b8a4fd0806af3fca72224828293a497f13281831
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130
131 #include "net-sysfs.h"
132
133 /*
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
136 *
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
139 *
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
145 * --BLG
146 *
147 * 0800 IP
148 * 8100 802.1Q VLAN
149 * 0001 802.3
150 * 0002 AX.25
151 * 0004 802.2
152 * 8035 RARP
153 * 0005 SNAP
154 * 0805 X.25
155 * 0806 ARP
156 * 8137 IPX
157 * 0009 Localtalk
158 * 86DD IPv6
159 */
160
161 #define PTYPE_HASH_SIZE (16)
162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
163
164 static DEFINE_SPINLOCK(ptype_lock);
165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 static struct list_head ptype_all __read_mostly; /* Taps */
167
168 #ifdef CONFIG_NET_DMA
169 struct net_dma {
170 struct dma_client client;
171 spinlock_t lock;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
174 };
175
176 static enum dma_state_client
177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
179
180 static struct net_dma net_dma = {
181 .client = {
182 .event_callback = netdev_dma_event,
183 },
184 };
185 #endif
186
187 /*
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189 * semaphore.
190 *
191 * Pure readers hold dev_base_lock for reading.
192 *
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
197 *
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
201 *
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
204 * semaphore held.
205 */
206 DEFINE_RWLOCK(dev_base_lock);
207
208 EXPORT_SYMBOL(dev_base_lock);
209
210 #define NETDEV_HASHBITS 8
211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
217 }
218
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237 }
238
239 /* Device list removal */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250 }
251
252 /*
253 * Our notifier list
254 */
255
256 static RAW_NOTIFIER_HEAD(netdev_chain);
257
258 /*
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
261 */
262
263 DEFINE_PER_CPU(struct softnet_data, softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 ARPHRD_NONE};
286
287 static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 /**
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
372 *
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
376 *
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
380 */
381
382 void dev_add_pack(struct packet_type *pt)
383 {
384 int hash;
385
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
389 else {
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
392 }
393 spin_unlock_bh(&ptype_lock);
394 }
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head;
412 struct packet_type *pt1;
413
414 spin_lock_bh(&ptype_lock);
415
416 if (pt->type == htons(ETH_P_ALL))
417 head = &ptype_all;
418 else
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
420
421 list_for_each_entry(pt1, head, list) {
422 if (pt == pt1) {
423 list_del_rcu(&pt->list);
424 goto out;
425 }
426 }
427
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429 out:
430 spin_unlock_bh(&ptype_lock);
431 }
432 /**
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
435 *
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
440 *
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
443 */
444 void dev_remove_pack(struct packet_type *pt)
445 {
446 __dev_remove_pack(pt);
447
448 synchronize_net();
449 }
450
451 /******************************************************************************
452
453 Device Boot-time Settings Routines
454
455 *******************************************************************************/
456
457 /* Boot time configuration table */
458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
459
460 /**
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
464 *
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
467 * all netdevices.
468 */
469 static int netdev_boot_setup_add(char *name, struct ifmap *map)
470 {
471 struct netdev_boot_setup *s;
472 int i;
473
474 s = dev_boot_setup;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
480 break;
481 }
482 }
483
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
485 }
486
487 /**
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
490 *
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
495 */
496 int netdev_boot_setup_check(struct net_device *dev)
497 {
498 struct netdev_boot_setup *s = dev_boot_setup;
499 int i;
500
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
508 return 1;
509 }
510 }
511 return 0;
512 }
513
514
515 /**
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
519 *
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
524 */
525 unsigned long netdev_boot_base(const char *prefix, int unit)
526 {
527 const struct netdev_boot_setup *s = dev_boot_setup;
528 char name[IFNAMSIZ];
529 int i;
530
531 sprintf(name, "%s%d", prefix, unit);
532
533 /*
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
536 */
537 if (__dev_get_by_name(&init_net, name))
538 return 1;
539
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
543 return 0;
544 }
545
546 /*
547 * Saves at boot time configured settings for any netdevice.
548 */
549 int __init netdev_boot_setup(char *str)
550 {
551 int ints[5];
552 struct ifmap map;
553
554 str = get_options(str, ARRAY_SIZE(ints), ints);
555 if (!str || !*str)
556 return 0;
557
558 /* Save settings */
559 memset(&map, 0, sizeof(map));
560 if (ints[0] > 0)
561 map.irq = ints[1];
562 if (ints[0] > 1)
563 map.base_addr = ints[2];
564 if (ints[0] > 2)
565 map.mem_start = ints[3];
566 if (ints[0] > 3)
567 map.mem_end = ints[4];
568
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
571 }
572
573 __setup("netdev=", netdev_boot_setup);
574
575 /*******************************************************************************
576
577 Device Interface Subroutines
578
579 *******************************************************************************/
580
581 /**
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
585 *
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
591 */
592
593 struct net_device *__dev_get_by_name(struct net *net, const char *name)
594 {
595 struct hlist_node *p;
596
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
601 return dev;
602 }
603 return NULL;
604 }
605
606 /**
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
610 *
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
616 */
617
618 struct net_device *dev_get_by_name(struct net *net, const char *name)
619 {
620 struct net_device *dev;
621
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
628 }
629
630 /**
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
634 *
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
639 * or @dev_base_lock.
640 */
641
642 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
643 {
644 struct hlist_node *p;
645
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
650 return dev;
651 }
652 return NULL;
653 }
654
655
656 /**
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
660 *
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
665 */
666
667 struct net_device *dev_get_by_index(struct net *net, int ifindex)
668 {
669 struct net_device *dev;
670
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
673 if (dev)
674 dev_hold(dev);
675 read_unlock(&dev_base_lock);
676 return dev;
677 }
678
679 /**
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
684 *
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
689 *
690 * BUGS:
691 * If the API was consistent this would be __dev_get_by_hwaddr
692 */
693
694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
695 {
696 struct net_device *dev;
697
698 ASSERT_RTNL();
699
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(dev_getbyhwaddr);
709
710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 ASSERT_RTNL();
715 for_each_netdev(net, dev)
716 if (dev->type == type)
717 return dev;
718
719 return NULL;
720 }
721
722 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
723
724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
725 {
726 struct net_device *dev;
727
728 rtnl_lock();
729 dev = __dev_getfirstbyhwtype(net, type);
730 if (dev)
731 dev_hold(dev);
732 rtnl_unlock();
733 return dev;
734 }
735
736 EXPORT_SYMBOL(dev_getfirstbyhwtype);
737
738 /**
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
743 *
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
748 */
749
750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
751 {
752 struct net_device *dev, *ret;
753
754 ret = NULL;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
758 dev_hold(dev);
759 ret = dev;
760 break;
761 }
762 }
763 read_unlock(&dev_base_lock);
764 return ret;
765 }
766
767 /**
768 * dev_valid_name - check if name is okay for network device
769 * @name: name string
770 *
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
773 * whitespace.
774 */
775 int dev_valid_name(const char *name)
776 {
777 if (*name == '\0')
778 return 0;
779 if (strlen(name) >= IFNAMSIZ)
780 return 0;
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
782 return 0;
783
784 while (*name) {
785 if (*name == '/' || isspace(*name))
786 return 0;
787 name++;
788 }
789 return 1;
790 }
791
792 /**
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
797 *
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
802 * duplicates.
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
805 */
806
807 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
808 {
809 int i = 0;
810 const char *p;
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
814
815 p = strnchr(name, IFNAMSIZ-1, '%');
816 if (p) {
817 /*
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
820 * characters.
821 */
822 if (p[1] != 'd' || strchr(p + 2, '%'))
823 return -EINVAL;
824
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 if (!inuse)
828 return -ENOMEM;
829
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
832 continue;
833 if (i < 0 || i >= max_netdevices)
834 continue;
835
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
839 set_bit(i, inuse);
840 }
841
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
844 }
845
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
848 return i;
849
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
853 */
854 return -ENFILE;
855 }
856
857 /**
858 * dev_alloc_name - allocate a name for a device
859 * @dev: device
860 * @name: name format string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 int dev_alloc_name(struct net_device *dev, const char *name)
872 {
873 char buf[IFNAMSIZ];
874 struct net *net;
875 int ret;
876
877 BUG_ON(!dev_net(dev));
878 net = dev_net(dev);
879 ret = __dev_alloc_name(net, name, buf);
880 if (ret >= 0)
881 strlcpy(dev->name, buf, IFNAMSIZ);
882 return ret;
883 }
884
885
886 /**
887 * dev_change_name - change name of a device
888 * @dev: device
889 * @newname: name (or format string) must be at least IFNAMSIZ
890 *
891 * Change name of a device, can pass format strings "eth%d".
892 * for wildcarding.
893 */
894 int dev_change_name(struct net_device *dev, const char *newname)
895 {
896 char oldname[IFNAMSIZ];
897 int err = 0;
898 int ret;
899 struct net *net;
900
901 ASSERT_RTNL();
902 BUG_ON(!dev_net(dev));
903
904 net = dev_net(dev);
905 if (dev->flags & IFF_UP)
906 return -EBUSY;
907
908 if (!dev_valid_name(newname))
909 return -EINVAL;
910
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 return 0;
913
914 memcpy(oldname, dev->name, IFNAMSIZ);
915
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
918 if (err < 0)
919 return err;
920 }
921 else if (__dev_get_by_name(net, newname))
922 return -EEXIST;
923 else
924 strlcpy(dev->name, newname, IFNAMSIZ);
925
926 rollback:
927 ret = device_rename(&dev->dev, dev->name);
928 if (ret) {
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 return ret;
931 }
932
933 write_lock_bh(&dev_base_lock);
934 hlist_del(&dev->name_hlist);
935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 write_unlock_bh(&dev_base_lock);
937
938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 ret = notifier_to_errno(ret);
940
941 if (ret) {
942 if (err) {
943 printk(KERN_ERR
944 "%s: name change rollback failed: %d.\n",
945 dev->name, ret);
946 } else {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 }
951 }
952
953 return err;
954 }
955
956 /**
957 * dev_set_alias - change ifalias of a device
958 * @dev: device
959 * @alias: name up to IFALIASZ
960 * @len: limit of bytes to copy from info
961 *
962 * Set ifalias for a device,
963 */
964 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
965 {
966 ASSERT_RTNL();
967
968 if (len >= IFALIASZ)
969 return -EINVAL;
970
971 if (!len) {
972 if (dev->ifalias) {
973 kfree(dev->ifalias);
974 dev->ifalias = NULL;
975 }
976 return 0;
977 }
978
979 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
980 if (!dev->ifalias)
981 return -ENOMEM;
982
983 strlcpy(dev->ifalias, alias, len+1);
984 return len;
985 }
986
987
988 /**
989 * netdev_features_change - device changes features
990 * @dev: device to cause notification
991 *
992 * Called to indicate a device has changed features.
993 */
994 void netdev_features_change(struct net_device *dev)
995 {
996 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
997 }
998 EXPORT_SYMBOL(netdev_features_change);
999
1000 /**
1001 * netdev_state_change - device changes state
1002 * @dev: device to cause notification
1003 *
1004 * Called to indicate a device has changed state. This function calls
1005 * the notifier chains for netdev_chain and sends a NEWLINK message
1006 * to the routing socket.
1007 */
1008 void netdev_state_change(struct net_device *dev)
1009 {
1010 if (dev->flags & IFF_UP) {
1011 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1012 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1013 }
1014 }
1015
1016 void netdev_bonding_change(struct net_device *dev)
1017 {
1018 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1019 }
1020 EXPORT_SYMBOL(netdev_bonding_change);
1021
1022 /**
1023 * dev_load - load a network module
1024 * @net: the applicable net namespace
1025 * @name: name of interface
1026 *
1027 * If a network interface is not present and the process has suitable
1028 * privileges this function loads the module. If module loading is not
1029 * available in this kernel then it becomes a nop.
1030 */
1031
1032 void dev_load(struct net *net, const char *name)
1033 {
1034 struct net_device *dev;
1035
1036 read_lock(&dev_base_lock);
1037 dev = __dev_get_by_name(net, name);
1038 read_unlock(&dev_base_lock);
1039
1040 if (!dev && capable(CAP_SYS_MODULE))
1041 request_module("%s", name);
1042 }
1043
1044 /**
1045 * dev_open - prepare an interface for use.
1046 * @dev: device to open
1047 *
1048 * Takes a device from down to up state. The device's private open
1049 * function is invoked and then the multicast lists are loaded. Finally
1050 * the device is moved into the up state and a %NETDEV_UP message is
1051 * sent to the netdev notifier chain.
1052 *
1053 * Calling this function on an active interface is a nop. On a failure
1054 * a negative errno code is returned.
1055 */
1056 int dev_open(struct net_device *dev)
1057 {
1058 int ret = 0;
1059
1060 ASSERT_RTNL();
1061
1062 /*
1063 * Is it already up?
1064 */
1065
1066 if (dev->flags & IFF_UP)
1067 return 0;
1068
1069 /*
1070 * Is it even present?
1071 */
1072 if (!netif_device_present(dev))
1073 return -ENODEV;
1074
1075 /*
1076 * Call device private open method
1077 */
1078 set_bit(__LINK_STATE_START, &dev->state);
1079
1080 if (dev->validate_addr)
1081 ret = dev->validate_addr(dev);
1082
1083 if (!ret && dev->open)
1084 ret = dev->open(dev);
1085
1086 /*
1087 * If it went open OK then:
1088 */
1089
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1093 /*
1094 * Set the flags.
1095 */
1096 dev->flags |= IFF_UP;
1097
1098 /*
1099 * Initialize multicasting status
1100 */
1101 dev_set_rx_mode(dev);
1102
1103 /*
1104 * Wakeup transmit queue engine
1105 */
1106 dev_activate(dev);
1107
1108 /*
1109 * ... and announce new interface.
1110 */
1111 call_netdevice_notifiers(NETDEV_UP, dev);
1112 }
1113
1114 return ret;
1115 }
1116
1117 /**
1118 * dev_close - shutdown an interface.
1119 * @dev: device to shutdown
1120 *
1121 * This function moves an active device into down state. A
1122 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1123 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1124 * chain.
1125 */
1126 int dev_close(struct net_device *dev)
1127 {
1128 ASSERT_RTNL();
1129
1130 might_sleep();
1131
1132 if (!(dev->flags & IFF_UP))
1133 return 0;
1134
1135 /*
1136 * Tell people we are going down, so that they can
1137 * prepare to death, when device is still operating.
1138 */
1139 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1140
1141 clear_bit(__LINK_STATE_START, &dev->state);
1142
1143 /* Synchronize to scheduled poll. We cannot touch poll list,
1144 * it can be even on different cpu. So just clear netif_running().
1145 *
1146 * dev->stop() will invoke napi_disable() on all of it's
1147 * napi_struct instances on this device.
1148 */
1149 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1150
1151 dev_deactivate(dev);
1152
1153 /*
1154 * Call the device specific close. This cannot fail.
1155 * Only if device is UP
1156 *
1157 * We allow it to be called even after a DETACH hot-plug
1158 * event.
1159 */
1160 if (dev->stop)
1161 dev->stop(dev);
1162
1163 /*
1164 * Device is now down.
1165 */
1166
1167 dev->flags &= ~IFF_UP;
1168
1169 /*
1170 * Tell people we are down
1171 */
1172 call_netdevice_notifiers(NETDEV_DOWN, dev);
1173
1174 return 0;
1175 }
1176
1177
1178 /**
1179 * dev_disable_lro - disable Large Receive Offload on a device
1180 * @dev: device
1181 *
1182 * Disable Large Receive Offload (LRO) on a net device. Must be
1183 * called under RTNL. This is needed if received packets may be
1184 * forwarded to another interface.
1185 */
1186 void dev_disable_lro(struct net_device *dev)
1187 {
1188 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1189 dev->ethtool_ops->set_flags) {
1190 u32 flags = dev->ethtool_ops->get_flags(dev);
1191 if (flags & ETH_FLAG_LRO) {
1192 flags &= ~ETH_FLAG_LRO;
1193 dev->ethtool_ops->set_flags(dev, flags);
1194 }
1195 }
1196 WARN_ON(dev->features & NETIF_F_LRO);
1197 }
1198 EXPORT_SYMBOL(dev_disable_lro);
1199
1200
1201 static int dev_boot_phase = 1;
1202
1203 /*
1204 * Device change register/unregister. These are not inline or static
1205 * as we export them to the world.
1206 */
1207
1208 /**
1209 * register_netdevice_notifier - register a network notifier block
1210 * @nb: notifier
1211 *
1212 * Register a notifier to be called when network device events occur.
1213 * The notifier passed is linked into the kernel structures and must
1214 * not be reused until it has been unregistered. A negative errno code
1215 * is returned on a failure.
1216 *
1217 * When registered all registration and up events are replayed
1218 * to the new notifier to allow device to have a race free
1219 * view of the network device list.
1220 */
1221
1222 int register_netdevice_notifier(struct notifier_block *nb)
1223 {
1224 struct net_device *dev;
1225 struct net_device *last;
1226 struct net *net;
1227 int err;
1228
1229 rtnl_lock();
1230 err = raw_notifier_chain_register(&netdev_chain, nb);
1231 if (err)
1232 goto unlock;
1233 if (dev_boot_phase)
1234 goto unlock;
1235 for_each_net(net) {
1236 for_each_netdev(net, dev) {
1237 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1238 err = notifier_to_errno(err);
1239 if (err)
1240 goto rollback;
1241
1242 if (!(dev->flags & IFF_UP))
1243 continue;
1244
1245 nb->notifier_call(nb, NETDEV_UP, dev);
1246 }
1247 }
1248
1249 unlock:
1250 rtnl_unlock();
1251 return err;
1252
1253 rollback:
1254 last = dev;
1255 for_each_net(net) {
1256 for_each_netdev(net, dev) {
1257 if (dev == last)
1258 break;
1259
1260 if (dev->flags & IFF_UP) {
1261 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1262 nb->notifier_call(nb, NETDEV_DOWN, dev);
1263 }
1264 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1265 }
1266 }
1267
1268 raw_notifier_chain_unregister(&netdev_chain, nb);
1269 goto unlock;
1270 }
1271
1272 /**
1273 * unregister_netdevice_notifier - unregister a network notifier block
1274 * @nb: notifier
1275 *
1276 * Unregister a notifier previously registered by
1277 * register_netdevice_notifier(). The notifier is unlinked into the
1278 * kernel structures and may then be reused. A negative errno code
1279 * is returned on a failure.
1280 */
1281
1282 int unregister_netdevice_notifier(struct notifier_block *nb)
1283 {
1284 int err;
1285
1286 rtnl_lock();
1287 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1288 rtnl_unlock();
1289 return err;
1290 }
1291
1292 /**
1293 * call_netdevice_notifiers - call all network notifier blocks
1294 * @val: value passed unmodified to notifier function
1295 * @dev: net_device pointer passed unmodified to notifier function
1296 *
1297 * Call all network notifier blocks. Parameters and return value
1298 * are as for raw_notifier_call_chain().
1299 */
1300
1301 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1302 {
1303 return raw_notifier_call_chain(&netdev_chain, val, dev);
1304 }
1305
1306 /* When > 0 there are consumers of rx skb time stamps */
1307 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1308
1309 void net_enable_timestamp(void)
1310 {
1311 atomic_inc(&netstamp_needed);
1312 }
1313
1314 void net_disable_timestamp(void)
1315 {
1316 atomic_dec(&netstamp_needed);
1317 }
1318
1319 static inline void net_timestamp(struct sk_buff *skb)
1320 {
1321 if (atomic_read(&netstamp_needed))
1322 __net_timestamp(skb);
1323 else
1324 skb->tstamp.tv64 = 0;
1325 }
1326
1327 /*
1328 * Support routine. Sends outgoing frames to any network
1329 * taps currently in use.
1330 */
1331
1332 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1333 {
1334 struct packet_type *ptype;
1335
1336 net_timestamp(skb);
1337
1338 rcu_read_lock();
1339 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1340 /* Never send packets back to the socket
1341 * they originated from - MvS (miquels@drinkel.ow.org)
1342 */
1343 if ((ptype->dev == dev || !ptype->dev) &&
1344 (ptype->af_packet_priv == NULL ||
1345 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1346 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1347 if (!skb2)
1348 break;
1349
1350 /* skb->nh should be correctly
1351 set by sender, so that the second statement is
1352 just protection against buggy protocols.
1353 */
1354 skb_reset_mac_header(skb2);
1355
1356 if (skb_network_header(skb2) < skb2->data ||
1357 skb2->network_header > skb2->tail) {
1358 if (net_ratelimit())
1359 printk(KERN_CRIT "protocol %04x is "
1360 "buggy, dev %s\n",
1361 skb2->protocol, dev->name);
1362 skb_reset_network_header(skb2);
1363 }
1364
1365 skb2->transport_header = skb2->network_header;
1366 skb2->pkt_type = PACKET_OUTGOING;
1367 ptype->func(skb2, skb->dev, ptype, skb->dev);
1368 }
1369 }
1370 rcu_read_unlock();
1371 }
1372
1373
1374 static inline void __netif_reschedule(struct Qdisc *q)
1375 {
1376 struct softnet_data *sd;
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
1380 sd = &__get_cpu_var(softnet_data);
1381 q->next_sched = sd->output_queue;
1382 sd->output_queue = q;
1383 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1384 local_irq_restore(flags);
1385 }
1386
1387 void __netif_schedule(struct Qdisc *q)
1388 {
1389 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1390 __netif_reschedule(q);
1391 }
1392 EXPORT_SYMBOL(__netif_schedule);
1393
1394 void dev_kfree_skb_irq(struct sk_buff *skb)
1395 {
1396 if (atomic_dec_and_test(&skb->users)) {
1397 struct softnet_data *sd;
1398 unsigned long flags;
1399
1400 local_irq_save(flags);
1401 sd = &__get_cpu_var(softnet_data);
1402 skb->next = sd->completion_queue;
1403 sd->completion_queue = skb;
1404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1405 local_irq_restore(flags);
1406 }
1407 }
1408 EXPORT_SYMBOL(dev_kfree_skb_irq);
1409
1410 void dev_kfree_skb_any(struct sk_buff *skb)
1411 {
1412 if (in_irq() || irqs_disabled())
1413 dev_kfree_skb_irq(skb);
1414 else
1415 dev_kfree_skb(skb);
1416 }
1417 EXPORT_SYMBOL(dev_kfree_skb_any);
1418
1419
1420 /**
1421 * netif_device_detach - mark device as removed
1422 * @dev: network device
1423 *
1424 * Mark device as removed from system and therefore no longer available.
1425 */
1426 void netif_device_detach(struct net_device *dev)
1427 {
1428 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1429 netif_running(dev)) {
1430 netif_stop_queue(dev);
1431 }
1432 }
1433 EXPORT_SYMBOL(netif_device_detach);
1434
1435 /**
1436 * netif_device_attach - mark device as attached
1437 * @dev: network device
1438 *
1439 * Mark device as attached from system and restart if needed.
1440 */
1441 void netif_device_attach(struct net_device *dev)
1442 {
1443 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1444 netif_running(dev)) {
1445 netif_wake_queue(dev);
1446 __netdev_watchdog_up(dev);
1447 }
1448 }
1449 EXPORT_SYMBOL(netif_device_attach);
1450
1451 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1452 {
1453 return ((features & NETIF_F_GEN_CSUM) ||
1454 ((features & NETIF_F_IP_CSUM) &&
1455 protocol == htons(ETH_P_IP)) ||
1456 ((features & NETIF_F_IPV6_CSUM) &&
1457 protocol == htons(ETH_P_IPV6)));
1458 }
1459
1460 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1461 {
1462 if (can_checksum_protocol(dev->features, skb->protocol))
1463 return true;
1464
1465 if (skb->protocol == htons(ETH_P_8021Q)) {
1466 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1467 if (can_checksum_protocol(dev->features & dev->vlan_features,
1468 veh->h_vlan_encapsulated_proto))
1469 return true;
1470 }
1471
1472 return false;
1473 }
1474
1475 /*
1476 * Invalidate hardware checksum when packet is to be mangled, and
1477 * complete checksum manually on outgoing path.
1478 */
1479 int skb_checksum_help(struct sk_buff *skb)
1480 {
1481 __wsum csum;
1482 int ret = 0, offset;
1483
1484 if (skb->ip_summed == CHECKSUM_COMPLETE)
1485 goto out_set_summed;
1486
1487 if (unlikely(skb_shinfo(skb)->gso_size)) {
1488 /* Let GSO fix up the checksum. */
1489 goto out_set_summed;
1490 }
1491
1492 offset = skb->csum_start - skb_headroom(skb);
1493 BUG_ON(offset >= skb_headlen(skb));
1494 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1495
1496 offset += skb->csum_offset;
1497 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1498
1499 if (skb_cloned(skb) &&
1500 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1501 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1502 if (ret)
1503 goto out;
1504 }
1505
1506 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1507 out_set_summed:
1508 skb->ip_summed = CHECKSUM_NONE;
1509 out:
1510 return ret;
1511 }
1512
1513 /**
1514 * skb_gso_segment - Perform segmentation on skb.
1515 * @skb: buffer to segment
1516 * @features: features for the output path (see dev->features)
1517 *
1518 * This function segments the given skb and returns a list of segments.
1519 *
1520 * It may return NULL if the skb requires no segmentation. This is
1521 * only possible when GSO is used for verifying header integrity.
1522 */
1523 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1524 {
1525 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1526 struct packet_type *ptype;
1527 __be16 type = skb->protocol;
1528 int err;
1529
1530 BUG_ON(skb_shinfo(skb)->frag_list);
1531
1532 skb_reset_mac_header(skb);
1533 skb->mac_len = skb->network_header - skb->mac_header;
1534 __skb_pull(skb, skb->mac_len);
1535
1536 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1537 if (skb_header_cloned(skb) &&
1538 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1539 return ERR_PTR(err);
1540 }
1541
1542 rcu_read_lock();
1543 list_for_each_entry_rcu(ptype,
1544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1545 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1546 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1547 err = ptype->gso_send_check(skb);
1548 segs = ERR_PTR(err);
1549 if (err || skb_gso_ok(skb, features))
1550 break;
1551 __skb_push(skb, (skb->data -
1552 skb_network_header(skb)));
1553 }
1554 segs = ptype->gso_segment(skb, features);
1555 break;
1556 }
1557 }
1558 rcu_read_unlock();
1559
1560 __skb_push(skb, skb->data - skb_mac_header(skb));
1561
1562 return segs;
1563 }
1564
1565 EXPORT_SYMBOL(skb_gso_segment);
1566
1567 /* Take action when hardware reception checksum errors are detected. */
1568 #ifdef CONFIG_BUG
1569 void netdev_rx_csum_fault(struct net_device *dev)
1570 {
1571 if (net_ratelimit()) {
1572 printk(KERN_ERR "%s: hw csum failure.\n",
1573 dev ? dev->name : "<unknown>");
1574 dump_stack();
1575 }
1576 }
1577 EXPORT_SYMBOL(netdev_rx_csum_fault);
1578 #endif
1579
1580 /* Actually, we should eliminate this check as soon as we know, that:
1581 * 1. IOMMU is present and allows to map all the memory.
1582 * 2. No high memory really exists on this machine.
1583 */
1584
1585 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1586 {
1587 #ifdef CONFIG_HIGHMEM
1588 int i;
1589
1590 if (dev->features & NETIF_F_HIGHDMA)
1591 return 0;
1592
1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1594 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1595 return 1;
1596
1597 #endif
1598 return 0;
1599 }
1600
1601 struct dev_gso_cb {
1602 void (*destructor)(struct sk_buff *skb);
1603 };
1604
1605 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1606
1607 static void dev_gso_skb_destructor(struct sk_buff *skb)
1608 {
1609 struct dev_gso_cb *cb;
1610
1611 do {
1612 struct sk_buff *nskb = skb->next;
1613
1614 skb->next = nskb->next;
1615 nskb->next = NULL;
1616 kfree_skb(nskb);
1617 } while (skb->next);
1618
1619 cb = DEV_GSO_CB(skb);
1620 if (cb->destructor)
1621 cb->destructor(skb);
1622 }
1623
1624 /**
1625 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1626 * @skb: buffer to segment
1627 *
1628 * This function segments the given skb and stores the list of segments
1629 * in skb->next.
1630 */
1631 static int dev_gso_segment(struct sk_buff *skb)
1632 {
1633 struct net_device *dev = skb->dev;
1634 struct sk_buff *segs;
1635 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1636 NETIF_F_SG : 0);
1637
1638 segs = skb_gso_segment(skb, features);
1639
1640 /* Verifying header integrity only. */
1641 if (!segs)
1642 return 0;
1643
1644 if (IS_ERR(segs))
1645 return PTR_ERR(segs);
1646
1647 skb->next = segs;
1648 DEV_GSO_CB(skb)->destructor = skb->destructor;
1649 skb->destructor = dev_gso_skb_destructor;
1650
1651 return 0;
1652 }
1653
1654 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1655 struct netdev_queue *txq)
1656 {
1657 if (likely(!skb->next)) {
1658 if (!list_empty(&ptype_all))
1659 dev_queue_xmit_nit(skb, dev);
1660
1661 if (netif_needs_gso(dev, skb)) {
1662 if (unlikely(dev_gso_segment(skb)))
1663 goto out_kfree_skb;
1664 if (skb->next)
1665 goto gso;
1666 }
1667
1668 return dev->hard_start_xmit(skb, dev);
1669 }
1670
1671 gso:
1672 do {
1673 struct sk_buff *nskb = skb->next;
1674 int rc;
1675
1676 skb->next = nskb->next;
1677 nskb->next = NULL;
1678 rc = dev->hard_start_xmit(nskb, dev);
1679 if (unlikely(rc)) {
1680 nskb->next = skb->next;
1681 skb->next = nskb;
1682 return rc;
1683 }
1684 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1685 return NETDEV_TX_BUSY;
1686 } while (skb->next);
1687
1688 skb->destructor = DEV_GSO_CB(skb)->destructor;
1689
1690 out_kfree_skb:
1691 kfree_skb(skb);
1692 return 0;
1693 }
1694
1695 static u32 simple_tx_hashrnd;
1696 static int simple_tx_hashrnd_initialized = 0;
1697
1698 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1699 {
1700 u32 addr1, addr2, ports;
1701 u32 hash, ihl;
1702 u8 ip_proto = 0;
1703
1704 if (unlikely(!simple_tx_hashrnd_initialized)) {
1705 get_random_bytes(&simple_tx_hashrnd, 4);
1706 simple_tx_hashrnd_initialized = 1;
1707 }
1708
1709 switch (skb->protocol) {
1710 case htons(ETH_P_IP):
1711 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1712 ip_proto = ip_hdr(skb)->protocol;
1713 addr1 = ip_hdr(skb)->saddr;
1714 addr2 = ip_hdr(skb)->daddr;
1715 ihl = ip_hdr(skb)->ihl;
1716 break;
1717 case htons(ETH_P_IPV6):
1718 ip_proto = ipv6_hdr(skb)->nexthdr;
1719 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1720 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1721 ihl = (40 >> 2);
1722 break;
1723 default:
1724 return 0;
1725 }
1726
1727
1728 switch (ip_proto) {
1729 case IPPROTO_TCP:
1730 case IPPROTO_UDP:
1731 case IPPROTO_DCCP:
1732 case IPPROTO_ESP:
1733 case IPPROTO_AH:
1734 case IPPROTO_SCTP:
1735 case IPPROTO_UDPLITE:
1736 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1737 break;
1738
1739 default:
1740 ports = 0;
1741 break;
1742 }
1743
1744 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1745
1746 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1747 }
1748
1749 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1750 struct sk_buff *skb)
1751 {
1752 u16 queue_index = 0;
1753
1754 if (dev->select_queue)
1755 queue_index = dev->select_queue(dev, skb);
1756 else if (dev->real_num_tx_queues > 1)
1757 queue_index = simple_tx_hash(dev, skb);
1758
1759 skb_set_queue_mapping(skb, queue_index);
1760 return netdev_get_tx_queue(dev, queue_index);
1761 }
1762
1763 /**
1764 * dev_queue_xmit - transmit a buffer
1765 * @skb: buffer to transmit
1766 *
1767 * Queue a buffer for transmission to a network device. The caller must
1768 * have set the device and priority and built the buffer before calling
1769 * this function. The function can be called from an interrupt.
1770 *
1771 * A negative errno code is returned on a failure. A success does not
1772 * guarantee the frame will be transmitted as it may be dropped due
1773 * to congestion or traffic shaping.
1774 *
1775 * -----------------------------------------------------------------------------------
1776 * I notice this method can also return errors from the queue disciplines,
1777 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1778 * be positive.
1779 *
1780 * Regardless of the return value, the skb is consumed, so it is currently
1781 * difficult to retry a send to this method. (You can bump the ref count
1782 * before sending to hold a reference for retry if you are careful.)
1783 *
1784 * When calling this method, interrupts MUST be enabled. This is because
1785 * the BH enable code must have IRQs enabled so that it will not deadlock.
1786 * --BLG
1787 */
1788 int dev_queue_xmit(struct sk_buff *skb)
1789 {
1790 struct net_device *dev = skb->dev;
1791 struct netdev_queue *txq;
1792 struct Qdisc *q;
1793 int rc = -ENOMEM;
1794
1795 /* GSO will handle the following emulations directly. */
1796 if (netif_needs_gso(dev, skb))
1797 goto gso;
1798
1799 if (skb_shinfo(skb)->frag_list &&
1800 !(dev->features & NETIF_F_FRAGLIST) &&
1801 __skb_linearize(skb))
1802 goto out_kfree_skb;
1803
1804 /* Fragmented skb is linearized if device does not support SG,
1805 * or if at least one of fragments is in highmem and device
1806 * does not support DMA from it.
1807 */
1808 if (skb_shinfo(skb)->nr_frags &&
1809 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1810 __skb_linearize(skb))
1811 goto out_kfree_skb;
1812
1813 /* If packet is not checksummed and device does not support
1814 * checksumming for this protocol, complete checksumming here.
1815 */
1816 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1817 skb_set_transport_header(skb, skb->csum_start -
1818 skb_headroom(skb));
1819 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1820 goto out_kfree_skb;
1821 }
1822
1823 gso:
1824 /* Disable soft irqs for various locks below. Also
1825 * stops preemption for RCU.
1826 */
1827 rcu_read_lock_bh();
1828
1829 txq = dev_pick_tx(dev, skb);
1830 q = rcu_dereference(txq->qdisc);
1831
1832 #ifdef CONFIG_NET_CLS_ACT
1833 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1834 #endif
1835 if (q->enqueue) {
1836 spinlock_t *root_lock = qdisc_lock(q);
1837
1838 spin_lock(root_lock);
1839
1840 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1841 kfree_skb(skb);
1842 rc = NET_XMIT_DROP;
1843 } else {
1844 rc = qdisc_enqueue_root(skb, q);
1845 qdisc_run(q);
1846 }
1847 spin_unlock(root_lock);
1848
1849 goto out;
1850 }
1851
1852 /* The device has no queue. Common case for software devices:
1853 loopback, all the sorts of tunnels...
1854
1855 Really, it is unlikely that netif_tx_lock protection is necessary
1856 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1857 counters.)
1858 However, it is possible, that they rely on protection
1859 made by us here.
1860
1861 Check this and shot the lock. It is not prone from deadlocks.
1862 Either shot noqueue qdisc, it is even simpler 8)
1863 */
1864 if (dev->flags & IFF_UP) {
1865 int cpu = smp_processor_id(); /* ok because BHs are off */
1866
1867 if (txq->xmit_lock_owner != cpu) {
1868
1869 HARD_TX_LOCK(dev, txq, cpu);
1870
1871 if (!netif_tx_queue_stopped(txq)) {
1872 rc = 0;
1873 if (!dev_hard_start_xmit(skb, dev, txq)) {
1874 HARD_TX_UNLOCK(dev, txq);
1875 goto out;
1876 }
1877 }
1878 HARD_TX_UNLOCK(dev, txq);
1879 if (net_ratelimit())
1880 printk(KERN_CRIT "Virtual device %s asks to "
1881 "queue packet!\n", dev->name);
1882 } else {
1883 /* Recursion is detected! It is possible,
1884 * unfortunately */
1885 if (net_ratelimit())
1886 printk(KERN_CRIT "Dead loop on virtual device "
1887 "%s, fix it urgently!\n", dev->name);
1888 }
1889 }
1890
1891 rc = -ENETDOWN;
1892 rcu_read_unlock_bh();
1893
1894 out_kfree_skb:
1895 kfree_skb(skb);
1896 return rc;
1897 out:
1898 rcu_read_unlock_bh();
1899 return rc;
1900 }
1901
1902
1903 /*=======================================================================
1904 Receiver routines
1905 =======================================================================*/
1906
1907 int netdev_max_backlog __read_mostly = 1000;
1908 int netdev_budget __read_mostly = 300;
1909 int weight_p __read_mostly = 64; /* old backlog weight */
1910
1911 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1912
1913
1914 /**
1915 * netif_rx - post buffer to the network code
1916 * @skb: buffer to post
1917 *
1918 * This function receives a packet from a device driver and queues it for
1919 * the upper (protocol) levels to process. It always succeeds. The buffer
1920 * may be dropped during processing for congestion control or by the
1921 * protocol layers.
1922 *
1923 * return values:
1924 * NET_RX_SUCCESS (no congestion)
1925 * NET_RX_DROP (packet was dropped)
1926 *
1927 */
1928
1929 int netif_rx(struct sk_buff *skb)
1930 {
1931 struct softnet_data *queue;
1932 unsigned long flags;
1933
1934 /* if netpoll wants it, pretend we never saw it */
1935 if (netpoll_rx(skb))
1936 return NET_RX_DROP;
1937
1938 if (!skb->tstamp.tv64)
1939 net_timestamp(skb);
1940
1941 /*
1942 * The code is rearranged so that the path is the most
1943 * short when CPU is congested, but is still operating.
1944 */
1945 local_irq_save(flags);
1946 queue = &__get_cpu_var(softnet_data);
1947
1948 __get_cpu_var(netdev_rx_stat).total++;
1949 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1950 if (queue->input_pkt_queue.qlen) {
1951 enqueue:
1952 __skb_queue_tail(&queue->input_pkt_queue, skb);
1953 local_irq_restore(flags);
1954 return NET_RX_SUCCESS;
1955 }
1956
1957 napi_schedule(&queue->backlog);
1958 goto enqueue;
1959 }
1960
1961 __get_cpu_var(netdev_rx_stat).dropped++;
1962 local_irq_restore(flags);
1963
1964 kfree_skb(skb);
1965 return NET_RX_DROP;
1966 }
1967
1968 int netif_rx_ni(struct sk_buff *skb)
1969 {
1970 int err;
1971
1972 preempt_disable();
1973 err = netif_rx(skb);
1974 if (local_softirq_pending())
1975 do_softirq();
1976 preempt_enable();
1977
1978 return err;
1979 }
1980
1981 EXPORT_SYMBOL(netif_rx_ni);
1982
1983 static void net_tx_action(struct softirq_action *h)
1984 {
1985 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1986
1987 if (sd->completion_queue) {
1988 struct sk_buff *clist;
1989
1990 local_irq_disable();
1991 clist = sd->completion_queue;
1992 sd->completion_queue = NULL;
1993 local_irq_enable();
1994
1995 while (clist) {
1996 struct sk_buff *skb = clist;
1997 clist = clist->next;
1998
1999 WARN_ON(atomic_read(&skb->users));
2000 __kfree_skb(skb);
2001 }
2002 }
2003
2004 if (sd->output_queue) {
2005 struct Qdisc *head;
2006
2007 local_irq_disable();
2008 head = sd->output_queue;
2009 sd->output_queue = NULL;
2010 local_irq_enable();
2011
2012 while (head) {
2013 struct Qdisc *q = head;
2014 spinlock_t *root_lock;
2015
2016 head = head->next_sched;
2017
2018 root_lock = qdisc_lock(q);
2019 if (spin_trylock(root_lock)) {
2020 smp_mb__before_clear_bit();
2021 clear_bit(__QDISC_STATE_SCHED,
2022 &q->state);
2023 qdisc_run(q);
2024 spin_unlock(root_lock);
2025 } else {
2026 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2027 &q->state)) {
2028 __netif_reschedule(q);
2029 } else {
2030 smp_mb__before_clear_bit();
2031 clear_bit(__QDISC_STATE_SCHED,
2032 &q->state);
2033 }
2034 }
2035 }
2036 }
2037 }
2038
2039 static inline int deliver_skb(struct sk_buff *skb,
2040 struct packet_type *pt_prev,
2041 struct net_device *orig_dev)
2042 {
2043 atomic_inc(&skb->users);
2044 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2045 }
2046
2047 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2048 /* These hooks defined here for ATM */
2049 struct net_bridge;
2050 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2051 unsigned char *addr);
2052 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2053
2054 /*
2055 * If bridge module is loaded call bridging hook.
2056 * returns NULL if packet was consumed.
2057 */
2058 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2059 struct sk_buff *skb) __read_mostly;
2060 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2061 struct packet_type **pt_prev, int *ret,
2062 struct net_device *orig_dev)
2063 {
2064 struct net_bridge_port *port;
2065
2066 if (skb->pkt_type == PACKET_LOOPBACK ||
2067 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2068 return skb;
2069
2070 if (*pt_prev) {
2071 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2072 *pt_prev = NULL;
2073 }
2074
2075 return br_handle_frame_hook(port, skb);
2076 }
2077 #else
2078 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2079 #endif
2080
2081 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2082 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2083 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2084
2085 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2086 struct packet_type **pt_prev,
2087 int *ret,
2088 struct net_device *orig_dev)
2089 {
2090 if (skb->dev->macvlan_port == NULL)
2091 return skb;
2092
2093 if (*pt_prev) {
2094 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2095 *pt_prev = NULL;
2096 }
2097 return macvlan_handle_frame_hook(skb);
2098 }
2099 #else
2100 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2101 #endif
2102
2103 #ifdef CONFIG_NET_CLS_ACT
2104 /* TODO: Maybe we should just force sch_ingress to be compiled in
2105 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2106 * a compare and 2 stores extra right now if we dont have it on
2107 * but have CONFIG_NET_CLS_ACT
2108 * NOTE: This doesnt stop any functionality; if you dont have
2109 * the ingress scheduler, you just cant add policies on ingress.
2110 *
2111 */
2112 static int ing_filter(struct sk_buff *skb)
2113 {
2114 struct net_device *dev = skb->dev;
2115 u32 ttl = G_TC_RTTL(skb->tc_verd);
2116 struct netdev_queue *rxq;
2117 int result = TC_ACT_OK;
2118 struct Qdisc *q;
2119
2120 if (MAX_RED_LOOP < ttl++) {
2121 printk(KERN_WARNING
2122 "Redir loop detected Dropping packet (%d->%d)\n",
2123 skb->iif, dev->ifindex);
2124 return TC_ACT_SHOT;
2125 }
2126
2127 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2128 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2129
2130 rxq = &dev->rx_queue;
2131
2132 q = rxq->qdisc;
2133 if (q != &noop_qdisc) {
2134 spin_lock(qdisc_lock(q));
2135 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2136 result = qdisc_enqueue_root(skb, q);
2137 spin_unlock(qdisc_lock(q));
2138 }
2139
2140 return result;
2141 }
2142
2143 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2144 struct packet_type **pt_prev,
2145 int *ret, struct net_device *orig_dev)
2146 {
2147 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2148 goto out;
2149
2150 if (*pt_prev) {
2151 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2152 *pt_prev = NULL;
2153 } else {
2154 /* Huh? Why does turning on AF_PACKET affect this? */
2155 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2156 }
2157
2158 switch (ing_filter(skb)) {
2159 case TC_ACT_SHOT:
2160 case TC_ACT_STOLEN:
2161 kfree_skb(skb);
2162 return NULL;
2163 }
2164
2165 out:
2166 skb->tc_verd = 0;
2167 return skb;
2168 }
2169 #endif
2170
2171 /*
2172 * netif_nit_deliver - deliver received packets to network taps
2173 * @skb: buffer
2174 *
2175 * This function is used to deliver incoming packets to network
2176 * taps. It should be used when the normal netif_receive_skb path
2177 * is bypassed, for example because of VLAN acceleration.
2178 */
2179 void netif_nit_deliver(struct sk_buff *skb)
2180 {
2181 struct packet_type *ptype;
2182
2183 if (list_empty(&ptype_all))
2184 return;
2185
2186 skb_reset_network_header(skb);
2187 skb_reset_transport_header(skb);
2188 skb->mac_len = skb->network_header - skb->mac_header;
2189
2190 rcu_read_lock();
2191 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2192 if (!ptype->dev || ptype->dev == skb->dev)
2193 deliver_skb(skb, ptype, skb->dev);
2194 }
2195 rcu_read_unlock();
2196 }
2197
2198 /**
2199 * netif_receive_skb - process receive buffer from network
2200 * @skb: buffer to process
2201 *
2202 * netif_receive_skb() is the main receive data processing function.
2203 * It always succeeds. The buffer may be dropped during processing
2204 * for congestion control or by the protocol layers.
2205 *
2206 * This function may only be called from softirq context and interrupts
2207 * should be enabled.
2208 *
2209 * Return values (usually ignored):
2210 * NET_RX_SUCCESS: no congestion
2211 * NET_RX_DROP: packet was dropped
2212 */
2213 int netif_receive_skb(struct sk_buff *skb)
2214 {
2215 struct packet_type *ptype, *pt_prev;
2216 struct net_device *orig_dev;
2217 struct net_device *null_or_orig;
2218 int ret = NET_RX_DROP;
2219 __be16 type;
2220
2221 /* if we've gotten here through NAPI, check netpoll */
2222 if (netpoll_receive_skb(skb))
2223 return NET_RX_DROP;
2224
2225 if (!skb->tstamp.tv64)
2226 net_timestamp(skb);
2227
2228 if (!skb->iif)
2229 skb->iif = skb->dev->ifindex;
2230
2231 null_or_orig = NULL;
2232 orig_dev = skb->dev;
2233 if (orig_dev->master) {
2234 if (skb_bond_should_drop(skb))
2235 null_or_orig = orig_dev; /* deliver only exact match */
2236 else
2237 skb->dev = orig_dev->master;
2238 }
2239
2240 __get_cpu_var(netdev_rx_stat).total++;
2241
2242 skb_reset_network_header(skb);
2243 skb_reset_transport_header(skb);
2244 skb->mac_len = skb->network_header - skb->mac_header;
2245
2246 pt_prev = NULL;
2247
2248 rcu_read_lock();
2249
2250 /* Don't receive packets in an exiting network namespace */
2251 if (!net_alive(dev_net(skb->dev)))
2252 goto out;
2253
2254 #ifdef CONFIG_NET_CLS_ACT
2255 if (skb->tc_verd & TC_NCLS) {
2256 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2257 goto ncls;
2258 }
2259 #endif
2260
2261 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2262 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2263 ptype->dev == orig_dev) {
2264 if (pt_prev)
2265 ret = deliver_skb(skb, pt_prev, orig_dev);
2266 pt_prev = ptype;
2267 }
2268 }
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2272 if (!skb)
2273 goto out;
2274 ncls:
2275 #endif
2276
2277 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2278 if (!skb)
2279 goto out;
2280 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2281 if (!skb)
2282 goto out;
2283
2284 type = skb->protocol;
2285 list_for_each_entry_rcu(ptype,
2286 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2287 if (ptype->type == type &&
2288 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2289 ptype->dev == orig_dev)) {
2290 if (pt_prev)
2291 ret = deliver_skb(skb, pt_prev, orig_dev);
2292 pt_prev = ptype;
2293 }
2294 }
2295
2296 if (pt_prev) {
2297 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2298 } else {
2299 kfree_skb(skb);
2300 /* Jamal, now you will not able to escape explaining
2301 * me how you were going to use this. :-)
2302 */
2303 ret = NET_RX_DROP;
2304 }
2305
2306 out:
2307 rcu_read_unlock();
2308 return ret;
2309 }
2310
2311 /* Network device is going away, flush any packets still pending */
2312 static void flush_backlog(void *arg)
2313 {
2314 struct net_device *dev = arg;
2315 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2316 struct sk_buff *skb, *tmp;
2317
2318 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2319 if (skb->dev == dev) {
2320 __skb_unlink(skb, &queue->input_pkt_queue);
2321 kfree_skb(skb);
2322 }
2323 }
2324
2325 static int process_backlog(struct napi_struct *napi, int quota)
2326 {
2327 int work = 0;
2328 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2329 unsigned long start_time = jiffies;
2330
2331 napi->weight = weight_p;
2332 do {
2333 struct sk_buff *skb;
2334
2335 local_irq_disable();
2336 skb = __skb_dequeue(&queue->input_pkt_queue);
2337 if (!skb) {
2338 __napi_complete(napi);
2339 local_irq_enable();
2340 break;
2341 }
2342 local_irq_enable();
2343
2344 netif_receive_skb(skb);
2345 } while (++work < quota && jiffies == start_time);
2346
2347 return work;
2348 }
2349
2350 /**
2351 * __napi_schedule - schedule for receive
2352 * @n: entry to schedule
2353 *
2354 * The entry's receive function will be scheduled to run
2355 */
2356 void __napi_schedule(struct napi_struct *n)
2357 {
2358 unsigned long flags;
2359
2360 local_irq_save(flags);
2361 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2362 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2363 local_irq_restore(flags);
2364 }
2365 EXPORT_SYMBOL(__napi_schedule);
2366
2367
2368 static void net_rx_action(struct softirq_action *h)
2369 {
2370 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2371 unsigned long start_time = jiffies;
2372 int budget = netdev_budget;
2373 void *have;
2374
2375 local_irq_disable();
2376
2377 while (!list_empty(list)) {
2378 struct napi_struct *n;
2379 int work, weight;
2380
2381 /* If softirq window is exhuasted then punt.
2382 *
2383 * Note that this is a slight policy change from the
2384 * previous NAPI code, which would allow up to 2
2385 * jiffies to pass before breaking out. The test
2386 * used to be "jiffies - start_time > 1".
2387 */
2388 if (unlikely(budget <= 0 || jiffies != start_time))
2389 goto softnet_break;
2390
2391 local_irq_enable();
2392
2393 /* Even though interrupts have been re-enabled, this
2394 * access is safe because interrupts can only add new
2395 * entries to the tail of this list, and only ->poll()
2396 * calls can remove this head entry from the list.
2397 */
2398 n = list_entry(list->next, struct napi_struct, poll_list);
2399
2400 have = netpoll_poll_lock(n);
2401
2402 weight = n->weight;
2403
2404 /* This NAPI_STATE_SCHED test is for avoiding a race
2405 * with netpoll's poll_napi(). Only the entity which
2406 * obtains the lock and sees NAPI_STATE_SCHED set will
2407 * actually make the ->poll() call. Therefore we avoid
2408 * accidently calling ->poll() when NAPI is not scheduled.
2409 */
2410 work = 0;
2411 if (test_bit(NAPI_STATE_SCHED, &n->state))
2412 work = n->poll(n, weight);
2413
2414 WARN_ON_ONCE(work > weight);
2415
2416 budget -= work;
2417
2418 local_irq_disable();
2419
2420 /* Drivers must not modify the NAPI state if they
2421 * consume the entire weight. In such cases this code
2422 * still "owns" the NAPI instance and therefore can
2423 * move the instance around on the list at-will.
2424 */
2425 if (unlikely(work == weight)) {
2426 if (unlikely(napi_disable_pending(n)))
2427 __napi_complete(n);
2428 else
2429 list_move_tail(&n->poll_list, list);
2430 }
2431
2432 netpoll_poll_unlock(have);
2433 }
2434 out:
2435 local_irq_enable();
2436
2437 #ifdef CONFIG_NET_DMA
2438 /*
2439 * There may not be any more sk_buffs coming right now, so push
2440 * any pending DMA copies to hardware
2441 */
2442 if (!cpus_empty(net_dma.channel_mask)) {
2443 int chan_idx;
2444 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2445 struct dma_chan *chan = net_dma.channels[chan_idx];
2446 if (chan)
2447 dma_async_memcpy_issue_pending(chan);
2448 }
2449 }
2450 #endif
2451
2452 return;
2453
2454 softnet_break:
2455 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 goto out;
2458 }
2459
2460 static gifconf_func_t * gifconf_list [NPROTO];
2461
2462 /**
2463 * register_gifconf - register a SIOCGIF handler
2464 * @family: Address family
2465 * @gifconf: Function handler
2466 *
2467 * Register protocol dependent address dumping routines. The handler
2468 * that is passed must not be freed or reused until it has been replaced
2469 * by another handler.
2470 */
2471 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2472 {
2473 if (family >= NPROTO)
2474 return -EINVAL;
2475 gifconf_list[family] = gifconf;
2476 return 0;
2477 }
2478
2479
2480 /*
2481 * Map an interface index to its name (SIOCGIFNAME)
2482 */
2483
2484 /*
2485 * We need this ioctl for efficient implementation of the
2486 * if_indextoname() function required by the IPv6 API. Without
2487 * it, we would have to search all the interfaces to find a
2488 * match. --pb
2489 */
2490
2491 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2492 {
2493 struct net_device *dev;
2494 struct ifreq ifr;
2495
2496 /*
2497 * Fetch the caller's info block.
2498 */
2499
2500 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2501 return -EFAULT;
2502
2503 read_lock(&dev_base_lock);
2504 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2505 if (!dev) {
2506 read_unlock(&dev_base_lock);
2507 return -ENODEV;
2508 }
2509
2510 strcpy(ifr.ifr_name, dev->name);
2511 read_unlock(&dev_base_lock);
2512
2513 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2514 return -EFAULT;
2515 return 0;
2516 }
2517
2518 /*
2519 * Perform a SIOCGIFCONF call. This structure will change
2520 * size eventually, and there is nothing I can do about it.
2521 * Thus we will need a 'compatibility mode'.
2522 */
2523
2524 static int dev_ifconf(struct net *net, char __user *arg)
2525 {
2526 struct ifconf ifc;
2527 struct net_device *dev;
2528 char __user *pos;
2529 int len;
2530 int total;
2531 int i;
2532
2533 /*
2534 * Fetch the caller's info block.
2535 */
2536
2537 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2538 return -EFAULT;
2539
2540 pos = ifc.ifc_buf;
2541 len = ifc.ifc_len;
2542
2543 /*
2544 * Loop over the interfaces, and write an info block for each.
2545 */
2546
2547 total = 0;
2548 for_each_netdev(net, dev) {
2549 for (i = 0; i < NPROTO; i++) {
2550 if (gifconf_list[i]) {
2551 int done;
2552 if (!pos)
2553 done = gifconf_list[i](dev, NULL, 0);
2554 else
2555 done = gifconf_list[i](dev, pos + total,
2556 len - total);
2557 if (done < 0)
2558 return -EFAULT;
2559 total += done;
2560 }
2561 }
2562 }
2563
2564 /*
2565 * All done. Write the updated control block back to the caller.
2566 */
2567 ifc.ifc_len = total;
2568
2569 /*
2570 * Both BSD and Solaris return 0 here, so we do too.
2571 */
2572 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2573 }
2574
2575 #ifdef CONFIG_PROC_FS
2576 /*
2577 * This is invoked by the /proc filesystem handler to display a device
2578 * in detail.
2579 */
2580 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2581 __acquires(dev_base_lock)
2582 {
2583 struct net *net = seq_file_net(seq);
2584 loff_t off;
2585 struct net_device *dev;
2586
2587 read_lock(&dev_base_lock);
2588 if (!*pos)
2589 return SEQ_START_TOKEN;
2590
2591 off = 1;
2592 for_each_netdev(net, dev)
2593 if (off++ == *pos)
2594 return dev;
2595
2596 return NULL;
2597 }
2598
2599 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2600 {
2601 struct net *net = seq_file_net(seq);
2602 ++*pos;
2603 return v == SEQ_START_TOKEN ?
2604 first_net_device(net) : next_net_device((struct net_device *)v);
2605 }
2606
2607 void dev_seq_stop(struct seq_file *seq, void *v)
2608 __releases(dev_base_lock)
2609 {
2610 read_unlock(&dev_base_lock);
2611 }
2612
2613 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2614 {
2615 struct net_device_stats *stats = dev->get_stats(dev);
2616
2617 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2618 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2619 dev->name, stats->rx_bytes, stats->rx_packets,
2620 stats->rx_errors,
2621 stats->rx_dropped + stats->rx_missed_errors,
2622 stats->rx_fifo_errors,
2623 stats->rx_length_errors + stats->rx_over_errors +
2624 stats->rx_crc_errors + stats->rx_frame_errors,
2625 stats->rx_compressed, stats->multicast,
2626 stats->tx_bytes, stats->tx_packets,
2627 stats->tx_errors, stats->tx_dropped,
2628 stats->tx_fifo_errors, stats->collisions,
2629 stats->tx_carrier_errors +
2630 stats->tx_aborted_errors +
2631 stats->tx_window_errors +
2632 stats->tx_heartbeat_errors,
2633 stats->tx_compressed);
2634 }
2635
2636 /*
2637 * Called from the PROCfs module. This now uses the new arbitrary sized
2638 * /proc/net interface to create /proc/net/dev
2639 */
2640 static int dev_seq_show(struct seq_file *seq, void *v)
2641 {
2642 if (v == SEQ_START_TOKEN)
2643 seq_puts(seq, "Inter-| Receive "
2644 " | Transmit\n"
2645 " face |bytes packets errs drop fifo frame "
2646 "compressed multicast|bytes packets errs "
2647 "drop fifo colls carrier compressed\n");
2648 else
2649 dev_seq_printf_stats(seq, v);
2650 return 0;
2651 }
2652
2653 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2654 {
2655 struct netif_rx_stats *rc = NULL;
2656
2657 while (*pos < nr_cpu_ids)
2658 if (cpu_online(*pos)) {
2659 rc = &per_cpu(netdev_rx_stat, *pos);
2660 break;
2661 } else
2662 ++*pos;
2663 return rc;
2664 }
2665
2666 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2667 {
2668 return softnet_get_online(pos);
2669 }
2670
2671 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2672 {
2673 ++*pos;
2674 return softnet_get_online(pos);
2675 }
2676
2677 static void softnet_seq_stop(struct seq_file *seq, void *v)
2678 {
2679 }
2680
2681 static int softnet_seq_show(struct seq_file *seq, void *v)
2682 {
2683 struct netif_rx_stats *s = v;
2684
2685 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2686 s->total, s->dropped, s->time_squeeze, 0,
2687 0, 0, 0, 0, /* was fastroute */
2688 s->cpu_collision );
2689 return 0;
2690 }
2691
2692 static const struct seq_operations dev_seq_ops = {
2693 .start = dev_seq_start,
2694 .next = dev_seq_next,
2695 .stop = dev_seq_stop,
2696 .show = dev_seq_show,
2697 };
2698
2699 static int dev_seq_open(struct inode *inode, struct file *file)
2700 {
2701 return seq_open_net(inode, file, &dev_seq_ops,
2702 sizeof(struct seq_net_private));
2703 }
2704
2705 static const struct file_operations dev_seq_fops = {
2706 .owner = THIS_MODULE,
2707 .open = dev_seq_open,
2708 .read = seq_read,
2709 .llseek = seq_lseek,
2710 .release = seq_release_net,
2711 };
2712
2713 static const struct seq_operations softnet_seq_ops = {
2714 .start = softnet_seq_start,
2715 .next = softnet_seq_next,
2716 .stop = softnet_seq_stop,
2717 .show = softnet_seq_show,
2718 };
2719
2720 static int softnet_seq_open(struct inode *inode, struct file *file)
2721 {
2722 return seq_open(file, &softnet_seq_ops);
2723 }
2724
2725 static const struct file_operations softnet_seq_fops = {
2726 .owner = THIS_MODULE,
2727 .open = softnet_seq_open,
2728 .read = seq_read,
2729 .llseek = seq_lseek,
2730 .release = seq_release,
2731 };
2732
2733 static void *ptype_get_idx(loff_t pos)
2734 {
2735 struct packet_type *pt = NULL;
2736 loff_t i = 0;
2737 int t;
2738
2739 list_for_each_entry_rcu(pt, &ptype_all, list) {
2740 if (i == pos)
2741 return pt;
2742 ++i;
2743 }
2744
2745 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2746 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2747 if (i == pos)
2748 return pt;
2749 ++i;
2750 }
2751 }
2752 return NULL;
2753 }
2754
2755 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2756 __acquires(RCU)
2757 {
2758 rcu_read_lock();
2759 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2760 }
2761
2762 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2763 {
2764 struct packet_type *pt;
2765 struct list_head *nxt;
2766 int hash;
2767
2768 ++*pos;
2769 if (v == SEQ_START_TOKEN)
2770 return ptype_get_idx(0);
2771
2772 pt = v;
2773 nxt = pt->list.next;
2774 if (pt->type == htons(ETH_P_ALL)) {
2775 if (nxt != &ptype_all)
2776 goto found;
2777 hash = 0;
2778 nxt = ptype_base[0].next;
2779 } else
2780 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2781
2782 while (nxt == &ptype_base[hash]) {
2783 if (++hash >= PTYPE_HASH_SIZE)
2784 return NULL;
2785 nxt = ptype_base[hash].next;
2786 }
2787 found:
2788 return list_entry(nxt, struct packet_type, list);
2789 }
2790
2791 static void ptype_seq_stop(struct seq_file *seq, void *v)
2792 __releases(RCU)
2793 {
2794 rcu_read_unlock();
2795 }
2796
2797 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2798 {
2799 #ifdef CONFIG_KALLSYMS
2800 unsigned long offset = 0, symsize;
2801 const char *symname;
2802 char *modname;
2803 char namebuf[128];
2804
2805 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2806 &modname, namebuf);
2807
2808 if (symname) {
2809 char *delim = ":";
2810
2811 if (!modname)
2812 modname = delim = "";
2813 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2814 symname, offset);
2815 return;
2816 }
2817 #endif
2818
2819 seq_printf(seq, "[%p]", sym);
2820 }
2821
2822 static int ptype_seq_show(struct seq_file *seq, void *v)
2823 {
2824 struct packet_type *pt = v;
2825
2826 if (v == SEQ_START_TOKEN)
2827 seq_puts(seq, "Type Device Function\n");
2828 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2829 if (pt->type == htons(ETH_P_ALL))
2830 seq_puts(seq, "ALL ");
2831 else
2832 seq_printf(seq, "%04x", ntohs(pt->type));
2833
2834 seq_printf(seq, " %-8s ",
2835 pt->dev ? pt->dev->name : "");
2836 ptype_seq_decode(seq, pt->func);
2837 seq_putc(seq, '\n');
2838 }
2839
2840 return 0;
2841 }
2842
2843 static const struct seq_operations ptype_seq_ops = {
2844 .start = ptype_seq_start,
2845 .next = ptype_seq_next,
2846 .stop = ptype_seq_stop,
2847 .show = ptype_seq_show,
2848 };
2849
2850 static int ptype_seq_open(struct inode *inode, struct file *file)
2851 {
2852 return seq_open_net(inode, file, &ptype_seq_ops,
2853 sizeof(struct seq_net_private));
2854 }
2855
2856 static const struct file_operations ptype_seq_fops = {
2857 .owner = THIS_MODULE,
2858 .open = ptype_seq_open,
2859 .read = seq_read,
2860 .llseek = seq_lseek,
2861 .release = seq_release_net,
2862 };
2863
2864
2865 static int __net_init dev_proc_net_init(struct net *net)
2866 {
2867 int rc = -ENOMEM;
2868
2869 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2870 goto out;
2871 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2872 goto out_dev;
2873 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2874 goto out_softnet;
2875
2876 if (wext_proc_init(net))
2877 goto out_ptype;
2878 rc = 0;
2879 out:
2880 return rc;
2881 out_ptype:
2882 proc_net_remove(net, "ptype");
2883 out_softnet:
2884 proc_net_remove(net, "softnet_stat");
2885 out_dev:
2886 proc_net_remove(net, "dev");
2887 goto out;
2888 }
2889
2890 static void __net_exit dev_proc_net_exit(struct net *net)
2891 {
2892 wext_proc_exit(net);
2893
2894 proc_net_remove(net, "ptype");
2895 proc_net_remove(net, "softnet_stat");
2896 proc_net_remove(net, "dev");
2897 }
2898
2899 static struct pernet_operations __net_initdata dev_proc_ops = {
2900 .init = dev_proc_net_init,
2901 .exit = dev_proc_net_exit,
2902 };
2903
2904 static int __init dev_proc_init(void)
2905 {
2906 return register_pernet_subsys(&dev_proc_ops);
2907 }
2908 #else
2909 #define dev_proc_init() 0
2910 #endif /* CONFIG_PROC_FS */
2911
2912
2913 /**
2914 * netdev_set_master - set up master/slave pair
2915 * @slave: slave device
2916 * @master: new master device
2917 *
2918 * Changes the master device of the slave. Pass %NULL to break the
2919 * bonding. The caller must hold the RTNL semaphore. On a failure
2920 * a negative errno code is returned. On success the reference counts
2921 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2922 * function returns zero.
2923 */
2924 int netdev_set_master(struct net_device *slave, struct net_device *master)
2925 {
2926 struct net_device *old = slave->master;
2927
2928 ASSERT_RTNL();
2929
2930 if (master) {
2931 if (old)
2932 return -EBUSY;
2933 dev_hold(master);
2934 }
2935
2936 slave->master = master;
2937
2938 synchronize_net();
2939
2940 if (old)
2941 dev_put(old);
2942
2943 if (master)
2944 slave->flags |= IFF_SLAVE;
2945 else
2946 slave->flags &= ~IFF_SLAVE;
2947
2948 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2949 return 0;
2950 }
2951
2952 static void dev_change_rx_flags(struct net_device *dev, int flags)
2953 {
2954 if (dev->flags & IFF_UP && dev->change_rx_flags)
2955 dev->change_rx_flags(dev, flags);
2956 }
2957
2958 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2959 {
2960 unsigned short old_flags = dev->flags;
2961
2962 ASSERT_RTNL();
2963
2964 dev->flags |= IFF_PROMISC;
2965 dev->promiscuity += inc;
2966 if (dev->promiscuity == 0) {
2967 /*
2968 * Avoid overflow.
2969 * If inc causes overflow, untouch promisc and return error.
2970 */
2971 if (inc < 0)
2972 dev->flags &= ~IFF_PROMISC;
2973 else {
2974 dev->promiscuity -= inc;
2975 printk(KERN_WARNING "%s: promiscuity touches roof, "
2976 "set promiscuity failed, promiscuity feature "
2977 "of device might be broken.\n", dev->name);
2978 return -EOVERFLOW;
2979 }
2980 }
2981 if (dev->flags != old_flags) {
2982 printk(KERN_INFO "device %s %s promiscuous mode\n",
2983 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2984 "left");
2985 if (audit_enabled)
2986 audit_log(current->audit_context, GFP_ATOMIC,
2987 AUDIT_ANOM_PROMISCUOUS,
2988 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2989 dev->name, (dev->flags & IFF_PROMISC),
2990 (old_flags & IFF_PROMISC),
2991 audit_get_loginuid(current),
2992 current->uid, current->gid,
2993 audit_get_sessionid(current));
2994
2995 dev_change_rx_flags(dev, IFF_PROMISC);
2996 }
2997 return 0;
2998 }
2999
3000 /**
3001 * dev_set_promiscuity - update promiscuity count on a device
3002 * @dev: device
3003 * @inc: modifier
3004 *
3005 * Add or remove promiscuity from a device. While the count in the device
3006 * remains above zero the interface remains promiscuous. Once it hits zero
3007 * the device reverts back to normal filtering operation. A negative inc
3008 * value is used to drop promiscuity on the device.
3009 * Return 0 if successful or a negative errno code on error.
3010 */
3011 int dev_set_promiscuity(struct net_device *dev, int inc)
3012 {
3013 unsigned short old_flags = dev->flags;
3014 int err;
3015
3016 err = __dev_set_promiscuity(dev, inc);
3017 if (err < 0)
3018 return err;
3019 if (dev->flags != old_flags)
3020 dev_set_rx_mode(dev);
3021 return err;
3022 }
3023
3024 /**
3025 * dev_set_allmulti - update allmulti count on a device
3026 * @dev: device
3027 * @inc: modifier
3028 *
3029 * Add or remove reception of all multicast frames to a device. While the
3030 * count in the device remains above zero the interface remains listening
3031 * to all interfaces. Once it hits zero the device reverts back to normal
3032 * filtering operation. A negative @inc value is used to drop the counter
3033 * when releasing a resource needing all multicasts.
3034 * Return 0 if successful or a negative errno code on error.
3035 */
3036
3037 int dev_set_allmulti(struct net_device *dev, int inc)
3038 {
3039 unsigned short old_flags = dev->flags;
3040
3041 ASSERT_RTNL();
3042
3043 dev->flags |= IFF_ALLMULTI;
3044 dev->allmulti += inc;
3045 if (dev->allmulti == 0) {
3046 /*
3047 * Avoid overflow.
3048 * If inc causes overflow, untouch allmulti and return error.
3049 */
3050 if (inc < 0)
3051 dev->flags &= ~IFF_ALLMULTI;
3052 else {
3053 dev->allmulti -= inc;
3054 printk(KERN_WARNING "%s: allmulti touches roof, "
3055 "set allmulti failed, allmulti feature of "
3056 "device might be broken.\n", dev->name);
3057 return -EOVERFLOW;
3058 }
3059 }
3060 if (dev->flags ^ old_flags) {
3061 dev_change_rx_flags(dev, IFF_ALLMULTI);
3062 dev_set_rx_mode(dev);
3063 }
3064 return 0;
3065 }
3066
3067 /*
3068 * Upload unicast and multicast address lists to device and
3069 * configure RX filtering. When the device doesn't support unicast
3070 * filtering it is put in promiscuous mode while unicast addresses
3071 * are present.
3072 */
3073 void __dev_set_rx_mode(struct net_device *dev)
3074 {
3075 /* dev_open will call this function so the list will stay sane. */
3076 if (!(dev->flags&IFF_UP))
3077 return;
3078
3079 if (!netif_device_present(dev))
3080 return;
3081
3082 if (dev->set_rx_mode)
3083 dev->set_rx_mode(dev);
3084 else {
3085 /* Unicast addresses changes may only happen under the rtnl,
3086 * therefore calling __dev_set_promiscuity here is safe.
3087 */
3088 if (dev->uc_count > 0 && !dev->uc_promisc) {
3089 __dev_set_promiscuity(dev, 1);
3090 dev->uc_promisc = 1;
3091 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3092 __dev_set_promiscuity(dev, -1);
3093 dev->uc_promisc = 0;
3094 }
3095
3096 if (dev->set_multicast_list)
3097 dev->set_multicast_list(dev);
3098 }
3099 }
3100
3101 void dev_set_rx_mode(struct net_device *dev)
3102 {
3103 netif_addr_lock_bh(dev);
3104 __dev_set_rx_mode(dev);
3105 netif_addr_unlock_bh(dev);
3106 }
3107
3108 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3109 void *addr, int alen, int glbl)
3110 {
3111 struct dev_addr_list *da;
3112
3113 for (; (da = *list) != NULL; list = &da->next) {
3114 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3115 alen == da->da_addrlen) {
3116 if (glbl) {
3117 int old_glbl = da->da_gusers;
3118 da->da_gusers = 0;
3119 if (old_glbl == 0)
3120 break;
3121 }
3122 if (--da->da_users)
3123 return 0;
3124
3125 *list = da->next;
3126 kfree(da);
3127 (*count)--;
3128 return 0;
3129 }
3130 }
3131 return -ENOENT;
3132 }
3133
3134 int __dev_addr_add(struct dev_addr_list **list, int *count,
3135 void *addr, int alen, int glbl)
3136 {
3137 struct dev_addr_list *da;
3138
3139 for (da = *list; da != NULL; da = da->next) {
3140 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3141 da->da_addrlen == alen) {
3142 if (glbl) {
3143 int old_glbl = da->da_gusers;
3144 da->da_gusers = 1;
3145 if (old_glbl)
3146 return 0;
3147 }
3148 da->da_users++;
3149 return 0;
3150 }
3151 }
3152
3153 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3154 if (da == NULL)
3155 return -ENOMEM;
3156 memcpy(da->da_addr, addr, alen);
3157 da->da_addrlen = alen;
3158 da->da_users = 1;
3159 da->da_gusers = glbl ? 1 : 0;
3160 da->next = *list;
3161 *list = da;
3162 (*count)++;
3163 return 0;
3164 }
3165
3166 /**
3167 * dev_unicast_delete - Release secondary unicast address.
3168 * @dev: device
3169 * @addr: address to delete
3170 * @alen: length of @addr
3171 *
3172 * Release reference to a secondary unicast address and remove it
3173 * from the device if the reference count drops to zero.
3174 *
3175 * The caller must hold the rtnl_mutex.
3176 */
3177 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3178 {
3179 int err;
3180
3181 ASSERT_RTNL();
3182
3183 netif_addr_lock_bh(dev);
3184 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3185 if (!err)
3186 __dev_set_rx_mode(dev);
3187 netif_addr_unlock_bh(dev);
3188 return err;
3189 }
3190 EXPORT_SYMBOL(dev_unicast_delete);
3191
3192 /**
3193 * dev_unicast_add - add a secondary unicast address
3194 * @dev: device
3195 * @addr: address to add
3196 * @alen: length of @addr
3197 *
3198 * Add a secondary unicast address to the device or increase
3199 * the reference count if it already exists.
3200 *
3201 * The caller must hold the rtnl_mutex.
3202 */
3203 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3204 {
3205 int err;
3206
3207 ASSERT_RTNL();
3208
3209 netif_addr_lock_bh(dev);
3210 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3211 if (!err)
3212 __dev_set_rx_mode(dev);
3213 netif_addr_unlock_bh(dev);
3214 return err;
3215 }
3216 EXPORT_SYMBOL(dev_unicast_add);
3217
3218 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3219 struct dev_addr_list **from, int *from_count)
3220 {
3221 struct dev_addr_list *da, *next;
3222 int err = 0;
3223
3224 da = *from;
3225 while (da != NULL) {
3226 next = da->next;
3227 if (!da->da_synced) {
3228 err = __dev_addr_add(to, to_count,
3229 da->da_addr, da->da_addrlen, 0);
3230 if (err < 0)
3231 break;
3232 da->da_synced = 1;
3233 da->da_users++;
3234 } else if (da->da_users == 1) {
3235 __dev_addr_delete(to, to_count,
3236 da->da_addr, da->da_addrlen, 0);
3237 __dev_addr_delete(from, from_count,
3238 da->da_addr, da->da_addrlen, 0);
3239 }
3240 da = next;
3241 }
3242 return err;
3243 }
3244
3245 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3246 struct dev_addr_list **from, int *from_count)
3247 {
3248 struct dev_addr_list *da, *next;
3249
3250 da = *from;
3251 while (da != NULL) {
3252 next = da->next;
3253 if (da->da_synced) {
3254 __dev_addr_delete(to, to_count,
3255 da->da_addr, da->da_addrlen, 0);
3256 da->da_synced = 0;
3257 __dev_addr_delete(from, from_count,
3258 da->da_addr, da->da_addrlen, 0);
3259 }
3260 da = next;
3261 }
3262 }
3263
3264 /**
3265 * dev_unicast_sync - Synchronize device's unicast list to another device
3266 * @to: destination device
3267 * @from: source device
3268 *
3269 * Add newly added addresses to the destination device and release
3270 * addresses that have no users left. The source device must be
3271 * locked by netif_tx_lock_bh.
3272 *
3273 * This function is intended to be called from the dev->set_rx_mode
3274 * function of layered software devices.
3275 */
3276 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3277 {
3278 int err = 0;
3279
3280 netif_addr_lock_bh(to);
3281 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3282 &from->uc_list, &from->uc_count);
3283 if (!err)
3284 __dev_set_rx_mode(to);
3285 netif_addr_unlock_bh(to);
3286 return err;
3287 }
3288 EXPORT_SYMBOL(dev_unicast_sync);
3289
3290 /**
3291 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3292 * @to: destination device
3293 * @from: source device
3294 *
3295 * Remove all addresses that were added to the destination device by
3296 * dev_unicast_sync(). This function is intended to be called from the
3297 * dev->stop function of layered software devices.
3298 */
3299 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3300 {
3301 netif_addr_lock_bh(from);
3302 netif_addr_lock(to);
3303
3304 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3305 &from->uc_list, &from->uc_count);
3306 __dev_set_rx_mode(to);
3307
3308 netif_addr_unlock(to);
3309 netif_addr_unlock_bh(from);
3310 }
3311 EXPORT_SYMBOL(dev_unicast_unsync);
3312
3313 static void __dev_addr_discard(struct dev_addr_list **list)
3314 {
3315 struct dev_addr_list *tmp;
3316
3317 while (*list != NULL) {
3318 tmp = *list;
3319 *list = tmp->next;
3320 if (tmp->da_users > tmp->da_gusers)
3321 printk("__dev_addr_discard: address leakage! "
3322 "da_users=%d\n", tmp->da_users);
3323 kfree(tmp);
3324 }
3325 }
3326
3327 static void dev_addr_discard(struct net_device *dev)
3328 {
3329 netif_addr_lock_bh(dev);
3330
3331 __dev_addr_discard(&dev->uc_list);
3332 dev->uc_count = 0;
3333
3334 __dev_addr_discard(&dev->mc_list);
3335 dev->mc_count = 0;
3336
3337 netif_addr_unlock_bh(dev);
3338 }
3339
3340 /**
3341 * dev_get_flags - get flags reported to userspace
3342 * @dev: device
3343 *
3344 * Get the combination of flag bits exported through APIs to userspace.
3345 */
3346 unsigned dev_get_flags(const struct net_device *dev)
3347 {
3348 unsigned flags;
3349
3350 flags = (dev->flags & ~(IFF_PROMISC |
3351 IFF_ALLMULTI |
3352 IFF_RUNNING |
3353 IFF_LOWER_UP |
3354 IFF_DORMANT)) |
3355 (dev->gflags & (IFF_PROMISC |
3356 IFF_ALLMULTI));
3357
3358 if (netif_running(dev)) {
3359 if (netif_oper_up(dev))
3360 flags |= IFF_RUNNING;
3361 if (netif_carrier_ok(dev))
3362 flags |= IFF_LOWER_UP;
3363 if (netif_dormant(dev))
3364 flags |= IFF_DORMANT;
3365 }
3366
3367 return flags;
3368 }
3369
3370 /**
3371 * dev_change_flags - change device settings
3372 * @dev: device
3373 * @flags: device state flags
3374 *
3375 * Change settings on device based state flags. The flags are
3376 * in the userspace exported format.
3377 */
3378 int dev_change_flags(struct net_device *dev, unsigned flags)
3379 {
3380 int ret, changes;
3381 int old_flags = dev->flags;
3382
3383 ASSERT_RTNL();
3384
3385 /*
3386 * Set the flags on our device.
3387 */
3388
3389 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3390 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3391 IFF_AUTOMEDIA)) |
3392 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3393 IFF_ALLMULTI));
3394
3395 /*
3396 * Load in the correct multicast list now the flags have changed.
3397 */
3398
3399 if ((old_flags ^ flags) & IFF_MULTICAST)
3400 dev_change_rx_flags(dev, IFF_MULTICAST);
3401
3402 dev_set_rx_mode(dev);
3403
3404 /*
3405 * Have we downed the interface. We handle IFF_UP ourselves
3406 * according to user attempts to set it, rather than blindly
3407 * setting it.
3408 */
3409
3410 ret = 0;
3411 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3412 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3413
3414 if (!ret)
3415 dev_set_rx_mode(dev);
3416 }
3417
3418 if (dev->flags & IFF_UP &&
3419 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3420 IFF_VOLATILE)))
3421 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3422
3423 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3424 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3425 dev->gflags ^= IFF_PROMISC;
3426 dev_set_promiscuity(dev, inc);
3427 }
3428
3429 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3430 is important. Some (broken) drivers set IFF_PROMISC, when
3431 IFF_ALLMULTI is requested not asking us and not reporting.
3432 */
3433 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3434 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3435 dev->gflags ^= IFF_ALLMULTI;
3436 dev_set_allmulti(dev, inc);
3437 }
3438
3439 /* Exclude state transition flags, already notified */
3440 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3441 if (changes)
3442 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3443
3444 return ret;
3445 }
3446
3447 /**
3448 * dev_set_mtu - Change maximum transfer unit
3449 * @dev: device
3450 * @new_mtu: new transfer unit
3451 *
3452 * Change the maximum transfer size of the network device.
3453 */
3454 int dev_set_mtu(struct net_device *dev, int new_mtu)
3455 {
3456 int err;
3457
3458 if (new_mtu == dev->mtu)
3459 return 0;
3460
3461 /* MTU must be positive. */
3462 if (new_mtu < 0)
3463 return -EINVAL;
3464
3465 if (!netif_device_present(dev))
3466 return -ENODEV;
3467
3468 err = 0;
3469 if (dev->change_mtu)
3470 err = dev->change_mtu(dev, new_mtu);
3471 else
3472 dev->mtu = new_mtu;
3473 if (!err && dev->flags & IFF_UP)
3474 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3475 return err;
3476 }
3477
3478 /**
3479 * dev_set_mac_address - Change Media Access Control Address
3480 * @dev: device
3481 * @sa: new address
3482 *
3483 * Change the hardware (MAC) address of the device
3484 */
3485 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3486 {
3487 int err;
3488
3489 if (!dev->set_mac_address)
3490 return -EOPNOTSUPP;
3491 if (sa->sa_family != dev->type)
3492 return -EINVAL;
3493 if (!netif_device_present(dev))
3494 return -ENODEV;
3495 err = dev->set_mac_address(dev, sa);
3496 if (!err)
3497 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3498 return err;
3499 }
3500
3501 /*
3502 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3503 */
3504 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3505 {
3506 int err;
3507 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3508
3509 if (!dev)
3510 return -ENODEV;
3511
3512 switch (cmd) {
3513 case SIOCGIFFLAGS: /* Get interface flags */
3514 ifr->ifr_flags = dev_get_flags(dev);
3515 return 0;
3516
3517 case SIOCGIFMETRIC: /* Get the metric on the interface
3518 (currently unused) */
3519 ifr->ifr_metric = 0;
3520 return 0;
3521
3522 case SIOCGIFMTU: /* Get the MTU of a device */
3523 ifr->ifr_mtu = dev->mtu;
3524 return 0;
3525
3526 case SIOCGIFHWADDR:
3527 if (!dev->addr_len)
3528 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3529 else
3530 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3531 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3532 ifr->ifr_hwaddr.sa_family = dev->type;
3533 return 0;
3534
3535 case SIOCGIFSLAVE:
3536 err = -EINVAL;
3537 break;
3538
3539 case SIOCGIFMAP:
3540 ifr->ifr_map.mem_start = dev->mem_start;
3541 ifr->ifr_map.mem_end = dev->mem_end;
3542 ifr->ifr_map.base_addr = dev->base_addr;
3543 ifr->ifr_map.irq = dev->irq;
3544 ifr->ifr_map.dma = dev->dma;
3545 ifr->ifr_map.port = dev->if_port;
3546 return 0;
3547
3548 case SIOCGIFINDEX:
3549 ifr->ifr_ifindex = dev->ifindex;
3550 return 0;
3551
3552 case SIOCGIFTXQLEN:
3553 ifr->ifr_qlen = dev->tx_queue_len;
3554 return 0;
3555
3556 default:
3557 /* dev_ioctl() should ensure this case
3558 * is never reached
3559 */
3560 WARN_ON(1);
3561 err = -EINVAL;
3562 break;
3563
3564 }
3565 return err;
3566 }
3567
3568 /*
3569 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3570 */
3571 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3572 {
3573 int err;
3574 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3575
3576 if (!dev)
3577 return -ENODEV;
3578
3579 switch (cmd) {
3580 case SIOCSIFFLAGS: /* Set interface flags */
3581 return dev_change_flags(dev, ifr->ifr_flags);
3582
3583 case SIOCSIFMETRIC: /* Set the metric on the interface
3584 (currently unused) */
3585 return -EOPNOTSUPP;
3586
3587 case SIOCSIFMTU: /* Set the MTU of a device */
3588 return dev_set_mtu(dev, ifr->ifr_mtu);
3589
3590 case SIOCSIFHWADDR:
3591 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3592
3593 case SIOCSIFHWBROADCAST:
3594 if (ifr->ifr_hwaddr.sa_family != dev->type)
3595 return -EINVAL;
3596 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3597 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3598 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3599 return 0;
3600
3601 case SIOCSIFMAP:
3602 if (dev->set_config) {
3603 if (!netif_device_present(dev))
3604 return -ENODEV;
3605 return dev->set_config(dev, &ifr->ifr_map);
3606 }
3607 return -EOPNOTSUPP;
3608
3609 case SIOCADDMULTI:
3610 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3611 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3612 return -EINVAL;
3613 if (!netif_device_present(dev))
3614 return -ENODEV;
3615 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3616 dev->addr_len, 1);
3617
3618 case SIOCDELMULTI:
3619 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3620 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3621 return -EINVAL;
3622 if (!netif_device_present(dev))
3623 return -ENODEV;
3624 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3625 dev->addr_len, 1);
3626
3627 case SIOCSIFTXQLEN:
3628 if (ifr->ifr_qlen < 0)
3629 return -EINVAL;
3630 dev->tx_queue_len = ifr->ifr_qlen;
3631 return 0;
3632
3633 case SIOCSIFNAME:
3634 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3635 return dev_change_name(dev, ifr->ifr_newname);
3636
3637 /*
3638 * Unknown or private ioctl
3639 */
3640
3641 default:
3642 if ((cmd >= SIOCDEVPRIVATE &&
3643 cmd <= SIOCDEVPRIVATE + 15) ||
3644 cmd == SIOCBONDENSLAVE ||
3645 cmd == SIOCBONDRELEASE ||
3646 cmd == SIOCBONDSETHWADDR ||
3647 cmd == SIOCBONDSLAVEINFOQUERY ||
3648 cmd == SIOCBONDINFOQUERY ||
3649 cmd == SIOCBONDCHANGEACTIVE ||
3650 cmd == SIOCGMIIPHY ||
3651 cmd == SIOCGMIIREG ||
3652 cmd == SIOCSMIIREG ||
3653 cmd == SIOCBRADDIF ||
3654 cmd == SIOCBRDELIF ||
3655 cmd == SIOCWANDEV) {
3656 err = -EOPNOTSUPP;
3657 if (dev->do_ioctl) {
3658 if (netif_device_present(dev))
3659 err = dev->do_ioctl(dev, ifr,
3660 cmd);
3661 else
3662 err = -ENODEV;
3663 }
3664 } else
3665 err = -EINVAL;
3666
3667 }
3668 return err;
3669 }
3670
3671 /*
3672 * This function handles all "interface"-type I/O control requests. The actual
3673 * 'doing' part of this is dev_ifsioc above.
3674 */
3675
3676 /**
3677 * dev_ioctl - network device ioctl
3678 * @net: the applicable net namespace
3679 * @cmd: command to issue
3680 * @arg: pointer to a struct ifreq in user space
3681 *
3682 * Issue ioctl functions to devices. This is normally called by the
3683 * user space syscall interfaces but can sometimes be useful for
3684 * other purposes. The return value is the return from the syscall if
3685 * positive or a negative errno code on error.
3686 */
3687
3688 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3689 {
3690 struct ifreq ifr;
3691 int ret;
3692 char *colon;
3693
3694 /* One special case: SIOCGIFCONF takes ifconf argument
3695 and requires shared lock, because it sleeps writing
3696 to user space.
3697 */
3698
3699 if (cmd == SIOCGIFCONF) {
3700 rtnl_lock();
3701 ret = dev_ifconf(net, (char __user *) arg);
3702 rtnl_unlock();
3703 return ret;
3704 }
3705 if (cmd == SIOCGIFNAME)
3706 return dev_ifname(net, (struct ifreq __user *)arg);
3707
3708 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3709 return -EFAULT;
3710
3711 ifr.ifr_name[IFNAMSIZ-1] = 0;
3712
3713 colon = strchr(ifr.ifr_name, ':');
3714 if (colon)
3715 *colon = 0;
3716
3717 /*
3718 * See which interface the caller is talking about.
3719 */
3720
3721 switch (cmd) {
3722 /*
3723 * These ioctl calls:
3724 * - can be done by all.
3725 * - atomic and do not require locking.
3726 * - return a value
3727 */
3728 case SIOCGIFFLAGS:
3729 case SIOCGIFMETRIC:
3730 case SIOCGIFMTU:
3731 case SIOCGIFHWADDR:
3732 case SIOCGIFSLAVE:
3733 case SIOCGIFMAP:
3734 case SIOCGIFINDEX:
3735 case SIOCGIFTXQLEN:
3736 dev_load(net, ifr.ifr_name);
3737 read_lock(&dev_base_lock);
3738 ret = dev_ifsioc_locked(net, &ifr, cmd);
3739 read_unlock(&dev_base_lock);
3740 if (!ret) {
3741 if (colon)
3742 *colon = ':';
3743 if (copy_to_user(arg, &ifr,
3744 sizeof(struct ifreq)))
3745 ret = -EFAULT;
3746 }
3747 return ret;
3748
3749 case SIOCETHTOOL:
3750 dev_load(net, ifr.ifr_name);
3751 rtnl_lock();
3752 ret = dev_ethtool(net, &ifr);
3753 rtnl_unlock();
3754 if (!ret) {
3755 if (colon)
3756 *colon = ':';
3757 if (copy_to_user(arg, &ifr,
3758 sizeof(struct ifreq)))
3759 ret = -EFAULT;
3760 }
3761 return ret;
3762
3763 /*
3764 * These ioctl calls:
3765 * - require superuser power.
3766 * - require strict serialization.
3767 * - return a value
3768 */
3769 case SIOCGMIIPHY:
3770 case SIOCGMIIREG:
3771 case SIOCSIFNAME:
3772 if (!capable(CAP_NET_ADMIN))
3773 return -EPERM;
3774 dev_load(net, ifr.ifr_name);
3775 rtnl_lock();
3776 ret = dev_ifsioc(net, &ifr, cmd);
3777 rtnl_unlock();
3778 if (!ret) {
3779 if (colon)
3780 *colon = ':';
3781 if (copy_to_user(arg, &ifr,
3782 sizeof(struct ifreq)))
3783 ret = -EFAULT;
3784 }
3785 return ret;
3786
3787 /*
3788 * These ioctl calls:
3789 * - require superuser power.
3790 * - require strict serialization.
3791 * - do not return a value
3792 */
3793 case SIOCSIFFLAGS:
3794 case SIOCSIFMETRIC:
3795 case SIOCSIFMTU:
3796 case SIOCSIFMAP:
3797 case SIOCSIFHWADDR:
3798 case SIOCSIFSLAVE:
3799 case SIOCADDMULTI:
3800 case SIOCDELMULTI:
3801 case SIOCSIFHWBROADCAST:
3802 case SIOCSIFTXQLEN:
3803 case SIOCSMIIREG:
3804 case SIOCBONDENSLAVE:
3805 case SIOCBONDRELEASE:
3806 case SIOCBONDSETHWADDR:
3807 case SIOCBONDCHANGEACTIVE:
3808 case SIOCBRADDIF:
3809 case SIOCBRDELIF:
3810 if (!capable(CAP_NET_ADMIN))
3811 return -EPERM;
3812 /* fall through */
3813 case SIOCBONDSLAVEINFOQUERY:
3814 case SIOCBONDINFOQUERY:
3815 dev_load(net, ifr.ifr_name);
3816 rtnl_lock();
3817 ret = dev_ifsioc(net, &ifr, cmd);
3818 rtnl_unlock();
3819 return ret;
3820
3821 case SIOCGIFMEM:
3822 /* Get the per device memory space. We can add this but
3823 * currently do not support it */
3824 case SIOCSIFMEM:
3825 /* Set the per device memory buffer space.
3826 * Not applicable in our case */
3827 case SIOCSIFLINK:
3828 return -EINVAL;
3829
3830 /*
3831 * Unknown or private ioctl.
3832 */
3833 default:
3834 if (cmd == SIOCWANDEV ||
3835 (cmd >= SIOCDEVPRIVATE &&
3836 cmd <= SIOCDEVPRIVATE + 15)) {
3837 dev_load(net, ifr.ifr_name);
3838 rtnl_lock();
3839 ret = dev_ifsioc(net, &ifr, cmd);
3840 rtnl_unlock();
3841 if (!ret && copy_to_user(arg, &ifr,
3842 sizeof(struct ifreq)))
3843 ret = -EFAULT;
3844 return ret;
3845 }
3846 /* Take care of Wireless Extensions */
3847 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3848 return wext_handle_ioctl(net, &ifr, cmd, arg);
3849 return -EINVAL;
3850 }
3851 }
3852
3853
3854 /**
3855 * dev_new_index - allocate an ifindex
3856 * @net: the applicable net namespace
3857 *
3858 * Returns a suitable unique value for a new device interface
3859 * number. The caller must hold the rtnl semaphore or the
3860 * dev_base_lock to be sure it remains unique.
3861 */
3862 static int dev_new_index(struct net *net)
3863 {
3864 static int ifindex;
3865 for (;;) {
3866 if (++ifindex <= 0)
3867 ifindex = 1;
3868 if (!__dev_get_by_index(net, ifindex))
3869 return ifindex;
3870 }
3871 }
3872
3873 /* Delayed registration/unregisteration */
3874 static LIST_HEAD(net_todo_list);
3875
3876 static void net_set_todo(struct net_device *dev)
3877 {
3878 list_add_tail(&dev->todo_list, &net_todo_list);
3879 }
3880
3881 static void rollback_registered(struct net_device *dev)
3882 {
3883 BUG_ON(dev_boot_phase);
3884 ASSERT_RTNL();
3885
3886 /* Some devices call without registering for initialization unwind. */
3887 if (dev->reg_state == NETREG_UNINITIALIZED) {
3888 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3889 "was registered\n", dev->name, dev);
3890
3891 WARN_ON(1);
3892 return;
3893 }
3894
3895 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3896
3897 /* If device is running, close it first. */
3898 dev_close(dev);
3899
3900 /* And unlink it from device chain. */
3901 unlist_netdevice(dev);
3902
3903 dev->reg_state = NETREG_UNREGISTERING;
3904
3905 synchronize_net();
3906
3907 /* Shutdown queueing discipline. */
3908 dev_shutdown(dev);
3909
3910
3911 /* Notify protocols, that we are about to destroy
3912 this device. They should clean all the things.
3913 */
3914 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3915
3916 /*
3917 * Flush the unicast and multicast chains
3918 */
3919 dev_addr_discard(dev);
3920
3921 if (dev->uninit)
3922 dev->uninit(dev);
3923
3924 /* Notifier chain MUST detach us from master device. */
3925 WARN_ON(dev->master);
3926
3927 /* Remove entries from kobject tree */
3928 netdev_unregister_kobject(dev);
3929
3930 synchronize_net();
3931
3932 dev_put(dev);
3933 }
3934
3935 static void __netdev_init_queue_locks_one(struct net_device *dev,
3936 struct netdev_queue *dev_queue,
3937 void *_unused)
3938 {
3939 spin_lock_init(&dev_queue->_xmit_lock);
3940 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3941 dev_queue->xmit_lock_owner = -1;
3942 }
3943
3944 static void netdev_init_queue_locks(struct net_device *dev)
3945 {
3946 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3947 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3948 }
3949
3950 /**
3951 * register_netdevice - register a network device
3952 * @dev: device to register
3953 *
3954 * Take a completed network device structure and add it to the kernel
3955 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3956 * chain. 0 is returned on success. A negative errno code is returned
3957 * on a failure to set up the device, or if the name is a duplicate.
3958 *
3959 * Callers must hold the rtnl semaphore. You may want
3960 * register_netdev() instead of this.
3961 *
3962 * BUGS:
3963 * The locking appears insufficient to guarantee two parallel registers
3964 * will not get the same name.
3965 */
3966
3967 int register_netdevice(struct net_device *dev)
3968 {
3969 struct hlist_head *head;
3970 struct hlist_node *p;
3971 int ret;
3972 struct net *net;
3973
3974 BUG_ON(dev_boot_phase);
3975 ASSERT_RTNL();
3976
3977 might_sleep();
3978
3979 /* When net_device's are persistent, this will be fatal. */
3980 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3981 BUG_ON(!dev_net(dev));
3982 net = dev_net(dev);
3983
3984 spin_lock_init(&dev->addr_list_lock);
3985 netdev_set_addr_lockdep_class(dev);
3986 netdev_init_queue_locks(dev);
3987
3988 dev->iflink = -1;
3989
3990 /* Init, if this function is available */
3991 if (dev->init) {
3992 ret = dev->init(dev);
3993 if (ret) {
3994 if (ret > 0)
3995 ret = -EIO;
3996 goto out;
3997 }
3998 }
3999
4000 if (!dev_valid_name(dev->name)) {
4001 ret = -EINVAL;
4002 goto err_uninit;
4003 }
4004
4005 dev->ifindex = dev_new_index(net);
4006 if (dev->iflink == -1)
4007 dev->iflink = dev->ifindex;
4008
4009 /* Check for existence of name */
4010 head = dev_name_hash(net, dev->name);
4011 hlist_for_each(p, head) {
4012 struct net_device *d
4013 = hlist_entry(p, struct net_device, name_hlist);
4014 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4015 ret = -EEXIST;
4016 goto err_uninit;
4017 }
4018 }
4019
4020 /* Fix illegal checksum combinations */
4021 if ((dev->features & NETIF_F_HW_CSUM) &&
4022 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4023 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4024 dev->name);
4025 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4026 }
4027
4028 if ((dev->features & NETIF_F_NO_CSUM) &&
4029 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4030 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4031 dev->name);
4032 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4033 }
4034
4035
4036 /* Fix illegal SG+CSUM combinations. */
4037 if ((dev->features & NETIF_F_SG) &&
4038 !(dev->features & NETIF_F_ALL_CSUM)) {
4039 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
4040 dev->name);
4041 dev->features &= ~NETIF_F_SG;
4042 }
4043
4044 /* TSO requires that SG is present as well. */
4045 if ((dev->features & NETIF_F_TSO) &&
4046 !(dev->features & NETIF_F_SG)) {
4047 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
4048 dev->name);
4049 dev->features &= ~NETIF_F_TSO;
4050 }
4051 if (dev->features & NETIF_F_UFO) {
4052 if (!(dev->features & NETIF_F_HW_CSUM)) {
4053 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
4054 "NETIF_F_HW_CSUM feature.\n",
4055 dev->name);
4056 dev->features &= ~NETIF_F_UFO;
4057 }
4058 if (!(dev->features & NETIF_F_SG)) {
4059 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
4060 "NETIF_F_SG feature.\n",
4061 dev->name);
4062 dev->features &= ~NETIF_F_UFO;
4063 }
4064 }
4065
4066 /* Enable software GSO if SG is supported. */
4067 if (dev->features & NETIF_F_SG)
4068 dev->features |= NETIF_F_GSO;
4069
4070 netdev_initialize_kobject(dev);
4071 ret = netdev_register_kobject(dev);
4072 if (ret)
4073 goto err_uninit;
4074 dev->reg_state = NETREG_REGISTERED;
4075
4076 /*
4077 * Default initial state at registry is that the
4078 * device is present.
4079 */
4080
4081 set_bit(__LINK_STATE_PRESENT, &dev->state);
4082
4083 dev_init_scheduler(dev);
4084 dev_hold(dev);
4085 list_netdevice(dev);
4086
4087 /* Notify protocols, that a new device appeared. */
4088 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4089 ret = notifier_to_errno(ret);
4090 if (ret) {
4091 rollback_registered(dev);
4092 dev->reg_state = NETREG_UNREGISTERED;
4093 }
4094
4095 out:
4096 return ret;
4097
4098 err_uninit:
4099 if (dev->uninit)
4100 dev->uninit(dev);
4101 goto out;
4102 }
4103
4104 /**
4105 * register_netdev - register a network device
4106 * @dev: device to register
4107 *
4108 * Take a completed network device structure and add it to the kernel
4109 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4110 * chain. 0 is returned on success. A negative errno code is returned
4111 * on a failure to set up the device, or if the name is a duplicate.
4112 *
4113 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4114 * and expands the device name if you passed a format string to
4115 * alloc_netdev.
4116 */
4117 int register_netdev(struct net_device *dev)
4118 {
4119 int err;
4120
4121 rtnl_lock();
4122
4123 /*
4124 * If the name is a format string the caller wants us to do a
4125 * name allocation.
4126 */
4127 if (strchr(dev->name, '%')) {
4128 err = dev_alloc_name(dev, dev->name);
4129 if (err < 0)
4130 goto out;
4131 }
4132
4133 err = register_netdevice(dev);
4134 out:
4135 rtnl_unlock();
4136 return err;
4137 }
4138 EXPORT_SYMBOL(register_netdev);
4139
4140 /*
4141 * netdev_wait_allrefs - wait until all references are gone.
4142 *
4143 * This is called when unregistering network devices.
4144 *
4145 * Any protocol or device that holds a reference should register
4146 * for netdevice notification, and cleanup and put back the
4147 * reference if they receive an UNREGISTER event.
4148 * We can get stuck here if buggy protocols don't correctly
4149 * call dev_put.
4150 */
4151 static void netdev_wait_allrefs(struct net_device *dev)
4152 {
4153 unsigned long rebroadcast_time, warning_time;
4154
4155 rebroadcast_time = warning_time = jiffies;
4156 while (atomic_read(&dev->refcnt) != 0) {
4157 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4158 rtnl_lock();
4159
4160 /* Rebroadcast unregister notification */
4161 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4162
4163 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4164 &dev->state)) {
4165 /* We must not have linkwatch events
4166 * pending on unregister. If this
4167 * happens, we simply run the queue
4168 * unscheduled, resulting in a noop
4169 * for this device.
4170 */
4171 linkwatch_run_queue();
4172 }
4173
4174 __rtnl_unlock();
4175
4176 rebroadcast_time = jiffies;
4177 }
4178
4179 msleep(250);
4180
4181 if (time_after(jiffies, warning_time + 10 * HZ)) {
4182 printk(KERN_EMERG "unregister_netdevice: "
4183 "waiting for %s to become free. Usage "
4184 "count = %d\n",
4185 dev->name, atomic_read(&dev->refcnt));
4186 warning_time = jiffies;
4187 }
4188 }
4189 }
4190
4191 /* The sequence is:
4192 *
4193 * rtnl_lock();
4194 * ...
4195 * register_netdevice(x1);
4196 * register_netdevice(x2);
4197 * ...
4198 * unregister_netdevice(y1);
4199 * unregister_netdevice(y2);
4200 * ...
4201 * rtnl_unlock();
4202 * free_netdev(y1);
4203 * free_netdev(y2);
4204 *
4205 * We are invoked by rtnl_unlock().
4206 * This allows us to deal with problems:
4207 * 1) We can delete sysfs objects which invoke hotplug
4208 * without deadlocking with linkwatch via keventd.
4209 * 2) Since we run with the RTNL semaphore not held, we can sleep
4210 * safely in order to wait for the netdev refcnt to drop to zero.
4211 *
4212 * We must not return until all unregister events added during
4213 * the interval the lock was held have been completed.
4214 */
4215 void netdev_run_todo(void)
4216 {
4217 struct list_head list;
4218
4219 /* Snapshot list, allow later requests */
4220 list_replace_init(&net_todo_list, &list);
4221
4222 __rtnl_unlock();
4223
4224 while (!list_empty(&list)) {
4225 struct net_device *dev
4226 = list_entry(list.next, struct net_device, todo_list);
4227 list_del(&dev->todo_list);
4228
4229 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4230 printk(KERN_ERR "network todo '%s' but state %d\n",
4231 dev->name, dev->reg_state);
4232 dump_stack();
4233 continue;
4234 }
4235
4236 dev->reg_state = NETREG_UNREGISTERED;
4237
4238 on_each_cpu(flush_backlog, dev, 1);
4239
4240 netdev_wait_allrefs(dev);
4241
4242 /* paranoia */
4243 BUG_ON(atomic_read(&dev->refcnt));
4244 WARN_ON(dev->ip_ptr);
4245 WARN_ON(dev->ip6_ptr);
4246 WARN_ON(dev->dn_ptr);
4247
4248 if (dev->destructor)
4249 dev->destructor(dev);
4250
4251 /* Free network device */
4252 kobject_put(&dev->dev.kobj);
4253 }
4254 }
4255
4256 static struct net_device_stats *internal_stats(struct net_device *dev)
4257 {
4258 return &dev->stats;
4259 }
4260
4261 static void netdev_init_one_queue(struct net_device *dev,
4262 struct netdev_queue *queue,
4263 void *_unused)
4264 {
4265 queue->dev = dev;
4266 }
4267
4268 static void netdev_init_queues(struct net_device *dev)
4269 {
4270 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4271 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4272 spin_lock_init(&dev->tx_global_lock);
4273 }
4274
4275 /**
4276 * alloc_netdev_mq - allocate network device
4277 * @sizeof_priv: size of private data to allocate space for
4278 * @name: device name format string
4279 * @setup: callback to initialize device
4280 * @queue_count: the number of subqueues to allocate
4281 *
4282 * Allocates a struct net_device with private data area for driver use
4283 * and performs basic initialization. Also allocates subquue structs
4284 * for each queue on the device at the end of the netdevice.
4285 */
4286 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4287 void (*setup)(struct net_device *), unsigned int queue_count)
4288 {
4289 struct netdev_queue *tx;
4290 struct net_device *dev;
4291 size_t alloc_size;
4292 void *p;
4293
4294 BUG_ON(strlen(name) >= sizeof(dev->name));
4295
4296 alloc_size = sizeof(struct net_device);
4297 if (sizeof_priv) {
4298 /* ensure 32-byte alignment of private area */
4299 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4300 alloc_size += sizeof_priv;
4301 }
4302 /* ensure 32-byte alignment of whole construct */
4303 alloc_size += NETDEV_ALIGN_CONST;
4304
4305 p = kzalloc(alloc_size, GFP_KERNEL);
4306 if (!p) {
4307 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4308 return NULL;
4309 }
4310
4311 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4312 if (!tx) {
4313 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4314 "tx qdiscs.\n");
4315 kfree(p);
4316 return NULL;
4317 }
4318
4319 dev = (struct net_device *)
4320 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4321 dev->padded = (char *)dev - (char *)p;
4322 dev_net_set(dev, &init_net);
4323
4324 dev->_tx = tx;
4325 dev->num_tx_queues = queue_count;
4326 dev->real_num_tx_queues = queue_count;
4327
4328 if (sizeof_priv) {
4329 dev->priv = ((char *)dev +
4330 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4331 & ~NETDEV_ALIGN_CONST));
4332 }
4333
4334 dev->gso_max_size = GSO_MAX_SIZE;
4335
4336 netdev_init_queues(dev);
4337
4338 dev->get_stats = internal_stats;
4339 netpoll_netdev_init(dev);
4340 setup(dev);
4341 strcpy(dev->name, name);
4342 return dev;
4343 }
4344 EXPORT_SYMBOL(alloc_netdev_mq);
4345
4346 /**
4347 * free_netdev - free network device
4348 * @dev: device
4349 *
4350 * This function does the last stage of destroying an allocated device
4351 * interface. The reference to the device object is released.
4352 * If this is the last reference then it will be freed.
4353 */
4354 void free_netdev(struct net_device *dev)
4355 {
4356 release_net(dev_net(dev));
4357
4358 kfree(dev->_tx);
4359
4360 /* Compatibility with error handling in drivers */
4361 if (dev->reg_state == NETREG_UNINITIALIZED) {
4362 kfree((char *)dev - dev->padded);
4363 return;
4364 }
4365
4366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4367 dev->reg_state = NETREG_RELEASED;
4368
4369 /* will free via device release */
4370 put_device(&dev->dev);
4371 }
4372
4373 /**
4374 * synchronize_net - Synchronize with packet receive processing
4375 *
4376 * Wait for packets currently being received to be done.
4377 * Does not block later packets from starting.
4378 */
4379 void synchronize_net(void)
4380 {
4381 might_sleep();
4382 synchronize_rcu();
4383 }
4384
4385 /**
4386 * unregister_netdevice - remove device from the kernel
4387 * @dev: device
4388 *
4389 * This function shuts down a device interface and removes it
4390 * from the kernel tables.
4391 *
4392 * Callers must hold the rtnl semaphore. You may want
4393 * unregister_netdev() instead of this.
4394 */
4395
4396 void unregister_netdevice(struct net_device *dev)
4397 {
4398 ASSERT_RTNL();
4399
4400 rollback_registered(dev);
4401 /* Finish processing unregister after unlock */
4402 net_set_todo(dev);
4403 }
4404
4405 /**
4406 * unregister_netdev - remove device from the kernel
4407 * @dev: device
4408 *
4409 * This function shuts down a device interface and removes it
4410 * from the kernel tables.
4411 *
4412 * This is just a wrapper for unregister_netdevice that takes
4413 * the rtnl semaphore. In general you want to use this and not
4414 * unregister_netdevice.
4415 */
4416 void unregister_netdev(struct net_device *dev)
4417 {
4418 rtnl_lock();
4419 unregister_netdevice(dev);
4420 rtnl_unlock();
4421 }
4422
4423 EXPORT_SYMBOL(unregister_netdev);
4424
4425 /**
4426 * dev_change_net_namespace - move device to different nethost namespace
4427 * @dev: device
4428 * @net: network namespace
4429 * @pat: If not NULL name pattern to try if the current device name
4430 * is already taken in the destination network namespace.
4431 *
4432 * This function shuts down a device interface and moves it
4433 * to a new network namespace. On success 0 is returned, on
4434 * a failure a netagive errno code is returned.
4435 *
4436 * Callers must hold the rtnl semaphore.
4437 */
4438
4439 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4440 {
4441 char buf[IFNAMSIZ];
4442 const char *destname;
4443 int err;
4444
4445 ASSERT_RTNL();
4446
4447 /* Don't allow namespace local devices to be moved. */
4448 err = -EINVAL;
4449 if (dev->features & NETIF_F_NETNS_LOCAL)
4450 goto out;
4451
4452 /* Ensure the device has been registrered */
4453 err = -EINVAL;
4454 if (dev->reg_state != NETREG_REGISTERED)
4455 goto out;
4456
4457 /* Get out if there is nothing todo */
4458 err = 0;
4459 if (net_eq(dev_net(dev), net))
4460 goto out;
4461
4462 /* Pick the destination device name, and ensure
4463 * we can use it in the destination network namespace.
4464 */
4465 err = -EEXIST;
4466 destname = dev->name;
4467 if (__dev_get_by_name(net, destname)) {
4468 /* We get here if we can't use the current device name */
4469 if (!pat)
4470 goto out;
4471 if (!dev_valid_name(pat))
4472 goto out;
4473 if (strchr(pat, '%')) {
4474 if (__dev_alloc_name(net, pat, buf) < 0)
4475 goto out;
4476 destname = buf;
4477 } else
4478 destname = pat;
4479 if (__dev_get_by_name(net, destname))
4480 goto out;
4481 }
4482
4483 /*
4484 * And now a mini version of register_netdevice unregister_netdevice.
4485 */
4486
4487 /* If device is running close it first. */
4488 dev_close(dev);
4489
4490 /* And unlink it from device chain */
4491 err = -ENODEV;
4492 unlist_netdevice(dev);
4493
4494 synchronize_net();
4495
4496 /* Shutdown queueing discipline. */
4497 dev_shutdown(dev);
4498
4499 /* Notify protocols, that we are about to destroy
4500 this device. They should clean all the things.
4501 */
4502 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4503
4504 /*
4505 * Flush the unicast and multicast chains
4506 */
4507 dev_addr_discard(dev);
4508
4509 /* Actually switch the network namespace */
4510 dev_net_set(dev, net);
4511
4512 /* Assign the new device name */
4513 if (destname != dev->name)
4514 strcpy(dev->name, destname);
4515
4516 /* If there is an ifindex conflict assign a new one */
4517 if (__dev_get_by_index(net, dev->ifindex)) {
4518 int iflink = (dev->iflink == dev->ifindex);
4519 dev->ifindex = dev_new_index(net);
4520 if (iflink)
4521 dev->iflink = dev->ifindex;
4522 }
4523
4524 /* Fixup kobjects */
4525 netdev_unregister_kobject(dev);
4526 err = netdev_register_kobject(dev);
4527 WARN_ON(err);
4528
4529 /* Add the device back in the hashes */
4530 list_netdevice(dev);
4531
4532 /* Notify protocols, that a new device appeared. */
4533 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4534
4535 synchronize_net();
4536 err = 0;
4537 out:
4538 return err;
4539 }
4540
4541 static int dev_cpu_callback(struct notifier_block *nfb,
4542 unsigned long action,
4543 void *ocpu)
4544 {
4545 struct sk_buff **list_skb;
4546 struct Qdisc **list_net;
4547 struct sk_buff *skb;
4548 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4549 struct softnet_data *sd, *oldsd;
4550
4551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4552 return NOTIFY_OK;
4553
4554 local_irq_disable();
4555 cpu = smp_processor_id();
4556 sd = &per_cpu(softnet_data, cpu);
4557 oldsd = &per_cpu(softnet_data, oldcpu);
4558
4559 /* Find end of our completion_queue. */
4560 list_skb = &sd->completion_queue;
4561 while (*list_skb)
4562 list_skb = &(*list_skb)->next;
4563 /* Append completion queue from offline CPU. */
4564 *list_skb = oldsd->completion_queue;
4565 oldsd->completion_queue = NULL;
4566
4567 /* Find end of our output_queue. */
4568 list_net = &sd->output_queue;
4569 while (*list_net)
4570 list_net = &(*list_net)->next_sched;
4571 /* Append output queue from offline CPU. */
4572 *list_net = oldsd->output_queue;
4573 oldsd->output_queue = NULL;
4574
4575 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4576 local_irq_enable();
4577
4578 /* Process offline CPU's input_pkt_queue */
4579 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4580 netif_rx(skb);
4581
4582 return NOTIFY_OK;
4583 }
4584
4585 #ifdef CONFIG_NET_DMA
4586 /**
4587 * net_dma_rebalance - try to maintain one DMA channel per CPU
4588 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4589 *
4590 * This is called when the number of channels allocated to the net_dma client
4591 * changes. The net_dma client tries to have one DMA channel per CPU.
4592 */
4593
4594 static void net_dma_rebalance(struct net_dma *net_dma)
4595 {
4596 unsigned int cpu, i, n, chan_idx;
4597 struct dma_chan *chan;
4598
4599 if (cpus_empty(net_dma->channel_mask)) {
4600 for_each_online_cpu(cpu)
4601 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4602 return;
4603 }
4604
4605 i = 0;
4606 cpu = first_cpu(cpu_online_map);
4607
4608 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4609 chan = net_dma->channels[chan_idx];
4610
4611 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4612 + (i < (num_online_cpus() %
4613 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4614
4615 while(n) {
4616 per_cpu(softnet_data, cpu).net_dma = chan;
4617 cpu = next_cpu(cpu, cpu_online_map);
4618 n--;
4619 }
4620 i++;
4621 }
4622 }
4623
4624 /**
4625 * netdev_dma_event - event callback for the net_dma_client
4626 * @client: should always be net_dma_client
4627 * @chan: DMA channel for the event
4628 * @state: DMA state to be handled
4629 */
4630 static enum dma_state_client
4631 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4632 enum dma_state state)
4633 {
4634 int i, found = 0, pos = -1;
4635 struct net_dma *net_dma =
4636 container_of(client, struct net_dma, client);
4637 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4638
4639 spin_lock(&net_dma->lock);
4640 switch (state) {
4641 case DMA_RESOURCE_AVAILABLE:
4642 for (i = 0; i < nr_cpu_ids; i++)
4643 if (net_dma->channels[i] == chan) {
4644 found = 1;
4645 break;
4646 } else if (net_dma->channels[i] == NULL && pos < 0)
4647 pos = i;
4648
4649 if (!found && pos >= 0) {
4650 ack = DMA_ACK;
4651 net_dma->channels[pos] = chan;
4652 cpu_set(pos, net_dma->channel_mask);
4653 net_dma_rebalance(net_dma);
4654 }
4655 break;
4656 case DMA_RESOURCE_REMOVED:
4657 for (i = 0; i < nr_cpu_ids; i++)
4658 if (net_dma->channels[i] == chan) {
4659 found = 1;
4660 pos = i;
4661 break;
4662 }
4663
4664 if (found) {
4665 ack = DMA_ACK;
4666 cpu_clear(pos, net_dma->channel_mask);
4667 net_dma->channels[i] = NULL;
4668 net_dma_rebalance(net_dma);
4669 }
4670 break;
4671 default:
4672 break;
4673 }
4674 spin_unlock(&net_dma->lock);
4675
4676 return ack;
4677 }
4678
4679 /**
4680 * netdev_dma_register - register the networking subsystem as a DMA client
4681 */
4682 static int __init netdev_dma_register(void)
4683 {
4684 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4685 GFP_KERNEL);
4686 if (unlikely(!net_dma.channels)) {
4687 printk(KERN_NOTICE
4688 "netdev_dma: no memory for net_dma.channels\n");
4689 return -ENOMEM;
4690 }
4691 spin_lock_init(&net_dma.lock);
4692 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4693 dma_async_client_register(&net_dma.client);
4694 dma_async_client_chan_request(&net_dma.client);
4695 return 0;
4696 }
4697
4698 #else
4699 static int __init netdev_dma_register(void) { return -ENODEV; }
4700 #endif /* CONFIG_NET_DMA */
4701
4702 /**
4703 * netdev_compute_feature - compute conjunction of two feature sets
4704 * @all: first feature set
4705 * @one: second feature set
4706 *
4707 * Computes a new feature set after adding a device with feature set
4708 * @one to the master device with current feature set @all. Returns
4709 * the new feature set.
4710 */
4711 int netdev_compute_features(unsigned long all, unsigned long one)
4712 {
4713 /* if device needs checksumming, downgrade to hw checksumming */
4714 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4715 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4716
4717 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4718 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4719 all ^= NETIF_F_HW_CSUM
4720 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4721
4722 if (one & NETIF_F_GSO)
4723 one |= NETIF_F_GSO_SOFTWARE;
4724 one |= NETIF_F_GSO;
4725
4726 /*
4727 * If even one device supports a GSO protocol with software fallback,
4728 * enable it for all.
4729 */
4730 all |= one & NETIF_F_GSO_SOFTWARE;
4731
4732 /* If even one device supports robust GSO, enable it for all. */
4733 if (one & NETIF_F_GSO_ROBUST)
4734 all |= NETIF_F_GSO_ROBUST;
4735
4736 all &= one | NETIF_F_LLTX;
4737
4738 if (!(all & NETIF_F_ALL_CSUM))
4739 all &= ~NETIF_F_SG;
4740 if (!(all & NETIF_F_SG))
4741 all &= ~NETIF_F_GSO_MASK;
4742
4743 return all;
4744 }
4745 EXPORT_SYMBOL(netdev_compute_features);
4746
4747 static struct hlist_head *netdev_create_hash(void)
4748 {
4749 int i;
4750 struct hlist_head *hash;
4751
4752 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4753 if (hash != NULL)
4754 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4755 INIT_HLIST_HEAD(&hash[i]);
4756
4757 return hash;
4758 }
4759
4760 /* Initialize per network namespace state */
4761 static int __net_init netdev_init(struct net *net)
4762 {
4763 INIT_LIST_HEAD(&net->dev_base_head);
4764
4765 net->dev_name_head = netdev_create_hash();
4766 if (net->dev_name_head == NULL)
4767 goto err_name;
4768
4769 net->dev_index_head = netdev_create_hash();
4770 if (net->dev_index_head == NULL)
4771 goto err_idx;
4772
4773 return 0;
4774
4775 err_idx:
4776 kfree(net->dev_name_head);
4777 err_name:
4778 return -ENOMEM;
4779 }
4780
4781 /**
4782 * netdev_drivername - network driver for the device
4783 * @dev: network device
4784 * @buffer: buffer for resulting name
4785 * @len: size of buffer
4786 *
4787 * Determine network driver for device.
4788 */
4789 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
4790 {
4791 const struct device_driver *driver;
4792 const struct device *parent;
4793
4794 if (len <= 0 || !buffer)
4795 return buffer;
4796 buffer[0] = 0;
4797
4798 parent = dev->dev.parent;
4799
4800 if (!parent)
4801 return buffer;
4802
4803 driver = parent->driver;
4804 if (driver && driver->name)
4805 strlcpy(buffer, driver->name, len);
4806 return buffer;
4807 }
4808
4809 static void __net_exit netdev_exit(struct net *net)
4810 {
4811 kfree(net->dev_name_head);
4812 kfree(net->dev_index_head);
4813 }
4814
4815 static struct pernet_operations __net_initdata netdev_net_ops = {
4816 .init = netdev_init,
4817 .exit = netdev_exit,
4818 };
4819
4820 static void __net_exit default_device_exit(struct net *net)
4821 {
4822 struct net_device *dev, *next;
4823 /*
4824 * Push all migratable of the network devices back to the
4825 * initial network namespace
4826 */
4827 rtnl_lock();
4828 for_each_netdev_safe(net, dev, next) {
4829 int err;
4830 char fb_name[IFNAMSIZ];
4831
4832 /* Ignore unmoveable devices (i.e. loopback) */
4833 if (dev->features & NETIF_F_NETNS_LOCAL)
4834 continue;
4835
4836 /* Push remaing network devices to init_net */
4837 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4838 err = dev_change_net_namespace(dev, &init_net, fb_name);
4839 if (err) {
4840 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4841 __func__, dev->name, err);
4842 BUG();
4843 }
4844 }
4845 rtnl_unlock();
4846 }
4847
4848 static struct pernet_operations __net_initdata default_device_ops = {
4849 .exit = default_device_exit,
4850 };
4851
4852 /*
4853 * Initialize the DEV module. At boot time this walks the device list and
4854 * unhooks any devices that fail to initialise (normally hardware not
4855 * present) and leaves us with a valid list of present and active devices.
4856 *
4857 */
4858
4859 /*
4860 * This is called single threaded during boot, so no need
4861 * to take the rtnl semaphore.
4862 */
4863 static int __init net_dev_init(void)
4864 {
4865 int i, rc = -ENOMEM;
4866
4867 BUG_ON(!dev_boot_phase);
4868
4869 if (dev_proc_init())
4870 goto out;
4871
4872 if (netdev_kobject_init())
4873 goto out;
4874
4875 INIT_LIST_HEAD(&ptype_all);
4876 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4877 INIT_LIST_HEAD(&ptype_base[i]);
4878
4879 if (register_pernet_subsys(&netdev_net_ops))
4880 goto out;
4881
4882 if (register_pernet_device(&default_device_ops))
4883 goto out;
4884
4885 /*
4886 * Initialise the packet receive queues.
4887 */
4888
4889 for_each_possible_cpu(i) {
4890 struct softnet_data *queue;
4891
4892 queue = &per_cpu(softnet_data, i);
4893 skb_queue_head_init(&queue->input_pkt_queue);
4894 queue->completion_queue = NULL;
4895 INIT_LIST_HEAD(&queue->poll_list);
4896
4897 queue->backlog.poll = process_backlog;
4898 queue->backlog.weight = weight_p;
4899 }
4900
4901 netdev_dma_register();
4902
4903 dev_boot_phase = 0;
4904
4905 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4906 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4907
4908 hotcpu_notifier(dev_cpu_callback, 0);
4909 dst_init();
4910 dev_mcast_init();
4911 rc = 0;
4912 out:
4913 return rc;
4914 }
4915
4916 subsys_initcall(net_dev_init);
4917
4918 EXPORT_SYMBOL(__dev_get_by_index);
4919 EXPORT_SYMBOL(__dev_get_by_name);
4920 EXPORT_SYMBOL(__dev_remove_pack);
4921 EXPORT_SYMBOL(dev_valid_name);
4922 EXPORT_SYMBOL(dev_add_pack);
4923 EXPORT_SYMBOL(dev_alloc_name);
4924 EXPORT_SYMBOL(dev_close);
4925 EXPORT_SYMBOL(dev_get_by_flags);
4926 EXPORT_SYMBOL(dev_get_by_index);
4927 EXPORT_SYMBOL(dev_get_by_name);
4928 EXPORT_SYMBOL(dev_open);
4929 EXPORT_SYMBOL(dev_queue_xmit);
4930 EXPORT_SYMBOL(dev_remove_pack);
4931 EXPORT_SYMBOL(dev_set_allmulti);
4932 EXPORT_SYMBOL(dev_set_promiscuity);
4933 EXPORT_SYMBOL(dev_change_flags);
4934 EXPORT_SYMBOL(dev_set_mtu);
4935 EXPORT_SYMBOL(dev_set_mac_address);
4936 EXPORT_SYMBOL(free_netdev);
4937 EXPORT_SYMBOL(netdev_boot_setup_check);
4938 EXPORT_SYMBOL(netdev_set_master);
4939 EXPORT_SYMBOL(netdev_state_change);
4940 EXPORT_SYMBOL(netif_receive_skb);
4941 EXPORT_SYMBOL(netif_rx);
4942 EXPORT_SYMBOL(register_gifconf);
4943 EXPORT_SYMBOL(register_netdevice);
4944 EXPORT_SYMBOL(register_netdevice_notifier);
4945 EXPORT_SYMBOL(skb_checksum_help);
4946 EXPORT_SYMBOL(synchronize_net);
4947 EXPORT_SYMBOL(unregister_netdevice);
4948 EXPORT_SYMBOL(unregister_netdevice_notifier);
4949 EXPORT_SYMBOL(net_enable_timestamp);
4950 EXPORT_SYMBOL(net_disable_timestamp);
4951 EXPORT_SYMBOL(dev_get_flags);
4952
4953 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4954 EXPORT_SYMBOL(br_handle_frame_hook);
4955 EXPORT_SYMBOL(br_fdb_get_hook);
4956 EXPORT_SYMBOL(br_fdb_put_hook);
4957 #endif
4958
4959 EXPORT_SYMBOL(dev_load);
4960
4961 EXPORT_PER_CPU_SYMBOL(softnet_data);