Merge branch 'kevin' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 name);
1141 }
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 const struct net_device_ops *ops = dev->netdev_ops;
1148 int ret;
1149
1150 ASSERT_RTNL();
1151
1152 if (!netif_device_present(dev))
1153 return -ENODEV;
1154
1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 ret = notifier_to_errno(ret);
1157 if (ret)
1158 return ret;
1159
1160 set_bit(__LINK_STATE_START, &dev->state);
1161
1162 if (ops->ndo_validate_addr)
1163 ret = ops->ndo_validate_addr(dev);
1164
1165 if (!ret && ops->ndo_open)
1166 ret = ops->ndo_open(dev);
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 dev->flags |= IFF_UP;
1172 net_dmaengine_get();
1173 dev_set_rx_mode(dev);
1174 dev_activate(dev);
1175 }
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * dev_open - prepare an interface for use.
1182 * @dev: device to open
1183 *
1184 * Takes a device from down to up state. The device's private open
1185 * function is invoked and then the multicast lists are loaded. Finally
1186 * the device is moved into the up state and a %NETDEV_UP message is
1187 * sent to the netdev notifier chain.
1188 *
1189 * Calling this function on an active interface is a nop. On a failure
1190 * a negative errno code is returned.
1191 */
1192 int dev_open(struct net_device *dev)
1193 {
1194 int ret;
1195
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 ret = __dev_open(dev);
1200 if (ret < 0)
1201 return ret;
1202
1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 call_netdevice_notifiers(NETDEV_UP, dev);
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 struct net_device *dev;
1213
1214 ASSERT_RTNL();
1215 might_sleep();
1216
1217 list_for_each_entry(dev, head, unreg_list) {
1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219
1220 clear_bit(__LINK_STATE_START, &dev->state);
1221
1222 /* Synchronize to scheduled poll. We cannot touch poll list, it
1223 * can be even on different cpu. So just clear netif_running().
1224 *
1225 * dev->stop() will invoke napi_disable() on all of it's
1226 * napi_struct instances on this device.
1227 */
1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 }
1230
1231 dev_deactivate_many(head);
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 const struct net_device_ops *ops = dev->netdev_ops;
1235
1236 /*
1237 * Call the device specific close. This cannot fail.
1238 * Only if device is UP
1239 *
1240 * We allow it to be called even after a DETACH hot-plug
1241 * event.
1242 */
1243 if (ops->ndo_stop)
1244 ops->ndo_stop(dev);
1245
1246 dev->flags &= ~IFF_UP;
1247 net_dmaengine_put();
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 int retval;
1256 LIST_HEAD(single);
1257
1258 list_add(&dev->unreg_list, &single);
1259 retval = __dev_close_many(&single);
1260 list_del(&single);
1261 return retval;
1262 }
1263
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 struct net_device *dev, *tmp;
1267 LIST_HEAD(tmp_list);
1268
1269 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 if (!(dev->flags & IFF_UP))
1271 list_move(&dev->unreg_list, &tmp_list);
1272
1273 __dev_close_many(head);
1274
1275 list_for_each_entry(dev, head, unreg_list) {
1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 }
1279
1280 /* rollback_registered_many needs the complete original list */
1281 list_splice(&tmp_list, head);
1282 return 0;
1283 }
1284
1285 /**
1286 * dev_close - shutdown an interface.
1287 * @dev: device to shutdown
1288 *
1289 * This function moves an active device into down state. A
1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292 * chain.
1293 */
1294 int dev_close(struct net_device *dev)
1295 {
1296 if (dev->flags & IFF_UP) {
1297 LIST_HEAD(single);
1298
1299 list_add(&dev->unreg_list, &single);
1300 dev_close_many(&single);
1301 list_del(&single);
1302 }
1303 return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306
1307
1308 /**
1309 * dev_disable_lro - disable Large Receive Offload on a device
1310 * @dev: device
1311 *
1312 * Disable Large Receive Offload (LRO) on a net device. Must be
1313 * called under RTNL. This is needed if received packets may be
1314 * forwarded to another interface.
1315 */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 /*
1319 * If we're trying to disable lro on a vlan device
1320 * use the underlying physical device instead
1321 */
1322 if (is_vlan_dev(dev))
1323 dev = vlan_dev_real_dev(dev);
1324
1325 dev->wanted_features &= ~NETIF_F_LRO;
1326 netdev_update_features(dev);
1327
1328 if (unlikely(dev->features & NETIF_F_LRO))
1329 netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332
1333
1334 static int dev_boot_phase = 1;
1335
1336 /**
1337 * register_netdevice_notifier - register a network notifier block
1338 * @nb: notifier
1339 *
1340 * Register a notifier to be called when network device events occur.
1341 * The notifier passed is linked into the kernel structures and must
1342 * not be reused until it has been unregistered. A negative errno code
1343 * is returned on a failure.
1344 *
1345 * When registered all registration and up events are replayed
1346 * to the new notifier to allow device to have a race free
1347 * view of the network device list.
1348 */
1349
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 struct net_device *dev;
1353 struct net_device *last;
1354 struct net *net;
1355 int err;
1356
1357 rtnl_lock();
1358 err = raw_notifier_chain_register(&netdev_chain, nb);
1359 if (err)
1360 goto unlock;
1361 if (dev_boot_phase)
1362 goto unlock;
1363 for_each_net(net) {
1364 for_each_netdev(net, dev) {
1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 err = notifier_to_errno(err);
1367 if (err)
1368 goto rollback;
1369
1370 if (!(dev->flags & IFF_UP))
1371 continue;
1372
1373 nb->notifier_call(nb, NETDEV_UP, dev);
1374 }
1375 }
1376
1377 unlock:
1378 rtnl_unlock();
1379 return err;
1380
1381 rollback:
1382 last = dev;
1383 for_each_net(net) {
1384 for_each_netdev(net, dev) {
1385 if (dev == last)
1386 goto outroll;
1387
1388 if (dev->flags & IFF_UP) {
1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 }
1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 }
1395 }
1396
1397 outroll:
1398 raw_notifier_chain_unregister(&netdev_chain, nb);
1399 goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402
1403 /**
1404 * unregister_netdevice_notifier - unregister a network notifier block
1405 * @nb: notifier
1406 *
1407 * Unregister a notifier previously registered by
1408 * register_netdevice_notifier(). The notifier is unlinked into the
1409 * kernel structures and may then be reused. A negative errno code
1410 * is returned on a failure.
1411 *
1412 * After unregistering unregister and down device events are synthesized
1413 * for all devices on the device list to the removed notifier to remove
1414 * the need for special case cleanup code.
1415 */
1416
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 struct net_device *dev;
1420 struct net *net;
1421 int err;
1422
1423 rtnl_lock();
1424 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 if (err)
1426 goto unlock;
1427
1428 for_each_net(net) {
1429 for_each_netdev(net, dev) {
1430 if (dev->flags & IFF_UP) {
1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 }
1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 }
1437 }
1438 unlock:
1439 rtnl_unlock();
1440 return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443
1444 /**
1445 * call_netdevice_notifiers - call all network notifier blocks
1446 * @val: value passed unmodified to notifier function
1447 * @dev: net_device pointer passed unmodified to notifier function
1448 *
1449 * Call all network notifier blocks. Parameters and return value
1450 * are as for raw_notifier_call_chain().
1451 */
1452
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 ASSERT_RTNL();
1456 return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463 * If net_disable_timestamp() is called from irq context, defer the
1464 * static_key_slow_dec() calls.
1465 */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473
1474 if (deferred) {
1475 while (--deferred)
1476 static_key_slow_dec(&netstamp_needed);
1477 return;
1478 }
1479 #endif
1480 WARN_ON(in_interrupt());
1481 static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 if (in_interrupt()) {
1489 atomic_inc(&netstamp_needed_deferred);
1490 return;
1491 }
1492 #endif
1493 static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 skb->tstamp.tv64 = 0;
1500 if (static_key_false(&netstamp_needed))
1501 __net_timestamp(skb);
1502 }
1503
1504 #define net_timestamp_check(COND, SKB) \
1505 if (static_key_false(&netstamp_needed)) { \
1506 if ((COND) && !(SKB)->tstamp.tv64) \
1507 __net_timestamp(SKB); \
1508 } \
1509
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 struct hwtstamp_config cfg;
1513 enum hwtstamp_tx_types tx_type;
1514 enum hwtstamp_rx_filters rx_filter;
1515 int tx_type_valid = 0;
1516 int rx_filter_valid = 0;
1517
1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 return -EFAULT;
1520
1521 if (cfg.flags) /* reserved for future extensions */
1522 return -EINVAL;
1523
1524 tx_type = cfg.tx_type;
1525 rx_filter = cfg.rx_filter;
1526
1527 switch (tx_type) {
1528 case HWTSTAMP_TX_OFF:
1529 case HWTSTAMP_TX_ON:
1530 case HWTSTAMP_TX_ONESTEP_SYNC:
1531 tx_type_valid = 1;
1532 break;
1533 }
1534
1535 switch (rx_filter) {
1536 case HWTSTAMP_FILTER_NONE:
1537 case HWTSTAMP_FILTER_ALL:
1538 case HWTSTAMP_FILTER_SOME:
1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 rx_filter_valid = 1;
1552 break;
1553 }
1554
1555 if (!tx_type_valid || !rx_filter_valid)
1556 return -ERANGE;
1557
1558 return 0;
1559 }
1560
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 struct sk_buff *skb)
1563 {
1564 unsigned int len;
1565
1566 if (!(dev->flags & IFF_UP))
1567 return false;
1568
1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 if (skb->len <= len)
1571 return true;
1572
1573 /* if TSO is enabled, we don't care about the length as the packet
1574 * could be forwarded without being segmented before
1575 */
1576 if (skb_is_gso(skb))
1577 return true;
1578
1579 return false;
1580 }
1581
1582 /**
1583 * dev_forward_skb - loopback an skb to another netif
1584 *
1585 * @dev: destination network device
1586 * @skb: buffer to forward
1587 *
1588 * return values:
1589 * NET_RX_SUCCESS (no congestion)
1590 * NET_RX_DROP (packet was dropped, but freed)
1591 *
1592 * dev_forward_skb can be used for injecting an skb from the
1593 * start_xmit function of one device into the receive queue
1594 * of another device.
1595 *
1596 * The receiving device may be in another namespace, so
1597 * we have to clear all information in the skb that could
1598 * impact namespace isolation.
1599 */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 atomic_long_inc(&dev->rx_dropped);
1605 kfree_skb(skb);
1606 return NET_RX_DROP;
1607 }
1608 }
1609
1610 skb_orphan(skb);
1611 nf_reset(skb);
1612
1613 if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 atomic_long_inc(&dev->rx_dropped);
1615 kfree_skb(skb);
1616 return NET_RX_DROP;
1617 }
1618 skb->skb_iif = 0;
1619 skb->dev = dev;
1620 skb_dst_drop(skb);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 skb->mark = 0;
1625 secpath_reset(skb);
1626 nf_reset(skb);
1627 return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 struct packet_type *pt_prev,
1633 struct net_device *orig_dev)
1634 {
1635 atomic_inc(&skb->users);
1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 }
1638
1639 /*
1640 * Support routine. Sends outgoing frames to any network
1641 * taps currently in use.
1642 */
1643
1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 {
1646 struct packet_type *ptype;
1647 struct sk_buff *skb2 = NULL;
1648 struct packet_type *pt_prev = NULL;
1649
1650 rcu_read_lock();
1651 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1652 /* Never send packets back to the socket
1653 * they originated from - MvS (miquels@drinkel.ow.org)
1654 */
1655 if ((ptype->dev == dev || !ptype->dev) &&
1656 (ptype->af_packet_priv == NULL ||
1657 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1658 if (pt_prev) {
1659 deliver_skb(skb2, pt_prev, skb->dev);
1660 pt_prev = ptype;
1661 continue;
1662 }
1663
1664 skb2 = skb_clone(skb, GFP_ATOMIC);
1665 if (!skb2)
1666 break;
1667
1668 net_timestamp_set(skb2);
1669
1670 /* skb->nh should be correctly
1671 set by sender, so that the second statement is
1672 just protection against buggy protocols.
1673 */
1674 skb_reset_mac_header(skb2);
1675
1676 if (skb_network_header(skb2) < skb2->data ||
1677 skb2->network_header > skb2->tail) {
1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1679 ntohs(skb2->protocol),
1680 dev->name);
1681 skb_reset_network_header(skb2);
1682 }
1683
1684 skb2->transport_header = skb2->network_header;
1685 skb2->pkt_type = PACKET_OUTGOING;
1686 pt_prev = ptype;
1687 }
1688 }
1689 if (pt_prev)
1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1691 rcu_read_unlock();
1692 }
1693
1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1695 * @dev: Network device
1696 * @txq: number of queues available
1697 *
1698 * If real_num_tx_queues is changed the tc mappings may no longer be
1699 * valid. To resolve this verify the tc mapping remains valid and if
1700 * not NULL the mapping. With no priorities mapping to this
1701 * offset/count pair it will no longer be used. In the worst case TC0
1702 * is invalid nothing can be done so disable priority mappings. If is
1703 * expected that drivers will fix this mapping if they can before
1704 * calling netif_set_real_num_tx_queues.
1705 */
1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 {
1708 int i;
1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1710
1711 /* If TC0 is invalidated disable TC mapping */
1712 if (tc->offset + tc->count > txq) {
1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1714 dev->num_tc = 0;
1715 return;
1716 }
1717
1718 /* Invalidated prio to tc mappings set to TC0 */
1719 for (i = 1; i < TC_BITMASK + 1; i++) {
1720 int q = netdev_get_prio_tc_map(dev, i);
1721
1722 tc = &dev->tc_to_txq[q];
1723 if (tc->offset + tc->count > txq) {
1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1725 i, q);
1726 netdev_set_prio_tc_map(dev, i, 0);
1727 }
1728 }
1729 }
1730
1731 /*
1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1734 */
1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1736 {
1737 int rc;
1738
1739 if (txq < 1 || txq > dev->num_tx_queues)
1740 return -EINVAL;
1741
1742 if (dev->reg_state == NETREG_REGISTERED ||
1743 dev->reg_state == NETREG_UNREGISTERING) {
1744 ASSERT_RTNL();
1745
1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1747 txq);
1748 if (rc)
1749 return rc;
1750
1751 if (dev->num_tc)
1752 netif_setup_tc(dev, txq);
1753
1754 if (txq < dev->real_num_tx_queues)
1755 qdisc_reset_all_tx_gt(dev, txq);
1756 }
1757
1758 dev->real_num_tx_queues = txq;
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1762
1763 #ifdef CONFIG_RPS
1764 /**
1765 * netif_set_real_num_rx_queues - set actual number of RX queues used
1766 * @dev: Network device
1767 * @rxq: Actual number of RX queues
1768 *
1769 * This must be called either with the rtnl_lock held or before
1770 * registration of the net device. Returns 0 on success, or a
1771 * negative error code. If called before registration, it always
1772 * succeeds.
1773 */
1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1775 {
1776 int rc;
1777
1778 if (rxq < 1 || rxq > dev->num_rx_queues)
1779 return -EINVAL;
1780
1781 if (dev->reg_state == NETREG_REGISTERED) {
1782 ASSERT_RTNL();
1783
1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1785 rxq);
1786 if (rc)
1787 return rc;
1788 }
1789
1790 dev->real_num_rx_queues = rxq;
1791 return 0;
1792 }
1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 #endif
1795
1796 static inline void __netif_reschedule(struct Qdisc *q)
1797 {
1798 struct softnet_data *sd;
1799 unsigned long flags;
1800
1801 local_irq_save(flags);
1802 sd = &__get_cpu_var(softnet_data);
1803 q->next_sched = NULL;
1804 *sd->output_queue_tailp = q;
1805 sd->output_queue_tailp = &q->next_sched;
1806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1807 local_irq_restore(flags);
1808 }
1809
1810 void __netif_schedule(struct Qdisc *q)
1811 {
1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1813 __netif_reschedule(q);
1814 }
1815 EXPORT_SYMBOL(__netif_schedule);
1816
1817 void dev_kfree_skb_irq(struct sk_buff *skb)
1818 {
1819 if (atomic_dec_and_test(&skb->users)) {
1820 struct softnet_data *sd;
1821 unsigned long flags;
1822
1823 local_irq_save(flags);
1824 sd = &__get_cpu_var(softnet_data);
1825 skb->next = sd->completion_queue;
1826 sd->completion_queue = skb;
1827 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1828 local_irq_restore(flags);
1829 }
1830 }
1831 EXPORT_SYMBOL(dev_kfree_skb_irq);
1832
1833 void dev_kfree_skb_any(struct sk_buff *skb)
1834 {
1835 if (in_irq() || irqs_disabled())
1836 dev_kfree_skb_irq(skb);
1837 else
1838 dev_kfree_skb(skb);
1839 }
1840 EXPORT_SYMBOL(dev_kfree_skb_any);
1841
1842
1843 /**
1844 * netif_device_detach - mark device as removed
1845 * @dev: network device
1846 *
1847 * Mark device as removed from system and therefore no longer available.
1848 */
1849 void netif_device_detach(struct net_device *dev)
1850 {
1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1852 netif_running(dev)) {
1853 netif_tx_stop_all_queues(dev);
1854 }
1855 }
1856 EXPORT_SYMBOL(netif_device_detach);
1857
1858 /**
1859 * netif_device_attach - mark device as attached
1860 * @dev: network device
1861 *
1862 * Mark device as attached from system and restart if needed.
1863 */
1864 void netif_device_attach(struct net_device *dev)
1865 {
1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 netif_running(dev)) {
1868 netif_tx_wake_all_queues(dev);
1869 __netdev_watchdog_up(dev);
1870 }
1871 }
1872 EXPORT_SYMBOL(netif_device_attach);
1873
1874 static void skb_warn_bad_offload(const struct sk_buff *skb)
1875 {
1876 static const netdev_features_t null_features = 0;
1877 struct net_device *dev = skb->dev;
1878 const char *driver = "";
1879
1880 if (dev && dev->dev.parent)
1881 driver = dev_driver_string(dev->dev.parent);
1882
1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1884 "gso_type=%d ip_summed=%d\n",
1885 driver, dev ? &dev->features : &null_features,
1886 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1888 skb_shinfo(skb)->gso_type, skb->ip_summed);
1889 }
1890
1891 /*
1892 * Invalidate hardware checksum when packet is to be mangled, and
1893 * complete checksum manually on outgoing path.
1894 */
1895 int skb_checksum_help(struct sk_buff *skb)
1896 {
1897 __wsum csum;
1898 int ret = 0, offset;
1899
1900 if (skb->ip_summed == CHECKSUM_COMPLETE)
1901 goto out_set_summed;
1902
1903 if (unlikely(skb_shinfo(skb)->gso_size)) {
1904 skb_warn_bad_offload(skb);
1905 return -EINVAL;
1906 }
1907
1908 offset = skb_checksum_start_offset(skb);
1909 BUG_ON(offset >= skb_headlen(skb));
1910 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1911
1912 offset += skb->csum_offset;
1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1914
1915 if (skb_cloned(skb) &&
1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1918 if (ret)
1919 goto out;
1920 }
1921
1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1923 out_set_summed:
1924 skb->ip_summed = CHECKSUM_NONE;
1925 out:
1926 return ret;
1927 }
1928 EXPORT_SYMBOL(skb_checksum_help);
1929
1930 /**
1931 * skb_gso_segment - Perform segmentation on skb.
1932 * @skb: buffer to segment
1933 * @features: features for the output path (see dev->features)
1934 *
1935 * This function segments the given skb and returns a list of segments.
1936 *
1937 * It may return NULL if the skb requires no segmentation. This is
1938 * only possible when GSO is used for verifying header integrity.
1939 */
1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1941 netdev_features_t features)
1942 {
1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1944 struct packet_type *ptype;
1945 __be16 type = skb->protocol;
1946 int vlan_depth = ETH_HLEN;
1947 int err;
1948
1949 while (type == htons(ETH_P_8021Q)) {
1950 struct vlan_hdr *vh;
1951
1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1953 return ERR_PTR(-EINVAL);
1954
1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1956 type = vh->h_vlan_encapsulated_proto;
1957 vlan_depth += VLAN_HLEN;
1958 }
1959
1960 skb_reset_mac_header(skb);
1961 skb->mac_len = skb->network_header - skb->mac_header;
1962 __skb_pull(skb, skb->mac_len);
1963
1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1965 skb_warn_bad_offload(skb);
1966
1967 if (skb_header_cloned(skb) &&
1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1969 return ERR_PTR(err);
1970 }
1971
1972 rcu_read_lock();
1973 list_for_each_entry_rcu(ptype,
1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1977 err = ptype->gso_send_check(skb);
1978 segs = ERR_PTR(err);
1979 if (err || skb_gso_ok(skb, features))
1980 break;
1981 __skb_push(skb, (skb->data -
1982 skb_network_header(skb)));
1983 }
1984 segs = ptype->gso_segment(skb, features);
1985 break;
1986 }
1987 }
1988 rcu_read_unlock();
1989
1990 __skb_push(skb, skb->data - skb_mac_header(skb));
1991
1992 return segs;
1993 }
1994 EXPORT_SYMBOL(skb_gso_segment);
1995
1996 /* Take action when hardware reception checksum errors are detected. */
1997 #ifdef CONFIG_BUG
1998 void netdev_rx_csum_fault(struct net_device *dev)
1999 {
2000 if (net_ratelimit()) {
2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2002 dump_stack();
2003 }
2004 }
2005 EXPORT_SYMBOL(netdev_rx_csum_fault);
2006 #endif
2007
2008 /* Actually, we should eliminate this check as soon as we know, that:
2009 * 1. IOMMU is present and allows to map all the memory.
2010 * 2. No high memory really exists on this machine.
2011 */
2012
2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2014 {
2015 #ifdef CONFIG_HIGHMEM
2016 int i;
2017 if (!(dev->features & NETIF_F_HIGHDMA)) {
2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2020 if (PageHighMem(skb_frag_page(frag)))
2021 return 1;
2022 }
2023 }
2024
2025 if (PCI_DMA_BUS_IS_PHYS) {
2026 struct device *pdev = dev->dev.parent;
2027
2028 if (!pdev)
2029 return 0;
2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2034 return 1;
2035 }
2036 }
2037 #endif
2038 return 0;
2039 }
2040
2041 struct dev_gso_cb {
2042 void (*destructor)(struct sk_buff *skb);
2043 };
2044
2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2046
2047 static void dev_gso_skb_destructor(struct sk_buff *skb)
2048 {
2049 struct dev_gso_cb *cb;
2050
2051 do {
2052 struct sk_buff *nskb = skb->next;
2053
2054 skb->next = nskb->next;
2055 nskb->next = NULL;
2056 kfree_skb(nskb);
2057 } while (skb->next);
2058
2059 cb = DEV_GSO_CB(skb);
2060 if (cb->destructor)
2061 cb->destructor(skb);
2062 }
2063
2064 /**
2065 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2066 * @skb: buffer to segment
2067 * @features: device features as applicable to this skb
2068 *
2069 * This function segments the given skb and stores the list of segments
2070 * in skb->next.
2071 */
2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2073 {
2074 struct sk_buff *segs;
2075
2076 segs = skb_gso_segment(skb, features);
2077
2078 /* Verifying header integrity only. */
2079 if (!segs)
2080 return 0;
2081
2082 if (IS_ERR(segs))
2083 return PTR_ERR(segs);
2084
2085 skb->next = segs;
2086 DEV_GSO_CB(skb)->destructor = skb->destructor;
2087 skb->destructor = dev_gso_skb_destructor;
2088
2089 return 0;
2090 }
2091
2092 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2093 {
2094 return ((features & NETIF_F_GEN_CSUM) ||
2095 ((features & NETIF_F_V4_CSUM) &&
2096 protocol == htons(ETH_P_IP)) ||
2097 ((features & NETIF_F_V6_CSUM) &&
2098 protocol == htons(ETH_P_IPV6)) ||
2099 ((features & NETIF_F_FCOE_CRC) &&
2100 protocol == htons(ETH_P_FCOE)));
2101 }
2102
2103 static netdev_features_t harmonize_features(struct sk_buff *skb,
2104 __be16 protocol, netdev_features_t features)
2105 {
2106 if (!can_checksum_protocol(features, protocol)) {
2107 features &= ~NETIF_F_ALL_CSUM;
2108 features &= ~NETIF_F_SG;
2109 } else if (illegal_highdma(skb->dev, skb)) {
2110 features &= ~NETIF_F_SG;
2111 }
2112
2113 return features;
2114 }
2115
2116 netdev_features_t netif_skb_features(struct sk_buff *skb)
2117 {
2118 __be16 protocol = skb->protocol;
2119 netdev_features_t features = skb->dev->features;
2120
2121 if (protocol == htons(ETH_P_8021Q)) {
2122 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2123 protocol = veh->h_vlan_encapsulated_proto;
2124 } else if (!vlan_tx_tag_present(skb)) {
2125 return harmonize_features(skb, protocol, features);
2126 }
2127
2128 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2129
2130 if (protocol != htons(ETH_P_8021Q)) {
2131 return harmonize_features(skb, protocol, features);
2132 } else {
2133 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2134 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2135 return harmonize_features(skb, protocol, features);
2136 }
2137 }
2138 EXPORT_SYMBOL(netif_skb_features);
2139
2140 /*
2141 * Returns true if either:
2142 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2143 * 2. skb is fragmented and the device does not support SG, or if
2144 * at least one of fragments is in highmem and device does not
2145 * support DMA from it.
2146 */
2147 static inline int skb_needs_linearize(struct sk_buff *skb,
2148 int features)
2149 {
2150 return skb_is_nonlinear(skb) &&
2151 ((skb_has_frag_list(skb) &&
2152 !(features & NETIF_F_FRAGLIST)) ||
2153 (skb_shinfo(skb)->nr_frags &&
2154 !(features & NETIF_F_SG)));
2155 }
2156
2157 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2158 struct netdev_queue *txq)
2159 {
2160 const struct net_device_ops *ops = dev->netdev_ops;
2161 int rc = NETDEV_TX_OK;
2162 unsigned int skb_len;
2163
2164 if (likely(!skb->next)) {
2165 netdev_features_t features;
2166
2167 /*
2168 * If device doesn't need skb->dst, release it right now while
2169 * its hot in this cpu cache
2170 */
2171 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2172 skb_dst_drop(skb);
2173
2174 if (!list_empty(&ptype_all))
2175 dev_queue_xmit_nit(skb, dev);
2176
2177 features = netif_skb_features(skb);
2178
2179 if (vlan_tx_tag_present(skb) &&
2180 !(features & NETIF_F_HW_VLAN_TX)) {
2181 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2182 if (unlikely(!skb))
2183 goto out;
2184
2185 skb->vlan_tci = 0;
2186 }
2187
2188 if (netif_needs_gso(skb, features)) {
2189 if (unlikely(dev_gso_segment(skb, features)))
2190 goto out_kfree_skb;
2191 if (skb->next)
2192 goto gso;
2193 } else {
2194 if (skb_needs_linearize(skb, features) &&
2195 __skb_linearize(skb))
2196 goto out_kfree_skb;
2197
2198 /* If packet is not checksummed and device does not
2199 * support checksumming for this protocol, complete
2200 * checksumming here.
2201 */
2202 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2203 skb_set_transport_header(skb,
2204 skb_checksum_start_offset(skb));
2205 if (!(features & NETIF_F_ALL_CSUM) &&
2206 skb_checksum_help(skb))
2207 goto out_kfree_skb;
2208 }
2209 }
2210
2211 skb_len = skb->len;
2212 rc = ops->ndo_start_xmit(skb, dev);
2213 trace_net_dev_xmit(skb, rc, dev, skb_len);
2214 if (rc == NETDEV_TX_OK)
2215 txq_trans_update(txq);
2216 return rc;
2217 }
2218
2219 gso:
2220 do {
2221 struct sk_buff *nskb = skb->next;
2222
2223 skb->next = nskb->next;
2224 nskb->next = NULL;
2225
2226 /*
2227 * If device doesn't need nskb->dst, release it right now while
2228 * its hot in this cpu cache
2229 */
2230 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2231 skb_dst_drop(nskb);
2232
2233 skb_len = nskb->len;
2234 rc = ops->ndo_start_xmit(nskb, dev);
2235 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2236 if (unlikely(rc != NETDEV_TX_OK)) {
2237 if (rc & ~NETDEV_TX_MASK)
2238 goto out_kfree_gso_skb;
2239 nskb->next = skb->next;
2240 skb->next = nskb;
2241 return rc;
2242 }
2243 txq_trans_update(txq);
2244 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2245 return NETDEV_TX_BUSY;
2246 } while (skb->next);
2247
2248 out_kfree_gso_skb:
2249 if (likely(skb->next == NULL))
2250 skb->destructor = DEV_GSO_CB(skb)->destructor;
2251 out_kfree_skb:
2252 kfree_skb(skb);
2253 out:
2254 return rc;
2255 }
2256
2257 static u32 hashrnd __read_mostly;
2258
2259 /*
2260 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2261 * to be used as a distribution range.
2262 */
2263 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2264 unsigned int num_tx_queues)
2265 {
2266 u32 hash;
2267 u16 qoffset = 0;
2268 u16 qcount = num_tx_queues;
2269
2270 if (skb_rx_queue_recorded(skb)) {
2271 hash = skb_get_rx_queue(skb);
2272 while (unlikely(hash >= num_tx_queues))
2273 hash -= num_tx_queues;
2274 return hash;
2275 }
2276
2277 if (dev->num_tc) {
2278 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2279 qoffset = dev->tc_to_txq[tc].offset;
2280 qcount = dev->tc_to_txq[tc].count;
2281 }
2282
2283 if (skb->sk && skb->sk->sk_hash)
2284 hash = skb->sk->sk_hash;
2285 else
2286 hash = (__force u16) skb->protocol;
2287 hash = jhash_1word(hash, hashrnd);
2288
2289 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2290 }
2291 EXPORT_SYMBOL(__skb_tx_hash);
2292
2293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2294 {
2295 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2296 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2297 dev->name, queue_index,
2298 dev->real_num_tx_queues);
2299 return 0;
2300 }
2301 return queue_index;
2302 }
2303
2304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2305 {
2306 #ifdef CONFIG_XPS
2307 struct xps_dev_maps *dev_maps;
2308 struct xps_map *map;
2309 int queue_index = -1;
2310
2311 rcu_read_lock();
2312 dev_maps = rcu_dereference(dev->xps_maps);
2313 if (dev_maps) {
2314 map = rcu_dereference(
2315 dev_maps->cpu_map[raw_smp_processor_id()]);
2316 if (map) {
2317 if (map->len == 1)
2318 queue_index = map->queues[0];
2319 else {
2320 u32 hash;
2321 if (skb->sk && skb->sk->sk_hash)
2322 hash = skb->sk->sk_hash;
2323 else
2324 hash = (__force u16) skb->protocol ^
2325 skb->rxhash;
2326 hash = jhash_1word(hash, hashrnd);
2327 queue_index = map->queues[
2328 ((u64)hash * map->len) >> 32];
2329 }
2330 if (unlikely(queue_index >= dev->real_num_tx_queues))
2331 queue_index = -1;
2332 }
2333 }
2334 rcu_read_unlock();
2335
2336 return queue_index;
2337 #else
2338 return -1;
2339 #endif
2340 }
2341
2342 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2343 struct sk_buff *skb)
2344 {
2345 int queue_index;
2346 const struct net_device_ops *ops = dev->netdev_ops;
2347
2348 if (dev->real_num_tx_queues == 1)
2349 queue_index = 0;
2350 else if (ops->ndo_select_queue) {
2351 queue_index = ops->ndo_select_queue(dev, skb);
2352 queue_index = dev_cap_txqueue(dev, queue_index);
2353 } else {
2354 struct sock *sk = skb->sk;
2355 queue_index = sk_tx_queue_get(sk);
2356
2357 if (queue_index < 0 || skb->ooo_okay ||
2358 queue_index >= dev->real_num_tx_queues) {
2359 int old_index = queue_index;
2360
2361 queue_index = get_xps_queue(dev, skb);
2362 if (queue_index < 0)
2363 queue_index = skb_tx_hash(dev, skb);
2364
2365 if (queue_index != old_index && sk) {
2366 struct dst_entry *dst =
2367 rcu_dereference_check(sk->sk_dst_cache, 1);
2368
2369 if (dst && skb_dst(skb) == dst)
2370 sk_tx_queue_set(sk, queue_index);
2371 }
2372 }
2373 }
2374
2375 skb_set_queue_mapping(skb, queue_index);
2376 return netdev_get_tx_queue(dev, queue_index);
2377 }
2378
2379 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2380 struct net_device *dev,
2381 struct netdev_queue *txq)
2382 {
2383 spinlock_t *root_lock = qdisc_lock(q);
2384 bool contended;
2385 int rc;
2386
2387 qdisc_skb_cb(skb)->pkt_len = skb->len;
2388 qdisc_calculate_pkt_len(skb, q);
2389 /*
2390 * Heuristic to force contended enqueues to serialize on a
2391 * separate lock before trying to get qdisc main lock.
2392 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2393 * and dequeue packets faster.
2394 */
2395 contended = qdisc_is_running(q);
2396 if (unlikely(contended))
2397 spin_lock(&q->busylock);
2398
2399 spin_lock(root_lock);
2400 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2401 kfree_skb(skb);
2402 rc = NET_XMIT_DROP;
2403 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2404 qdisc_run_begin(q)) {
2405 /*
2406 * This is a work-conserving queue; there are no old skbs
2407 * waiting to be sent out; and the qdisc is not running -
2408 * xmit the skb directly.
2409 */
2410 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2411 skb_dst_force(skb);
2412
2413 qdisc_bstats_update(q, skb);
2414
2415 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2416 if (unlikely(contended)) {
2417 spin_unlock(&q->busylock);
2418 contended = false;
2419 }
2420 __qdisc_run(q);
2421 } else
2422 qdisc_run_end(q);
2423
2424 rc = NET_XMIT_SUCCESS;
2425 } else {
2426 skb_dst_force(skb);
2427 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2428 if (qdisc_run_begin(q)) {
2429 if (unlikely(contended)) {
2430 spin_unlock(&q->busylock);
2431 contended = false;
2432 }
2433 __qdisc_run(q);
2434 }
2435 }
2436 spin_unlock(root_lock);
2437 if (unlikely(contended))
2438 spin_unlock(&q->busylock);
2439 return rc;
2440 }
2441
2442 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2443 static void skb_update_prio(struct sk_buff *skb)
2444 {
2445 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2446
2447 if ((!skb->priority) && (skb->sk) && map)
2448 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2449 }
2450 #else
2451 #define skb_update_prio(skb)
2452 #endif
2453
2454 static DEFINE_PER_CPU(int, xmit_recursion);
2455 #define RECURSION_LIMIT 10
2456
2457 /**
2458 * dev_queue_xmit - transmit a buffer
2459 * @skb: buffer to transmit
2460 *
2461 * Queue a buffer for transmission to a network device. The caller must
2462 * have set the device and priority and built the buffer before calling
2463 * this function. The function can be called from an interrupt.
2464 *
2465 * A negative errno code is returned on a failure. A success does not
2466 * guarantee the frame will be transmitted as it may be dropped due
2467 * to congestion or traffic shaping.
2468 *
2469 * -----------------------------------------------------------------------------------
2470 * I notice this method can also return errors from the queue disciplines,
2471 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2472 * be positive.
2473 *
2474 * Regardless of the return value, the skb is consumed, so it is currently
2475 * difficult to retry a send to this method. (You can bump the ref count
2476 * before sending to hold a reference for retry if you are careful.)
2477 *
2478 * When calling this method, interrupts MUST be enabled. This is because
2479 * the BH enable code must have IRQs enabled so that it will not deadlock.
2480 * --BLG
2481 */
2482 int dev_queue_xmit(struct sk_buff *skb)
2483 {
2484 struct net_device *dev = skb->dev;
2485 struct netdev_queue *txq;
2486 struct Qdisc *q;
2487 int rc = -ENOMEM;
2488
2489 /* Disable soft irqs for various locks below. Also
2490 * stops preemption for RCU.
2491 */
2492 rcu_read_lock_bh();
2493
2494 skb_update_prio(skb);
2495
2496 txq = dev_pick_tx(dev, skb);
2497 q = rcu_dereference_bh(txq->qdisc);
2498
2499 #ifdef CONFIG_NET_CLS_ACT
2500 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2501 #endif
2502 trace_net_dev_queue(skb);
2503 if (q->enqueue) {
2504 rc = __dev_xmit_skb(skb, q, dev, txq);
2505 goto out;
2506 }
2507
2508 /* The device has no queue. Common case for software devices:
2509 loopback, all the sorts of tunnels...
2510
2511 Really, it is unlikely that netif_tx_lock protection is necessary
2512 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2513 counters.)
2514 However, it is possible, that they rely on protection
2515 made by us here.
2516
2517 Check this and shot the lock. It is not prone from deadlocks.
2518 Either shot noqueue qdisc, it is even simpler 8)
2519 */
2520 if (dev->flags & IFF_UP) {
2521 int cpu = smp_processor_id(); /* ok because BHs are off */
2522
2523 if (txq->xmit_lock_owner != cpu) {
2524
2525 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2526 goto recursion_alert;
2527
2528 HARD_TX_LOCK(dev, txq, cpu);
2529
2530 if (!netif_xmit_stopped(txq)) {
2531 __this_cpu_inc(xmit_recursion);
2532 rc = dev_hard_start_xmit(skb, dev, txq);
2533 __this_cpu_dec(xmit_recursion);
2534 if (dev_xmit_complete(rc)) {
2535 HARD_TX_UNLOCK(dev, txq);
2536 goto out;
2537 }
2538 }
2539 HARD_TX_UNLOCK(dev, txq);
2540 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2541 dev->name);
2542 } else {
2543 /* Recursion is detected! It is possible,
2544 * unfortunately
2545 */
2546 recursion_alert:
2547 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2548 dev->name);
2549 }
2550 }
2551
2552 rc = -ENETDOWN;
2553 rcu_read_unlock_bh();
2554
2555 kfree_skb(skb);
2556 return rc;
2557 out:
2558 rcu_read_unlock_bh();
2559 return rc;
2560 }
2561 EXPORT_SYMBOL(dev_queue_xmit);
2562
2563
2564 /*=======================================================================
2565 Receiver routines
2566 =======================================================================*/
2567
2568 int netdev_max_backlog __read_mostly = 1000;
2569 int netdev_tstamp_prequeue __read_mostly = 1;
2570 int netdev_budget __read_mostly = 300;
2571 int weight_p __read_mostly = 64; /* old backlog weight */
2572
2573 /* Called with irq disabled */
2574 static inline void ____napi_schedule(struct softnet_data *sd,
2575 struct napi_struct *napi)
2576 {
2577 list_add_tail(&napi->poll_list, &sd->poll_list);
2578 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2579 }
2580
2581 /*
2582 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2583 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2584 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2585 * if hash is a canonical 4-tuple hash over transport ports.
2586 */
2587 void __skb_get_rxhash(struct sk_buff *skb)
2588 {
2589 struct flow_keys keys;
2590 u32 hash;
2591
2592 if (!skb_flow_dissect(skb, &keys))
2593 return;
2594
2595 if (keys.ports) {
2596 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2597 swap(keys.port16[0], keys.port16[1]);
2598 skb->l4_rxhash = 1;
2599 }
2600
2601 /* get a consistent hash (same value on both flow directions) */
2602 if ((__force u32)keys.dst < (__force u32)keys.src)
2603 swap(keys.dst, keys.src);
2604
2605 hash = jhash_3words((__force u32)keys.dst,
2606 (__force u32)keys.src,
2607 (__force u32)keys.ports, hashrnd);
2608 if (!hash)
2609 hash = 1;
2610
2611 skb->rxhash = hash;
2612 }
2613 EXPORT_SYMBOL(__skb_get_rxhash);
2614
2615 #ifdef CONFIG_RPS
2616
2617 /* One global table that all flow-based protocols share. */
2618 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2619 EXPORT_SYMBOL(rps_sock_flow_table);
2620
2621 struct static_key rps_needed __read_mostly;
2622
2623 static struct rps_dev_flow *
2624 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2625 struct rps_dev_flow *rflow, u16 next_cpu)
2626 {
2627 if (next_cpu != RPS_NO_CPU) {
2628 #ifdef CONFIG_RFS_ACCEL
2629 struct netdev_rx_queue *rxqueue;
2630 struct rps_dev_flow_table *flow_table;
2631 struct rps_dev_flow *old_rflow;
2632 u32 flow_id;
2633 u16 rxq_index;
2634 int rc;
2635
2636 /* Should we steer this flow to a different hardware queue? */
2637 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2638 !(dev->features & NETIF_F_NTUPLE))
2639 goto out;
2640 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2641 if (rxq_index == skb_get_rx_queue(skb))
2642 goto out;
2643
2644 rxqueue = dev->_rx + rxq_index;
2645 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2646 if (!flow_table)
2647 goto out;
2648 flow_id = skb->rxhash & flow_table->mask;
2649 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2650 rxq_index, flow_id);
2651 if (rc < 0)
2652 goto out;
2653 old_rflow = rflow;
2654 rflow = &flow_table->flows[flow_id];
2655 rflow->filter = rc;
2656 if (old_rflow->filter == rflow->filter)
2657 old_rflow->filter = RPS_NO_FILTER;
2658 out:
2659 #endif
2660 rflow->last_qtail =
2661 per_cpu(softnet_data, next_cpu).input_queue_head;
2662 }
2663
2664 rflow->cpu = next_cpu;
2665 return rflow;
2666 }
2667
2668 /*
2669 * get_rps_cpu is called from netif_receive_skb and returns the target
2670 * CPU from the RPS map of the receiving queue for a given skb.
2671 * rcu_read_lock must be held on entry.
2672 */
2673 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2674 struct rps_dev_flow **rflowp)
2675 {
2676 struct netdev_rx_queue *rxqueue;
2677 struct rps_map *map;
2678 struct rps_dev_flow_table *flow_table;
2679 struct rps_sock_flow_table *sock_flow_table;
2680 int cpu = -1;
2681 u16 tcpu;
2682
2683 if (skb_rx_queue_recorded(skb)) {
2684 u16 index = skb_get_rx_queue(skb);
2685 if (unlikely(index >= dev->real_num_rx_queues)) {
2686 WARN_ONCE(dev->real_num_rx_queues > 1,
2687 "%s received packet on queue %u, but number "
2688 "of RX queues is %u\n",
2689 dev->name, index, dev->real_num_rx_queues);
2690 goto done;
2691 }
2692 rxqueue = dev->_rx + index;
2693 } else
2694 rxqueue = dev->_rx;
2695
2696 map = rcu_dereference(rxqueue->rps_map);
2697 if (map) {
2698 if (map->len == 1 &&
2699 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2700 tcpu = map->cpus[0];
2701 if (cpu_online(tcpu))
2702 cpu = tcpu;
2703 goto done;
2704 }
2705 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2706 goto done;
2707 }
2708
2709 skb_reset_network_header(skb);
2710 if (!skb_get_rxhash(skb))
2711 goto done;
2712
2713 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2714 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2715 if (flow_table && sock_flow_table) {
2716 u16 next_cpu;
2717 struct rps_dev_flow *rflow;
2718
2719 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2720 tcpu = rflow->cpu;
2721
2722 next_cpu = sock_flow_table->ents[skb->rxhash &
2723 sock_flow_table->mask];
2724
2725 /*
2726 * If the desired CPU (where last recvmsg was done) is
2727 * different from current CPU (one in the rx-queue flow
2728 * table entry), switch if one of the following holds:
2729 * - Current CPU is unset (equal to RPS_NO_CPU).
2730 * - Current CPU is offline.
2731 * - The current CPU's queue tail has advanced beyond the
2732 * last packet that was enqueued using this table entry.
2733 * This guarantees that all previous packets for the flow
2734 * have been dequeued, thus preserving in order delivery.
2735 */
2736 if (unlikely(tcpu != next_cpu) &&
2737 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2738 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2739 rflow->last_qtail)) >= 0))
2740 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2741
2742 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2743 *rflowp = rflow;
2744 cpu = tcpu;
2745 goto done;
2746 }
2747 }
2748
2749 if (map) {
2750 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2751
2752 if (cpu_online(tcpu)) {
2753 cpu = tcpu;
2754 goto done;
2755 }
2756 }
2757
2758 done:
2759 return cpu;
2760 }
2761
2762 #ifdef CONFIG_RFS_ACCEL
2763
2764 /**
2765 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2766 * @dev: Device on which the filter was set
2767 * @rxq_index: RX queue index
2768 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2769 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2770 *
2771 * Drivers that implement ndo_rx_flow_steer() should periodically call
2772 * this function for each installed filter and remove the filters for
2773 * which it returns %true.
2774 */
2775 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2776 u32 flow_id, u16 filter_id)
2777 {
2778 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2779 struct rps_dev_flow_table *flow_table;
2780 struct rps_dev_flow *rflow;
2781 bool expire = true;
2782 int cpu;
2783
2784 rcu_read_lock();
2785 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2786 if (flow_table && flow_id <= flow_table->mask) {
2787 rflow = &flow_table->flows[flow_id];
2788 cpu = ACCESS_ONCE(rflow->cpu);
2789 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2790 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2791 rflow->last_qtail) <
2792 (int)(10 * flow_table->mask)))
2793 expire = false;
2794 }
2795 rcu_read_unlock();
2796 return expire;
2797 }
2798 EXPORT_SYMBOL(rps_may_expire_flow);
2799
2800 #endif /* CONFIG_RFS_ACCEL */
2801
2802 /* Called from hardirq (IPI) context */
2803 static void rps_trigger_softirq(void *data)
2804 {
2805 struct softnet_data *sd = data;
2806
2807 ____napi_schedule(sd, &sd->backlog);
2808 sd->received_rps++;
2809 }
2810
2811 #endif /* CONFIG_RPS */
2812
2813 /*
2814 * Check if this softnet_data structure is another cpu one
2815 * If yes, queue it to our IPI list and return 1
2816 * If no, return 0
2817 */
2818 static int rps_ipi_queued(struct softnet_data *sd)
2819 {
2820 #ifdef CONFIG_RPS
2821 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2822
2823 if (sd != mysd) {
2824 sd->rps_ipi_next = mysd->rps_ipi_list;
2825 mysd->rps_ipi_list = sd;
2826
2827 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2828 return 1;
2829 }
2830 #endif /* CONFIG_RPS */
2831 return 0;
2832 }
2833
2834 /*
2835 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2836 * queue (may be a remote CPU queue).
2837 */
2838 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2839 unsigned int *qtail)
2840 {
2841 struct softnet_data *sd;
2842 unsigned long flags;
2843
2844 sd = &per_cpu(softnet_data, cpu);
2845
2846 local_irq_save(flags);
2847
2848 rps_lock(sd);
2849 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2850 if (skb_queue_len(&sd->input_pkt_queue)) {
2851 enqueue:
2852 __skb_queue_tail(&sd->input_pkt_queue, skb);
2853 input_queue_tail_incr_save(sd, qtail);
2854 rps_unlock(sd);
2855 local_irq_restore(flags);
2856 return NET_RX_SUCCESS;
2857 }
2858
2859 /* Schedule NAPI for backlog device
2860 * We can use non atomic operation since we own the queue lock
2861 */
2862 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2863 if (!rps_ipi_queued(sd))
2864 ____napi_schedule(sd, &sd->backlog);
2865 }
2866 goto enqueue;
2867 }
2868
2869 sd->dropped++;
2870 rps_unlock(sd);
2871
2872 local_irq_restore(flags);
2873
2874 atomic_long_inc(&skb->dev->rx_dropped);
2875 kfree_skb(skb);
2876 return NET_RX_DROP;
2877 }
2878
2879 /**
2880 * netif_rx - post buffer to the network code
2881 * @skb: buffer to post
2882 *
2883 * This function receives a packet from a device driver and queues it for
2884 * the upper (protocol) levels to process. It always succeeds. The buffer
2885 * may be dropped during processing for congestion control or by the
2886 * protocol layers.
2887 *
2888 * return values:
2889 * NET_RX_SUCCESS (no congestion)
2890 * NET_RX_DROP (packet was dropped)
2891 *
2892 */
2893
2894 int netif_rx(struct sk_buff *skb)
2895 {
2896 int ret;
2897
2898 /* if netpoll wants it, pretend we never saw it */
2899 if (netpoll_rx(skb))
2900 return NET_RX_DROP;
2901
2902 net_timestamp_check(netdev_tstamp_prequeue, skb);
2903
2904 trace_netif_rx(skb);
2905 #ifdef CONFIG_RPS
2906 if (static_key_false(&rps_needed)) {
2907 struct rps_dev_flow voidflow, *rflow = &voidflow;
2908 int cpu;
2909
2910 preempt_disable();
2911 rcu_read_lock();
2912
2913 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2914 if (cpu < 0)
2915 cpu = smp_processor_id();
2916
2917 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2918
2919 rcu_read_unlock();
2920 preempt_enable();
2921 } else
2922 #endif
2923 {
2924 unsigned int qtail;
2925 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2926 put_cpu();
2927 }
2928 return ret;
2929 }
2930 EXPORT_SYMBOL(netif_rx);
2931
2932 int netif_rx_ni(struct sk_buff *skb)
2933 {
2934 int err;
2935
2936 preempt_disable();
2937 err = netif_rx(skb);
2938 if (local_softirq_pending())
2939 do_softirq();
2940 preempt_enable();
2941
2942 return err;
2943 }
2944 EXPORT_SYMBOL(netif_rx_ni);
2945
2946 static void net_tx_action(struct softirq_action *h)
2947 {
2948 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2949
2950 if (sd->completion_queue) {
2951 struct sk_buff *clist;
2952
2953 local_irq_disable();
2954 clist = sd->completion_queue;
2955 sd->completion_queue = NULL;
2956 local_irq_enable();
2957
2958 while (clist) {
2959 struct sk_buff *skb = clist;
2960 clist = clist->next;
2961
2962 WARN_ON(atomic_read(&skb->users));
2963 trace_kfree_skb(skb, net_tx_action);
2964 __kfree_skb(skb);
2965 }
2966 }
2967
2968 if (sd->output_queue) {
2969 struct Qdisc *head;
2970
2971 local_irq_disable();
2972 head = sd->output_queue;
2973 sd->output_queue = NULL;
2974 sd->output_queue_tailp = &sd->output_queue;
2975 local_irq_enable();
2976
2977 while (head) {
2978 struct Qdisc *q = head;
2979 spinlock_t *root_lock;
2980
2981 head = head->next_sched;
2982
2983 root_lock = qdisc_lock(q);
2984 if (spin_trylock(root_lock)) {
2985 smp_mb__before_clear_bit();
2986 clear_bit(__QDISC_STATE_SCHED,
2987 &q->state);
2988 qdisc_run(q);
2989 spin_unlock(root_lock);
2990 } else {
2991 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2992 &q->state)) {
2993 __netif_reschedule(q);
2994 } else {
2995 smp_mb__before_clear_bit();
2996 clear_bit(__QDISC_STATE_SCHED,
2997 &q->state);
2998 }
2999 }
3000 }
3001 }
3002 }
3003
3004 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3005 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3006 /* This hook is defined here for ATM LANE */
3007 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3008 unsigned char *addr) __read_mostly;
3009 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3010 #endif
3011
3012 #ifdef CONFIG_NET_CLS_ACT
3013 /* TODO: Maybe we should just force sch_ingress to be compiled in
3014 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3015 * a compare and 2 stores extra right now if we dont have it on
3016 * but have CONFIG_NET_CLS_ACT
3017 * NOTE: This doesn't stop any functionality; if you dont have
3018 * the ingress scheduler, you just can't add policies on ingress.
3019 *
3020 */
3021 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3022 {
3023 struct net_device *dev = skb->dev;
3024 u32 ttl = G_TC_RTTL(skb->tc_verd);
3025 int result = TC_ACT_OK;
3026 struct Qdisc *q;
3027
3028 if (unlikely(MAX_RED_LOOP < ttl++)) {
3029 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3030 skb->skb_iif, dev->ifindex);
3031 return TC_ACT_SHOT;
3032 }
3033
3034 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3035 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3036
3037 q = rxq->qdisc;
3038 if (q != &noop_qdisc) {
3039 spin_lock(qdisc_lock(q));
3040 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3041 result = qdisc_enqueue_root(skb, q);
3042 spin_unlock(qdisc_lock(q));
3043 }
3044
3045 return result;
3046 }
3047
3048 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3049 struct packet_type **pt_prev,
3050 int *ret, struct net_device *orig_dev)
3051 {
3052 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3053
3054 if (!rxq || rxq->qdisc == &noop_qdisc)
3055 goto out;
3056
3057 if (*pt_prev) {
3058 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3059 *pt_prev = NULL;
3060 }
3061
3062 switch (ing_filter(skb, rxq)) {
3063 case TC_ACT_SHOT:
3064 case TC_ACT_STOLEN:
3065 kfree_skb(skb);
3066 return NULL;
3067 }
3068
3069 out:
3070 skb->tc_verd = 0;
3071 return skb;
3072 }
3073 #endif
3074
3075 /**
3076 * netdev_rx_handler_register - register receive handler
3077 * @dev: device to register a handler for
3078 * @rx_handler: receive handler to register
3079 * @rx_handler_data: data pointer that is used by rx handler
3080 *
3081 * Register a receive hander for a device. This handler will then be
3082 * called from __netif_receive_skb. A negative errno code is returned
3083 * on a failure.
3084 *
3085 * The caller must hold the rtnl_mutex.
3086 *
3087 * For a general description of rx_handler, see enum rx_handler_result.
3088 */
3089 int netdev_rx_handler_register(struct net_device *dev,
3090 rx_handler_func_t *rx_handler,
3091 void *rx_handler_data)
3092 {
3093 ASSERT_RTNL();
3094
3095 if (dev->rx_handler)
3096 return -EBUSY;
3097
3098 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3099 rcu_assign_pointer(dev->rx_handler, rx_handler);
3100
3101 return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3104
3105 /**
3106 * netdev_rx_handler_unregister - unregister receive handler
3107 * @dev: device to unregister a handler from
3108 *
3109 * Unregister a receive hander from a device.
3110 *
3111 * The caller must hold the rtnl_mutex.
3112 */
3113 void netdev_rx_handler_unregister(struct net_device *dev)
3114 {
3115
3116 ASSERT_RTNL();
3117 RCU_INIT_POINTER(dev->rx_handler, NULL);
3118 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3119 }
3120 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3121
3122 static int __netif_receive_skb(struct sk_buff *skb)
3123 {
3124 struct packet_type *ptype, *pt_prev;
3125 rx_handler_func_t *rx_handler;
3126 struct net_device *orig_dev;
3127 struct net_device *null_or_dev;
3128 bool deliver_exact = false;
3129 int ret = NET_RX_DROP;
3130 __be16 type;
3131
3132 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3133
3134 trace_netif_receive_skb(skb);
3135
3136 /* if we've gotten here through NAPI, check netpoll */
3137 if (netpoll_receive_skb(skb))
3138 return NET_RX_DROP;
3139
3140 if (!skb->skb_iif)
3141 skb->skb_iif = skb->dev->ifindex;
3142 orig_dev = skb->dev;
3143
3144 skb_reset_network_header(skb);
3145 skb_reset_transport_header(skb);
3146 skb_reset_mac_len(skb);
3147
3148 pt_prev = NULL;
3149
3150 rcu_read_lock();
3151
3152 another_round:
3153
3154 __this_cpu_inc(softnet_data.processed);
3155
3156 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3157 skb = vlan_untag(skb);
3158 if (unlikely(!skb))
3159 goto out;
3160 }
3161
3162 #ifdef CONFIG_NET_CLS_ACT
3163 if (skb->tc_verd & TC_NCLS) {
3164 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3165 goto ncls;
3166 }
3167 #endif
3168
3169 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3170 if (!ptype->dev || ptype->dev == skb->dev) {
3171 if (pt_prev)
3172 ret = deliver_skb(skb, pt_prev, orig_dev);
3173 pt_prev = ptype;
3174 }
3175 }
3176
3177 #ifdef CONFIG_NET_CLS_ACT
3178 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3179 if (!skb)
3180 goto out;
3181 ncls:
3182 #endif
3183
3184 rx_handler = rcu_dereference(skb->dev->rx_handler);
3185 if (vlan_tx_tag_present(skb)) {
3186 if (pt_prev) {
3187 ret = deliver_skb(skb, pt_prev, orig_dev);
3188 pt_prev = NULL;
3189 }
3190 if (vlan_do_receive(&skb, !rx_handler))
3191 goto another_round;
3192 else if (unlikely(!skb))
3193 goto out;
3194 }
3195
3196 if (rx_handler) {
3197 if (pt_prev) {
3198 ret = deliver_skb(skb, pt_prev, orig_dev);
3199 pt_prev = NULL;
3200 }
3201 switch (rx_handler(&skb)) {
3202 case RX_HANDLER_CONSUMED:
3203 goto out;
3204 case RX_HANDLER_ANOTHER:
3205 goto another_round;
3206 case RX_HANDLER_EXACT:
3207 deliver_exact = true;
3208 case RX_HANDLER_PASS:
3209 break;
3210 default:
3211 BUG();
3212 }
3213 }
3214
3215 /* deliver only exact match when indicated */
3216 null_or_dev = deliver_exact ? skb->dev : NULL;
3217
3218 type = skb->protocol;
3219 list_for_each_entry_rcu(ptype,
3220 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3221 if (ptype->type == type &&
3222 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3223 ptype->dev == orig_dev)) {
3224 if (pt_prev)
3225 ret = deliver_skb(skb, pt_prev, orig_dev);
3226 pt_prev = ptype;
3227 }
3228 }
3229
3230 if (pt_prev) {
3231 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3232 } else {
3233 atomic_long_inc(&skb->dev->rx_dropped);
3234 kfree_skb(skb);
3235 /* Jamal, now you will not able to escape explaining
3236 * me how you were going to use this. :-)
3237 */
3238 ret = NET_RX_DROP;
3239 }
3240
3241 out:
3242 rcu_read_unlock();
3243 return ret;
3244 }
3245
3246 /**
3247 * netif_receive_skb - process receive buffer from network
3248 * @skb: buffer to process
3249 *
3250 * netif_receive_skb() is the main receive data processing function.
3251 * It always succeeds. The buffer may be dropped during processing
3252 * for congestion control or by the protocol layers.
3253 *
3254 * This function may only be called from softirq context and interrupts
3255 * should be enabled.
3256 *
3257 * Return values (usually ignored):
3258 * NET_RX_SUCCESS: no congestion
3259 * NET_RX_DROP: packet was dropped
3260 */
3261 int netif_receive_skb(struct sk_buff *skb)
3262 {
3263 net_timestamp_check(netdev_tstamp_prequeue, skb);
3264
3265 if (skb_defer_rx_timestamp(skb))
3266 return NET_RX_SUCCESS;
3267
3268 #ifdef CONFIG_RPS
3269 if (static_key_false(&rps_needed)) {
3270 struct rps_dev_flow voidflow, *rflow = &voidflow;
3271 int cpu, ret;
3272
3273 rcu_read_lock();
3274
3275 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3276
3277 if (cpu >= 0) {
3278 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3279 rcu_read_unlock();
3280 return ret;
3281 }
3282 rcu_read_unlock();
3283 }
3284 #endif
3285 return __netif_receive_skb(skb);
3286 }
3287 EXPORT_SYMBOL(netif_receive_skb);
3288
3289 /* Network device is going away, flush any packets still pending
3290 * Called with irqs disabled.
3291 */
3292 static void flush_backlog(void *arg)
3293 {
3294 struct net_device *dev = arg;
3295 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3296 struct sk_buff *skb, *tmp;
3297
3298 rps_lock(sd);
3299 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3300 if (skb->dev == dev) {
3301 __skb_unlink(skb, &sd->input_pkt_queue);
3302 kfree_skb(skb);
3303 input_queue_head_incr(sd);
3304 }
3305 }
3306 rps_unlock(sd);
3307
3308 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3309 if (skb->dev == dev) {
3310 __skb_unlink(skb, &sd->process_queue);
3311 kfree_skb(skb);
3312 input_queue_head_incr(sd);
3313 }
3314 }
3315 }
3316
3317 static int napi_gro_complete(struct sk_buff *skb)
3318 {
3319 struct packet_type *ptype;
3320 __be16 type = skb->protocol;
3321 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3322 int err = -ENOENT;
3323
3324 if (NAPI_GRO_CB(skb)->count == 1) {
3325 skb_shinfo(skb)->gso_size = 0;
3326 goto out;
3327 }
3328
3329 rcu_read_lock();
3330 list_for_each_entry_rcu(ptype, head, list) {
3331 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3332 continue;
3333
3334 err = ptype->gro_complete(skb);
3335 break;
3336 }
3337 rcu_read_unlock();
3338
3339 if (err) {
3340 WARN_ON(&ptype->list == head);
3341 kfree_skb(skb);
3342 return NET_RX_SUCCESS;
3343 }
3344
3345 out:
3346 return netif_receive_skb(skb);
3347 }
3348
3349 inline void napi_gro_flush(struct napi_struct *napi)
3350 {
3351 struct sk_buff *skb, *next;
3352
3353 for (skb = napi->gro_list; skb; skb = next) {
3354 next = skb->next;
3355 skb->next = NULL;
3356 napi_gro_complete(skb);
3357 }
3358
3359 napi->gro_count = 0;
3360 napi->gro_list = NULL;
3361 }
3362 EXPORT_SYMBOL(napi_gro_flush);
3363
3364 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3365 {
3366 struct sk_buff **pp = NULL;
3367 struct packet_type *ptype;
3368 __be16 type = skb->protocol;
3369 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3370 int same_flow;
3371 int mac_len;
3372 enum gro_result ret;
3373
3374 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3375 goto normal;
3376
3377 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3378 goto normal;
3379
3380 rcu_read_lock();
3381 list_for_each_entry_rcu(ptype, head, list) {
3382 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3383 continue;
3384
3385 skb_set_network_header(skb, skb_gro_offset(skb));
3386 mac_len = skb->network_header - skb->mac_header;
3387 skb->mac_len = mac_len;
3388 NAPI_GRO_CB(skb)->same_flow = 0;
3389 NAPI_GRO_CB(skb)->flush = 0;
3390 NAPI_GRO_CB(skb)->free = 0;
3391
3392 pp = ptype->gro_receive(&napi->gro_list, skb);
3393 break;
3394 }
3395 rcu_read_unlock();
3396
3397 if (&ptype->list == head)
3398 goto normal;
3399
3400 same_flow = NAPI_GRO_CB(skb)->same_flow;
3401 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3402
3403 if (pp) {
3404 struct sk_buff *nskb = *pp;
3405
3406 *pp = nskb->next;
3407 nskb->next = NULL;
3408 napi_gro_complete(nskb);
3409 napi->gro_count--;
3410 }
3411
3412 if (same_flow)
3413 goto ok;
3414
3415 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3416 goto normal;
3417
3418 napi->gro_count++;
3419 NAPI_GRO_CB(skb)->count = 1;
3420 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3421 skb->next = napi->gro_list;
3422 napi->gro_list = skb;
3423 ret = GRO_HELD;
3424
3425 pull:
3426 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3427 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3428
3429 BUG_ON(skb->end - skb->tail < grow);
3430
3431 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3432
3433 skb->tail += grow;
3434 skb->data_len -= grow;
3435
3436 skb_shinfo(skb)->frags[0].page_offset += grow;
3437 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3438
3439 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3440 skb_frag_unref(skb, 0);
3441 memmove(skb_shinfo(skb)->frags,
3442 skb_shinfo(skb)->frags + 1,
3443 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3444 }
3445 }
3446
3447 ok:
3448 return ret;
3449
3450 normal:
3451 ret = GRO_NORMAL;
3452 goto pull;
3453 }
3454 EXPORT_SYMBOL(dev_gro_receive);
3455
3456 static inline gro_result_t
3457 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3458 {
3459 struct sk_buff *p;
3460 unsigned int maclen = skb->dev->hard_header_len;
3461
3462 for (p = napi->gro_list; p; p = p->next) {
3463 unsigned long diffs;
3464
3465 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3466 diffs |= p->vlan_tci ^ skb->vlan_tci;
3467 if (maclen == ETH_HLEN)
3468 diffs |= compare_ether_header(skb_mac_header(p),
3469 skb_gro_mac_header(skb));
3470 else if (!diffs)
3471 diffs = memcmp(skb_mac_header(p),
3472 skb_gro_mac_header(skb),
3473 maclen);
3474 NAPI_GRO_CB(p)->same_flow = !diffs;
3475 NAPI_GRO_CB(p)->flush = 0;
3476 }
3477
3478 return dev_gro_receive(napi, skb);
3479 }
3480
3481 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3482 {
3483 switch (ret) {
3484 case GRO_NORMAL:
3485 if (netif_receive_skb(skb))
3486 ret = GRO_DROP;
3487 break;
3488
3489 case GRO_DROP:
3490 kfree_skb(skb);
3491 break;
3492
3493 case GRO_MERGED_FREE:
3494 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3495 kmem_cache_free(skbuff_head_cache, skb);
3496 else
3497 __kfree_skb(skb);
3498 break;
3499
3500 case GRO_HELD:
3501 case GRO_MERGED:
3502 break;
3503 }
3504
3505 return ret;
3506 }
3507 EXPORT_SYMBOL(napi_skb_finish);
3508
3509 void skb_gro_reset_offset(struct sk_buff *skb)
3510 {
3511 NAPI_GRO_CB(skb)->data_offset = 0;
3512 NAPI_GRO_CB(skb)->frag0 = NULL;
3513 NAPI_GRO_CB(skb)->frag0_len = 0;
3514
3515 if (skb->mac_header == skb->tail &&
3516 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3517 NAPI_GRO_CB(skb)->frag0 =
3518 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3519 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3520 }
3521 }
3522 EXPORT_SYMBOL(skb_gro_reset_offset);
3523
3524 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3525 {
3526 skb_gro_reset_offset(skb);
3527
3528 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3529 }
3530 EXPORT_SYMBOL(napi_gro_receive);
3531
3532 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3533 {
3534 __skb_pull(skb, skb_headlen(skb));
3535 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3536 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3537 skb->vlan_tci = 0;
3538 skb->dev = napi->dev;
3539 skb->skb_iif = 0;
3540
3541 napi->skb = skb;
3542 }
3543
3544 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3545 {
3546 struct sk_buff *skb = napi->skb;
3547
3548 if (!skb) {
3549 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3550 if (skb)
3551 napi->skb = skb;
3552 }
3553 return skb;
3554 }
3555 EXPORT_SYMBOL(napi_get_frags);
3556
3557 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3558 gro_result_t ret)
3559 {
3560 switch (ret) {
3561 case GRO_NORMAL:
3562 case GRO_HELD:
3563 skb->protocol = eth_type_trans(skb, skb->dev);
3564
3565 if (ret == GRO_HELD)
3566 skb_gro_pull(skb, -ETH_HLEN);
3567 else if (netif_receive_skb(skb))
3568 ret = GRO_DROP;
3569 break;
3570
3571 case GRO_DROP:
3572 case GRO_MERGED_FREE:
3573 napi_reuse_skb(napi, skb);
3574 break;
3575
3576 case GRO_MERGED:
3577 break;
3578 }
3579
3580 return ret;
3581 }
3582 EXPORT_SYMBOL(napi_frags_finish);
3583
3584 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3585 {
3586 struct sk_buff *skb = napi->skb;
3587 struct ethhdr *eth;
3588 unsigned int hlen;
3589 unsigned int off;
3590
3591 napi->skb = NULL;
3592
3593 skb_reset_mac_header(skb);
3594 skb_gro_reset_offset(skb);
3595
3596 off = skb_gro_offset(skb);
3597 hlen = off + sizeof(*eth);
3598 eth = skb_gro_header_fast(skb, off);
3599 if (skb_gro_header_hard(skb, hlen)) {
3600 eth = skb_gro_header_slow(skb, hlen, off);
3601 if (unlikely(!eth)) {
3602 napi_reuse_skb(napi, skb);
3603 skb = NULL;
3604 goto out;
3605 }
3606 }
3607
3608 skb_gro_pull(skb, sizeof(*eth));
3609
3610 /*
3611 * This works because the only protocols we care about don't require
3612 * special handling. We'll fix it up properly at the end.
3613 */
3614 skb->protocol = eth->h_proto;
3615
3616 out:
3617 return skb;
3618 }
3619
3620 gro_result_t napi_gro_frags(struct napi_struct *napi)
3621 {
3622 struct sk_buff *skb = napi_frags_skb(napi);
3623
3624 if (!skb)
3625 return GRO_DROP;
3626
3627 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3628 }
3629 EXPORT_SYMBOL(napi_gro_frags);
3630
3631 /*
3632 * net_rps_action sends any pending IPI's for rps.
3633 * Note: called with local irq disabled, but exits with local irq enabled.
3634 */
3635 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3636 {
3637 #ifdef CONFIG_RPS
3638 struct softnet_data *remsd = sd->rps_ipi_list;
3639
3640 if (remsd) {
3641 sd->rps_ipi_list = NULL;
3642
3643 local_irq_enable();
3644
3645 /* Send pending IPI's to kick RPS processing on remote cpus. */
3646 while (remsd) {
3647 struct softnet_data *next = remsd->rps_ipi_next;
3648
3649 if (cpu_online(remsd->cpu))
3650 __smp_call_function_single(remsd->cpu,
3651 &remsd->csd, 0);
3652 remsd = next;
3653 }
3654 } else
3655 #endif
3656 local_irq_enable();
3657 }
3658
3659 static int process_backlog(struct napi_struct *napi, int quota)
3660 {
3661 int work = 0;
3662 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3663
3664 #ifdef CONFIG_RPS
3665 /* Check if we have pending ipi, its better to send them now,
3666 * not waiting net_rx_action() end.
3667 */
3668 if (sd->rps_ipi_list) {
3669 local_irq_disable();
3670 net_rps_action_and_irq_enable(sd);
3671 }
3672 #endif
3673 napi->weight = weight_p;
3674 local_irq_disable();
3675 while (work < quota) {
3676 struct sk_buff *skb;
3677 unsigned int qlen;
3678
3679 while ((skb = __skb_dequeue(&sd->process_queue))) {
3680 local_irq_enable();
3681 __netif_receive_skb(skb);
3682 local_irq_disable();
3683 input_queue_head_incr(sd);
3684 if (++work >= quota) {
3685 local_irq_enable();
3686 return work;
3687 }
3688 }
3689
3690 rps_lock(sd);
3691 qlen = skb_queue_len(&sd->input_pkt_queue);
3692 if (qlen)
3693 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3694 &sd->process_queue);
3695
3696 if (qlen < quota - work) {
3697 /*
3698 * Inline a custom version of __napi_complete().
3699 * only current cpu owns and manipulates this napi,
3700 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3701 * we can use a plain write instead of clear_bit(),
3702 * and we dont need an smp_mb() memory barrier.
3703 */
3704 list_del(&napi->poll_list);
3705 napi->state = 0;
3706
3707 quota = work + qlen;
3708 }
3709 rps_unlock(sd);
3710 }
3711 local_irq_enable();
3712
3713 return work;
3714 }
3715
3716 /**
3717 * __napi_schedule - schedule for receive
3718 * @n: entry to schedule
3719 *
3720 * The entry's receive function will be scheduled to run
3721 */
3722 void __napi_schedule(struct napi_struct *n)
3723 {
3724 unsigned long flags;
3725
3726 local_irq_save(flags);
3727 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3728 local_irq_restore(flags);
3729 }
3730 EXPORT_SYMBOL(__napi_schedule);
3731
3732 void __napi_complete(struct napi_struct *n)
3733 {
3734 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3735 BUG_ON(n->gro_list);
3736
3737 list_del(&n->poll_list);
3738 smp_mb__before_clear_bit();
3739 clear_bit(NAPI_STATE_SCHED, &n->state);
3740 }
3741 EXPORT_SYMBOL(__napi_complete);
3742
3743 void napi_complete(struct napi_struct *n)
3744 {
3745 unsigned long flags;
3746
3747 /*
3748 * don't let napi dequeue from the cpu poll list
3749 * just in case its running on a different cpu
3750 */
3751 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3752 return;
3753
3754 napi_gro_flush(n);
3755 local_irq_save(flags);
3756 __napi_complete(n);
3757 local_irq_restore(flags);
3758 }
3759 EXPORT_SYMBOL(napi_complete);
3760
3761 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3762 int (*poll)(struct napi_struct *, int), int weight)
3763 {
3764 INIT_LIST_HEAD(&napi->poll_list);
3765 napi->gro_count = 0;
3766 napi->gro_list = NULL;
3767 napi->skb = NULL;
3768 napi->poll = poll;
3769 napi->weight = weight;
3770 list_add(&napi->dev_list, &dev->napi_list);
3771 napi->dev = dev;
3772 #ifdef CONFIG_NETPOLL
3773 spin_lock_init(&napi->poll_lock);
3774 napi->poll_owner = -1;
3775 #endif
3776 set_bit(NAPI_STATE_SCHED, &napi->state);
3777 }
3778 EXPORT_SYMBOL(netif_napi_add);
3779
3780 void netif_napi_del(struct napi_struct *napi)
3781 {
3782 struct sk_buff *skb, *next;
3783
3784 list_del_init(&napi->dev_list);
3785 napi_free_frags(napi);
3786
3787 for (skb = napi->gro_list; skb; skb = next) {
3788 next = skb->next;
3789 skb->next = NULL;
3790 kfree_skb(skb);
3791 }
3792
3793 napi->gro_list = NULL;
3794 napi->gro_count = 0;
3795 }
3796 EXPORT_SYMBOL(netif_napi_del);
3797
3798 static void net_rx_action(struct softirq_action *h)
3799 {
3800 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3801 unsigned long time_limit = jiffies + 2;
3802 int budget = netdev_budget;
3803 void *have;
3804
3805 local_irq_disable();
3806
3807 while (!list_empty(&sd->poll_list)) {
3808 struct napi_struct *n;
3809 int work, weight;
3810
3811 /* If softirq window is exhuasted then punt.
3812 * Allow this to run for 2 jiffies since which will allow
3813 * an average latency of 1.5/HZ.
3814 */
3815 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3816 goto softnet_break;
3817
3818 local_irq_enable();
3819
3820 /* Even though interrupts have been re-enabled, this
3821 * access is safe because interrupts can only add new
3822 * entries to the tail of this list, and only ->poll()
3823 * calls can remove this head entry from the list.
3824 */
3825 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3826
3827 have = netpoll_poll_lock(n);
3828
3829 weight = n->weight;
3830
3831 /* This NAPI_STATE_SCHED test is for avoiding a race
3832 * with netpoll's poll_napi(). Only the entity which
3833 * obtains the lock and sees NAPI_STATE_SCHED set will
3834 * actually make the ->poll() call. Therefore we avoid
3835 * accidentally calling ->poll() when NAPI is not scheduled.
3836 */
3837 work = 0;
3838 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3839 work = n->poll(n, weight);
3840 trace_napi_poll(n);
3841 }
3842
3843 WARN_ON_ONCE(work > weight);
3844
3845 budget -= work;
3846
3847 local_irq_disable();
3848
3849 /* Drivers must not modify the NAPI state if they
3850 * consume the entire weight. In such cases this code
3851 * still "owns" the NAPI instance and therefore can
3852 * move the instance around on the list at-will.
3853 */
3854 if (unlikely(work == weight)) {
3855 if (unlikely(napi_disable_pending(n))) {
3856 local_irq_enable();
3857 napi_complete(n);
3858 local_irq_disable();
3859 } else
3860 list_move_tail(&n->poll_list, &sd->poll_list);
3861 }
3862
3863 netpoll_poll_unlock(have);
3864 }
3865 out:
3866 net_rps_action_and_irq_enable(sd);
3867
3868 #ifdef CONFIG_NET_DMA
3869 /*
3870 * There may not be any more sk_buffs coming right now, so push
3871 * any pending DMA copies to hardware
3872 */
3873 dma_issue_pending_all();
3874 #endif
3875
3876 return;
3877
3878 softnet_break:
3879 sd->time_squeeze++;
3880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3881 goto out;
3882 }
3883
3884 static gifconf_func_t *gifconf_list[NPROTO];
3885
3886 /**
3887 * register_gifconf - register a SIOCGIF handler
3888 * @family: Address family
3889 * @gifconf: Function handler
3890 *
3891 * Register protocol dependent address dumping routines. The handler
3892 * that is passed must not be freed or reused until it has been replaced
3893 * by another handler.
3894 */
3895 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3896 {
3897 if (family >= NPROTO)
3898 return -EINVAL;
3899 gifconf_list[family] = gifconf;
3900 return 0;
3901 }
3902 EXPORT_SYMBOL(register_gifconf);
3903
3904
3905 /*
3906 * Map an interface index to its name (SIOCGIFNAME)
3907 */
3908
3909 /*
3910 * We need this ioctl for efficient implementation of the
3911 * if_indextoname() function required by the IPv6 API. Without
3912 * it, we would have to search all the interfaces to find a
3913 * match. --pb
3914 */
3915
3916 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3917 {
3918 struct net_device *dev;
3919 struct ifreq ifr;
3920
3921 /*
3922 * Fetch the caller's info block.
3923 */
3924
3925 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3926 return -EFAULT;
3927
3928 rcu_read_lock();
3929 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3930 if (!dev) {
3931 rcu_read_unlock();
3932 return -ENODEV;
3933 }
3934
3935 strcpy(ifr.ifr_name, dev->name);
3936 rcu_read_unlock();
3937
3938 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3939 return -EFAULT;
3940 return 0;
3941 }
3942
3943 /*
3944 * Perform a SIOCGIFCONF call. This structure will change
3945 * size eventually, and there is nothing I can do about it.
3946 * Thus we will need a 'compatibility mode'.
3947 */
3948
3949 static int dev_ifconf(struct net *net, char __user *arg)
3950 {
3951 struct ifconf ifc;
3952 struct net_device *dev;
3953 char __user *pos;
3954 int len;
3955 int total;
3956 int i;
3957
3958 /*
3959 * Fetch the caller's info block.
3960 */
3961
3962 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3963 return -EFAULT;
3964
3965 pos = ifc.ifc_buf;
3966 len = ifc.ifc_len;
3967
3968 /*
3969 * Loop over the interfaces, and write an info block for each.
3970 */
3971
3972 total = 0;
3973 for_each_netdev(net, dev) {
3974 for (i = 0; i < NPROTO; i++) {
3975 if (gifconf_list[i]) {
3976 int done;
3977 if (!pos)
3978 done = gifconf_list[i](dev, NULL, 0);
3979 else
3980 done = gifconf_list[i](dev, pos + total,
3981 len - total);
3982 if (done < 0)
3983 return -EFAULT;
3984 total += done;
3985 }
3986 }
3987 }
3988
3989 /*
3990 * All done. Write the updated control block back to the caller.
3991 */
3992 ifc.ifc_len = total;
3993
3994 /*
3995 * Both BSD and Solaris return 0 here, so we do too.
3996 */
3997 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3998 }
3999
4000 #ifdef CONFIG_PROC_FS
4001
4002 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4003
4004 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4005 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4006 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4007
4008 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4009 {
4010 struct net *net = seq_file_net(seq);
4011 struct net_device *dev;
4012 struct hlist_node *p;
4013 struct hlist_head *h;
4014 unsigned int count = 0, offset = get_offset(*pos);
4015
4016 h = &net->dev_name_head[get_bucket(*pos)];
4017 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4018 if (++count == offset)
4019 return dev;
4020 }
4021
4022 return NULL;
4023 }
4024
4025 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4026 {
4027 struct net_device *dev;
4028 unsigned int bucket;
4029
4030 do {
4031 dev = dev_from_same_bucket(seq, pos);
4032 if (dev)
4033 return dev;
4034
4035 bucket = get_bucket(*pos) + 1;
4036 *pos = set_bucket_offset(bucket, 1);
4037 } while (bucket < NETDEV_HASHENTRIES);
4038
4039 return NULL;
4040 }
4041
4042 /*
4043 * This is invoked by the /proc filesystem handler to display a device
4044 * in detail.
4045 */
4046 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4047 __acquires(RCU)
4048 {
4049 rcu_read_lock();
4050 if (!*pos)
4051 return SEQ_START_TOKEN;
4052
4053 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4054 return NULL;
4055
4056 return dev_from_bucket(seq, pos);
4057 }
4058
4059 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4060 {
4061 ++*pos;
4062 return dev_from_bucket(seq, pos);
4063 }
4064
4065 void dev_seq_stop(struct seq_file *seq, void *v)
4066 __releases(RCU)
4067 {
4068 rcu_read_unlock();
4069 }
4070
4071 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4072 {
4073 struct rtnl_link_stats64 temp;
4074 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4075
4076 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4077 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4078 dev->name, stats->rx_bytes, stats->rx_packets,
4079 stats->rx_errors,
4080 stats->rx_dropped + stats->rx_missed_errors,
4081 stats->rx_fifo_errors,
4082 stats->rx_length_errors + stats->rx_over_errors +
4083 stats->rx_crc_errors + stats->rx_frame_errors,
4084 stats->rx_compressed, stats->multicast,
4085 stats->tx_bytes, stats->tx_packets,
4086 stats->tx_errors, stats->tx_dropped,
4087 stats->tx_fifo_errors, stats->collisions,
4088 stats->tx_carrier_errors +
4089 stats->tx_aborted_errors +
4090 stats->tx_window_errors +
4091 stats->tx_heartbeat_errors,
4092 stats->tx_compressed);
4093 }
4094
4095 /*
4096 * Called from the PROCfs module. This now uses the new arbitrary sized
4097 * /proc/net interface to create /proc/net/dev
4098 */
4099 static int dev_seq_show(struct seq_file *seq, void *v)
4100 {
4101 if (v == SEQ_START_TOKEN)
4102 seq_puts(seq, "Inter-| Receive "
4103 " | Transmit\n"
4104 " face |bytes packets errs drop fifo frame "
4105 "compressed multicast|bytes packets errs "
4106 "drop fifo colls carrier compressed\n");
4107 else
4108 dev_seq_printf_stats(seq, v);
4109 return 0;
4110 }
4111
4112 static struct softnet_data *softnet_get_online(loff_t *pos)
4113 {
4114 struct softnet_data *sd = NULL;
4115
4116 while (*pos < nr_cpu_ids)
4117 if (cpu_online(*pos)) {
4118 sd = &per_cpu(softnet_data, *pos);
4119 break;
4120 } else
4121 ++*pos;
4122 return sd;
4123 }
4124
4125 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4126 {
4127 return softnet_get_online(pos);
4128 }
4129
4130 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4131 {
4132 ++*pos;
4133 return softnet_get_online(pos);
4134 }
4135
4136 static void softnet_seq_stop(struct seq_file *seq, void *v)
4137 {
4138 }
4139
4140 static int softnet_seq_show(struct seq_file *seq, void *v)
4141 {
4142 struct softnet_data *sd = v;
4143
4144 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4145 sd->processed, sd->dropped, sd->time_squeeze, 0,
4146 0, 0, 0, 0, /* was fastroute */
4147 sd->cpu_collision, sd->received_rps);
4148 return 0;
4149 }
4150
4151 static const struct seq_operations dev_seq_ops = {
4152 .start = dev_seq_start,
4153 .next = dev_seq_next,
4154 .stop = dev_seq_stop,
4155 .show = dev_seq_show,
4156 };
4157
4158 static int dev_seq_open(struct inode *inode, struct file *file)
4159 {
4160 return seq_open_net(inode, file, &dev_seq_ops,
4161 sizeof(struct seq_net_private));
4162 }
4163
4164 static const struct file_operations dev_seq_fops = {
4165 .owner = THIS_MODULE,
4166 .open = dev_seq_open,
4167 .read = seq_read,
4168 .llseek = seq_lseek,
4169 .release = seq_release_net,
4170 };
4171
4172 static const struct seq_operations softnet_seq_ops = {
4173 .start = softnet_seq_start,
4174 .next = softnet_seq_next,
4175 .stop = softnet_seq_stop,
4176 .show = softnet_seq_show,
4177 };
4178
4179 static int softnet_seq_open(struct inode *inode, struct file *file)
4180 {
4181 return seq_open(file, &softnet_seq_ops);
4182 }
4183
4184 static const struct file_operations softnet_seq_fops = {
4185 .owner = THIS_MODULE,
4186 .open = softnet_seq_open,
4187 .read = seq_read,
4188 .llseek = seq_lseek,
4189 .release = seq_release,
4190 };
4191
4192 static void *ptype_get_idx(loff_t pos)
4193 {
4194 struct packet_type *pt = NULL;
4195 loff_t i = 0;
4196 int t;
4197
4198 list_for_each_entry_rcu(pt, &ptype_all, list) {
4199 if (i == pos)
4200 return pt;
4201 ++i;
4202 }
4203
4204 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4205 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4206 if (i == pos)
4207 return pt;
4208 ++i;
4209 }
4210 }
4211 return NULL;
4212 }
4213
4214 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4215 __acquires(RCU)
4216 {
4217 rcu_read_lock();
4218 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4219 }
4220
4221 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4222 {
4223 struct packet_type *pt;
4224 struct list_head *nxt;
4225 int hash;
4226
4227 ++*pos;
4228 if (v == SEQ_START_TOKEN)
4229 return ptype_get_idx(0);
4230
4231 pt = v;
4232 nxt = pt->list.next;
4233 if (pt->type == htons(ETH_P_ALL)) {
4234 if (nxt != &ptype_all)
4235 goto found;
4236 hash = 0;
4237 nxt = ptype_base[0].next;
4238 } else
4239 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4240
4241 while (nxt == &ptype_base[hash]) {
4242 if (++hash >= PTYPE_HASH_SIZE)
4243 return NULL;
4244 nxt = ptype_base[hash].next;
4245 }
4246 found:
4247 return list_entry(nxt, struct packet_type, list);
4248 }
4249
4250 static void ptype_seq_stop(struct seq_file *seq, void *v)
4251 __releases(RCU)
4252 {
4253 rcu_read_unlock();
4254 }
4255
4256 static int ptype_seq_show(struct seq_file *seq, void *v)
4257 {
4258 struct packet_type *pt = v;
4259
4260 if (v == SEQ_START_TOKEN)
4261 seq_puts(seq, "Type Device Function\n");
4262 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4263 if (pt->type == htons(ETH_P_ALL))
4264 seq_puts(seq, "ALL ");
4265 else
4266 seq_printf(seq, "%04x", ntohs(pt->type));
4267
4268 seq_printf(seq, " %-8s %pF\n",
4269 pt->dev ? pt->dev->name : "", pt->func);
4270 }
4271
4272 return 0;
4273 }
4274
4275 static const struct seq_operations ptype_seq_ops = {
4276 .start = ptype_seq_start,
4277 .next = ptype_seq_next,
4278 .stop = ptype_seq_stop,
4279 .show = ptype_seq_show,
4280 };
4281
4282 static int ptype_seq_open(struct inode *inode, struct file *file)
4283 {
4284 return seq_open_net(inode, file, &ptype_seq_ops,
4285 sizeof(struct seq_net_private));
4286 }
4287
4288 static const struct file_operations ptype_seq_fops = {
4289 .owner = THIS_MODULE,
4290 .open = ptype_seq_open,
4291 .read = seq_read,
4292 .llseek = seq_lseek,
4293 .release = seq_release_net,
4294 };
4295
4296
4297 static int __net_init dev_proc_net_init(struct net *net)
4298 {
4299 int rc = -ENOMEM;
4300
4301 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4302 goto out;
4303 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4304 goto out_dev;
4305 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4306 goto out_softnet;
4307
4308 if (wext_proc_init(net))
4309 goto out_ptype;
4310 rc = 0;
4311 out:
4312 return rc;
4313 out_ptype:
4314 proc_net_remove(net, "ptype");
4315 out_softnet:
4316 proc_net_remove(net, "softnet_stat");
4317 out_dev:
4318 proc_net_remove(net, "dev");
4319 goto out;
4320 }
4321
4322 static void __net_exit dev_proc_net_exit(struct net *net)
4323 {
4324 wext_proc_exit(net);
4325
4326 proc_net_remove(net, "ptype");
4327 proc_net_remove(net, "softnet_stat");
4328 proc_net_remove(net, "dev");
4329 }
4330
4331 static struct pernet_operations __net_initdata dev_proc_ops = {
4332 .init = dev_proc_net_init,
4333 .exit = dev_proc_net_exit,
4334 };
4335
4336 static int __init dev_proc_init(void)
4337 {
4338 return register_pernet_subsys(&dev_proc_ops);
4339 }
4340 #else
4341 #define dev_proc_init() 0
4342 #endif /* CONFIG_PROC_FS */
4343
4344
4345 /**
4346 * netdev_set_master - set up master pointer
4347 * @slave: slave device
4348 * @master: new master device
4349 *
4350 * Changes the master device of the slave. Pass %NULL to break the
4351 * bonding. The caller must hold the RTNL semaphore. On a failure
4352 * a negative errno code is returned. On success the reference counts
4353 * are adjusted and the function returns zero.
4354 */
4355 int netdev_set_master(struct net_device *slave, struct net_device *master)
4356 {
4357 struct net_device *old = slave->master;
4358
4359 ASSERT_RTNL();
4360
4361 if (master) {
4362 if (old)
4363 return -EBUSY;
4364 dev_hold(master);
4365 }
4366
4367 slave->master = master;
4368
4369 if (old)
4370 dev_put(old);
4371 return 0;
4372 }
4373 EXPORT_SYMBOL(netdev_set_master);
4374
4375 /**
4376 * netdev_set_bond_master - set up bonding master/slave pair
4377 * @slave: slave device
4378 * @master: new master device
4379 *
4380 * Changes the master device of the slave. Pass %NULL to break the
4381 * bonding. The caller must hold the RTNL semaphore. On a failure
4382 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4383 * to the routing socket and the function returns zero.
4384 */
4385 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4386 {
4387 int err;
4388
4389 ASSERT_RTNL();
4390
4391 err = netdev_set_master(slave, master);
4392 if (err)
4393 return err;
4394 if (master)
4395 slave->flags |= IFF_SLAVE;
4396 else
4397 slave->flags &= ~IFF_SLAVE;
4398
4399 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4400 return 0;
4401 }
4402 EXPORT_SYMBOL(netdev_set_bond_master);
4403
4404 static void dev_change_rx_flags(struct net_device *dev, int flags)
4405 {
4406 const struct net_device_ops *ops = dev->netdev_ops;
4407
4408 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4409 ops->ndo_change_rx_flags(dev, flags);
4410 }
4411
4412 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4413 {
4414 unsigned int old_flags = dev->flags;
4415 uid_t uid;
4416 gid_t gid;
4417
4418 ASSERT_RTNL();
4419
4420 dev->flags |= IFF_PROMISC;
4421 dev->promiscuity += inc;
4422 if (dev->promiscuity == 0) {
4423 /*
4424 * Avoid overflow.
4425 * If inc causes overflow, untouch promisc and return error.
4426 */
4427 if (inc < 0)
4428 dev->flags &= ~IFF_PROMISC;
4429 else {
4430 dev->promiscuity -= inc;
4431 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4432 dev->name);
4433 return -EOVERFLOW;
4434 }
4435 }
4436 if (dev->flags != old_flags) {
4437 pr_info("device %s %s promiscuous mode\n",
4438 dev->name,
4439 dev->flags & IFF_PROMISC ? "entered" : "left");
4440 if (audit_enabled) {
4441 current_uid_gid(&uid, &gid);
4442 audit_log(current->audit_context, GFP_ATOMIC,
4443 AUDIT_ANOM_PROMISCUOUS,
4444 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4445 dev->name, (dev->flags & IFF_PROMISC),
4446 (old_flags & IFF_PROMISC),
4447 audit_get_loginuid(current),
4448 uid, gid,
4449 audit_get_sessionid(current));
4450 }
4451
4452 dev_change_rx_flags(dev, IFF_PROMISC);
4453 }
4454 return 0;
4455 }
4456
4457 /**
4458 * dev_set_promiscuity - update promiscuity count on a device
4459 * @dev: device
4460 * @inc: modifier
4461 *
4462 * Add or remove promiscuity from a device. While the count in the device
4463 * remains above zero the interface remains promiscuous. Once it hits zero
4464 * the device reverts back to normal filtering operation. A negative inc
4465 * value is used to drop promiscuity on the device.
4466 * Return 0 if successful or a negative errno code on error.
4467 */
4468 int dev_set_promiscuity(struct net_device *dev, int inc)
4469 {
4470 unsigned int old_flags = dev->flags;
4471 int err;
4472
4473 err = __dev_set_promiscuity(dev, inc);
4474 if (err < 0)
4475 return err;
4476 if (dev->flags != old_flags)
4477 dev_set_rx_mode(dev);
4478 return err;
4479 }
4480 EXPORT_SYMBOL(dev_set_promiscuity);
4481
4482 /**
4483 * dev_set_allmulti - update allmulti count on a device
4484 * @dev: device
4485 * @inc: modifier
4486 *
4487 * Add or remove reception of all multicast frames to a device. While the
4488 * count in the device remains above zero the interface remains listening
4489 * to all interfaces. Once it hits zero the device reverts back to normal
4490 * filtering operation. A negative @inc value is used to drop the counter
4491 * when releasing a resource needing all multicasts.
4492 * Return 0 if successful or a negative errno code on error.
4493 */
4494
4495 int dev_set_allmulti(struct net_device *dev, int inc)
4496 {
4497 unsigned int old_flags = dev->flags;
4498
4499 ASSERT_RTNL();
4500
4501 dev->flags |= IFF_ALLMULTI;
4502 dev->allmulti += inc;
4503 if (dev->allmulti == 0) {
4504 /*
4505 * Avoid overflow.
4506 * If inc causes overflow, untouch allmulti and return error.
4507 */
4508 if (inc < 0)
4509 dev->flags &= ~IFF_ALLMULTI;
4510 else {
4511 dev->allmulti -= inc;
4512 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4513 dev->name);
4514 return -EOVERFLOW;
4515 }
4516 }
4517 if (dev->flags ^ old_flags) {
4518 dev_change_rx_flags(dev, IFF_ALLMULTI);
4519 dev_set_rx_mode(dev);
4520 }
4521 return 0;
4522 }
4523 EXPORT_SYMBOL(dev_set_allmulti);
4524
4525 /*
4526 * Upload unicast and multicast address lists to device and
4527 * configure RX filtering. When the device doesn't support unicast
4528 * filtering it is put in promiscuous mode while unicast addresses
4529 * are present.
4530 */
4531 void __dev_set_rx_mode(struct net_device *dev)
4532 {
4533 const struct net_device_ops *ops = dev->netdev_ops;
4534
4535 /* dev_open will call this function so the list will stay sane. */
4536 if (!(dev->flags&IFF_UP))
4537 return;
4538
4539 if (!netif_device_present(dev))
4540 return;
4541
4542 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4543 /* Unicast addresses changes may only happen under the rtnl,
4544 * therefore calling __dev_set_promiscuity here is safe.
4545 */
4546 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4547 __dev_set_promiscuity(dev, 1);
4548 dev->uc_promisc = true;
4549 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4550 __dev_set_promiscuity(dev, -1);
4551 dev->uc_promisc = false;
4552 }
4553 }
4554
4555 if (ops->ndo_set_rx_mode)
4556 ops->ndo_set_rx_mode(dev);
4557 }
4558
4559 void dev_set_rx_mode(struct net_device *dev)
4560 {
4561 netif_addr_lock_bh(dev);
4562 __dev_set_rx_mode(dev);
4563 netif_addr_unlock_bh(dev);
4564 }
4565
4566 /**
4567 * dev_get_flags - get flags reported to userspace
4568 * @dev: device
4569 *
4570 * Get the combination of flag bits exported through APIs to userspace.
4571 */
4572 unsigned int dev_get_flags(const struct net_device *dev)
4573 {
4574 unsigned int flags;
4575
4576 flags = (dev->flags & ~(IFF_PROMISC |
4577 IFF_ALLMULTI |
4578 IFF_RUNNING |
4579 IFF_LOWER_UP |
4580 IFF_DORMANT)) |
4581 (dev->gflags & (IFF_PROMISC |
4582 IFF_ALLMULTI));
4583
4584 if (netif_running(dev)) {
4585 if (netif_oper_up(dev))
4586 flags |= IFF_RUNNING;
4587 if (netif_carrier_ok(dev))
4588 flags |= IFF_LOWER_UP;
4589 if (netif_dormant(dev))
4590 flags |= IFF_DORMANT;
4591 }
4592
4593 return flags;
4594 }
4595 EXPORT_SYMBOL(dev_get_flags);
4596
4597 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4598 {
4599 unsigned int old_flags = dev->flags;
4600 int ret;
4601
4602 ASSERT_RTNL();
4603
4604 /*
4605 * Set the flags on our device.
4606 */
4607
4608 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4609 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4610 IFF_AUTOMEDIA)) |
4611 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4612 IFF_ALLMULTI));
4613
4614 /*
4615 * Load in the correct multicast list now the flags have changed.
4616 */
4617
4618 if ((old_flags ^ flags) & IFF_MULTICAST)
4619 dev_change_rx_flags(dev, IFF_MULTICAST);
4620
4621 dev_set_rx_mode(dev);
4622
4623 /*
4624 * Have we downed the interface. We handle IFF_UP ourselves
4625 * according to user attempts to set it, rather than blindly
4626 * setting it.
4627 */
4628
4629 ret = 0;
4630 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4631 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4632
4633 if (!ret)
4634 dev_set_rx_mode(dev);
4635 }
4636
4637 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4638 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4639
4640 dev->gflags ^= IFF_PROMISC;
4641 dev_set_promiscuity(dev, inc);
4642 }
4643
4644 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4645 is important. Some (broken) drivers set IFF_PROMISC, when
4646 IFF_ALLMULTI is requested not asking us and not reporting.
4647 */
4648 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4649 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4650
4651 dev->gflags ^= IFF_ALLMULTI;
4652 dev_set_allmulti(dev, inc);
4653 }
4654
4655 return ret;
4656 }
4657
4658 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4659 {
4660 unsigned int changes = dev->flags ^ old_flags;
4661
4662 if (changes & IFF_UP) {
4663 if (dev->flags & IFF_UP)
4664 call_netdevice_notifiers(NETDEV_UP, dev);
4665 else
4666 call_netdevice_notifiers(NETDEV_DOWN, dev);
4667 }
4668
4669 if (dev->flags & IFF_UP &&
4670 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4671 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4672 }
4673
4674 /**
4675 * dev_change_flags - change device settings
4676 * @dev: device
4677 * @flags: device state flags
4678 *
4679 * Change settings on device based state flags. The flags are
4680 * in the userspace exported format.
4681 */
4682 int dev_change_flags(struct net_device *dev, unsigned int flags)
4683 {
4684 int ret;
4685 unsigned int changes, old_flags = dev->flags;
4686
4687 ret = __dev_change_flags(dev, flags);
4688 if (ret < 0)
4689 return ret;
4690
4691 changes = old_flags ^ dev->flags;
4692 if (changes)
4693 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4694
4695 __dev_notify_flags(dev, old_flags);
4696 return ret;
4697 }
4698 EXPORT_SYMBOL(dev_change_flags);
4699
4700 /**
4701 * dev_set_mtu - Change maximum transfer unit
4702 * @dev: device
4703 * @new_mtu: new transfer unit
4704 *
4705 * Change the maximum transfer size of the network device.
4706 */
4707 int dev_set_mtu(struct net_device *dev, int new_mtu)
4708 {
4709 const struct net_device_ops *ops = dev->netdev_ops;
4710 int err;
4711
4712 if (new_mtu == dev->mtu)
4713 return 0;
4714
4715 /* MTU must be positive. */
4716 if (new_mtu < 0)
4717 return -EINVAL;
4718
4719 if (!netif_device_present(dev))
4720 return -ENODEV;
4721
4722 err = 0;
4723 if (ops->ndo_change_mtu)
4724 err = ops->ndo_change_mtu(dev, new_mtu);
4725 else
4726 dev->mtu = new_mtu;
4727
4728 if (!err && dev->flags & IFF_UP)
4729 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4730 return err;
4731 }
4732 EXPORT_SYMBOL(dev_set_mtu);
4733
4734 /**
4735 * dev_set_group - Change group this device belongs to
4736 * @dev: device
4737 * @new_group: group this device should belong to
4738 */
4739 void dev_set_group(struct net_device *dev, int new_group)
4740 {
4741 dev->group = new_group;
4742 }
4743 EXPORT_SYMBOL(dev_set_group);
4744
4745 /**
4746 * dev_set_mac_address - Change Media Access Control Address
4747 * @dev: device
4748 * @sa: new address
4749 *
4750 * Change the hardware (MAC) address of the device
4751 */
4752 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4753 {
4754 const struct net_device_ops *ops = dev->netdev_ops;
4755 int err;
4756
4757 if (!ops->ndo_set_mac_address)
4758 return -EOPNOTSUPP;
4759 if (sa->sa_family != dev->type)
4760 return -EINVAL;
4761 if (!netif_device_present(dev))
4762 return -ENODEV;
4763 err = ops->ndo_set_mac_address(dev, sa);
4764 if (!err)
4765 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4766 return err;
4767 }
4768 EXPORT_SYMBOL(dev_set_mac_address);
4769
4770 /*
4771 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4772 */
4773 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4774 {
4775 int err;
4776 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4777
4778 if (!dev)
4779 return -ENODEV;
4780
4781 switch (cmd) {
4782 case SIOCGIFFLAGS: /* Get interface flags */
4783 ifr->ifr_flags = (short) dev_get_flags(dev);
4784 return 0;
4785
4786 case SIOCGIFMETRIC: /* Get the metric on the interface
4787 (currently unused) */
4788 ifr->ifr_metric = 0;
4789 return 0;
4790
4791 case SIOCGIFMTU: /* Get the MTU of a device */
4792 ifr->ifr_mtu = dev->mtu;
4793 return 0;
4794
4795 case SIOCGIFHWADDR:
4796 if (!dev->addr_len)
4797 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4798 else
4799 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4800 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4801 ifr->ifr_hwaddr.sa_family = dev->type;
4802 return 0;
4803
4804 case SIOCGIFSLAVE:
4805 err = -EINVAL;
4806 break;
4807
4808 case SIOCGIFMAP:
4809 ifr->ifr_map.mem_start = dev->mem_start;
4810 ifr->ifr_map.mem_end = dev->mem_end;
4811 ifr->ifr_map.base_addr = dev->base_addr;
4812 ifr->ifr_map.irq = dev->irq;
4813 ifr->ifr_map.dma = dev->dma;
4814 ifr->ifr_map.port = dev->if_port;
4815 return 0;
4816
4817 case SIOCGIFINDEX:
4818 ifr->ifr_ifindex = dev->ifindex;
4819 return 0;
4820
4821 case SIOCGIFTXQLEN:
4822 ifr->ifr_qlen = dev->tx_queue_len;
4823 return 0;
4824
4825 default:
4826 /* dev_ioctl() should ensure this case
4827 * is never reached
4828 */
4829 WARN_ON(1);
4830 err = -ENOTTY;
4831 break;
4832
4833 }
4834 return err;
4835 }
4836
4837 /*
4838 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4839 */
4840 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4841 {
4842 int err;
4843 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4844 const struct net_device_ops *ops;
4845
4846 if (!dev)
4847 return -ENODEV;
4848
4849 ops = dev->netdev_ops;
4850
4851 switch (cmd) {
4852 case SIOCSIFFLAGS: /* Set interface flags */
4853 return dev_change_flags(dev, ifr->ifr_flags);
4854
4855 case SIOCSIFMETRIC: /* Set the metric on the interface
4856 (currently unused) */
4857 return -EOPNOTSUPP;
4858
4859 case SIOCSIFMTU: /* Set the MTU of a device */
4860 return dev_set_mtu(dev, ifr->ifr_mtu);
4861
4862 case SIOCSIFHWADDR:
4863 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4864
4865 case SIOCSIFHWBROADCAST:
4866 if (ifr->ifr_hwaddr.sa_family != dev->type)
4867 return -EINVAL;
4868 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4869 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4870 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4871 return 0;
4872
4873 case SIOCSIFMAP:
4874 if (ops->ndo_set_config) {
4875 if (!netif_device_present(dev))
4876 return -ENODEV;
4877 return ops->ndo_set_config(dev, &ifr->ifr_map);
4878 }
4879 return -EOPNOTSUPP;
4880
4881 case SIOCADDMULTI:
4882 if (!ops->ndo_set_rx_mode ||
4883 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4884 return -EINVAL;
4885 if (!netif_device_present(dev))
4886 return -ENODEV;
4887 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4888
4889 case SIOCDELMULTI:
4890 if (!ops->ndo_set_rx_mode ||
4891 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4892 return -EINVAL;
4893 if (!netif_device_present(dev))
4894 return -ENODEV;
4895 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4896
4897 case SIOCSIFTXQLEN:
4898 if (ifr->ifr_qlen < 0)
4899 return -EINVAL;
4900 dev->tx_queue_len = ifr->ifr_qlen;
4901 return 0;
4902
4903 case SIOCSIFNAME:
4904 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4905 return dev_change_name(dev, ifr->ifr_newname);
4906
4907 case SIOCSHWTSTAMP:
4908 err = net_hwtstamp_validate(ifr);
4909 if (err)
4910 return err;
4911 /* fall through */
4912
4913 /*
4914 * Unknown or private ioctl
4915 */
4916 default:
4917 if ((cmd >= SIOCDEVPRIVATE &&
4918 cmd <= SIOCDEVPRIVATE + 15) ||
4919 cmd == SIOCBONDENSLAVE ||
4920 cmd == SIOCBONDRELEASE ||
4921 cmd == SIOCBONDSETHWADDR ||
4922 cmd == SIOCBONDSLAVEINFOQUERY ||
4923 cmd == SIOCBONDINFOQUERY ||
4924 cmd == SIOCBONDCHANGEACTIVE ||
4925 cmd == SIOCGMIIPHY ||
4926 cmd == SIOCGMIIREG ||
4927 cmd == SIOCSMIIREG ||
4928 cmd == SIOCBRADDIF ||
4929 cmd == SIOCBRDELIF ||
4930 cmd == SIOCSHWTSTAMP ||
4931 cmd == SIOCWANDEV) {
4932 err = -EOPNOTSUPP;
4933 if (ops->ndo_do_ioctl) {
4934 if (netif_device_present(dev))
4935 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4936 else
4937 err = -ENODEV;
4938 }
4939 } else
4940 err = -EINVAL;
4941
4942 }
4943 return err;
4944 }
4945
4946 /*
4947 * This function handles all "interface"-type I/O control requests. The actual
4948 * 'doing' part of this is dev_ifsioc above.
4949 */
4950
4951 /**
4952 * dev_ioctl - network device ioctl
4953 * @net: the applicable net namespace
4954 * @cmd: command to issue
4955 * @arg: pointer to a struct ifreq in user space
4956 *
4957 * Issue ioctl functions to devices. This is normally called by the
4958 * user space syscall interfaces but can sometimes be useful for
4959 * other purposes. The return value is the return from the syscall if
4960 * positive or a negative errno code on error.
4961 */
4962
4963 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4964 {
4965 struct ifreq ifr;
4966 int ret;
4967 char *colon;
4968
4969 /* One special case: SIOCGIFCONF takes ifconf argument
4970 and requires shared lock, because it sleeps writing
4971 to user space.
4972 */
4973
4974 if (cmd == SIOCGIFCONF) {
4975 rtnl_lock();
4976 ret = dev_ifconf(net, (char __user *) arg);
4977 rtnl_unlock();
4978 return ret;
4979 }
4980 if (cmd == SIOCGIFNAME)
4981 return dev_ifname(net, (struct ifreq __user *)arg);
4982
4983 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4984 return -EFAULT;
4985
4986 ifr.ifr_name[IFNAMSIZ-1] = 0;
4987
4988 colon = strchr(ifr.ifr_name, ':');
4989 if (colon)
4990 *colon = 0;
4991
4992 /*
4993 * See which interface the caller is talking about.
4994 */
4995
4996 switch (cmd) {
4997 /*
4998 * These ioctl calls:
4999 * - can be done by all.
5000 * - atomic and do not require locking.
5001 * - return a value
5002 */
5003 case SIOCGIFFLAGS:
5004 case SIOCGIFMETRIC:
5005 case SIOCGIFMTU:
5006 case SIOCGIFHWADDR:
5007 case SIOCGIFSLAVE:
5008 case SIOCGIFMAP:
5009 case SIOCGIFINDEX:
5010 case SIOCGIFTXQLEN:
5011 dev_load(net, ifr.ifr_name);
5012 rcu_read_lock();
5013 ret = dev_ifsioc_locked(net, &ifr, cmd);
5014 rcu_read_unlock();
5015 if (!ret) {
5016 if (colon)
5017 *colon = ':';
5018 if (copy_to_user(arg, &ifr,
5019 sizeof(struct ifreq)))
5020 ret = -EFAULT;
5021 }
5022 return ret;
5023
5024 case SIOCETHTOOL:
5025 dev_load(net, ifr.ifr_name);
5026 rtnl_lock();
5027 ret = dev_ethtool(net, &ifr);
5028 rtnl_unlock();
5029 if (!ret) {
5030 if (colon)
5031 *colon = ':';
5032 if (copy_to_user(arg, &ifr,
5033 sizeof(struct ifreq)))
5034 ret = -EFAULT;
5035 }
5036 return ret;
5037
5038 /*
5039 * These ioctl calls:
5040 * - require superuser power.
5041 * - require strict serialization.
5042 * - return a value
5043 */
5044 case SIOCGMIIPHY:
5045 case SIOCGMIIREG:
5046 case SIOCSIFNAME:
5047 if (!capable(CAP_NET_ADMIN))
5048 return -EPERM;
5049 dev_load(net, ifr.ifr_name);
5050 rtnl_lock();
5051 ret = dev_ifsioc(net, &ifr, cmd);
5052 rtnl_unlock();
5053 if (!ret) {
5054 if (colon)
5055 *colon = ':';
5056 if (copy_to_user(arg, &ifr,
5057 sizeof(struct ifreq)))
5058 ret = -EFAULT;
5059 }
5060 return ret;
5061
5062 /*
5063 * These ioctl calls:
5064 * - require superuser power.
5065 * - require strict serialization.
5066 * - do not return a value
5067 */
5068 case SIOCSIFFLAGS:
5069 case SIOCSIFMETRIC:
5070 case SIOCSIFMTU:
5071 case SIOCSIFMAP:
5072 case SIOCSIFHWADDR:
5073 case SIOCSIFSLAVE:
5074 case SIOCADDMULTI:
5075 case SIOCDELMULTI:
5076 case SIOCSIFHWBROADCAST:
5077 case SIOCSIFTXQLEN:
5078 case SIOCSMIIREG:
5079 case SIOCBONDENSLAVE:
5080 case SIOCBONDRELEASE:
5081 case SIOCBONDSETHWADDR:
5082 case SIOCBONDCHANGEACTIVE:
5083 case SIOCBRADDIF:
5084 case SIOCBRDELIF:
5085 case SIOCSHWTSTAMP:
5086 if (!capable(CAP_NET_ADMIN))
5087 return -EPERM;
5088 /* fall through */
5089 case SIOCBONDSLAVEINFOQUERY:
5090 case SIOCBONDINFOQUERY:
5091 dev_load(net, ifr.ifr_name);
5092 rtnl_lock();
5093 ret = dev_ifsioc(net, &ifr, cmd);
5094 rtnl_unlock();
5095 return ret;
5096
5097 case SIOCGIFMEM:
5098 /* Get the per device memory space. We can add this but
5099 * currently do not support it */
5100 case SIOCSIFMEM:
5101 /* Set the per device memory buffer space.
5102 * Not applicable in our case */
5103 case SIOCSIFLINK:
5104 return -ENOTTY;
5105
5106 /*
5107 * Unknown or private ioctl.
5108 */
5109 default:
5110 if (cmd == SIOCWANDEV ||
5111 (cmd >= SIOCDEVPRIVATE &&
5112 cmd <= SIOCDEVPRIVATE + 15)) {
5113 dev_load(net, ifr.ifr_name);
5114 rtnl_lock();
5115 ret = dev_ifsioc(net, &ifr, cmd);
5116 rtnl_unlock();
5117 if (!ret && copy_to_user(arg, &ifr,
5118 sizeof(struct ifreq)))
5119 ret = -EFAULT;
5120 return ret;
5121 }
5122 /* Take care of Wireless Extensions */
5123 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5124 return wext_handle_ioctl(net, &ifr, cmd, arg);
5125 return -ENOTTY;
5126 }
5127 }
5128
5129
5130 /**
5131 * dev_new_index - allocate an ifindex
5132 * @net: the applicable net namespace
5133 *
5134 * Returns a suitable unique value for a new device interface
5135 * number. The caller must hold the rtnl semaphore or the
5136 * dev_base_lock to be sure it remains unique.
5137 */
5138 static int dev_new_index(struct net *net)
5139 {
5140 static int ifindex;
5141 for (;;) {
5142 if (++ifindex <= 0)
5143 ifindex = 1;
5144 if (!__dev_get_by_index(net, ifindex))
5145 return ifindex;
5146 }
5147 }
5148
5149 /* Delayed registration/unregisteration */
5150 static LIST_HEAD(net_todo_list);
5151
5152 static void net_set_todo(struct net_device *dev)
5153 {
5154 list_add_tail(&dev->todo_list, &net_todo_list);
5155 }
5156
5157 static void rollback_registered_many(struct list_head *head)
5158 {
5159 struct net_device *dev, *tmp;
5160
5161 BUG_ON(dev_boot_phase);
5162 ASSERT_RTNL();
5163
5164 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5165 /* Some devices call without registering
5166 * for initialization unwind. Remove those
5167 * devices and proceed with the remaining.
5168 */
5169 if (dev->reg_state == NETREG_UNINITIALIZED) {
5170 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5171 dev->name, dev);
5172
5173 WARN_ON(1);
5174 list_del(&dev->unreg_list);
5175 continue;
5176 }
5177 dev->dismantle = true;
5178 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5179 }
5180
5181 /* If device is running, close it first. */
5182 dev_close_many(head);
5183
5184 list_for_each_entry(dev, head, unreg_list) {
5185 /* And unlink it from device chain. */
5186 unlist_netdevice(dev);
5187
5188 dev->reg_state = NETREG_UNREGISTERING;
5189 }
5190
5191 synchronize_net();
5192
5193 list_for_each_entry(dev, head, unreg_list) {
5194 /* Shutdown queueing discipline. */
5195 dev_shutdown(dev);
5196
5197
5198 /* Notify protocols, that we are about to destroy
5199 this device. They should clean all the things.
5200 */
5201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5202
5203 if (!dev->rtnl_link_ops ||
5204 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5205 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5206
5207 /*
5208 * Flush the unicast and multicast chains
5209 */
5210 dev_uc_flush(dev);
5211 dev_mc_flush(dev);
5212
5213 if (dev->netdev_ops->ndo_uninit)
5214 dev->netdev_ops->ndo_uninit(dev);
5215
5216 /* Notifier chain MUST detach us from master device. */
5217 WARN_ON(dev->master);
5218
5219 /* Remove entries from kobject tree */
5220 netdev_unregister_kobject(dev);
5221 }
5222
5223 /* Process any work delayed until the end of the batch */
5224 dev = list_first_entry(head, struct net_device, unreg_list);
5225 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5226
5227 synchronize_net();
5228
5229 list_for_each_entry(dev, head, unreg_list)
5230 dev_put(dev);
5231 }
5232
5233 static void rollback_registered(struct net_device *dev)
5234 {
5235 LIST_HEAD(single);
5236
5237 list_add(&dev->unreg_list, &single);
5238 rollback_registered_many(&single);
5239 list_del(&single);
5240 }
5241
5242 static netdev_features_t netdev_fix_features(struct net_device *dev,
5243 netdev_features_t features)
5244 {
5245 /* Fix illegal checksum combinations */
5246 if ((features & NETIF_F_HW_CSUM) &&
5247 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5248 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5249 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5250 }
5251
5252 /* Fix illegal SG+CSUM combinations. */
5253 if ((features & NETIF_F_SG) &&
5254 !(features & NETIF_F_ALL_CSUM)) {
5255 netdev_dbg(dev,
5256 "Dropping NETIF_F_SG since no checksum feature.\n");
5257 features &= ~NETIF_F_SG;
5258 }
5259
5260 /* TSO requires that SG is present as well. */
5261 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5262 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5263 features &= ~NETIF_F_ALL_TSO;
5264 }
5265
5266 /* TSO ECN requires that TSO is present as well. */
5267 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5268 features &= ~NETIF_F_TSO_ECN;
5269
5270 /* Software GSO depends on SG. */
5271 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5272 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5273 features &= ~NETIF_F_GSO;
5274 }
5275
5276 /* UFO needs SG and checksumming */
5277 if (features & NETIF_F_UFO) {
5278 /* maybe split UFO into V4 and V6? */
5279 if (!((features & NETIF_F_GEN_CSUM) ||
5280 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5281 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5282 netdev_dbg(dev,
5283 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5284 features &= ~NETIF_F_UFO;
5285 }
5286
5287 if (!(features & NETIF_F_SG)) {
5288 netdev_dbg(dev,
5289 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5290 features &= ~NETIF_F_UFO;
5291 }
5292 }
5293
5294 return features;
5295 }
5296
5297 int __netdev_update_features(struct net_device *dev)
5298 {
5299 netdev_features_t features;
5300 int err = 0;
5301
5302 ASSERT_RTNL();
5303
5304 features = netdev_get_wanted_features(dev);
5305
5306 if (dev->netdev_ops->ndo_fix_features)
5307 features = dev->netdev_ops->ndo_fix_features(dev, features);
5308
5309 /* driver might be less strict about feature dependencies */
5310 features = netdev_fix_features(dev, features);
5311
5312 if (dev->features == features)
5313 return 0;
5314
5315 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5316 &dev->features, &features);
5317
5318 if (dev->netdev_ops->ndo_set_features)
5319 err = dev->netdev_ops->ndo_set_features(dev, features);
5320
5321 if (unlikely(err < 0)) {
5322 netdev_err(dev,
5323 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5324 err, &features, &dev->features);
5325 return -1;
5326 }
5327
5328 if (!err)
5329 dev->features = features;
5330
5331 return 1;
5332 }
5333
5334 /**
5335 * netdev_update_features - recalculate device features
5336 * @dev: the device to check
5337 *
5338 * Recalculate dev->features set and send notifications if it
5339 * has changed. Should be called after driver or hardware dependent
5340 * conditions might have changed that influence the features.
5341 */
5342 void netdev_update_features(struct net_device *dev)
5343 {
5344 if (__netdev_update_features(dev))
5345 netdev_features_change(dev);
5346 }
5347 EXPORT_SYMBOL(netdev_update_features);
5348
5349 /**
5350 * netdev_change_features - recalculate device features
5351 * @dev: the device to check
5352 *
5353 * Recalculate dev->features set and send notifications even
5354 * if they have not changed. Should be called instead of
5355 * netdev_update_features() if also dev->vlan_features might
5356 * have changed to allow the changes to be propagated to stacked
5357 * VLAN devices.
5358 */
5359 void netdev_change_features(struct net_device *dev)
5360 {
5361 __netdev_update_features(dev);
5362 netdev_features_change(dev);
5363 }
5364 EXPORT_SYMBOL(netdev_change_features);
5365
5366 /**
5367 * netif_stacked_transfer_operstate - transfer operstate
5368 * @rootdev: the root or lower level device to transfer state from
5369 * @dev: the device to transfer operstate to
5370 *
5371 * Transfer operational state from root to device. This is normally
5372 * called when a stacking relationship exists between the root
5373 * device and the device(a leaf device).
5374 */
5375 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5376 struct net_device *dev)
5377 {
5378 if (rootdev->operstate == IF_OPER_DORMANT)
5379 netif_dormant_on(dev);
5380 else
5381 netif_dormant_off(dev);
5382
5383 if (netif_carrier_ok(rootdev)) {
5384 if (!netif_carrier_ok(dev))
5385 netif_carrier_on(dev);
5386 } else {
5387 if (netif_carrier_ok(dev))
5388 netif_carrier_off(dev);
5389 }
5390 }
5391 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5392
5393 #ifdef CONFIG_RPS
5394 static int netif_alloc_rx_queues(struct net_device *dev)
5395 {
5396 unsigned int i, count = dev->num_rx_queues;
5397 struct netdev_rx_queue *rx;
5398
5399 BUG_ON(count < 1);
5400
5401 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5402 if (!rx) {
5403 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5404 return -ENOMEM;
5405 }
5406 dev->_rx = rx;
5407
5408 for (i = 0; i < count; i++)
5409 rx[i].dev = dev;
5410 return 0;
5411 }
5412 #endif
5413
5414 static void netdev_init_one_queue(struct net_device *dev,
5415 struct netdev_queue *queue, void *_unused)
5416 {
5417 /* Initialize queue lock */
5418 spin_lock_init(&queue->_xmit_lock);
5419 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5420 queue->xmit_lock_owner = -1;
5421 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5422 queue->dev = dev;
5423 #ifdef CONFIG_BQL
5424 dql_init(&queue->dql, HZ);
5425 #endif
5426 }
5427
5428 static int netif_alloc_netdev_queues(struct net_device *dev)
5429 {
5430 unsigned int count = dev->num_tx_queues;
5431 struct netdev_queue *tx;
5432
5433 BUG_ON(count < 1);
5434
5435 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5436 if (!tx) {
5437 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5438 return -ENOMEM;
5439 }
5440 dev->_tx = tx;
5441
5442 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5443 spin_lock_init(&dev->tx_global_lock);
5444
5445 return 0;
5446 }
5447
5448 /**
5449 * register_netdevice - register a network device
5450 * @dev: device to register
5451 *
5452 * Take a completed network device structure and add it to the kernel
5453 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5454 * chain. 0 is returned on success. A negative errno code is returned
5455 * on a failure to set up the device, or if the name is a duplicate.
5456 *
5457 * Callers must hold the rtnl semaphore. You may want
5458 * register_netdev() instead of this.
5459 *
5460 * BUGS:
5461 * The locking appears insufficient to guarantee two parallel registers
5462 * will not get the same name.
5463 */
5464
5465 int register_netdevice(struct net_device *dev)
5466 {
5467 int ret;
5468 struct net *net = dev_net(dev);
5469
5470 BUG_ON(dev_boot_phase);
5471 ASSERT_RTNL();
5472
5473 might_sleep();
5474
5475 /* When net_device's are persistent, this will be fatal. */
5476 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5477 BUG_ON(!net);
5478
5479 spin_lock_init(&dev->addr_list_lock);
5480 netdev_set_addr_lockdep_class(dev);
5481
5482 dev->iflink = -1;
5483
5484 ret = dev_get_valid_name(dev, dev->name);
5485 if (ret < 0)
5486 goto out;
5487
5488 /* Init, if this function is available */
5489 if (dev->netdev_ops->ndo_init) {
5490 ret = dev->netdev_ops->ndo_init(dev);
5491 if (ret) {
5492 if (ret > 0)
5493 ret = -EIO;
5494 goto out;
5495 }
5496 }
5497
5498 dev->ifindex = dev_new_index(net);
5499 if (dev->iflink == -1)
5500 dev->iflink = dev->ifindex;
5501
5502 /* Transfer changeable features to wanted_features and enable
5503 * software offloads (GSO and GRO).
5504 */
5505 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5506 dev->features |= NETIF_F_SOFT_FEATURES;
5507 dev->wanted_features = dev->features & dev->hw_features;
5508
5509 /* Turn on no cache copy if HW is doing checksum */
5510 if (!(dev->flags & IFF_LOOPBACK)) {
5511 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5512 if (dev->features & NETIF_F_ALL_CSUM) {
5513 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5514 dev->features |= NETIF_F_NOCACHE_COPY;
5515 }
5516 }
5517
5518 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5519 */
5520 dev->vlan_features |= NETIF_F_HIGHDMA;
5521
5522 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5523 ret = notifier_to_errno(ret);
5524 if (ret)
5525 goto err_uninit;
5526
5527 ret = netdev_register_kobject(dev);
5528 if (ret)
5529 goto err_uninit;
5530 dev->reg_state = NETREG_REGISTERED;
5531
5532 __netdev_update_features(dev);
5533
5534 /*
5535 * Default initial state at registry is that the
5536 * device is present.
5537 */
5538
5539 set_bit(__LINK_STATE_PRESENT, &dev->state);
5540
5541 dev_init_scheduler(dev);
5542 dev_hold(dev);
5543 list_netdevice(dev);
5544
5545 /* Notify protocols, that a new device appeared. */
5546 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5547 ret = notifier_to_errno(ret);
5548 if (ret) {
5549 rollback_registered(dev);
5550 dev->reg_state = NETREG_UNREGISTERED;
5551 }
5552 /*
5553 * Prevent userspace races by waiting until the network
5554 * device is fully setup before sending notifications.
5555 */
5556 if (!dev->rtnl_link_ops ||
5557 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5558 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5559
5560 out:
5561 return ret;
5562
5563 err_uninit:
5564 if (dev->netdev_ops->ndo_uninit)
5565 dev->netdev_ops->ndo_uninit(dev);
5566 goto out;
5567 }
5568 EXPORT_SYMBOL(register_netdevice);
5569
5570 /**
5571 * init_dummy_netdev - init a dummy network device for NAPI
5572 * @dev: device to init
5573 *
5574 * This takes a network device structure and initialize the minimum
5575 * amount of fields so it can be used to schedule NAPI polls without
5576 * registering a full blown interface. This is to be used by drivers
5577 * that need to tie several hardware interfaces to a single NAPI
5578 * poll scheduler due to HW limitations.
5579 */
5580 int init_dummy_netdev(struct net_device *dev)
5581 {
5582 /* Clear everything. Note we don't initialize spinlocks
5583 * are they aren't supposed to be taken by any of the
5584 * NAPI code and this dummy netdev is supposed to be
5585 * only ever used for NAPI polls
5586 */
5587 memset(dev, 0, sizeof(struct net_device));
5588
5589 /* make sure we BUG if trying to hit standard
5590 * register/unregister code path
5591 */
5592 dev->reg_state = NETREG_DUMMY;
5593
5594 /* NAPI wants this */
5595 INIT_LIST_HEAD(&dev->napi_list);
5596
5597 /* a dummy interface is started by default */
5598 set_bit(__LINK_STATE_PRESENT, &dev->state);
5599 set_bit(__LINK_STATE_START, &dev->state);
5600
5601 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5602 * because users of this 'device' dont need to change
5603 * its refcount.
5604 */
5605
5606 return 0;
5607 }
5608 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5609
5610
5611 /**
5612 * register_netdev - register a network device
5613 * @dev: device to register
5614 *
5615 * Take a completed network device structure and add it to the kernel
5616 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5617 * chain. 0 is returned on success. A negative errno code is returned
5618 * on a failure to set up the device, or if the name is a duplicate.
5619 *
5620 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5621 * and expands the device name if you passed a format string to
5622 * alloc_netdev.
5623 */
5624 int register_netdev(struct net_device *dev)
5625 {
5626 int err;
5627
5628 rtnl_lock();
5629 err = register_netdevice(dev);
5630 rtnl_unlock();
5631 return err;
5632 }
5633 EXPORT_SYMBOL(register_netdev);
5634
5635 int netdev_refcnt_read(const struct net_device *dev)
5636 {
5637 int i, refcnt = 0;
5638
5639 for_each_possible_cpu(i)
5640 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5641 return refcnt;
5642 }
5643 EXPORT_SYMBOL(netdev_refcnt_read);
5644
5645 /*
5646 * netdev_wait_allrefs - wait until all references are gone.
5647 *
5648 * This is called when unregistering network devices.
5649 *
5650 * Any protocol or device that holds a reference should register
5651 * for netdevice notification, and cleanup and put back the
5652 * reference if they receive an UNREGISTER event.
5653 * We can get stuck here if buggy protocols don't correctly
5654 * call dev_put.
5655 */
5656 static void netdev_wait_allrefs(struct net_device *dev)
5657 {
5658 unsigned long rebroadcast_time, warning_time;
5659 int refcnt;
5660
5661 linkwatch_forget_dev(dev);
5662
5663 rebroadcast_time = warning_time = jiffies;
5664 refcnt = netdev_refcnt_read(dev);
5665
5666 while (refcnt != 0) {
5667 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5668 rtnl_lock();
5669
5670 /* Rebroadcast unregister notification */
5671 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5672 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5673 * should have already handle it the first time */
5674
5675 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5676 &dev->state)) {
5677 /* We must not have linkwatch events
5678 * pending on unregister. If this
5679 * happens, we simply run the queue
5680 * unscheduled, resulting in a noop
5681 * for this device.
5682 */
5683 linkwatch_run_queue();
5684 }
5685
5686 __rtnl_unlock();
5687
5688 rebroadcast_time = jiffies;
5689 }
5690
5691 msleep(250);
5692
5693 refcnt = netdev_refcnt_read(dev);
5694
5695 if (time_after(jiffies, warning_time + 10 * HZ)) {
5696 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5697 dev->name, refcnt);
5698 warning_time = jiffies;
5699 }
5700 }
5701 }
5702
5703 /* The sequence is:
5704 *
5705 * rtnl_lock();
5706 * ...
5707 * register_netdevice(x1);
5708 * register_netdevice(x2);
5709 * ...
5710 * unregister_netdevice(y1);
5711 * unregister_netdevice(y2);
5712 * ...
5713 * rtnl_unlock();
5714 * free_netdev(y1);
5715 * free_netdev(y2);
5716 *
5717 * We are invoked by rtnl_unlock().
5718 * This allows us to deal with problems:
5719 * 1) We can delete sysfs objects which invoke hotplug
5720 * without deadlocking with linkwatch via keventd.
5721 * 2) Since we run with the RTNL semaphore not held, we can sleep
5722 * safely in order to wait for the netdev refcnt to drop to zero.
5723 *
5724 * We must not return until all unregister events added during
5725 * the interval the lock was held have been completed.
5726 */
5727 void netdev_run_todo(void)
5728 {
5729 struct list_head list;
5730
5731 /* Snapshot list, allow later requests */
5732 list_replace_init(&net_todo_list, &list);
5733
5734 __rtnl_unlock();
5735
5736 /* Wait for rcu callbacks to finish before attempting to drain
5737 * the device list. This usually avoids a 250ms wait.
5738 */
5739 if (!list_empty(&list))
5740 rcu_barrier();
5741
5742 while (!list_empty(&list)) {
5743 struct net_device *dev
5744 = list_first_entry(&list, struct net_device, todo_list);
5745 list_del(&dev->todo_list);
5746
5747 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5748 pr_err("network todo '%s' but state %d\n",
5749 dev->name, dev->reg_state);
5750 dump_stack();
5751 continue;
5752 }
5753
5754 dev->reg_state = NETREG_UNREGISTERED;
5755
5756 on_each_cpu(flush_backlog, dev, 1);
5757
5758 netdev_wait_allrefs(dev);
5759
5760 /* paranoia */
5761 BUG_ON(netdev_refcnt_read(dev));
5762 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5763 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5764 WARN_ON(dev->dn_ptr);
5765
5766 if (dev->destructor)
5767 dev->destructor(dev);
5768
5769 /* Free network device */
5770 kobject_put(&dev->dev.kobj);
5771 }
5772 }
5773
5774 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5775 * fields in the same order, with only the type differing.
5776 */
5777 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5778 const struct net_device_stats *netdev_stats)
5779 {
5780 #if BITS_PER_LONG == 64
5781 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5782 memcpy(stats64, netdev_stats, sizeof(*stats64));
5783 #else
5784 size_t i, n = sizeof(*stats64) / sizeof(u64);
5785 const unsigned long *src = (const unsigned long *)netdev_stats;
5786 u64 *dst = (u64 *)stats64;
5787
5788 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5789 sizeof(*stats64) / sizeof(u64));
5790 for (i = 0; i < n; i++)
5791 dst[i] = src[i];
5792 #endif
5793 }
5794 EXPORT_SYMBOL(netdev_stats_to_stats64);
5795
5796 /**
5797 * dev_get_stats - get network device statistics
5798 * @dev: device to get statistics from
5799 * @storage: place to store stats
5800 *
5801 * Get network statistics from device. Return @storage.
5802 * The device driver may provide its own method by setting
5803 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5804 * otherwise the internal statistics structure is used.
5805 */
5806 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5807 struct rtnl_link_stats64 *storage)
5808 {
5809 const struct net_device_ops *ops = dev->netdev_ops;
5810
5811 if (ops->ndo_get_stats64) {
5812 memset(storage, 0, sizeof(*storage));
5813 ops->ndo_get_stats64(dev, storage);
5814 } else if (ops->ndo_get_stats) {
5815 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5816 } else {
5817 netdev_stats_to_stats64(storage, &dev->stats);
5818 }
5819 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5820 return storage;
5821 }
5822 EXPORT_SYMBOL(dev_get_stats);
5823
5824 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5825 {
5826 struct netdev_queue *queue = dev_ingress_queue(dev);
5827
5828 #ifdef CONFIG_NET_CLS_ACT
5829 if (queue)
5830 return queue;
5831 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5832 if (!queue)
5833 return NULL;
5834 netdev_init_one_queue(dev, queue, NULL);
5835 queue->qdisc = &noop_qdisc;
5836 queue->qdisc_sleeping = &noop_qdisc;
5837 rcu_assign_pointer(dev->ingress_queue, queue);
5838 #endif
5839 return queue;
5840 }
5841
5842 /**
5843 * alloc_netdev_mqs - allocate network device
5844 * @sizeof_priv: size of private data to allocate space for
5845 * @name: device name format string
5846 * @setup: callback to initialize device
5847 * @txqs: the number of TX subqueues to allocate
5848 * @rxqs: the number of RX subqueues to allocate
5849 *
5850 * Allocates a struct net_device with private data area for driver use
5851 * and performs basic initialization. Also allocates subquue structs
5852 * for each queue on the device.
5853 */
5854 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5855 void (*setup)(struct net_device *),
5856 unsigned int txqs, unsigned int rxqs)
5857 {
5858 struct net_device *dev;
5859 size_t alloc_size;
5860 struct net_device *p;
5861
5862 BUG_ON(strlen(name) >= sizeof(dev->name));
5863
5864 if (txqs < 1) {
5865 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5866 return NULL;
5867 }
5868
5869 #ifdef CONFIG_RPS
5870 if (rxqs < 1) {
5871 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5872 return NULL;
5873 }
5874 #endif
5875
5876 alloc_size = sizeof(struct net_device);
5877 if (sizeof_priv) {
5878 /* ensure 32-byte alignment of private area */
5879 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5880 alloc_size += sizeof_priv;
5881 }
5882 /* ensure 32-byte alignment of whole construct */
5883 alloc_size += NETDEV_ALIGN - 1;
5884
5885 p = kzalloc(alloc_size, GFP_KERNEL);
5886 if (!p) {
5887 pr_err("alloc_netdev: Unable to allocate device\n");
5888 return NULL;
5889 }
5890
5891 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5892 dev->padded = (char *)dev - (char *)p;
5893
5894 dev->pcpu_refcnt = alloc_percpu(int);
5895 if (!dev->pcpu_refcnt)
5896 goto free_p;
5897
5898 if (dev_addr_init(dev))
5899 goto free_pcpu;
5900
5901 dev_mc_init(dev);
5902 dev_uc_init(dev);
5903
5904 dev_net_set(dev, &init_net);
5905
5906 dev->gso_max_size = GSO_MAX_SIZE;
5907
5908 INIT_LIST_HEAD(&dev->napi_list);
5909 INIT_LIST_HEAD(&dev->unreg_list);
5910 INIT_LIST_HEAD(&dev->link_watch_list);
5911 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5912 setup(dev);
5913
5914 dev->num_tx_queues = txqs;
5915 dev->real_num_tx_queues = txqs;
5916 if (netif_alloc_netdev_queues(dev))
5917 goto free_all;
5918
5919 #ifdef CONFIG_RPS
5920 dev->num_rx_queues = rxqs;
5921 dev->real_num_rx_queues = rxqs;
5922 if (netif_alloc_rx_queues(dev))
5923 goto free_all;
5924 #endif
5925
5926 strcpy(dev->name, name);
5927 dev->group = INIT_NETDEV_GROUP;
5928 return dev;
5929
5930 free_all:
5931 free_netdev(dev);
5932 return NULL;
5933
5934 free_pcpu:
5935 free_percpu(dev->pcpu_refcnt);
5936 kfree(dev->_tx);
5937 #ifdef CONFIG_RPS
5938 kfree(dev->_rx);
5939 #endif
5940
5941 free_p:
5942 kfree(p);
5943 return NULL;
5944 }
5945 EXPORT_SYMBOL(alloc_netdev_mqs);
5946
5947 /**
5948 * free_netdev - free network device
5949 * @dev: device
5950 *
5951 * This function does the last stage of destroying an allocated device
5952 * interface. The reference to the device object is released.
5953 * If this is the last reference then it will be freed.
5954 */
5955 void free_netdev(struct net_device *dev)
5956 {
5957 struct napi_struct *p, *n;
5958
5959 release_net(dev_net(dev));
5960
5961 kfree(dev->_tx);
5962 #ifdef CONFIG_RPS
5963 kfree(dev->_rx);
5964 #endif
5965
5966 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5967
5968 /* Flush device addresses */
5969 dev_addr_flush(dev);
5970
5971 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5972 netif_napi_del(p);
5973
5974 free_percpu(dev->pcpu_refcnt);
5975 dev->pcpu_refcnt = NULL;
5976
5977 /* Compatibility with error handling in drivers */
5978 if (dev->reg_state == NETREG_UNINITIALIZED) {
5979 kfree((char *)dev - dev->padded);
5980 return;
5981 }
5982
5983 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5984 dev->reg_state = NETREG_RELEASED;
5985
5986 /* will free via device release */
5987 put_device(&dev->dev);
5988 }
5989 EXPORT_SYMBOL(free_netdev);
5990
5991 /**
5992 * synchronize_net - Synchronize with packet receive processing
5993 *
5994 * Wait for packets currently being received to be done.
5995 * Does not block later packets from starting.
5996 */
5997 void synchronize_net(void)
5998 {
5999 might_sleep();
6000 if (rtnl_is_locked())
6001 synchronize_rcu_expedited();
6002 else
6003 synchronize_rcu();
6004 }
6005 EXPORT_SYMBOL(synchronize_net);
6006
6007 /**
6008 * unregister_netdevice_queue - remove device from the kernel
6009 * @dev: device
6010 * @head: list
6011 *
6012 * This function shuts down a device interface and removes it
6013 * from the kernel tables.
6014 * If head not NULL, device is queued to be unregistered later.
6015 *
6016 * Callers must hold the rtnl semaphore. You may want
6017 * unregister_netdev() instead of this.
6018 */
6019
6020 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6021 {
6022 ASSERT_RTNL();
6023
6024 if (head) {
6025 list_move_tail(&dev->unreg_list, head);
6026 } else {
6027 rollback_registered(dev);
6028 /* Finish processing unregister after unlock */
6029 net_set_todo(dev);
6030 }
6031 }
6032 EXPORT_SYMBOL(unregister_netdevice_queue);
6033
6034 /**
6035 * unregister_netdevice_many - unregister many devices
6036 * @head: list of devices
6037 */
6038 void unregister_netdevice_many(struct list_head *head)
6039 {
6040 struct net_device *dev;
6041
6042 if (!list_empty(head)) {
6043 rollback_registered_many(head);
6044 list_for_each_entry(dev, head, unreg_list)
6045 net_set_todo(dev);
6046 }
6047 }
6048 EXPORT_SYMBOL(unregister_netdevice_many);
6049
6050 /**
6051 * unregister_netdev - remove device from the kernel
6052 * @dev: device
6053 *
6054 * This function shuts down a device interface and removes it
6055 * from the kernel tables.
6056 *
6057 * This is just a wrapper for unregister_netdevice that takes
6058 * the rtnl semaphore. In general you want to use this and not
6059 * unregister_netdevice.
6060 */
6061 void unregister_netdev(struct net_device *dev)
6062 {
6063 rtnl_lock();
6064 unregister_netdevice(dev);
6065 rtnl_unlock();
6066 }
6067 EXPORT_SYMBOL(unregister_netdev);
6068
6069 /**
6070 * dev_change_net_namespace - move device to different nethost namespace
6071 * @dev: device
6072 * @net: network namespace
6073 * @pat: If not NULL name pattern to try if the current device name
6074 * is already taken in the destination network namespace.
6075 *
6076 * This function shuts down a device interface and moves it
6077 * to a new network namespace. On success 0 is returned, on
6078 * a failure a netagive errno code is returned.
6079 *
6080 * Callers must hold the rtnl semaphore.
6081 */
6082
6083 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6084 {
6085 int err;
6086
6087 ASSERT_RTNL();
6088
6089 /* Don't allow namespace local devices to be moved. */
6090 err = -EINVAL;
6091 if (dev->features & NETIF_F_NETNS_LOCAL)
6092 goto out;
6093
6094 /* Ensure the device has been registrered */
6095 err = -EINVAL;
6096 if (dev->reg_state != NETREG_REGISTERED)
6097 goto out;
6098
6099 /* Get out if there is nothing todo */
6100 err = 0;
6101 if (net_eq(dev_net(dev), net))
6102 goto out;
6103
6104 /* Pick the destination device name, and ensure
6105 * we can use it in the destination network namespace.
6106 */
6107 err = -EEXIST;
6108 if (__dev_get_by_name(net, dev->name)) {
6109 /* We get here if we can't use the current device name */
6110 if (!pat)
6111 goto out;
6112 if (dev_get_valid_name(dev, pat) < 0)
6113 goto out;
6114 }
6115
6116 /*
6117 * And now a mini version of register_netdevice unregister_netdevice.
6118 */
6119
6120 /* If device is running close it first. */
6121 dev_close(dev);
6122
6123 /* And unlink it from device chain */
6124 err = -ENODEV;
6125 unlist_netdevice(dev);
6126
6127 synchronize_net();
6128
6129 /* Shutdown queueing discipline. */
6130 dev_shutdown(dev);
6131
6132 /* Notify protocols, that we are about to destroy
6133 this device. They should clean all the things.
6134
6135 Note that dev->reg_state stays at NETREG_REGISTERED.
6136 This is wanted because this way 8021q and macvlan know
6137 the device is just moving and can keep their slaves up.
6138 */
6139 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6140 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6141 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6142
6143 /*
6144 * Flush the unicast and multicast chains
6145 */
6146 dev_uc_flush(dev);
6147 dev_mc_flush(dev);
6148
6149 /* Actually switch the network namespace */
6150 dev_net_set(dev, net);
6151
6152 /* If there is an ifindex conflict assign a new one */
6153 if (__dev_get_by_index(net, dev->ifindex)) {
6154 int iflink = (dev->iflink == dev->ifindex);
6155 dev->ifindex = dev_new_index(net);
6156 if (iflink)
6157 dev->iflink = dev->ifindex;
6158 }
6159
6160 /* Fixup kobjects */
6161 err = device_rename(&dev->dev, dev->name);
6162 WARN_ON(err);
6163
6164 /* Add the device back in the hashes */
6165 list_netdevice(dev);
6166
6167 /* Notify protocols, that a new device appeared. */
6168 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6169
6170 /*
6171 * Prevent userspace races by waiting until the network
6172 * device is fully setup before sending notifications.
6173 */
6174 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6175
6176 synchronize_net();
6177 err = 0;
6178 out:
6179 return err;
6180 }
6181 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6182
6183 static int dev_cpu_callback(struct notifier_block *nfb,
6184 unsigned long action,
6185 void *ocpu)
6186 {
6187 struct sk_buff **list_skb;
6188 struct sk_buff *skb;
6189 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6190 struct softnet_data *sd, *oldsd;
6191
6192 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6193 return NOTIFY_OK;
6194
6195 local_irq_disable();
6196 cpu = smp_processor_id();
6197 sd = &per_cpu(softnet_data, cpu);
6198 oldsd = &per_cpu(softnet_data, oldcpu);
6199
6200 /* Find end of our completion_queue. */
6201 list_skb = &sd->completion_queue;
6202 while (*list_skb)
6203 list_skb = &(*list_skb)->next;
6204 /* Append completion queue from offline CPU. */
6205 *list_skb = oldsd->completion_queue;
6206 oldsd->completion_queue = NULL;
6207
6208 /* Append output queue from offline CPU. */
6209 if (oldsd->output_queue) {
6210 *sd->output_queue_tailp = oldsd->output_queue;
6211 sd->output_queue_tailp = oldsd->output_queue_tailp;
6212 oldsd->output_queue = NULL;
6213 oldsd->output_queue_tailp = &oldsd->output_queue;
6214 }
6215 /* Append NAPI poll list from offline CPU. */
6216 if (!list_empty(&oldsd->poll_list)) {
6217 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6218 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6219 }
6220
6221 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6222 local_irq_enable();
6223
6224 /* Process offline CPU's input_pkt_queue */
6225 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6226 netif_rx(skb);
6227 input_queue_head_incr(oldsd);
6228 }
6229 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6230 netif_rx(skb);
6231 input_queue_head_incr(oldsd);
6232 }
6233
6234 return NOTIFY_OK;
6235 }
6236
6237
6238 /**
6239 * netdev_increment_features - increment feature set by one
6240 * @all: current feature set
6241 * @one: new feature set
6242 * @mask: mask feature set
6243 *
6244 * Computes a new feature set after adding a device with feature set
6245 * @one to the master device with current feature set @all. Will not
6246 * enable anything that is off in @mask. Returns the new feature set.
6247 */
6248 netdev_features_t netdev_increment_features(netdev_features_t all,
6249 netdev_features_t one, netdev_features_t mask)
6250 {
6251 if (mask & NETIF_F_GEN_CSUM)
6252 mask |= NETIF_F_ALL_CSUM;
6253 mask |= NETIF_F_VLAN_CHALLENGED;
6254
6255 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6256 all &= one | ~NETIF_F_ALL_FOR_ALL;
6257
6258 /* If one device supports hw checksumming, set for all. */
6259 if (all & NETIF_F_GEN_CSUM)
6260 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6261
6262 return all;
6263 }
6264 EXPORT_SYMBOL(netdev_increment_features);
6265
6266 static struct hlist_head *netdev_create_hash(void)
6267 {
6268 int i;
6269 struct hlist_head *hash;
6270
6271 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6272 if (hash != NULL)
6273 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6274 INIT_HLIST_HEAD(&hash[i]);
6275
6276 return hash;
6277 }
6278
6279 /* Initialize per network namespace state */
6280 static int __net_init netdev_init(struct net *net)
6281 {
6282 INIT_LIST_HEAD(&net->dev_base_head);
6283
6284 net->dev_name_head = netdev_create_hash();
6285 if (net->dev_name_head == NULL)
6286 goto err_name;
6287
6288 net->dev_index_head = netdev_create_hash();
6289 if (net->dev_index_head == NULL)
6290 goto err_idx;
6291
6292 return 0;
6293
6294 err_idx:
6295 kfree(net->dev_name_head);
6296 err_name:
6297 return -ENOMEM;
6298 }
6299
6300 /**
6301 * netdev_drivername - network driver for the device
6302 * @dev: network device
6303 *
6304 * Determine network driver for device.
6305 */
6306 const char *netdev_drivername(const struct net_device *dev)
6307 {
6308 const struct device_driver *driver;
6309 const struct device *parent;
6310 const char *empty = "";
6311
6312 parent = dev->dev.parent;
6313 if (!parent)
6314 return empty;
6315
6316 driver = parent->driver;
6317 if (driver && driver->name)
6318 return driver->name;
6319 return empty;
6320 }
6321
6322 int __netdev_printk(const char *level, const struct net_device *dev,
6323 struct va_format *vaf)
6324 {
6325 int r;
6326
6327 if (dev && dev->dev.parent)
6328 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6329 netdev_name(dev), vaf);
6330 else if (dev)
6331 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6332 else
6333 r = printk("%s(NULL net_device): %pV", level, vaf);
6334
6335 return r;
6336 }
6337 EXPORT_SYMBOL(__netdev_printk);
6338
6339 int netdev_printk(const char *level, const struct net_device *dev,
6340 const char *format, ...)
6341 {
6342 struct va_format vaf;
6343 va_list args;
6344 int r;
6345
6346 va_start(args, format);
6347
6348 vaf.fmt = format;
6349 vaf.va = &args;
6350
6351 r = __netdev_printk(level, dev, &vaf);
6352 va_end(args);
6353
6354 return r;
6355 }
6356 EXPORT_SYMBOL(netdev_printk);
6357
6358 #define define_netdev_printk_level(func, level) \
6359 int func(const struct net_device *dev, const char *fmt, ...) \
6360 { \
6361 int r; \
6362 struct va_format vaf; \
6363 va_list args; \
6364 \
6365 va_start(args, fmt); \
6366 \
6367 vaf.fmt = fmt; \
6368 vaf.va = &args; \
6369 \
6370 r = __netdev_printk(level, dev, &vaf); \
6371 va_end(args); \
6372 \
6373 return r; \
6374 } \
6375 EXPORT_SYMBOL(func);
6376
6377 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6378 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6379 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6380 define_netdev_printk_level(netdev_err, KERN_ERR);
6381 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6382 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6383 define_netdev_printk_level(netdev_info, KERN_INFO);
6384
6385 static void __net_exit netdev_exit(struct net *net)
6386 {
6387 kfree(net->dev_name_head);
6388 kfree(net->dev_index_head);
6389 }
6390
6391 static struct pernet_operations __net_initdata netdev_net_ops = {
6392 .init = netdev_init,
6393 .exit = netdev_exit,
6394 };
6395
6396 static void __net_exit default_device_exit(struct net *net)
6397 {
6398 struct net_device *dev, *aux;
6399 /*
6400 * Push all migratable network devices back to the
6401 * initial network namespace
6402 */
6403 rtnl_lock();
6404 for_each_netdev_safe(net, dev, aux) {
6405 int err;
6406 char fb_name[IFNAMSIZ];
6407
6408 /* Ignore unmoveable devices (i.e. loopback) */
6409 if (dev->features & NETIF_F_NETNS_LOCAL)
6410 continue;
6411
6412 /* Leave virtual devices for the generic cleanup */
6413 if (dev->rtnl_link_ops)
6414 continue;
6415
6416 /* Push remaining network devices to init_net */
6417 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6418 err = dev_change_net_namespace(dev, &init_net, fb_name);
6419 if (err) {
6420 pr_emerg("%s: failed to move %s to init_net: %d\n",
6421 __func__, dev->name, err);
6422 BUG();
6423 }
6424 }
6425 rtnl_unlock();
6426 }
6427
6428 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6429 {
6430 /* At exit all network devices most be removed from a network
6431 * namespace. Do this in the reverse order of registration.
6432 * Do this across as many network namespaces as possible to
6433 * improve batching efficiency.
6434 */
6435 struct net_device *dev;
6436 struct net *net;
6437 LIST_HEAD(dev_kill_list);
6438
6439 rtnl_lock();
6440 list_for_each_entry(net, net_list, exit_list) {
6441 for_each_netdev_reverse(net, dev) {
6442 if (dev->rtnl_link_ops)
6443 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6444 else
6445 unregister_netdevice_queue(dev, &dev_kill_list);
6446 }
6447 }
6448 unregister_netdevice_many(&dev_kill_list);
6449 list_del(&dev_kill_list);
6450 rtnl_unlock();
6451 }
6452
6453 static struct pernet_operations __net_initdata default_device_ops = {
6454 .exit = default_device_exit,
6455 .exit_batch = default_device_exit_batch,
6456 };
6457
6458 /*
6459 * Initialize the DEV module. At boot time this walks the device list and
6460 * unhooks any devices that fail to initialise (normally hardware not
6461 * present) and leaves us with a valid list of present and active devices.
6462 *
6463 */
6464
6465 /*
6466 * This is called single threaded during boot, so no need
6467 * to take the rtnl semaphore.
6468 */
6469 static int __init net_dev_init(void)
6470 {
6471 int i, rc = -ENOMEM;
6472
6473 BUG_ON(!dev_boot_phase);
6474
6475 if (dev_proc_init())
6476 goto out;
6477
6478 if (netdev_kobject_init())
6479 goto out;
6480
6481 INIT_LIST_HEAD(&ptype_all);
6482 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6483 INIT_LIST_HEAD(&ptype_base[i]);
6484
6485 if (register_pernet_subsys(&netdev_net_ops))
6486 goto out;
6487
6488 /*
6489 * Initialise the packet receive queues.
6490 */
6491
6492 for_each_possible_cpu(i) {
6493 struct softnet_data *sd = &per_cpu(softnet_data, i);
6494
6495 memset(sd, 0, sizeof(*sd));
6496 skb_queue_head_init(&sd->input_pkt_queue);
6497 skb_queue_head_init(&sd->process_queue);
6498 sd->completion_queue = NULL;
6499 INIT_LIST_HEAD(&sd->poll_list);
6500 sd->output_queue = NULL;
6501 sd->output_queue_tailp = &sd->output_queue;
6502 #ifdef CONFIG_RPS
6503 sd->csd.func = rps_trigger_softirq;
6504 sd->csd.info = sd;
6505 sd->csd.flags = 0;
6506 sd->cpu = i;
6507 #endif
6508
6509 sd->backlog.poll = process_backlog;
6510 sd->backlog.weight = weight_p;
6511 sd->backlog.gro_list = NULL;
6512 sd->backlog.gro_count = 0;
6513 }
6514
6515 dev_boot_phase = 0;
6516
6517 /* The loopback device is special if any other network devices
6518 * is present in a network namespace the loopback device must
6519 * be present. Since we now dynamically allocate and free the
6520 * loopback device ensure this invariant is maintained by
6521 * keeping the loopback device as the first device on the
6522 * list of network devices. Ensuring the loopback devices
6523 * is the first device that appears and the last network device
6524 * that disappears.
6525 */
6526 if (register_pernet_device(&loopback_net_ops))
6527 goto out;
6528
6529 if (register_pernet_device(&default_device_ops))
6530 goto out;
6531
6532 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6533 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6534
6535 hotcpu_notifier(dev_cpu_callback, 0);
6536 dst_init();
6537 dev_mcast_init();
6538 rc = 0;
6539 out:
6540 return rc;
6541 }
6542
6543 subsys_initcall(net_dev_init);
6544
6545 static int __init initialize_hashrnd(void)
6546 {
6547 get_random_bytes(&hashrnd, sizeof(hashrnd));
6548 return 0;
6549 }
6550
6551 late_initcall_sync(initialize_hashrnd);
6552