Merge tag 'sound-3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1558 return;
1559 }
1560 #endif
1561 static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1570 }
1571
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1576 } \
1577
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1580 {
1581 unsigned int len;
1582
1583 if (!(dev->flags & IFF_UP))
1584 return false;
1585
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1588 return true;
1589
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1592 */
1593 if (skb_is_gso(skb))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /**
1600 * dev_forward_skb - loopback an skb to another netif
1601 *
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1604 *
1605 * return values:
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1608 *
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1612 *
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1616 */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1622 kfree_skb(skb);
1623 return NET_RX_DROP;
1624 }
1625 }
1626
1627 skb_orphan(skb);
1628 nf_reset(skb);
1629
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1632 kfree_skb(skb);
1633 return NET_RX_DROP;
1634 }
1635 skb->skb_iif = 0;
1636 skb->dev = dev;
1637 skb_dst_drop(skb);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1641 skb->mark = 0;
1642 secpath_reset(skb);
1643 nf_reset(skb);
1644 return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1651 {
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 return -ENOMEM;
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 if (!ptype->af_packet_priv || !skb->sk)
1661 return false;
1662
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /*
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1674 */
1675
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1686 */
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1689 if (pt_prev) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1691 pt_prev = ptype;
1692 continue;
1693 }
1694
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (!skb2)
1697 break;
1698
1699 net_timestamp_set(skb2);
1700
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1704 */
1705 skb_reset_mac_header(skb2);
1706
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1711 dev->name);
1712 skb_reset_network_header(skb2);
1713 }
1714
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1717 pt_prev = ptype;
1718 }
1719 }
1720 if (pt_prev)
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 rcu_read_unlock();
1723 }
1724
1725 /**
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1729 *
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1737 */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 int i;
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 dev->num_tc = 0;
1747 return;
1748 }
1749
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1753
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 i, q);
1758 netdev_set_prio_tc_map(dev, i, 0);
1759 }
1760 }
1761 }
1762
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 int cpu, u16 index)
1770 {
1771 struct xps_map *map = NULL;
1772 int pos;
1773
1774 if (dev_maps)
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1779 if (map->len > 1) {
1780 map->queues[pos] = map->queues[--map->len];
1781 } else {
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1784 map = NULL;
1785 }
1786 break;
1787 }
1788 }
1789
1790 return map;
1791 }
1792
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 struct xps_dev_maps *dev_maps;
1796 int cpu, i;
1797 bool active = false;
1798
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1801
1802 if (!dev_maps)
1803 goto out_no_maps;
1804
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1808 break;
1809 }
1810 if (i == dev->num_tx_queues)
1811 active = true;
1812 }
1813
1814 if (!active) {
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1817 }
1818
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 NUMA_NO_NODE);
1822
1823 out_no_maps:
1824 mutex_unlock(&xps_map_mutex);
1825 }
1826
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 int cpu, u16 index)
1829 {
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1832 int i, pos;
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1836 continue;
1837 return map;
1838 }
1839
1840 /* Need to add queue to this CPU's existing map */
1841 if (map) {
1842 if (pos < map->alloc_len)
1843 return map;
1844
1845 alloc_len = map->alloc_len * 2;
1846 }
1847
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 cpu_to_node(cpu));
1851 if (!new_map)
1852 return NULL;
1853
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1857 new_map->len = pos;
1858
1859 return new_map;
1860 }
1861
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1869
1870 mutex_lock(&xps_map_mutex);
1871
1872 dev_maps = xmap_dereference(dev->xps_maps);
1873
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1877 continue;
1878
1879 if (!new_dev_maps)
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1883 return -ENOMEM;
1884 }
1885
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 NULL;
1888
1889 map = expand_xps_map(map, cpu, index);
1890 if (!map)
1891 goto error;
1892
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 }
1895
1896 if (!new_dev_maps)
1897 goto out_no_new_maps;
1898
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1902 int pos = 0;
1903
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1906 pos++;
1907
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1914 numa_node_id = -1;
1915 #endif
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 }
1921
1922 }
1923
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925
1926 /* Cleanup old maps */
1927 if (dev_maps) {
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1933 }
1934
1935 kfree_rcu(dev_maps, rcu);
1936 }
1937
1938 dev_maps = new_dev_maps;
1939 active = true;
1940
1941 out_no_new_maps:
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1945 NUMA_NO_NODE);
1946
1947 if (!dev_maps)
1948 goto out_no_maps;
1949
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 continue;
1954
1955 if (remove_xps_queue(dev_maps, cpu, index))
1956 active = true;
1957 }
1958
1959 /* free map if not active */
1960 if (!active) {
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1963 }
1964
1965 out_no_maps:
1966 mutex_unlock(&xps_map_mutex);
1967
1968 return 0;
1969 error:
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 NULL;
1975 if (new_map && new_map != map)
1976 kfree(new_map);
1977 }
1978
1979 mutex_unlock(&xps_map_mutex);
1980
1981 kfree(new_dev_maps);
1982 return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985
1986 #endif
1987 /*
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 int rc;
1994
1995 if (txq < 1 || txq > dev->num_tx_queues)
1996 return -EINVAL;
1997
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2000 ASSERT_RTNL();
2001
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 txq);
2004 if (rc)
2005 return rc;
2006
2007 if (dev->num_tc)
2008 netif_setup_tc(dev, txq);
2009
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 }
2016 }
2017
2018 dev->real_num_tx_queues = txq;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022
2023 #ifdef CONFIG_RPS
2024 /**
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2028 *
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2032 * succeeds.
2033 */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 int rc;
2037
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2039 return -EINVAL;
2040
2041 if (dev->reg_state == NETREG_REGISTERED) {
2042 ASSERT_RTNL();
2043
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 rxq);
2046 if (rc)
2047 return rc;
2048 }
2049
2050 dev->real_num_rx_queues = rxq;
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055
2056 /**
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2058 *
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2061 */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 struct softnet_data *sd;
2071 unsigned long flags;
2072
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2080 }
2081
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2094
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2101 }
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2109 else
2110 dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113
2114
2115 /**
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2118 *
2119 * Mark device as removed from system and therefore no longer available.
2120 */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2126 }
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129
2130 /**
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2133 *
2134 * Mark device as attached from system and restart if needed.
2135 */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 /**
2212 * skb_mac_gso_segment - mac layer segmentation handler.
2213 * @skb: buffer to segment
2214 * @features: features for the output path (see dev->features)
2215 */
2216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2217 netdev_features_t features)
2218 {
2219 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2220 struct packet_offload *ptype;
2221 __be16 type = skb->protocol;
2222 int vlan_depth = ETH_HLEN;
2223
2224 while (type == htons(ETH_P_8021Q)) {
2225 struct vlan_hdr *vh;
2226
2227 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2228 return ERR_PTR(-EINVAL);
2229
2230 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2231 type = vh->h_vlan_encapsulated_proto;
2232 vlan_depth += VLAN_HLEN;
2233 }
2234
2235 __skb_pull(skb, skb->mac_len);
2236
2237 rcu_read_lock();
2238 list_for_each_entry_rcu(ptype, &offload_base, list) {
2239 if (ptype->type == type && ptype->callbacks.gso_segment) {
2240 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2241 int err;
2242
2243 err = ptype->callbacks.gso_send_check(skb);
2244 segs = ERR_PTR(err);
2245 if (err || skb_gso_ok(skb, features))
2246 break;
2247 __skb_push(skb, (skb->data -
2248 skb_network_header(skb)));
2249 }
2250 segs = ptype->callbacks.gso_segment(skb, features);
2251 break;
2252 }
2253 }
2254 rcu_read_unlock();
2255
2256 __skb_push(skb, skb->data - skb_mac_header(skb));
2257
2258 return segs;
2259 }
2260 EXPORT_SYMBOL(skb_mac_gso_segment);
2261
2262
2263 /* openvswitch calls this on rx path, so we need a different check.
2264 */
2265 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2266 {
2267 if (tx_path)
2268 return skb->ip_summed != CHECKSUM_PARTIAL;
2269 else
2270 return skb->ip_summed == CHECKSUM_NONE;
2271 }
2272
2273 /**
2274 * __skb_gso_segment - Perform segmentation on skb.
2275 * @skb: buffer to segment
2276 * @features: features for the output path (see dev->features)
2277 * @tx_path: whether it is called in TX path
2278 *
2279 * This function segments the given skb and returns a list of segments.
2280 *
2281 * It may return NULL if the skb requires no segmentation. This is
2282 * only possible when GSO is used for verifying header integrity.
2283 */
2284 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2285 netdev_features_t features, bool tx_path)
2286 {
2287 if (unlikely(skb_needs_check(skb, tx_path))) {
2288 int err;
2289
2290 skb_warn_bad_offload(skb);
2291
2292 if (skb_header_cloned(skb) &&
2293 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2294 return ERR_PTR(err);
2295 }
2296
2297 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2298 skb_reset_mac_header(skb);
2299 skb_reset_mac_len(skb);
2300
2301 return skb_mac_gso_segment(skb, features);
2302 }
2303 EXPORT_SYMBOL(__skb_gso_segment);
2304
2305 /* Take action when hardware reception checksum errors are detected. */
2306 #ifdef CONFIG_BUG
2307 void netdev_rx_csum_fault(struct net_device *dev)
2308 {
2309 if (net_ratelimit()) {
2310 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2311 dump_stack();
2312 }
2313 }
2314 EXPORT_SYMBOL(netdev_rx_csum_fault);
2315 #endif
2316
2317 /* Actually, we should eliminate this check as soon as we know, that:
2318 * 1. IOMMU is present and allows to map all the memory.
2319 * 2. No high memory really exists on this machine.
2320 */
2321
2322 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2323 {
2324 #ifdef CONFIG_HIGHMEM
2325 int i;
2326 if (!(dev->features & NETIF_F_HIGHDMA)) {
2327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2329 if (PageHighMem(skb_frag_page(frag)))
2330 return 1;
2331 }
2332 }
2333
2334 if (PCI_DMA_BUS_IS_PHYS) {
2335 struct device *pdev = dev->dev.parent;
2336
2337 if (!pdev)
2338 return 0;
2339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2340 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2341 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2342 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2343 return 1;
2344 }
2345 }
2346 #endif
2347 return 0;
2348 }
2349
2350 struct dev_gso_cb {
2351 void (*destructor)(struct sk_buff *skb);
2352 };
2353
2354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2355
2356 static void dev_gso_skb_destructor(struct sk_buff *skb)
2357 {
2358 struct dev_gso_cb *cb;
2359
2360 do {
2361 struct sk_buff *nskb = skb->next;
2362
2363 skb->next = nskb->next;
2364 nskb->next = NULL;
2365 kfree_skb(nskb);
2366 } while (skb->next);
2367
2368 cb = DEV_GSO_CB(skb);
2369 if (cb->destructor)
2370 cb->destructor(skb);
2371 }
2372
2373 /**
2374 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2375 * @skb: buffer to segment
2376 * @features: device features as applicable to this skb
2377 *
2378 * This function segments the given skb and stores the list of segments
2379 * in skb->next.
2380 */
2381 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2382 {
2383 struct sk_buff *segs;
2384
2385 segs = skb_gso_segment(skb, features);
2386
2387 /* Verifying header integrity only. */
2388 if (!segs)
2389 return 0;
2390
2391 if (IS_ERR(segs))
2392 return PTR_ERR(segs);
2393
2394 skb->next = segs;
2395 DEV_GSO_CB(skb)->destructor = skb->destructor;
2396 skb->destructor = dev_gso_skb_destructor;
2397
2398 return 0;
2399 }
2400
2401 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2402 {
2403 return ((features & NETIF_F_GEN_CSUM) ||
2404 ((features & NETIF_F_V4_CSUM) &&
2405 protocol == htons(ETH_P_IP)) ||
2406 ((features & NETIF_F_V6_CSUM) &&
2407 protocol == htons(ETH_P_IPV6)) ||
2408 ((features & NETIF_F_FCOE_CRC) &&
2409 protocol == htons(ETH_P_FCOE)));
2410 }
2411
2412 static netdev_features_t harmonize_features(struct sk_buff *skb,
2413 __be16 protocol, netdev_features_t features)
2414 {
2415 if (skb->ip_summed != CHECKSUM_NONE &&
2416 !can_checksum_protocol(features, protocol)) {
2417 features &= ~NETIF_F_ALL_CSUM;
2418 features &= ~NETIF_F_SG;
2419 } else if (illegal_highdma(skb->dev, skb)) {
2420 features &= ~NETIF_F_SG;
2421 }
2422
2423 return features;
2424 }
2425
2426 netdev_features_t netif_skb_features(struct sk_buff *skb)
2427 {
2428 __be16 protocol = skb->protocol;
2429 netdev_features_t features = skb->dev->features;
2430
2431 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2432 features &= ~NETIF_F_GSO_MASK;
2433
2434 if (protocol == htons(ETH_P_8021Q)) {
2435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2436 protocol = veh->h_vlan_encapsulated_proto;
2437 } else if (!vlan_tx_tag_present(skb)) {
2438 return harmonize_features(skb, protocol, features);
2439 }
2440
2441 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2442
2443 if (protocol != htons(ETH_P_8021Q)) {
2444 return harmonize_features(skb, protocol, features);
2445 } else {
2446 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2447 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2448 return harmonize_features(skb, protocol, features);
2449 }
2450 }
2451 EXPORT_SYMBOL(netif_skb_features);
2452
2453 /*
2454 * Returns true if either:
2455 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2456 * 2. skb is fragmented and the device does not support SG.
2457 */
2458 static inline int skb_needs_linearize(struct sk_buff *skb,
2459 int features)
2460 {
2461 return skb_is_nonlinear(skb) &&
2462 ((skb_has_frag_list(skb) &&
2463 !(features & NETIF_F_FRAGLIST)) ||
2464 (skb_shinfo(skb)->nr_frags &&
2465 !(features & NETIF_F_SG)));
2466 }
2467
2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2469 struct netdev_queue *txq)
2470 {
2471 const struct net_device_ops *ops = dev->netdev_ops;
2472 int rc = NETDEV_TX_OK;
2473 unsigned int skb_len;
2474
2475 if (likely(!skb->next)) {
2476 netdev_features_t features;
2477
2478 /*
2479 * If device doesn't need skb->dst, release it right now while
2480 * its hot in this cpu cache
2481 */
2482 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2483 skb_dst_drop(skb);
2484
2485 features = netif_skb_features(skb);
2486
2487 if (vlan_tx_tag_present(skb) &&
2488 !(features & NETIF_F_HW_VLAN_TX)) {
2489 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2490 if (unlikely(!skb))
2491 goto out;
2492
2493 skb->vlan_tci = 0;
2494 }
2495
2496 /* If encapsulation offload request, verify we are testing
2497 * hardware encapsulation features instead of standard
2498 * features for the netdev
2499 */
2500 if (skb->encapsulation)
2501 features &= dev->hw_enc_features;
2502
2503 if (netif_needs_gso(skb, features)) {
2504 if (unlikely(dev_gso_segment(skb, features)))
2505 goto out_kfree_skb;
2506 if (skb->next)
2507 goto gso;
2508 } else {
2509 if (skb_needs_linearize(skb, features) &&
2510 __skb_linearize(skb))
2511 goto out_kfree_skb;
2512
2513 /* If packet is not checksummed and device does not
2514 * support checksumming for this protocol, complete
2515 * checksumming here.
2516 */
2517 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2518 if (skb->encapsulation)
2519 skb_set_inner_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 else
2522 skb_set_transport_header(skb,
2523 skb_checksum_start_offset(skb));
2524 if (!(features & NETIF_F_ALL_CSUM) &&
2525 skb_checksum_help(skb))
2526 goto out_kfree_skb;
2527 }
2528 }
2529
2530 if (!list_empty(&ptype_all))
2531 dev_queue_xmit_nit(skb, dev);
2532
2533 skb_len = skb->len;
2534 rc = ops->ndo_start_xmit(skb, dev);
2535 trace_net_dev_xmit(skb, rc, dev, skb_len);
2536 if (rc == NETDEV_TX_OK)
2537 txq_trans_update(txq);
2538 return rc;
2539 }
2540
2541 gso:
2542 do {
2543 struct sk_buff *nskb = skb->next;
2544
2545 skb->next = nskb->next;
2546 nskb->next = NULL;
2547
2548 /*
2549 * If device doesn't need nskb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(nskb);
2554
2555 if (!list_empty(&ptype_all))
2556 dev_queue_xmit_nit(nskb, dev);
2557
2558 skb_len = nskb->len;
2559 rc = ops->ndo_start_xmit(nskb, dev);
2560 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2561 if (unlikely(rc != NETDEV_TX_OK)) {
2562 if (rc & ~NETDEV_TX_MASK)
2563 goto out_kfree_gso_skb;
2564 nskb->next = skb->next;
2565 skb->next = nskb;
2566 return rc;
2567 }
2568 txq_trans_update(txq);
2569 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2570 return NETDEV_TX_BUSY;
2571 } while (skb->next);
2572
2573 out_kfree_gso_skb:
2574 if (likely(skb->next == NULL))
2575 skb->destructor = DEV_GSO_CB(skb)->destructor;
2576 out_kfree_skb:
2577 kfree_skb(skb);
2578 out:
2579 return rc;
2580 }
2581
2582 static void qdisc_pkt_len_init(struct sk_buff *skb)
2583 {
2584 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2585
2586 qdisc_skb_cb(skb)->pkt_len = skb->len;
2587
2588 /* To get more precise estimation of bytes sent on wire,
2589 * we add to pkt_len the headers size of all segments
2590 */
2591 if (shinfo->gso_size) {
2592 unsigned int hdr_len;
2593
2594 /* mac layer + network layer */
2595 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2596
2597 /* + transport layer */
2598 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2599 hdr_len += tcp_hdrlen(skb);
2600 else
2601 hdr_len += sizeof(struct udphdr);
2602 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2603 }
2604 }
2605
2606 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2607 struct net_device *dev,
2608 struct netdev_queue *txq)
2609 {
2610 spinlock_t *root_lock = qdisc_lock(q);
2611 bool contended;
2612 int rc;
2613
2614 qdisc_pkt_len_init(skb);
2615 qdisc_calculate_pkt_len(skb, q);
2616 /*
2617 * Heuristic to force contended enqueues to serialize on a
2618 * separate lock before trying to get qdisc main lock.
2619 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2620 * and dequeue packets faster.
2621 */
2622 contended = qdisc_is_running(q);
2623 if (unlikely(contended))
2624 spin_lock(&q->busylock);
2625
2626 spin_lock(root_lock);
2627 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2628 kfree_skb(skb);
2629 rc = NET_XMIT_DROP;
2630 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2631 qdisc_run_begin(q)) {
2632 /*
2633 * This is a work-conserving queue; there are no old skbs
2634 * waiting to be sent out; and the qdisc is not running -
2635 * xmit the skb directly.
2636 */
2637 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2638 skb_dst_force(skb);
2639
2640 qdisc_bstats_update(q, skb);
2641
2642 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2643 if (unlikely(contended)) {
2644 spin_unlock(&q->busylock);
2645 contended = false;
2646 }
2647 __qdisc_run(q);
2648 } else
2649 qdisc_run_end(q);
2650
2651 rc = NET_XMIT_SUCCESS;
2652 } else {
2653 skb_dst_force(skb);
2654 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2655 if (qdisc_run_begin(q)) {
2656 if (unlikely(contended)) {
2657 spin_unlock(&q->busylock);
2658 contended = false;
2659 }
2660 __qdisc_run(q);
2661 }
2662 }
2663 spin_unlock(root_lock);
2664 if (unlikely(contended))
2665 spin_unlock(&q->busylock);
2666 return rc;
2667 }
2668
2669 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2670 static void skb_update_prio(struct sk_buff *skb)
2671 {
2672 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2673
2674 if (!skb->priority && skb->sk && map) {
2675 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2676
2677 if (prioidx < map->priomap_len)
2678 skb->priority = map->priomap[prioidx];
2679 }
2680 }
2681 #else
2682 #define skb_update_prio(skb)
2683 #endif
2684
2685 static DEFINE_PER_CPU(int, xmit_recursion);
2686 #define RECURSION_LIMIT 10
2687
2688 /**
2689 * dev_loopback_xmit - loop back @skb
2690 * @skb: buffer to transmit
2691 */
2692 int dev_loopback_xmit(struct sk_buff *skb)
2693 {
2694 skb_reset_mac_header(skb);
2695 __skb_pull(skb, skb_network_offset(skb));
2696 skb->pkt_type = PACKET_LOOPBACK;
2697 skb->ip_summed = CHECKSUM_UNNECESSARY;
2698 WARN_ON(!skb_dst(skb));
2699 skb_dst_force(skb);
2700 netif_rx_ni(skb);
2701 return 0;
2702 }
2703 EXPORT_SYMBOL(dev_loopback_xmit);
2704
2705 /**
2706 * dev_queue_xmit - transmit a buffer
2707 * @skb: buffer to transmit
2708 *
2709 * Queue a buffer for transmission to a network device. The caller must
2710 * have set the device and priority and built the buffer before calling
2711 * this function. The function can be called from an interrupt.
2712 *
2713 * A negative errno code is returned on a failure. A success does not
2714 * guarantee the frame will be transmitted as it may be dropped due
2715 * to congestion or traffic shaping.
2716 *
2717 * -----------------------------------------------------------------------------------
2718 * I notice this method can also return errors from the queue disciplines,
2719 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2720 * be positive.
2721 *
2722 * Regardless of the return value, the skb is consumed, so it is currently
2723 * difficult to retry a send to this method. (You can bump the ref count
2724 * before sending to hold a reference for retry if you are careful.)
2725 *
2726 * When calling this method, interrupts MUST be enabled. This is because
2727 * the BH enable code must have IRQs enabled so that it will not deadlock.
2728 * --BLG
2729 */
2730 int dev_queue_xmit(struct sk_buff *skb)
2731 {
2732 struct net_device *dev = skb->dev;
2733 struct netdev_queue *txq;
2734 struct Qdisc *q;
2735 int rc = -ENOMEM;
2736
2737 skb_reset_mac_header(skb);
2738
2739 /* Disable soft irqs for various locks below. Also
2740 * stops preemption for RCU.
2741 */
2742 rcu_read_lock_bh();
2743
2744 skb_update_prio(skb);
2745
2746 txq = netdev_pick_tx(dev, skb);
2747 q = rcu_dereference_bh(txq->qdisc);
2748
2749 #ifdef CONFIG_NET_CLS_ACT
2750 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2751 #endif
2752 trace_net_dev_queue(skb);
2753 if (q->enqueue) {
2754 rc = __dev_xmit_skb(skb, q, dev, txq);
2755 goto out;
2756 }
2757
2758 /* The device has no queue. Common case for software devices:
2759 loopback, all the sorts of tunnels...
2760
2761 Really, it is unlikely that netif_tx_lock protection is necessary
2762 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2763 counters.)
2764 However, it is possible, that they rely on protection
2765 made by us here.
2766
2767 Check this and shot the lock. It is not prone from deadlocks.
2768 Either shot noqueue qdisc, it is even simpler 8)
2769 */
2770 if (dev->flags & IFF_UP) {
2771 int cpu = smp_processor_id(); /* ok because BHs are off */
2772
2773 if (txq->xmit_lock_owner != cpu) {
2774
2775 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2776 goto recursion_alert;
2777
2778 HARD_TX_LOCK(dev, txq, cpu);
2779
2780 if (!netif_xmit_stopped(txq)) {
2781 __this_cpu_inc(xmit_recursion);
2782 rc = dev_hard_start_xmit(skb, dev, txq);
2783 __this_cpu_dec(xmit_recursion);
2784 if (dev_xmit_complete(rc)) {
2785 HARD_TX_UNLOCK(dev, txq);
2786 goto out;
2787 }
2788 }
2789 HARD_TX_UNLOCK(dev, txq);
2790 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2791 dev->name);
2792 } else {
2793 /* Recursion is detected! It is possible,
2794 * unfortunately
2795 */
2796 recursion_alert:
2797 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2798 dev->name);
2799 }
2800 }
2801
2802 rc = -ENETDOWN;
2803 rcu_read_unlock_bh();
2804
2805 kfree_skb(skb);
2806 return rc;
2807 out:
2808 rcu_read_unlock_bh();
2809 return rc;
2810 }
2811 EXPORT_SYMBOL(dev_queue_xmit);
2812
2813
2814 /*=======================================================================
2815 Receiver routines
2816 =======================================================================*/
2817
2818 int netdev_max_backlog __read_mostly = 1000;
2819 EXPORT_SYMBOL(netdev_max_backlog);
2820
2821 int netdev_tstamp_prequeue __read_mostly = 1;
2822 int netdev_budget __read_mostly = 300;
2823 int weight_p __read_mostly = 64; /* old backlog weight */
2824
2825 /* Called with irq disabled */
2826 static inline void ____napi_schedule(struct softnet_data *sd,
2827 struct napi_struct *napi)
2828 {
2829 list_add_tail(&napi->poll_list, &sd->poll_list);
2830 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2831 }
2832
2833 #ifdef CONFIG_RPS
2834
2835 /* One global table that all flow-based protocols share. */
2836 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2837 EXPORT_SYMBOL(rps_sock_flow_table);
2838
2839 struct static_key rps_needed __read_mostly;
2840
2841 static struct rps_dev_flow *
2842 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2843 struct rps_dev_flow *rflow, u16 next_cpu)
2844 {
2845 if (next_cpu != RPS_NO_CPU) {
2846 #ifdef CONFIG_RFS_ACCEL
2847 struct netdev_rx_queue *rxqueue;
2848 struct rps_dev_flow_table *flow_table;
2849 struct rps_dev_flow *old_rflow;
2850 u32 flow_id;
2851 u16 rxq_index;
2852 int rc;
2853
2854 /* Should we steer this flow to a different hardware queue? */
2855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2856 !(dev->features & NETIF_F_NTUPLE))
2857 goto out;
2858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2859 if (rxq_index == skb_get_rx_queue(skb))
2860 goto out;
2861
2862 rxqueue = dev->_rx + rxq_index;
2863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2864 if (!flow_table)
2865 goto out;
2866 flow_id = skb->rxhash & flow_table->mask;
2867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2868 rxq_index, flow_id);
2869 if (rc < 0)
2870 goto out;
2871 old_rflow = rflow;
2872 rflow = &flow_table->flows[flow_id];
2873 rflow->filter = rc;
2874 if (old_rflow->filter == rflow->filter)
2875 old_rflow->filter = RPS_NO_FILTER;
2876 out:
2877 #endif
2878 rflow->last_qtail =
2879 per_cpu(softnet_data, next_cpu).input_queue_head;
2880 }
2881
2882 rflow->cpu = next_cpu;
2883 return rflow;
2884 }
2885
2886 /*
2887 * get_rps_cpu is called from netif_receive_skb and returns the target
2888 * CPU from the RPS map of the receiving queue for a given skb.
2889 * rcu_read_lock must be held on entry.
2890 */
2891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2892 struct rps_dev_flow **rflowp)
2893 {
2894 struct netdev_rx_queue *rxqueue;
2895 struct rps_map *map;
2896 struct rps_dev_flow_table *flow_table;
2897 struct rps_sock_flow_table *sock_flow_table;
2898 int cpu = -1;
2899 u16 tcpu;
2900
2901 if (skb_rx_queue_recorded(skb)) {
2902 u16 index = skb_get_rx_queue(skb);
2903 if (unlikely(index >= dev->real_num_rx_queues)) {
2904 WARN_ONCE(dev->real_num_rx_queues > 1,
2905 "%s received packet on queue %u, but number "
2906 "of RX queues is %u\n",
2907 dev->name, index, dev->real_num_rx_queues);
2908 goto done;
2909 }
2910 rxqueue = dev->_rx + index;
2911 } else
2912 rxqueue = dev->_rx;
2913
2914 map = rcu_dereference(rxqueue->rps_map);
2915 if (map) {
2916 if (map->len == 1 &&
2917 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2918 tcpu = map->cpus[0];
2919 if (cpu_online(tcpu))
2920 cpu = tcpu;
2921 goto done;
2922 }
2923 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2924 goto done;
2925 }
2926
2927 skb_reset_network_header(skb);
2928 if (!skb_get_rxhash(skb))
2929 goto done;
2930
2931 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2932 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2933 if (flow_table && sock_flow_table) {
2934 u16 next_cpu;
2935 struct rps_dev_flow *rflow;
2936
2937 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2938 tcpu = rflow->cpu;
2939
2940 next_cpu = sock_flow_table->ents[skb->rxhash &
2941 sock_flow_table->mask];
2942
2943 /*
2944 * If the desired CPU (where last recvmsg was done) is
2945 * different from current CPU (one in the rx-queue flow
2946 * table entry), switch if one of the following holds:
2947 * - Current CPU is unset (equal to RPS_NO_CPU).
2948 * - Current CPU is offline.
2949 * - The current CPU's queue tail has advanced beyond the
2950 * last packet that was enqueued using this table entry.
2951 * This guarantees that all previous packets for the flow
2952 * have been dequeued, thus preserving in order delivery.
2953 */
2954 if (unlikely(tcpu != next_cpu) &&
2955 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2956 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2957 rflow->last_qtail)) >= 0)) {
2958 tcpu = next_cpu;
2959 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 }
2961
2962 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2963 *rflowp = rflow;
2964 cpu = tcpu;
2965 goto done;
2966 }
2967 }
2968
2969 if (map) {
2970 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2971
2972 if (cpu_online(tcpu)) {
2973 cpu = tcpu;
2974 goto done;
2975 }
2976 }
2977
2978 done:
2979 return cpu;
2980 }
2981
2982 #ifdef CONFIG_RFS_ACCEL
2983
2984 /**
2985 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2986 * @dev: Device on which the filter was set
2987 * @rxq_index: RX queue index
2988 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2989 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2990 *
2991 * Drivers that implement ndo_rx_flow_steer() should periodically call
2992 * this function for each installed filter and remove the filters for
2993 * which it returns %true.
2994 */
2995 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2996 u32 flow_id, u16 filter_id)
2997 {
2998 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2999 struct rps_dev_flow_table *flow_table;
3000 struct rps_dev_flow *rflow;
3001 bool expire = true;
3002 int cpu;
3003
3004 rcu_read_lock();
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 if (flow_table && flow_id <= flow_table->mask) {
3007 rflow = &flow_table->flows[flow_id];
3008 cpu = ACCESS_ONCE(rflow->cpu);
3009 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3010 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3011 rflow->last_qtail) <
3012 (int)(10 * flow_table->mask)))
3013 expire = false;
3014 }
3015 rcu_read_unlock();
3016 return expire;
3017 }
3018 EXPORT_SYMBOL(rps_may_expire_flow);
3019
3020 #endif /* CONFIG_RFS_ACCEL */
3021
3022 /* Called from hardirq (IPI) context */
3023 static void rps_trigger_softirq(void *data)
3024 {
3025 struct softnet_data *sd = data;
3026
3027 ____napi_schedule(sd, &sd->backlog);
3028 sd->received_rps++;
3029 }
3030
3031 #endif /* CONFIG_RPS */
3032
3033 /*
3034 * Check if this softnet_data structure is another cpu one
3035 * If yes, queue it to our IPI list and return 1
3036 * If no, return 0
3037 */
3038 static int rps_ipi_queued(struct softnet_data *sd)
3039 {
3040 #ifdef CONFIG_RPS
3041 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3042
3043 if (sd != mysd) {
3044 sd->rps_ipi_next = mysd->rps_ipi_list;
3045 mysd->rps_ipi_list = sd;
3046
3047 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 return 1;
3049 }
3050 #endif /* CONFIG_RPS */
3051 return 0;
3052 }
3053
3054 /*
3055 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3056 * queue (may be a remote CPU queue).
3057 */
3058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3059 unsigned int *qtail)
3060 {
3061 struct softnet_data *sd;
3062 unsigned long flags;
3063
3064 sd = &per_cpu(softnet_data, cpu);
3065
3066 local_irq_save(flags);
3067
3068 rps_lock(sd);
3069 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3070 if (skb_queue_len(&sd->input_pkt_queue)) {
3071 enqueue:
3072 __skb_queue_tail(&sd->input_pkt_queue, skb);
3073 input_queue_tail_incr_save(sd, qtail);
3074 rps_unlock(sd);
3075 local_irq_restore(flags);
3076 return NET_RX_SUCCESS;
3077 }
3078
3079 /* Schedule NAPI for backlog device
3080 * We can use non atomic operation since we own the queue lock
3081 */
3082 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3083 if (!rps_ipi_queued(sd))
3084 ____napi_schedule(sd, &sd->backlog);
3085 }
3086 goto enqueue;
3087 }
3088
3089 sd->dropped++;
3090 rps_unlock(sd);
3091
3092 local_irq_restore(flags);
3093
3094 atomic_long_inc(&skb->dev->rx_dropped);
3095 kfree_skb(skb);
3096 return NET_RX_DROP;
3097 }
3098
3099 /**
3100 * netif_rx - post buffer to the network code
3101 * @skb: buffer to post
3102 *
3103 * This function receives a packet from a device driver and queues it for
3104 * the upper (protocol) levels to process. It always succeeds. The buffer
3105 * may be dropped during processing for congestion control or by the
3106 * protocol layers.
3107 *
3108 * return values:
3109 * NET_RX_SUCCESS (no congestion)
3110 * NET_RX_DROP (packet was dropped)
3111 *
3112 */
3113
3114 int netif_rx(struct sk_buff *skb)
3115 {
3116 int ret;
3117
3118 /* if netpoll wants it, pretend we never saw it */
3119 if (netpoll_rx(skb))
3120 return NET_RX_DROP;
3121
3122 net_timestamp_check(netdev_tstamp_prequeue, skb);
3123
3124 trace_netif_rx(skb);
3125 #ifdef CONFIG_RPS
3126 if (static_key_false(&rps_needed)) {
3127 struct rps_dev_flow voidflow, *rflow = &voidflow;
3128 int cpu;
3129
3130 preempt_disable();
3131 rcu_read_lock();
3132
3133 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3134 if (cpu < 0)
3135 cpu = smp_processor_id();
3136
3137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3138
3139 rcu_read_unlock();
3140 preempt_enable();
3141 } else
3142 #endif
3143 {
3144 unsigned int qtail;
3145 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3146 put_cpu();
3147 }
3148 return ret;
3149 }
3150 EXPORT_SYMBOL(netif_rx);
3151
3152 int netif_rx_ni(struct sk_buff *skb)
3153 {
3154 int err;
3155
3156 preempt_disable();
3157 err = netif_rx(skb);
3158 if (local_softirq_pending())
3159 do_softirq();
3160 preempt_enable();
3161
3162 return err;
3163 }
3164 EXPORT_SYMBOL(netif_rx_ni);
3165
3166 static void net_tx_action(struct softirq_action *h)
3167 {
3168 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3169
3170 if (sd->completion_queue) {
3171 struct sk_buff *clist;
3172
3173 local_irq_disable();
3174 clist = sd->completion_queue;
3175 sd->completion_queue = NULL;
3176 local_irq_enable();
3177
3178 while (clist) {
3179 struct sk_buff *skb = clist;
3180 clist = clist->next;
3181
3182 WARN_ON(atomic_read(&skb->users));
3183 trace_kfree_skb(skb, net_tx_action);
3184 __kfree_skb(skb);
3185 }
3186 }
3187
3188 if (sd->output_queue) {
3189 struct Qdisc *head;
3190
3191 local_irq_disable();
3192 head = sd->output_queue;
3193 sd->output_queue = NULL;
3194 sd->output_queue_tailp = &sd->output_queue;
3195 local_irq_enable();
3196
3197 while (head) {
3198 struct Qdisc *q = head;
3199 spinlock_t *root_lock;
3200
3201 head = head->next_sched;
3202
3203 root_lock = qdisc_lock(q);
3204 if (spin_trylock(root_lock)) {
3205 smp_mb__before_clear_bit();
3206 clear_bit(__QDISC_STATE_SCHED,
3207 &q->state);
3208 qdisc_run(q);
3209 spin_unlock(root_lock);
3210 } else {
3211 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3212 &q->state)) {
3213 __netif_reschedule(q);
3214 } else {
3215 smp_mb__before_clear_bit();
3216 clear_bit(__QDISC_STATE_SCHED,
3217 &q->state);
3218 }
3219 }
3220 }
3221 }
3222 }
3223
3224 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3225 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3226 /* This hook is defined here for ATM LANE */
3227 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3228 unsigned char *addr) __read_mostly;
3229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3230 #endif
3231
3232 #ifdef CONFIG_NET_CLS_ACT
3233 /* TODO: Maybe we should just force sch_ingress to be compiled in
3234 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3235 * a compare and 2 stores extra right now if we dont have it on
3236 * but have CONFIG_NET_CLS_ACT
3237 * NOTE: This doesn't stop any functionality; if you dont have
3238 * the ingress scheduler, you just can't add policies on ingress.
3239 *
3240 */
3241 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3242 {
3243 struct net_device *dev = skb->dev;
3244 u32 ttl = G_TC_RTTL(skb->tc_verd);
3245 int result = TC_ACT_OK;
3246 struct Qdisc *q;
3247
3248 if (unlikely(MAX_RED_LOOP < ttl++)) {
3249 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3250 skb->skb_iif, dev->ifindex);
3251 return TC_ACT_SHOT;
3252 }
3253
3254 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3255 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3256
3257 q = rxq->qdisc;
3258 if (q != &noop_qdisc) {
3259 spin_lock(qdisc_lock(q));
3260 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3261 result = qdisc_enqueue_root(skb, q);
3262 spin_unlock(qdisc_lock(q));
3263 }
3264
3265 return result;
3266 }
3267
3268 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3269 struct packet_type **pt_prev,
3270 int *ret, struct net_device *orig_dev)
3271 {
3272 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3273
3274 if (!rxq || rxq->qdisc == &noop_qdisc)
3275 goto out;
3276
3277 if (*pt_prev) {
3278 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3279 *pt_prev = NULL;
3280 }
3281
3282 switch (ing_filter(skb, rxq)) {
3283 case TC_ACT_SHOT:
3284 case TC_ACT_STOLEN:
3285 kfree_skb(skb);
3286 return NULL;
3287 }
3288
3289 out:
3290 skb->tc_verd = 0;
3291 return skb;
3292 }
3293 #endif
3294
3295 /**
3296 * netdev_rx_handler_register - register receive handler
3297 * @dev: device to register a handler for
3298 * @rx_handler: receive handler to register
3299 * @rx_handler_data: data pointer that is used by rx handler
3300 *
3301 * Register a receive hander for a device. This handler will then be
3302 * called from __netif_receive_skb. A negative errno code is returned
3303 * on a failure.
3304 *
3305 * The caller must hold the rtnl_mutex.
3306 *
3307 * For a general description of rx_handler, see enum rx_handler_result.
3308 */
3309 int netdev_rx_handler_register(struct net_device *dev,
3310 rx_handler_func_t *rx_handler,
3311 void *rx_handler_data)
3312 {
3313 ASSERT_RTNL();
3314
3315 if (dev->rx_handler)
3316 return -EBUSY;
3317
3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3319 rcu_assign_pointer(dev->rx_handler, rx_handler);
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324
3325 /**
3326 * netdev_rx_handler_unregister - unregister receive handler
3327 * @dev: device to unregister a handler from
3328 *
3329 * Unregister a receive hander from a device.
3330 *
3331 * The caller must hold the rtnl_mutex.
3332 */
3333 void netdev_rx_handler_unregister(struct net_device *dev)
3334 {
3335
3336 ASSERT_RTNL();
3337 RCU_INIT_POINTER(dev->rx_handler, NULL);
3338 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3339 }
3340 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3341
3342 /*
3343 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3344 * the special handling of PFMEMALLOC skbs.
3345 */
3346 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3347 {
3348 switch (skb->protocol) {
3349 case __constant_htons(ETH_P_ARP):
3350 case __constant_htons(ETH_P_IP):
3351 case __constant_htons(ETH_P_IPV6):
3352 case __constant_htons(ETH_P_8021Q):
3353 return true;
3354 default:
3355 return false;
3356 }
3357 }
3358
3359 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3360 {
3361 struct packet_type *ptype, *pt_prev;
3362 rx_handler_func_t *rx_handler;
3363 struct net_device *orig_dev;
3364 struct net_device *null_or_dev;
3365 bool deliver_exact = false;
3366 int ret = NET_RX_DROP;
3367 __be16 type;
3368
3369 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3370
3371 trace_netif_receive_skb(skb);
3372
3373 /* if we've gotten here through NAPI, check netpoll */
3374 if (netpoll_receive_skb(skb))
3375 goto out;
3376
3377 orig_dev = skb->dev;
3378
3379 skb_reset_network_header(skb);
3380 if (!skb_transport_header_was_set(skb))
3381 skb_reset_transport_header(skb);
3382 skb_reset_mac_len(skb);
3383
3384 pt_prev = NULL;
3385
3386 rcu_read_lock();
3387
3388 another_round:
3389 skb->skb_iif = skb->dev->ifindex;
3390
3391 __this_cpu_inc(softnet_data.processed);
3392
3393 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3394 skb = vlan_untag(skb);
3395 if (unlikely(!skb))
3396 goto unlock;
3397 }
3398
3399 #ifdef CONFIG_NET_CLS_ACT
3400 if (skb->tc_verd & TC_NCLS) {
3401 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3402 goto ncls;
3403 }
3404 #endif
3405
3406 if (pfmemalloc)
3407 goto skip_taps;
3408
3409 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3410 if (!ptype->dev || ptype->dev == skb->dev) {
3411 if (pt_prev)
3412 ret = deliver_skb(skb, pt_prev, orig_dev);
3413 pt_prev = ptype;
3414 }
3415 }
3416
3417 skip_taps:
3418 #ifdef CONFIG_NET_CLS_ACT
3419 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3420 if (!skb)
3421 goto unlock;
3422 ncls:
3423 #endif
3424
3425 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3426 goto drop;
3427
3428 if (vlan_tx_tag_present(skb)) {
3429 if (pt_prev) {
3430 ret = deliver_skb(skb, pt_prev, orig_dev);
3431 pt_prev = NULL;
3432 }
3433 if (vlan_do_receive(&skb))
3434 goto another_round;
3435 else if (unlikely(!skb))
3436 goto unlock;
3437 }
3438
3439 rx_handler = rcu_dereference(skb->dev->rx_handler);
3440 if (rx_handler) {
3441 if (pt_prev) {
3442 ret = deliver_skb(skb, pt_prev, orig_dev);
3443 pt_prev = NULL;
3444 }
3445 switch (rx_handler(&skb)) {
3446 case RX_HANDLER_CONSUMED:
3447 ret = NET_RX_SUCCESS;
3448 goto unlock;
3449 case RX_HANDLER_ANOTHER:
3450 goto another_round;
3451 case RX_HANDLER_EXACT:
3452 deliver_exact = true;
3453 case RX_HANDLER_PASS:
3454 break;
3455 default:
3456 BUG();
3457 }
3458 }
3459
3460 if (vlan_tx_nonzero_tag_present(skb))
3461 skb->pkt_type = PACKET_OTHERHOST;
3462
3463 /* deliver only exact match when indicated */
3464 null_or_dev = deliver_exact ? skb->dev : NULL;
3465
3466 type = skb->protocol;
3467 list_for_each_entry_rcu(ptype,
3468 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3469 if (ptype->type == type &&
3470 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3471 ptype->dev == orig_dev)) {
3472 if (pt_prev)
3473 ret = deliver_skb(skb, pt_prev, orig_dev);
3474 pt_prev = ptype;
3475 }
3476 }
3477
3478 if (pt_prev) {
3479 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3480 goto drop;
3481 else
3482 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3483 } else {
3484 drop:
3485 atomic_long_inc(&skb->dev->rx_dropped);
3486 kfree_skb(skb);
3487 /* Jamal, now you will not able to escape explaining
3488 * me how you were going to use this. :-)
3489 */
3490 ret = NET_RX_DROP;
3491 }
3492
3493 unlock:
3494 rcu_read_unlock();
3495 out:
3496 return ret;
3497 }
3498
3499 static int __netif_receive_skb(struct sk_buff *skb)
3500 {
3501 int ret;
3502
3503 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3504 unsigned long pflags = current->flags;
3505
3506 /*
3507 * PFMEMALLOC skbs are special, they should
3508 * - be delivered to SOCK_MEMALLOC sockets only
3509 * - stay away from userspace
3510 * - have bounded memory usage
3511 *
3512 * Use PF_MEMALLOC as this saves us from propagating the allocation
3513 * context down to all allocation sites.
3514 */
3515 current->flags |= PF_MEMALLOC;
3516 ret = __netif_receive_skb_core(skb, true);
3517 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3518 } else
3519 ret = __netif_receive_skb_core(skb, false);
3520
3521 return ret;
3522 }
3523
3524 /**
3525 * netif_receive_skb - process receive buffer from network
3526 * @skb: buffer to process
3527 *
3528 * netif_receive_skb() is the main receive data processing function.
3529 * It always succeeds. The buffer may be dropped during processing
3530 * for congestion control or by the protocol layers.
3531 *
3532 * This function may only be called from softirq context and interrupts
3533 * should be enabled.
3534 *
3535 * Return values (usually ignored):
3536 * NET_RX_SUCCESS: no congestion
3537 * NET_RX_DROP: packet was dropped
3538 */
3539 int netif_receive_skb(struct sk_buff *skb)
3540 {
3541 net_timestamp_check(netdev_tstamp_prequeue, skb);
3542
3543 if (skb_defer_rx_timestamp(skb))
3544 return NET_RX_SUCCESS;
3545
3546 #ifdef CONFIG_RPS
3547 if (static_key_false(&rps_needed)) {
3548 struct rps_dev_flow voidflow, *rflow = &voidflow;
3549 int cpu, ret;
3550
3551 rcu_read_lock();
3552
3553 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3554
3555 if (cpu >= 0) {
3556 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3557 rcu_read_unlock();
3558 return ret;
3559 }
3560 rcu_read_unlock();
3561 }
3562 #endif
3563 return __netif_receive_skb(skb);
3564 }
3565 EXPORT_SYMBOL(netif_receive_skb);
3566
3567 /* Network device is going away, flush any packets still pending
3568 * Called with irqs disabled.
3569 */
3570 static void flush_backlog(void *arg)
3571 {
3572 struct net_device *dev = arg;
3573 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3574 struct sk_buff *skb, *tmp;
3575
3576 rps_lock(sd);
3577 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3578 if (skb->dev == dev) {
3579 __skb_unlink(skb, &sd->input_pkt_queue);
3580 kfree_skb(skb);
3581 input_queue_head_incr(sd);
3582 }
3583 }
3584 rps_unlock(sd);
3585
3586 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3587 if (skb->dev == dev) {
3588 __skb_unlink(skb, &sd->process_queue);
3589 kfree_skb(skb);
3590 input_queue_head_incr(sd);
3591 }
3592 }
3593 }
3594
3595 static int napi_gro_complete(struct sk_buff *skb)
3596 {
3597 struct packet_offload *ptype;
3598 __be16 type = skb->protocol;
3599 struct list_head *head = &offload_base;
3600 int err = -ENOENT;
3601
3602 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3603
3604 if (NAPI_GRO_CB(skb)->count == 1) {
3605 skb_shinfo(skb)->gso_size = 0;
3606 goto out;
3607 }
3608
3609 rcu_read_lock();
3610 list_for_each_entry_rcu(ptype, head, list) {
3611 if (ptype->type != type || !ptype->callbacks.gro_complete)
3612 continue;
3613
3614 err = ptype->callbacks.gro_complete(skb);
3615 break;
3616 }
3617 rcu_read_unlock();
3618
3619 if (err) {
3620 WARN_ON(&ptype->list == head);
3621 kfree_skb(skb);
3622 return NET_RX_SUCCESS;
3623 }
3624
3625 out:
3626 return netif_receive_skb(skb);
3627 }
3628
3629 /* napi->gro_list contains packets ordered by age.
3630 * youngest packets at the head of it.
3631 * Complete skbs in reverse order to reduce latencies.
3632 */
3633 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3634 {
3635 struct sk_buff *skb, *prev = NULL;
3636
3637 /* scan list and build reverse chain */
3638 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3639 skb->prev = prev;
3640 prev = skb;
3641 }
3642
3643 for (skb = prev; skb; skb = prev) {
3644 skb->next = NULL;
3645
3646 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3647 return;
3648
3649 prev = skb->prev;
3650 napi_gro_complete(skb);
3651 napi->gro_count--;
3652 }
3653
3654 napi->gro_list = NULL;
3655 }
3656 EXPORT_SYMBOL(napi_gro_flush);
3657
3658 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3659 {
3660 struct sk_buff *p;
3661 unsigned int maclen = skb->dev->hard_header_len;
3662
3663 for (p = napi->gro_list; p; p = p->next) {
3664 unsigned long diffs;
3665
3666 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3667 diffs |= p->vlan_tci ^ skb->vlan_tci;
3668 if (maclen == ETH_HLEN)
3669 diffs |= compare_ether_header(skb_mac_header(p),
3670 skb_gro_mac_header(skb));
3671 else if (!diffs)
3672 diffs = memcmp(skb_mac_header(p),
3673 skb_gro_mac_header(skb),
3674 maclen);
3675 NAPI_GRO_CB(p)->same_flow = !diffs;
3676 NAPI_GRO_CB(p)->flush = 0;
3677 }
3678 }
3679
3680 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3681 {
3682 struct sk_buff **pp = NULL;
3683 struct packet_offload *ptype;
3684 __be16 type = skb->protocol;
3685 struct list_head *head = &offload_base;
3686 int same_flow;
3687 enum gro_result ret;
3688
3689 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3690 goto normal;
3691
3692 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3693 goto normal;
3694
3695 gro_list_prepare(napi, skb);
3696
3697 rcu_read_lock();
3698 list_for_each_entry_rcu(ptype, head, list) {
3699 if (ptype->type != type || !ptype->callbacks.gro_receive)
3700 continue;
3701
3702 skb_set_network_header(skb, skb_gro_offset(skb));
3703 skb_reset_mac_len(skb);
3704 NAPI_GRO_CB(skb)->same_flow = 0;
3705 NAPI_GRO_CB(skb)->flush = 0;
3706 NAPI_GRO_CB(skb)->free = 0;
3707
3708 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3709 break;
3710 }
3711 rcu_read_unlock();
3712
3713 if (&ptype->list == head)
3714 goto normal;
3715
3716 same_flow = NAPI_GRO_CB(skb)->same_flow;
3717 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3718
3719 if (pp) {
3720 struct sk_buff *nskb = *pp;
3721
3722 *pp = nskb->next;
3723 nskb->next = NULL;
3724 napi_gro_complete(nskb);
3725 napi->gro_count--;
3726 }
3727
3728 if (same_flow)
3729 goto ok;
3730
3731 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3732 goto normal;
3733
3734 napi->gro_count++;
3735 NAPI_GRO_CB(skb)->count = 1;
3736 NAPI_GRO_CB(skb)->age = jiffies;
3737 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3738 skb->next = napi->gro_list;
3739 napi->gro_list = skb;
3740 ret = GRO_HELD;
3741
3742 pull:
3743 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3744 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3745
3746 BUG_ON(skb->end - skb->tail < grow);
3747
3748 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3749
3750 skb->tail += grow;
3751 skb->data_len -= grow;
3752
3753 skb_shinfo(skb)->frags[0].page_offset += grow;
3754 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3755
3756 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3757 skb_frag_unref(skb, 0);
3758 memmove(skb_shinfo(skb)->frags,
3759 skb_shinfo(skb)->frags + 1,
3760 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3761 }
3762 }
3763
3764 ok:
3765 return ret;
3766
3767 normal:
3768 ret = GRO_NORMAL;
3769 goto pull;
3770 }
3771
3772
3773 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3774 {
3775 switch (ret) {
3776 case GRO_NORMAL:
3777 if (netif_receive_skb(skb))
3778 ret = GRO_DROP;
3779 break;
3780
3781 case GRO_DROP:
3782 kfree_skb(skb);
3783 break;
3784
3785 case GRO_MERGED_FREE:
3786 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3787 kmem_cache_free(skbuff_head_cache, skb);
3788 else
3789 __kfree_skb(skb);
3790 break;
3791
3792 case GRO_HELD:
3793 case GRO_MERGED:
3794 break;
3795 }
3796
3797 return ret;
3798 }
3799
3800 static void skb_gro_reset_offset(struct sk_buff *skb)
3801 {
3802 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3803 const skb_frag_t *frag0 = &pinfo->frags[0];
3804
3805 NAPI_GRO_CB(skb)->data_offset = 0;
3806 NAPI_GRO_CB(skb)->frag0 = NULL;
3807 NAPI_GRO_CB(skb)->frag0_len = 0;
3808
3809 if (skb->mac_header == skb->tail &&
3810 pinfo->nr_frags &&
3811 !PageHighMem(skb_frag_page(frag0))) {
3812 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3813 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3814 }
3815 }
3816
3817 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3818 {
3819 skb_gro_reset_offset(skb);
3820
3821 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3822 }
3823 EXPORT_SYMBOL(napi_gro_receive);
3824
3825 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3826 {
3827 __skb_pull(skb, skb_headlen(skb));
3828 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3829 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3830 skb->vlan_tci = 0;
3831 skb->dev = napi->dev;
3832 skb->skb_iif = 0;
3833
3834 napi->skb = skb;
3835 }
3836
3837 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3838 {
3839 struct sk_buff *skb = napi->skb;
3840
3841 if (!skb) {
3842 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3843 if (skb)
3844 napi->skb = skb;
3845 }
3846 return skb;
3847 }
3848 EXPORT_SYMBOL(napi_get_frags);
3849
3850 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3851 gro_result_t ret)
3852 {
3853 switch (ret) {
3854 case GRO_NORMAL:
3855 case GRO_HELD:
3856 skb->protocol = eth_type_trans(skb, skb->dev);
3857
3858 if (ret == GRO_HELD)
3859 skb_gro_pull(skb, -ETH_HLEN);
3860 else if (netif_receive_skb(skb))
3861 ret = GRO_DROP;
3862 break;
3863
3864 case GRO_DROP:
3865 case GRO_MERGED_FREE:
3866 napi_reuse_skb(napi, skb);
3867 break;
3868
3869 case GRO_MERGED:
3870 break;
3871 }
3872
3873 return ret;
3874 }
3875
3876 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3877 {
3878 struct sk_buff *skb = napi->skb;
3879 struct ethhdr *eth;
3880 unsigned int hlen;
3881 unsigned int off;
3882
3883 napi->skb = NULL;
3884
3885 skb_reset_mac_header(skb);
3886 skb_gro_reset_offset(skb);
3887
3888 off = skb_gro_offset(skb);
3889 hlen = off + sizeof(*eth);
3890 eth = skb_gro_header_fast(skb, off);
3891 if (skb_gro_header_hard(skb, hlen)) {
3892 eth = skb_gro_header_slow(skb, hlen, off);
3893 if (unlikely(!eth)) {
3894 napi_reuse_skb(napi, skb);
3895 skb = NULL;
3896 goto out;
3897 }
3898 }
3899
3900 skb_gro_pull(skb, sizeof(*eth));
3901
3902 /*
3903 * This works because the only protocols we care about don't require
3904 * special handling. We'll fix it up properly at the end.
3905 */
3906 skb->protocol = eth->h_proto;
3907
3908 out:
3909 return skb;
3910 }
3911
3912 gro_result_t napi_gro_frags(struct napi_struct *napi)
3913 {
3914 struct sk_buff *skb = napi_frags_skb(napi);
3915
3916 if (!skb)
3917 return GRO_DROP;
3918
3919 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3920 }
3921 EXPORT_SYMBOL(napi_gro_frags);
3922
3923 /*
3924 * net_rps_action sends any pending IPI's for rps.
3925 * Note: called with local irq disabled, but exits with local irq enabled.
3926 */
3927 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3928 {
3929 #ifdef CONFIG_RPS
3930 struct softnet_data *remsd = sd->rps_ipi_list;
3931
3932 if (remsd) {
3933 sd->rps_ipi_list = NULL;
3934
3935 local_irq_enable();
3936
3937 /* Send pending IPI's to kick RPS processing on remote cpus. */
3938 while (remsd) {
3939 struct softnet_data *next = remsd->rps_ipi_next;
3940
3941 if (cpu_online(remsd->cpu))
3942 __smp_call_function_single(remsd->cpu,
3943 &remsd->csd, 0);
3944 remsd = next;
3945 }
3946 } else
3947 #endif
3948 local_irq_enable();
3949 }
3950
3951 static int process_backlog(struct napi_struct *napi, int quota)
3952 {
3953 int work = 0;
3954 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3955
3956 #ifdef CONFIG_RPS
3957 /* Check if we have pending ipi, its better to send them now,
3958 * not waiting net_rx_action() end.
3959 */
3960 if (sd->rps_ipi_list) {
3961 local_irq_disable();
3962 net_rps_action_and_irq_enable(sd);
3963 }
3964 #endif
3965 napi->weight = weight_p;
3966 local_irq_disable();
3967 while (work < quota) {
3968 struct sk_buff *skb;
3969 unsigned int qlen;
3970
3971 while ((skb = __skb_dequeue(&sd->process_queue))) {
3972 local_irq_enable();
3973 __netif_receive_skb(skb);
3974 local_irq_disable();
3975 input_queue_head_incr(sd);
3976 if (++work >= quota) {
3977 local_irq_enable();
3978 return work;
3979 }
3980 }
3981
3982 rps_lock(sd);
3983 qlen = skb_queue_len(&sd->input_pkt_queue);
3984 if (qlen)
3985 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3986 &sd->process_queue);
3987
3988 if (qlen < quota - work) {
3989 /*
3990 * Inline a custom version of __napi_complete().
3991 * only current cpu owns and manipulates this napi,
3992 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3993 * we can use a plain write instead of clear_bit(),
3994 * and we dont need an smp_mb() memory barrier.
3995 */
3996 list_del(&napi->poll_list);
3997 napi->state = 0;
3998
3999 quota = work + qlen;
4000 }
4001 rps_unlock(sd);
4002 }
4003 local_irq_enable();
4004
4005 return work;
4006 }
4007
4008 /**
4009 * __napi_schedule - schedule for receive
4010 * @n: entry to schedule
4011 *
4012 * The entry's receive function will be scheduled to run
4013 */
4014 void __napi_schedule(struct napi_struct *n)
4015 {
4016 unsigned long flags;
4017
4018 local_irq_save(flags);
4019 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4020 local_irq_restore(flags);
4021 }
4022 EXPORT_SYMBOL(__napi_schedule);
4023
4024 void __napi_complete(struct napi_struct *n)
4025 {
4026 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4027 BUG_ON(n->gro_list);
4028
4029 list_del(&n->poll_list);
4030 smp_mb__before_clear_bit();
4031 clear_bit(NAPI_STATE_SCHED, &n->state);
4032 }
4033 EXPORT_SYMBOL(__napi_complete);
4034
4035 void napi_complete(struct napi_struct *n)
4036 {
4037 unsigned long flags;
4038
4039 /*
4040 * don't let napi dequeue from the cpu poll list
4041 * just in case its running on a different cpu
4042 */
4043 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4044 return;
4045
4046 napi_gro_flush(n, false);
4047 local_irq_save(flags);
4048 __napi_complete(n);
4049 local_irq_restore(flags);
4050 }
4051 EXPORT_SYMBOL(napi_complete);
4052
4053 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4054 int (*poll)(struct napi_struct *, int), int weight)
4055 {
4056 INIT_LIST_HEAD(&napi->poll_list);
4057 napi->gro_count = 0;
4058 napi->gro_list = NULL;
4059 napi->skb = NULL;
4060 napi->poll = poll;
4061 napi->weight = weight;
4062 list_add(&napi->dev_list, &dev->napi_list);
4063 napi->dev = dev;
4064 #ifdef CONFIG_NETPOLL
4065 spin_lock_init(&napi->poll_lock);
4066 napi->poll_owner = -1;
4067 #endif
4068 set_bit(NAPI_STATE_SCHED, &napi->state);
4069 }
4070 EXPORT_SYMBOL(netif_napi_add);
4071
4072 void netif_napi_del(struct napi_struct *napi)
4073 {
4074 struct sk_buff *skb, *next;
4075
4076 list_del_init(&napi->dev_list);
4077 napi_free_frags(napi);
4078
4079 for (skb = napi->gro_list; skb; skb = next) {
4080 next = skb->next;
4081 skb->next = NULL;
4082 kfree_skb(skb);
4083 }
4084
4085 napi->gro_list = NULL;
4086 napi->gro_count = 0;
4087 }
4088 EXPORT_SYMBOL(netif_napi_del);
4089
4090 static void net_rx_action(struct softirq_action *h)
4091 {
4092 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4093 unsigned long time_limit = jiffies + 2;
4094 int budget = netdev_budget;
4095 void *have;
4096
4097 local_irq_disable();
4098
4099 while (!list_empty(&sd->poll_list)) {
4100 struct napi_struct *n;
4101 int work, weight;
4102
4103 /* If softirq window is exhuasted then punt.
4104 * Allow this to run for 2 jiffies since which will allow
4105 * an average latency of 1.5/HZ.
4106 */
4107 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4108 goto softnet_break;
4109
4110 local_irq_enable();
4111
4112 /* Even though interrupts have been re-enabled, this
4113 * access is safe because interrupts can only add new
4114 * entries to the tail of this list, and only ->poll()
4115 * calls can remove this head entry from the list.
4116 */
4117 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4118
4119 have = netpoll_poll_lock(n);
4120
4121 weight = n->weight;
4122
4123 /* This NAPI_STATE_SCHED test is for avoiding a race
4124 * with netpoll's poll_napi(). Only the entity which
4125 * obtains the lock and sees NAPI_STATE_SCHED set will
4126 * actually make the ->poll() call. Therefore we avoid
4127 * accidentally calling ->poll() when NAPI is not scheduled.
4128 */
4129 work = 0;
4130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4131 work = n->poll(n, weight);
4132 trace_napi_poll(n);
4133 }
4134
4135 WARN_ON_ONCE(work > weight);
4136
4137 budget -= work;
4138
4139 local_irq_disable();
4140
4141 /* Drivers must not modify the NAPI state if they
4142 * consume the entire weight. In such cases this code
4143 * still "owns" the NAPI instance and therefore can
4144 * move the instance around on the list at-will.
4145 */
4146 if (unlikely(work == weight)) {
4147 if (unlikely(napi_disable_pending(n))) {
4148 local_irq_enable();
4149 napi_complete(n);
4150 local_irq_disable();
4151 } else {
4152 if (n->gro_list) {
4153 /* flush too old packets
4154 * If HZ < 1000, flush all packets.
4155 */
4156 local_irq_enable();
4157 napi_gro_flush(n, HZ >= 1000);
4158 local_irq_disable();
4159 }
4160 list_move_tail(&n->poll_list, &sd->poll_list);
4161 }
4162 }
4163
4164 netpoll_poll_unlock(have);
4165 }
4166 out:
4167 net_rps_action_and_irq_enable(sd);
4168
4169 #ifdef CONFIG_NET_DMA
4170 /*
4171 * There may not be any more sk_buffs coming right now, so push
4172 * any pending DMA copies to hardware
4173 */
4174 dma_issue_pending_all();
4175 #endif
4176
4177 return;
4178
4179 softnet_break:
4180 sd->time_squeeze++;
4181 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4182 goto out;
4183 }
4184
4185 struct netdev_upper {
4186 struct net_device *dev;
4187 bool master;
4188 struct list_head list;
4189 struct rcu_head rcu;
4190 struct list_head search_list;
4191 };
4192
4193 static void __append_search_uppers(struct list_head *search_list,
4194 struct net_device *dev)
4195 {
4196 struct netdev_upper *upper;
4197
4198 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4199 /* check if this upper is not already in search list */
4200 if (list_empty(&upper->search_list))
4201 list_add_tail(&upper->search_list, search_list);
4202 }
4203 }
4204
4205 static bool __netdev_search_upper_dev(struct net_device *dev,
4206 struct net_device *upper_dev)
4207 {
4208 LIST_HEAD(search_list);
4209 struct netdev_upper *upper;
4210 struct netdev_upper *tmp;
4211 bool ret = false;
4212
4213 __append_search_uppers(&search_list, dev);
4214 list_for_each_entry(upper, &search_list, search_list) {
4215 if (upper->dev == upper_dev) {
4216 ret = true;
4217 break;
4218 }
4219 __append_search_uppers(&search_list, upper->dev);
4220 }
4221 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4222 INIT_LIST_HEAD(&upper->search_list);
4223 return ret;
4224 }
4225
4226 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4227 struct net_device *upper_dev)
4228 {
4229 struct netdev_upper *upper;
4230
4231 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4232 if (upper->dev == upper_dev)
4233 return upper;
4234 }
4235 return NULL;
4236 }
4237
4238 /**
4239 * netdev_has_upper_dev - Check if device is linked to an upper device
4240 * @dev: device
4241 * @upper_dev: upper device to check
4242 *
4243 * Find out if a device is linked to specified upper device and return true
4244 * in case it is. Note that this checks only immediate upper device,
4245 * not through a complete stack of devices. The caller must hold the RTNL lock.
4246 */
4247 bool netdev_has_upper_dev(struct net_device *dev,
4248 struct net_device *upper_dev)
4249 {
4250 ASSERT_RTNL();
4251
4252 return __netdev_find_upper(dev, upper_dev);
4253 }
4254 EXPORT_SYMBOL(netdev_has_upper_dev);
4255
4256 /**
4257 * netdev_has_any_upper_dev - Check if device is linked to some device
4258 * @dev: device
4259 *
4260 * Find out if a device is linked to an upper device and return true in case
4261 * it is. The caller must hold the RTNL lock.
4262 */
4263 bool netdev_has_any_upper_dev(struct net_device *dev)
4264 {
4265 ASSERT_RTNL();
4266
4267 return !list_empty(&dev->upper_dev_list);
4268 }
4269 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4270
4271 /**
4272 * netdev_master_upper_dev_get - Get master upper device
4273 * @dev: device
4274 *
4275 * Find a master upper device and return pointer to it or NULL in case
4276 * it's not there. The caller must hold the RTNL lock.
4277 */
4278 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4279 {
4280 struct netdev_upper *upper;
4281
4282 ASSERT_RTNL();
4283
4284 if (list_empty(&dev->upper_dev_list))
4285 return NULL;
4286
4287 upper = list_first_entry(&dev->upper_dev_list,
4288 struct netdev_upper, list);
4289 if (likely(upper->master))
4290 return upper->dev;
4291 return NULL;
4292 }
4293 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4294
4295 /**
4296 * netdev_master_upper_dev_get_rcu - Get master upper device
4297 * @dev: device
4298 *
4299 * Find a master upper device and return pointer to it or NULL in case
4300 * it's not there. The caller must hold the RCU read lock.
4301 */
4302 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4303 {
4304 struct netdev_upper *upper;
4305
4306 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4307 struct netdev_upper, list);
4308 if (upper && likely(upper->master))
4309 return upper->dev;
4310 return NULL;
4311 }
4312 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4313
4314 static int __netdev_upper_dev_link(struct net_device *dev,
4315 struct net_device *upper_dev, bool master)
4316 {
4317 struct netdev_upper *upper;
4318
4319 ASSERT_RTNL();
4320
4321 if (dev == upper_dev)
4322 return -EBUSY;
4323
4324 /* To prevent loops, check if dev is not upper device to upper_dev. */
4325 if (__netdev_search_upper_dev(upper_dev, dev))
4326 return -EBUSY;
4327
4328 if (__netdev_find_upper(dev, upper_dev))
4329 return -EEXIST;
4330
4331 if (master && netdev_master_upper_dev_get(dev))
4332 return -EBUSY;
4333
4334 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4335 if (!upper)
4336 return -ENOMEM;
4337
4338 upper->dev = upper_dev;
4339 upper->master = master;
4340 INIT_LIST_HEAD(&upper->search_list);
4341
4342 /* Ensure that master upper link is always the first item in list. */
4343 if (master)
4344 list_add_rcu(&upper->list, &dev->upper_dev_list);
4345 else
4346 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4347 dev_hold(upper_dev);
4348
4349 return 0;
4350 }
4351
4352 /**
4353 * netdev_upper_dev_link - Add a link to the upper device
4354 * @dev: device
4355 * @upper_dev: new upper device
4356 *
4357 * Adds a link to device which is upper to this one. The caller must hold
4358 * the RTNL lock. On a failure a negative errno code is returned.
4359 * On success the reference counts are adjusted and the function
4360 * returns zero.
4361 */
4362 int netdev_upper_dev_link(struct net_device *dev,
4363 struct net_device *upper_dev)
4364 {
4365 return __netdev_upper_dev_link(dev, upper_dev, false);
4366 }
4367 EXPORT_SYMBOL(netdev_upper_dev_link);
4368
4369 /**
4370 * netdev_master_upper_dev_link - Add a master link to the upper device
4371 * @dev: device
4372 * @upper_dev: new upper device
4373 *
4374 * Adds a link to device which is upper to this one. In this case, only
4375 * one master upper device can be linked, although other non-master devices
4376 * might be linked as well. The caller must hold the RTNL lock.
4377 * On a failure a negative errno code is returned. On success the reference
4378 * counts are adjusted and the function returns zero.
4379 */
4380 int netdev_master_upper_dev_link(struct net_device *dev,
4381 struct net_device *upper_dev)
4382 {
4383 return __netdev_upper_dev_link(dev, upper_dev, true);
4384 }
4385 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4386
4387 /**
4388 * netdev_upper_dev_unlink - Removes a link to upper device
4389 * @dev: device
4390 * @upper_dev: new upper device
4391 *
4392 * Removes a link to device which is upper to this one. The caller must hold
4393 * the RTNL lock.
4394 */
4395 void netdev_upper_dev_unlink(struct net_device *dev,
4396 struct net_device *upper_dev)
4397 {
4398 struct netdev_upper *upper;
4399
4400 ASSERT_RTNL();
4401
4402 upper = __netdev_find_upper(dev, upper_dev);
4403 if (!upper)
4404 return;
4405 list_del_rcu(&upper->list);
4406 dev_put(upper_dev);
4407 kfree_rcu(upper, rcu);
4408 }
4409 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4410
4411 static void dev_change_rx_flags(struct net_device *dev, int flags)
4412 {
4413 const struct net_device_ops *ops = dev->netdev_ops;
4414
4415 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4416 ops->ndo_change_rx_flags(dev, flags);
4417 }
4418
4419 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4420 {
4421 unsigned int old_flags = dev->flags;
4422 kuid_t uid;
4423 kgid_t gid;
4424
4425 ASSERT_RTNL();
4426
4427 dev->flags |= IFF_PROMISC;
4428 dev->promiscuity += inc;
4429 if (dev->promiscuity == 0) {
4430 /*
4431 * Avoid overflow.
4432 * If inc causes overflow, untouch promisc and return error.
4433 */
4434 if (inc < 0)
4435 dev->flags &= ~IFF_PROMISC;
4436 else {
4437 dev->promiscuity -= inc;
4438 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4439 dev->name);
4440 return -EOVERFLOW;
4441 }
4442 }
4443 if (dev->flags != old_flags) {
4444 pr_info("device %s %s promiscuous mode\n",
4445 dev->name,
4446 dev->flags & IFF_PROMISC ? "entered" : "left");
4447 if (audit_enabled) {
4448 current_uid_gid(&uid, &gid);
4449 audit_log(current->audit_context, GFP_ATOMIC,
4450 AUDIT_ANOM_PROMISCUOUS,
4451 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4452 dev->name, (dev->flags & IFF_PROMISC),
4453 (old_flags & IFF_PROMISC),
4454 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4455 from_kuid(&init_user_ns, uid),
4456 from_kgid(&init_user_ns, gid),
4457 audit_get_sessionid(current));
4458 }
4459
4460 dev_change_rx_flags(dev, IFF_PROMISC);
4461 }
4462 return 0;
4463 }
4464
4465 /**
4466 * dev_set_promiscuity - update promiscuity count on a device
4467 * @dev: device
4468 * @inc: modifier
4469 *
4470 * Add or remove promiscuity from a device. While the count in the device
4471 * remains above zero the interface remains promiscuous. Once it hits zero
4472 * the device reverts back to normal filtering operation. A negative inc
4473 * value is used to drop promiscuity on the device.
4474 * Return 0 if successful or a negative errno code on error.
4475 */
4476 int dev_set_promiscuity(struct net_device *dev, int inc)
4477 {
4478 unsigned int old_flags = dev->flags;
4479 int err;
4480
4481 err = __dev_set_promiscuity(dev, inc);
4482 if (err < 0)
4483 return err;
4484 if (dev->flags != old_flags)
4485 dev_set_rx_mode(dev);
4486 return err;
4487 }
4488 EXPORT_SYMBOL(dev_set_promiscuity);
4489
4490 /**
4491 * dev_set_allmulti - update allmulti count on a device
4492 * @dev: device
4493 * @inc: modifier
4494 *
4495 * Add or remove reception of all multicast frames to a device. While the
4496 * count in the device remains above zero the interface remains listening
4497 * to all interfaces. Once it hits zero the device reverts back to normal
4498 * filtering operation. A negative @inc value is used to drop the counter
4499 * when releasing a resource needing all multicasts.
4500 * Return 0 if successful or a negative errno code on error.
4501 */
4502
4503 int dev_set_allmulti(struct net_device *dev, int inc)
4504 {
4505 unsigned int old_flags = dev->flags;
4506
4507 ASSERT_RTNL();
4508
4509 dev->flags |= IFF_ALLMULTI;
4510 dev->allmulti += inc;
4511 if (dev->allmulti == 0) {
4512 /*
4513 * Avoid overflow.
4514 * If inc causes overflow, untouch allmulti and return error.
4515 */
4516 if (inc < 0)
4517 dev->flags &= ~IFF_ALLMULTI;
4518 else {
4519 dev->allmulti -= inc;
4520 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4521 dev->name);
4522 return -EOVERFLOW;
4523 }
4524 }
4525 if (dev->flags ^ old_flags) {
4526 dev_change_rx_flags(dev, IFF_ALLMULTI);
4527 dev_set_rx_mode(dev);
4528 }
4529 return 0;
4530 }
4531 EXPORT_SYMBOL(dev_set_allmulti);
4532
4533 /*
4534 * Upload unicast and multicast address lists to device and
4535 * configure RX filtering. When the device doesn't support unicast
4536 * filtering it is put in promiscuous mode while unicast addresses
4537 * are present.
4538 */
4539 void __dev_set_rx_mode(struct net_device *dev)
4540 {
4541 const struct net_device_ops *ops = dev->netdev_ops;
4542
4543 /* dev_open will call this function so the list will stay sane. */
4544 if (!(dev->flags&IFF_UP))
4545 return;
4546
4547 if (!netif_device_present(dev))
4548 return;
4549
4550 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4551 /* Unicast addresses changes may only happen under the rtnl,
4552 * therefore calling __dev_set_promiscuity here is safe.
4553 */
4554 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4555 __dev_set_promiscuity(dev, 1);
4556 dev->uc_promisc = true;
4557 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4558 __dev_set_promiscuity(dev, -1);
4559 dev->uc_promisc = false;
4560 }
4561 }
4562
4563 if (ops->ndo_set_rx_mode)
4564 ops->ndo_set_rx_mode(dev);
4565 }
4566
4567 void dev_set_rx_mode(struct net_device *dev)
4568 {
4569 netif_addr_lock_bh(dev);
4570 __dev_set_rx_mode(dev);
4571 netif_addr_unlock_bh(dev);
4572 }
4573
4574 /**
4575 * dev_get_flags - get flags reported to userspace
4576 * @dev: device
4577 *
4578 * Get the combination of flag bits exported through APIs to userspace.
4579 */
4580 unsigned int dev_get_flags(const struct net_device *dev)
4581 {
4582 unsigned int flags;
4583
4584 flags = (dev->flags & ~(IFF_PROMISC |
4585 IFF_ALLMULTI |
4586 IFF_RUNNING |
4587 IFF_LOWER_UP |
4588 IFF_DORMANT)) |
4589 (dev->gflags & (IFF_PROMISC |
4590 IFF_ALLMULTI));
4591
4592 if (netif_running(dev)) {
4593 if (netif_oper_up(dev))
4594 flags |= IFF_RUNNING;
4595 if (netif_carrier_ok(dev))
4596 flags |= IFF_LOWER_UP;
4597 if (netif_dormant(dev))
4598 flags |= IFF_DORMANT;
4599 }
4600
4601 return flags;
4602 }
4603 EXPORT_SYMBOL(dev_get_flags);
4604
4605 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4606 {
4607 unsigned int old_flags = dev->flags;
4608 int ret;
4609
4610 ASSERT_RTNL();
4611
4612 /*
4613 * Set the flags on our device.
4614 */
4615
4616 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4617 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4618 IFF_AUTOMEDIA)) |
4619 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4620 IFF_ALLMULTI));
4621
4622 /*
4623 * Load in the correct multicast list now the flags have changed.
4624 */
4625
4626 if ((old_flags ^ flags) & IFF_MULTICAST)
4627 dev_change_rx_flags(dev, IFF_MULTICAST);
4628
4629 dev_set_rx_mode(dev);
4630
4631 /*
4632 * Have we downed the interface. We handle IFF_UP ourselves
4633 * according to user attempts to set it, rather than blindly
4634 * setting it.
4635 */
4636
4637 ret = 0;
4638 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4639 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4640
4641 if (!ret)
4642 dev_set_rx_mode(dev);
4643 }
4644
4645 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4646 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4647
4648 dev->gflags ^= IFF_PROMISC;
4649 dev_set_promiscuity(dev, inc);
4650 }
4651
4652 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4653 is important. Some (broken) drivers set IFF_PROMISC, when
4654 IFF_ALLMULTI is requested not asking us and not reporting.
4655 */
4656 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4657 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4658
4659 dev->gflags ^= IFF_ALLMULTI;
4660 dev_set_allmulti(dev, inc);
4661 }
4662
4663 return ret;
4664 }
4665
4666 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4667 {
4668 unsigned int changes = dev->flags ^ old_flags;
4669
4670 if (changes & IFF_UP) {
4671 if (dev->flags & IFF_UP)
4672 call_netdevice_notifiers(NETDEV_UP, dev);
4673 else
4674 call_netdevice_notifiers(NETDEV_DOWN, dev);
4675 }
4676
4677 if (dev->flags & IFF_UP &&
4678 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4679 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4680 }
4681
4682 /**
4683 * dev_change_flags - change device settings
4684 * @dev: device
4685 * @flags: device state flags
4686 *
4687 * Change settings on device based state flags. The flags are
4688 * in the userspace exported format.
4689 */
4690 int dev_change_flags(struct net_device *dev, unsigned int flags)
4691 {
4692 int ret;
4693 unsigned int changes, old_flags = dev->flags;
4694
4695 ret = __dev_change_flags(dev, flags);
4696 if (ret < 0)
4697 return ret;
4698
4699 changes = old_flags ^ dev->flags;
4700 if (changes)
4701 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4702
4703 __dev_notify_flags(dev, old_flags);
4704 return ret;
4705 }
4706 EXPORT_SYMBOL(dev_change_flags);
4707
4708 /**
4709 * dev_set_mtu - Change maximum transfer unit
4710 * @dev: device
4711 * @new_mtu: new transfer unit
4712 *
4713 * Change the maximum transfer size of the network device.
4714 */
4715 int dev_set_mtu(struct net_device *dev, int new_mtu)
4716 {
4717 const struct net_device_ops *ops = dev->netdev_ops;
4718 int err;
4719
4720 if (new_mtu == dev->mtu)
4721 return 0;
4722
4723 /* MTU must be positive. */
4724 if (new_mtu < 0)
4725 return -EINVAL;
4726
4727 if (!netif_device_present(dev))
4728 return -ENODEV;
4729
4730 err = 0;
4731 if (ops->ndo_change_mtu)
4732 err = ops->ndo_change_mtu(dev, new_mtu);
4733 else
4734 dev->mtu = new_mtu;
4735
4736 if (!err)
4737 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4738 return err;
4739 }
4740 EXPORT_SYMBOL(dev_set_mtu);
4741
4742 /**
4743 * dev_set_group - Change group this device belongs to
4744 * @dev: device
4745 * @new_group: group this device should belong to
4746 */
4747 void dev_set_group(struct net_device *dev, int new_group)
4748 {
4749 dev->group = new_group;
4750 }
4751 EXPORT_SYMBOL(dev_set_group);
4752
4753 /**
4754 * dev_set_mac_address - Change Media Access Control Address
4755 * @dev: device
4756 * @sa: new address
4757 *
4758 * Change the hardware (MAC) address of the device
4759 */
4760 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4761 {
4762 const struct net_device_ops *ops = dev->netdev_ops;
4763 int err;
4764
4765 if (!ops->ndo_set_mac_address)
4766 return -EOPNOTSUPP;
4767 if (sa->sa_family != dev->type)
4768 return -EINVAL;
4769 if (!netif_device_present(dev))
4770 return -ENODEV;
4771 err = ops->ndo_set_mac_address(dev, sa);
4772 if (err)
4773 return err;
4774 dev->addr_assign_type = NET_ADDR_SET;
4775 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4776 add_device_randomness(dev->dev_addr, dev->addr_len);
4777 return 0;
4778 }
4779 EXPORT_SYMBOL(dev_set_mac_address);
4780
4781 /**
4782 * dev_change_carrier - Change device carrier
4783 * @dev: device
4784 * @new_carrier: new value
4785 *
4786 * Change device carrier
4787 */
4788 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4789 {
4790 const struct net_device_ops *ops = dev->netdev_ops;
4791
4792 if (!ops->ndo_change_carrier)
4793 return -EOPNOTSUPP;
4794 if (!netif_device_present(dev))
4795 return -ENODEV;
4796 return ops->ndo_change_carrier(dev, new_carrier);
4797 }
4798 EXPORT_SYMBOL(dev_change_carrier);
4799
4800 /**
4801 * dev_new_index - allocate an ifindex
4802 * @net: the applicable net namespace
4803 *
4804 * Returns a suitable unique value for a new device interface
4805 * number. The caller must hold the rtnl semaphore or the
4806 * dev_base_lock to be sure it remains unique.
4807 */
4808 static int dev_new_index(struct net *net)
4809 {
4810 int ifindex = net->ifindex;
4811 for (;;) {
4812 if (++ifindex <= 0)
4813 ifindex = 1;
4814 if (!__dev_get_by_index(net, ifindex))
4815 return net->ifindex = ifindex;
4816 }
4817 }
4818
4819 /* Delayed registration/unregisteration */
4820 static LIST_HEAD(net_todo_list);
4821
4822 static void net_set_todo(struct net_device *dev)
4823 {
4824 list_add_tail(&dev->todo_list, &net_todo_list);
4825 }
4826
4827 static void rollback_registered_many(struct list_head *head)
4828 {
4829 struct net_device *dev, *tmp;
4830
4831 BUG_ON(dev_boot_phase);
4832 ASSERT_RTNL();
4833
4834 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4835 /* Some devices call without registering
4836 * for initialization unwind. Remove those
4837 * devices and proceed with the remaining.
4838 */
4839 if (dev->reg_state == NETREG_UNINITIALIZED) {
4840 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4841 dev->name, dev);
4842
4843 WARN_ON(1);
4844 list_del(&dev->unreg_list);
4845 continue;
4846 }
4847 dev->dismantle = true;
4848 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4849 }
4850
4851 /* If device is running, close it first. */
4852 dev_close_many(head);
4853
4854 list_for_each_entry(dev, head, unreg_list) {
4855 /* And unlink it from device chain. */
4856 unlist_netdevice(dev);
4857
4858 dev->reg_state = NETREG_UNREGISTERING;
4859 }
4860
4861 synchronize_net();
4862
4863 list_for_each_entry(dev, head, unreg_list) {
4864 /* Shutdown queueing discipline. */
4865 dev_shutdown(dev);
4866
4867
4868 /* Notify protocols, that we are about to destroy
4869 this device. They should clean all the things.
4870 */
4871 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4872
4873 if (!dev->rtnl_link_ops ||
4874 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4875 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4876
4877 /*
4878 * Flush the unicast and multicast chains
4879 */
4880 dev_uc_flush(dev);
4881 dev_mc_flush(dev);
4882
4883 if (dev->netdev_ops->ndo_uninit)
4884 dev->netdev_ops->ndo_uninit(dev);
4885
4886 /* Notifier chain MUST detach us all upper devices. */
4887 WARN_ON(netdev_has_any_upper_dev(dev));
4888
4889 /* Remove entries from kobject tree */
4890 netdev_unregister_kobject(dev);
4891 #ifdef CONFIG_XPS
4892 /* Remove XPS queueing entries */
4893 netif_reset_xps_queues_gt(dev, 0);
4894 #endif
4895 }
4896
4897 synchronize_net();
4898
4899 list_for_each_entry(dev, head, unreg_list)
4900 dev_put(dev);
4901 }
4902
4903 static void rollback_registered(struct net_device *dev)
4904 {
4905 LIST_HEAD(single);
4906
4907 list_add(&dev->unreg_list, &single);
4908 rollback_registered_many(&single);
4909 list_del(&single);
4910 }
4911
4912 static netdev_features_t netdev_fix_features(struct net_device *dev,
4913 netdev_features_t features)
4914 {
4915 /* Fix illegal checksum combinations */
4916 if ((features & NETIF_F_HW_CSUM) &&
4917 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4918 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4919 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4920 }
4921
4922 /* Fix illegal SG+CSUM combinations. */
4923 if ((features & NETIF_F_SG) &&
4924 !(features & NETIF_F_ALL_CSUM)) {
4925 netdev_dbg(dev,
4926 "Dropping NETIF_F_SG since no checksum feature.\n");
4927 features &= ~NETIF_F_SG;
4928 }
4929
4930 /* TSO requires that SG is present as well. */
4931 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4932 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4933 features &= ~NETIF_F_ALL_TSO;
4934 }
4935
4936 /* TSO ECN requires that TSO is present as well. */
4937 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4938 features &= ~NETIF_F_TSO_ECN;
4939
4940 /* Software GSO depends on SG. */
4941 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4942 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4943 features &= ~NETIF_F_GSO;
4944 }
4945
4946 /* UFO needs SG and checksumming */
4947 if (features & NETIF_F_UFO) {
4948 /* maybe split UFO into V4 and V6? */
4949 if (!((features & NETIF_F_GEN_CSUM) ||
4950 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4951 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4952 netdev_dbg(dev,
4953 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4954 features &= ~NETIF_F_UFO;
4955 }
4956
4957 if (!(features & NETIF_F_SG)) {
4958 netdev_dbg(dev,
4959 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4960 features &= ~NETIF_F_UFO;
4961 }
4962 }
4963
4964 return features;
4965 }
4966
4967 int __netdev_update_features(struct net_device *dev)
4968 {
4969 netdev_features_t features;
4970 int err = 0;
4971
4972 ASSERT_RTNL();
4973
4974 features = netdev_get_wanted_features(dev);
4975
4976 if (dev->netdev_ops->ndo_fix_features)
4977 features = dev->netdev_ops->ndo_fix_features(dev, features);
4978
4979 /* driver might be less strict about feature dependencies */
4980 features = netdev_fix_features(dev, features);
4981
4982 if (dev->features == features)
4983 return 0;
4984
4985 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4986 &dev->features, &features);
4987
4988 if (dev->netdev_ops->ndo_set_features)
4989 err = dev->netdev_ops->ndo_set_features(dev, features);
4990
4991 if (unlikely(err < 0)) {
4992 netdev_err(dev,
4993 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4994 err, &features, &dev->features);
4995 return -1;
4996 }
4997
4998 if (!err)
4999 dev->features = features;
5000
5001 return 1;
5002 }
5003
5004 /**
5005 * netdev_update_features - recalculate device features
5006 * @dev: the device to check
5007 *
5008 * Recalculate dev->features set and send notifications if it
5009 * has changed. Should be called after driver or hardware dependent
5010 * conditions might have changed that influence the features.
5011 */
5012 void netdev_update_features(struct net_device *dev)
5013 {
5014 if (__netdev_update_features(dev))
5015 netdev_features_change(dev);
5016 }
5017 EXPORT_SYMBOL(netdev_update_features);
5018
5019 /**
5020 * netdev_change_features - recalculate device features
5021 * @dev: the device to check
5022 *
5023 * Recalculate dev->features set and send notifications even
5024 * if they have not changed. Should be called instead of
5025 * netdev_update_features() if also dev->vlan_features might
5026 * have changed to allow the changes to be propagated to stacked
5027 * VLAN devices.
5028 */
5029 void netdev_change_features(struct net_device *dev)
5030 {
5031 __netdev_update_features(dev);
5032 netdev_features_change(dev);
5033 }
5034 EXPORT_SYMBOL(netdev_change_features);
5035
5036 /**
5037 * netif_stacked_transfer_operstate - transfer operstate
5038 * @rootdev: the root or lower level device to transfer state from
5039 * @dev: the device to transfer operstate to
5040 *
5041 * Transfer operational state from root to device. This is normally
5042 * called when a stacking relationship exists between the root
5043 * device and the device(a leaf device).
5044 */
5045 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5046 struct net_device *dev)
5047 {
5048 if (rootdev->operstate == IF_OPER_DORMANT)
5049 netif_dormant_on(dev);
5050 else
5051 netif_dormant_off(dev);
5052
5053 if (netif_carrier_ok(rootdev)) {
5054 if (!netif_carrier_ok(dev))
5055 netif_carrier_on(dev);
5056 } else {
5057 if (netif_carrier_ok(dev))
5058 netif_carrier_off(dev);
5059 }
5060 }
5061 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5062
5063 #ifdef CONFIG_RPS
5064 static int netif_alloc_rx_queues(struct net_device *dev)
5065 {
5066 unsigned int i, count = dev->num_rx_queues;
5067 struct netdev_rx_queue *rx;
5068
5069 BUG_ON(count < 1);
5070
5071 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5072 if (!rx)
5073 return -ENOMEM;
5074
5075 dev->_rx = rx;
5076
5077 for (i = 0; i < count; i++)
5078 rx[i].dev = dev;
5079 return 0;
5080 }
5081 #endif
5082
5083 static void netdev_init_one_queue(struct net_device *dev,
5084 struct netdev_queue *queue, void *_unused)
5085 {
5086 /* Initialize queue lock */
5087 spin_lock_init(&queue->_xmit_lock);
5088 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5089 queue->xmit_lock_owner = -1;
5090 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5091 queue->dev = dev;
5092 #ifdef CONFIG_BQL
5093 dql_init(&queue->dql, HZ);
5094 #endif
5095 }
5096
5097 static int netif_alloc_netdev_queues(struct net_device *dev)
5098 {
5099 unsigned int count = dev->num_tx_queues;
5100 struct netdev_queue *tx;
5101
5102 BUG_ON(count < 1);
5103
5104 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5105 if (!tx)
5106 return -ENOMEM;
5107
5108 dev->_tx = tx;
5109
5110 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5111 spin_lock_init(&dev->tx_global_lock);
5112
5113 return 0;
5114 }
5115
5116 /**
5117 * register_netdevice - register a network device
5118 * @dev: device to register
5119 *
5120 * Take a completed network device structure and add it to the kernel
5121 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5122 * chain. 0 is returned on success. A negative errno code is returned
5123 * on a failure to set up the device, or if the name is a duplicate.
5124 *
5125 * Callers must hold the rtnl semaphore. You may want
5126 * register_netdev() instead of this.
5127 *
5128 * BUGS:
5129 * The locking appears insufficient to guarantee two parallel registers
5130 * will not get the same name.
5131 */
5132
5133 int register_netdevice(struct net_device *dev)
5134 {
5135 int ret;
5136 struct net *net = dev_net(dev);
5137
5138 BUG_ON(dev_boot_phase);
5139 ASSERT_RTNL();
5140
5141 might_sleep();
5142
5143 /* When net_device's are persistent, this will be fatal. */
5144 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5145 BUG_ON(!net);
5146
5147 spin_lock_init(&dev->addr_list_lock);
5148 netdev_set_addr_lockdep_class(dev);
5149
5150 dev->iflink = -1;
5151
5152 ret = dev_get_valid_name(net, dev, dev->name);
5153 if (ret < 0)
5154 goto out;
5155
5156 /* Init, if this function is available */
5157 if (dev->netdev_ops->ndo_init) {
5158 ret = dev->netdev_ops->ndo_init(dev);
5159 if (ret) {
5160 if (ret > 0)
5161 ret = -EIO;
5162 goto out;
5163 }
5164 }
5165
5166 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5167 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5168 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5169 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5170 ret = -EINVAL;
5171 goto err_uninit;
5172 }
5173
5174 ret = -EBUSY;
5175 if (!dev->ifindex)
5176 dev->ifindex = dev_new_index(net);
5177 else if (__dev_get_by_index(net, dev->ifindex))
5178 goto err_uninit;
5179
5180 if (dev->iflink == -1)
5181 dev->iflink = dev->ifindex;
5182
5183 /* Transfer changeable features to wanted_features and enable
5184 * software offloads (GSO and GRO).
5185 */
5186 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5187 dev->features |= NETIF_F_SOFT_FEATURES;
5188 dev->wanted_features = dev->features & dev->hw_features;
5189
5190 /* Turn on no cache copy if HW is doing checksum */
5191 if (!(dev->flags & IFF_LOOPBACK)) {
5192 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5193 if (dev->features & NETIF_F_ALL_CSUM) {
5194 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5195 dev->features |= NETIF_F_NOCACHE_COPY;
5196 }
5197 }
5198
5199 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5200 */
5201 dev->vlan_features |= NETIF_F_HIGHDMA;
5202
5203 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5204 ret = notifier_to_errno(ret);
5205 if (ret)
5206 goto err_uninit;
5207
5208 ret = netdev_register_kobject(dev);
5209 if (ret)
5210 goto err_uninit;
5211 dev->reg_state = NETREG_REGISTERED;
5212
5213 __netdev_update_features(dev);
5214
5215 /*
5216 * Default initial state at registry is that the
5217 * device is present.
5218 */
5219
5220 set_bit(__LINK_STATE_PRESENT, &dev->state);
5221
5222 linkwatch_init_dev(dev);
5223
5224 dev_init_scheduler(dev);
5225 dev_hold(dev);
5226 list_netdevice(dev);
5227 add_device_randomness(dev->dev_addr, dev->addr_len);
5228
5229 /* If the device has permanent device address, driver should
5230 * set dev_addr and also addr_assign_type should be set to
5231 * NET_ADDR_PERM (default value).
5232 */
5233 if (dev->addr_assign_type == NET_ADDR_PERM)
5234 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5235
5236 /* Notify protocols, that a new device appeared. */
5237 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5238 ret = notifier_to_errno(ret);
5239 if (ret) {
5240 rollback_registered(dev);
5241 dev->reg_state = NETREG_UNREGISTERED;
5242 }
5243 /*
5244 * Prevent userspace races by waiting until the network
5245 * device is fully setup before sending notifications.
5246 */
5247 if (!dev->rtnl_link_ops ||
5248 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5249 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5250
5251 out:
5252 return ret;
5253
5254 err_uninit:
5255 if (dev->netdev_ops->ndo_uninit)
5256 dev->netdev_ops->ndo_uninit(dev);
5257 goto out;
5258 }
5259 EXPORT_SYMBOL(register_netdevice);
5260
5261 /**
5262 * init_dummy_netdev - init a dummy network device for NAPI
5263 * @dev: device to init
5264 *
5265 * This takes a network device structure and initialize the minimum
5266 * amount of fields so it can be used to schedule NAPI polls without
5267 * registering a full blown interface. This is to be used by drivers
5268 * that need to tie several hardware interfaces to a single NAPI
5269 * poll scheduler due to HW limitations.
5270 */
5271 int init_dummy_netdev(struct net_device *dev)
5272 {
5273 /* Clear everything. Note we don't initialize spinlocks
5274 * are they aren't supposed to be taken by any of the
5275 * NAPI code and this dummy netdev is supposed to be
5276 * only ever used for NAPI polls
5277 */
5278 memset(dev, 0, sizeof(struct net_device));
5279
5280 /* make sure we BUG if trying to hit standard
5281 * register/unregister code path
5282 */
5283 dev->reg_state = NETREG_DUMMY;
5284
5285 /* NAPI wants this */
5286 INIT_LIST_HEAD(&dev->napi_list);
5287
5288 /* a dummy interface is started by default */
5289 set_bit(__LINK_STATE_PRESENT, &dev->state);
5290 set_bit(__LINK_STATE_START, &dev->state);
5291
5292 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5293 * because users of this 'device' dont need to change
5294 * its refcount.
5295 */
5296
5297 return 0;
5298 }
5299 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5300
5301
5302 /**
5303 * register_netdev - register a network device
5304 * @dev: device to register
5305 *
5306 * Take a completed network device structure and add it to the kernel
5307 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5308 * chain. 0 is returned on success. A negative errno code is returned
5309 * on a failure to set up the device, or if the name is a duplicate.
5310 *
5311 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5312 * and expands the device name if you passed a format string to
5313 * alloc_netdev.
5314 */
5315 int register_netdev(struct net_device *dev)
5316 {
5317 int err;
5318
5319 rtnl_lock();
5320 err = register_netdevice(dev);
5321 rtnl_unlock();
5322 return err;
5323 }
5324 EXPORT_SYMBOL(register_netdev);
5325
5326 int netdev_refcnt_read(const struct net_device *dev)
5327 {
5328 int i, refcnt = 0;
5329
5330 for_each_possible_cpu(i)
5331 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5332 return refcnt;
5333 }
5334 EXPORT_SYMBOL(netdev_refcnt_read);
5335
5336 /**
5337 * netdev_wait_allrefs - wait until all references are gone.
5338 * @dev: target net_device
5339 *
5340 * This is called when unregistering network devices.
5341 *
5342 * Any protocol or device that holds a reference should register
5343 * for netdevice notification, and cleanup and put back the
5344 * reference if they receive an UNREGISTER event.
5345 * We can get stuck here if buggy protocols don't correctly
5346 * call dev_put.
5347 */
5348 static void netdev_wait_allrefs(struct net_device *dev)
5349 {
5350 unsigned long rebroadcast_time, warning_time;
5351 int refcnt;
5352
5353 linkwatch_forget_dev(dev);
5354
5355 rebroadcast_time = warning_time = jiffies;
5356 refcnt = netdev_refcnt_read(dev);
5357
5358 while (refcnt != 0) {
5359 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5360 rtnl_lock();
5361
5362 /* Rebroadcast unregister notification */
5363 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5364
5365 __rtnl_unlock();
5366 rcu_barrier();
5367 rtnl_lock();
5368
5369 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5370 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5371 &dev->state)) {
5372 /* We must not have linkwatch events
5373 * pending on unregister. If this
5374 * happens, we simply run the queue
5375 * unscheduled, resulting in a noop
5376 * for this device.
5377 */
5378 linkwatch_run_queue();
5379 }
5380
5381 __rtnl_unlock();
5382
5383 rebroadcast_time = jiffies;
5384 }
5385
5386 msleep(250);
5387
5388 refcnt = netdev_refcnt_read(dev);
5389
5390 if (time_after(jiffies, warning_time + 10 * HZ)) {
5391 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5392 dev->name, refcnt);
5393 warning_time = jiffies;
5394 }
5395 }
5396 }
5397
5398 /* The sequence is:
5399 *
5400 * rtnl_lock();
5401 * ...
5402 * register_netdevice(x1);
5403 * register_netdevice(x2);
5404 * ...
5405 * unregister_netdevice(y1);
5406 * unregister_netdevice(y2);
5407 * ...
5408 * rtnl_unlock();
5409 * free_netdev(y1);
5410 * free_netdev(y2);
5411 *
5412 * We are invoked by rtnl_unlock().
5413 * This allows us to deal with problems:
5414 * 1) We can delete sysfs objects which invoke hotplug
5415 * without deadlocking with linkwatch via keventd.
5416 * 2) Since we run with the RTNL semaphore not held, we can sleep
5417 * safely in order to wait for the netdev refcnt to drop to zero.
5418 *
5419 * We must not return until all unregister events added during
5420 * the interval the lock was held have been completed.
5421 */
5422 void netdev_run_todo(void)
5423 {
5424 struct list_head list;
5425
5426 /* Snapshot list, allow later requests */
5427 list_replace_init(&net_todo_list, &list);
5428
5429 __rtnl_unlock();
5430
5431
5432 /* Wait for rcu callbacks to finish before next phase */
5433 if (!list_empty(&list))
5434 rcu_barrier();
5435
5436 while (!list_empty(&list)) {
5437 struct net_device *dev
5438 = list_first_entry(&list, struct net_device, todo_list);
5439 list_del(&dev->todo_list);
5440
5441 rtnl_lock();
5442 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5443 __rtnl_unlock();
5444
5445 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5446 pr_err("network todo '%s' but state %d\n",
5447 dev->name, dev->reg_state);
5448 dump_stack();
5449 continue;
5450 }
5451
5452 dev->reg_state = NETREG_UNREGISTERED;
5453
5454 on_each_cpu(flush_backlog, dev, 1);
5455
5456 netdev_wait_allrefs(dev);
5457
5458 /* paranoia */
5459 BUG_ON(netdev_refcnt_read(dev));
5460 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5461 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5462 WARN_ON(dev->dn_ptr);
5463
5464 if (dev->destructor)
5465 dev->destructor(dev);
5466
5467 /* Free network device */
5468 kobject_put(&dev->dev.kobj);
5469 }
5470 }
5471
5472 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5473 * fields in the same order, with only the type differing.
5474 */
5475 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5476 const struct net_device_stats *netdev_stats)
5477 {
5478 #if BITS_PER_LONG == 64
5479 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5480 memcpy(stats64, netdev_stats, sizeof(*stats64));
5481 #else
5482 size_t i, n = sizeof(*stats64) / sizeof(u64);
5483 const unsigned long *src = (const unsigned long *)netdev_stats;
5484 u64 *dst = (u64 *)stats64;
5485
5486 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5487 sizeof(*stats64) / sizeof(u64));
5488 for (i = 0; i < n; i++)
5489 dst[i] = src[i];
5490 #endif
5491 }
5492 EXPORT_SYMBOL(netdev_stats_to_stats64);
5493
5494 /**
5495 * dev_get_stats - get network device statistics
5496 * @dev: device to get statistics from
5497 * @storage: place to store stats
5498 *
5499 * Get network statistics from device. Return @storage.
5500 * The device driver may provide its own method by setting
5501 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5502 * otherwise the internal statistics structure is used.
5503 */
5504 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5505 struct rtnl_link_stats64 *storage)
5506 {
5507 const struct net_device_ops *ops = dev->netdev_ops;
5508
5509 if (ops->ndo_get_stats64) {
5510 memset(storage, 0, sizeof(*storage));
5511 ops->ndo_get_stats64(dev, storage);
5512 } else if (ops->ndo_get_stats) {
5513 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5514 } else {
5515 netdev_stats_to_stats64(storage, &dev->stats);
5516 }
5517 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5518 return storage;
5519 }
5520 EXPORT_SYMBOL(dev_get_stats);
5521
5522 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5523 {
5524 struct netdev_queue *queue = dev_ingress_queue(dev);
5525
5526 #ifdef CONFIG_NET_CLS_ACT
5527 if (queue)
5528 return queue;
5529 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5530 if (!queue)
5531 return NULL;
5532 netdev_init_one_queue(dev, queue, NULL);
5533 queue->qdisc = &noop_qdisc;
5534 queue->qdisc_sleeping = &noop_qdisc;
5535 rcu_assign_pointer(dev->ingress_queue, queue);
5536 #endif
5537 return queue;
5538 }
5539
5540 static const struct ethtool_ops default_ethtool_ops;
5541
5542 void netdev_set_default_ethtool_ops(struct net_device *dev,
5543 const struct ethtool_ops *ops)
5544 {
5545 if (dev->ethtool_ops == &default_ethtool_ops)
5546 dev->ethtool_ops = ops;
5547 }
5548 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5549
5550 /**
5551 * alloc_netdev_mqs - allocate network device
5552 * @sizeof_priv: size of private data to allocate space for
5553 * @name: device name format string
5554 * @setup: callback to initialize device
5555 * @txqs: the number of TX subqueues to allocate
5556 * @rxqs: the number of RX subqueues to allocate
5557 *
5558 * Allocates a struct net_device with private data area for driver use
5559 * and performs basic initialization. Also allocates subquue structs
5560 * for each queue on the device.
5561 */
5562 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5563 void (*setup)(struct net_device *),
5564 unsigned int txqs, unsigned int rxqs)
5565 {
5566 struct net_device *dev;
5567 size_t alloc_size;
5568 struct net_device *p;
5569
5570 BUG_ON(strlen(name) >= sizeof(dev->name));
5571
5572 if (txqs < 1) {
5573 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5574 return NULL;
5575 }
5576
5577 #ifdef CONFIG_RPS
5578 if (rxqs < 1) {
5579 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5580 return NULL;
5581 }
5582 #endif
5583
5584 alloc_size = sizeof(struct net_device);
5585 if (sizeof_priv) {
5586 /* ensure 32-byte alignment of private area */
5587 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5588 alloc_size += sizeof_priv;
5589 }
5590 /* ensure 32-byte alignment of whole construct */
5591 alloc_size += NETDEV_ALIGN - 1;
5592
5593 p = kzalloc(alloc_size, GFP_KERNEL);
5594 if (!p)
5595 return NULL;
5596
5597 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5598 dev->padded = (char *)dev - (char *)p;
5599
5600 dev->pcpu_refcnt = alloc_percpu(int);
5601 if (!dev->pcpu_refcnt)
5602 goto free_p;
5603
5604 if (dev_addr_init(dev))
5605 goto free_pcpu;
5606
5607 dev_mc_init(dev);
5608 dev_uc_init(dev);
5609
5610 dev_net_set(dev, &init_net);
5611
5612 dev->gso_max_size = GSO_MAX_SIZE;
5613 dev->gso_max_segs = GSO_MAX_SEGS;
5614
5615 INIT_LIST_HEAD(&dev->napi_list);
5616 INIT_LIST_HEAD(&dev->unreg_list);
5617 INIT_LIST_HEAD(&dev->link_watch_list);
5618 INIT_LIST_HEAD(&dev->upper_dev_list);
5619 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5620 setup(dev);
5621
5622 dev->num_tx_queues = txqs;
5623 dev->real_num_tx_queues = txqs;
5624 if (netif_alloc_netdev_queues(dev))
5625 goto free_all;
5626
5627 #ifdef CONFIG_RPS
5628 dev->num_rx_queues = rxqs;
5629 dev->real_num_rx_queues = rxqs;
5630 if (netif_alloc_rx_queues(dev))
5631 goto free_all;
5632 #endif
5633
5634 strcpy(dev->name, name);
5635 dev->group = INIT_NETDEV_GROUP;
5636 if (!dev->ethtool_ops)
5637 dev->ethtool_ops = &default_ethtool_ops;
5638 return dev;
5639
5640 free_all:
5641 free_netdev(dev);
5642 return NULL;
5643
5644 free_pcpu:
5645 free_percpu(dev->pcpu_refcnt);
5646 kfree(dev->_tx);
5647 #ifdef CONFIG_RPS
5648 kfree(dev->_rx);
5649 #endif
5650
5651 free_p:
5652 kfree(p);
5653 return NULL;
5654 }
5655 EXPORT_SYMBOL(alloc_netdev_mqs);
5656
5657 /**
5658 * free_netdev - free network device
5659 * @dev: device
5660 *
5661 * This function does the last stage of destroying an allocated device
5662 * interface. The reference to the device object is released.
5663 * If this is the last reference then it will be freed.
5664 */
5665 void free_netdev(struct net_device *dev)
5666 {
5667 struct napi_struct *p, *n;
5668
5669 release_net(dev_net(dev));
5670
5671 kfree(dev->_tx);
5672 #ifdef CONFIG_RPS
5673 kfree(dev->_rx);
5674 #endif
5675
5676 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5677
5678 /* Flush device addresses */
5679 dev_addr_flush(dev);
5680
5681 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5682 netif_napi_del(p);
5683
5684 free_percpu(dev->pcpu_refcnt);
5685 dev->pcpu_refcnt = NULL;
5686
5687 /* Compatibility with error handling in drivers */
5688 if (dev->reg_state == NETREG_UNINITIALIZED) {
5689 kfree((char *)dev - dev->padded);
5690 return;
5691 }
5692
5693 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5694 dev->reg_state = NETREG_RELEASED;
5695
5696 /* will free via device release */
5697 put_device(&dev->dev);
5698 }
5699 EXPORT_SYMBOL(free_netdev);
5700
5701 /**
5702 * synchronize_net - Synchronize with packet receive processing
5703 *
5704 * Wait for packets currently being received to be done.
5705 * Does not block later packets from starting.
5706 */
5707 void synchronize_net(void)
5708 {
5709 might_sleep();
5710 if (rtnl_is_locked())
5711 synchronize_rcu_expedited();
5712 else
5713 synchronize_rcu();
5714 }
5715 EXPORT_SYMBOL(synchronize_net);
5716
5717 /**
5718 * unregister_netdevice_queue - remove device from the kernel
5719 * @dev: device
5720 * @head: list
5721 *
5722 * This function shuts down a device interface and removes it
5723 * from the kernel tables.
5724 * If head not NULL, device is queued to be unregistered later.
5725 *
5726 * Callers must hold the rtnl semaphore. You may want
5727 * unregister_netdev() instead of this.
5728 */
5729
5730 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5731 {
5732 ASSERT_RTNL();
5733
5734 if (head) {
5735 list_move_tail(&dev->unreg_list, head);
5736 } else {
5737 rollback_registered(dev);
5738 /* Finish processing unregister after unlock */
5739 net_set_todo(dev);
5740 }
5741 }
5742 EXPORT_SYMBOL(unregister_netdevice_queue);
5743
5744 /**
5745 * unregister_netdevice_many - unregister many devices
5746 * @head: list of devices
5747 */
5748 void unregister_netdevice_many(struct list_head *head)
5749 {
5750 struct net_device *dev;
5751
5752 if (!list_empty(head)) {
5753 rollback_registered_many(head);
5754 list_for_each_entry(dev, head, unreg_list)
5755 net_set_todo(dev);
5756 }
5757 }
5758 EXPORT_SYMBOL(unregister_netdevice_many);
5759
5760 /**
5761 * unregister_netdev - remove device from the kernel
5762 * @dev: device
5763 *
5764 * This function shuts down a device interface and removes it
5765 * from the kernel tables.
5766 *
5767 * This is just a wrapper for unregister_netdevice that takes
5768 * the rtnl semaphore. In general you want to use this and not
5769 * unregister_netdevice.
5770 */
5771 void unregister_netdev(struct net_device *dev)
5772 {
5773 rtnl_lock();
5774 unregister_netdevice(dev);
5775 rtnl_unlock();
5776 }
5777 EXPORT_SYMBOL(unregister_netdev);
5778
5779 /**
5780 * dev_change_net_namespace - move device to different nethost namespace
5781 * @dev: device
5782 * @net: network namespace
5783 * @pat: If not NULL name pattern to try if the current device name
5784 * is already taken in the destination network namespace.
5785 *
5786 * This function shuts down a device interface and moves it
5787 * to a new network namespace. On success 0 is returned, on
5788 * a failure a netagive errno code is returned.
5789 *
5790 * Callers must hold the rtnl semaphore.
5791 */
5792
5793 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5794 {
5795 int err;
5796
5797 ASSERT_RTNL();
5798
5799 /* Don't allow namespace local devices to be moved. */
5800 err = -EINVAL;
5801 if (dev->features & NETIF_F_NETNS_LOCAL)
5802 goto out;
5803
5804 /* Ensure the device has been registrered */
5805 if (dev->reg_state != NETREG_REGISTERED)
5806 goto out;
5807
5808 /* Get out if there is nothing todo */
5809 err = 0;
5810 if (net_eq(dev_net(dev), net))
5811 goto out;
5812
5813 /* Pick the destination device name, and ensure
5814 * we can use it in the destination network namespace.
5815 */
5816 err = -EEXIST;
5817 if (__dev_get_by_name(net, dev->name)) {
5818 /* We get here if we can't use the current device name */
5819 if (!pat)
5820 goto out;
5821 if (dev_get_valid_name(net, dev, pat) < 0)
5822 goto out;
5823 }
5824
5825 /*
5826 * And now a mini version of register_netdevice unregister_netdevice.
5827 */
5828
5829 /* If device is running close it first. */
5830 dev_close(dev);
5831
5832 /* And unlink it from device chain */
5833 err = -ENODEV;
5834 unlist_netdevice(dev);
5835
5836 synchronize_net();
5837
5838 /* Shutdown queueing discipline. */
5839 dev_shutdown(dev);
5840
5841 /* Notify protocols, that we are about to destroy
5842 this device. They should clean all the things.
5843
5844 Note that dev->reg_state stays at NETREG_REGISTERED.
5845 This is wanted because this way 8021q and macvlan know
5846 the device is just moving and can keep their slaves up.
5847 */
5848 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5849 rcu_barrier();
5850 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5851 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5852
5853 /*
5854 * Flush the unicast and multicast chains
5855 */
5856 dev_uc_flush(dev);
5857 dev_mc_flush(dev);
5858
5859 /* Send a netdev-removed uevent to the old namespace */
5860 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5861
5862 /* Actually switch the network namespace */
5863 dev_net_set(dev, net);
5864
5865 /* If there is an ifindex conflict assign a new one */
5866 if (__dev_get_by_index(net, dev->ifindex)) {
5867 int iflink = (dev->iflink == dev->ifindex);
5868 dev->ifindex = dev_new_index(net);
5869 if (iflink)
5870 dev->iflink = dev->ifindex;
5871 }
5872
5873 /* Send a netdev-add uevent to the new namespace */
5874 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5875
5876 /* Fixup kobjects */
5877 err = device_rename(&dev->dev, dev->name);
5878 WARN_ON(err);
5879
5880 /* Add the device back in the hashes */
5881 list_netdevice(dev);
5882
5883 /* Notify protocols, that a new device appeared. */
5884 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5885
5886 /*
5887 * Prevent userspace races by waiting until the network
5888 * device is fully setup before sending notifications.
5889 */
5890 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5891
5892 synchronize_net();
5893 err = 0;
5894 out:
5895 return err;
5896 }
5897 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5898
5899 static int dev_cpu_callback(struct notifier_block *nfb,
5900 unsigned long action,
5901 void *ocpu)
5902 {
5903 struct sk_buff **list_skb;
5904 struct sk_buff *skb;
5905 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5906 struct softnet_data *sd, *oldsd;
5907
5908 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5909 return NOTIFY_OK;
5910
5911 local_irq_disable();
5912 cpu = smp_processor_id();
5913 sd = &per_cpu(softnet_data, cpu);
5914 oldsd = &per_cpu(softnet_data, oldcpu);
5915
5916 /* Find end of our completion_queue. */
5917 list_skb = &sd->completion_queue;
5918 while (*list_skb)
5919 list_skb = &(*list_skb)->next;
5920 /* Append completion queue from offline CPU. */
5921 *list_skb = oldsd->completion_queue;
5922 oldsd->completion_queue = NULL;
5923
5924 /* Append output queue from offline CPU. */
5925 if (oldsd->output_queue) {
5926 *sd->output_queue_tailp = oldsd->output_queue;
5927 sd->output_queue_tailp = oldsd->output_queue_tailp;
5928 oldsd->output_queue = NULL;
5929 oldsd->output_queue_tailp = &oldsd->output_queue;
5930 }
5931 /* Append NAPI poll list from offline CPU. */
5932 if (!list_empty(&oldsd->poll_list)) {
5933 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5934 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5935 }
5936
5937 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5938 local_irq_enable();
5939
5940 /* Process offline CPU's input_pkt_queue */
5941 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5942 netif_rx(skb);
5943 input_queue_head_incr(oldsd);
5944 }
5945 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5946 netif_rx(skb);
5947 input_queue_head_incr(oldsd);
5948 }
5949
5950 return NOTIFY_OK;
5951 }
5952
5953
5954 /**
5955 * netdev_increment_features - increment feature set by one
5956 * @all: current feature set
5957 * @one: new feature set
5958 * @mask: mask feature set
5959 *
5960 * Computes a new feature set after adding a device with feature set
5961 * @one to the master device with current feature set @all. Will not
5962 * enable anything that is off in @mask. Returns the new feature set.
5963 */
5964 netdev_features_t netdev_increment_features(netdev_features_t all,
5965 netdev_features_t one, netdev_features_t mask)
5966 {
5967 if (mask & NETIF_F_GEN_CSUM)
5968 mask |= NETIF_F_ALL_CSUM;
5969 mask |= NETIF_F_VLAN_CHALLENGED;
5970
5971 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5972 all &= one | ~NETIF_F_ALL_FOR_ALL;
5973
5974 /* If one device supports hw checksumming, set for all. */
5975 if (all & NETIF_F_GEN_CSUM)
5976 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5977
5978 return all;
5979 }
5980 EXPORT_SYMBOL(netdev_increment_features);
5981
5982 static struct hlist_head *netdev_create_hash(void)
5983 {
5984 int i;
5985 struct hlist_head *hash;
5986
5987 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5988 if (hash != NULL)
5989 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5990 INIT_HLIST_HEAD(&hash[i]);
5991
5992 return hash;
5993 }
5994
5995 /* Initialize per network namespace state */
5996 static int __net_init netdev_init(struct net *net)
5997 {
5998 if (net != &init_net)
5999 INIT_LIST_HEAD(&net->dev_base_head);
6000
6001 net->dev_name_head = netdev_create_hash();
6002 if (net->dev_name_head == NULL)
6003 goto err_name;
6004
6005 net->dev_index_head = netdev_create_hash();
6006 if (net->dev_index_head == NULL)
6007 goto err_idx;
6008
6009 return 0;
6010
6011 err_idx:
6012 kfree(net->dev_name_head);
6013 err_name:
6014 return -ENOMEM;
6015 }
6016
6017 /**
6018 * netdev_drivername - network driver for the device
6019 * @dev: network device
6020 *
6021 * Determine network driver for device.
6022 */
6023 const char *netdev_drivername(const struct net_device *dev)
6024 {
6025 const struct device_driver *driver;
6026 const struct device *parent;
6027 const char *empty = "";
6028
6029 parent = dev->dev.parent;
6030 if (!parent)
6031 return empty;
6032
6033 driver = parent->driver;
6034 if (driver && driver->name)
6035 return driver->name;
6036 return empty;
6037 }
6038
6039 static int __netdev_printk(const char *level, const struct net_device *dev,
6040 struct va_format *vaf)
6041 {
6042 int r;
6043
6044 if (dev && dev->dev.parent) {
6045 r = dev_printk_emit(level[1] - '0',
6046 dev->dev.parent,
6047 "%s %s %s: %pV",
6048 dev_driver_string(dev->dev.parent),
6049 dev_name(dev->dev.parent),
6050 netdev_name(dev), vaf);
6051 } else if (dev) {
6052 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6053 } else {
6054 r = printk("%s(NULL net_device): %pV", level, vaf);
6055 }
6056
6057 return r;
6058 }
6059
6060 int netdev_printk(const char *level, const struct net_device *dev,
6061 const char *format, ...)
6062 {
6063 struct va_format vaf;
6064 va_list args;
6065 int r;
6066
6067 va_start(args, format);
6068
6069 vaf.fmt = format;
6070 vaf.va = &args;
6071
6072 r = __netdev_printk(level, dev, &vaf);
6073
6074 va_end(args);
6075
6076 return r;
6077 }
6078 EXPORT_SYMBOL(netdev_printk);
6079
6080 #define define_netdev_printk_level(func, level) \
6081 int func(const struct net_device *dev, const char *fmt, ...) \
6082 { \
6083 int r; \
6084 struct va_format vaf; \
6085 va_list args; \
6086 \
6087 va_start(args, fmt); \
6088 \
6089 vaf.fmt = fmt; \
6090 vaf.va = &args; \
6091 \
6092 r = __netdev_printk(level, dev, &vaf); \
6093 \
6094 va_end(args); \
6095 \
6096 return r; \
6097 } \
6098 EXPORT_SYMBOL(func);
6099
6100 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6101 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6102 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6103 define_netdev_printk_level(netdev_err, KERN_ERR);
6104 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6105 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6106 define_netdev_printk_level(netdev_info, KERN_INFO);
6107
6108 static void __net_exit netdev_exit(struct net *net)
6109 {
6110 kfree(net->dev_name_head);
6111 kfree(net->dev_index_head);
6112 }
6113
6114 static struct pernet_operations __net_initdata netdev_net_ops = {
6115 .init = netdev_init,
6116 .exit = netdev_exit,
6117 };
6118
6119 static void __net_exit default_device_exit(struct net *net)
6120 {
6121 struct net_device *dev, *aux;
6122 /*
6123 * Push all migratable network devices back to the
6124 * initial network namespace
6125 */
6126 rtnl_lock();
6127 for_each_netdev_safe(net, dev, aux) {
6128 int err;
6129 char fb_name[IFNAMSIZ];
6130
6131 /* Ignore unmoveable devices (i.e. loopback) */
6132 if (dev->features & NETIF_F_NETNS_LOCAL)
6133 continue;
6134
6135 /* Leave virtual devices for the generic cleanup */
6136 if (dev->rtnl_link_ops)
6137 continue;
6138
6139 /* Push remaining network devices to init_net */
6140 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6141 err = dev_change_net_namespace(dev, &init_net, fb_name);
6142 if (err) {
6143 pr_emerg("%s: failed to move %s to init_net: %d\n",
6144 __func__, dev->name, err);
6145 BUG();
6146 }
6147 }
6148 rtnl_unlock();
6149 }
6150
6151 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6152 {
6153 /* At exit all network devices most be removed from a network
6154 * namespace. Do this in the reverse order of registration.
6155 * Do this across as many network namespaces as possible to
6156 * improve batching efficiency.
6157 */
6158 struct net_device *dev;
6159 struct net *net;
6160 LIST_HEAD(dev_kill_list);
6161
6162 rtnl_lock();
6163 list_for_each_entry(net, net_list, exit_list) {
6164 for_each_netdev_reverse(net, dev) {
6165 if (dev->rtnl_link_ops)
6166 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6167 else
6168 unregister_netdevice_queue(dev, &dev_kill_list);
6169 }
6170 }
6171 unregister_netdevice_many(&dev_kill_list);
6172 list_del(&dev_kill_list);
6173 rtnl_unlock();
6174 }
6175
6176 static struct pernet_operations __net_initdata default_device_ops = {
6177 .exit = default_device_exit,
6178 .exit_batch = default_device_exit_batch,
6179 };
6180
6181 /*
6182 * Initialize the DEV module. At boot time this walks the device list and
6183 * unhooks any devices that fail to initialise (normally hardware not
6184 * present) and leaves us with a valid list of present and active devices.
6185 *
6186 */
6187
6188 /*
6189 * This is called single threaded during boot, so no need
6190 * to take the rtnl semaphore.
6191 */
6192 static int __init net_dev_init(void)
6193 {
6194 int i, rc = -ENOMEM;
6195
6196 BUG_ON(!dev_boot_phase);
6197
6198 if (dev_proc_init())
6199 goto out;
6200
6201 if (netdev_kobject_init())
6202 goto out;
6203
6204 INIT_LIST_HEAD(&ptype_all);
6205 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6206 INIT_LIST_HEAD(&ptype_base[i]);
6207
6208 INIT_LIST_HEAD(&offload_base);
6209
6210 if (register_pernet_subsys(&netdev_net_ops))
6211 goto out;
6212
6213 /*
6214 * Initialise the packet receive queues.
6215 */
6216
6217 for_each_possible_cpu(i) {
6218 struct softnet_data *sd = &per_cpu(softnet_data, i);
6219
6220 memset(sd, 0, sizeof(*sd));
6221 skb_queue_head_init(&sd->input_pkt_queue);
6222 skb_queue_head_init(&sd->process_queue);
6223 sd->completion_queue = NULL;
6224 INIT_LIST_HEAD(&sd->poll_list);
6225 sd->output_queue = NULL;
6226 sd->output_queue_tailp = &sd->output_queue;
6227 #ifdef CONFIG_RPS
6228 sd->csd.func = rps_trigger_softirq;
6229 sd->csd.info = sd;
6230 sd->csd.flags = 0;
6231 sd->cpu = i;
6232 #endif
6233
6234 sd->backlog.poll = process_backlog;
6235 sd->backlog.weight = weight_p;
6236 sd->backlog.gro_list = NULL;
6237 sd->backlog.gro_count = 0;
6238 }
6239
6240 dev_boot_phase = 0;
6241
6242 /* The loopback device is special if any other network devices
6243 * is present in a network namespace the loopback device must
6244 * be present. Since we now dynamically allocate and free the
6245 * loopback device ensure this invariant is maintained by
6246 * keeping the loopback device as the first device on the
6247 * list of network devices. Ensuring the loopback devices
6248 * is the first device that appears and the last network device
6249 * that disappears.
6250 */
6251 if (register_pernet_device(&loopback_net_ops))
6252 goto out;
6253
6254 if (register_pernet_device(&default_device_ops))
6255 goto out;
6256
6257 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6258 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6259
6260 hotcpu_notifier(dev_cpu_callback, 0);
6261 dst_init();
6262 rc = 0;
6263 out:
6264 return rc;
6265 }
6266
6267 subsys_initcall(net_dev_init);