517 {
4518 unsigned int old_flags = dev->flags;
4519
4520 ASSERT_RTNL();
4521
4522 dev->flags |= IFF_ALLMULTI;
4523 dev->allmulti += inc;
4524 if (dev->allmulti == 0) {
4525 /*
4526 * Avoid overflow.
4527 * If inc causes overflow, untouch allmulti and return error.
4528 */
4529 if (inc < 0)
4530 dev->flags &= ~IFF_ALLMULTI;
4531 else {
4532 dev->allmulti -= inc;
4533 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4534 dev->name);
4535 return -EOVERFLOW;
4536 }
4537 }
4538 if (dev->flags ^ old_flags) {
4539 dev_change_rx_flags(dev, IFF_ALLMULTI);
4540 dev_set_rx_mode(dev);
4541 }
4542 return 0;
4543 }
4544 EXPORT_SYMBOL(dev_set_allmulti);
4545
4546 /*
4547 * Upload unicast and multicast address lists to device and
4548 * configure RX filtering. When the device doesn't support unicast
4549 * filtering it is put in promiscuous mode while unicast addresses
4550 * are present.
4551 */
4552 void __dev_set_rx_mode(struct net_device *dev)
4553 {
4554 const struct net_device_ops *ops = dev->netdev_ops;
4555
4556 /* dev_open will call this function so the list will stay sane. */
4557 if (!(dev->flags&IFF_UP))
4558 return;
4559
4560 if (!netif_device_present(dev))
4561 return;
4562
4563 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4564 /* Unicast addresses changes may only happen under the rtnl,
4565 * therefore calling __dev_set_promiscuity here is safe.
4566 */
4567 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4568 __dev_set_promiscuity(dev, 1);
4569 dev->uc_promisc = true;
4570 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4571 __dev_set_promiscuity(dev, -1);
4572 dev->uc_promisc = false;
4573 }
4574 }
4575
4576 if (ops->ndo_set_rx_mode)
4577 ops->ndo_set_rx_mode(dev);
4578 }
4579
4580 void dev_set_rx_mode(struct net_device *dev)
4581 {
4582 netif_addr_lock_bh(dev);
4583 __dev_set_rx_mode(dev);
4584 netif_addr_unlock_bh(dev);
4585 }
4586
4587 /**
4588 * dev_get_flags - get flags reported to userspace
4589 * @dev: device
4590 *
4591 * Get the combination of flag bits exported through APIs to userspace.
4592 */
4593 unsigned int dev_get_flags(const struct net_device *dev)
4594 {
4595 unsigned int flags;
4596
4597 flags = (dev->flags & ~(IFF_PROMISC |
4598 IFF_ALLMULTI |
4599 IFF_RUNNING |
4600 IFF_LOWER_UP |
4601 IFF_DORMANT)) |
4602 (dev->gflags & (IFF_PROMISC |
4603 IFF_ALLMULTI));
4604
4605 if (netif_running(dev)) {
4606 if (netif_oper_up(dev))
4607 flags |= IFF_RUNNING;
4608 if (netif_carrier_ok(dev))
4609 flags |= IFF_LOWER_UP;
4610 if (netif_dormant(dev))
4611 flags |= IFF_DORMANT;
4612 }
4613
4614 return flags;
4615 }
4616 EXPORT_SYMBOL(dev_get_flags);
4617
4618 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4619 {
4620 unsigned int old_flags = dev->flags;
4621 int ret;
4622
4623 ASSERT_RTNL();
4624
4625 /*
4626 * Set the flags on our device.
4627 */
4628
4629 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4630 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4631 IFF_AUTOMEDIA)) |
4632 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4633 IFF_ALLMULTI));
4634
4635 /*
4636 * Load in the correct multicast list now the flags have changed.
4637 */
4638
4639 if ((old_flags ^ flags) & IFF_MULTICAST)
4640 dev_change_rx_flags(dev, IFF_MULTICAST);
4641
4642 dev_set_rx_mode(dev);
4643
4644 /*
4645 * Have we downed the interface. We handle IFF_UP ourselves
4646 * according to user attempts to set it, rather than blindly
4647 * setting it.
4648 */
4649
4650 ret = 0;
4651 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4652 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4653
4654 if (!ret)
4655 dev_set_rx_mode(dev);
4656 }
4657
4658 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4659 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4660
4661 dev->gflags ^= IFF_PROMISC;
4662 dev_set_promiscuity(dev, inc);
4663 }
4664
4665 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4666 is important. Some (broken) drivers set IFF_PROMISC, when
4667 IFF_ALLMULTI is requested not asking us and not reporting.
4668 */
4669 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4670 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4671
4672 dev->gflags ^= IFF_ALLMULTI;
4673 dev_set_allmulti(dev, inc);
4674 }
4675
4676 return ret;
4677 }
4678
4679 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4680 {
4681 unsigned int changes = dev->flags ^ old_flags;
4682
4683 if (changes & IFF_UP) {
4684 if (dev->flags & IFF_UP)
4685 call_netdevice_notifiers(NETDEV_UP, dev);
4686 else
4687 call_netdevice_notifiers(NETDEV_DOWN, dev);
4688 }
4689
4690 if (dev->flags & IFF_UP &&
4691 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4692 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4693 }
4694
4695 /**
4696 * dev_change_flags - change device settings
4697 * @dev: device
4698 * @flags: device state flags
4699 *
4700 * Change settings on device based state flags. The flags are
4701 * in the userspace exported format.
4702 */
4703 int dev_change_flags(struct net_device *dev, unsigned int flags)
4704 {
4705 int ret;
4706 unsigned int changes, old_flags = dev->flags;
4707
4708 ret = __dev_change_flags(dev, flags);
4709 if (ret < 0)
4710 return ret;
4711
4712 changes = old_flags ^ dev->flags;
4713 if (changes)
4714 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4715
4716 __dev_notify_flags(dev, old_flags);
4717 return ret;
4718 }
4719 EXPORT_SYMBOL(dev_change_flags);
4720
4721 /**
4722 * dev_set_mtu - Change maximum transfer unit
4723 * @dev: device
4724 * @new_mtu: new transfer unit
4725 *
4726 * Change the maximum transfer size of the network device.
4727 */
4728 int dev_set_mtu(struct net_device *dev, int new_mtu)
4729 {
4730 const struct net_device_ops *ops = dev->netdev_ops;
4731 int err;
4732
4733 if (new_mtu == dev->mtu)
4734 return 0;
4735
4736 /* MTU must be positive. */
4737 if (new_mtu < 0)
4738 return -EINVAL;
4739
4740 if (!netif_device_present(dev))
4741 return -ENODEV;
4742
4743 err = 0;
4744 if (ops->ndo_change_mtu)
4745 err = ops->ndo_change_mtu(dev, new_mtu);
4746 else
4747 dev->mtu = new_mtu;
4748
4749 if (!err && dev->flags & IFF_UP)
4750 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4751 return err;
4752 }
4753 EXPORT_SYMBOL(dev_set_mtu);
4754
4755 /**
4756 * dev_set_group - Change group this device belongs to
4757 * @dev: device
4758 * @new_group: group this device should belong to
4759 */
4760 void dev_set_group(struct net_device *dev, int new_group)
4761 {
4762 dev->group = new_group;
4763 }
4764 EXPORT_SYMBOL(dev_set_group);
4765
4766 /**
4767 * dev_set_mac_address - Change Media Access Control Address
4768 * @dev: device
4769 * @sa: new address
4770 *
4771 * Change the hardware (MAC) address of the device
4772 */
4773 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4774 {
4775 const struct net_device_ops *ops = dev->netdev_ops;
4776 int err;
4777
4778 if (!ops->ndo_set_mac_address)
4779 return -EOPNOTSUPP;
4780 if (sa->sa_family != dev->type)
4781 return -EINVAL;
4782 if (!netif_device_present(dev))
4783 return -ENODEV;
4784 err = ops->ndo_set_mac_address(dev, sa);
4785 if (!err)
4786 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4787 return err;
4788 }
4789 EXPORT_SYMBOL(dev_set_mac_address);
4790
4791 /*
4792 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4793 */
4794 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4795 {
4796 int err;
4797 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4798
4799 if (!dev)
4800 return -ENODEV;
4801
4802 switch (cmd) {
4803 case SIOCGIFFLAGS: /* Get interface flags */
4804 ifr->ifr_flags = (short) dev_get_flags(dev);
4805 return 0;
4806
4807 case SIOCGIFMETRIC: /* Get the metric on the interface
4808 (currently unused) */
4809 ifr->ifr_metric = 0;
4810 return 0;
4811
4812 case SIOCGIFMTU: /* Get the MTU of a device */
4813 ifr->ifr_mtu = dev->mtu;
4814 return 0;
4815
4816 case SIOCGIFHWADDR:
4817 if (!dev->addr_len)
4818 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4819 else
4820 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4821 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4822 ifr->ifr_hwaddr.sa_family = dev->type;
4823 return 0;
4824
4825 case SIOCGIFSLAVE:
4826 err = -EINVAL;
4827 break;
4828
4829 case SIOCGIFMAP:
4830 ifr->ifr_map.mem_start = dev->mem_start;
4831 ifr->ifr_map.mem_end = dev->mem_end;
4832 ifr->ifr_map.base_addr = dev->base_addr;
4833 ifr->ifr_map.irq = dev->irq;
4834 ifr->ifr_map.dma = dev->dma;
4835 ifr->ifr_map.port = dev->if_port;
4836 return 0;
4837
4838 case SIOCGIFINDEX:
4839 ifr->ifr_ifindex = dev->ifindex;
4840 return 0;
4841
4842 case SIOCGIFTXQLEN:
4843 ifr->ifr_qlen = dev->tx_queue_len;
4844 return 0;
4845
4846 default:
4847 /* dev_ioctl() should ensure this case
4848 * is never reached
4849 */
4850 WARN_ON(1);
4851 err = -ENOTTY;
4852 break;
4853
4854 }
4855 return err;
4856 }
4857
4858 /*
4859 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4860 */
4861 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4862 {
4863 int err;
4864 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4865 const struct net_device_ops *ops;
4866
4867 if (!dev)
4868 return -ENODEV;
4869
4870 ops = dev->netdev_ops;
4871
4872 switch (cmd) {
4873 case SIOCSIFFLAGS: /* Set interface flags */
4874 return dev_change_flags(dev, ifr->ifr_flags);
4875
4876 case SIOCSIFMETRIC: /* Set the metric on the interface
4877 (currently unused) */
4878 return -EOPNOTSUPP;
4879
4880 case SIOCSIFMTU: /* Set the MTU of a device */
4881 return dev_set_mtu(dev, ifr->ifr_mtu);
4882
4883 case SIOCSIFHWADDR:
4884 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4885
4886 case SIOCSIFHWBROADCAST:
4887 if (ifr->ifr_hwaddr.sa_family != dev->type)
4888 return -EINVAL;
4889 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4890 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4891 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4892 return 0;
4893
4894 case SIOCSIFMAP:
4895 if (ops->ndo_set_config) {
4896 if (!netif_device_present(dev))
4897 return -ENODEV;
4898 return ops->ndo_set_config(dev, &ifr->ifr_map);
4899 }
4900 return -EOPNOTSUPP;
4901
4902 case SIOCADDMULTI:
4903 if (!ops->ndo_set_rx_mode ||
4904 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4905 return -EINVAL;
4906 if (!netif_device_present(dev))
4907 return -ENODEV;
4908 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4909
4910 case SIOCDELMULTI:
4911 if (!ops->ndo_set_rx_mode ||
4912 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4913 return -EINVAL;
4914 if (!netif_device_present(dev))
4915 return -ENODEV;
4916 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4917
4918 case SIOCSIFTXQLEN:
4919 if (ifr->ifr_qlen < 0)
4920 return -EINVAL;
4921 dev->tx_queue_len = ifr->ifr_qlen;
4922 return 0;
4923
4924 case SIOCSIFNAME:
4925 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4926 return dev_change_name(dev, ifr->ifr_newname);
4927
4928 case SIOCSHWTSTAMP:
4929 err = net_hwtstamp_validate(ifr);
4930 if (err)
4931 return err;
4932 /* fall through */
4933
4934 /*
4935 * Unknown or private ioctl
4936 */
4937 default:
4938 if ((cmd >= SIOCDEVPRIVATE &&
4939 cmd <= SIOCDEVPRIVATE + 15) ||
4940 cmd == SIOCBONDENSLAVE ||
4941 cmd == SIOCBONDRELEASE ||
4942 cmd == SIOCBONDSETHWADDR ||
4943 cmd == SIOCBONDSLAVEINFOQUERY ||
4944 cmd == SIOCBONDINFOQUERY ||
4945 cmd == SIOCBONDCHANGEACTIVE ||
4946 cmd == SIOCGMIIPHY ||
4947 cmd == SIOCGMIIREG ||
4948 cmd == SIOCSMIIREG ||
4949 cmd == SIOCBRADDIF ||
4950 cmd == SIOCBRDELIF ||
4951 cmd == SIOCSHWTSTAMP ||
4952 cmd == SIOCWANDEV) {
4953 err = -EOPNOTSUPP;
4954 if (ops->ndo_do_ioctl) {
4955 if (netif_device_present(dev))
4956 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4957 else
4958 err = -ENODEV;
4959 }
4960 } else
4961 err = -EINVAL;
4962
4963 }
4964 return err;
4965 }
4966
4967 /*
4968 * This function handles all "interface"-type I/O control requests. The actual
4969 * 'doing' part of this is dev_ifsioc above.
4970 */
4971
4972 /**
4973 * dev_ioctl - network device ioctl
4974 * @net: the applicable net namespace
4975 * @cmd: command to issue
4976 * @arg: pointer to a struct ifreq in user space
4977 *
4978 * Issue ioctl functions to devices. This is normally called by the
4979 * user space syscall interfaces but can sometimes be useful for
4980 * other purposes. The return value is the return from the syscall if
4981 * positive or a negative errno code on error.
4982 */
4983
4984 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4985 {
4986 struct ifreq ifr;
4987 int ret;
4988 char *colon;
4989
4990 /* One special case: SIOCGIFCONF takes ifconf argument
4991 and requires shared lock, because it sleeps writing
4992 to user space.
4993 */
4994
4995 if (cmd == SIOCGIFCONF) {
4996 rtnl_lock();
4997 ret = dev_ifconf(net, (char __user *) arg);
4998 rtnl_unlock();
4999 return ret;
5000 }
5001 if (cmd == SIOCGIFNAME)
5002 return dev_ifname(net, (struct ifreq __user *)arg);
5003
5004 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5005 return -EFAULT;
5006
5007 ifr.ifr_name[IFNAMSIZ-1] = 0;
5008
5009 colon = strchr(ifr.ifr_name, ':');
5010 if (colon)
5011 *colon = 0;
5012
5013 /*
5014 * See which interface the caller is talking about.
5015 */
5016
5017 switch (cmd) {
5018 /*
5019 * These ioctl calls:
5020 * - can be done by all.
5021 * - atomic and do not require locking.
5022 * - return a value
5023 */
5024 case SIOCGIFFLAGS:
5025 case SIOCGIFMETRIC:
5026 case SIOCGIFMTU:
5027 case SIOCGIFHWADDR:
5028 case SIOCGIFSLAVE:
5029 case SIOCGIFMAP:
5030 case SIOCGIFINDEX:
5031 case SIOCGIFTXQLEN:
5032 dev_load(net, ifr.ifr_name);
5033 rcu_read_lock();
5034 ret = dev_ifsioc_locked(net, &ifr, cmd);
5035 rcu_read_unlock();
5036 if (!ret) {
5037 if (colon)
5038 *colon = ':';
5039 if (copy_to_user(arg, &ifr,
5040 sizeof(struct ifreq)))
5041 ret = -EFAULT;
5042 }
5043 return ret;
5044
5045 case SIOCETHTOOL:
5046 dev_load(net, ifr.ifr_name);
5047 rtnl_lock();
5048 ret = dev_ethtool(net, &ifr);
5049 rtnl_unlock();
5050 if (!ret) {
5051 if (colon)
5052 *colon = ':';
5053 if (copy_to_user(arg, &ifr,
5054 sizeof(struct ifreq)))
5055 ret = -EFAULT;
5056 }
5057 return ret;
5058
5059 /*
5060 * These ioctl calls:
5061 * - require superuser power.
5062 * - require strict serialization.
5063 * - return a value
5064 */
5065 case SIOCGMIIPHY:
5066 case SIOCGMIIREG:
5067 case SIOCSIFNAME:
5068 if (!capable(CAP_NET_ADMIN))
5069 return -EPERM;
5070 dev_load(net, ifr.ifr_name);
5071 rtnl_lock();
5072 ret = dev_ifsioc(net, &ifr, cmd);
5073 rtnl_unlock();
5074 if (!ret) {
5075 if (colon)
5076 *colon = ':';
5077 if (copy_to_user(arg, &ifr,
5078 sizeof(struct ifreq)))
5079 ret = -EFAULT;
5080 }
5081 return ret;
5082
5083 /*
5084 * These ioctl calls:
5085 * - require superuser power.
5086 * - require strict serialization.
5087 * - do not return a value
5088 */
5089 case SIOCSIFFLAGS:
5090 case SIOCSIFMETRIC:
5091 case SIOCSIFMTU:
5092 case SIOCSIFMAP:
5093 case SIOCSIFHWADDR:
5094 case SIOCSIFSLAVE:
5095 case SIOCADDMULTI:
5096 case SIOCDELMULTI:
5097 case SIOCSIFHWBROADCAST:
5098 case SIOCSIFTXQLEN:
5099 case SIOCSMIIREG:
5100 case SIOCBONDENSLAVE:
5101 case SIOCBONDRELEASE:
5102 case SIOCBONDSETHWADDR:
5103 case SIOCBONDCHANGEACTIVE:
5104 case SIOCBRADDIF:
5105 case SIOCBRDELIF:
5106 case SIOCSHWTSTAMP:
5107 if (!capable(CAP_NET_ADMIN))
5108 return -EPERM;
5109 /* fall through */
5110 case SIOCBONDSLAVEINFOQUERY:
5111 case SIOCBONDINFOQUERY:
5112 dev_load(net, ifr.ifr_name);
5113 rtnl_lock();
5114 ret = dev_ifsioc(net, &ifr, cmd);
5115 rtnl_unlock();
5116 return ret;
5117
5118 case SIOCGIFMEM:
5119 /* Get the per device memory space. We can add this but
5120 * currently do not support it */
5121 case SIOCSIFMEM:
5122 /* Set the per device memory buffer space.
5123 * Not applicable in our case */
5124 case SIOCSIFLINK:
5125 return -ENOTTY;
5126
5127 /*
5128 * Unknown or private ioctl.
5129 */
5130 default:
5131 if (cmd == SIOCWANDEV ||
5132 (cmd >= SIOCDEVPRIVATE &&
5133 cmd <= SIOCDEVPRIVATE + 15)) {
5134 dev_load(net, ifr.ifr_name);
5135 rtnl_lock();
5136 ret = dev_ifsioc(net, &ifr, cmd);
5137 rtnl_unlock();
5138 if (!ret && copy_to_user(arg, &ifr,
5139 sizeof(struct ifreq)))
5140 ret = -EFAULT;
5141 return ret;
5142 }
5143 /* Take care of Wireless Extensions */
5144 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5145 return wext_handle_ioctl(net, &ifr, cmd, arg);
5146 return -ENOTTY;
5147 }
5148 }
5149
5150
5151 /**
5152 * dev_new_index - allocate an ifindex
5153 * @net: the applicable net namespace
5154 *
5155 * Returns a suitable unique value for a new device interface
5156 * number. The caller must hold the rtnl semaphore or the
5157 * dev_base_lock to be sure it remains unique.
5158 */
5159 static int dev_new_index(struct net *net)
5160 {
5161 static int ifindex;
5162 for (;;) {
5163 if (++ifindex <= 0)
5164 ifindex = 1;
5165 if (!__dev_get_by_index(net, ifindex))
5166 return ifindex;
5167 }
5168 }
5169
5170 /* Delayed registration/unregisteration */
5171 static LIST_HEAD(net_todo_list);
5172
5173 static void net_set_todo(struct net_device *dev)
5174 {
5175 list_add_tail(&dev->todo_list, &net_todo_list);
5176 }
5177
5178 static void rollback_registered_many(struct list_head *head)
5179 {
5180 struct net_device *dev, *tmp;
5181
5182 BUG_ON(dev_boot_phase);
5183 ASSERT_RTNL();
5184
5185 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5186 /* Some devices call without registering
5187 * for initialization unwind. Remove those
5188 * devices and proceed with the remaining.
5189 */
5190 if (dev->reg_state == NETREG_UNINITIALIZED) {
5191 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5192 dev->name, dev);
5193
5194 WARN_ON(1);
5195 list_del(&dev->unreg_list);
5196 continue;
5197 }
5198 dev->dismantle = true;
5199 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5200 }
5201
5202 /* If device is running, close it first. */
5203 dev_close_many(head);
5204
5205 list_for_each_entry(dev, head, unreg_list) {
5206 /* And unlink it from device chain. */
5207 unlist_netdevice(dev);
5208
5209 dev->reg_state = NETREG_UNREGISTERING;
5210 }
5211
5212 synchronize_net();
5213
5214 list_for_each_entry(dev, head, unreg_list) {
5215 /* Shutdown queueing discipline. */
5216 dev_shutdown(dev);
5217
5218
5219 /* Notify protocols, that we are about to destroy
5220 this device. They should clean all the things.
5221 */
5222 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5223
5224 if (!dev->rtnl_link_ops ||
5225 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5226 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5227
5228 /*
5229 * Flush the unicast and multicast chains
5230 */
5231 dev_uc_flush(dev);
5232 dev_mc_flush(dev);
5233
5234 if (dev->netdev_ops->ndo_uninit)
5235 dev->netdev_ops->ndo_uninit(dev);
5236
5237 /* Notifier chain MUST detach us from master device. */
5238 WARN_ON(dev->master);
5239
5240 /* Remove entries from kobject tree */
5241 netdev_unregister_kobject(dev);
5242 }
5243
5244 /* Process any work delayed until the end of the batch */
5245 dev = list_first_entry(head, struct net_device, unreg_list);
5246 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5247
5248 synchronize_net();
5249
5250 list_for_each_entry(dev, head, unreg_list)
5251 dev_put(dev);
5252 }
5253
5254 static void rollback_registered(struct net_device *dev)
5255 {
5256 LIST_HEAD(single);
5257
5258 list_add(&dev->unreg_list, &single);
5259 rollback_registered_many(&single);
5260 list_del(&single);
5261 }
5262
5263 static netdev_features_t netdev_fix_features(struct net_device *dev,
5264 netdev_features_t features)
5265 {
5266 /* Fix illegal checksum combinations */
5267 if ((features & NETIF_F_HW_CSUM) &&
5268 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5269 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5270 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5271 }
5272
5273 /* Fix illegal SG+CSUM combinations. */
5274 if ((features & NETIF_F_SG) &&
5275 !(features & NETIF_F_ALL_CSUM)) {
5276 netdev_dbg(dev,
5277 "Dropping NETIF_F_SG since no checksum feature.\n");
5278 features &= ~NETIF_F_SG;
5279 }
5280
5281 /* TSO requires that SG is present as well. */
5282 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5283 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5284 features &= ~NETIF_F_ALL_TSO;
5285 }
5286
5287 /* TSO ECN requires that TSO is present as well. */
5288 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5289 features &= ~NETIF_F_TSO_ECN;
5290
5291 /* Software GSO depends on SG. */
5292 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5293 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5294 features &= ~NETIF_F_GSO;
5295 }
5296
5297 /* UFO needs SG and checksumming */
5298 if (features & NETIF_F_UFO) {
5299 /* maybe split UFO into V4 and V6? */
5300 if (!((features & NETIF_F_GEN_CSUM) ||
5301 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5302 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5303 netdev_dbg(dev,
5304 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5305 features &= ~NETIF_F_UFO;
5306 }
5307
5308 if (!(features & NETIF_F_SG)) {
5309 netdev_dbg(dev,
5310 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5311 features &= ~NETIF_F_UFO;
5312 }
5313 }
5314
5315 return features;
5316 }
5317
5318 int __netdev_update_features(struct net_device *dev)
5319 {
5320 netdev_features_t features;
5321 int err = 0;
5322
5323 ASSERT_RTNL();
5324
5325 features = netdev_get_wanted_features(dev);
5326
5327 if (dev->netdev_ops->ndo_fix_features)
5328 features = dev->netdev_ops->ndo_fix_features(dev, features);
5329
5330 /* driver might be less strict about feature dependencies */
5331 features = netdev_fix_features(dev, features);
5332
5333 if (dev->features == features)
5334 return 0;
5335
5336 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5337 &dev->features, &features);
5338
5339 if (dev->netdev_ops->ndo_set_features)
5340 err = dev->netdev_ops->ndo_set_features(dev, features);
5341
5342 if (unlikely(err < 0)) {
5343 netdev_err(dev,
5344 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5345 err, &features, &dev->features);
5346 return -1;
5347 }
5348
5349 if (!err)
5350 dev->features = features;
5351
5352 return 1;
5353 }
5354
5355 /**
5356 * netdev_update_features - recalculate device features
5357 * @dev: the device to check
5358 *
5359 * Recalculate dev->features set and send notifications if it
5360 * has changed. Should be called after driver or hardware dependent
5361 * conditions might have changed that influence the features.
5362 */
5363 void netdev_update_features(struct net_device *dev)
5364 {
5365 if (__netdev_update_features(dev))
5366 netdev_features_change(dev);
5367 }
5368 EXPORT_SYMBOL(netdev_update_features);
5369
5370 /**
5371 * netdev_change_features - recalculate device features
5372 * @dev: the device to check
5373 *
5374 * Recalculate dev->features set and send notifications even
5375 * if they have not changed. Should be called instead of
5376 * netdev_update_features() if also dev->vlan_features might
5377 * have changed to allow the changes to be propagated to stacked
5378 * VLAN devices.
5379 */
5380 void netdev_change_features(struct net_device *dev)
5381 {
5382 __netdev_update_features(dev);
5383 netdev_features_change(dev);
5384 }
5385 EXPORT_SYMBOL(netdev_change_features);
5386
5387 /**
5388 * netif_stacked_transfer_operstate - transfer operstate
5389 * @rootdev: the root or lower level device to transfer state from
5390 * @dev: the device to transfer operstate to
5391 *
5392 * Transfer operational state from root to device. This is normally
5393 * called when a stacking relationship exists between the root
5394 * device and the device(a leaf device).
5395 */
5396 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5397 struct net_device *dev)
5398 {
5399 if (rootdev->operstate == IF_OPER_DORMANT)
5400 netif_dormant_on(dev);
5401 else
5402 netif_dormant_off(dev);
5403
5404 if (netif_carrier_ok(rootdev)) {
5405 if (!netif_carrier_ok(dev))
5406 netif_carrier_on(dev);
5407 } else {
5408 if (netif_carrier_ok(dev))
5409 netif_carrier_off(dev);
5410 }
5411 }
5412 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5413
5414 #ifdef CONFIG_RPS
5415 static int netif_alloc_rx_queues(struct net_device *dev)
5416 {
5417 unsigned int i, count = dev->num_rx_queues;
5418 struct netdev_rx_queue *rx;
5419
5420 BUG_ON(count < 1);
5421
5422 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5423 if (!rx) {
5424 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5425 return -ENOMEM;
5426 }
5427 dev->_rx = rx;
5428
5429 for (i = 0; i < count; i++)
5430 rx[i].dev = dev;
5431 return 0;
5432 }
5433 #endif
5434
5435 static void netdev_init_one_queue(struct net_device *dev,
5436 struct netdev_queue *queue, void *_unused)
5437 {
5438 /* Initialize queue lock */
5439 spin_lock_init(&queue->_xmit_lock);
5440 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5441 queue->xmit_lock_owner = -1;
5442 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5443 queue->dev = dev;
5444 #ifdef CONFIG_BQL
5445 dql_init(&queue->dql, HZ);
5446 #endif
5447 }
5448
5449 static int netif_alloc_netdev_queues(struct net_device *dev)
5450 {
5451 unsigned int count = dev->num_tx_queues;
5452 struct netdev_queue *tx;
5453
5454 BUG_ON(count < 1);
5455
5456 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5457 if (!tx) {
5458 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5459 return -ENOMEM;
5460 }
5461 dev->_tx = tx;
5462
5463 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5464 spin_lock_init(&dev->tx_global_lock);
5465
5466 return 0;
5467 }
5468
5469 /**
5470 * register_netdevice - register a network device
5471 * @dev: device to register
5472 *
5473 * Take a completed network device structure and add it to the kernel
5474 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5475 * chain. 0 is returned on success. A negative errno code is returned
5476 * on a failure to set up the device, or if the name is a duplicate.
5477 *
5478 * Callers must hold the rtnl semaphore. You may want
5479 * register_netdev() instead of this.
5480 *
5481 * BUGS:
5482 * The locking appears insufficient to guarantee two parallel registers
5483 * will not get the same name.
5484 */
5485
5486 int register_netdevice(struct net_device *dev)
5487 {
5488 int ret;
5489 struct net *net = dev_net(dev);
5490
5491 BUG_ON(dev_boot_phase);
5492 ASSERT_RTNL();
5493
5494 might_sleep();
5495
5496 /* When net_device's are persistent, this will be fatal. */
5497 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5498 BUG_ON(!net);
5499
5500 spin_lock_init(&dev->addr_list_lock);
5501 netdev_set_addr_lockdep_class(dev);
5502
5503 dev->iflink = -1;
5504
5505 ret = dev_get_valid_name(dev, dev->name);
5506 if (ret < 0)
5507 goto out;
5508
5509 /* Init, if this function is available */
5510 if (dev->netdev_ops->ndo_init) {
5511 ret = dev->netdev_ops->ndo_init(dev);
5512 if (ret) {
5513 if (ret > 0)
5514 ret = -EIO;
5515 goto out;
5516 }
5517 }
5518
5519 dev->ifindex = dev_new_index(net);
5520 if (dev->iflink == -1)
5521 dev->iflink = dev->ifindex;
5522
5523 /* Transfer changeable features to wanted_features and enable
5524 * software offloads (GSO and GRO).
5525 */
5526 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5527 dev->features |= NETIF_F_SOFT_FEATURES;
5528 dev->wanted_features = dev->features & dev->hw_features;
5529
5530 /* Turn on no cache copy if HW is doing checksum */
5531 if (!(dev->flags & IFF_LOOPBACK)) {
5532 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5533 if (dev->features & NETIF_F_ALL_CSUM) {
5534 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5535 dev->features |= NETIF_F_NOCACHE_COPY;
5536 }
5537 }
5538
5539 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5540 */
5541 dev->vlan_features |= NETIF_F_HIGHDMA;
5542
5543 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5544 ret = notifier_to_errno(ret);
5545 if (ret)
5546 goto err_uninit;
5547
5548 ret = netdev_register_kobject(dev);
5549 if (ret)
5550 goto err_uninit;
5551 dev->reg_state = NETREG_REGISTERED;
5552
5553 __netdev_update_features(dev);
5554
5555 /*
5556 * Default initial state at registry is that the
5557 * device is present.
5558 */
5559
5560 set_bit(__LINK_STATE_PRESENT, &dev->state);
5561
5562 dev_init_scheduler(dev);
5563 dev_hold(dev);
5564 list_netdevice(dev);
5565
5566 /* Notify protocols, that a new device appeared. */
5567 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5568 ret = notifier_to_errno(ret);
5569 if (ret) {
5570 rollback_registered(dev);
5571 dev->reg_state = NETREG_UNREGISTERED;
5572 }
5573 /*
5574 * Prevent userspace races by waiting until the network
5575 * device is fully setup before sending notifications.
5576 */
5577 if (!dev->rtnl_link_ops ||
5578 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5579 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5580
5581 out:
5582 return ret;
5583
5584 err_uninit:
5585 if (dev->netdev_ops->ndo_uninit)
5586 dev->netdev_ops->ndo_uninit(dev);
5587 goto out;
5588 }
5589 EXPORT_SYMBOL(register_netdevice);
5590
5591 /**
5592 * init_dummy_netdev - init a dummy network device for NAPI
5593 * @dev: device to init
5594 *
5595 * This takes a network device structure and initialize the minimum
5596 * amount of fields so it can be used to schedule NAPI polls without
5597 * registering a full blown interface. This is to be used by drivers
5598 * that need to tie several hardware interfaces to a single NAPI
5599 * poll scheduler due to HW limitations.
5600 */
5601 int init_dummy_netdev(struct net_device *dev)
5602 {
5603 /* Clear everything. Note we don't initialize spinlocks
5604 * are they aren't supposed to be taken by any of the
5605 * NAPI code and this dummy netdev is supposed to be
5606 * only ever used for NAPI polls
5607 */
5608 memset(dev, 0, sizeof(struct net_device));
5609
5610 /* make sure we BUG if trying to hit standard
5611 * register/unregister code path
5612 */
5613 dev->reg_state = NETREG_DUMMY;
5614
5615 /* NAPI wants this */
5616 INIT_LIST_HEAD(&dev->napi_list);
5617
5618 /* a dummy interface is started by default */
5619 set_bit(__LINK_STATE_PRESENT, &dev->state);
5620 set_bit(__LINK_STATE_START, &dev->state);
5621
5622 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5623 * because users of this 'device' dont need to change
5624 * its refcount.
5625 */
5626
5627 return 0;
5628 }
5629 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5630
5631
5632 /**
5633 * register_netdev - register a network device
5634 * @dev: device to register
5635 *
5636 * Take a completed network device structure and add it to the kernel
5637 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5638 * chain. 0 is returned on success. A negative errno code is returned
5639 * on a failure to set up the device, or if the name is a duplicate.
5640 *
5641 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5642 * and expands the device name if you passed a format string to
5643 * alloc_netdev.
5644 */
5645 int register_netdev(struct net_device *dev)
5646 {
5647 int err;
5648
5649 rtnl_lock();
5650 err = register_netdevice(dev);
5651 rtnl_unlock();
5652 return err;
5653 }
5654 EXPORT_SYMBOL(register_netdev);
5655
5656 int netdev_refcnt_read(const struct net_device *dev)
5657 {
5658 int i, refcnt = 0;
5659
5660 for_each_possible_cpu(i)
5661 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5662 return refcnt;
5663 }
5664 EXPORT_SYMBOL(netdev_refcnt_read);
5665
5666 /*
5667 * netdev_wait_allrefs - wait until all references are gone.
5668 *
5669 * This is called when unregistering network devices.
5670 *
5671 * Any protocol or device that holds a reference should register
5672 * for netdevice notification, and cleanup and put back the
5673 * reference if they receive an UNREGISTER event.
5674 * We can get stuck here if buggy protocols don't correctly
5675 * call dev_put.
5676 */
5677 static void netdev_wait_allrefs(struct net_device *dev)
5678 {
5679 unsigned long rebroadcast_time, warning_time;
5680 int refcnt;
5681
5682 linkwatch_forget_dev(dev);
5683
5684 rebroadcast_time = warning_time = jiffies;
5685 refcnt = netdev_refcnt_read(dev);
5686
5687 while (refcnt != 0) {
5688 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5689 rtnl_lock();
5690
5691 /* Rebroadcast unregister notification */
5692 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5693 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5694 * should have already handle it the first time */
5695
5696 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5697 &dev->state)) {
5698 /* We must not have linkwatch events
5699 * pending on unregister. If this
5700 * happens, we simply run the queue
5701 * unscheduled, resulting in a noop
5702 * for this device.
5703 */
5704 linkwatch_run_queue();
5705 }
5706
5707 __rtnl_unlock();
5708
5709 rebroadcast_time = jiffies;
5710 }
5711
5712 msleep(250);
5713
5714 refcnt = netdev_refcnt_read(dev);
5715
5716 if (time_after(jiffies, warning_time + 10 * HZ)) {
5717 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5718 dev->name, refcnt);
5719 warning_time = jiffies;
5720 }
5721 }
5722 }
5723
5724 /* The sequence is:
5725 *
5726 * rtnl_lock();
5727 * ...
5728 * register_netdevice(x1);
5729 * register_netdevice(x2);
5730 * ...
5731 * unregister_netdevice(y1);
5732 * unregister_netdevice(y2);
5733 * ...
5734 * rtnl_unlock();
5735 * free_netdev(y1);
5736 * free_netdev(y2);
5737 *
5738 * We are invoked by rtnl_unlock().
5739 * This allows us to deal with problems:
5740 * 1) We can delete sysfs objects which invoke hotplug
5741 * without deadlocking with linkwatch via keventd.
5742 * 2) Since we run with the RTNL semaphore not held, we can sleep
5743 * safely in order to wait for the netdev refcnt to drop to zero.
5744 *
5745 * We must not return until all unregister events added during
5746 * the interval the lock was held have been completed.
5747 */
5748 void netdev_run_todo(void)
5749 {
5750 struct list_head list;
5751
5752 /* Snapshot list, allow later requests */
5753 list_replace_init(&net_todo_list, &list);
5754
5755 __rtnl_unlock();
5756
5757 /* Wait for rcu callbacks to finish before attempting to drain
5758 * the device list. This usually avoids a 250ms wait.
5759 */
5760 if (!list_empty(&list))
5761 rcu_barrier();
5762
5763 while (!list_empty(&list)) {
5764 struct net_device *dev
5765 = list_first_entry(&list, struct net_device, todo_list);
5766 list_del(&dev->todo_list);
5767
5768 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5769 pr_err("network todo '%s' but state %d\n",
5770 dev->name, dev->reg_state);
5771 dump_stack();
5772 continue;
5773 }
5774
5775 dev->reg_state = NETREG_UNREGISTERED;
5776
5777 on_each_cpu(flush_backlog, dev, 1);
5778
5779 netdev_wait_allrefs(dev);
5780
5781 /* paranoia */
5782 BUG_ON(netdev_refcnt_read(dev));
5783 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5784 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5785 WARN_ON(dev->dn_ptr);
5786
5787 if (dev->destructor)
5788 dev->destructor(dev);
5789
5790 /* Free network device */
5791 kobject_put(&dev->dev.kobj);
5792 }
5793 }
5794
5795 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5796 * fields in the same order, with only the type differing.
5797 */
5798 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5799 const struct net_device_stats *netdev_stats)
5800 {
5801 #if BITS_PER_LONG == 64
5802 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5803 memcpy(stats64, netdev_stats, sizeof(*stats64));
5804 #else
5805 size_t i, n = sizeof(*stats64) / sizeof(u64);
5806 const unsigned long *src = (const unsigned long *)netdev_stats;
5807 u64 *dst = (u64 *)stats64;
5808
5809 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5810 sizeof(*stats64) / sizeof(u64));
5811 for (i = 0; i < n; i++)
5812 dst[i] = src[i];
5813 #endif
5814 }
5815 EXPORT_SYMBOL(netdev_stats_to_stats64);
5816
5817 /**
5818 * dev_get_stats - get network device statistics
5819 * @dev: device to get statistics from
5820 * @storage: place to store stats
5821 *
5822 * Get network statistics from device. Return @storage.
5823 * The device driver may provide its own method by setting
5824 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5825 * otherwise the internal statistics structure is used.
5826 */
5827 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5828 struct rtnl_link_stats64 *storage)
5829 {
5830 const struct net_device_ops *ops = dev->netdev_ops;
5831
5832 if (ops->ndo_get_stats64) {
5833 memset(storage, 0, sizeof(*storage));
5834 ops->ndo_get_stats64(dev, storage);
5835 } else if (ops->ndo_get_stats) {
5836 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5837 } else {
5838 netdev_stats_to_stats64(storage, &dev->stats);
5839 }
5840 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5841 return storage;
5842 }
5843 EXPORT_SYMBOL(dev_get_stats);
5844
5845 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5846 {
5847 struct netdev_queue *queue = dev_ingress_queue(dev);
5848
5849 #ifdef CONFIG_NET_CLS_ACT
5850 if (queue)
5851 return queue;
5852 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5853 if (!queue)
5854 return NULL;
5855 netdev_init_one_queue(dev, queue, NULL);
5856 queue->qdisc = &noop_qdisc;
5857 queue->qdisc_sleeping = &noop_qdisc;
5858 rcu_assign_pointer(dev->ingress_queue, queue);
5859 #endif
5860 return queue;
5861 }
5862
5863 /**
5864 * alloc_netdev_mqs - allocate network device
5865 * @sizeof_priv: size of private data to allocate space for
5866 * @name: device name format string
5867 * @setup: callback to initialize device
5868 * @txqs: the number of TX subqueues to allocate
5869 * @rxqs: the number of RX subqueues to allocate
5870 *
5871 * Allocates a struct net_device with private data area for driver use
5872 * and performs basic initialization. Also allocates subquue structs
5873 * for each queue on the device.
5874 */
5875 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5876 void (*setup)(struct net_device *),
5877 unsigned int txqs, unsigned int rxqs)
5878 {
5879 struct net_device *dev;
5880 size_t alloc_size;
5881 struct net_device *p;
5882
5883 BUG_ON(strlen(name) >= sizeof(dev->name));
5884
5885 if (txqs < 1) {
5886 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5887 return NULL;
5888 }
5889
5890 #ifdef CONFIG_RPS
5891 if (rxqs < 1) {
5892 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5893 return NULL;
5894 }
5895 #endif
5896
5897 alloc_size = sizeof(struct net_device);
5898 if (sizeof_priv) {
5899 /* ensure 32-byte alignment of private area */
5900 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5901 alloc_size += sizeof_priv;
5902 }
5903 /* ensure 32-byte alignment of whole construct */
5904 alloc_size += NETDEV_ALIGN - 1;
5905
5906 p = kzalloc(alloc_size, GFP_KERNEL);
5907 if (!p) {
5908 pr_err("alloc_netdev: Unable to allocate device\n");
5909 return NULL;
5910 }
5911
5912 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5913 dev->padded = (char *)dev - (char *)p;
5914
5915 dev->pcpu_refcnt = alloc_percpu(int);
5916 if (!dev->pcpu_refcnt)
5917 goto free_p;
5918
5919 if (dev_addr_init(dev))
5920 goto free_pcpu;
5921
5922 dev_mc_init(dev);
5923 dev_uc_init(dev);
5924
5925 dev_net_set(dev, &init_net);
5926
5927 dev->gso_max_size = GSO_MAX_SIZE;
5928
5929 INIT_LIST_HEAD(&dev->napi_list);
5930 INIT_LIST_HEAD(&dev->unreg_list);
5931 INIT_LIST_HEAD(&dev->link_watch_list);
5932 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5933 setup(dev);
5934
5935 dev->num_tx_queues = txqs;
5936 dev->real_num_tx_queues = txqs;
5937 if (netif_alloc_netdev_queues(dev))
5938 goto free_all;
5939
5940 #ifdef CONFIG_RPS
5941 dev->num_rx_queues = rxqs;
5942 dev->real_num_rx_queues = rxqs;
5943 if (netif_alloc_rx_queues(dev))
5944 goto free_all;
5945 #endif
5946
5947 strcpy(dev->name, name);
5948 dev->group = INIT_NETDEV_GROUP;
5949 return dev;
5950
5951 free_all:
5952 free_netdev(dev);
5953 return NULL;
5954
5955 free_pcpu:
5956 free_percpu(dev->pcpu_refcnt);
5957 kfree(dev->_tx);
5958 #ifdef CONFIG_RPS
5959 kfree(dev->_rx);
5960 #endif
5961
5962 free_p:
5963 kfree(p);
5964 return NULL;
5965 }
5966 EXPORT_SYMBOL(alloc_netdev_mqs);
5967
5968 /**
5969 * free_netdev - free network device
5970 * @dev: device
5971 *
5972 * This function does the last stage of destroying an allocated device
5973 * interface. The reference to the device object is released.
5974 * If this is the last reference then it will be freed.
5975 */
5976 void free_netdev(struct net_device *dev)
5977 {
5978 struct napi_struct *p, *n;
5979
5980 release_net(dev_net(dev));
5981
5982 kfree(dev->_tx);
5983 #ifdef CONFIG_RPS
5984 kfree(dev->_rx);
5985 #endif
5986
5987 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5988
5989 /* Flush device addresses */
5990 dev_addr_flush(dev);
5991
5992 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5993 netif_napi_del(p);
5994
5995 free_percpu(dev->pcpu_refcnt);
5996 dev->pcpu_refcnt = NULL;
5997
5998 /* Compatibility with error handling in drivers */
5999 if (dev->reg_state == NETREG_UNINITIALIZED) {
6000 kfree((char *)dev - dev->padded);
6001 return;
6002 }
6003
6004 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6005 dev->reg_state = NETREG_RELEASED;
6006
6007 /* will free via device release */
6008 put_device(&dev->dev);
6009 }
6010 EXPORT_SYMBOL(free_netdev);
6011
6012 /**
6013 * synchronize_net - Synchronize with packet receive processing
6014 *
6015 * Wait for packets currently being received to be done.
6016 * Does not block later packets from starting.
6017 */
6018 void synchronize_net(void)
6019 {
6020 might_sleep();
6021 if (rtnl_is_locked())
6022 synchronize_rcu_expedited();
6023 else
6024 synchronize_rcu();
6025 }
6026 EXPORT_SYMBOL(synchronize_net);
6027
6028 /**
6029 * unregister_netdevice_queue - remove device from the kernel
6030 * @dev: device
6031 * @head: list
6032 *
6033 * This function shuts down a device interface and removes it
6034 * from the kernel tables.
6035 * If head not NULL, device is queued to be unregistered later.
6036 *
6037 * Callers must hold the rtnl semaphore. You may want
6038 * unregister_netdev() instead of this.
6039 */
6040
6041 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6042 {
6043 ASSERT_RTNL();
6044
6045 if (head) {
6046 list_move_tail(&dev->unreg_list, head);
6047 } else {
6048 rollback_registered(dev);
6049 /* Finish processing unregister after unlock */
6050 net_set_todo(dev);
6051 }
6052 }
6053 EXPORT_SYMBOL(unregister_netdevice_queue);
6054
6055 /**
6056 * unregister_netdevice_many - unregister many devices
6057 * @head: list of devices
6058 */
6059 void unregister_netdevice_many(struct list_head *head)
6060 {
6061 struct net_device *dev;
6062
6063 if (!list_empty(head)) {
6064 rollback_registered_many(head);
6065 list_for_each_entry(dev, head, unreg_list)
6066 net_set_todo(dev);
6067 }
6068 }
6069 EXPORT_SYMBOL(unregister_netdevice_many);
6070
6071 /**
6072 * unregister_netdev - remove device from the kernel
6073 * @dev: device
6074 *
6075 * This function shuts down a device interface and removes it
6076 * from the kernel tables.
6077 *
6078 * This is just a wrapper for unregister_netdevice that takes
6079 * the rtnl semaphore. In general you want to use this and not
6080 * unregister_netdevice.
6081 */
6082 void unregister_netdev(struct net_device *dev)
6083 {
6084 rtnl_lock();
6085 unregister_netdevice(dev);
6086 rtnl_unlock();
6087 }
6088 EXPORT_SYMBOL(unregister_netdev);
6089
6090 /**
6091 * dev_change_net_namespace - move device to different nethost namespace
6092 * @dev: device
6093 * @net: network namespace
6094 * @pat: If not NULL name pattern to try if the current device name
6095 * is already taken in the destination network namespace.
6096 *
6097 * This function shuts down a device interface and moves it
6098 * to a new network namespace. On success 0 is returned, on
6099 * a failure a netagive errno code is returned.
6100 *
6101 * Callers must hold the rtnl semaphore.
6102 */
6103
6104 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6105 {
6106 int err;
6107
6108 ASSERT_RTNL();
6109
6110 /* Don't allow namespace local devices to be moved. */
6111 err = -EINVAL;
6112 if (dev->features & NETIF_F_NETNS_LOCAL)
6113 goto out;
6114
6115 /* Ensure the device has been registrered */
6116 err = -EINVAL;
6117 if (dev->reg_state != NETREG_REGISTERED)
6118 goto out;
6119
6120 /* Get out if there is nothing todo */
6121 err = 0;
6122 if (net_eq(dev_net(dev), net))
6123 goto out;
6124
6125 /* Pick the destination device name, and ensure
6126 * we can use it in the destination network namespace.
6127 */
6128 err = -EEXIST;
6129 if (__dev_get_by_name(net, dev->name)) {
6130 /* We get here if we can't use the current device name */
6131 if (!pat)
6132 goto out;
6133 if (dev_get_valid_name(dev, pat) < 0)
6134 goto out;
6135 }
6136
6137 /*
6138 * And now a mini version of register_netdevice unregister_netdevice.
6139 */
6140
6141 /* If device is running close it first. */
6142 dev_close(dev);
6143
6144 /* And unlink it from device chain */
6145 err = -ENODEV;
6146 unlist_netdevice(dev);
6147
6148 synchronize_net();
6149
6150 /* Shutdown queueing discipline. */
6151 dev_shutdown(dev);
6152
6153 /* Notify protocols, that we are about to destroy
6154 this device. They should clean all the things.
6155
6156 Note that dev->reg_state stays at NETREG_REGISTERED.
6157 This is wanted because this way 8021q and macvlan know
6158 the device is just moving and can keep their slaves up.
6159 */
6160 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6161 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6162 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6163
6164 /*
6165 * Flush the unicast and multicast chains
6166 */
6167 dev_uc_flush(dev);
6168 dev_mc_flush(dev);
6169
6170 /* Actually switch the network namespace */
6171 dev_net_set(dev, net);
6172
6173 /* If there is an ifindex conflict assign a new one */
6174 if (__dev_get_by_index(net, dev->ifindex)) {
6175 int iflink = (dev->iflink == dev->ifindex);
6176 dev->ifindex = dev_new_index(net);
6177 if (iflink)
6178 dev->iflink = dev->ifindex;
6179 }
6180
6181 /* Fixup kobjects */
6182 err = device_rename(&dev->dev, dev->name);
6183 WARN_ON(err);
6184
6185 /* Add the device back in the hashes */
6186 list_netdevice(dev);
6187
6188 /* Notify protocols, that a new device appeared. */
6189 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6190
6191 /*
6192 * Prevent userspace races by waiting until the network
6193 * device is fully setup before sending notifications.
6194 */
6195 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6196
6197 synchronize_net();
6198 err = 0;
6199 out:
6200 return err;
6201 }
6202 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6203
6204 static int dev_cpu_callback(struct notifier_block *nfb,
6205 unsigned long action,
6206 void *ocpu)
6207 {
6208 struct sk_buff **list_skb;
6209 struct sk_buff *skb;
6210 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6211 struct softnet_data *sd, *oldsd;
6212
6213 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6214 return NOTIFY_OK;
6215
6216 local_irq_disable();
6217 cpu = smp_processor_id();
6218 sd = &per_cpu(softnet_data, cpu);
6219 oldsd = &per_cpu(softnet_data, oldcpu);
6220
6221 /* Find end of our completion_queue. */
6222 list_skb = &sd->completion_queue;
6223 while (*list_skb)
6224 list_skb = &(*list_skb)->next;
6225 /* Append completion queue from offline CPU. */
6226 *list_skb = oldsd->completion_queue;
6227 oldsd->completion_queue = NULL;
6228
6229 /* Append output queue from offline CPU. */
6230 if (oldsd->output_queue) {
6231 *sd->output_queue_tailp = oldsd->output_queue;
6232 sd->output_queue_tailp = oldsd->output_queue_tailp;
6233 oldsd->output_queue = NULL;
6234 oldsd->output_queue_tailp = &oldsd->output_queue;
6235 }
6236 /* Append NAPI poll list from offline CPU. */
6237 if (!list_empty(&oldsd->poll_list)) {
6238 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6239 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6240 }
6241
6242 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6243 local_irq_enable();
6244
6245 /* Process offline CPU's input_pkt_queue */
6246 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6247 netif_rx(skb);
6248 input_queue_head_incr(oldsd);
6249 }
6250 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6251 netif_rx(skb);
6252 input_queue_head_incr(oldsd);
6253 }
6254
6255 return NOTIFY_OK;
6256 }
6257
6258
6259 /**
6260 * netdev_increment_features - increment feature set by one
6261 * @all: current feature set
6262 * @one: new feature set
6263 * @mask: mask feature set
6264 *
6265 * Computes a new feature set after adding a device with feature set
6266 * @one to the master device with current feature set @all. Will not
6267 * enable anything that is off in @mask. Returns the new feature set.
6268 */
6269 netdev_features_t netdev_increment_features(netdev_features_t all,
6270 netdev_features_t one, netdev_features_t mask)
6271 {
6272 if (mask & NETIF_F_GEN_CSUM)
6273 mask |= NETIF_F_ALL_CSUM;
6274 mask |= NETIF_F_VLAN_CHALLENGED;
6275
6276 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6277 all &= one | ~NETIF_F_ALL_FOR_ALL;
6278
6279 /* If one device supports hw checksumming, set for all. */
6280 if (all & NETIF_F_GEN_CSUM)
6281 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6282
6283 return all;
6284 }
6285 EXPORT_SYMBOL(netdev_increment_features);
6286
6287 static struct hlist_head *netdev_create_hash(void)
6288 {
6289 int i;
6290 struct hlist_head *hash;
6291
6292 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6293 if (hash != NULL)
6294 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6295 INIT_HLIST_HEAD(&hash[i]);
6296
6297 return hash;
6298 }
6299
6300 /* Initialize per network namespace state */
6301 static int __net_init netdev_init(struct net *net)
6302 {
6303 INIT_LIST_HEAD(&net->dev_base_head);
6304
6305 net->dev_name_head = netdev_create_hash();
6306 if (net->dev_name_head == NULL)
6307 goto err_name;
6308
6309 net->dev_index_head = netdev_create_hash();
6310 if (net->dev_index_head == NULL)
6311 goto err_idx;
6312
6313 return 0;
6314
6315 err_idx:
6316 kfree(net->dev_name_head);
6317 err_name:
6318 return -ENOMEM;
6319 }
6320
6321 /**
6322 * netdev_drivername - network driver for the device
6323 * @dev: network device
6324 *
6325 * Determine network driver for device.
6326 */
6327 const char *netdev_drivername(const struct net_device *dev)
6328 {
6329 const struct device_driver *driver;
6330 const struct device *parent;
6331 const char *empty = "";
6332
6333 parent = dev->dev.parent;
6334 if (!parent)
6335 return empty;
6336
6337 driver = parent->driver;
6338 if (driver && driver->name)
6339 return driver->name;
6340 return empty;
6341 }
6342
6343 int __netdev_printk(const char *level, const struct net_device *dev,
6344 struct va_format *vaf)
6345 {
6346 int r;
6347
6348 if (dev && dev->dev.parent)
6349 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6350 netdev_name(dev), vaf);
6351 else if (dev)
6352 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6353 else
6354 r = printk("%s(NULL net_device): %pV", level, vaf);
6355
6356 return r;
6357 }
6358 EXPORT_SYMBOL(__netdev_printk);
6359
6360 int netdev_printk(const char *level, const struct net_device *dev,
6361 const char *format, ...)
6362 {
6363 struct va_format vaf;
6364 va_list args;
6365 int r;
6366
6367 va_start(args, format);
6368
6369 vaf.fmt = format;
6370 vaf.va = &args;
6371
6372 r = __netdev_printk(level, dev, &vaf);
6373 va_end(args);
6374
6375 return r;
6376 }
6377 EXPORT_SYMBOL(netdev_printk);
6378
6379 #define define_netdev_printk_level(func, level) \
6380 int func(const struct net_device *dev, const char *fmt, ...) \
6381 { \
6382 int r; \
6383 struct va_format vaf; \
6384 va_list args; \
6385 \
6386 va_start(args, fmt); \
6387 \
6388 vaf.fmt = fmt; \
6389 vaf.va = &args; \
6390 \
6391 r = __netdev_printk(level, dev, &vaf); \
6392 va_end(args); \
6393 \
6394 return r; \
6395 } \
6396 EXPORT_SYMBOL(func);
6397
6398 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6399 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6400 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6401 define_netdev_printk_level(netdev_err, KERN_ERR);
6402 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6403 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6404 define_netdev_printk_level(netdev_info, KERN_INFO);
6405
6406 static void __net_exit netdev_exit(struct net *net)
6407 {
6408 kfree(net->dev_name_head);
6409 kfree(net->dev_index_head);
6410 }
6411
6412 static struct pernet_operations __net_initdata netdev_net_ops = {
6413 .init = netdev_init,
6414 .exit = netdev_exit,
6415 };
6416
6417 static void __net_exit default_device_exit(struct net *net)
6418 {
6419 struct net_device *dev, *aux;
6420 /*
6421 * Push all migratable network devices back to the
6422 * initial network namespace
6423 */
6424 rtnl_lock();
6425 for_each_netdev_safe(net, dev, aux) {
6426 int err;
6427 char fb_name[IFNAMSIZ];
6428
6429 /* Ignore unmoveable devices (i.e. loopback) */
6430 if (dev->features & NETIF_F_NETNS_LOCAL)
6431 continue;
6432
6433 /* Leave virtual devices for the generic cleanup */
6434 if (dev->rtnl_link_ops)
6435 continue;
6436
6437 /* Push remaining network devices to init_net */
6438 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6439 err = dev_change_net_namespace(dev, &init_net, fb_name);
6440 if (err) {
6441 pr_emerg("%s: failed to move %s to init_net: %d\n",
6442 __func__, dev->name, err);
6443 BUG();
6444 }
6445 }
6446 rtnl_unlock();
6447 }
6448
6449 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6450 {
6451 /* At exit all network devices most be removed from a network
6452 * namespace. Do this in the reverse order of registration.
6453 * Do this across as many network namespaces as possible to
6454 * improve batching efficiency.
6455 */
6456 struct net_device *dev;
6457 struct net *net;
6458 LIST_HEAD(dev_kill_list);
6459
6460 rtnl_lock();
6461 list_for_each_entry(net, net_list, exit_list) {
6462 for_each_netdev_reverse(net, dev) {
6463 if (dev->rtnl_link_ops)
6464 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6465 else
6466 unregister_netdevice_queue(dev, &dev_kill_list);
6467 }
6468 }
6469 unregister_netdevice_many(&dev_kill_list);
6470 list_del(&dev_kill_list);
6471 rtnl_unlock();
6472 }
6473
6474 static struct pernet_operations __net_initdata default_device_ops = {
6475 .exit = default_device_exit,
6476 .exit_batch = default_device_exit_batch,
6477 };
6478
6479 /*
6480 * Initialize the DEV module. At boot time this walks the device list and
6481 * unhooks any devices that fail to initialise (normally hardware not
6482 * present) and leaves us with a valid list of present and active devices.
6483 *
6484 */
6485
6486 /*
6487 * This is called single threaded during boot, so no need
6488 * to take the rtnl semaphore.
6489 */
6490 static int __init net_dev_init(void)
6491 {
6492 int i, rc = -ENOMEM;
6493
6494 BUG_ON(!dev_boot_phase);
6495
6496 if (dev_proc_init())
6497 goto out;
6498
6499 if (netdev_kobject_init())
6500 goto out;
6501
6502 INIT_LIST_HEAD(&ptype_all);
6503 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6504 INIT_LIST_HEAD(&ptype_base[i]);
6505
6506 if (register_pernet_subsys(&netdev_net_ops))
6507 goto out;
6508
6509 /*
6510 * Initialise the packet receive queues.
6511 */
6512
6513 for_each_possible_cpu(i) {
6514 struct softnet_data *sd = &per_cpu(softnet_data, i);
6515
6516 memset(sd, 0, sizeof(*sd));
6517 skb_queue_head_init(&sd->input_pkt_queue);
6518 skb_queue_head_init(&sd->process_queue);
6519 sd->completion_queue = NULL;
6520 INIT_LIST_HEAD(&sd->poll_list);
6521 sd->output_queue = NULL;
6522 sd->output_queue_tailp = &sd->output_queue;
6523 #ifdef CONFIG_RPS
6524 sd->csd.func = rps_trigger_softirq;
6525 sd->csd.info = sd;
6526 sd->csd.flags = 0;
6527 sd->cpu = i;
6528 #endif
6529
6530 sd->backlog.poll = process_backlog;
6531 sd->backlog.weight = weight_p;
6532 sd->backlog.gro_list = NULL;
6533 sd->backlog.gro_count = 0;
6534 }
6535
6536 dev_boot_phase = 0;
6537
6538 /* The loopback device is special if any other network devices
6539 * is present in a network namespace the loopback device must
6540 * be present. Since we now dynamically allocate and free the
6541 * loopback device ensure this invariant is maintained by
6542 * keeping the loopback device as the first device on the
6543 * list of network devices. Ensuring the loopback devices
6544 * is the first device that appears and the last network device
6545 * that disappears.
6546 */
6547 if (register_pernet_device(&loopback_net_ops))
6548 goto out;
6549
6550 if (register_pernet_device(&default_device_ops))
6551 goto out;
6552
6553 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6554 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6555
6556 hotcpu_notifier(dev_cpu_callback, 0);
6557 dst_init();
6558 dev_mcast_init();
6559 rc = 0;
6560 out:
6561 return rc;
6562 }
6563
6564 subsys_initcall(net_dev_init);
6565
6566 static int __init initialize_hashrnd(void)
6567 {
6568 get_random_bytes(&hashrnd, sizeof(hashrnd));
6569 return 0;
6570 }
6571
6572 late_initcall_sync(initialize_hashrnd);
6573