Merge branch 'pablo/nf-2.6-updates' of git://1984.lsi.us.es/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del_rcu(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 if (!netif_device_present(dev))
1144 return -ENODEV;
1145
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1148 if (ret)
1149 return ret;
1150
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1165 dev_activate(dev);
1166 }
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1174 *
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1179 *
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1182 */
1183 int dev_open(struct net_device *dev)
1184 {
1185 int ret;
1186
1187 if (dev->flags & IFF_UP)
1188 return 0;
1189
1190 ret = __dev_open(dev);
1191 if (ret < 0)
1192 return ret;
1193
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 struct net_device *dev;
1204
1205 ASSERT_RTNL();
1206 might_sleep();
1207
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210
1211 clear_bit(__LINK_STATE_START, &dev->state);
1212
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1215 *
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1218 */
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 }
1221
1222 dev_deactivate_many(head);
1223
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1226
1227 /*
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1230 *
1231 * We allow it to be called even after a DETACH hot-plug
1232 * event.
1233 */
1234 if (ops->ndo_stop)
1235 ops->ndo_stop(dev);
1236
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 int retval;
1247 LIST_HEAD(single);
1248
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1251 list_del(&single);
1252 return retval;
1253 }
1254
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1259
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1263
1264 __dev_close_many(head);
1265
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 }
1270
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285 int dev_close(struct net_device *dev)
1286 {
1287 if (dev->flags & IFF_UP) {
1288 LIST_HEAD(single);
1289
1290 list_add(&dev->unreg_list, &single);
1291 dev_close_many(&single);
1292 list_del(&single);
1293 }
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(dev_close);
1297
1298
1299 /**
1300 * dev_disable_lro - disable Large Receive Offload on a device
1301 * @dev: device
1302 *
1303 * Disable Large Receive Offload (LRO) on a net device. Must be
1304 * called under RTNL. This is needed if received packets may be
1305 * forwarded to another interface.
1306 */
1307 void dev_disable_lro(struct net_device *dev)
1308 {
1309 u32 flags;
1310
1311 /*
1312 * If we're trying to disable lro on a vlan device
1313 * use the underlying physical device instead
1314 */
1315 if (is_vlan_dev(dev))
1316 dev = vlan_dev_real_dev(dev);
1317
1318 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1319 flags = dev->ethtool_ops->get_flags(dev);
1320 else
1321 flags = ethtool_op_get_flags(dev);
1322
1323 if (!(flags & ETH_FLAG_LRO))
1324 return;
1325
1326 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1327 if (unlikely(dev->features & NETIF_F_LRO))
1328 netdev_WARN(dev, "failed to disable LRO!\n");
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /**
1336 * register_netdevice_notifier - register a network notifier block
1337 * @nb: notifier
1338 *
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1343 *
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1347 */
1348
1349 int register_netdevice_notifier(struct notifier_block *nb)
1350 {
1351 struct net_device *dev;
1352 struct net_device *last;
1353 struct net *net;
1354 int err;
1355
1356 rtnl_lock();
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1358 if (err)
1359 goto unlock;
1360 if (dev_boot_phase)
1361 goto unlock;
1362 for_each_net(net) {
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1366 if (err)
1367 goto rollback;
1368
1369 if (!(dev->flags & IFF_UP))
1370 continue;
1371
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1373 }
1374 }
1375
1376 unlock:
1377 rtnl_unlock();
1378 return err;
1379
1380 rollback:
1381 last = dev;
1382 for_each_net(net) {
1383 for_each_netdev(net, dev) {
1384 if (dev == last)
1385 break;
1386
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1390 }
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1393 }
1394 }
1395
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1397 goto unlock;
1398 }
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1400
1401 /**
1402 * unregister_netdevice_notifier - unregister a network notifier block
1403 * @nb: notifier
1404 *
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1409 */
1410
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1412 {
1413 int err;
1414
1415 rtnl_lock();
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1417 rtnl_unlock();
1418 return err;
1419 }
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1421
1422 /**
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1426 *
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1429 */
1430
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1432 {
1433 ASSERT_RTNL();
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1435 }
1436 EXPORT_SYMBOL(call_netdevice_notifiers);
1437
1438 /* When > 0 there are consumers of rx skb time stamps */
1439 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1440
1441 void net_enable_timestamp(void)
1442 {
1443 atomic_inc(&netstamp_needed);
1444 }
1445 EXPORT_SYMBOL(net_enable_timestamp);
1446
1447 void net_disable_timestamp(void)
1448 {
1449 atomic_dec(&netstamp_needed);
1450 }
1451 EXPORT_SYMBOL(net_disable_timestamp);
1452
1453 static inline void net_timestamp_set(struct sk_buff *skb)
1454 {
1455 if (atomic_read(&netstamp_needed))
1456 __net_timestamp(skb);
1457 else
1458 skb->tstamp.tv64 = 0;
1459 }
1460
1461 static inline void net_timestamp_check(struct sk_buff *skb)
1462 {
1463 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1464 __net_timestamp(skb);
1465 }
1466
1467 static inline bool is_skb_forwardable(struct net_device *dev,
1468 struct sk_buff *skb)
1469 {
1470 unsigned int len;
1471
1472 if (!(dev->flags & IFF_UP))
1473 return false;
1474
1475 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1476 if (skb->len <= len)
1477 return true;
1478
1479 /* if TSO is enabled, we don't care about the length as the packet
1480 * could be forwarded without being segmented before
1481 */
1482 if (skb_is_gso(skb))
1483 return true;
1484
1485 return false;
1486 }
1487
1488 /**
1489 * dev_forward_skb - loopback an skb to another netif
1490 *
1491 * @dev: destination network device
1492 * @skb: buffer to forward
1493 *
1494 * return values:
1495 * NET_RX_SUCCESS (no congestion)
1496 * NET_RX_DROP (packet was dropped, but freed)
1497 *
1498 * dev_forward_skb can be used for injecting an skb from the
1499 * start_xmit function of one device into the receive queue
1500 * of another device.
1501 *
1502 * The receiving device may be in another namespace, so
1503 * we have to clear all information in the skb that could
1504 * impact namespace isolation.
1505 */
1506 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1507 {
1508 skb_orphan(skb);
1509 nf_reset(skb);
1510
1511 if (unlikely(!is_skb_forwardable(dev, skb))) {
1512 atomic_long_inc(&dev->rx_dropped);
1513 kfree_skb(skb);
1514 return NET_RX_DROP;
1515 }
1516 skb_set_dev(skb, dev);
1517 skb->tstamp.tv64 = 0;
1518 skb->pkt_type = PACKET_HOST;
1519 skb->protocol = eth_type_trans(skb, dev);
1520 return netif_rx(skb);
1521 }
1522 EXPORT_SYMBOL_GPL(dev_forward_skb);
1523
1524 static inline int deliver_skb(struct sk_buff *skb,
1525 struct packet_type *pt_prev,
1526 struct net_device *orig_dev)
1527 {
1528 atomic_inc(&skb->users);
1529 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1530 }
1531
1532 /*
1533 * Support routine. Sends outgoing frames to any network
1534 * taps currently in use.
1535 */
1536
1537 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1538 {
1539 struct packet_type *ptype;
1540 struct sk_buff *skb2 = NULL;
1541 struct packet_type *pt_prev = NULL;
1542
1543 rcu_read_lock();
1544 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1545 /* Never send packets back to the socket
1546 * they originated from - MvS (miquels@drinkel.ow.org)
1547 */
1548 if ((ptype->dev == dev || !ptype->dev) &&
1549 (ptype->af_packet_priv == NULL ||
1550 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1551 if (pt_prev) {
1552 deliver_skb(skb2, pt_prev, skb->dev);
1553 pt_prev = ptype;
1554 continue;
1555 }
1556
1557 skb2 = skb_clone(skb, GFP_ATOMIC);
1558 if (!skb2)
1559 break;
1560
1561 net_timestamp_set(skb2);
1562
1563 /* skb->nh should be correctly
1564 set by sender, so that the second statement is
1565 just protection against buggy protocols.
1566 */
1567 skb_reset_mac_header(skb2);
1568
1569 if (skb_network_header(skb2) < skb2->data ||
1570 skb2->network_header > skb2->tail) {
1571 if (net_ratelimit())
1572 printk(KERN_CRIT "protocol %04x is "
1573 "buggy, dev %s\n",
1574 ntohs(skb2->protocol),
1575 dev->name);
1576 skb_reset_network_header(skb2);
1577 }
1578
1579 skb2->transport_header = skb2->network_header;
1580 skb2->pkt_type = PACKET_OUTGOING;
1581 pt_prev = ptype;
1582 }
1583 }
1584 if (pt_prev)
1585 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1586 rcu_read_unlock();
1587 }
1588
1589 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1590 * @dev: Network device
1591 * @txq: number of queues available
1592 *
1593 * If real_num_tx_queues is changed the tc mappings may no longer be
1594 * valid. To resolve this verify the tc mapping remains valid and if
1595 * not NULL the mapping. With no priorities mapping to this
1596 * offset/count pair it will no longer be used. In the worst case TC0
1597 * is invalid nothing can be done so disable priority mappings. If is
1598 * expected that drivers will fix this mapping if they can before
1599 * calling netif_set_real_num_tx_queues.
1600 */
1601 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1602 {
1603 int i;
1604 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1605
1606 /* If TC0 is invalidated disable TC mapping */
1607 if (tc->offset + tc->count > txq) {
1608 pr_warning("Number of in use tx queues changed "
1609 "invalidating tc mappings. Priority "
1610 "traffic classification disabled!\n");
1611 dev->num_tc = 0;
1612 return;
1613 }
1614
1615 /* Invalidated prio to tc mappings set to TC0 */
1616 for (i = 1; i < TC_BITMASK + 1; i++) {
1617 int q = netdev_get_prio_tc_map(dev, i);
1618
1619 tc = &dev->tc_to_txq[q];
1620 if (tc->offset + tc->count > txq) {
1621 pr_warning("Number of in use tx queues "
1622 "changed. Priority %i to tc "
1623 "mapping %i is no longer valid "
1624 "setting map to 0\n",
1625 i, q);
1626 netdev_set_prio_tc_map(dev, i, 0);
1627 }
1628 }
1629 }
1630
1631 /*
1632 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1633 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1634 */
1635 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1636 {
1637 int rc;
1638
1639 if (txq < 1 || txq > dev->num_tx_queues)
1640 return -EINVAL;
1641
1642 if (dev->reg_state == NETREG_REGISTERED ||
1643 dev->reg_state == NETREG_UNREGISTERING) {
1644 ASSERT_RTNL();
1645
1646 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1647 txq);
1648 if (rc)
1649 return rc;
1650
1651 if (dev->num_tc)
1652 netif_setup_tc(dev, txq);
1653
1654 if (txq < dev->real_num_tx_queues)
1655 qdisc_reset_all_tx_gt(dev, txq);
1656 }
1657
1658 dev->real_num_tx_queues = txq;
1659 return 0;
1660 }
1661 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1662
1663 #ifdef CONFIG_RPS
1664 /**
1665 * netif_set_real_num_rx_queues - set actual number of RX queues used
1666 * @dev: Network device
1667 * @rxq: Actual number of RX queues
1668 *
1669 * This must be called either with the rtnl_lock held or before
1670 * registration of the net device. Returns 0 on success, or a
1671 * negative error code. If called before registration, it always
1672 * succeeds.
1673 */
1674 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1675 {
1676 int rc;
1677
1678 if (rxq < 1 || rxq > dev->num_rx_queues)
1679 return -EINVAL;
1680
1681 if (dev->reg_state == NETREG_REGISTERED) {
1682 ASSERT_RTNL();
1683
1684 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1685 rxq);
1686 if (rc)
1687 return rc;
1688 }
1689
1690 dev->real_num_rx_queues = rxq;
1691 return 0;
1692 }
1693 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1694 #endif
1695
1696 static inline void __netif_reschedule(struct Qdisc *q)
1697 {
1698 struct softnet_data *sd;
1699 unsigned long flags;
1700
1701 local_irq_save(flags);
1702 sd = &__get_cpu_var(softnet_data);
1703 q->next_sched = NULL;
1704 *sd->output_queue_tailp = q;
1705 sd->output_queue_tailp = &q->next_sched;
1706 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1707 local_irq_restore(flags);
1708 }
1709
1710 void __netif_schedule(struct Qdisc *q)
1711 {
1712 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1713 __netif_reschedule(q);
1714 }
1715 EXPORT_SYMBOL(__netif_schedule);
1716
1717 void dev_kfree_skb_irq(struct sk_buff *skb)
1718 {
1719 if (atomic_dec_and_test(&skb->users)) {
1720 struct softnet_data *sd;
1721 unsigned long flags;
1722
1723 local_irq_save(flags);
1724 sd = &__get_cpu_var(softnet_data);
1725 skb->next = sd->completion_queue;
1726 sd->completion_queue = skb;
1727 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1728 local_irq_restore(flags);
1729 }
1730 }
1731 EXPORT_SYMBOL(dev_kfree_skb_irq);
1732
1733 void dev_kfree_skb_any(struct sk_buff *skb)
1734 {
1735 if (in_irq() || irqs_disabled())
1736 dev_kfree_skb_irq(skb);
1737 else
1738 dev_kfree_skb(skb);
1739 }
1740 EXPORT_SYMBOL(dev_kfree_skb_any);
1741
1742
1743 /**
1744 * netif_device_detach - mark device as removed
1745 * @dev: network device
1746 *
1747 * Mark device as removed from system and therefore no longer available.
1748 */
1749 void netif_device_detach(struct net_device *dev)
1750 {
1751 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1752 netif_running(dev)) {
1753 netif_tx_stop_all_queues(dev);
1754 }
1755 }
1756 EXPORT_SYMBOL(netif_device_detach);
1757
1758 /**
1759 * netif_device_attach - mark device as attached
1760 * @dev: network device
1761 *
1762 * Mark device as attached from system and restart if needed.
1763 */
1764 void netif_device_attach(struct net_device *dev)
1765 {
1766 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1767 netif_running(dev)) {
1768 netif_tx_wake_all_queues(dev);
1769 __netdev_watchdog_up(dev);
1770 }
1771 }
1772 EXPORT_SYMBOL(netif_device_attach);
1773
1774 /**
1775 * skb_dev_set -- assign a new device to a buffer
1776 * @skb: buffer for the new device
1777 * @dev: network device
1778 *
1779 * If an skb is owned by a device already, we have to reset
1780 * all data private to the namespace a device belongs to
1781 * before assigning it a new device.
1782 */
1783 #ifdef CONFIG_NET_NS
1784 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1785 {
1786 skb_dst_drop(skb);
1787 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1788 secpath_reset(skb);
1789 nf_reset(skb);
1790 skb_init_secmark(skb);
1791 skb->mark = 0;
1792 skb->priority = 0;
1793 skb->nf_trace = 0;
1794 skb->ipvs_property = 0;
1795 #ifdef CONFIG_NET_SCHED
1796 skb->tc_index = 0;
1797 #endif
1798 }
1799 skb->dev = dev;
1800 }
1801 EXPORT_SYMBOL(skb_set_dev);
1802 #endif /* CONFIG_NET_NS */
1803
1804 /*
1805 * Invalidate hardware checksum when packet is to be mangled, and
1806 * complete checksum manually on outgoing path.
1807 */
1808 int skb_checksum_help(struct sk_buff *skb)
1809 {
1810 __wsum csum;
1811 int ret = 0, offset;
1812
1813 if (skb->ip_summed == CHECKSUM_COMPLETE)
1814 goto out_set_summed;
1815
1816 if (unlikely(skb_shinfo(skb)->gso_size)) {
1817 /* Let GSO fix up the checksum. */
1818 goto out_set_summed;
1819 }
1820
1821 offset = skb_checksum_start_offset(skb);
1822 BUG_ON(offset >= skb_headlen(skb));
1823 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1824
1825 offset += skb->csum_offset;
1826 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1827
1828 if (skb_cloned(skb) &&
1829 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1830 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1831 if (ret)
1832 goto out;
1833 }
1834
1835 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1836 out_set_summed:
1837 skb->ip_summed = CHECKSUM_NONE;
1838 out:
1839 return ret;
1840 }
1841 EXPORT_SYMBOL(skb_checksum_help);
1842
1843 /**
1844 * skb_gso_segment - Perform segmentation on skb.
1845 * @skb: buffer to segment
1846 * @features: features for the output path (see dev->features)
1847 *
1848 * This function segments the given skb and returns a list of segments.
1849 *
1850 * It may return NULL if the skb requires no segmentation. This is
1851 * only possible when GSO is used for verifying header integrity.
1852 */
1853 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1854 {
1855 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1856 struct packet_type *ptype;
1857 __be16 type = skb->protocol;
1858 int vlan_depth = ETH_HLEN;
1859 int err;
1860
1861 while (type == htons(ETH_P_8021Q)) {
1862 struct vlan_hdr *vh;
1863
1864 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1865 return ERR_PTR(-EINVAL);
1866
1867 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1868 type = vh->h_vlan_encapsulated_proto;
1869 vlan_depth += VLAN_HLEN;
1870 }
1871
1872 skb_reset_mac_header(skb);
1873 skb->mac_len = skb->network_header - skb->mac_header;
1874 __skb_pull(skb, skb->mac_len);
1875
1876 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1877 struct net_device *dev = skb->dev;
1878 struct ethtool_drvinfo info = {};
1879
1880 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1881 dev->ethtool_ops->get_drvinfo(dev, &info);
1882
1883 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1884 info.driver, dev ? dev->features : 0L,
1885 skb->sk ? skb->sk->sk_route_caps : 0L,
1886 skb->len, skb->data_len, skb->ip_summed);
1887
1888 if (skb_header_cloned(skb) &&
1889 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1890 return ERR_PTR(err);
1891 }
1892
1893 rcu_read_lock();
1894 list_for_each_entry_rcu(ptype,
1895 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1896 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1897 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1898 err = ptype->gso_send_check(skb);
1899 segs = ERR_PTR(err);
1900 if (err || skb_gso_ok(skb, features))
1901 break;
1902 __skb_push(skb, (skb->data -
1903 skb_network_header(skb)));
1904 }
1905 segs = ptype->gso_segment(skb, features);
1906 break;
1907 }
1908 }
1909 rcu_read_unlock();
1910
1911 __skb_push(skb, skb->data - skb_mac_header(skb));
1912
1913 return segs;
1914 }
1915 EXPORT_SYMBOL(skb_gso_segment);
1916
1917 /* Take action when hardware reception checksum errors are detected. */
1918 #ifdef CONFIG_BUG
1919 void netdev_rx_csum_fault(struct net_device *dev)
1920 {
1921 if (net_ratelimit()) {
1922 printk(KERN_ERR "%s: hw csum failure.\n",
1923 dev ? dev->name : "<unknown>");
1924 dump_stack();
1925 }
1926 }
1927 EXPORT_SYMBOL(netdev_rx_csum_fault);
1928 #endif
1929
1930 /* Actually, we should eliminate this check as soon as we know, that:
1931 * 1. IOMMU is present and allows to map all the memory.
1932 * 2. No high memory really exists on this machine.
1933 */
1934
1935 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1936 {
1937 #ifdef CONFIG_HIGHMEM
1938 int i;
1939 if (!(dev->features & NETIF_F_HIGHDMA)) {
1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1941 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1942 return 1;
1943 }
1944
1945 if (PCI_DMA_BUS_IS_PHYS) {
1946 struct device *pdev = dev->dev.parent;
1947
1948 if (!pdev)
1949 return 0;
1950 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1951 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1952 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1953 return 1;
1954 }
1955 }
1956 #endif
1957 return 0;
1958 }
1959
1960 struct dev_gso_cb {
1961 void (*destructor)(struct sk_buff *skb);
1962 };
1963
1964 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1965
1966 static void dev_gso_skb_destructor(struct sk_buff *skb)
1967 {
1968 struct dev_gso_cb *cb;
1969
1970 do {
1971 struct sk_buff *nskb = skb->next;
1972
1973 skb->next = nskb->next;
1974 nskb->next = NULL;
1975 kfree_skb(nskb);
1976 } while (skb->next);
1977
1978 cb = DEV_GSO_CB(skb);
1979 if (cb->destructor)
1980 cb->destructor(skb);
1981 }
1982
1983 /**
1984 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: device features as applicable to this skb
1987 *
1988 * This function segments the given skb and stores the list of segments
1989 * in skb->next.
1990 */
1991 static int dev_gso_segment(struct sk_buff *skb, int features)
1992 {
1993 struct sk_buff *segs;
1994
1995 segs = skb_gso_segment(skb, features);
1996
1997 /* Verifying header integrity only. */
1998 if (!segs)
1999 return 0;
2000
2001 if (IS_ERR(segs))
2002 return PTR_ERR(segs);
2003
2004 skb->next = segs;
2005 DEV_GSO_CB(skb)->destructor = skb->destructor;
2006 skb->destructor = dev_gso_skb_destructor;
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * Try to orphan skb early, right before transmission by the device.
2013 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2014 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2015 */
2016 static inline void skb_orphan_try(struct sk_buff *skb)
2017 {
2018 struct sock *sk = skb->sk;
2019
2020 if (sk && !skb_shinfo(skb)->tx_flags) {
2021 /* skb_tx_hash() wont be able to get sk.
2022 * We copy sk_hash into skb->rxhash
2023 */
2024 if (!skb->rxhash)
2025 skb->rxhash = sk->sk_hash;
2026 skb_orphan(skb);
2027 }
2028 }
2029
2030 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2031 {
2032 return ((features & NETIF_F_GEN_CSUM) ||
2033 ((features & NETIF_F_V4_CSUM) &&
2034 protocol == htons(ETH_P_IP)) ||
2035 ((features & NETIF_F_V6_CSUM) &&
2036 protocol == htons(ETH_P_IPV6)) ||
2037 ((features & NETIF_F_FCOE_CRC) &&
2038 protocol == htons(ETH_P_FCOE)));
2039 }
2040
2041 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2042 {
2043 if (!can_checksum_protocol(features, protocol)) {
2044 features &= ~NETIF_F_ALL_CSUM;
2045 features &= ~NETIF_F_SG;
2046 } else if (illegal_highdma(skb->dev, skb)) {
2047 features &= ~NETIF_F_SG;
2048 }
2049
2050 return features;
2051 }
2052
2053 u32 netif_skb_features(struct sk_buff *skb)
2054 {
2055 __be16 protocol = skb->protocol;
2056 u32 features = skb->dev->features;
2057
2058 if (protocol == htons(ETH_P_8021Q)) {
2059 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2060 protocol = veh->h_vlan_encapsulated_proto;
2061 } else if (!vlan_tx_tag_present(skb)) {
2062 return harmonize_features(skb, protocol, features);
2063 }
2064
2065 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2066
2067 if (protocol != htons(ETH_P_8021Q)) {
2068 return harmonize_features(skb, protocol, features);
2069 } else {
2070 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2071 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2072 return harmonize_features(skb, protocol, features);
2073 }
2074 }
2075 EXPORT_SYMBOL(netif_skb_features);
2076
2077 /*
2078 * Returns true if either:
2079 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2080 * 2. skb is fragmented and the device does not support SG, or if
2081 * at least one of fragments is in highmem and device does not
2082 * support DMA from it.
2083 */
2084 static inline int skb_needs_linearize(struct sk_buff *skb,
2085 int features)
2086 {
2087 return skb_is_nonlinear(skb) &&
2088 ((skb_has_frag_list(skb) &&
2089 !(features & NETIF_F_FRAGLIST)) ||
2090 (skb_shinfo(skb)->nr_frags &&
2091 !(features & NETIF_F_SG)));
2092 }
2093
2094 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2095 struct netdev_queue *txq)
2096 {
2097 const struct net_device_ops *ops = dev->netdev_ops;
2098 int rc = NETDEV_TX_OK;
2099
2100 if (likely(!skb->next)) {
2101 u32 features;
2102
2103 /*
2104 * If device doesn't need skb->dst, release it right now while
2105 * its hot in this cpu cache
2106 */
2107 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2108 skb_dst_drop(skb);
2109
2110 if (!list_empty(&ptype_all))
2111 dev_queue_xmit_nit(skb, dev);
2112
2113 skb_orphan_try(skb);
2114
2115 features = netif_skb_features(skb);
2116
2117 if (vlan_tx_tag_present(skb) &&
2118 !(features & NETIF_F_HW_VLAN_TX)) {
2119 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2120 if (unlikely(!skb))
2121 goto out;
2122
2123 skb->vlan_tci = 0;
2124 }
2125
2126 if (netif_needs_gso(skb, features)) {
2127 if (unlikely(dev_gso_segment(skb, features)))
2128 goto out_kfree_skb;
2129 if (skb->next)
2130 goto gso;
2131 } else {
2132 if (skb_needs_linearize(skb, features) &&
2133 __skb_linearize(skb))
2134 goto out_kfree_skb;
2135
2136 /* If packet is not checksummed and device does not
2137 * support checksumming for this protocol, complete
2138 * checksumming here.
2139 */
2140 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 skb_set_transport_header(skb,
2142 skb_checksum_start_offset(skb));
2143 if (!(features & NETIF_F_ALL_CSUM) &&
2144 skb_checksum_help(skb))
2145 goto out_kfree_skb;
2146 }
2147 }
2148
2149 rc = ops->ndo_start_xmit(skb, dev);
2150 trace_net_dev_xmit(skb, rc);
2151 if (rc == NETDEV_TX_OK)
2152 txq_trans_update(txq);
2153 return rc;
2154 }
2155
2156 gso:
2157 do {
2158 struct sk_buff *nskb = skb->next;
2159
2160 skb->next = nskb->next;
2161 nskb->next = NULL;
2162
2163 /*
2164 * If device doesn't need nskb->dst, release it right now while
2165 * its hot in this cpu cache
2166 */
2167 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2168 skb_dst_drop(nskb);
2169
2170 rc = ops->ndo_start_xmit(nskb, dev);
2171 trace_net_dev_xmit(nskb, rc);
2172 if (unlikely(rc != NETDEV_TX_OK)) {
2173 if (rc & ~NETDEV_TX_MASK)
2174 goto out_kfree_gso_skb;
2175 nskb->next = skb->next;
2176 skb->next = nskb;
2177 return rc;
2178 }
2179 txq_trans_update(txq);
2180 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2181 return NETDEV_TX_BUSY;
2182 } while (skb->next);
2183
2184 out_kfree_gso_skb:
2185 if (likely(skb->next == NULL))
2186 skb->destructor = DEV_GSO_CB(skb)->destructor;
2187 out_kfree_skb:
2188 kfree_skb(skb);
2189 out:
2190 return rc;
2191 }
2192
2193 static u32 hashrnd __read_mostly;
2194
2195 /*
2196 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2197 * to be used as a distribution range.
2198 */
2199 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2200 unsigned int num_tx_queues)
2201 {
2202 u32 hash;
2203 u16 qoffset = 0;
2204 u16 qcount = num_tx_queues;
2205
2206 if (skb_rx_queue_recorded(skb)) {
2207 hash = skb_get_rx_queue(skb);
2208 while (unlikely(hash >= num_tx_queues))
2209 hash -= num_tx_queues;
2210 return hash;
2211 }
2212
2213 if (dev->num_tc) {
2214 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2215 qoffset = dev->tc_to_txq[tc].offset;
2216 qcount = dev->tc_to_txq[tc].count;
2217 }
2218
2219 if (skb->sk && skb->sk->sk_hash)
2220 hash = skb->sk->sk_hash;
2221 else
2222 hash = (__force u16) skb->protocol ^ skb->rxhash;
2223 hash = jhash_1word(hash, hashrnd);
2224
2225 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2226 }
2227 EXPORT_SYMBOL(__skb_tx_hash);
2228
2229 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2230 {
2231 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2232 if (net_ratelimit()) {
2233 pr_warning("%s selects TX queue %d, but "
2234 "real number of TX queues is %d\n",
2235 dev->name, queue_index, dev->real_num_tx_queues);
2236 }
2237 return 0;
2238 }
2239 return queue_index;
2240 }
2241
2242 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2243 {
2244 #ifdef CONFIG_XPS
2245 struct xps_dev_maps *dev_maps;
2246 struct xps_map *map;
2247 int queue_index = -1;
2248
2249 rcu_read_lock();
2250 dev_maps = rcu_dereference(dev->xps_maps);
2251 if (dev_maps) {
2252 map = rcu_dereference(
2253 dev_maps->cpu_map[raw_smp_processor_id()]);
2254 if (map) {
2255 if (map->len == 1)
2256 queue_index = map->queues[0];
2257 else {
2258 u32 hash;
2259 if (skb->sk && skb->sk->sk_hash)
2260 hash = skb->sk->sk_hash;
2261 else
2262 hash = (__force u16) skb->protocol ^
2263 skb->rxhash;
2264 hash = jhash_1word(hash, hashrnd);
2265 queue_index = map->queues[
2266 ((u64)hash * map->len) >> 32];
2267 }
2268 if (unlikely(queue_index >= dev->real_num_tx_queues))
2269 queue_index = -1;
2270 }
2271 }
2272 rcu_read_unlock();
2273
2274 return queue_index;
2275 #else
2276 return -1;
2277 #endif
2278 }
2279
2280 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2281 struct sk_buff *skb)
2282 {
2283 int queue_index;
2284 const struct net_device_ops *ops = dev->netdev_ops;
2285
2286 if (dev->real_num_tx_queues == 1)
2287 queue_index = 0;
2288 else if (ops->ndo_select_queue) {
2289 queue_index = ops->ndo_select_queue(dev, skb);
2290 queue_index = dev_cap_txqueue(dev, queue_index);
2291 } else {
2292 struct sock *sk = skb->sk;
2293 queue_index = sk_tx_queue_get(sk);
2294
2295 if (queue_index < 0 || skb->ooo_okay ||
2296 queue_index >= dev->real_num_tx_queues) {
2297 int old_index = queue_index;
2298
2299 queue_index = get_xps_queue(dev, skb);
2300 if (queue_index < 0)
2301 queue_index = skb_tx_hash(dev, skb);
2302
2303 if (queue_index != old_index && sk) {
2304 struct dst_entry *dst =
2305 rcu_dereference_check(sk->sk_dst_cache, 1);
2306
2307 if (dst && skb_dst(skb) == dst)
2308 sk_tx_queue_set(sk, queue_index);
2309 }
2310 }
2311 }
2312
2313 skb_set_queue_mapping(skb, queue_index);
2314 return netdev_get_tx_queue(dev, queue_index);
2315 }
2316
2317 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2318 struct net_device *dev,
2319 struct netdev_queue *txq)
2320 {
2321 spinlock_t *root_lock = qdisc_lock(q);
2322 bool contended;
2323 int rc;
2324
2325 qdisc_skb_cb(skb)->pkt_len = skb->len;
2326 qdisc_calculate_pkt_len(skb, q);
2327 /*
2328 * Heuristic to force contended enqueues to serialize on a
2329 * separate lock before trying to get qdisc main lock.
2330 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2331 * and dequeue packets faster.
2332 */
2333 contended = qdisc_is_running(q);
2334 if (unlikely(contended))
2335 spin_lock(&q->busylock);
2336
2337 spin_lock(root_lock);
2338 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2339 kfree_skb(skb);
2340 rc = NET_XMIT_DROP;
2341 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2342 qdisc_run_begin(q)) {
2343 /*
2344 * This is a work-conserving queue; there are no old skbs
2345 * waiting to be sent out; and the qdisc is not running -
2346 * xmit the skb directly.
2347 */
2348 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2349 skb_dst_force(skb);
2350
2351 qdisc_bstats_update(q, skb);
2352
2353 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2354 if (unlikely(contended)) {
2355 spin_unlock(&q->busylock);
2356 contended = false;
2357 }
2358 __qdisc_run(q);
2359 } else
2360 qdisc_run_end(q);
2361
2362 rc = NET_XMIT_SUCCESS;
2363 } else {
2364 skb_dst_force(skb);
2365 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2366 if (qdisc_run_begin(q)) {
2367 if (unlikely(contended)) {
2368 spin_unlock(&q->busylock);
2369 contended = false;
2370 }
2371 __qdisc_run(q);
2372 }
2373 }
2374 spin_unlock(root_lock);
2375 if (unlikely(contended))
2376 spin_unlock(&q->busylock);
2377 return rc;
2378 }
2379
2380 static DEFINE_PER_CPU(int, xmit_recursion);
2381 #define RECURSION_LIMIT 10
2382
2383 /**
2384 * dev_queue_xmit - transmit a buffer
2385 * @skb: buffer to transmit
2386 *
2387 * Queue a buffer for transmission to a network device. The caller must
2388 * have set the device and priority and built the buffer before calling
2389 * this function. The function can be called from an interrupt.
2390 *
2391 * A negative errno code is returned on a failure. A success does not
2392 * guarantee the frame will be transmitted as it may be dropped due
2393 * to congestion or traffic shaping.
2394 *
2395 * -----------------------------------------------------------------------------------
2396 * I notice this method can also return errors from the queue disciplines,
2397 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2398 * be positive.
2399 *
2400 * Regardless of the return value, the skb is consumed, so it is currently
2401 * difficult to retry a send to this method. (You can bump the ref count
2402 * before sending to hold a reference for retry if you are careful.)
2403 *
2404 * When calling this method, interrupts MUST be enabled. This is because
2405 * the BH enable code must have IRQs enabled so that it will not deadlock.
2406 * --BLG
2407 */
2408 int dev_queue_xmit(struct sk_buff *skb)
2409 {
2410 struct net_device *dev = skb->dev;
2411 struct netdev_queue *txq;
2412 struct Qdisc *q;
2413 int rc = -ENOMEM;
2414
2415 /* Disable soft irqs for various locks below. Also
2416 * stops preemption for RCU.
2417 */
2418 rcu_read_lock_bh();
2419
2420 txq = dev_pick_tx(dev, skb);
2421 q = rcu_dereference_bh(txq->qdisc);
2422
2423 #ifdef CONFIG_NET_CLS_ACT
2424 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2425 #endif
2426 trace_net_dev_queue(skb);
2427 if (q->enqueue) {
2428 rc = __dev_xmit_skb(skb, q, dev, txq);
2429 goto out;
2430 }
2431
2432 /* The device has no queue. Common case for software devices:
2433 loopback, all the sorts of tunnels...
2434
2435 Really, it is unlikely that netif_tx_lock protection is necessary
2436 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2437 counters.)
2438 However, it is possible, that they rely on protection
2439 made by us here.
2440
2441 Check this and shot the lock. It is not prone from deadlocks.
2442 Either shot noqueue qdisc, it is even simpler 8)
2443 */
2444 if (dev->flags & IFF_UP) {
2445 int cpu = smp_processor_id(); /* ok because BHs are off */
2446
2447 if (txq->xmit_lock_owner != cpu) {
2448
2449 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2450 goto recursion_alert;
2451
2452 HARD_TX_LOCK(dev, txq, cpu);
2453
2454 if (!netif_tx_queue_stopped(txq)) {
2455 __this_cpu_inc(xmit_recursion);
2456 rc = dev_hard_start_xmit(skb, dev, txq);
2457 __this_cpu_dec(xmit_recursion);
2458 if (dev_xmit_complete(rc)) {
2459 HARD_TX_UNLOCK(dev, txq);
2460 goto out;
2461 }
2462 }
2463 HARD_TX_UNLOCK(dev, txq);
2464 if (net_ratelimit())
2465 printk(KERN_CRIT "Virtual device %s asks to "
2466 "queue packet!\n", dev->name);
2467 } else {
2468 /* Recursion is detected! It is possible,
2469 * unfortunately
2470 */
2471 recursion_alert:
2472 if (net_ratelimit())
2473 printk(KERN_CRIT "Dead loop on virtual device "
2474 "%s, fix it urgently!\n", dev->name);
2475 }
2476 }
2477
2478 rc = -ENETDOWN;
2479 rcu_read_unlock_bh();
2480
2481 kfree_skb(skb);
2482 return rc;
2483 out:
2484 rcu_read_unlock_bh();
2485 return rc;
2486 }
2487 EXPORT_SYMBOL(dev_queue_xmit);
2488
2489
2490 /*=======================================================================
2491 Receiver routines
2492 =======================================================================*/
2493
2494 int netdev_max_backlog __read_mostly = 1000;
2495 int netdev_tstamp_prequeue __read_mostly = 1;
2496 int netdev_budget __read_mostly = 300;
2497 int weight_p __read_mostly = 64; /* old backlog weight */
2498
2499 /* Called with irq disabled */
2500 static inline void ____napi_schedule(struct softnet_data *sd,
2501 struct napi_struct *napi)
2502 {
2503 list_add_tail(&napi->poll_list, &sd->poll_list);
2504 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2505 }
2506
2507 /*
2508 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2509 * and src/dst port numbers. Returns a non-zero hash number on success
2510 * and 0 on failure.
2511 */
2512 __u32 __skb_get_rxhash(struct sk_buff *skb)
2513 {
2514 int nhoff, hash = 0, poff;
2515 const struct ipv6hdr *ip6;
2516 const struct iphdr *ip;
2517 u8 ip_proto;
2518 u32 addr1, addr2, ihl;
2519 union {
2520 u32 v32;
2521 u16 v16[2];
2522 } ports;
2523
2524 nhoff = skb_network_offset(skb);
2525
2526 switch (skb->protocol) {
2527 case __constant_htons(ETH_P_IP):
2528 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2529 goto done;
2530
2531 ip = (const struct iphdr *) (skb->data + nhoff);
2532 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2533 ip_proto = 0;
2534 else
2535 ip_proto = ip->protocol;
2536 addr1 = (__force u32) ip->saddr;
2537 addr2 = (__force u32) ip->daddr;
2538 ihl = ip->ihl;
2539 break;
2540 case __constant_htons(ETH_P_IPV6):
2541 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2542 goto done;
2543
2544 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2545 ip_proto = ip6->nexthdr;
2546 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2547 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2548 ihl = (40 >> 2);
2549 break;
2550 default:
2551 goto done;
2552 }
2553
2554 ports.v32 = 0;
2555 poff = proto_ports_offset(ip_proto);
2556 if (poff >= 0) {
2557 nhoff += ihl * 4 + poff;
2558 if (pskb_may_pull(skb, nhoff + 4)) {
2559 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2560 if (ports.v16[1] < ports.v16[0])
2561 swap(ports.v16[0], ports.v16[1]);
2562 }
2563 }
2564
2565 /* get a consistent hash (same value on both flow directions) */
2566 if (addr2 < addr1)
2567 swap(addr1, addr2);
2568
2569 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2570 if (!hash)
2571 hash = 1;
2572
2573 done:
2574 return hash;
2575 }
2576 EXPORT_SYMBOL(__skb_get_rxhash);
2577
2578 #ifdef CONFIG_RPS
2579
2580 /* One global table that all flow-based protocols share. */
2581 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2582 EXPORT_SYMBOL(rps_sock_flow_table);
2583
2584 static struct rps_dev_flow *
2585 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2586 struct rps_dev_flow *rflow, u16 next_cpu)
2587 {
2588 u16 tcpu;
2589
2590 tcpu = rflow->cpu = next_cpu;
2591 if (tcpu != RPS_NO_CPU) {
2592 #ifdef CONFIG_RFS_ACCEL
2593 struct netdev_rx_queue *rxqueue;
2594 struct rps_dev_flow_table *flow_table;
2595 struct rps_dev_flow *old_rflow;
2596 u32 flow_id;
2597 u16 rxq_index;
2598 int rc;
2599
2600 /* Should we steer this flow to a different hardware queue? */
2601 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2602 !(dev->features & NETIF_F_NTUPLE))
2603 goto out;
2604 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2605 if (rxq_index == skb_get_rx_queue(skb))
2606 goto out;
2607
2608 rxqueue = dev->_rx + rxq_index;
2609 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2610 if (!flow_table)
2611 goto out;
2612 flow_id = skb->rxhash & flow_table->mask;
2613 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2614 rxq_index, flow_id);
2615 if (rc < 0)
2616 goto out;
2617 old_rflow = rflow;
2618 rflow = &flow_table->flows[flow_id];
2619 rflow->cpu = next_cpu;
2620 rflow->filter = rc;
2621 if (old_rflow->filter == rflow->filter)
2622 old_rflow->filter = RPS_NO_FILTER;
2623 out:
2624 #endif
2625 rflow->last_qtail =
2626 per_cpu(softnet_data, tcpu).input_queue_head;
2627 }
2628
2629 return rflow;
2630 }
2631
2632 /*
2633 * get_rps_cpu is called from netif_receive_skb and returns the target
2634 * CPU from the RPS map of the receiving queue for a given skb.
2635 * rcu_read_lock must be held on entry.
2636 */
2637 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2638 struct rps_dev_flow **rflowp)
2639 {
2640 struct netdev_rx_queue *rxqueue;
2641 struct rps_map *map;
2642 struct rps_dev_flow_table *flow_table;
2643 struct rps_sock_flow_table *sock_flow_table;
2644 int cpu = -1;
2645 u16 tcpu;
2646
2647 if (skb_rx_queue_recorded(skb)) {
2648 u16 index = skb_get_rx_queue(skb);
2649 if (unlikely(index >= dev->real_num_rx_queues)) {
2650 WARN_ONCE(dev->real_num_rx_queues > 1,
2651 "%s received packet on queue %u, but number "
2652 "of RX queues is %u\n",
2653 dev->name, index, dev->real_num_rx_queues);
2654 goto done;
2655 }
2656 rxqueue = dev->_rx + index;
2657 } else
2658 rxqueue = dev->_rx;
2659
2660 map = rcu_dereference(rxqueue->rps_map);
2661 if (map) {
2662 if (map->len == 1 &&
2663 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2664 tcpu = map->cpus[0];
2665 if (cpu_online(tcpu))
2666 cpu = tcpu;
2667 goto done;
2668 }
2669 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2670 goto done;
2671 }
2672
2673 skb_reset_network_header(skb);
2674 if (!skb_get_rxhash(skb))
2675 goto done;
2676
2677 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2678 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2679 if (flow_table && sock_flow_table) {
2680 u16 next_cpu;
2681 struct rps_dev_flow *rflow;
2682
2683 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2684 tcpu = rflow->cpu;
2685
2686 next_cpu = sock_flow_table->ents[skb->rxhash &
2687 sock_flow_table->mask];
2688
2689 /*
2690 * If the desired CPU (where last recvmsg was done) is
2691 * different from current CPU (one in the rx-queue flow
2692 * table entry), switch if one of the following holds:
2693 * - Current CPU is unset (equal to RPS_NO_CPU).
2694 * - Current CPU is offline.
2695 * - The current CPU's queue tail has advanced beyond the
2696 * last packet that was enqueued using this table entry.
2697 * This guarantees that all previous packets for the flow
2698 * have been dequeued, thus preserving in order delivery.
2699 */
2700 if (unlikely(tcpu != next_cpu) &&
2701 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2702 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2703 rflow->last_qtail)) >= 0))
2704 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2705
2706 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2707 *rflowp = rflow;
2708 cpu = tcpu;
2709 goto done;
2710 }
2711 }
2712
2713 if (map) {
2714 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2715
2716 if (cpu_online(tcpu)) {
2717 cpu = tcpu;
2718 goto done;
2719 }
2720 }
2721
2722 done:
2723 return cpu;
2724 }
2725
2726 #ifdef CONFIG_RFS_ACCEL
2727
2728 /**
2729 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2730 * @dev: Device on which the filter was set
2731 * @rxq_index: RX queue index
2732 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2733 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2734 *
2735 * Drivers that implement ndo_rx_flow_steer() should periodically call
2736 * this function for each installed filter and remove the filters for
2737 * which it returns %true.
2738 */
2739 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2740 u32 flow_id, u16 filter_id)
2741 {
2742 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2743 struct rps_dev_flow_table *flow_table;
2744 struct rps_dev_flow *rflow;
2745 bool expire = true;
2746 int cpu;
2747
2748 rcu_read_lock();
2749 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2750 if (flow_table && flow_id <= flow_table->mask) {
2751 rflow = &flow_table->flows[flow_id];
2752 cpu = ACCESS_ONCE(rflow->cpu);
2753 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2754 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2755 rflow->last_qtail) <
2756 (int)(10 * flow_table->mask)))
2757 expire = false;
2758 }
2759 rcu_read_unlock();
2760 return expire;
2761 }
2762 EXPORT_SYMBOL(rps_may_expire_flow);
2763
2764 #endif /* CONFIG_RFS_ACCEL */
2765
2766 /* Called from hardirq (IPI) context */
2767 static void rps_trigger_softirq(void *data)
2768 {
2769 struct softnet_data *sd = data;
2770
2771 ____napi_schedule(sd, &sd->backlog);
2772 sd->received_rps++;
2773 }
2774
2775 #endif /* CONFIG_RPS */
2776
2777 /*
2778 * Check if this softnet_data structure is another cpu one
2779 * If yes, queue it to our IPI list and return 1
2780 * If no, return 0
2781 */
2782 static int rps_ipi_queued(struct softnet_data *sd)
2783 {
2784 #ifdef CONFIG_RPS
2785 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2786
2787 if (sd != mysd) {
2788 sd->rps_ipi_next = mysd->rps_ipi_list;
2789 mysd->rps_ipi_list = sd;
2790
2791 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2792 return 1;
2793 }
2794 #endif /* CONFIG_RPS */
2795 return 0;
2796 }
2797
2798 /*
2799 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2800 * queue (may be a remote CPU queue).
2801 */
2802 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2803 unsigned int *qtail)
2804 {
2805 struct softnet_data *sd;
2806 unsigned long flags;
2807
2808 sd = &per_cpu(softnet_data, cpu);
2809
2810 local_irq_save(flags);
2811
2812 rps_lock(sd);
2813 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2814 if (skb_queue_len(&sd->input_pkt_queue)) {
2815 enqueue:
2816 __skb_queue_tail(&sd->input_pkt_queue, skb);
2817 input_queue_tail_incr_save(sd, qtail);
2818 rps_unlock(sd);
2819 local_irq_restore(flags);
2820 return NET_RX_SUCCESS;
2821 }
2822
2823 /* Schedule NAPI for backlog device
2824 * We can use non atomic operation since we own the queue lock
2825 */
2826 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2827 if (!rps_ipi_queued(sd))
2828 ____napi_schedule(sd, &sd->backlog);
2829 }
2830 goto enqueue;
2831 }
2832
2833 sd->dropped++;
2834 rps_unlock(sd);
2835
2836 local_irq_restore(flags);
2837
2838 atomic_long_inc(&skb->dev->rx_dropped);
2839 kfree_skb(skb);
2840 return NET_RX_DROP;
2841 }
2842
2843 /**
2844 * netif_rx - post buffer to the network code
2845 * @skb: buffer to post
2846 *
2847 * This function receives a packet from a device driver and queues it for
2848 * the upper (protocol) levels to process. It always succeeds. The buffer
2849 * may be dropped during processing for congestion control or by the
2850 * protocol layers.
2851 *
2852 * return values:
2853 * NET_RX_SUCCESS (no congestion)
2854 * NET_RX_DROP (packet was dropped)
2855 *
2856 */
2857
2858 int netif_rx(struct sk_buff *skb)
2859 {
2860 int ret;
2861
2862 /* if netpoll wants it, pretend we never saw it */
2863 if (netpoll_rx(skb))
2864 return NET_RX_DROP;
2865
2866 if (netdev_tstamp_prequeue)
2867 net_timestamp_check(skb);
2868
2869 trace_netif_rx(skb);
2870 #ifdef CONFIG_RPS
2871 {
2872 struct rps_dev_flow voidflow, *rflow = &voidflow;
2873 int cpu;
2874
2875 preempt_disable();
2876 rcu_read_lock();
2877
2878 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2879 if (cpu < 0)
2880 cpu = smp_processor_id();
2881
2882 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2883
2884 rcu_read_unlock();
2885 preempt_enable();
2886 }
2887 #else
2888 {
2889 unsigned int qtail;
2890 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2891 put_cpu();
2892 }
2893 #endif
2894 return ret;
2895 }
2896 EXPORT_SYMBOL(netif_rx);
2897
2898 int netif_rx_ni(struct sk_buff *skb)
2899 {
2900 int err;
2901
2902 preempt_disable();
2903 err = netif_rx(skb);
2904 if (local_softirq_pending())
2905 do_softirq();
2906 preempt_enable();
2907
2908 return err;
2909 }
2910 EXPORT_SYMBOL(netif_rx_ni);
2911
2912 static void net_tx_action(struct softirq_action *h)
2913 {
2914 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2915
2916 if (sd->completion_queue) {
2917 struct sk_buff *clist;
2918
2919 local_irq_disable();
2920 clist = sd->completion_queue;
2921 sd->completion_queue = NULL;
2922 local_irq_enable();
2923
2924 while (clist) {
2925 struct sk_buff *skb = clist;
2926 clist = clist->next;
2927
2928 WARN_ON(atomic_read(&skb->users));
2929 trace_kfree_skb(skb, net_tx_action);
2930 __kfree_skb(skb);
2931 }
2932 }
2933
2934 if (sd->output_queue) {
2935 struct Qdisc *head;
2936
2937 local_irq_disable();
2938 head = sd->output_queue;
2939 sd->output_queue = NULL;
2940 sd->output_queue_tailp = &sd->output_queue;
2941 local_irq_enable();
2942
2943 while (head) {
2944 struct Qdisc *q = head;
2945 spinlock_t *root_lock;
2946
2947 head = head->next_sched;
2948
2949 root_lock = qdisc_lock(q);
2950 if (spin_trylock(root_lock)) {
2951 smp_mb__before_clear_bit();
2952 clear_bit(__QDISC_STATE_SCHED,
2953 &q->state);
2954 qdisc_run(q);
2955 spin_unlock(root_lock);
2956 } else {
2957 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2958 &q->state)) {
2959 __netif_reschedule(q);
2960 } else {
2961 smp_mb__before_clear_bit();
2962 clear_bit(__QDISC_STATE_SCHED,
2963 &q->state);
2964 }
2965 }
2966 }
2967 }
2968 }
2969
2970 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2971 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2972 /* This hook is defined here for ATM LANE */
2973 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2974 unsigned char *addr) __read_mostly;
2975 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2976 #endif
2977
2978 #ifdef CONFIG_NET_CLS_ACT
2979 /* TODO: Maybe we should just force sch_ingress to be compiled in
2980 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2981 * a compare and 2 stores extra right now if we dont have it on
2982 * but have CONFIG_NET_CLS_ACT
2983 * NOTE: This doesn't stop any functionality; if you dont have
2984 * the ingress scheduler, you just can't add policies on ingress.
2985 *
2986 */
2987 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2988 {
2989 struct net_device *dev = skb->dev;
2990 u32 ttl = G_TC_RTTL(skb->tc_verd);
2991 int result = TC_ACT_OK;
2992 struct Qdisc *q;
2993
2994 if (unlikely(MAX_RED_LOOP < ttl++)) {
2995 if (net_ratelimit())
2996 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2997 skb->skb_iif, dev->ifindex);
2998 return TC_ACT_SHOT;
2999 }
3000
3001 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3002 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3003
3004 q = rxq->qdisc;
3005 if (q != &noop_qdisc) {
3006 spin_lock(qdisc_lock(q));
3007 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3008 result = qdisc_enqueue_root(skb, q);
3009 spin_unlock(qdisc_lock(q));
3010 }
3011
3012 return result;
3013 }
3014
3015 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3016 struct packet_type **pt_prev,
3017 int *ret, struct net_device *orig_dev)
3018 {
3019 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3020
3021 if (!rxq || rxq->qdisc == &noop_qdisc)
3022 goto out;
3023
3024 if (*pt_prev) {
3025 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3026 *pt_prev = NULL;
3027 }
3028
3029 switch (ing_filter(skb, rxq)) {
3030 case TC_ACT_SHOT:
3031 case TC_ACT_STOLEN:
3032 kfree_skb(skb);
3033 return NULL;
3034 }
3035
3036 out:
3037 skb->tc_verd = 0;
3038 return skb;
3039 }
3040 #endif
3041
3042 /**
3043 * netdev_rx_handler_register - register receive handler
3044 * @dev: device to register a handler for
3045 * @rx_handler: receive handler to register
3046 * @rx_handler_data: data pointer that is used by rx handler
3047 *
3048 * Register a receive hander for a device. This handler will then be
3049 * called from __netif_receive_skb. A negative errno code is returned
3050 * on a failure.
3051 *
3052 * The caller must hold the rtnl_mutex.
3053 *
3054 * For a general description of rx_handler, see enum rx_handler_result.
3055 */
3056 int netdev_rx_handler_register(struct net_device *dev,
3057 rx_handler_func_t *rx_handler,
3058 void *rx_handler_data)
3059 {
3060 ASSERT_RTNL();
3061
3062 if (dev->rx_handler)
3063 return -EBUSY;
3064
3065 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3066 rcu_assign_pointer(dev->rx_handler, rx_handler);
3067
3068 return 0;
3069 }
3070 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3071
3072 /**
3073 * netdev_rx_handler_unregister - unregister receive handler
3074 * @dev: device to unregister a handler from
3075 *
3076 * Unregister a receive hander from a device.
3077 *
3078 * The caller must hold the rtnl_mutex.
3079 */
3080 void netdev_rx_handler_unregister(struct net_device *dev)
3081 {
3082
3083 ASSERT_RTNL();
3084 rcu_assign_pointer(dev->rx_handler, NULL);
3085 rcu_assign_pointer(dev->rx_handler_data, NULL);
3086 }
3087 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3088
3089 static int __netif_receive_skb(struct sk_buff *skb)
3090 {
3091 struct packet_type *ptype, *pt_prev;
3092 rx_handler_func_t *rx_handler;
3093 struct net_device *orig_dev;
3094 struct net_device *null_or_dev;
3095 bool deliver_exact = false;
3096 int ret = NET_RX_DROP;
3097 __be16 type;
3098
3099 if (!netdev_tstamp_prequeue)
3100 net_timestamp_check(skb);
3101
3102 trace_netif_receive_skb(skb);
3103
3104 /* if we've gotten here through NAPI, check netpoll */
3105 if (netpoll_receive_skb(skb))
3106 return NET_RX_DROP;
3107
3108 if (!skb->skb_iif)
3109 skb->skb_iif = skb->dev->ifindex;
3110 orig_dev = skb->dev;
3111
3112 skb_reset_network_header(skb);
3113 skb_reset_transport_header(skb);
3114 skb->mac_len = skb->network_header - skb->mac_header;
3115
3116 pt_prev = NULL;
3117
3118 rcu_read_lock();
3119
3120 another_round:
3121
3122 __this_cpu_inc(softnet_data.processed);
3123
3124 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3125 skb = vlan_untag(skb);
3126 if (unlikely(!skb))
3127 goto out;
3128 }
3129
3130 #ifdef CONFIG_NET_CLS_ACT
3131 if (skb->tc_verd & TC_NCLS) {
3132 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3133 goto ncls;
3134 }
3135 #endif
3136
3137 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3138 if (!ptype->dev || ptype->dev == skb->dev) {
3139 if (pt_prev)
3140 ret = deliver_skb(skb, pt_prev, orig_dev);
3141 pt_prev = ptype;
3142 }
3143 }
3144
3145 #ifdef CONFIG_NET_CLS_ACT
3146 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3147 if (!skb)
3148 goto out;
3149 ncls:
3150 #endif
3151
3152 rx_handler = rcu_dereference(skb->dev->rx_handler);
3153 if (rx_handler) {
3154 if (pt_prev) {
3155 ret = deliver_skb(skb, pt_prev, orig_dev);
3156 pt_prev = NULL;
3157 }
3158 switch (rx_handler(&skb)) {
3159 case RX_HANDLER_CONSUMED:
3160 goto out;
3161 case RX_HANDLER_ANOTHER:
3162 goto another_round;
3163 case RX_HANDLER_EXACT:
3164 deliver_exact = true;
3165 case RX_HANDLER_PASS:
3166 break;
3167 default:
3168 BUG();
3169 }
3170 }
3171
3172 if (vlan_tx_tag_present(skb)) {
3173 if (pt_prev) {
3174 ret = deliver_skb(skb, pt_prev, orig_dev);
3175 pt_prev = NULL;
3176 }
3177 if (vlan_do_receive(&skb)) {
3178 ret = __netif_receive_skb(skb);
3179 goto out;
3180 } else if (unlikely(!skb))
3181 goto out;
3182 }
3183
3184 /* deliver only exact match when indicated */
3185 null_or_dev = deliver_exact ? skb->dev : NULL;
3186
3187 type = skb->protocol;
3188 list_for_each_entry_rcu(ptype,
3189 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3190 if (ptype->type == type &&
3191 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3192 ptype->dev == orig_dev)) {
3193 if (pt_prev)
3194 ret = deliver_skb(skb, pt_prev, orig_dev);
3195 pt_prev = ptype;
3196 }
3197 }
3198
3199 if (pt_prev) {
3200 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3201 } else {
3202 atomic_long_inc(&skb->dev->rx_dropped);
3203 kfree_skb(skb);
3204 /* Jamal, now you will not able to escape explaining
3205 * me how you were going to use this. :-)
3206 */
3207 ret = NET_RX_DROP;
3208 }
3209
3210 out:
3211 rcu_read_unlock();
3212 return ret;
3213 }
3214
3215 /**
3216 * netif_receive_skb - process receive buffer from network
3217 * @skb: buffer to process
3218 *
3219 * netif_receive_skb() is the main receive data processing function.
3220 * It always succeeds. The buffer may be dropped during processing
3221 * for congestion control or by the protocol layers.
3222 *
3223 * This function may only be called from softirq context and interrupts
3224 * should be enabled.
3225 *
3226 * Return values (usually ignored):
3227 * NET_RX_SUCCESS: no congestion
3228 * NET_RX_DROP: packet was dropped
3229 */
3230 int netif_receive_skb(struct sk_buff *skb)
3231 {
3232 if (netdev_tstamp_prequeue)
3233 net_timestamp_check(skb);
3234
3235 if (skb_defer_rx_timestamp(skb))
3236 return NET_RX_SUCCESS;
3237
3238 #ifdef CONFIG_RPS
3239 {
3240 struct rps_dev_flow voidflow, *rflow = &voidflow;
3241 int cpu, ret;
3242
3243 rcu_read_lock();
3244
3245 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3246
3247 if (cpu >= 0) {
3248 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3249 rcu_read_unlock();
3250 } else {
3251 rcu_read_unlock();
3252 ret = __netif_receive_skb(skb);
3253 }
3254
3255 return ret;
3256 }
3257 #else
3258 return __netif_receive_skb(skb);
3259 #endif
3260 }
3261 EXPORT_SYMBOL(netif_receive_skb);
3262
3263 /* Network device is going away, flush any packets still pending
3264 * Called with irqs disabled.
3265 */
3266 static void flush_backlog(void *arg)
3267 {
3268 struct net_device *dev = arg;
3269 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3270 struct sk_buff *skb, *tmp;
3271
3272 rps_lock(sd);
3273 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3274 if (skb->dev == dev) {
3275 __skb_unlink(skb, &sd->input_pkt_queue);
3276 kfree_skb(skb);
3277 input_queue_head_incr(sd);
3278 }
3279 }
3280 rps_unlock(sd);
3281
3282 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3283 if (skb->dev == dev) {
3284 __skb_unlink(skb, &sd->process_queue);
3285 kfree_skb(skb);
3286 input_queue_head_incr(sd);
3287 }
3288 }
3289 }
3290
3291 static int napi_gro_complete(struct sk_buff *skb)
3292 {
3293 struct packet_type *ptype;
3294 __be16 type = skb->protocol;
3295 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3296 int err = -ENOENT;
3297
3298 if (NAPI_GRO_CB(skb)->count == 1) {
3299 skb_shinfo(skb)->gso_size = 0;
3300 goto out;
3301 }
3302
3303 rcu_read_lock();
3304 list_for_each_entry_rcu(ptype, head, list) {
3305 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3306 continue;
3307
3308 err = ptype->gro_complete(skb);
3309 break;
3310 }
3311 rcu_read_unlock();
3312
3313 if (err) {
3314 WARN_ON(&ptype->list == head);
3315 kfree_skb(skb);
3316 return NET_RX_SUCCESS;
3317 }
3318
3319 out:
3320 return netif_receive_skb(skb);
3321 }
3322
3323 inline void napi_gro_flush(struct napi_struct *napi)
3324 {
3325 struct sk_buff *skb, *next;
3326
3327 for (skb = napi->gro_list; skb; skb = next) {
3328 next = skb->next;
3329 skb->next = NULL;
3330 napi_gro_complete(skb);
3331 }
3332
3333 napi->gro_count = 0;
3334 napi->gro_list = NULL;
3335 }
3336 EXPORT_SYMBOL(napi_gro_flush);
3337
3338 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3339 {
3340 struct sk_buff **pp = NULL;
3341 struct packet_type *ptype;
3342 __be16 type = skb->protocol;
3343 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3344 int same_flow;
3345 int mac_len;
3346 enum gro_result ret;
3347
3348 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3349 goto normal;
3350
3351 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3352 goto normal;
3353
3354 rcu_read_lock();
3355 list_for_each_entry_rcu(ptype, head, list) {
3356 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3357 continue;
3358
3359 skb_set_network_header(skb, skb_gro_offset(skb));
3360 mac_len = skb->network_header - skb->mac_header;
3361 skb->mac_len = mac_len;
3362 NAPI_GRO_CB(skb)->same_flow = 0;
3363 NAPI_GRO_CB(skb)->flush = 0;
3364 NAPI_GRO_CB(skb)->free = 0;
3365
3366 pp = ptype->gro_receive(&napi->gro_list, skb);
3367 break;
3368 }
3369 rcu_read_unlock();
3370
3371 if (&ptype->list == head)
3372 goto normal;
3373
3374 same_flow = NAPI_GRO_CB(skb)->same_flow;
3375 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3376
3377 if (pp) {
3378 struct sk_buff *nskb = *pp;
3379
3380 *pp = nskb->next;
3381 nskb->next = NULL;
3382 napi_gro_complete(nskb);
3383 napi->gro_count--;
3384 }
3385
3386 if (same_flow)
3387 goto ok;
3388
3389 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3390 goto normal;
3391
3392 napi->gro_count++;
3393 NAPI_GRO_CB(skb)->count = 1;
3394 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3395 skb->next = napi->gro_list;
3396 napi->gro_list = skb;
3397 ret = GRO_HELD;
3398
3399 pull:
3400 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3401 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3402
3403 BUG_ON(skb->end - skb->tail < grow);
3404
3405 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3406
3407 skb->tail += grow;
3408 skb->data_len -= grow;
3409
3410 skb_shinfo(skb)->frags[0].page_offset += grow;
3411 skb_shinfo(skb)->frags[0].size -= grow;
3412
3413 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3414 put_page(skb_shinfo(skb)->frags[0].page);
3415 memmove(skb_shinfo(skb)->frags,
3416 skb_shinfo(skb)->frags + 1,
3417 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3418 }
3419 }
3420
3421 ok:
3422 return ret;
3423
3424 normal:
3425 ret = GRO_NORMAL;
3426 goto pull;
3427 }
3428 EXPORT_SYMBOL(dev_gro_receive);
3429
3430 static inline gro_result_t
3431 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3432 {
3433 struct sk_buff *p;
3434
3435 for (p = napi->gro_list; p; p = p->next) {
3436 unsigned long diffs;
3437
3438 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3439 diffs |= p->vlan_tci ^ skb->vlan_tci;
3440 diffs |= compare_ether_header(skb_mac_header(p),
3441 skb_gro_mac_header(skb));
3442 NAPI_GRO_CB(p)->same_flow = !diffs;
3443 NAPI_GRO_CB(p)->flush = 0;
3444 }
3445
3446 return dev_gro_receive(napi, skb);
3447 }
3448
3449 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3450 {
3451 switch (ret) {
3452 case GRO_NORMAL:
3453 if (netif_receive_skb(skb))
3454 ret = GRO_DROP;
3455 break;
3456
3457 case GRO_DROP:
3458 case GRO_MERGED_FREE:
3459 kfree_skb(skb);
3460 break;
3461
3462 case GRO_HELD:
3463 case GRO_MERGED:
3464 break;
3465 }
3466
3467 return ret;
3468 }
3469 EXPORT_SYMBOL(napi_skb_finish);
3470
3471 void skb_gro_reset_offset(struct sk_buff *skb)
3472 {
3473 NAPI_GRO_CB(skb)->data_offset = 0;
3474 NAPI_GRO_CB(skb)->frag0 = NULL;
3475 NAPI_GRO_CB(skb)->frag0_len = 0;
3476
3477 if (skb->mac_header == skb->tail &&
3478 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3479 NAPI_GRO_CB(skb)->frag0 =
3480 page_address(skb_shinfo(skb)->frags[0].page) +
3481 skb_shinfo(skb)->frags[0].page_offset;
3482 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3483 }
3484 }
3485 EXPORT_SYMBOL(skb_gro_reset_offset);
3486
3487 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3488 {
3489 skb_gro_reset_offset(skb);
3490
3491 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3492 }
3493 EXPORT_SYMBOL(napi_gro_receive);
3494
3495 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3496 {
3497 __skb_pull(skb, skb_headlen(skb));
3498 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3499 skb->vlan_tci = 0;
3500 skb->dev = napi->dev;
3501 skb->skb_iif = 0;
3502
3503 napi->skb = skb;
3504 }
3505
3506 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3507 {
3508 struct sk_buff *skb = napi->skb;
3509
3510 if (!skb) {
3511 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3512 if (skb)
3513 napi->skb = skb;
3514 }
3515 return skb;
3516 }
3517 EXPORT_SYMBOL(napi_get_frags);
3518
3519 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3520 gro_result_t ret)
3521 {
3522 switch (ret) {
3523 case GRO_NORMAL:
3524 case GRO_HELD:
3525 skb->protocol = eth_type_trans(skb, skb->dev);
3526
3527 if (ret == GRO_HELD)
3528 skb_gro_pull(skb, -ETH_HLEN);
3529 else if (netif_receive_skb(skb))
3530 ret = GRO_DROP;
3531 break;
3532
3533 case GRO_DROP:
3534 case GRO_MERGED_FREE:
3535 napi_reuse_skb(napi, skb);
3536 break;
3537
3538 case GRO_MERGED:
3539 break;
3540 }
3541
3542 return ret;
3543 }
3544 EXPORT_SYMBOL(napi_frags_finish);
3545
3546 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3547 {
3548 struct sk_buff *skb = napi->skb;
3549 struct ethhdr *eth;
3550 unsigned int hlen;
3551 unsigned int off;
3552
3553 napi->skb = NULL;
3554
3555 skb_reset_mac_header(skb);
3556 skb_gro_reset_offset(skb);
3557
3558 off = skb_gro_offset(skb);
3559 hlen = off + sizeof(*eth);
3560 eth = skb_gro_header_fast(skb, off);
3561 if (skb_gro_header_hard(skb, hlen)) {
3562 eth = skb_gro_header_slow(skb, hlen, off);
3563 if (unlikely(!eth)) {
3564 napi_reuse_skb(napi, skb);
3565 skb = NULL;
3566 goto out;
3567 }
3568 }
3569
3570 skb_gro_pull(skb, sizeof(*eth));
3571
3572 /*
3573 * This works because the only protocols we care about don't require
3574 * special handling. We'll fix it up properly at the end.
3575 */
3576 skb->protocol = eth->h_proto;
3577
3578 out:
3579 return skb;
3580 }
3581 EXPORT_SYMBOL(napi_frags_skb);
3582
3583 gro_result_t napi_gro_frags(struct napi_struct *napi)
3584 {
3585 struct sk_buff *skb = napi_frags_skb(napi);
3586
3587 if (!skb)
3588 return GRO_DROP;
3589
3590 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3591 }
3592 EXPORT_SYMBOL(napi_gro_frags);
3593
3594 /*
3595 * net_rps_action sends any pending IPI's for rps.
3596 * Note: called with local irq disabled, but exits with local irq enabled.
3597 */
3598 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3599 {
3600 #ifdef CONFIG_RPS
3601 struct softnet_data *remsd = sd->rps_ipi_list;
3602
3603 if (remsd) {
3604 sd->rps_ipi_list = NULL;
3605
3606 local_irq_enable();
3607
3608 /* Send pending IPI's to kick RPS processing on remote cpus. */
3609 while (remsd) {
3610 struct softnet_data *next = remsd->rps_ipi_next;
3611
3612 if (cpu_online(remsd->cpu))
3613 __smp_call_function_single(remsd->cpu,
3614 &remsd->csd, 0);
3615 remsd = next;
3616 }
3617 } else
3618 #endif
3619 local_irq_enable();
3620 }
3621
3622 static int process_backlog(struct napi_struct *napi, int quota)
3623 {
3624 int work = 0;
3625 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3626
3627 #ifdef CONFIG_RPS
3628 /* Check if we have pending ipi, its better to send them now,
3629 * not waiting net_rx_action() end.
3630 */
3631 if (sd->rps_ipi_list) {
3632 local_irq_disable();
3633 net_rps_action_and_irq_enable(sd);
3634 }
3635 #endif
3636 napi->weight = weight_p;
3637 local_irq_disable();
3638 while (work < quota) {
3639 struct sk_buff *skb;
3640 unsigned int qlen;
3641
3642 while ((skb = __skb_dequeue(&sd->process_queue))) {
3643 local_irq_enable();
3644 __netif_receive_skb(skb);
3645 local_irq_disable();
3646 input_queue_head_incr(sd);
3647 if (++work >= quota) {
3648 local_irq_enable();
3649 return work;
3650 }
3651 }
3652
3653 rps_lock(sd);
3654 qlen = skb_queue_len(&sd->input_pkt_queue);
3655 if (qlen)
3656 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3657 &sd->process_queue);
3658
3659 if (qlen < quota - work) {
3660 /*
3661 * Inline a custom version of __napi_complete().
3662 * only current cpu owns and manipulates this napi,
3663 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3664 * we can use a plain write instead of clear_bit(),
3665 * and we dont need an smp_mb() memory barrier.
3666 */
3667 list_del(&napi->poll_list);
3668 napi->state = 0;
3669
3670 quota = work + qlen;
3671 }
3672 rps_unlock(sd);
3673 }
3674 local_irq_enable();
3675
3676 return work;
3677 }
3678
3679 /**
3680 * __napi_schedule - schedule for receive
3681 * @n: entry to schedule
3682 *
3683 * The entry's receive function will be scheduled to run
3684 */
3685 void __napi_schedule(struct napi_struct *n)
3686 {
3687 unsigned long flags;
3688
3689 local_irq_save(flags);
3690 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3691 local_irq_restore(flags);
3692 }
3693 EXPORT_SYMBOL(__napi_schedule);
3694
3695 void __napi_complete(struct napi_struct *n)
3696 {
3697 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3698 BUG_ON(n->gro_list);
3699
3700 list_del(&n->poll_list);
3701 smp_mb__before_clear_bit();
3702 clear_bit(NAPI_STATE_SCHED, &n->state);
3703 }
3704 EXPORT_SYMBOL(__napi_complete);
3705
3706 void napi_complete(struct napi_struct *n)
3707 {
3708 unsigned long flags;
3709
3710 /*
3711 * don't let napi dequeue from the cpu poll list
3712 * just in case its running on a different cpu
3713 */
3714 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3715 return;
3716
3717 napi_gro_flush(n);
3718 local_irq_save(flags);
3719 __napi_complete(n);
3720 local_irq_restore(flags);
3721 }
3722 EXPORT_SYMBOL(napi_complete);
3723
3724 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3725 int (*poll)(struct napi_struct *, int), int weight)
3726 {
3727 INIT_LIST_HEAD(&napi->poll_list);
3728 napi->gro_count = 0;
3729 napi->gro_list = NULL;
3730 napi->skb = NULL;
3731 napi->poll = poll;
3732 napi->weight = weight;
3733 list_add(&napi->dev_list, &dev->napi_list);
3734 napi->dev = dev;
3735 #ifdef CONFIG_NETPOLL
3736 spin_lock_init(&napi->poll_lock);
3737 napi->poll_owner = -1;
3738 #endif
3739 set_bit(NAPI_STATE_SCHED, &napi->state);
3740 }
3741 EXPORT_SYMBOL(netif_napi_add);
3742
3743 void netif_napi_del(struct napi_struct *napi)
3744 {
3745 struct sk_buff *skb, *next;
3746
3747 list_del_init(&napi->dev_list);
3748 napi_free_frags(napi);
3749
3750 for (skb = napi->gro_list; skb; skb = next) {
3751 next = skb->next;
3752 skb->next = NULL;
3753 kfree_skb(skb);
3754 }
3755
3756 napi->gro_list = NULL;
3757 napi->gro_count = 0;
3758 }
3759 EXPORT_SYMBOL(netif_napi_del);
3760
3761 static void net_rx_action(struct softirq_action *h)
3762 {
3763 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3764 unsigned long time_limit = jiffies + 2;
3765 int budget = netdev_budget;
3766 void *have;
3767
3768 local_irq_disable();
3769
3770 while (!list_empty(&sd->poll_list)) {
3771 struct napi_struct *n;
3772 int work, weight;
3773
3774 /* If softirq window is exhuasted then punt.
3775 * Allow this to run for 2 jiffies since which will allow
3776 * an average latency of 1.5/HZ.
3777 */
3778 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3779 goto softnet_break;
3780
3781 local_irq_enable();
3782
3783 /* Even though interrupts have been re-enabled, this
3784 * access is safe because interrupts can only add new
3785 * entries to the tail of this list, and only ->poll()
3786 * calls can remove this head entry from the list.
3787 */
3788 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3789
3790 have = netpoll_poll_lock(n);
3791
3792 weight = n->weight;
3793
3794 /* This NAPI_STATE_SCHED test is for avoiding a race
3795 * with netpoll's poll_napi(). Only the entity which
3796 * obtains the lock and sees NAPI_STATE_SCHED set will
3797 * actually make the ->poll() call. Therefore we avoid
3798 * accidentally calling ->poll() when NAPI is not scheduled.
3799 */
3800 work = 0;
3801 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3802 work = n->poll(n, weight);
3803 trace_napi_poll(n);
3804 }
3805
3806 WARN_ON_ONCE(work > weight);
3807
3808 budget -= work;
3809
3810 local_irq_disable();
3811
3812 /* Drivers must not modify the NAPI state if they
3813 * consume the entire weight. In such cases this code
3814 * still "owns" the NAPI instance and therefore can
3815 * move the instance around on the list at-will.
3816 */
3817 if (unlikely(work == weight)) {
3818 if (unlikely(napi_disable_pending(n))) {
3819 local_irq_enable();
3820 napi_complete(n);
3821 local_irq_disable();
3822 } else
3823 list_move_tail(&n->poll_list, &sd->poll_list);
3824 }
3825
3826 netpoll_poll_unlock(have);
3827 }
3828 out:
3829 net_rps_action_and_irq_enable(sd);
3830
3831 #ifdef CONFIG_NET_DMA
3832 /*
3833 * There may not be any more sk_buffs coming right now, so push
3834 * any pending DMA copies to hardware
3835 */
3836 dma_issue_pending_all();
3837 #endif
3838
3839 return;
3840
3841 softnet_break:
3842 sd->time_squeeze++;
3843 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3844 goto out;
3845 }
3846
3847 static gifconf_func_t *gifconf_list[NPROTO];
3848
3849 /**
3850 * register_gifconf - register a SIOCGIF handler
3851 * @family: Address family
3852 * @gifconf: Function handler
3853 *
3854 * Register protocol dependent address dumping routines. The handler
3855 * that is passed must not be freed or reused until it has been replaced
3856 * by another handler.
3857 */
3858 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3859 {
3860 if (family >= NPROTO)
3861 return -EINVAL;
3862 gifconf_list[family] = gifconf;
3863 return 0;
3864 }
3865 EXPORT_SYMBOL(register_gifconf);
3866
3867
3868 /*
3869 * Map an interface index to its name (SIOCGIFNAME)
3870 */
3871
3872 /*
3873 * We need this ioctl for efficient implementation of the
3874 * if_indextoname() function required by the IPv6 API. Without
3875 * it, we would have to search all the interfaces to find a
3876 * match. --pb
3877 */
3878
3879 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3880 {
3881 struct net_device *dev;
3882 struct ifreq ifr;
3883
3884 /*
3885 * Fetch the caller's info block.
3886 */
3887
3888 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3889 return -EFAULT;
3890
3891 rcu_read_lock();
3892 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3893 if (!dev) {
3894 rcu_read_unlock();
3895 return -ENODEV;
3896 }
3897
3898 strcpy(ifr.ifr_name, dev->name);
3899 rcu_read_unlock();
3900
3901 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3902 return -EFAULT;
3903 return 0;
3904 }
3905
3906 /*
3907 * Perform a SIOCGIFCONF call. This structure will change
3908 * size eventually, and there is nothing I can do about it.
3909 * Thus we will need a 'compatibility mode'.
3910 */
3911
3912 static int dev_ifconf(struct net *net, char __user *arg)
3913 {
3914 struct ifconf ifc;
3915 struct net_device *dev;
3916 char __user *pos;
3917 int len;
3918 int total;
3919 int i;
3920
3921 /*
3922 * Fetch the caller's info block.
3923 */
3924
3925 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3926 return -EFAULT;
3927
3928 pos = ifc.ifc_buf;
3929 len = ifc.ifc_len;
3930
3931 /*
3932 * Loop over the interfaces, and write an info block for each.
3933 */
3934
3935 total = 0;
3936 for_each_netdev(net, dev) {
3937 for (i = 0; i < NPROTO; i++) {
3938 if (gifconf_list[i]) {
3939 int done;
3940 if (!pos)
3941 done = gifconf_list[i](dev, NULL, 0);
3942 else
3943 done = gifconf_list[i](dev, pos + total,
3944 len - total);
3945 if (done < 0)
3946 return -EFAULT;
3947 total += done;
3948 }
3949 }
3950 }
3951
3952 /*
3953 * All done. Write the updated control block back to the caller.
3954 */
3955 ifc.ifc_len = total;
3956
3957 /*
3958 * Both BSD and Solaris return 0 here, so we do too.
3959 */
3960 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3961 }
3962
3963 #ifdef CONFIG_PROC_FS
3964 /*
3965 * This is invoked by the /proc filesystem handler to display a device
3966 * in detail.
3967 */
3968 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3969 __acquires(RCU)
3970 {
3971 struct net *net = seq_file_net(seq);
3972 loff_t off;
3973 struct net_device *dev;
3974
3975 rcu_read_lock();
3976 if (!*pos)
3977 return SEQ_START_TOKEN;
3978
3979 off = 1;
3980 for_each_netdev_rcu(net, dev)
3981 if (off++ == *pos)
3982 return dev;
3983
3984 return NULL;
3985 }
3986
3987 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3988 {
3989 struct net_device *dev = v;
3990
3991 if (v == SEQ_START_TOKEN)
3992 dev = first_net_device_rcu(seq_file_net(seq));
3993 else
3994 dev = next_net_device_rcu(dev);
3995
3996 ++*pos;
3997 return dev;
3998 }
3999
4000 void dev_seq_stop(struct seq_file *seq, void *v)
4001 __releases(RCU)
4002 {
4003 rcu_read_unlock();
4004 }
4005
4006 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4007 {
4008 struct rtnl_link_stats64 temp;
4009 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4010
4011 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4012 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4013 dev->name, stats->rx_bytes, stats->rx_packets,
4014 stats->rx_errors,
4015 stats->rx_dropped + stats->rx_missed_errors,
4016 stats->rx_fifo_errors,
4017 stats->rx_length_errors + stats->rx_over_errors +
4018 stats->rx_crc_errors + stats->rx_frame_errors,
4019 stats->rx_compressed, stats->multicast,
4020 stats->tx_bytes, stats->tx_packets,
4021 stats->tx_errors, stats->tx_dropped,
4022 stats->tx_fifo_errors, stats->collisions,
4023 stats->tx_carrier_errors +
4024 stats->tx_aborted_errors +
4025 stats->tx_window_errors +
4026 stats->tx_heartbeat_errors,
4027 stats->tx_compressed);
4028 }
4029
4030 /*
4031 * Called from the PROCfs module. This now uses the new arbitrary sized
4032 * /proc/net interface to create /proc/net/dev
4033 */
4034 static int dev_seq_show(struct seq_file *seq, void *v)
4035 {
4036 if (v == SEQ_START_TOKEN)
4037 seq_puts(seq, "Inter-| Receive "
4038 " | Transmit\n"
4039 " face |bytes packets errs drop fifo frame "
4040 "compressed multicast|bytes packets errs "
4041 "drop fifo colls carrier compressed\n");
4042 else
4043 dev_seq_printf_stats(seq, v);
4044 return 0;
4045 }
4046
4047 static struct softnet_data *softnet_get_online(loff_t *pos)
4048 {
4049 struct softnet_data *sd = NULL;
4050
4051 while (*pos < nr_cpu_ids)
4052 if (cpu_online(*pos)) {
4053 sd = &per_cpu(softnet_data, *pos);
4054 break;
4055 } else
4056 ++*pos;
4057 return sd;
4058 }
4059
4060 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4061 {
4062 return softnet_get_online(pos);
4063 }
4064
4065 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4066 {
4067 ++*pos;
4068 return softnet_get_online(pos);
4069 }
4070
4071 static void softnet_seq_stop(struct seq_file *seq, void *v)
4072 {
4073 }
4074
4075 static int softnet_seq_show(struct seq_file *seq, void *v)
4076 {
4077 struct softnet_data *sd = v;
4078
4079 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4080 sd->processed, sd->dropped, sd->time_squeeze, 0,
4081 0, 0, 0, 0, /* was fastroute */
4082 sd->cpu_collision, sd->received_rps);
4083 return 0;
4084 }
4085
4086 static const struct seq_operations dev_seq_ops = {
4087 .start = dev_seq_start,
4088 .next = dev_seq_next,
4089 .stop = dev_seq_stop,
4090 .show = dev_seq_show,
4091 };
4092
4093 static int dev_seq_open(struct inode *inode, struct file *file)
4094 {
4095 return seq_open_net(inode, file, &dev_seq_ops,
4096 sizeof(struct seq_net_private));
4097 }
4098
4099 static const struct file_operations dev_seq_fops = {
4100 .owner = THIS_MODULE,
4101 .open = dev_seq_open,
4102 .read = seq_read,
4103 .llseek = seq_lseek,
4104 .release = seq_release_net,
4105 };
4106
4107 static const struct seq_operations softnet_seq_ops = {
4108 .start = softnet_seq_start,
4109 .next = softnet_seq_next,
4110 .stop = softnet_seq_stop,
4111 .show = softnet_seq_show,
4112 };
4113
4114 static int softnet_seq_open(struct inode *inode, struct file *file)
4115 {
4116 return seq_open(file, &softnet_seq_ops);
4117 }
4118
4119 static const struct file_operations softnet_seq_fops = {
4120 .owner = THIS_MODULE,
4121 .open = softnet_seq_open,
4122 .read = seq_read,
4123 .llseek = seq_lseek,
4124 .release = seq_release,
4125 };
4126
4127 static void *ptype_get_idx(loff_t pos)
4128 {
4129 struct packet_type *pt = NULL;
4130 loff_t i = 0;
4131 int t;
4132
4133 list_for_each_entry_rcu(pt, &ptype_all, list) {
4134 if (i == pos)
4135 return pt;
4136 ++i;
4137 }
4138
4139 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4140 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4141 if (i == pos)
4142 return pt;
4143 ++i;
4144 }
4145 }
4146 return NULL;
4147 }
4148
4149 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4150 __acquires(RCU)
4151 {
4152 rcu_read_lock();
4153 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4154 }
4155
4156 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4157 {
4158 struct packet_type *pt;
4159 struct list_head *nxt;
4160 int hash;
4161
4162 ++*pos;
4163 if (v == SEQ_START_TOKEN)
4164 return ptype_get_idx(0);
4165
4166 pt = v;
4167 nxt = pt->list.next;
4168 if (pt->type == htons(ETH_P_ALL)) {
4169 if (nxt != &ptype_all)
4170 goto found;
4171 hash = 0;
4172 nxt = ptype_base[0].next;
4173 } else
4174 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4175
4176 while (nxt == &ptype_base[hash]) {
4177 if (++hash >= PTYPE_HASH_SIZE)
4178 return NULL;
4179 nxt = ptype_base[hash].next;
4180 }
4181 found:
4182 return list_entry(nxt, struct packet_type, list);
4183 }
4184
4185 static void ptype_seq_stop(struct seq_file *seq, void *v)
4186 __releases(RCU)
4187 {
4188 rcu_read_unlock();
4189 }
4190
4191 static int ptype_seq_show(struct seq_file *seq, void *v)
4192 {
4193 struct packet_type *pt = v;
4194
4195 if (v == SEQ_START_TOKEN)
4196 seq_puts(seq, "Type Device Function\n");
4197 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4198 if (pt->type == htons(ETH_P_ALL))
4199 seq_puts(seq, "ALL ");
4200 else
4201 seq_printf(seq, "%04x", ntohs(pt->type));
4202
4203 seq_printf(seq, " %-8s %pF\n",
4204 pt->dev ? pt->dev->name : "", pt->func);
4205 }
4206
4207 return 0;
4208 }
4209
4210 static const struct seq_operations ptype_seq_ops = {
4211 .start = ptype_seq_start,
4212 .next = ptype_seq_next,
4213 .stop = ptype_seq_stop,
4214 .show = ptype_seq_show,
4215 };
4216
4217 static int ptype_seq_open(struct inode *inode, struct file *file)
4218 {
4219 return seq_open_net(inode, file, &ptype_seq_ops,
4220 sizeof(struct seq_net_private));
4221 }
4222
4223 static const struct file_operations ptype_seq_fops = {
4224 .owner = THIS_MODULE,
4225 .open = ptype_seq_open,
4226 .read = seq_read,
4227 .llseek = seq_lseek,
4228 .release = seq_release_net,
4229 };
4230
4231
4232 static int __net_init dev_proc_net_init(struct net *net)
4233 {
4234 int rc = -ENOMEM;
4235
4236 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4237 goto out;
4238 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4239 goto out_dev;
4240 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4241 goto out_softnet;
4242
4243 if (wext_proc_init(net))
4244 goto out_ptype;
4245 rc = 0;
4246 out:
4247 return rc;
4248 out_ptype:
4249 proc_net_remove(net, "ptype");
4250 out_softnet:
4251 proc_net_remove(net, "softnet_stat");
4252 out_dev:
4253 proc_net_remove(net, "dev");
4254 goto out;
4255 }
4256
4257 static void __net_exit dev_proc_net_exit(struct net *net)
4258 {
4259 wext_proc_exit(net);
4260
4261 proc_net_remove(net, "ptype");
4262 proc_net_remove(net, "softnet_stat");
4263 proc_net_remove(net, "dev");
4264 }
4265
4266 static struct pernet_operations __net_initdata dev_proc_ops = {
4267 .init = dev_proc_net_init,
4268 .exit = dev_proc_net_exit,
4269 };
4270
4271 static int __init dev_proc_init(void)
4272 {
4273 return register_pernet_subsys(&dev_proc_ops);
4274 }
4275 #else
4276 #define dev_proc_init() 0
4277 #endif /* CONFIG_PROC_FS */
4278
4279
4280 /**
4281 * netdev_set_master - set up master pointer
4282 * @slave: slave device
4283 * @master: new master device
4284 *
4285 * Changes the master device of the slave. Pass %NULL to break the
4286 * bonding. The caller must hold the RTNL semaphore. On a failure
4287 * a negative errno code is returned. On success the reference counts
4288 * are adjusted and the function returns zero.
4289 */
4290 int netdev_set_master(struct net_device *slave, struct net_device *master)
4291 {
4292 struct net_device *old = slave->master;
4293
4294 ASSERT_RTNL();
4295
4296 if (master) {
4297 if (old)
4298 return -EBUSY;
4299 dev_hold(master);
4300 }
4301
4302 slave->master = master;
4303
4304 if (old)
4305 dev_put(old);
4306 return 0;
4307 }
4308 EXPORT_SYMBOL(netdev_set_master);
4309
4310 /**
4311 * netdev_set_bond_master - set up bonding master/slave pair
4312 * @slave: slave device
4313 * @master: new master device
4314 *
4315 * Changes the master device of the slave. Pass %NULL to break the
4316 * bonding. The caller must hold the RTNL semaphore. On a failure
4317 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4318 * to the routing socket and the function returns zero.
4319 */
4320 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4321 {
4322 int err;
4323
4324 ASSERT_RTNL();
4325
4326 err = netdev_set_master(slave, master);
4327 if (err)
4328 return err;
4329 if (master)
4330 slave->flags |= IFF_SLAVE;
4331 else
4332 slave->flags &= ~IFF_SLAVE;
4333
4334 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4335 return 0;
4336 }
4337 EXPORT_SYMBOL(netdev_set_bond_master);
4338
4339 static void dev_change_rx_flags(struct net_device *dev, int flags)
4340 {
4341 const struct net_device_ops *ops = dev->netdev_ops;
4342
4343 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4344 ops->ndo_change_rx_flags(dev, flags);
4345 }
4346
4347 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4348 {
4349 unsigned short old_flags = dev->flags;
4350 uid_t uid;
4351 gid_t gid;
4352
4353 ASSERT_RTNL();
4354
4355 dev->flags |= IFF_PROMISC;
4356 dev->promiscuity += inc;
4357 if (dev->promiscuity == 0) {
4358 /*
4359 * Avoid overflow.
4360 * If inc causes overflow, untouch promisc and return error.
4361 */
4362 if (inc < 0)
4363 dev->flags &= ~IFF_PROMISC;
4364 else {
4365 dev->promiscuity -= inc;
4366 printk(KERN_WARNING "%s: promiscuity touches roof, "
4367 "set promiscuity failed, promiscuity feature "
4368 "of device might be broken.\n", dev->name);
4369 return -EOVERFLOW;
4370 }
4371 }
4372 if (dev->flags != old_flags) {
4373 printk(KERN_INFO "device %s %s promiscuous mode\n",
4374 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4375 "left");
4376 if (audit_enabled) {
4377 current_uid_gid(&uid, &gid);
4378 audit_log(current->audit_context, GFP_ATOMIC,
4379 AUDIT_ANOM_PROMISCUOUS,
4380 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4381 dev->name, (dev->flags & IFF_PROMISC),
4382 (old_flags & IFF_PROMISC),
4383 audit_get_loginuid(current),
4384 uid, gid,
4385 audit_get_sessionid(current));
4386 }
4387
4388 dev_change_rx_flags(dev, IFF_PROMISC);
4389 }
4390 return 0;
4391 }
4392
4393 /**
4394 * dev_set_promiscuity - update promiscuity count on a device
4395 * @dev: device
4396 * @inc: modifier
4397 *
4398 * Add or remove promiscuity from a device. While the count in the device
4399 * remains above zero the interface remains promiscuous. Once it hits zero
4400 * the device reverts back to normal filtering operation. A negative inc
4401 * value is used to drop promiscuity on the device.
4402 * Return 0 if successful or a negative errno code on error.
4403 */
4404 int dev_set_promiscuity(struct net_device *dev, int inc)
4405 {
4406 unsigned short old_flags = dev->flags;
4407 int err;
4408
4409 err = __dev_set_promiscuity(dev, inc);
4410 if (err < 0)
4411 return err;
4412 if (dev->flags != old_flags)
4413 dev_set_rx_mode(dev);
4414 return err;
4415 }
4416 EXPORT_SYMBOL(dev_set_promiscuity);
4417
4418 /**
4419 * dev_set_allmulti - update allmulti count on a device
4420 * @dev: device
4421 * @inc: modifier
4422 *
4423 * Add or remove reception of all multicast frames to a device. While the
4424 * count in the device remains above zero the interface remains listening
4425 * to all interfaces. Once it hits zero the device reverts back to normal
4426 * filtering operation. A negative @inc value is used to drop the counter
4427 * when releasing a resource needing all multicasts.
4428 * Return 0 if successful or a negative errno code on error.
4429 */
4430
4431 int dev_set_allmulti(struct net_device *dev, int inc)
4432 {
4433 unsigned short old_flags = dev->flags;
4434
4435 ASSERT_RTNL();
4436
4437 dev->flags |= IFF_ALLMULTI;
4438 dev->allmulti += inc;
4439 if (dev->allmulti == 0) {
4440 /*
4441 * Avoid overflow.
4442 * If inc causes overflow, untouch allmulti and return error.
4443 */
4444 if (inc < 0)
4445 dev->flags &= ~IFF_ALLMULTI;
4446 else {
4447 dev->allmulti -= inc;
4448 printk(KERN_WARNING "%s: allmulti touches roof, "
4449 "set allmulti failed, allmulti feature of "
4450 "device might be broken.\n", dev->name);
4451 return -EOVERFLOW;
4452 }
4453 }
4454 if (dev->flags ^ old_flags) {
4455 dev_change_rx_flags(dev, IFF_ALLMULTI);
4456 dev_set_rx_mode(dev);
4457 }
4458 return 0;
4459 }
4460 EXPORT_SYMBOL(dev_set_allmulti);
4461
4462 /*
4463 * Upload unicast and multicast address lists to device and
4464 * configure RX filtering. When the device doesn't support unicast
4465 * filtering it is put in promiscuous mode while unicast addresses
4466 * are present.
4467 */
4468 void __dev_set_rx_mode(struct net_device *dev)
4469 {
4470 const struct net_device_ops *ops = dev->netdev_ops;
4471
4472 /* dev_open will call this function so the list will stay sane. */
4473 if (!(dev->flags&IFF_UP))
4474 return;
4475
4476 if (!netif_device_present(dev))
4477 return;
4478
4479 if (ops->ndo_set_rx_mode)
4480 ops->ndo_set_rx_mode(dev);
4481 else {
4482 /* Unicast addresses changes may only happen under the rtnl,
4483 * therefore calling __dev_set_promiscuity here is safe.
4484 */
4485 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4486 __dev_set_promiscuity(dev, 1);
4487 dev->uc_promisc = 1;
4488 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4489 __dev_set_promiscuity(dev, -1);
4490 dev->uc_promisc = 0;
4491 }
4492
4493 if (ops->ndo_set_multicast_list)
4494 ops->ndo_set_multicast_list(dev);
4495 }
4496 }
4497
4498 void dev_set_rx_mode(struct net_device *dev)
4499 {
4500 netif_addr_lock_bh(dev);
4501 __dev_set_rx_mode(dev);
4502 netif_addr_unlock_bh(dev);
4503 }
4504
4505 /**
4506 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4507 * @dev: device
4508 * @cmd: memory area for ethtool_ops::get_settings() result
4509 *
4510 * The cmd arg is initialized properly (cleared and
4511 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4512 *
4513 * Return device's ethtool_ops::get_settings() result value or
4514 * -EOPNOTSUPP when device doesn't expose
4515 * ethtool_ops::get_settings() operation.
4516 */
4517 int dev_ethtool_get_settings(struct net_device *dev,
4518 struct ethtool_cmd *cmd)
4519 {
4520 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4521 return -EOPNOTSUPP;
4522
4523 memset(cmd, 0, sizeof(struct ethtool_cmd));
4524 cmd->cmd = ETHTOOL_GSET;
4525 return dev->ethtool_ops->get_settings(dev, cmd);
4526 }
4527 EXPORT_SYMBOL(dev_ethtool_get_settings);
4528
4529 /**
4530 * dev_get_flags - get flags reported to userspace
4531 * @dev: device
4532 *
4533 * Get the combination of flag bits exported through APIs to userspace.
4534 */
4535 unsigned dev_get_flags(const struct net_device *dev)
4536 {
4537 unsigned flags;
4538
4539 flags = (dev->flags & ~(IFF_PROMISC |
4540 IFF_ALLMULTI |
4541 IFF_RUNNING |
4542 IFF_LOWER_UP |
4543 IFF_DORMANT)) |
4544 (dev->gflags & (IFF_PROMISC |
4545 IFF_ALLMULTI));
4546
4547 if (netif_running(dev)) {
4548 if (netif_oper_up(dev))
4549 flags |= IFF_RUNNING;
4550 if (netif_carrier_ok(dev))
4551 flags |= IFF_LOWER_UP;
4552 if (netif_dormant(dev))
4553 flags |= IFF_DORMANT;
4554 }
4555
4556 return flags;
4557 }
4558 EXPORT_SYMBOL(dev_get_flags);
4559
4560 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4561 {
4562 int old_flags = dev->flags;
4563 int ret;
4564
4565 ASSERT_RTNL();
4566
4567 /*
4568 * Set the flags on our device.
4569 */
4570
4571 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4572 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4573 IFF_AUTOMEDIA)) |
4574 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4575 IFF_ALLMULTI));
4576
4577 /*
4578 * Load in the correct multicast list now the flags have changed.
4579 */
4580
4581 if ((old_flags ^ flags) & IFF_MULTICAST)
4582 dev_change_rx_flags(dev, IFF_MULTICAST);
4583
4584 dev_set_rx_mode(dev);
4585
4586 /*
4587 * Have we downed the interface. We handle IFF_UP ourselves
4588 * according to user attempts to set it, rather than blindly
4589 * setting it.
4590 */
4591
4592 ret = 0;
4593 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4594 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4595
4596 if (!ret)
4597 dev_set_rx_mode(dev);
4598 }
4599
4600 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4601 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4602
4603 dev->gflags ^= IFF_PROMISC;
4604 dev_set_promiscuity(dev, inc);
4605 }
4606
4607 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4608 is important. Some (broken) drivers set IFF_PROMISC, when
4609 IFF_ALLMULTI is requested not asking us and not reporting.
4610 */
4611 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4612 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4613
4614 dev->gflags ^= IFF_ALLMULTI;
4615 dev_set_allmulti(dev, inc);
4616 }
4617
4618 return ret;
4619 }
4620
4621 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4622 {
4623 unsigned int changes = dev->flags ^ old_flags;
4624
4625 if (changes & IFF_UP) {
4626 if (dev->flags & IFF_UP)
4627 call_netdevice_notifiers(NETDEV_UP, dev);
4628 else
4629 call_netdevice_notifiers(NETDEV_DOWN, dev);
4630 }
4631
4632 if (dev->flags & IFF_UP &&
4633 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4634 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4635 }
4636
4637 /**
4638 * dev_change_flags - change device settings
4639 * @dev: device
4640 * @flags: device state flags
4641 *
4642 * Change settings on device based state flags. The flags are
4643 * in the userspace exported format.
4644 */
4645 int dev_change_flags(struct net_device *dev, unsigned flags)
4646 {
4647 int ret, changes;
4648 int old_flags = dev->flags;
4649
4650 ret = __dev_change_flags(dev, flags);
4651 if (ret < 0)
4652 return ret;
4653
4654 changes = old_flags ^ dev->flags;
4655 if (changes)
4656 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4657
4658 __dev_notify_flags(dev, old_flags);
4659 return ret;
4660 }
4661 EXPORT_SYMBOL(dev_change_flags);
4662
4663 /**
4664 * dev_set_mtu - Change maximum transfer unit
4665 * @dev: device
4666 * @new_mtu: new transfer unit
4667 *
4668 * Change the maximum transfer size of the network device.
4669 */
4670 int dev_set_mtu(struct net_device *dev, int new_mtu)
4671 {
4672 const struct net_device_ops *ops = dev->netdev_ops;
4673 int err;
4674
4675 if (new_mtu == dev->mtu)
4676 return 0;
4677
4678 /* MTU must be positive. */
4679 if (new_mtu < 0)
4680 return -EINVAL;
4681
4682 if (!netif_device_present(dev))
4683 return -ENODEV;
4684
4685 err = 0;
4686 if (ops->ndo_change_mtu)
4687 err = ops->ndo_change_mtu(dev, new_mtu);
4688 else
4689 dev->mtu = new_mtu;
4690
4691 if (!err && dev->flags & IFF_UP)
4692 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4693 return err;
4694 }
4695 EXPORT_SYMBOL(dev_set_mtu);
4696
4697 /**
4698 * dev_set_group - Change group this device belongs to
4699 * @dev: device
4700 * @new_group: group this device should belong to
4701 */
4702 void dev_set_group(struct net_device *dev, int new_group)
4703 {
4704 dev->group = new_group;
4705 }
4706 EXPORT_SYMBOL(dev_set_group);
4707
4708 /**
4709 * dev_set_mac_address - Change Media Access Control Address
4710 * @dev: device
4711 * @sa: new address
4712 *
4713 * Change the hardware (MAC) address of the device
4714 */
4715 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4716 {
4717 const struct net_device_ops *ops = dev->netdev_ops;
4718 int err;
4719
4720 if (!ops->ndo_set_mac_address)
4721 return -EOPNOTSUPP;
4722 if (sa->sa_family != dev->type)
4723 return -EINVAL;
4724 if (!netif_device_present(dev))
4725 return -ENODEV;
4726 err = ops->ndo_set_mac_address(dev, sa);
4727 if (!err)
4728 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4729 return err;
4730 }
4731 EXPORT_SYMBOL(dev_set_mac_address);
4732
4733 /*
4734 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4735 */
4736 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4737 {
4738 int err;
4739 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4740
4741 if (!dev)
4742 return -ENODEV;
4743
4744 switch (cmd) {
4745 case SIOCGIFFLAGS: /* Get interface flags */
4746 ifr->ifr_flags = (short) dev_get_flags(dev);
4747 return 0;
4748
4749 case SIOCGIFMETRIC: /* Get the metric on the interface
4750 (currently unused) */
4751 ifr->ifr_metric = 0;
4752 return 0;
4753
4754 case SIOCGIFMTU: /* Get the MTU of a device */
4755 ifr->ifr_mtu = dev->mtu;
4756 return 0;
4757
4758 case SIOCGIFHWADDR:
4759 if (!dev->addr_len)
4760 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4761 else
4762 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4763 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4764 ifr->ifr_hwaddr.sa_family = dev->type;
4765 return 0;
4766
4767 case SIOCGIFSLAVE:
4768 err = -EINVAL;
4769 break;
4770
4771 case SIOCGIFMAP:
4772 ifr->ifr_map.mem_start = dev->mem_start;
4773 ifr->ifr_map.mem_end = dev->mem_end;
4774 ifr->ifr_map.base_addr = dev->base_addr;
4775 ifr->ifr_map.irq = dev->irq;
4776 ifr->ifr_map.dma = dev->dma;
4777 ifr->ifr_map.port = dev->if_port;
4778 return 0;
4779
4780 case SIOCGIFINDEX:
4781 ifr->ifr_ifindex = dev->ifindex;
4782 return 0;
4783
4784 case SIOCGIFTXQLEN:
4785 ifr->ifr_qlen = dev->tx_queue_len;
4786 return 0;
4787
4788 default:
4789 /* dev_ioctl() should ensure this case
4790 * is never reached
4791 */
4792 WARN_ON(1);
4793 err = -ENOTTY;
4794 break;
4795
4796 }
4797 return err;
4798 }
4799
4800 /*
4801 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4802 */
4803 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4804 {
4805 int err;
4806 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4807 const struct net_device_ops *ops;
4808
4809 if (!dev)
4810 return -ENODEV;
4811
4812 ops = dev->netdev_ops;
4813
4814 switch (cmd) {
4815 case SIOCSIFFLAGS: /* Set interface flags */
4816 return dev_change_flags(dev, ifr->ifr_flags);
4817
4818 case SIOCSIFMETRIC: /* Set the metric on the interface
4819 (currently unused) */
4820 return -EOPNOTSUPP;
4821
4822 case SIOCSIFMTU: /* Set the MTU of a device */
4823 return dev_set_mtu(dev, ifr->ifr_mtu);
4824
4825 case SIOCSIFHWADDR:
4826 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4827
4828 case SIOCSIFHWBROADCAST:
4829 if (ifr->ifr_hwaddr.sa_family != dev->type)
4830 return -EINVAL;
4831 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4832 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4833 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4834 return 0;
4835
4836 case SIOCSIFMAP:
4837 if (ops->ndo_set_config) {
4838 if (!netif_device_present(dev))
4839 return -ENODEV;
4840 return ops->ndo_set_config(dev, &ifr->ifr_map);
4841 }
4842 return -EOPNOTSUPP;
4843
4844 case SIOCADDMULTI:
4845 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4846 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4847 return -EINVAL;
4848 if (!netif_device_present(dev))
4849 return -ENODEV;
4850 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4851
4852 case SIOCDELMULTI:
4853 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4854 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4855 return -EINVAL;
4856 if (!netif_device_present(dev))
4857 return -ENODEV;
4858 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4859
4860 case SIOCSIFTXQLEN:
4861 if (ifr->ifr_qlen < 0)
4862 return -EINVAL;
4863 dev->tx_queue_len = ifr->ifr_qlen;
4864 return 0;
4865
4866 case SIOCSIFNAME:
4867 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4868 return dev_change_name(dev, ifr->ifr_newname);
4869
4870 /*
4871 * Unknown or private ioctl
4872 */
4873 default:
4874 if ((cmd >= SIOCDEVPRIVATE &&
4875 cmd <= SIOCDEVPRIVATE + 15) ||
4876 cmd == SIOCBONDENSLAVE ||
4877 cmd == SIOCBONDRELEASE ||
4878 cmd == SIOCBONDSETHWADDR ||
4879 cmd == SIOCBONDSLAVEINFOQUERY ||
4880 cmd == SIOCBONDINFOQUERY ||
4881 cmd == SIOCBONDCHANGEACTIVE ||
4882 cmd == SIOCGMIIPHY ||
4883 cmd == SIOCGMIIREG ||
4884 cmd == SIOCSMIIREG ||
4885 cmd == SIOCBRADDIF ||
4886 cmd == SIOCBRDELIF ||
4887 cmd == SIOCSHWTSTAMP ||
4888 cmd == SIOCWANDEV) {
4889 err = -EOPNOTSUPP;
4890 if (ops->ndo_do_ioctl) {
4891 if (netif_device_present(dev))
4892 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4893 else
4894 err = -ENODEV;
4895 }
4896 } else
4897 err = -EINVAL;
4898
4899 }
4900 return err;
4901 }
4902
4903 /*
4904 * This function handles all "interface"-type I/O control requests. The actual
4905 * 'doing' part of this is dev_ifsioc above.
4906 */
4907
4908 /**
4909 * dev_ioctl - network device ioctl
4910 * @net: the applicable net namespace
4911 * @cmd: command to issue
4912 * @arg: pointer to a struct ifreq in user space
4913 *
4914 * Issue ioctl functions to devices. This is normally called by the
4915 * user space syscall interfaces but can sometimes be useful for
4916 * other purposes. The return value is the return from the syscall if
4917 * positive or a negative errno code on error.
4918 */
4919
4920 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4921 {
4922 struct ifreq ifr;
4923 int ret;
4924 char *colon;
4925
4926 /* One special case: SIOCGIFCONF takes ifconf argument
4927 and requires shared lock, because it sleeps writing
4928 to user space.
4929 */
4930
4931 if (cmd == SIOCGIFCONF) {
4932 rtnl_lock();
4933 ret = dev_ifconf(net, (char __user *) arg);
4934 rtnl_unlock();
4935 return ret;
4936 }
4937 if (cmd == SIOCGIFNAME)
4938 return dev_ifname(net, (struct ifreq __user *)arg);
4939
4940 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4941 return -EFAULT;
4942
4943 ifr.ifr_name[IFNAMSIZ-1] = 0;
4944
4945 colon = strchr(ifr.ifr_name, ':');
4946 if (colon)
4947 *colon = 0;
4948
4949 /*
4950 * See which interface the caller is talking about.
4951 */
4952
4953 switch (cmd) {
4954 /*
4955 * These ioctl calls:
4956 * - can be done by all.
4957 * - atomic and do not require locking.
4958 * - return a value
4959 */
4960 case SIOCGIFFLAGS:
4961 case SIOCGIFMETRIC:
4962 case SIOCGIFMTU:
4963 case SIOCGIFHWADDR:
4964 case SIOCGIFSLAVE:
4965 case SIOCGIFMAP:
4966 case SIOCGIFINDEX:
4967 case SIOCGIFTXQLEN:
4968 dev_load(net, ifr.ifr_name);
4969 rcu_read_lock();
4970 ret = dev_ifsioc_locked(net, &ifr, cmd);
4971 rcu_read_unlock();
4972 if (!ret) {
4973 if (colon)
4974 *colon = ':';
4975 if (copy_to_user(arg, &ifr,
4976 sizeof(struct ifreq)))
4977 ret = -EFAULT;
4978 }
4979 return ret;
4980
4981 case SIOCETHTOOL:
4982 dev_load(net, ifr.ifr_name);
4983 rtnl_lock();
4984 ret = dev_ethtool(net, &ifr);
4985 rtnl_unlock();
4986 if (!ret) {
4987 if (colon)
4988 *colon = ':';
4989 if (copy_to_user(arg, &ifr,
4990 sizeof(struct ifreq)))
4991 ret = -EFAULT;
4992 }
4993 return ret;
4994
4995 /*
4996 * These ioctl calls:
4997 * - require superuser power.
4998 * - require strict serialization.
4999 * - return a value
5000 */
5001 case SIOCGMIIPHY:
5002 case SIOCGMIIREG:
5003 case SIOCSIFNAME:
5004 if (!capable(CAP_NET_ADMIN))
5005 return -EPERM;
5006 dev_load(net, ifr.ifr_name);
5007 rtnl_lock();
5008 ret = dev_ifsioc(net, &ifr, cmd);
5009 rtnl_unlock();
5010 if (!ret) {
5011 if (colon)
5012 *colon = ':';
5013 if (copy_to_user(arg, &ifr,
5014 sizeof(struct ifreq)))
5015 ret = -EFAULT;
5016 }
5017 return ret;
5018
5019 /*
5020 * These ioctl calls:
5021 * - require superuser power.
5022 * - require strict serialization.
5023 * - do not return a value
5024 */
5025 case SIOCSIFFLAGS:
5026 case SIOCSIFMETRIC:
5027 case SIOCSIFMTU:
5028 case SIOCSIFMAP:
5029 case SIOCSIFHWADDR:
5030 case SIOCSIFSLAVE:
5031 case SIOCADDMULTI:
5032 case SIOCDELMULTI:
5033 case SIOCSIFHWBROADCAST:
5034 case SIOCSIFTXQLEN:
5035 case SIOCSMIIREG:
5036 case SIOCBONDENSLAVE:
5037 case SIOCBONDRELEASE:
5038 case SIOCBONDSETHWADDR:
5039 case SIOCBONDCHANGEACTIVE:
5040 case SIOCBRADDIF:
5041 case SIOCBRDELIF:
5042 case SIOCSHWTSTAMP:
5043 if (!capable(CAP_NET_ADMIN))
5044 return -EPERM;
5045 /* fall through */
5046 case SIOCBONDSLAVEINFOQUERY:
5047 case SIOCBONDINFOQUERY:
5048 dev_load(net, ifr.ifr_name);
5049 rtnl_lock();
5050 ret = dev_ifsioc(net, &ifr, cmd);
5051 rtnl_unlock();
5052 return ret;
5053
5054 case SIOCGIFMEM:
5055 /* Get the per device memory space. We can add this but
5056 * currently do not support it */
5057 case SIOCSIFMEM:
5058 /* Set the per device memory buffer space.
5059 * Not applicable in our case */
5060 case SIOCSIFLINK:
5061 return -ENOTTY;
5062
5063 /*
5064 * Unknown or private ioctl.
5065 */
5066 default:
5067 if (cmd == SIOCWANDEV ||
5068 (cmd >= SIOCDEVPRIVATE &&
5069 cmd <= SIOCDEVPRIVATE + 15)) {
5070 dev_load(net, ifr.ifr_name);
5071 rtnl_lock();
5072 ret = dev_ifsioc(net, &ifr, cmd);
5073 rtnl_unlock();
5074 if (!ret && copy_to_user(arg, &ifr,
5075 sizeof(struct ifreq)))
5076 ret = -EFAULT;
5077 return ret;
5078 }
5079 /* Take care of Wireless Extensions */
5080 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5081 return wext_handle_ioctl(net, &ifr, cmd, arg);
5082 return -ENOTTY;
5083 }
5084 }
5085
5086
5087 /**
5088 * dev_new_index - allocate an ifindex
5089 * @net: the applicable net namespace
5090 *
5091 * Returns a suitable unique value for a new device interface
5092 * number. The caller must hold the rtnl semaphore or the
5093 * dev_base_lock to be sure it remains unique.
5094 */
5095 static int dev_new_index(struct net *net)
5096 {
5097 static int ifindex;
5098 for (;;) {
5099 if (++ifindex <= 0)
5100 ifindex = 1;
5101 if (!__dev_get_by_index(net, ifindex))
5102 return ifindex;
5103 }
5104 }
5105
5106 /* Delayed registration/unregisteration */
5107 static LIST_HEAD(net_todo_list);
5108
5109 static void net_set_todo(struct net_device *dev)
5110 {
5111 list_add_tail(&dev->todo_list, &net_todo_list);
5112 }
5113
5114 static void rollback_registered_many(struct list_head *head)
5115 {
5116 struct net_device *dev, *tmp;
5117
5118 BUG_ON(dev_boot_phase);
5119 ASSERT_RTNL();
5120
5121 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5122 /* Some devices call without registering
5123 * for initialization unwind. Remove those
5124 * devices and proceed with the remaining.
5125 */
5126 if (dev->reg_state == NETREG_UNINITIALIZED) {
5127 pr_debug("unregister_netdevice: device %s/%p never "
5128 "was registered\n", dev->name, dev);
5129
5130 WARN_ON(1);
5131 list_del(&dev->unreg_list);
5132 continue;
5133 }
5134 dev->dismantle = true;
5135 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5136 }
5137
5138 /* If device is running, close it first. */
5139 dev_close_many(head);
5140
5141 list_for_each_entry(dev, head, unreg_list) {
5142 /* And unlink it from device chain. */
5143 unlist_netdevice(dev);
5144
5145 dev->reg_state = NETREG_UNREGISTERING;
5146 }
5147
5148 synchronize_net();
5149
5150 list_for_each_entry(dev, head, unreg_list) {
5151 /* Shutdown queueing discipline. */
5152 dev_shutdown(dev);
5153
5154
5155 /* Notify protocols, that we are about to destroy
5156 this device. They should clean all the things.
5157 */
5158 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5159
5160 if (!dev->rtnl_link_ops ||
5161 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5162 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5163
5164 /*
5165 * Flush the unicast and multicast chains
5166 */
5167 dev_uc_flush(dev);
5168 dev_mc_flush(dev);
5169
5170 if (dev->netdev_ops->ndo_uninit)
5171 dev->netdev_ops->ndo_uninit(dev);
5172
5173 /* Notifier chain MUST detach us from master device. */
5174 WARN_ON(dev->master);
5175
5176 /* Remove entries from kobject tree */
5177 netdev_unregister_kobject(dev);
5178 }
5179
5180 /* Process any work delayed until the end of the batch */
5181 dev = list_first_entry(head, struct net_device, unreg_list);
5182 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5183
5184 rcu_barrier();
5185
5186 list_for_each_entry(dev, head, unreg_list)
5187 dev_put(dev);
5188 }
5189
5190 static void rollback_registered(struct net_device *dev)
5191 {
5192 LIST_HEAD(single);
5193
5194 list_add(&dev->unreg_list, &single);
5195 rollback_registered_many(&single);
5196 list_del(&single);
5197 }
5198
5199 u32 netdev_fix_features(struct net_device *dev, u32 features)
5200 {
5201 /* Fix illegal checksum combinations */
5202 if ((features & NETIF_F_HW_CSUM) &&
5203 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5204 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5205 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5206 }
5207
5208 if ((features & NETIF_F_NO_CSUM) &&
5209 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5210 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5211 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5212 }
5213
5214 /* Fix illegal SG+CSUM combinations. */
5215 if ((features & NETIF_F_SG) &&
5216 !(features & NETIF_F_ALL_CSUM)) {
5217 netdev_dbg(dev,
5218 "Dropping NETIF_F_SG since no checksum feature.\n");
5219 features &= ~NETIF_F_SG;
5220 }
5221
5222 /* TSO requires that SG is present as well. */
5223 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5224 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5225 features &= ~NETIF_F_ALL_TSO;
5226 }
5227
5228 /* TSO ECN requires that TSO is present as well. */
5229 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5230 features &= ~NETIF_F_TSO_ECN;
5231
5232 /* Software GSO depends on SG. */
5233 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5234 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5235 features &= ~NETIF_F_GSO;
5236 }
5237
5238 /* UFO needs SG and checksumming */
5239 if (features & NETIF_F_UFO) {
5240 /* maybe split UFO into V4 and V6? */
5241 if (!((features & NETIF_F_GEN_CSUM) ||
5242 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5243 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5244 netdev_dbg(dev,
5245 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5246 features &= ~NETIF_F_UFO;
5247 }
5248
5249 if (!(features & NETIF_F_SG)) {
5250 netdev_dbg(dev,
5251 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5252 features &= ~NETIF_F_UFO;
5253 }
5254 }
5255
5256 return features;
5257 }
5258 EXPORT_SYMBOL(netdev_fix_features);
5259
5260 int __netdev_update_features(struct net_device *dev)
5261 {
5262 u32 features;
5263 int err = 0;
5264
5265 ASSERT_RTNL();
5266
5267 features = netdev_get_wanted_features(dev);
5268
5269 if (dev->netdev_ops->ndo_fix_features)
5270 features = dev->netdev_ops->ndo_fix_features(dev, features);
5271
5272 /* driver might be less strict about feature dependencies */
5273 features = netdev_fix_features(dev, features);
5274
5275 if (dev->features == features)
5276 return 0;
5277
5278 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5279 dev->features, features);
5280
5281 if (dev->netdev_ops->ndo_set_features)
5282 err = dev->netdev_ops->ndo_set_features(dev, features);
5283
5284 if (unlikely(err < 0)) {
5285 netdev_err(dev,
5286 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5287 err, features, dev->features);
5288 return -1;
5289 }
5290
5291 if (!err)
5292 dev->features = features;
5293
5294 return 1;
5295 }
5296
5297 /**
5298 * netdev_update_features - recalculate device features
5299 * @dev: the device to check
5300 *
5301 * Recalculate dev->features set and send notifications if it
5302 * has changed. Should be called after driver or hardware dependent
5303 * conditions might have changed that influence the features.
5304 */
5305 void netdev_update_features(struct net_device *dev)
5306 {
5307 if (__netdev_update_features(dev))
5308 netdev_features_change(dev);
5309 }
5310 EXPORT_SYMBOL(netdev_update_features);
5311
5312 /**
5313 * netdev_change_features - recalculate device features
5314 * @dev: the device to check
5315 *
5316 * Recalculate dev->features set and send notifications even
5317 * if they have not changed. Should be called instead of
5318 * netdev_update_features() if also dev->vlan_features might
5319 * have changed to allow the changes to be propagated to stacked
5320 * VLAN devices.
5321 */
5322 void netdev_change_features(struct net_device *dev)
5323 {
5324 __netdev_update_features(dev);
5325 netdev_features_change(dev);
5326 }
5327 EXPORT_SYMBOL(netdev_change_features);
5328
5329 /**
5330 * netif_stacked_transfer_operstate - transfer operstate
5331 * @rootdev: the root or lower level device to transfer state from
5332 * @dev: the device to transfer operstate to
5333 *
5334 * Transfer operational state from root to device. This is normally
5335 * called when a stacking relationship exists between the root
5336 * device and the device(a leaf device).
5337 */
5338 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5339 struct net_device *dev)
5340 {
5341 if (rootdev->operstate == IF_OPER_DORMANT)
5342 netif_dormant_on(dev);
5343 else
5344 netif_dormant_off(dev);
5345
5346 if (netif_carrier_ok(rootdev)) {
5347 if (!netif_carrier_ok(dev))
5348 netif_carrier_on(dev);
5349 } else {
5350 if (netif_carrier_ok(dev))
5351 netif_carrier_off(dev);
5352 }
5353 }
5354 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5355
5356 #ifdef CONFIG_RPS
5357 static int netif_alloc_rx_queues(struct net_device *dev)
5358 {
5359 unsigned int i, count = dev->num_rx_queues;
5360 struct netdev_rx_queue *rx;
5361
5362 BUG_ON(count < 1);
5363
5364 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5365 if (!rx) {
5366 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5367 return -ENOMEM;
5368 }
5369 dev->_rx = rx;
5370
5371 for (i = 0; i < count; i++)
5372 rx[i].dev = dev;
5373 return 0;
5374 }
5375 #endif
5376
5377 static void netdev_init_one_queue(struct net_device *dev,
5378 struct netdev_queue *queue, void *_unused)
5379 {
5380 /* Initialize queue lock */
5381 spin_lock_init(&queue->_xmit_lock);
5382 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5383 queue->xmit_lock_owner = -1;
5384 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5385 queue->dev = dev;
5386 }
5387
5388 static int netif_alloc_netdev_queues(struct net_device *dev)
5389 {
5390 unsigned int count = dev->num_tx_queues;
5391 struct netdev_queue *tx;
5392
5393 BUG_ON(count < 1);
5394
5395 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5396 if (!tx) {
5397 pr_err("netdev: Unable to allocate %u tx queues.\n",
5398 count);
5399 return -ENOMEM;
5400 }
5401 dev->_tx = tx;
5402
5403 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5404 spin_lock_init(&dev->tx_global_lock);
5405
5406 return 0;
5407 }
5408
5409 /**
5410 * register_netdevice - register a network device
5411 * @dev: device to register
5412 *
5413 * Take a completed network device structure and add it to the kernel
5414 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5415 * chain. 0 is returned on success. A negative errno code is returned
5416 * on a failure to set up the device, or if the name is a duplicate.
5417 *
5418 * Callers must hold the rtnl semaphore. You may want
5419 * register_netdev() instead of this.
5420 *
5421 * BUGS:
5422 * The locking appears insufficient to guarantee two parallel registers
5423 * will not get the same name.
5424 */
5425
5426 int register_netdevice(struct net_device *dev)
5427 {
5428 int ret;
5429 struct net *net = dev_net(dev);
5430
5431 BUG_ON(dev_boot_phase);
5432 ASSERT_RTNL();
5433
5434 might_sleep();
5435
5436 /* When net_device's are persistent, this will be fatal. */
5437 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5438 BUG_ON(!net);
5439
5440 spin_lock_init(&dev->addr_list_lock);
5441 netdev_set_addr_lockdep_class(dev);
5442
5443 dev->iflink = -1;
5444
5445 ret = dev_get_valid_name(dev, dev->name);
5446 if (ret < 0)
5447 goto out;
5448
5449 /* Init, if this function is available */
5450 if (dev->netdev_ops->ndo_init) {
5451 ret = dev->netdev_ops->ndo_init(dev);
5452 if (ret) {
5453 if (ret > 0)
5454 ret = -EIO;
5455 goto out;
5456 }
5457 }
5458
5459 dev->ifindex = dev_new_index(net);
5460 if (dev->iflink == -1)
5461 dev->iflink = dev->ifindex;
5462
5463 /* Transfer changeable features to wanted_features and enable
5464 * software offloads (GSO and GRO).
5465 */
5466 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5467 dev->features |= NETIF_F_SOFT_FEATURES;
5468 dev->wanted_features = dev->features & dev->hw_features;
5469
5470 /* Turn on no cache copy if HW is doing checksum */
5471 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5472 if ((dev->features & NETIF_F_ALL_CSUM) &&
5473 !(dev->features & NETIF_F_NO_CSUM)) {
5474 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5475 dev->features |= NETIF_F_NOCACHE_COPY;
5476 }
5477
5478 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5479 * vlan_dev_init() will do the dev->features check, so these features
5480 * are enabled only if supported by underlying device.
5481 */
5482 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5483
5484 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5485 ret = notifier_to_errno(ret);
5486 if (ret)
5487 goto err_uninit;
5488
5489 ret = netdev_register_kobject(dev);
5490 if (ret)
5491 goto err_uninit;
5492 dev->reg_state = NETREG_REGISTERED;
5493
5494 __netdev_update_features(dev);
5495
5496 /*
5497 * Default initial state at registry is that the
5498 * device is present.
5499 */
5500
5501 set_bit(__LINK_STATE_PRESENT, &dev->state);
5502
5503 dev_init_scheduler(dev);
5504 dev_hold(dev);
5505 list_netdevice(dev);
5506
5507 /* Notify protocols, that a new device appeared. */
5508 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5509 ret = notifier_to_errno(ret);
5510 if (ret) {
5511 rollback_registered(dev);
5512 dev->reg_state = NETREG_UNREGISTERED;
5513 }
5514 /*
5515 * Prevent userspace races by waiting until the network
5516 * device is fully setup before sending notifications.
5517 */
5518 if (!dev->rtnl_link_ops ||
5519 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5520 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5521
5522 out:
5523 return ret;
5524
5525 err_uninit:
5526 if (dev->netdev_ops->ndo_uninit)
5527 dev->netdev_ops->ndo_uninit(dev);
5528 goto out;
5529 }
5530 EXPORT_SYMBOL(register_netdevice);
5531
5532 /**
5533 * init_dummy_netdev - init a dummy network device for NAPI
5534 * @dev: device to init
5535 *
5536 * This takes a network device structure and initialize the minimum
5537 * amount of fields so it can be used to schedule NAPI polls without
5538 * registering a full blown interface. This is to be used by drivers
5539 * that need to tie several hardware interfaces to a single NAPI
5540 * poll scheduler due to HW limitations.
5541 */
5542 int init_dummy_netdev(struct net_device *dev)
5543 {
5544 /* Clear everything. Note we don't initialize spinlocks
5545 * are they aren't supposed to be taken by any of the
5546 * NAPI code and this dummy netdev is supposed to be
5547 * only ever used for NAPI polls
5548 */
5549 memset(dev, 0, sizeof(struct net_device));
5550
5551 /* make sure we BUG if trying to hit standard
5552 * register/unregister code path
5553 */
5554 dev->reg_state = NETREG_DUMMY;
5555
5556 /* NAPI wants this */
5557 INIT_LIST_HEAD(&dev->napi_list);
5558
5559 /* a dummy interface is started by default */
5560 set_bit(__LINK_STATE_PRESENT, &dev->state);
5561 set_bit(__LINK_STATE_START, &dev->state);
5562
5563 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5564 * because users of this 'device' dont need to change
5565 * its refcount.
5566 */
5567
5568 return 0;
5569 }
5570 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5571
5572
5573 /**
5574 * register_netdev - register a network device
5575 * @dev: device to register
5576 *
5577 * Take a completed network device structure and add it to the kernel
5578 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5579 * chain. 0 is returned on success. A negative errno code is returned
5580 * on a failure to set up the device, or if the name is a duplicate.
5581 *
5582 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5583 * and expands the device name if you passed a format string to
5584 * alloc_netdev.
5585 */
5586 int register_netdev(struct net_device *dev)
5587 {
5588 int err;
5589
5590 rtnl_lock();
5591 err = register_netdevice(dev);
5592 rtnl_unlock();
5593 return err;
5594 }
5595 EXPORT_SYMBOL(register_netdev);
5596
5597 int netdev_refcnt_read(const struct net_device *dev)
5598 {
5599 int i, refcnt = 0;
5600
5601 for_each_possible_cpu(i)
5602 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5603 return refcnt;
5604 }
5605 EXPORT_SYMBOL(netdev_refcnt_read);
5606
5607 /*
5608 * netdev_wait_allrefs - wait until all references are gone.
5609 *
5610 * This is called when unregistering network devices.
5611 *
5612 * Any protocol or device that holds a reference should register
5613 * for netdevice notification, and cleanup and put back the
5614 * reference if they receive an UNREGISTER event.
5615 * We can get stuck here if buggy protocols don't correctly
5616 * call dev_put.
5617 */
5618 static void netdev_wait_allrefs(struct net_device *dev)
5619 {
5620 unsigned long rebroadcast_time, warning_time;
5621 int refcnt;
5622
5623 linkwatch_forget_dev(dev);
5624
5625 rebroadcast_time = warning_time = jiffies;
5626 refcnt = netdev_refcnt_read(dev);
5627
5628 while (refcnt != 0) {
5629 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5630 rtnl_lock();
5631
5632 /* Rebroadcast unregister notification */
5633 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5634 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5635 * should have already handle it the first time */
5636
5637 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5638 &dev->state)) {
5639 /* We must not have linkwatch events
5640 * pending on unregister. If this
5641 * happens, we simply run the queue
5642 * unscheduled, resulting in a noop
5643 * for this device.
5644 */
5645 linkwatch_run_queue();
5646 }
5647
5648 __rtnl_unlock();
5649
5650 rebroadcast_time = jiffies;
5651 }
5652
5653 msleep(250);
5654
5655 refcnt = netdev_refcnt_read(dev);
5656
5657 if (time_after(jiffies, warning_time + 10 * HZ)) {
5658 printk(KERN_EMERG "unregister_netdevice: "
5659 "waiting for %s to become free. Usage "
5660 "count = %d\n",
5661 dev->name, refcnt);
5662 warning_time = jiffies;
5663 }
5664 }
5665 }
5666
5667 /* The sequence is:
5668 *
5669 * rtnl_lock();
5670 * ...
5671 * register_netdevice(x1);
5672 * register_netdevice(x2);
5673 * ...
5674 * unregister_netdevice(y1);
5675 * unregister_netdevice(y2);
5676 * ...
5677 * rtnl_unlock();
5678 * free_netdev(y1);
5679 * free_netdev(y2);
5680 *
5681 * We are invoked by rtnl_unlock().
5682 * This allows us to deal with problems:
5683 * 1) We can delete sysfs objects which invoke hotplug
5684 * without deadlocking with linkwatch via keventd.
5685 * 2) Since we run with the RTNL semaphore not held, we can sleep
5686 * safely in order to wait for the netdev refcnt to drop to zero.
5687 *
5688 * We must not return until all unregister events added during
5689 * the interval the lock was held have been completed.
5690 */
5691 void netdev_run_todo(void)
5692 {
5693 struct list_head list;
5694
5695 /* Snapshot list, allow later requests */
5696 list_replace_init(&net_todo_list, &list);
5697
5698 __rtnl_unlock();
5699
5700 while (!list_empty(&list)) {
5701 struct net_device *dev
5702 = list_first_entry(&list, struct net_device, todo_list);
5703 list_del(&dev->todo_list);
5704
5705 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5706 printk(KERN_ERR "network todo '%s' but state %d\n",
5707 dev->name, dev->reg_state);
5708 dump_stack();
5709 continue;
5710 }
5711
5712 dev->reg_state = NETREG_UNREGISTERED;
5713
5714 on_each_cpu(flush_backlog, dev, 1);
5715
5716 netdev_wait_allrefs(dev);
5717
5718 /* paranoia */
5719 BUG_ON(netdev_refcnt_read(dev));
5720 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5721 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5722 WARN_ON(dev->dn_ptr);
5723
5724 if (dev->destructor)
5725 dev->destructor(dev);
5726
5727 /* Free network device */
5728 kobject_put(&dev->dev.kobj);
5729 }
5730 }
5731
5732 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5733 * fields in the same order, with only the type differing.
5734 */
5735 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5736 const struct net_device_stats *netdev_stats)
5737 {
5738 #if BITS_PER_LONG == 64
5739 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5740 memcpy(stats64, netdev_stats, sizeof(*stats64));
5741 #else
5742 size_t i, n = sizeof(*stats64) / sizeof(u64);
5743 const unsigned long *src = (const unsigned long *)netdev_stats;
5744 u64 *dst = (u64 *)stats64;
5745
5746 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5747 sizeof(*stats64) / sizeof(u64));
5748 for (i = 0; i < n; i++)
5749 dst[i] = src[i];
5750 #endif
5751 }
5752
5753 /**
5754 * dev_get_stats - get network device statistics
5755 * @dev: device to get statistics from
5756 * @storage: place to store stats
5757 *
5758 * Get network statistics from device. Return @storage.
5759 * The device driver may provide its own method by setting
5760 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5761 * otherwise the internal statistics structure is used.
5762 */
5763 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5764 struct rtnl_link_stats64 *storage)
5765 {
5766 const struct net_device_ops *ops = dev->netdev_ops;
5767
5768 if (ops->ndo_get_stats64) {
5769 memset(storage, 0, sizeof(*storage));
5770 ops->ndo_get_stats64(dev, storage);
5771 } else if (ops->ndo_get_stats) {
5772 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5773 } else {
5774 netdev_stats_to_stats64(storage, &dev->stats);
5775 }
5776 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5777 return storage;
5778 }
5779 EXPORT_SYMBOL(dev_get_stats);
5780
5781 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5782 {
5783 struct netdev_queue *queue = dev_ingress_queue(dev);
5784
5785 #ifdef CONFIG_NET_CLS_ACT
5786 if (queue)
5787 return queue;
5788 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5789 if (!queue)
5790 return NULL;
5791 netdev_init_one_queue(dev, queue, NULL);
5792 queue->qdisc = &noop_qdisc;
5793 queue->qdisc_sleeping = &noop_qdisc;
5794 rcu_assign_pointer(dev->ingress_queue, queue);
5795 #endif
5796 return queue;
5797 }
5798
5799 /**
5800 * alloc_netdev_mqs - allocate network device
5801 * @sizeof_priv: size of private data to allocate space for
5802 * @name: device name format string
5803 * @setup: callback to initialize device
5804 * @txqs: the number of TX subqueues to allocate
5805 * @rxqs: the number of RX subqueues to allocate
5806 *
5807 * Allocates a struct net_device with private data area for driver use
5808 * and performs basic initialization. Also allocates subquue structs
5809 * for each queue on the device.
5810 */
5811 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5812 void (*setup)(struct net_device *),
5813 unsigned int txqs, unsigned int rxqs)
5814 {
5815 struct net_device *dev;
5816 size_t alloc_size;
5817 struct net_device *p;
5818
5819 BUG_ON(strlen(name) >= sizeof(dev->name));
5820
5821 if (txqs < 1) {
5822 pr_err("alloc_netdev: Unable to allocate device "
5823 "with zero queues.\n");
5824 return NULL;
5825 }
5826
5827 #ifdef CONFIG_RPS
5828 if (rxqs < 1) {
5829 pr_err("alloc_netdev: Unable to allocate device "
5830 "with zero RX queues.\n");
5831 return NULL;
5832 }
5833 #endif
5834
5835 alloc_size = sizeof(struct net_device);
5836 if (sizeof_priv) {
5837 /* ensure 32-byte alignment of private area */
5838 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5839 alloc_size += sizeof_priv;
5840 }
5841 /* ensure 32-byte alignment of whole construct */
5842 alloc_size += NETDEV_ALIGN - 1;
5843
5844 p = kzalloc(alloc_size, GFP_KERNEL);
5845 if (!p) {
5846 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5847 return NULL;
5848 }
5849
5850 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5851 dev->padded = (char *)dev - (char *)p;
5852
5853 dev->pcpu_refcnt = alloc_percpu(int);
5854 if (!dev->pcpu_refcnt)
5855 goto free_p;
5856
5857 if (dev_addr_init(dev))
5858 goto free_pcpu;
5859
5860 dev_mc_init(dev);
5861 dev_uc_init(dev);
5862
5863 dev_net_set(dev, &init_net);
5864
5865 dev->gso_max_size = GSO_MAX_SIZE;
5866
5867 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5868 dev->ethtool_ntuple_list.count = 0;
5869 INIT_LIST_HEAD(&dev->napi_list);
5870 INIT_LIST_HEAD(&dev->unreg_list);
5871 INIT_LIST_HEAD(&dev->link_watch_list);
5872 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5873 setup(dev);
5874
5875 dev->num_tx_queues = txqs;
5876 dev->real_num_tx_queues = txqs;
5877 if (netif_alloc_netdev_queues(dev))
5878 goto free_all;
5879
5880 #ifdef CONFIG_RPS
5881 dev->num_rx_queues = rxqs;
5882 dev->real_num_rx_queues = rxqs;
5883 if (netif_alloc_rx_queues(dev))
5884 goto free_all;
5885 #endif
5886
5887 strcpy(dev->name, name);
5888 dev->group = INIT_NETDEV_GROUP;
5889 return dev;
5890
5891 free_all:
5892 free_netdev(dev);
5893 return NULL;
5894
5895 free_pcpu:
5896 free_percpu(dev->pcpu_refcnt);
5897 kfree(dev->_tx);
5898 #ifdef CONFIG_RPS
5899 kfree(dev->_rx);
5900 #endif
5901
5902 free_p:
5903 kfree(p);
5904 return NULL;
5905 }
5906 EXPORT_SYMBOL(alloc_netdev_mqs);
5907
5908 /**
5909 * free_netdev - free network device
5910 * @dev: device
5911 *
5912 * This function does the last stage of destroying an allocated device
5913 * interface. The reference to the device object is released.
5914 * If this is the last reference then it will be freed.
5915 */
5916 void free_netdev(struct net_device *dev)
5917 {
5918 struct napi_struct *p, *n;
5919
5920 release_net(dev_net(dev));
5921
5922 kfree(dev->_tx);
5923 #ifdef CONFIG_RPS
5924 kfree(dev->_rx);
5925 #endif
5926
5927 kfree(rcu_dereference_raw(dev->ingress_queue));
5928
5929 /* Flush device addresses */
5930 dev_addr_flush(dev);
5931
5932 /* Clear ethtool n-tuple list */
5933 ethtool_ntuple_flush(dev);
5934
5935 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5936 netif_napi_del(p);
5937
5938 free_percpu(dev->pcpu_refcnt);
5939 dev->pcpu_refcnt = NULL;
5940
5941 /* Compatibility with error handling in drivers */
5942 if (dev->reg_state == NETREG_UNINITIALIZED) {
5943 kfree((char *)dev - dev->padded);
5944 return;
5945 }
5946
5947 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5948 dev->reg_state = NETREG_RELEASED;
5949
5950 /* will free via device release */
5951 put_device(&dev->dev);
5952 }
5953 EXPORT_SYMBOL(free_netdev);
5954
5955 /**
5956 * synchronize_net - Synchronize with packet receive processing
5957 *
5958 * Wait for packets currently being received to be done.
5959 * Does not block later packets from starting.
5960 */
5961 void synchronize_net(void)
5962 {
5963 might_sleep();
5964 if (rtnl_is_locked())
5965 synchronize_rcu_expedited();
5966 else
5967 synchronize_rcu();
5968 }
5969 EXPORT_SYMBOL(synchronize_net);
5970
5971 /**
5972 * unregister_netdevice_queue - remove device from the kernel
5973 * @dev: device
5974 * @head: list
5975 *
5976 * This function shuts down a device interface and removes it
5977 * from the kernel tables.
5978 * If head not NULL, device is queued to be unregistered later.
5979 *
5980 * Callers must hold the rtnl semaphore. You may want
5981 * unregister_netdev() instead of this.
5982 */
5983
5984 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5985 {
5986 ASSERT_RTNL();
5987
5988 if (head) {
5989 list_move_tail(&dev->unreg_list, head);
5990 } else {
5991 rollback_registered(dev);
5992 /* Finish processing unregister after unlock */
5993 net_set_todo(dev);
5994 }
5995 }
5996 EXPORT_SYMBOL(unregister_netdevice_queue);
5997
5998 /**
5999 * unregister_netdevice_many - unregister many devices
6000 * @head: list of devices
6001 */
6002 void unregister_netdevice_many(struct list_head *head)
6003 {
6004 struct net_device *dev;
6005
6006 if (!list_empty(head)) {
6007 rollback_registered_many(head);
6008 list_for_each_entry(dev, head, unreg_list)
6009 net_set_todo(dev);
6010 }
6011 }
6012 EXPORT_SYMBOL(unregister_netdevice_many);
6013
6014 /**
6015 * unregister_netdev - remove device from the kernel
6016 * @dev: device
6017 *
6018 * This function shuts down a device interface and removes it
6019 * from the kernel tables.
6020 *
6021 * This is just a wrapper for unregister_netdevice that takes
6022 * the rtnl semaphore. In general you want to use this and not
6023 * unregister_netdevice.
6024 */
6025 void unregister_netdev(struct net_device *dev)
6026 {
6027 rtnl_lock();
6028 unregister_netdevice(dev);
6029 rtnl_unlock();
6030 }
6031 EXPORT_SYMBOL(unregister_netdev);
6032
6033 /**
6034 * dev_change_net_namespace - move device to different nethost namespace
6035 * @dev: device
6036 * @net: network namespace
6037 * @pat: If not NULL name pattern to try if the current device name
6038 * is already taken in the destination network namespace.
6039 *
6040 * This function shuts down a device interface and moves it
6041 * to a new network namespace. On success 0 is returned, on
6042 * a failure a netagive errno code is returned.
6043 *
6044 * Callers must hold the rtnl semaphore.
6045 */
6046
6047 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6048 {
6049 int err;
6050
6051 ASSERT_RTNL();
6052
6053 /* Don't allow namespace local devices to be moved. */
6054 err = -EINVAL;
6055 if (dev->features & NETIF_F_NETNS_LOCAL)
6056 goto out;
6057
6058 /* Ensure the device has been registrered */
6059 err = -EINVAL;
6060 if (dev->reg_state != NETREG_REGISTERED)
6061 goto out;
6062
6063 /* Get out if there is nothing todo */
6064 err = 0;
6065 if (net_eq(dev_net(dev), net))
6066 goto out;
6067
6068 /* Pick the destination device name, and ensure
6069 * we can use it in the destination network namespace.
6070 */
6071 err = -EEXIST;
6072 if (__dev_get_by_name(net, dev->name)) {
6073 /* We get here if we can't use the current device name */
6074 if (!pat)
6075 goto out;
6076 if (dev_get_valid_name(dev, pat) < 0)
6077 goto out;
6078 }
6079
6080 /*
6081 * And now a mini version of register_netdevice unregister_netdevice.
6082 */
6083
6084 /* If device is running close it first. */
6085 dev_close(dev);
6086
6087 /* And unlink it from device chain */
6088 err = -ENODEV;
6089 unlist_netdevice(dev);
6090
6091 synchronize_net();
6092
6093 /* Shutdown queueing discipline. */
6094 dev_shutdown(dev);
6095
6096 /* Notify protocols, that we are about to destroy
6097 this device. They should clean all the things.
6098
6099 Note that dev->reg_state stays at NETREG_REGISTERED.
6100 This is wanted because this way 8021q and macvlan know
6101 the device is just moving and can keep their slaves up.
6102 */
6103 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6104 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6105
6106 /*
6107 * Flush the unicast and multicast chains
6108 */
6109 dev_uc_flush(dev);
6110 dev_mc_flush(dev);
6111
6112 /* Actually switch the network namespace */
6113 dev_net_set(dev, net);
6114
6115 /* If there is an ifindex conflict assign a new one */
6116 if (__dev_get_by_index(net, dev->ifindex)) {
6117 int iflink = (dev->iflink == dev->ifindex);
6118 dev->ifindex = dev_new_index(net);
6119 if (iflink)
6120 dev->iflink = dev->ifindex;
6121 }
6122
6123 /* Fixup kobjects */
6124 err = device_rename(&dev->dev, dev->name);
6125 WARN_ON(err);
6126
6127 /* Add the device back in the hashes */
6128 list_netdevice(dev);
6129
6130 /* Notify protocols, that a new device appeared. */
6131 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6132
6133 /*
6134 * Prevent userspace races by waiting until the network
6135 * device is fully setup before sending notifications.
6136 */
6137 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6138
6139 synchronize_net();
6140 err = 0;
6141 out:
6142 return err;
6143 }
6144 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6145
6146 static int dev_cpu_callback(struct notifier_block *nfb,
6147 unsigned long action,
6148 void *ocpu)
6149 {
6150 struct sk_buff **list_skb;
6151 struct sk_buff *skb;
6152 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6153 struct softnet_data *sd, *oldsd;
6154
6155 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6156 return NOTIFY_OK;
6157
6158 local_irq_disable();
6159 cpu = smp_processor_id();
6160 sd = &per_cpu(softnet_data, cpu);
6161 oldsd = &per_cpu(softnet_data, oldcpu);
6162
6163 /* Find end of our completion_queue. */
6164 list_skb = &sd->completion_queue;
6165 while (*list_skb)
6166 list_skb = &(*list_skb)->next;
6167 /* Append completion queue from offline CPU. */
6168 *list_skb = oldsd->completion_queue;
6169 oldsd->completion_queue = NULL;
6170
6171 /* Append output queue from offline CPU. */
6172 if (oldsd->output_queue) {
6173 *sd->output_queue_tailp = oldsd->output_queue;
6174 sd->output_queue_tailp = oldsd->output_queue_tailp;
6175 oldsd->output_queue = NULL;
6176 oldsd->output_queue_tailp = &oldsd->output_queue;
6177 }
6178
6179 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6180 local_irq_enable();
6181
6182 /* Process offline CPU's input_pkt_queue */
6183 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6184 netif_rx(skb);
6185 input_queue_head_incr(oldsd);
6186 }
6187 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6188 netif_rx(skb);
6189 input_queue_head_incr(oldsd);
6190 }
6191
6192 return NOTIFY_OK;
6193 }
6194
6195
6196 /**
6197 * netdev_increment_features - increment feature set by one
6198 * @all: current feature set
6199 * @one: new feature set
6200 * @mask: mask feature set
6201 *
6202 * Computes a new feature set after adding a device with feature set
6203 * @one to the master device with current feature set @all. Will not
6204 * enable anything that is off in @mask. Returns the new feature set.
6205 */
6206 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6207 {
6208 if (mask & NETIF_F_GEN_CSUM)
6209 mask |= NETIF_F_ALL_CSUM;
6210 mask |= NETIF_F_VLAN_CHALLENGED;
6211
6212 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6213 all &= one | ~NETIF_F_ALL_FOR_ALL;
6214
6215 /* If device needs checksumming, downgrade to it. */
6216 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6217 all &= ~NETIF_F_NO_CSUM;
6218
6219 /* If one device supports hw checksumming, set for all. */
6220 if (all & NETIF_F_GEN_CSUM)
6221 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6222
6223 return all;
6224 }
6225 EXPORT_SYMBOL(netdev_increment_features);
6226
6227 static struct hlist_head *netdev_create_hash(void)
6228 {
6229 int i;
6230 struct hlist_head *hash;
6231
6232 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6233 if (hash != NULL)
6234 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6235 INIT_HLIST_HEAD(&hash[i]);
6236
6237 return hash;
6238 }
6239
6240 /* Initialize per network namespace state */
6241 static int __net_init netdev_init(struct net *net)
6242 {
6243 INIT_LIST_HEAD(&net->dev_base_head);
6244
6245 net->dev_name_head = netdev_create_hash();
6246 if (net->dev_name_head == NULL)
6247 goto err_name;
6248
6249 net->dev_index_head = netdev_create_hash();
6250 if (net->dev_index_head == NULL)
6251 goto err_idx;
6252
6253 return 0;
6254
6255 err_idx:
6256 kfree(net->dev_name_head);
6257 err_name:
6258 return -ENOMEM;
6259 }
6260
6261 /**
6262 * netdev_drivername - network driver for the device
6263 * @dev: network device
6264 * @buffer: buffer for resulting name
6265 * @len: size of buffer
6266 *
6267 * Determine network driver for device.
6268 */
6269 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6270 {
6271 const struct device_driver *driver;
6272 const struct device *parent;
6273
6274 if (len <= 0 || !buffer)
6275 return buffer;
6276 buffer[0] = 0;
6277
6278 parent = dev->dev.parent;
6279
6280 if (!parent)
6281 return buffer;
6282
6283 driver = parent->driver;
6284 if (driver && driver->name)
6285 strlcpy(buffer, driver->name, len);
6286 return buffer;
6287 }
6288
6289 static int __netdev_printk(const char *level, const struct net_device *dev,
6290 struct va_format *vaf)
6291 {
6292 int r;
6293
6294 if (dev && dev->dev.parent)
6295 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6296 netdev_name(dev), vaf);
6297 else if (dev)
6298 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6299 else
6300 r = printk("%s(NULL net_device): %pV", level, vaf);
6301
6302 return r;
6303 }
6304
6305 int netdev_printk(const char *level, const struct net_device *dev,
6306 const char *format, ...)
6307 {
6308 struct va_format vaf;
6309 va_list args;
6310 int r;
6311
6312 va_start(args, format);
6313
6314 vaf.fmt = format;
6315 vaf.va = &args;
6316
6317 r = __netdev_printk(level, dev, &vaf);
6318 va_end(args);
6319
6320 return r;
6321 }
6322 EXPORT_SYMBOL(netdev_printk);
6323
6324 #define define_netdev_printk_level(func, level) \
6325 int func(const struct net_device *dev, const char *fmt, ...) \
6326 { \
6327 int r; \
6328 struct va_format vaf; \
6329 va_list args; \
6330 \
6331 va_start(args, fmt); \
6332 \
6333 vaf.fmt = fmt; \
6334 vaf.va = &args; \
6335 \
6336 r = __netdev_printk(level, dev, &vaf); \
6337 va_end(args); \
6338 \
6339 return r; \
6340 } \
6341 EXPORT_SYMBOL(func);
6342
6343 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6344 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6345 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6346 define_netdev_printk_level(netdev_err, KERN_ERR);
6347 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6348 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6349 define_netdev_printk_level(netdev_info, KERN_INFO);
6350
6351 static void __net_exit netdev_exit(struct net *net)
6352 {
6353 kfree(net->dev_name_head);
6354 kfree(net->dev_index_head);
6355 }
6356
6357 static struct pernet_operations __net_initdata netdev_net_ops = {
6358 .init = netdev_init,
6359 .exit = netdev_exit,
6360 };
6361
6362 static void __net_exit default_device_exit(struct net *net)
6363 {
6364 struct net_device *dev, *aux;
6365 /*
6366 * Push all migratable network devices back to the
6367 * initial network namespace
6368 */
6369 rtnl_lock();
6370 for_each_netdev_safe(net, dev, aux) {
6371 int err;
6372 char fb_name[IFNAMSIZ];
6373
6374 /* Ignore unmoveable devices (i.e. loopback) */
6375 if (dev->features & NETIF_F_NETNS_LOCAL)
6376 continue;
6377
6378 /* Leave virtual devices for the generic cleanup */
6379 if (dev->rtnl_link_ops)
6380 continue;
6381
6382 /* Push remaining network devices to init_net */
6383 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6384 err = dev_change_net_namespace(dev, &init_net, fb_name);
6385 if (err) {
6386 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6387 __func__, dev->name, err);
6388 BUG();
6389 }
6390 }
6391 rtnl_unlock();
6392 }
6393
6394 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6395 {
6396 /* At exit all network devices most be removed from a network
6397 * namespace. Do this in the reverse order of registration.
6398 * Do this across as many network namespaces as possible to
6399 * improve batching efficiency.
6400 */
6401 struct net_device *dev;
6402 struct net *net;
6403 LIST_HEAD(dev_kill_list);
6404
6405 rtnl_lock();
6406 list_for_each_entry(net, net_list, exit_list) {
6407 for_each_netdev_reverse(net, dev) {
6408 if (dev->rtnl_link_ops)
6409 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6410 else
6411 unregister_netdevice_queue(dev, &dev_kill_list);
6412 }
6413 }
6414 unregister_netdevice_many(&dev_kill_list);
6415 list_del(&dev_kill_list);
6416 rtnl_unlock();
6417 }
6418
6419 static struct pernet_operations __net_initdata default_device_ops = {
6420 .exit = default_device_exit,
6421 .exit_batch = default_device_exit_batch,
6422 };
6423
6424 /*
6425 * Initialize the DEV module. At boot time this walks the device list and
6426 * unhooks any devices that fail to initialise (normally hardware not
6427 * present) and leaves us with a valid list of present and active devices.
6428 *
6429 */
6430
6431 /*
6432 * This is called single threaded during boot, so no need
6433 * to take the rtnl semaphore.
6434 */
6435 static int __init net_dev_init(void)
6436 {
6437 int i, rc = -ENOMEM;
6438
6439 BUG_ON(!dev_boot_phase);
6440
6441 if (dev_proc_init())
6442 goto out;
6443
6444 if (netdev_kobject_init())
6445 goto out;
6446
6447 INIT_LIST_HEAD(&ptype_all);
6448 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6449 INIT_LIST_HEAD(&ptype_base[i]);
6450
6451 if (register_pernet_subsys(&netdev_net_ops))
6452 goto out;
6453
6454 /*
6455 * Initialise the packet receive queues.
6456 */
6457
6458 for_each_possible_cpu(i) {
6459 struct softnet_data *sd = &per_cpu(softnet_data, i);
6460
6461 memset(sd, 0, sizeof(*sd));
6462 skb_queue_head_init(&sd->input_pkt_queue);
6463 skb_queue_head_init(&sd->process_queue);
6464 sd->completion_queue = NULL;
6465 INIT_LIST_HEAD(&sd->poll_list);
6466 sd->output_queue = NULL;
6467 sd->output_queue_tailp = &sd->output_queue;
6468 #ifdef CONFIG_RPS
6469 sd->csd.func = rps_trigger_softirq;
6470 sd->csd.info = sd;
6471 sd->csd.flags = 0;
6472 sd->cpu = i;
6473 #endif
6474
6475 sd->backlog.poll = process_backlog;
6476 sd->backlog.weight = weight_p;
6477 sd->backlog.gro_list = NULL;
6478 sd->backlog.gro_count = 0;
6479 }
6480
6481 dev_boot_phase = 0;
6482
6483 /* The loopback device is special if any other network devices
6484 * is present in a network namespace the loopback device must
6485 * be present. Since we now dynamically allocate and free the
6486 * loopback device ensure this invariant is maintained by
6487 * keeping the loopback device as the first device on the
6488 * list of network devices. Ensuring the loopback devices
6489 * is the first device that appears and the last network device
6490 * that disappears.
6491 */
6492 if (register_pernet_device(&loopback_net_ops))
6493 goto out;
6494
6495 if (register_pernet_device(&default_device_ops))
6496 goto out;
6497
6498 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6499 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6500
6501 hotcpu_notifier(dev_cpu_callback, 0);
6502 dst_init();
6503 dev_mcast_init();
6504 rc = 0;
6505 out:
6506 return rc;
6507 }
6508
6509 subsys_initcall(net_dev_init);
6510
6511 static int __init initialize_hashrnd(void)
6512 {
6513 get_random_bytes(&hashrnd, sizeof(hashrnd));
6514 return 0;
6515 }
6516
6517 late_initcall_sync(initialize_hashrnd);
6518