Merge branch 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /*
133 * The list of packet types we will receive (as opposed to discard)
134 * and the routines to invoke.
135 *
136 * Why 16. Because with 16 the only overlap we get on a hash of the
137 * low nibble of the protocol value is RARP/SNAP/X.25.
138 *
139 * NOTE: That is no longer true with the addition of VLAN tags. Not
140 * sure which should go first, but I bet it won't make much
141 * difference if we are running VLANs. The good news is that
142 * this protocol won't be in the list unless compiled in, so
143 * the average user (w/out VLANs) will not be adversely affected.
144 * --BLG
145 *
146 * 0800 IP
147 * 8100 802.1Q VLAN
148 * 0001 802.3
149 * 0002 AX.25
150 * 0004 802.2
151 * 8035 RARP
152 * 0005 SNAP
153 * 0805 X.25
154 * 0806 ARP
155 * 8137 IPX
156 * 0009 Localtalk
157 * 86DD IPv6
158 */
159
160 #define PTYPE_HASH_SIZE (16)
161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
162
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly; /* Taps */
166
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 struct dma_client client;
170 spinlock_t lock;
171 cpumask_t channel_mask;
172 struct dma_chan **channels;
173 };
174
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 enum dma_state state);
178
179 static struct net_dma net_dma = {
180 .client = {
181 .event_callback = netdev_dma_event,
182 },
183 };
184 #endif
185
186 /*
187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188 * semaphore.
189 *
190 * Pure readers hold dev_base_lock for reading.
191 *
192 * Writers must hold the rtnl semaphore while they loop through the
193 * dev_base_head list, and hold dev_base_lock for writing when they do the
194 * actual updates. This allows pure readers to access the list even
195 * while a writer is preparing to update it.
196 *
197 * To put it another way, dev_base_lock is held for writing only to
198 * protect against pure readers; the rtnl semaphore provides the
199 * protection against other writers.
200 *
201 * See, for example usages, register_netdevice() and
202 * unregister_netdevice(), which must be called with the rtnl
203 * semaphore held.
204 */
205 DEFINE_RWLOCK(dev_base_lock);
206
207 EXPORT_SYMBOL(dev_base_lock);
208
209 #define NETDEV_HASHBITS 8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235 return 0;
236 }
237
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del(&dev->dev_list);
246 hlist_del(&dev->name_hlist);
247 hlist_del(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263
264 #ifdef CONFIG_LOCKDEP
265 /*
266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267 * according to dev->type
268 */
269 static const unsigned short netdev_lock_type[] =
270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 ARPHRD_NONE};
285
286 static const char *netdev_lock_name[] =
287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 "_xmit_NONE"};
302
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 int i;
309
310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 if (netdev_lock_type[i] == dev_type)
312 return i;
313 /* the last key is used by default */
314 return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 unsigned short dev_type)
319 {
320 int i;
321
322 i = netdev_lock_pos(dev_type);
323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 netdev_lock_name[i]);
325 }
326
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev->type);
332 lockdep_set_class_and_name(&dev->addr_list_lock,
333 &netdev_addr_lock_key[i],
334 netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345
346 /*******************************************************************************
347
348 Protocol management and registration routines
349
350 *******************************************************************************/
351
352 /*
353 * Add a protocol ID to the list. Now that the input handler is
354 * smarter we can dispense with all the messy stuff that used to be
355 * here.
356 *
357 * BEWARE!!! Protocol handlers, mangling input packets,
358 * MUST BE last in hash buckets and checking protocol handlers
359 * MUST start from promiscuous ptype_all chain in net_bh.
360 * It is true now, do not change it.
361 * Explanation follows: if protocol handler, mangling packet, will
362 * be the first on list, it is not able to sense, that packet
363 * is cloned and should be copied-on-write, so that it will
364 * change it and subsequent readers will get broken packet.
365 * --ANK (980803)
366 */
367
368 /**
369 * dev_add_pack - add packet handler
370 * @pt: packet type declaration
371 *
372 * Add a protocol handler to the networking stack. The passed &packet_type
373 * is linked into kernel lists and may not be freed until it has been
374 * removed from the kernel lists.
375 *
376 * This call does not sleep therefore it can not
377 * guarantee all CPU's that are in middle of receiving packets
378 * will see the new packet type (until the next received packet).
379 */
380
381 void dev_add_pack(struct packet_type *pt)
382 {
383 int hash;
384
385 spin_lock_bh(&ptype_lock);
386 if (pt->type == htons(ETH_P_ALL))
387 list_add_rcu(&pt->list, &ptype_all);
388 else {
389 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 list_add_rcu(&pt->list, &ptype_base[hash]);
391 }
392 spin_unlock_bh(&ptype_lock);
393 }
394
395 /**
396 * __dev_remove_pack - remove packet handler
397 * @pt: packet type declaration
398 *
399 * Remove a protocol handler that was previously added to the kernel
400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
401 * from the kernel lists and can be freed or reused once this function
402 * returns.
403 *
404 * The packet type might still be in use by receivers
405 * and must not be freed until after all the CPU's have gone
406 * through a quiescent state.
407 */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 struct list_head *head;
411 struct packet_type *pt1;
412
413 spin_lock_bh(&ptype_lock);
414
415 if (pt->type == htons(ETH_P_ALL))
416 head = &ptype_all;
417 else
418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 spin_unlock_bh(&ptype_lock);
430 }
431 /**
432 * dev_remove_pack - remove packet handler
433 * @pt: packet type declaration
434 *
435 * Remove a protocol handler that was previously added to the kernel
436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
437 * from the kernel lists and can be freed or reused once this function
438 * returns.
439 *
440 * This call sleeps to guarantee that no CPU is looking at the packet
441 * type after return.
442 */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 __dev_remove_pack(pt);
446
447 synchronize_net();
448 }
449
450 /******************************************************************************
451
452 Device Boot-time Settings Routines
453
454 *******************************************************************************/
455
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458
459 /**
460 * netdev_boot_setup_add - add new setup entry
461 * @name: name of the device
462 * @map: configured settings for the device
463 *
464 * Adds new setup entry to the dev_boot_setup list. The function
465 * returns 0 on error and 1 on success. This is a generic routine to
466 * all netdevices.
467 */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 struct netdev_boot_setup *s;
471 int i;
472
473 s = dev_boot_setup;
474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 memset(s[i].name, 0, sizeof(s[i].name));
477 strlcpy(s[i].name, name, IFNAMSIZ);
478 memcpy(&s[i].map, map, sizeof(s[i].map));
479 break;
480 }
481 }
482
483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485
486 /**
487 * netdev_boot_setup_check - check boot time settings
488 * @dev: the netdevice
489 *
490 * Check boot time settings for the device.
491 * The found settings are set for the device to be used
492 * later in the device probing.
493 * Returns 0 if no settings found, 1 if they are.
494 */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 struct netdev_boot_setup *s = dev_boot_setup;
498 int i;
499
500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 !strcmp(dev->name, s[i].name)) {
503 dev->irq = s[i].map.irq;
504 dev->base_addr = s[i].map.base_addr;
505 dev->mem_start = s[i].map.mem_start;
506 dev->mem_end = s[i].map.mem_end;
507 return 1;
508 }
509 }
510 return 0;
511 }
512
513
514 /**
515 * netdev_boot_base - get address from boot time settings
516 * @prefix: prefix for network device
517 * @unit: id for network device
518 *
519 * Check boot time settings for the base address of device.
520 * The found settings are set for the device to be used
521 * later in the device probing.
522 * Returns 0 if no settings found.
523 */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 const struct netdev_boot_setup *s = dev_boot_setup;
527 char name[IFNAMSIZ];
528 int i;
529
530 sprintf(name, "%s%d", prefix, unit);
531
532 /*
533 * If device already registered then return base of 1
534 * to indicate not to probe for this interface
535 */
536 if (__dev_get_by_name(&init_net, name))
537 return 1;
538
539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 if (!strcmp(name, s[i].name))
541 return s[i].map.base_addr;
542 return 0;
543 }
544
545 /*
546 * Saves at boot time configured settings for any netdevice.
547 */
548 int __init netdev_boot_setup(char *str)
549 {
550 int ints[5];
551 struct ifmap map;
552
553 str = get_options(str, ARRAY_SIZE(ints), ints);
554 if (!str || !*str)
555 return 0;
556
557 /* Save settings */
558 memset(&map, 0, sizeof(map));
559 if (ints[0] > 0)
560 map.irq = ints[1];
561 if (ints[0] > 1)
562 map.base_addr = ints[2];
563 if (ints[0] > 2)
564 map.mem_start = ints[3];
565 if (ints[0] > 3)
566 map.mem_end = ints[4];
567
568 /* Add new entry to the list */
569 return netdev_boot_setup_add(str, &map);
570 }
571
572 __setup("netdev=", netdev_boot_setup);
573
574 /*******************************************************************************
575
576 Device Interface Subroutines
577
578 *******************************************************************************/
579
580 /**
581 * __dev_get_by_name - find a device by its name
582 * @net: the applicable net namespace
583 * @name: name to find
584 *
585 * Find an interface by name. Must be called under RTNL semaphore
586 * or @dev_base_lock. If the name is found a pointer to the device
587 * is returned. If the name is not found then %NULL is returned. The
588 * reference counters are not incremented so the caller must be
589 * careful with locks.
590 */
591
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 struct hlist_node *p;
595
596 hlist_for_each(p, dev_name_hash(net, name)) {
597 struct net_device *dev
598 = hlist_entry(p, struct net_device, name_hlist);
599 if (!strncmp(dev->name, name, IFNAMSIZ))
600 return dev;
601 }
602 return NULL;
603 }
604
605 /**
606 * dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. This can be called from any
611 * context and does its own locking. The returned handle has
612 * the usage count incremented and the caller must use dev_put() to
613 * release it when it is no longer needed. %NULL is returned if no
614 * matching device is found.
615 */
616
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 struct net_device *dev;
620
621 read_lock(&dev_base_lock);
622 dev = __dev_get_by_name(net, name);
623 if (dev)
624 dev_hold(dev);
625 read_unlock(&dev_base_lock);
626 return dev;
627 }
628
629 /**
630 * __dev_get_by_index - find a device by its ifindex
631 * @net: the applicable net namespace
632 * @ifindex: index of device
633 *
634 * Search for an interface by index. Returns %NULL if the device
635 * is not found or a pointer to the device. The device has not
636 * had its reference counter increased so the caller must be careful
637 * about locking. The caller must hold either the RTNL semaphore
638 * or @dev_base_lock.
639 */
640
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 struct hlist_node *p;
644
645 hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 struct net_device *dev
647 = hlist_entry(p, struct net_device, index_hlist);
648 if (dev->ifindex == ifindex)
649 return dev;
650 }
651 return NULL;
652 }
653
654
655 /**
656 * dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
659 *
660 * Search for an interface by index. Returns NULL if the device
661 * is not found or a pointer to the device. The device returned has
662 * had a reference added and the pointer is safe until the user calls
663 * dev_put to indicate they have finished with it.
664 */
665
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct net_device *dev;
669
670 read_lock(&dev_base_lock);
671 dev = __dev_get_by_index(net, ifindex);
672 if (dev)
673 dev_hold(dev);
674 read_unlock(&dev_base_lock);
675 return dev;
676 }
677
678 /**
679 * dev_getbyhwaddr - find a device by its hardware address
680 * @net: the applicable net namespace
681 * @type: media type of device
682 * @ha: hardware address
683 *
684 * Search for an interface by MAC address. Returns NULL if the device
685 * is not found or a pointer to the device. The caller must hold the
686 * rtnl semaphore. The returned device has not had its ref count increased
687 * and the caller must therefore be careful about locking
688 *
689 * BUGS:
690 * If the API was consistent this would be __dev_get_by_hwaddr
691 */
692
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 struct net_device *dev;
696
697 ASSERT_RTNL();
698
699 for_each_netdev(net, dev)
700 if (dev->type == type &&
701 !memcmp(dev->dev_addr, ha, dev->addr_len))
702 return dev;
703
704 return NULL;
705 }
706
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 struct net_device *dev;
712
713 ASSERT_RTNL();
714 for_each_netdev(net, dev)
715 if (dev->type == type)
716 return dev;
717
718 return NULL;
719 }
720
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 struct net_device *dev;
726
727 rtnl_lock();
728 dev = __dev_getfirstbyhwtype(net, type);
729 if (dev)
730 dev_hold(dev);
731 rtnl_unlock();
732 return dev;
733 }
734
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736
737 /**
738 * dev_get_by_flags - find any device with given flags
739 * @net: the applicable net namespace
740 * @if_flags: IFF_* values
741 * @mask: bitmask of bits in if_flags to check
742 *
743 * Search for any interface with the given flags. Returns NULL if a device
744 * is not found or a pointer to the device. The device returned has
745 * had a reference added and the pointer is safe until the user calls
746 * dev_put to indicate they have finished with it.
747 */
748
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 struct net_device *dev, *ret;
752
753 ret = NULL;
754 read_lock(&dev_base_lock);
755 for_each_netdev(net, dev) {
756 if (((dev->flags ^ if_flags) & mask) == 0) {
757 dev_hold(dev);
758 ret = dev;
759 break;
760 }
761 }
762 read_unlock(&dev_base_lock);
763 return ret;
764 }
765
766 /**
767 * dev_valid_name - check if name is okay for network device
768 * @name: name string
769 *
770 * Network device names need to be valid file names to
771 * to allow sysfs to work. We also disallow any kind of
772 * whitespace.
773 */
774 int dev_valid_name(const char *name)
775 {
776 if (*name == '\0')
777 return 0;
778 if (strlen(name) >= IFNAMSIZ)
779 return 0;
780 if (!strcmp(name, ".") || !strcmp(name, ".."))
781 return 0;
782
783 while (*name) {
784 if (*name == '/' || isspace(*name))
785 return 0;
786 name++;
787 }
788 return 1;
789 }
790
791 /**
792 * __dev_alloc_name - allocate a name for a device
793 * @net: network namespace to allocate the device name in
794 * @name: name format string
795 * @buf: scratch buffer and result name string
796 *
797 * Passed a format string - eg "lt%d" it will try and find a suitable
798 * id. It scans list of devices to build up a free map, then chooses
799 * the first empty slot. The caller must hold the dev_base or rtnl lock
800 * while allocating the name and adding the device in order to avoid
801 * duplicates.
802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803 * Returns the number of the unit assigned or a negative errno code.
804 */
805
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 int i = 0;
809 const char *p;
810 const int max_netdevices = 8*PAGE_SIZE;
811 unsigned long *inuse;
812 struct net_device *d;
813
814 p = strnchr(name, IFNAMSIZ-1, '%');
815 if (p) {
816 /*
817 * Verify the string as this thing may have come from
818 * the user. There must be either one "%d" and no other "%"
819 * characters.
820 */
821 if (p[1] != 'd' || strchr(p + 2, '%'))
822 return -EINVAL;
823
824 /* Use one page as a bit array of possible slots */
825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 if (!inuse)
827 return -ENOMEM;
828
829 for_each_netdev(net, d) {
830 if (!sscanf(d->name, name, &i))
831 continue;
832 if (i < 0 || i >= max_netdevices)
833 continue;
834
835 /* avoid cases where sscanf is not exact inverse of printf */
836 snprintf(buf, IFNAMSIZ, name, i);
837 if (!strncmp(buf, d->name, IFNAMSIZ))
838 set_bit(i, inuse);
839 }
840
841 i = find_first_zero_bit(inuse, max_netdevices);
842 free_page((unsigned long) inuse);
843 }
844
845 snprintf(buf, IFNAMSIZ, name, i);
846 if (!__dev_get_by_name(net, buf))
847 return i;
848
849 /* It is possible to run out of possible slots
850 * when the name is long and there isn't enough space left
851 * for the digits, or if all bits are used.
852 */
853 return -ENFILE;
854 }
855
856 /**
857 * dev_alloc_name - allocate a name for a device
858 * @dev: device
859 * @name: name format string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 char buf[IFNAMSIZ];
873 struct net *net;
874 int ret;
875
876 BUG_ON(!dev_net(dev));
877 net = dev_net(dev);
878 ret = __dev_alloc_name(net, name, buf);
879 if (ret >= 0)
880 strlcpy(dev->name, buf, IFNAMSIZ);
881 return ret;
882 }
883
884
885 /**
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
889 *
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
892 */
893 int dev_change_name(struct net_device *dev, char *newname)
894 {
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
899
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
902
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
906
907 if (!dev_valid_name(newname))
908 return -EINVAL;
909
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
912
913 memcpy(oldname, dev->name, IFNAMSIZ);
914
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 strcpy(newname, dev->name);
920 }
921 else if (__dev_get_by_name(net, newname))
922 return -EEXIST;
923 else
924 strlcpy(dev->name, newname, IFNAMSIZ);
925
926 rollback:
927 err = device_rename(&dev->dev, dev->name);
928 if (err) {
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 return err;
931 }
932
933 write_lock_bh(&dev_base_lock);
934 hlist_del(&dev->name_hlist);
935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 write_unlock_bh(&dev_base_lock);
937
938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 ret = notifier_to_errno(ret);
940
941 if (ret) {
942 if (err) {
943 printk(KERN_ERR
944 "%s: name change rollback failed: %d.\n",
945 dev->name, ret);
946 } else {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 }
951 }
952
953 return err;
954 }
955
956 /**
957 * netdev_features_change - device changes features
958 * @dev: device to cause notification
959 *
960 * Called to indicate a device has changed features.
961 */
962 void netdev_features_change(struct net_device *dev)
963 {
964 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
965 }
966 EXPORT_SYMBOL(netdev_features_change);
967
968 /**
969 * netdev_state_change - device changes state
970 * @dev: device to cause notification
971 *
972 * Called to indicate a device has changed state. This function calls
973 * the notifier chains for netdev_chain and sends a NEWLINK message
974 * to the routing socket.
975 */
976 void netdev_state_change(struct net_device *dev)
977 {
978 if (dev->flags & IFF_UP) {
979 call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
981 }
982 }
983
984 void netdev_bonding_change(struct net_device *dev)
985 {
986 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
987 }
988 EXPORT_SYMBOL(netdev_bonding_change);
989
990 /**
991 * dev_load - load a network module
992 * @net: the applicable net namespace
993 * @name: name of interface
994 *
995 * If a network interface is not present and the process has suitable
996 * privileges this function loads the module. If module loading is not
997 * available in this kernel then it becomes a nop.
998 */
999
1000 void dev_load(struct net *net, const char *name)
1001 {
1002 struct net_device *dev;
1003
1004 read_lock(&dev_base_lock);
1005 dev = __dev_get_by_name(net, name);
1006 read_unlock(&dev_base_lock);
1007
1008 if (!dev && capable(CAP_SYS_MODULE))
1009 request_module("%s", name);
1010 }
1011
1012 /**
1013 * dev_open - prepare an interface for use.
1014 * @dev: device to open
1015 *
1016 * Takes a device from down to up state. The device's private open
1017 * function is invoked and then the multicast lists are loaded. Finally
1018 * the device is moved into the up state and a %NETDEV_UP message is
1019 * sent to the netdev notifier chain.
1020 *
1021 * Calling this function on an active interface is a nop. On a failure
1022 * a negative errno code is returned.
1023 */
1024 int dev_open(struct net_device *dev)
1025 {
1026 int ret = 0;
1027
1028 ASSERT_RTNL();
1029
1030 /*
1031 * Is it already up?
1032 */
1033
1034 if (dev->flags & IFF_UP)
1035 return 0;
1036
1037 /*
1038 * Is it even present?
1039 */
1040 if (!netif_device_present(dev))
1041 return -ENODEV;
1042
1043 /*
1044 * Call device private open method
1045 */
1046 set_bit(__LINK_STATE_START, &dev->state);
1047
1048 if (dev->validate_addr)
1049 ret = dev->validate_addr(dev);
1050
1051 if (!ret && dev->open)
1052 ret = dev->open(dev);
1053
1054 /*
1055 * If it went open OK then:
1056 */
1057
1058 if (ret)
1059 clear_bit(__LINK_STATE_START, &dev->state);
1060 else {
1061 /*
1062 * Set the flags.
1063 */
1064 dev->flags |= IFF_UP;
1065
1066 /*
1067 * Initialize multicasting status
1068 */
1069 dev_set_rx_mode(dev);
1070
1071 /*
1072 * Wakeup transmit queue engine
1073 */
1074 dev_activate(dev);
1075
1076 /*
1077 * ... and announce new interface.
1078 */
1079 call_netdevice_notifiers(NETDEV_UP, dev);
1080 }
1081
1082 return ret;
1083 }
1084
1085 /**
1086 * dev_close - shutdown an interface.
1087 * @dev: device to shutdown
1088 *
1089 * This function moves an active device into down state. A
1090 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092 * chain.
1093 */
1094 int dev_close(struct net_device *dev)
1095 {
1096 ASSERT_RTNL();
1097
1098 might_sleep();
1099
1100 if (!(dev->flags & IFF_UP))
1101 return 0;
1102
1103 /*
1104 * Tell people we are going down, so that they can
1105 * prepare to death, when device is still operating.
1106 */
1107 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1108
1109 clear_bit(__LINK_STATE_START, &dev->state);
1110
1111 /* Synchronize to scheduled poll. We cannot touch poll list,
1112 * it can be even on different cpu. So just clear netif_running().
1113 *
1114 * dev->stop() will invoke napi_disable() on all of it's
1115 * napi_struct instances on this device.
1116 */
1117 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1118
1119 dev_deactivate(dev);
1120
1121 /*
1122 * Call the device specific close. This cannot fail.
1123 * Only if device is UP
1124 *
1125 * We allow it to be called even after a DETACH hot-plug
1126 * event.
1127 */
1128 if (dev->stop)
1129 dev->stop(dev);
1130
1131 /*
1132 * Device is now down.
1133 */
1134
1135 dev->flags &= ~IFF_UP;
1136
1137 /*
1138 * Tell people we are down
1139 */
1140 call_netdevice_notifiers(NETDEV_DOWN, dev);
1141
1142 return 0;
1143 }
1144
1145
1146 /**
1147 * dev_disable_lro - disable Large Receive Offload on a device
1148 * @dev: device
1149 *
1150 * Disable Large Receive Offload (LRO) on a net device. Must be
1151 * called under RTNL. This is needed if received packets may be
1152 * forwarded to another interface.
1153 */
1154 void dev_disable_lro(struct net_device *dev)
1155 {
1156 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 dev->ethtool_ops->set_flags) {
1158 u32 flags = dev->ethtool_ops->get_flags(dev);
1159 if (flags & ETH_FLAG_LRO) {
1160 flags &= ~ETH_FLAG_LRO;
1161 dev->ethtool_ops->set_flags(dev, flags);
1162 }
1163 }
1164 WARN_ON(dev->features & NETIF_F_LRO);
1165 }
1166 EXPORT_SYMBOL(dev_disable_lro);
1167
1168
1169 static int dev_boot_phase = 1;
1170
1171 /*
1172 * Device change register/unregister. These are not inline or static
1173 * as we export them to the world.
1174 */
1175
1176 /**
1177 * register_netdevice_notifier - register a network notifier block
1178 * @nb: notifier
1179 *
1180 * Register a notifier to be called when network device events occur.
1181 * The notifier passed is linked into the kernel structures and must
1182 * not be reused until it has been unregistered. A negative errno code
1183 * is returned on a failure.
1184 *
1185 * When registered all registration and up events are replayed
1186 * to the new notifier to allow device to have a race free
1187 * view of the network device list.
1188 */
1189
1190 int register_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 struct net_device *dev;
1193 struct net_device *last;
1194 struct net *net;
1195 int err;
1196
1197 rtnl_lock();
1198 err = raw_notifier_chain_register(&netdev_chain, nb);
1199 if (err)
1200 goto unlock;
1201 if (dev_boot_phase)
1202 goto unlock;
1203 for_each_net(net) {
1204 for_each_netdev(net, dev) {
1205 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 err = notifier_to_errno(err);
1207 if (err)
1208 goto rollback;
1209
1210 if (!(dev->flags & IFF_UP))
1211 continue;
1212
1213 nb->notifier_call(nb, NETDEV_UP, dev);
1214 }
1215 }
1216
1217 unlock:
1218 rtnl_unlock();
1219 return err;
1220
1221 rollback:
1222 last = dev;
1223 for_each_net(net) {
1224 for_each_netdev(net, dev) {
1225 if (dev == last)
1226 break;
1227
1228 if (dev->flags & IFF_UP) {
1229 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 nb->notifier_call(nb, NETDEV_DOWN, dev);
1231 }
1232 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1233 }
1234 }
1235
1236 raw_notifier_chain_unregister(&netdev_chain, nb);
1237 goto unlock;
1238 }
1239
1240 /**
1241 * unregister_netdevice_notifier - unregister a network notifier block
1242 * @nb: notifier
1243 *
1244 * Unregister a notifier previously registered by
1245 * register_netdevice_notifier(). The notifier is unlinked into the
1246 * kernel structures and may then be reused. A negative errno code
1247 * is returned on a failure.
1248 */
1249
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1251 {
1252 int err;
1253
1254 rtnl_lock();
1255 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 rtnl_unlock();
1257 return err;
1258 }
1259
1260 /**
1261 * call_netdevice_notifiers - call all network notifier blocks
1262 * @val: value passed unmodified to notifier function
1263 * @dev: net_device pointer passed unmodified to notifier function
1264 *
1265 * Call all network notifier blocks. Parameters and return value
1266 * are as for raw_notifier_call_chain().
1267 */
1268
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1270 {
1271 return raw_notifier_call_chain(&netdev_chain, val, dev);
1272 }
1273
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1276
1277 void net_enable_timestamp(void)
1278 {
1279 atomic_inc(&netstamp_needed);
1280 }
1281
1282 void net_disable_timestamp(void)
1283 {
1284 atomic_dec(&netstamp_needed);
1285 }
1286
1287 static inline void net_timestamp(struct sk_buff *skb)
1288 {
1289 if (atomic_read(&netstamp_needed))
1290 __net_timestamp(skb);
1291 else
1292 skb->tstamp.tv64 = 0;
1293 }
1294
1295 /*
1296 * Support routine. Sends outgoing frames to any network
1297 * taps currently in use.
1298 */
1299
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 struct packet_type *ptype;
1303
1304 net_timestamp(skb);
1305
1306 rcu_read_lock();
1307 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 /* Never send packets back to the socket
1309 * they originated from - MvS (miquels@drinkel.ow.org)
1310 */
1311 if ((ptype->dev == dev || !ptype->dev) &&
1312 (ptype->af_packet_priv == NULL ||
1313 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 if (!skb2)
1316 break;
1317
1318 /* skb->nh should be correctly
1319 set by sender, so that the second statement is
1320 just protection against buggy protocols.
1321 */
1322 skb_reset_mac_header(skb2);
1323
1324 if (skb_network_header(skb2) < skb2->data ||
1325 skb2->network_header > skb2->tail) {
1326 if (net_ratelimit())
1327 printk(KERN_CRIT "protocol %04x is "
1328 "buggy, dev %s\n",
1329 skb2->protocol, dev->name);
1330 skb_reset_network_header(skb2);
1331 }
1332
1333 skb2->transport_header = skb2->network_header;
1334 skb2->pkt_type = PACKET_OUTGOING;
1335 ptype->func(skb2, skb->dev, ptype, skb->dev);
1336 }
1337 }
1338 rcu_read_unlock();
1339 }
1340
1341
1342 void __netif_schedule(struct Qdisc *q)
1343 {
1344 if (WARN_ON_ONCE(q == &noop_qdisc))
1345 return;
1346
1347 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1348 struct softnet_data *sd;
1349 unsigned long flags;
1350
1351 local_irq_save(flags);
1352 sd = &__get_cpu_var(softnet_data);
1353 q->next_sched = sd->output_queue;
1354 sd->output_queue = q;
1355 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1356 local_irq_restore(flags);
1357 }
1358 }
1359 EXPORT_SYMBOL(__netif_schedule);
1360
1361 void dev_kfree_skb_irq(struct sk_buff *skb)
1362 {
1363 if (atomic_dec_and_test(&skb->users)) {
1364 struct softnet_data *sd;
1365 unsigned long flags;
1366
1367 local_irq_save(flags);
1368 sd = &__get_cpu_var(softnet_data);
1369 skb->next = sd->completion_queue;
1370 sd->completion_queue = skb;
1371 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1372 local_irq_restore(flags);
1373 }
1374 }
1375 EXPORT_SYMBOL(dev_kfree_skb_irq);
1376
1377 void dev_kfree_skb_any(struct sk_buff *skb)
1378 {
1379 if (in_irq() || irqs_disabled())
1380 dev_kfree_skb_irq(skb);
1381 else
1382 dev_kfree_skb(skb);
1383 }
1384 EXPORT_SYMBOL(dev_kfree_skb_any);
1385
1386
1387 /**
1388 * netif_device_detach - mark device as removed
1389 * @dev: network device
1390 *
1391 * Mark device as removed from system and therefore no longer available.
1392 */
1393 void netif_device_detach(struct net_device *dev)
1394 {
1395 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1396 netif_running(dev)) {
1397 netif_stop_queue(dev);
1398 }
1399 }
1400 EXPORT_SYMBOL(netif_device_detach);
1401
1402 /**
1403 * netif_device_attach - mark device as attached
1404 * @dev: network device
1405 *
1406 * Mark device as attached from system and restart if needed.
1407 */
1408 void netif_device_attach(struct net_device *dev)
1409 {
1410 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1411 netif_running(dev)) {
1412 netif_wake_queue(dev);
1413 __netdev_watchdog_up(dev);
1414 }
1415 }
1416 EXPORT_SYMBOL(netif_device_attach);
1417
1418 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1419 {
1420 return ((features & NETIF_F_GEN_CSUM) ||
1421 ((features & NETIF_F_IP_CSUM) &&
1422 protocol == htons(ETH_P_IP)) ||
1423 ((features & NETIF_F_IPV6_CSUM) &&
1424 protocol == htons(ETH_P_IPV6)));
1425 }
1426
1427 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1428 {
1429 if (can_checksum_protocol(dev->features, skb->protocol))
1430 return true;
1431
1432 if (skb->protocol == htons(ETH_P_8021Q)) {
1433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1434 if (can_checksum_protocol(dev->features & dev->vlan_features,
1435 veh->h_vlan_encapsulated_proto))
1436 return true;
1437 }
1438
1439 return false;
1440 }
1441
1442 /*
1443 * Invalidate hardware checksum when packet is to be mangled, and
1444 * complete checksum manually on outgoing path.
1445 */
1446 int skb_checksum_help(struct sk_buff *skb)
1447 {
1448 __wsum csum;
1449 int ret = 0, offset;
1450
1451 if (skb->ip_summed == CHECKSUM_COMPLETE)
1452 goto out_set_summed;
1453
1454 if (unlikely(skb_shinfo(skb)->gso_size)) {
1455 /* Let GSO fix up the checksum. */
1456 goto out_set_summed;
1457 }
1458
1459 offset = skb->csum_start - skb_headroom(skb);
1460 BUG_ON(offset >= skb_headlen(skb));
1461 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1462
1463 offset += skb->csum_offset;
1464 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1465
1466 if (skb_cloned(skb) &&
1467 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1468 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1469 if (ret)
1470 goto out;
1471 }
1472
1473 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1474 out_set_summed:
1475 skb->ip_summed = CHECKSUM_NONE;
1476 out:
1477 return ret;
1478 }
1479
1480 /**
1481 * skb_gso_segment - Perform segmentation on skb.
1482 * @skb: buffer to segment
1483 * @features: features for the output path (see dev->features)
1484 *
1485 * This function segments the given skb and returns a list of segments.
1486 *
1487 * It may return NULL if the skb requires no segmentation. This is
1488 * only possible when GSO is used for verifying header integrity.
1489 */
1490 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1491 {
1492 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1493 struct packet_type *ptype;
1494 __be16 type = skb->protocol;
1495 int err;
1496
1497 BUG_ON(skb_shinfo(skb)->frag_list);
1498
1499 skb_reset_mac_header(skb);
1500 skb->mac_len = skb->network_header - skb->mac_header;
1501 __skb_pull(skb, skb->mac_len);
1502
1503 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1504 if (skb_header_cloned(skb) &&
1505 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1506 return ERR_PTR(err);
1507 }
1508
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(ptype,
1511 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1512 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1513 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1514 err = ptype->gso_send_check(skb);
1515 segs = ERR_PTR(err);
1516 if (err || skb_gso_ok(skb, features))
1517 break;
1518 __skb_push(skb, (skb->data -
1519 skb_network_header(skb)));
1520 }
1521 segs = ptype->gso_segment(skb, features);
1522 break;
1523 }
1524 }
1525 rcu_read_unlock();
1526
1527 __skb_push(skb, skb->data - skb_mac_header(skb));
1528
1529 return segs;
1530 }
1531
1532 EXPORT_SYMBOL(skb_gso_segment);
1533
1534 /* Take action when hardware reception checksum errors are detected. */
1535 #ifdef CONFIG_BUG
1536 void netdev_rx_csum_fault(struct net_device *dev)
1537 {
1538 if (net_ratelimit()) {
1539 printk(KERN_ERR "%s: hw csum failure.\n",
1540 dev ? dev->name : "<unknown>");
1541 dump_stack();
1542 }
1543 }
1544 EXPORT_SYMBOL(netdev_rx_csum_fault);
1545 #endif
1546
1547 /* Actually, we should eliminate this check as soon as we know, that:
1548 * 1. IOMMU is present and allows to map all the memory.
1549 * 2. No high memory really exists on this machine.
1550 */
1551
1552 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1553 {
1554 #ifdef CONFIG_HIGHMEM
1555 int i;
1556
1557 if (dev->features & NETIF_F_HIGHDMA)
1558 return 0;
1559
1560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1561 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1562 return 1;
1563
1564 #endif
1565 return 0;
1566 }
1567
1568 struct dev_gso_cb {
1569 void (*destructor)(struct sk_buff *skb);
1570 };
1571
1572 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1573
1574 static void dev_gso_skb_destructor(struct sk_buff *skb)
1575 {
1576 struct dev_gso_cb *cb;
1577
1578 do {
1579 struct sk_buff *nskb = skb->next;
1580
1581 skb->next = nskb->next;
1582 nskb->next = NULL;
1583 kfree_skb(nskb);
1584 } while (skb->next);
1585
1586 cb = DEV_GSO_CB(skb);
1587 if (cb->destructor)
1588 cb->destructor(skb);
1589 }
1590
1591 /**
1592 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1593 * @skb: buffer to segment
1594 *
1595 * This function segments the given skb and stores the list of segments
1596 * in skb->next.
1597 */
1598 static int dev_gso_segment(struct sk_buff *skb)
1599 {
1600 struct net_device *dev = skb->dev;
1601 struct sk_buff *segs;
1602 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1603 NETIF_F_SG : 0);
1604
1605 segs = skb_gso_segment(skb, features);
1606
1607 /* Verifying header integrity only. */
1608 if (!segs)
1609 return 0;
1610
1611 if (IS_ERR(segs))
1612 return PTR_ERR(segs);
1613
1614 skb->next = segs;
1615 DEV_GSO_CB(skb)->destructor = skb->destructor;
1616 skb->destructor = dev_gso_skb_destructor;
1617
1618 return 0;
1619 }
1620
1621 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1622 struct netdev_queue *txq)
1623 {
1624 if (likely(!skb->next)) {
1625 if (!list_empty(&ptype_all))
1626 dev_queue_xmit_nit(skb, dev);
1627
1628 if (netif_needs_gso(dev, skb)) {
1629 if (unlikely(dev_gso_segment(skb)))
1630 goto out_kfree_skb;
1631 if (skb->next)
1632 goto gso;
1633 }
1634
1635 return dev->hard_start_xmit(skb, dev);
1636 }
1637
1638 gso:
1639 do {
1640 struct sk_buff *nskb = skb->next;
1641 int rc;
1642
1643 skb->next = nskb->next;
1644 nskb->next = NULL;
1645 rc = dev->hard_start_xmit(nskb, dev);
1646 if (unlikely(rc)) {
1647 nskb->next = skb->next;
1648 skb->next = nskb;
1649 return rc;
1650 }
1651 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1652 return NETDEV_TX_BUSY;
1653 } while (skb->next);
1654
1655 skb->destructor = DEV_GSO_CB(skb)->destructor;
1656
1657 out_kfree_skb:
1658 kfree_skb(skb);
1659 return 0;
1660 }
1661
1662 static u32 simple_tx_hashrnd;
1663 static int simple_tx_hashrnd_initialized = 0;
1664
1665 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1666 {
1667 u32 addr1, addr2, ports;
1668 u32 hash, ihl;
1669 u8 ip_proto;
1670
1671 if (unlikely(!simple_tx_hashrnd_initialized)) {
1672 get_random_bytes(&simple_tx_hashrnd, 4);
1673 simple_tx_hashrnd_initialized = 1;
1674 }
1675
1676 switch (skb->protocol) {
1677 case __constant_htons(ETH_P_IP):
1678 ip_proto = ip_hdr(skb)->protocol;
1679 addr1 = ip_hdr(skb)->saddr;
1680 addr2 = ip_hdr(skb)->daddr;
1681 ihl = ip_hdr(skb)->ihl;
1682 break;
1683 case __constant_htons(ETH_P_IPV6):
1684 ip_proto = ipv6_hdr(skb)->nexthdr;
1685 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1686 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1687 ihl = (40 >> 2);
1688 break;
1689 default:
1690 return 0;
1691 }
1692
1693
1694 switch (ip_proto) {
1695 case IPPROTO_TCP:
1696 case IPPROTO_UDP:
1697 case IPPROTO_DCCP:
1698 case IPPROTO_ESP:
1699 case IPPROTO_AH:
1700 case IPPROTO_SCTP:
1701 case IPPROTO_UDPLITE:
1702 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1703 break;
1704
1705 default:
1706 ports = 0;
1707 break;
1708 }
1709
1710 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1711
1712 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1713 }
1714
1715 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1716 struct sk_buff *skb)
1717 {
1718 u16 queue_index = 0;
1719
1720 if (dev->select_queue)
1721 queue_index = dev->select_queue(dev, skb);
1722 else if (dev->real_num_tx_queues > 1)
1723 queue_index = simple_tx_hash(dev, skb);
1724
1725 skb_set_queue_mapping(skb, queue_index);
1726 return netdev_get_tx_queue(dev, queue_index);
1727 }
1728
1729 /**
1730 * dev_queue_xmit - transmit a buffer
1731 * @skb: buffer to transmit
1732 *
1733 * Queue a buffer for transmission to a network device. The caller must
1734 * have set the device and priority and built the buffer before calling
1735 * this function. The function can be called from an interrupt.
1736 *
1737 * A negative errno code is returned on a failure. A success does not
1738 * guarantee the frame will be transmitted as it may be dropped due
1739 * to congestion or traffic shaping.
1740 *
1741 * -----------------------------------------------------------------------------------
1742 * I notice this method can also return errors from the queue disciplines,
1743 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1744 * be positive.
1745 *
1746 * Regardless of the return value, the skb is consumed, so it is currently
1747 * difficult to retry a send to this method. (You can bump the ref count
1748 * before sending to hold a reference for retry if you are careful.)
1749 *
1750 * When calling this method, interrupts MUST be enabled. This is because
1751 * the BH enable code must have IRQs enabled so that it will not deadlock.
1752 * --BLG
1753 */
1754 int dev_queue_xmit(struct sk_buff *skb)
1755 {
1756 struct net_device *dev = skb->dev;
1757 struct netdev_queue *txq;
1758 struct Qdisc *q;
1759 int rc = -ENOMEM;
1760
1761 /* GSO will handle the following emulations directly. */
1762 if (netif_needs_gso(dev, skb))
1763 goto gso;
1764
1765 if (skb_shinfo(skb)->frag_list &&
1766 !(dev->features & NETIF_F_FRAGLIST) &&
1767 __skb_linearize(skb))
1768 goto out_kfree_skb;
1769
1770 /* Fragmented skb is linearized if device does not support SG,
1771 * or if at least one of fragments is in highmem and device
1772 * does not support DMA from it.
1773 */
1774 if (skb_shinfo(skb)->nr_frags &&
1775 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1776 __skb_linearize(skb))
1777 goto out_kfree_skb;
1778
1779 /* If packet is not checksummed and device does not support
1780 * checksumming for this protocol, complete checksumming here.
1781 */
1782 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1783 skb_set_transport_header(skb, skb->csum_start -
1784 skb_headroom(skb));
1785 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1786 goto out_kfree_skb;
1787 }
1788
1789 gso:
1790 /* Disable soft irqs for various locks below. Also
1791 * stops preemption for RCU.
1792 */
1793 rcu_read_lock_bh();
1794
1795 txq = dev_pick_tx(dev, skb);
1796 q = rcu_dereference(txq->qdisc);
1797
1798 #ifdef CONFIG_NET_CLS_ACT
1799 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1800 #endif
1801 if (q->enqueue) {
1802 spinlock_t *root_lock = qdisc_root_lock(q);
1803
1804 spin_lock(root_lock);
1805
1806 rc = qdisc_enqueue_root(skb, q);
1807 qdisc_run(q);
1808
1809 spin_unlock(root_lock);
1810
1811 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1812 goto out;
1813 }
1814
1815 /* The device has no queue. Common case for software devices:
1816 loopback, all the sorts of tunnels...
1817
1818 Really, it is unlikely that netif_tx_lock protection is necessary
1819 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1820 counters.)
1821 However, it is possible, that they rely on protection
1822 made by us here.
1823
1824 Check this and shot the lock. It is not prone from deadlocks.
1825 Either shot noqueue qdisc, it is even simpler 8)
1826 */
1827 if (dev->flags & IFF_UP) {
1828 int cpu = smp_processor_id(); /* ok because BHs are off */
1829
1830 if (txq->xmit_lock_owner != cpu) {
1831
1832 HARD_TX_LOCK(dev, txq, cpu);
1833
1834 if (!netif_tx_queue_stopped(txq)) {
1835 rc = 0;
1836 if (!dev_hard_start_xmit(skb, dev, txq)) {
1837 HARD_TX_UNLOCK(dev, txq);
1838 goto out;
1839 }
1840 }
1841 HARD_TX_UNLOCK(dev, txq);
1842 if (net_ratelimit())
1843 printk(KERN_CRIT "Virtual device %s asks to "
1844 "queue packet!\n", dev->name);
1845 } else {
1846 /* Recursion is detected! It is possible,
1847 * unfortunately */
1848 if (net_ratelimit())
1849 printk(KERN_CRIT "Dead loop on virtual device "
1850 "%s, fix it urgently!\n", dev->name);
1851 }
1852 }
1853
1854 rc = -ENETDOWN;
1855 rcu_read_unlock_bh();
1856
1857 out_kfree_skb:
1858 kfree_skb(skb);
1859 return rc;
1860 out:
1861 rcu_read_unlock_bh();
1862 return rc;
1863 }
1864
1865
1866 /*=======================================================================
1867 Receiver routines
1868 =======================================================================*/
1869
1870 int netdev_max_backlog __read_mostly = 1000;
1871 int netdev_budget __read_mostly = 300;
1872 int weight_p __read_mostly = 64; /* old backlog weight */
1873
1874 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1875
1876
1877 /**
1878 * netif_rx - post buffer to the network code
1879 * @skb: buffer to post
1880 *
1881 * This function receives a packet from a device driver and queues it for
1882 * the upper (protocol) levels to process. It always succeeds. The buffer
1883 * may be dropped during processing for congestion control or by the
1884 * protocol layers.
1885 *
1886 * return values:
1887 * NET_RX_SUCCESS (no congestion)
1888 * NET_RX_DROP (packet was dropped)
1889 *
1890 */
1891
1892 int netif_rx(struct sk_buff *skb)
1893 {
1894 struct softnet_data *queue;
1895 unsigned long flags;
1896
1897 /* if netpoll wants it, pretend we never saw it */
1898 if (netpoll_rx(skb))
1899 return NET_RX_DROP;
1900
1901 if (!skb->tstamp.tv64)
1902 net_timestamp(skb);
1903
1904 /*
1905 * The code is rearranged so that the path is the most
1906 * short when CPU is congested, but is still operating.
1907 */
1908 local_irq_save(flags);
1909 queue = &__get_cpu_var(softnet_data);
1910
1911 __get_cpu_var(netdev_rx_stat).total++;
1912 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1913 if (queue->input_pkt_queue.qlen) {
1914 enqueue:
1915 dev_hold(skb->dev);
1916 __skb_queue_tail(&queue->input_pkt_queue, skb);
1917 local_irq_restore(flags);
1918 return NET_RX_SUCCESS;
1919 }
1920
1921 napi_schedule(&queue->backlog);
1922 goto enqueue;
1923 }
1924
1925 __get_cpu_var(netdev_rx_stat).dropped++;
1926 local_irq_restore(flags);
1927
1928 kfree_skb(skb);
1929 return NET_RX_DROP;
1930 }
1931
1932 int netif_rx_ni(struct sk_buff *skb)
1933 {
1934 int err;
1935
1936 preempt_disable();
1937 err = netif_rx(skb);
1938 if (local_softirq_pending())
1939 do_softirq();
1940 preempt_enable();
1941
1942 return err;
1943 }
1944
1945 EXPORT_SYMBOL(netif_rx_ni);
1946
1947 static inline struct net_device *skb_bond(struct sk_buff *skb)
1948 {
1949 struct net_device *dev = skb->dev;
1950
1951 if (dev->master) {
1952 if (skb_bond_should_drop(skb)) {
1953 kfree_skb(skb);
1954 return NULL;
1955 }
1956 skb->dev = dev->master;
1957 }
1958
1959 return dev;
1960 }
1961
1962
1963 static void net_tx_action(struct softirq_action *h)
1964 {
1965 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1966
1967 if (sd->completion_queue) {
1968 struct sk_buff *clist;
1969
1970 local_irq_disable();
1971 clist = sd->completion_queue;
1972 sd->completion_queue = NULL;
1973 local_irq_enable();
1974
1975 while (clist) {
1976 struct sk_buff *skb = clist;
1977 clist = clist->next;
1978
1979 BUG_TRAP(!atomic_read(&skb->users));
1980 __kfree_skb(skb);
1981 }
1982 }
1983
1984 if (sd->output_queue) {
1985 struct Qdisc *head;
1986
1987 local_irq_disable();
1988 head = sd->output_queue;
1989 sd->output_queue = NULL;
1990 local_irq_enable();
1991
1992 while (head) {
1993 struct Qdisc *q = head;
1994 spinlock_t *root_lock;
1995
1996 head = head->next_sched;
1997
1998 smp_mb__before_clear_bit();
1999 clear_bit(__QDISC_STATE_SCHED, &q->state);
2000
2001 root_lock = qdisc_root_lock(q);
2002 if (spin_trylock(root_lock)) {
2003 qdisc_run(q);
2004 spin_unlock(root_lock);
2005 } else {
2006 __netif_schedule(q);
2007 }
2008 }
2009 }
2010 }
2011
2012 static inline int deliver_skb(struct sk_buff *skb,
2013 struct packet_type *pt_prev,
2014 struct net_device *orig_dev)
2015 {
2016 atomic_inc(&skb->users);
2017 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2018 }
2019
2020 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2021 /* These hooks defined here for ATM */
2022 struct net_bridge;
2023 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2024 unsigned char *addr);
2025 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2026
2027 /*
2028 * If bridge module is loaded call bridging hook.
2029 * returns NULL if packet was consumed.
2030 */
2031 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2032 struct sk_buff *skb) __read_mostly;
2033 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2034 struct packet_type **pt_prev, int *ret,
2035 struct net_device *orig_dev)
2036 {
2037 struct net_bridge_port *port;
2038
2039 if (skb->pkt_type == PACKET_LOOPBACK ||
2040 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2041 return skb;
2042
2043 if (*pt_prev) {
2044 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2045 *pt_prev = NULL;
2046 }
2047
2048 return br_handle_frame_hook(port, skb);
2049 }
2050 #else
2051 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2052 #endif
2053
2054 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2055 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2056 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2057
2058 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2059 struct packet_type **pt_prev,
2060 int *ret,
2061 struct net_device *orig_dev)
2062 {
2063 if (skb->dev->macvlan_port == NULL)
2064 return skb;
2065
2066 if (*pt_prev) {
2067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2068 *pt_prev = NULL;
2069 }
2070 return macvlan_handle_frame_hook(skb);
2071 }
2072 #else
2073 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2074 #endif
2075
2076 #ifdef CONFIG_NET_CLS_ACT
2077 /* TODO: Maybe we should just force sch_ingress to be compiled in
2078 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2079 * a compare and 2 stores extra right now if we dont have it on
2080 * but have CONFIG_NET_CLS_ACT
2081 * NOTE: This doesnt stop any functionality; if you dont have
2082 * the ingress scheduler, you just cant add policies on ingress.
2083 *
2084 */
2085 static int ing_filter(struct sk_buff *skb)
2086 {
2087 struct net_device *dev = skb->dev;
2088 u32 ttl = G_TC_RTTL(skb->tc_verd);
2089 struct netdev_queue *rxq;
2090 int result = TC_ACT_OK;
2091 struct Qdisc *q;
2092
2093 if (MAX_RED_LOOP < ttl++) {
2094 printk(KERN_WARNING
2095 "Redir loop detected Dropping packet (%d->%d)\n",
2096 skb->iif, dev->ifindex);
2097 return TC_ACT_SHOT;
2098 }
2099
2100 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2101 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2102
2103 rxq = &dev->rx_queue;
2104
2105 q = rxq->qdisc;
2106 if (q) {
2107 spin_lock(qdisc_lock(q));
2108 result = qdisc_enqueue_root(skb, q);
2109 spin_unlock(qdisc_lock(q));
2110 }
2111
2112 return result;
2113 }
2114
2115 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2116 struct packet_type **pt_prev,
2117 int *ret, struct net_device *orig_dev)
2118 {
2119 if (!skb->dev->rx_queue.qdisc)
2120 goto out;
2121
2122 if (*pt_prev) {
2123 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2124 *pt_prev = NULL;
2125 } else {
2126 /* Huh? Why does turning on AF_PACKET affect this? */
2127 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2128 }
2129
2130 switch (ing_filter(skb)) {
2131 case TC_ACT_SHOT:
2132 case TC_ACT_STOLEN:
2133 kfree_skb(skb);
2134 return NULL;
2135 }
2136
2137 out:
2138 skb->tc_verd = 0;
2139 return skb;
2140 }
2141 #endif
2142
2143 /*
2144 * netif_nit_deliver - deliver received packets to network taps
2145 * @skb: buffer
2146 *
2147 * This function is used to deliver incoming packets to network
2148 * taps. It should be used when the normal netif_receive_skb path
2149 * is bypassed, for example because of VLAN acceleration.
2150 */
2151 void netif_nit_deliver(struct sk_buff *skb)
2152 {
2153 struct packet_type *ptype;
2154
2155 if (list_empty(&ptype_all))
2156 return;
2157
2158 skb_reset_network_header(skb);
2159 skb_reset_transport_header(skb);
2160 skb->mac_len = skb->network_header - skb->mac_header;
2161
2162 rcu_read_lock();
2163 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2164 if (!ptype->dev || ptype->dev == skb->dev)
2165 deliver_skb(skb, ptype, skb->dev);
2166 }
2167 rcu_read_unlock();
2168 }
2169
2170 /**
2171 * netif_receive_skb - process receive buffer from network
2172 * @skb: buffer to process
2173 *
2174 * netif_receive_skb() is the main receive data processing function.
2175 * It always succeeds. The buffer may be dropped during processing
2176 * for congestion control or by the protocol layers.
2177 *
2178 * This function may only be called from softirq context and interrupts
2179 * should be enabled.
2180 *
2181 * Return values (usually ignored):
2182 * NET_RX_SUCCESS: no congestion
2183 * NET_RX_DROP: packet was dropped
2184 */
2185 int netif_receive_skb(struct sk_buff *skb)
2186 {
2187 struct packet_type *ptype, *pt_prev;
2188 struct net_device *orig_dev;
2189 int ret = NET_RX_DROP;
2190 __be16 type;
2191
2192 /* if we've gotten here through NAPI, check netpoll */
2193 if (netpoll_receive_skb(skb))
2194 return NET_RX_DROP;
2195
2196 if (!skb->tstamp.tv64)
2197 net_timestamp(skb);
2198
2199 if (!skb->iif)
2200 skb->iif = skb->dev->ifindex;
2201
2202 orig_dev = skb_bond(skb);
2203
2204 if (!orig_dev)
2205 return NET_RX_DROP;
2206
2207 __get_cpu_var(netdev_rx_stat).total++;
2208
2209 skb_reset_network_header(skb);
2210 skb_reset_transport_header(skb);
2211 skb->mac_len = skb->network_header - skb->mac_header;
2212
2213 pt_prev = NULL;
2214
2215 rcu_read_lock();
2216
2217 /* Don't receive packets in an exiting network namespace */
2218 if (!net_alive(dev_net(skb->dev)))
2219 goto out;
2220
2221 #ifdef CONFIG_NET_CLS_ACT
2222 if (skb->tc_verd & TC_NCLS) {
2223 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2224 goto ncls;
2225 }
2226 #endif
2227
2228 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2229 if (!ptype->dev || ptype->dev == skb->dev) {
2230 if (pt_prev)
2231 ret = deliver_skb(skb, pt_prev, orig_dev);
2232 pt_prev = ptype;
2233 }
2234 }
2235
2236 #ifdef CONFIG_NET_CLS_ACT
2237 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2238 if (!skb)
2239 goto out;
2240 ncls:
2241 #endif
2242
2243 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2244 if (!skb)
2245 goto out;
2246 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2247 if (!skb)
2248 goto out;
2249
2250 type = skb->protocol;
2251 list_for_each_entry_rcu(ptype,
2252 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2253 if (ptype->type == type &&
2254 (!ptype->dev || ptype->dev == skb->dev)) {
2255 if (pt_prev)
2256 ret = deliver_skb(skb, pt_prev, orig_dev);
2257 pt_prev = ptype;
2258 }
2259 }
2260
2261 if (pt_prev) {
2262 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2263 } else {
2264 kfree_skb(skb);
2265 /* Jamal, now you will not able to escape explaining
2266 * me how you were going to use this. :-)
2267 */
2268 ret = NET_RX_DROP;
2269 }
2270
2271 out:
2272 rcu_read_unlock();
2273 return ret;
2274 }
2275
2276 static int process_backlog(struct napi_struct *napi, int quota)
2277 {
2278 int work = 0;
2279 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2280 unsigned long start_time = jiffies;
2281
2282 napi->weight = weight_p;
2283 do {
2284 struct sk_buff *skb;
2285 struct net_device *dev;
2286
2287 local_irq_disable();
2288 skb = __skb_dequeue(&queue->input_pkt_queue);
2289 if (!skb) {
2290 __napi_complete(napi);
2291 local_irq_enable();
2292 break;
2293 }
2294
2295 local_irq_enable();
2296
2297 dev = skb->dev;
2298
2299 netif_receive_skb(skb);
2300
2301 dev_put(dev);
2302 } while (++work < quota && jiffies == start_time);
2303
2304 return work;
2305 }
2306
2307 /**
2308 * __napi_schedule - schedule for receive
2309 * @n: entry to schedule
2310 *
2311 * The entry's receive function will be scheduled to run
2312 */
2313 void __napi_schedule(struct napi_struct *n)
2314 {
2315 unsigned long flags;
2316
2317 local_irq_save(flags);
2318 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2319 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2320 local_irq_restore(flags);
2321 }
2322 EXPORT_SYMBOL(__napi_schedule);
2323
2324
2325 static void net_rx_action(struct softirq_action *h)
2326 {
2327 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2328 unsigned long start_time = jiffies;
2329 int budget = netdev_budget;
2330 void *have;
2331
2332 local_irq_disable();
2333
2334 while (!list_empty(list)) {
2335 struct napi_struct *n;
2336 int work, weight;
2337
2338 /* If softirq window is exhuasted then punt.
2339 *
2340 * Note that this is a slight policy change from the
2341 * previous NAPI code, which would allow up to 2
2342 * jiffies to pass before breaking out. The test
2343 * used to be "jiffies - start_time > 1".
2344 */
2345 if (unlikely(budget <= 0 || jiffies != start_time))
2346 goto softnet_break;
2347
2348 local_irq_enable();
2349
2350 /* Even though interrupts have been re-enabled, this
2351 * access is safe because interrupts can only add new
2352 * entries to the tail of this list, and only ->poll()
2353 * calls can remove this head entry from the list.
2354 */
2355 n = list_entry(list->next, struct napi_struct, poll_list);
2356
2357 have = netpoll_poll_lock(n);
2358
2359 weight = n->weight;
2360
2361 /* This NAPI_STATE_SCHED test is for avoiding a race
2362 * with netpoll's poll_napi(). Only the entity which
2363 * obtains the lock and sees NAPI_STATE_SCHED set will
2364 * actually make the ->poll() call. Therefore we avoid
2365 * accidently calling ->poll() when NAPI is not scheduled.
2366 */
2367 work = 0;
2368 if (test_bit(NAPI_STATE_SCHED, &n->state))
2369 work = n->poll(n, weight);
2370
2371 WARN_ON_ONCE(work > weight);
2372
2373 budget -= work;
2374
2375 local_irq_disable();
2376
2377 /* Drivers must not modify the NAPI state if they
2378 * consume the entire weight. In such cases this code
2379 * still "owns" the NAPI instance and therefore can
2380 * move the instance around on the list at-will.
2381 */
2382 if (unlikely(work == weight)) {
2383 if (unlikely(napi_disable_pending(n)))
2384 __napi_complete(n);
2385 else
2386 list_move_tail(&n->poll_list, list);
2387 }
2388
2389 netpoll_poll_unlock(have);
2390 }
2391 out:
2392 local_irq_enable();
2393
2394 #ifdef CONFIG_NET_DMA
2395 /*
2396 * There may not be any more sk_buffs coming right now, so push
2397 * any pending DMA copies to hardware
2398 */
2399 if (!cpus_empty(net_dma.channel_mask)) {
2400 int chan_idx;
2401 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2402 struct dma_chan *chan = net_dma.channels[chan_idx];
2403 if (chan)
2404 dma_async_memcpy_issue_pending(chan);
2405 }
2406 }
2407 #endif
2408
2409 return;
2410
2411 softnet_break:
2412 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2413 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2414 goto out;
2415 }
2416
2417 static gifconf_func_t * gifconf_list [NPROTO];
2418
2419 /**
2420 * register_gifconf - register a SIOCGIF handler
2421 * @family: Address family
2422 * @gifconf: Function handler
2423 *
2424 * Register protocol dependent address dumping routines. The handler
2425 * that is passed must not be freed or reused until it has been replaced
2426 * by another handler.
2427 */
2428 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2429 {
2430 if (family >= NPROTO)
2431 return -EINVAL;
2432 gifconf_list[family] = gifconf;
2433 return 0;
2434 }
2435
2436
2437 /*
2438 * Map an interface index to its name (SIOCGIFNAME)
2439 */
2440
2441 /*
2442 * We need this ioctl for efficient implementation of the
2443 * if_indextoname() function required by the IPv6 API. Without
2444 * it, we would have to search all the interfaces to find a
2445 * match. --pb
2446 */
2447
2448 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2449 {
2450 struct net_device *dev;
2451 struct ifreq ifr;
2452
2453 /*
2454 * Fetch the caller's info block.
2455 */
2456
2457 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2458 return -EFAULT;
2459
2460 read_lock(&dev_base_lock);
2461 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2462 if (!dev) {
2463 read_unlock(&dev_base_lock);
2464 return -ENODEV;
2465 }
2466
2467 strcpy(ifr.ifr_name, dev->name);
2468 read_unlock(&dev_base_lock);
2469
2470 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2471 return -EFAULT;
2472 return 0;
2473 }
2474
2475 /*
2476 * Perform a SIOCGIFCONF call. This structure will change
2477 * size eventually, and there is nothing I can do about it.
2478 * Thus we will need a 'compatibility mode'.
2479 */
2480
2481 static int dev_ifconf(struct net *net, char __user *arg)
2482 {
2483 struct ifconf ifc;
2484 struct net_device *dev;
2485 char __user *pos;
2486 int len;
2487 int total;
2488 int i;
2489
2490 /*
2491 * Fetch the caller's info block.
2492 */
2493
2494 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2495 return -EFAULT;
2496
2497 pos = ifc.ifc_buf;
2498 len = ifc.ifc_len;
2499
2500 /*
2501 * Loop over the interfaces, and write an info block for each.
2502 */
2503
2504 total = 0;
2505 for_each_netdev(net, dev) {
2506 for (i = 0; i < NPROTO; i++) {
2507 if (gifconf_list[i]) {
2508 int done;
2509 if (!pos)
2510 done = gifconf_list[i](dev, NULL, 0);
2511 else
2512 done = gifconf_list[i](dev, pos + total,
2513 len - total);
2514 if (done < 0)
2515 return -EFAULT;
2516 total += done;
2517 }
2518 }
2519 }
2520
2521 /*
2522 * All done. Write the updated control block back to the caller.
2523 */
2524 ifc.ifc_len = total;
2525
2526 /*
2527 * Both BSD and Solaris return 0 here, so we do too.
2528 */
2529 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2530 }
2531
2532 #ifdef CONFIG_PROC_FS
2533 /*
2534 * This is invoked by the /proc filesystem handler to display a device
2535 * in detail.
2536 */
2537 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2538 __acquires(dev_base_lock)
2539 {
2540 struct net *net = seq_file_net(seq);
2541 loff_t off;
2542 struct net_device *dev;
2543
2544 read_lock(&dev_base_lock);
2545 if (!*pos)
2546 return SEQ_START_TOKEN;
2547
2548 off = 1;
2549 for_each_netdev(net, dev)
2550 if (off++ == *pos)
2551 return dev;
2552
2553 return NULL;
2554 }
2555
2556 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2557 {
2558 struct net *net = seq_file_net(seq);
2559 ++*pos;
2560 return v == SEQ_START_TOKEN ?
2561 first_net_device(net) : next_net_device((struct net_device *)v);
2562 }
2563
2564 void dev_seq_stop(struct seq_file *seq, void *v)
2565 __releases(dev_base_lock)
2566 {
2567 read_unlock(&dev_base_lock);
2568 }
2569
2570 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2571 {
2572 struct net_device_stats *stats = dev->get_stats(dev);
2573
2574 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2575 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2576 dev->name, stats->rx_bytes, stats->rx_packets,
2577 stats->rx_errors,
2578 stats->rx_dropped + stats->rx_missed_errors,
2579 stats->rx_fifo_errors,
2580 stats->rx_length_errors + stats->rx_over_errors +
2581 stats->rx_crc_errors + stats->rx_frame_errors,
2582 stats->rx_compressed, stats->multicast,
2583 stats->tx_bytes, stats->tx_packets,
2584 stats->tx_errors, stats->tx_dropped,
2585 stats->tx_fifo_errors, stats->collisions,
2586 stats->tx_carrier_errors +
2587 stats->tx_aborted_errors +
2588 stats->tx_window_errors +
2589 stats->tx_heartbeat_errors,
2590 stats->tx_compressed);
2591 }
2592
2593 /*
2594 * Called from the PROCfs module. This now uses the new arbitrary sized
2595 * /proc/net interface to create /proc/net/dev
2596 */
2597 static int dev_seq_show(struct seq_file *seq, void *v)
2598 {
2599 if (v == SEQ_START_TOKEN)
2600 seq_puts(seq, "Inter-| Receive "
2601 " | Transmit\n"
2602 " face |bytes packets errs drop fifo frame "
2603 "compressed multicast|bytes packets errs "
2604 "drop fifo colls carrier compressed\n");
2605 else
2606 dev_seq_printf_stats(seq, v);
2607 return 0;
2608 }
2609
2610 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2611 {
2612 struct netif_rx_stats *rc = NULL;
2613
2614 while (*pos < nr_cpu_ids)
2615 if (cpu_online(*pos)) {
2616 rc = &per_cpu(netdev_rx_stat, *pos);
2617 break;
2618 } else
2619 ++*pos;
2620 return rc;
2621 }
2622
2623 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2624 {
2625 return softnet_get_online(pos);
2626 }
2627
2628 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2629 {
2630 ++*pos;
2631 return softnet_get_online(pos);
2632 }
2633
2634 static void softnet_seq_stop(struct seq_file *seq, void *v)
2635 {
2636 }
2637
2638 static int softnet_seq_show(struct seq_file *seq, void *v)
2639 {
2640 struct netif_rx_stats *s = v;
2641
2642 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2643 s->total, s->dropped, s->time_squeeze, 0,
2644 0, 0, 0, 0, /* was fastroute */
2645 s->cpu_collision );
2646 return 0;
2647 }
2648
2649 static const struct seq_operations dev_seq_ops = {
2650 .start = dev_seq_start,
2651 .next = dev_seq_next,
2652 .stop = dev_seq_stop,
2653 .show = dev_seq_show,
2654 };
2655
2656 static int dev_seq_open(struct inode *inode, struct file *file)
2657 {
2658 return seq_open_net(inode, file, &dev_seq_ops,
2659 sizeof(struct seq_net_private));
2660 }
2661
2662 static const struct file_operations dev_seq_fops = {
2663 .owner = THIS_MODULE,
2664 .open = dev_seq_open,
2665 .read = seq_read,
2666 .llseek = seq_lseek,
2667 .release = seq_release_net,
2668 };
2669
2670 static const struct seq_operations softnet_seq_ops = {
2671 .start = softnet_seq_start,
2672 .next = softnet_seq_next,
2673 .stop = softnet_seq_stop,
2674 .show = softnet_seq_show,
2675 };
2676
2677 static int softnet_seq_open(struct inode *inode, struct file *file)
2678 {
2679 return seq_open(file, &softnet_seq_ops);
2680 }
2681
2682 static const struct file_operations softnet_seq_fops = {
2683 .owner = THIS_MODULE,
2684 .open = softnet_seq_open,
2685 .read = seq_read,
2686 .llseek = seq_lseek,
2687 .release = seq_release,
2688 };
2689
2690 static void *ptype_get_idx(loff_t pos)
2691 {
2692 struct packet_type *pt = NULL;
2693 loff_t i = 0;
2694 int t;
2695
2696 list_for_each_entry_rcu(pt, &ptype_all, list) {
2697 if (i == pos)
2698 return pt;
2699 ++i;
2700 }
2701
2702 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2703 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2704 if (i == pos)
2705 return pt;
2706 ++i;
2707 }
2708 }
2709 return NULL;
2710 }
2711
2712 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2713 __acquires(RCU)
2714 {
2715 rcu_read_lock();
2716 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2717 }
2718
2719 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2720 {
2721 struct packet_type *pt;
2722 struct list_head *nxt;
2723 int hash;
2724
2725 ++*pos;
2726 if (v == SEQ_START_TOKEN)
2727 return ptype_get_idx(0);
2728
2729 pt = v;
2730 nxt = pt->list.next;
2731 if (pt->type == htons(ETH_P_ALL)) {
2732 if (nxt != &ptype_all)
2733 goto found;
2734 hash = 0;
2735 nxt = ptype_base[0].next;
2736 } else
2737 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2738
2739 while (nxt == &ptype_base[hash]) {
2740 if (++hash >= PTYPE_HASH_SIZE)
2741 return NULL;
2742 nxt = ptype_base[hash].next;
2743 }
2744 found:
2745 return list_entry(nxt, struct packet_type, list);
2746 }
2747
2748 static void ptype_seq_stop(struct seq_file *seq, void *v)
2749 __releases(RCU)
2750 {
2751 rcu_read_unlock();
2752 }
2753
2754 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2755 {
2756 #ifdef CONFIG_KALLSYMS
2757 unsigned long offset = 0, symsize;
2758 const char *symname;
2759 char *modname;
2760 char namebuf[128];
2761
2762 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2763 &modname, namebuf);
2764
2765 if (symname) {
2766 char *delim = ":";
2767
2768 if (!modname)
2769 modname = delim = "";
2770 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2771 symname, offset);
2772 return;
2773 }
2774 #endif
2775
2776 seq_printf(seq, "[%p]", sym);
2777 }
2778
2779 static int ptype_seq_show(struct seq_file *seq, void *v)
2780 {
2781 struct packet_type *pt = v;
2782
2783 if (v == SEQ_START_TOKEN)
2784 seq_puts(seq, "Type Device Function\n");
2785 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2786 if (pt->type == htons(ETH_P_ALL))
2787 seq_puts(seq, "ALL ");
2788 else
2789 seq_printf(seq, "%04x", ntohs(pt->type));
2790
2791 seq_printf(seq, " %-8s ",
2792 pt->dev ? pt->dev->name : "");
2793 ptype_seq_decode(seq, pt->func);
2794 seq_putc(seq, '\n');
2795 }
2796
2797 return 0;
2798 }
2799
2800 static const struct seq_operations ptype_seq_ops = {
2801 .start = ptype_seq_start,
2802 .next = ptype_seq_next,
2803 .stop = ptype_seq_stop,
2804 .show = ptype_seq_show,
2805 };
2806
2807 static int ptype_seq_open(struct inode *inode, struct file *file)
2808 {
2809 return seq_open_net(inode, file, &ptype_seq_ops,
2810 sizeof(struct seq_net_private));
2811 }
2812
2813 static const struct file_operations ptype_seq_fops = {
2814 .owner = THIS_MODULE,
2815 .open = ptype_seq_open,
2816 .read = seq_read,
2817 .llseek = seq_lseek,
2818 .release = seq_release_net,
2819 };
2820
2821
2822 static int __net_init dev_proc_net_init(struct net *net)
2823 {
2824 int rc = -ENOMEM;
2825
2826 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2827 goto out;
2828 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2829 goto out_dev;
2830 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2831 goto out_softnet;
2832
2833 if (wext_proc_init(net))
2834 goto out_ptype;
2835 rc = 0;
2836 out:
2837 return rc;
2838 out_ptype:
2839 proc_net_remove(net, "ptype");
2840 out_softnet:
2841 proc_net_remove(net, "softnet_stat");
2842 out_dev:
2843 proc_net_remove(net, "dev");
2844 goto out;
2845 }
2846
2847 static void __net_exit dev_proc_net_exit(struct net *net)
2848 {
2849 wext_proc_exit(net);
2850
2851 proc_net_remove(net, "ptype");
2852 proc_net_remove(net, "softnet_stat");
2853 proc_net_remove(net, "dev");
2854 }
2855
2856 static struct pernet_operations __net_initdata dev_proc_ops = {
2857 .init = dev_proc_net_init,
2858 .exit = dev_proc_net_exit,
2859 };
2860
2861 static int __init dev_proc_init(void)
2862 {
2863 return register_pernet_subsys(&dev_proc_ops);
2864 }
2865 #else
2866 #define dev_proc_init() 0
2867 #endif /* CONFIG_PROC_FS */
2868
2869
2870 /**
2871 * netdev_set_master - set up master/slave pair
2872 * @slave: slave device
2873 * @master: new master device
2874 *
2875 * Changes the master device of the slave. Pass %NULL to break the
2876 * bonding. The caller must hold the RTNL semaphore. On a failure
2877 * a negative errno code is returned. On success the reference counts
2878 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2879 * function returns zero.
2880 */
2881 int netdev_set_master(struct net_device *slave, struct net_device *master)
2882 {
2883 struct net_device *old = slave->master;
2884
2885 ASSERT_RTNL();
2886
2887 if (master) {
2888 if (old)
2889 return -EBUSY;
2890 dev_hold(master);
2891 }
2892
2893 slave->master = master;
2894
2895 synchronize_net();
2896
2897 if (old)
2898 dev_put(old);
2899
2900 if (master)
2901 slave->flags |= IFF_SLAVE;
2902 else
2903 slave->flags &= ~IFF_SLAVE;
2904
2905 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2906 return 0;
2907 }
2908
2909 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2910 {
2911 unsigned short old_flags = dev->flags;
2912
2913 ASSERT_RTNL();
2914
2915 dev->flags |= IFF_PROMISC;
2916 dev->promiscuity += inc;
2917 if (dev->promiscuity == 0) {
2918 /*
2919 * Avoid overflow.
2920 * If inc causes overflow, untouch promisc and return error.
2921 */
2922 if (inc < 0)
2923 dev->flags &= ~IFF_PROMISC;
2924 else {
2925 dev->promiscuity -= inc;
2926 printk(KERN_WARNING "%s: promiscuity touches roof, "
2927 "set promiscuity failed, promiscuity feature "
2928 "of device might be broken.\n", dev->name);
2929 return -EOVERFLOW;
2930 }
2931 }
2932 if (dev->flags != old_flags) {
2933 printk(KERN_INFO "device %s %s promiscuous mode\n",
2934 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2935 "left");
2936 if (audit_enabled)
2937 audit_log(current->audit_context, GFP_ATOMIC,
2938 AUDIT_ANOM_PROMISCUOUS,
2939 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2940 dev->name, (dev->flags & IFF_PROMISC),
2941 (old_flags & IFF_PROMISC),
2942 audit_get_loginuid(current),
2943 current->uid, current->gid,
2944 audit_get_sessionid(current));
2945
2946 if (dev->change_rx_flags)
2947 dev->change_rx_flags(dev, IFF_PROMISC);
2948 }
2949 return 0;
2950 }
2951
2952 /**
2953 * dev_set_promiscuity - update promiscuity count on a device
2954 * @dev: device
2955 * @inc: modifier
2956 *
2957 * Add or remove promiscuity from a device. While the count in the device
2958 * remains above zero the interface remains promiscuous. Once it hits zero
2959 * the device reverts back to normal filtering operation. A negative inc
2960 * value is used to drop promiscuity on the device.
2961 * Return 0 if successful or a negative errno code on error.
2962 */
2963 int dev_set_promiscuity(struct net_device *dev, int inc)
2964 {
2965 unsigned short old_flags = dev->flags;
2966 int err;
2967
2968 err = __dev_set_promiscuity(dev, inc);
2969 if (err < 0)
2970 return err;
2971 if (dev->flags != old_flags)
2972 dev_set_rx_mode(dev);
2973 return err;
2974 }
2975
2976 /**
2977 * dev_set_allmulti - update allmulti count on a device
2978 * @dev: device
2979 * @inc: modifier
2980 *
2981 * Add or remove reception of all multicast frames to a device. While the
2982 * count in the device remains above zero the interface remains listening
2983 * to all interfaces. Once it hits zero the device reverts back to normal
2984 * filtering operation. A negative @inc value is used to drop the counter
2985 * when releasing a resource needing all multicasts.
2986 * Return 0 if successful or a negative errno code on error.
2987 */
2988
2989 int dev_set_allmulti(struct net_device *dev, int inc)
2990 {
2991 unsigned short old_flags = dev->flags;
2992
2993 ASSERT_RTNL();
2994
2995 dev->flags |= IFF_ALLMULTI;
2996 dev->allmulti += inc;
2997 if (dev->allmulti == 0) {
2998 /*
2999 * Avoid overflow.
3000 * If inc causes overflow, untouch allmulti and return error.
3001 */
3002 if (inc < 0)
3003 dev->flags &= ~IFF_ALLMULTI;
3004 else {
3005 dev->allmulti -= inc;
3006 printk(KERN_WARNING "%s: allmulti touches roof, "
3007 "set allmulti failed, allmulti feature of "
3008 "device might be broken.\n", dev->name);
3009 return -EOVERFLOW;
3010 }
3011 }
3012 if (dev->flags ^ old_flags) {
3013 if (dev->change_rx_flags)
3014 dev->change_rx_flags(dev, IFF_ALLMULTI);
3015 dev_set_rx_mode(dev);
3016 }
3017 return 0;
3018 }
3019
3020 /*
3021 * Upload unicast and multicast address lists to device and
3022 * configure RX filtering. When the device doesn't support unicast
3023 * filtering it is put in promiscuous mode while unicast addresses
3024 * are present.
3025 */
3026 void __dev_set_rx_mode(struct net_device *dev)
3027 {
3028 /* dev_open will call this function so the list will stay sane. */
3029 if (!(dev->flags&IFF_UP))
3030 return;
3031
3032 if (!netif_device_present(dev))
3033 return;
3034
3035 if (dev->set_rx_mode)
3036 dev->set_rx_mode(dev);
3037 else {
3038 /* Unicast addresses changes may only happen under the rtnl,
3039 * therefore calling __dev_set_promiscuity here is safe.
3040 */
3041 if (dev->uc_count > 0 && !dev->uc_promisc) {
3042 __dev_set_promiscuity(dev, 1);
3043 dev->uc_promisc = 1;
3044 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3045 __dev_set_promiscuity(dev, -1);
3046 dev->uc_promisc = 0;
3047 }
3048
3049 if (dev->set_multicast_list)
3050 dev->set_multicast_list(dev);
3051 }
3052 }
3053
3054 void dev_set_rx_mode(struct net_device *dev)
3055 {
3056 netif_addr_lock_bh(dev);
3057 __dev_set_rx_mode(dev);
3058 netif_addr_unlock_bh(dev);
3059 }
3060
3061 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3062 void *addr, int alen, int glbl)
3063 {
3064 struct dev_addr_list *da;
3065
3066 for (; (da = *list) != NULL; list = &da->next) {
3067 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3068 alen == da->da_addrlen) {
3069 if (glbl) {
3070 int old_glbl = da->da_gusers;
3071 da->da_gusers = 0;
3072 if (old_glbl == 0)
3073 break;
3074 }
3075 if (--da->da_users)
3076 return 0;
3077
3078 *list = da->next;
3079 kfree(da);
3080 (*count)--;
3081 return 0;
3082 }
3083 }
3084 return -ENOENT;
3085 }
3086
3087 int __dev_addr_add(struct dev_addr_list **list, int *count,
3088 void *addr, int alen, int glbl)
3089 {
3090 struct dev_addr_list *da;
3091
3092 for (da = *list; da != NULL; da = da->next) {
3093 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3094 da->da_addrlen == alen) {
3095 if (glbl) {
3096 int old_glbl = da->da_gusers;
3097 da->da_gusers = 1;
3098 if (old_glbl)
3099 return 0;
3100 }
3101 da->da_users++;
3102 return 0;
3103 }
3104 }
3105
3106 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3107 if (da == NULL)
3108 return -ENOMEM;
3109 memcpy(da->da_addr, addr, alen);
3110 da->da_addrlen = alen;
3111 da->da_users = 1;
3112 da->da_gusers = glbl ? 1 : 0;
3113 da->next = *list;
3114 *list = da;
3115 (*count)++;
3116 return 0;
3117 }
3118
3119 /**
3120 * dev_unicast_delete - Release secondary unicast address.
3121 * @dev: device
3122 * @addr: address to delete
3123 * @alen: length of @addr
3124 *
3125 * Release reference to a secondary unicast address and remove it
3126 * from the device if the reference count drops to zero.
3127 *
3128 * The caller must hold the rtnl_mutex.
3129 */
3130 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3131 {
3132 int err;
3133
3134 ASSERT_RTNL();
3135
3136 netif_addr_lock_bh(dev);
3137 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3138 if (!err)
3139 __dev_set_rx_mode(dev);
3140 netif_addr_unlock_bh(dev);
3141 return err;
3142 }
3143 EXPORT_SYMBOL(dev_unicast_delete);
3144
3145 /**
3146 * dev_unicast_add - add a secondary unicast address
3147 * @dev: device
3148 * @addr: address to add
3149 * @alen: length of @addr
3150 *
3151 * Add a secondary unicast address to the device or increase
3152 * the reference count if it already exists.
3153 *
3154 * The caller must hold the rtnl_mutex.
3155 */
3156 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3157 {
3158 int err;
3159
3160 ASSERT_RTNL();
3161
3162 netif_addr_lock_bh(dev);
3163 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3164 if (!err)
3165 __dev_set_rx_mode(dev);
3166 netif_addr_unlock_bh(dev);
3167 return err;
3168 }
3169 EXPORT_SYMBOL(dev_unicast_add);
3170
3171 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3172 struct dev_addr_list **from, int *from_count)
3173 {
3174 struct dev_addr_list *da, *next;
3175 int err = 0;
3176
3177 da = *from;
3178 while (da != NULL) {
3179 next = da->next;
3180 if (!da->da_synced) {
3181 err = __dev_addr_add(to, to_count,
3182 da->da_addr, da->da_addrlen, 0);
3183 if (err < 0)
3184 break;
3185 da->da_synced = 1;
3186 da->da_users++;
3187 } else if (da->da_users == 1) {
3188 __dev_addr_delete(to, to_count,
3189 da->da_addr, da->da_addrlen, 0);
3190 __dev_addr_delete(from, from_count,
3191 da->da_addr, da->da_addrlen, 0);
3192 }
3193 da = next;
3194 }
3195 return err;
3196 }
3197
3198 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3199 struct dev_addr_list **from, int *from_count)
3200 {
3201 struct dev_addr_list *da, *next;
3202
3203 da = *from;
3204 while (da != NULL) {
3205 next = da->next;
3206 if (da->da_synced) {
3207 __dev_addr_delete(to, to_count,
3208 da->da_addr, da->da_addrlen, 0);
3209 da->da_synced = 0;
3210 __dev_addr_delete(from, from_count,
3211 da->da_addr, da->da_addrlen, 0);
3212 }
3213 da = next;
3214 }
3215 }
3216
3217 /**
3218 * dev_unicast_sync - Synchronize device's unicast list to another device
3219 * @to: destination device
3220 * @from: source device
3221 *
3222 * Add newly added addresses to the destination device and release
3223 * addresses that have no users left. The source device must be
3224 * locked by netif_tx_lock_bh.
3225 *
3226 * This function is intended to be called from the dev->set_rx_mode
3227 * function of layered software devices.
3228 */
3229 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3230 {
3231 int err = 0;
3232
3233 netif_addr_lock_bh(to);
3234 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3235 &from->uc_list, &from->uc_count);
3236 if (!err)
3237 __dev_set_rx_mode(to);
3238 netif_addr_unlock_bh(to);
3239 return err;
3240 }
3241 EXPORT_SYMBOL(dev_unicast_sync);
3242
3243 /**
3244 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3245 * @to: destination device
3246 * @from: source device
3247 *
3248 * Remove all addresses that were added to the destination device by
3249 * dev_unicast_sync(). This function is intended to be called from the
3250 * dev->stop function of layered software devices.
3251 */
3252 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3253 {
3254 netif_addr_lock_bh(from);
3255 netif_addr_lock(to);
3256
3257 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3258 &from->uc_list, &from->uc_count);
3259 __dev_set_rx_mode(to);
3260
3261 netif_addr_unlock(to);
3262 netif_addr_unlock_bh(from);
3263 }
3264 EXPORT_SYMBOL(dev_unicast_unsync);
3265
3266 static void __dev_addr_discard(struct dev_addr_list **list)
3267 {
3268 struct dev_addr_list *tmp;
3269
3270 while (*list != NULL) {
3271 tmp = *list;
3272 *list = tmp->next;
3273 if (tmp->da_users > tmp->da_gusers)
3274 printk("__dev_addr_discard: address leakage! "
3275 "da_users=%d\n", tmp->da_users);
3276 kfree(tmp);
3277 }
3278 }
3279
3280 static void dev_addr_discard(struct net_device *dev)
3281 {
3282 netif_addr_lock_bh(dev);
3283
3284 __dev_addr_discard(&dev->uc_list);
3285 dev->uc_count = 0;
3286
3287 __dev_addr_discard(&dev->mc_list);
3288 dev->mc_count = 0;
3289
3290 netif_addr_unlock_bh(dev);
3291 }
3292
3293 unsigned dev_get_flags(const struct net_device *dev)
3294 {
3295 unsigned flags;
3296
3297 flags = (dev->flags & ~(IFF_PROMISC |
3298 IFF_ALLMULTI |
3299 IFF_RUNNING |
3300 IFF_LOWER_UP |
3301 IFF_DORMANT)) |
3302 (dev->gflags & (IFF_PROMISC |
3303 IFF_ALLMULTI));
3304
3305 if (netif_running(dev)) {
3306 if (netif_oper_up(dev))
3307 flags |= IFF_RUNNING;
3308 if (netif_carrier_ok(dev))
3309 flags |= IFF_LOWER_UP;
3310 if (netif_dormant(dev))
3311 flags |= IFF_DORMANT;
3312 }
3313
3314 return flags;
3315 }
3316
3317 int dev_change_flags(struct net_device *dev, unsigned flags)
3318 {
3319 int ret, changes;
3320 int old_flags = dev->flags;
3321
3322 ASSERT_RTNL();
3323
3324 /*
3325 * Set the flags on our device.
3326 */
3327
3328 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3329 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3330 IFF_AUTOMEDIA)) |
3331 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3332 IFF_ALLMULTI));
3333
3334 /*
3335 * Load in the correct multicast list now the flags have changed.
3336 */
3337
3338 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3339 dev->change_rx_flags(dev, IFF_MULTICAST);
3340
3341 dev_set_rx_mode(dev);
3342
3343 /*
3344 * Have we downed the interface. We handle IFF_UP ourselves
3345 * according to user attempts to set it, rather than blindly
3346 * setting it.
3347 */
3348
3349 ret = 0;
3350 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3351 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3352
3353 if (!ret)
3354 dev_set_rx_mode(dev);
3355 }
3356
3357 if (dev->flags & IFF_UP &&
3358 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3359 IFF_VOLATILE)))
3360 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3361
3362 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3363 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3364 dev->gflags ^= IFF_PROMISC;
3365 dev_set_promiscuity(dev, inc);
3366 }
3367
3368 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3369 is important. Some (broken) drivers set IFF_PROMISC, when
3370 IFF_ALLMULTI is requested not asking us and not reporting.
3371 */
3372 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3373 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3374 dev->gflags ^= IFF_ALLMULTI;
3375 dev_set_allmulti(dev, inc);
3376 }
3377
3378 /* Exclude state transition flags, already notified */
3379 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3380 if (changes)
3381 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3382
3383 return ret;
3384 }
3385
3386 int dev_set_mtu(struct net_device *dev, int new_mtu)
3387 {
3388 int err;
3389
3390 if (new_mtu == dev->mtu)
3391 return 0;
3392
3393 /* MTU must be positive. */
3394 if (new_mtu < 0)
3395 return -EINVAL;
3396
3397 if (!netif_device_present(dev))
3398 return -ENODEV;
3399
3400 err = 0;
3401 if (dev->change_mtu)
3402 err = dev->change_mtu(dev, new_mtu);
3403 else
3404 dev->mtu = new_mtu;
3405 if (!err && dev->flags & IFF_UP)
3406 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3407 return err;
3408 }
3409
3410 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3411 {
3412 int err;
3413
3414 if (!dev->set_mac_address)
3415 return -EOPNOTSUPP;
3416 if (sa->sa_family != dev->type)
3417 return -EINVAL;
3418 if (!netif_device_present(dev))
3419 return -ENODEV;
3420 err = dev->set_mac_address(dev, sa);
3421 if (!err)
3422 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3423 return err;
3424 }
3425
3426 /*
3427 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3428 */
3429 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3430 {
3431 int err;
3432 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3433
3434 if (!dev)
3435 return -ENODEV;
3436
3437 switch (cmd) {
3438 case SIOCGIFFLAGS: /* Get interface flags */
3439 ifr->ifr_flags = dev_get_flags(dev);
3440 return 0;
3441
3442 case SIOCGIFMETRIC: /* Get the metric on the interface
3443 (currently unused) */
3444 ifr->ifr_metric = 0;
3445 return 0;
3446
3447 case SIOCGIFMTU: /* Get the MTU of a device */
3448 ifr->ifr_mtu = dev->mtu;
3449 return 0;
3450
3451 case SIOCGIFHWADDR:
3452 if (!dev->addr_len)
3453 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3454 else
3455 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3456 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3457 ifr->ifr_hwaddr.sa_family = dev->type;
3458 return 0;
3459
3460 case SIOCGIFSLAVE:
3461 err = -EINVAL;
3462 break;
3463
3464 case SIOCGIFMAP:
3465 ifr->ifr_map.mem_start = dev->mem_start;
3466 ifr->ifr_map.mem_end = dev->mem_end;
3467 ifr->ifr_map.base_addr = dev->base_addr;
3468 ifr->ifr_map.irq = dev->irq;
3469 ifr->ifr_map.dma = dev->dma;
3470 ifr->ifr_map.port = dev->if_port;
3471 return 0;
3472
3473 case SIOCGIFINDEX:
3474 ifr->ifr_ifindex = dev->ifindex;
3475 return 0;
3476
3477 case SIOCGIFTXQLEN:
3478 ifr->ifr_qlen = dev->tx_queue_len;
3479 return 0;
3480
3481 default:
3482 /* dev_ioctl() should ensure this case
3483 * is never reached
3484 */
3485 WARN_ON(1);
3486 err = -EINVAL;
3487 break;
3488
3489 }
3490 return err;
3491 }
3492
3493 /*
3494 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3495 */
3496 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3497 {
3498 int err;
3499 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3500
3501 if (!dev)
3502 return -ENODEV;
3503
3504 switch (cmd) {
3505 case SIOCSIFFLAGS: /* Set interface flags */
3506 return dev_change_flags(dev, ifr->ifr_flags);
3507
3508 case SIOCSIFMETRIC: /* Set the metric on the interface
3509 (currently unused) */
3510 return -EOPNOTSUPP;
3511
3512 case SIOCSIFMTU: /* Set the MTU of a device */
3513 return dev_set_mtu(dev, ifr->ifr_mtu);
3514
3515 case SIOCSIFHWADDR:
3516 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3517
3518 case SIOCSIFHWBROADCAST:
3519 if (ifr->ifr_hwaddr.sa_family != dev->type)
3520 return -EINVAL;
3521 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3522 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3523 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3524 return 0;
3525
3526 case SIOCSIFMAP:
3527 if (dev->set_config) {
3528 if (!netif_device_present(dev))
3529 return -ENODEV;
3530 return dev->set_config(dev, &ifr->ifr_map);
3531 }
3532 return -EOPNOTSUPP;
3533
3534 case SIOCADDMULTI:
3535 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3536 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3537 return -EINVAL;
3538 if (!netif_device_present(dev))
3539 return -ENODEV;
3540 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3541 dev->addr_len, 1);
3542
3543 case SIOCDELMULTI:
3544 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3545 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3546 return -EINVAL;
3547 if (!netif_device_present(dev))
3548 return -ENODEV;
3549 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3550 dev->addr_len, 1);
3551
3552 case SIOCSIFTXQLEN:
3553 if (ifr->ifr_qlen < 0)
3554 return -EINVAL;
3555 dev->tx_queue_len = ifr->ifr_qlen;
3556 return 0;
3557
3558 case SIOCSIFNAME:
3559 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3560 return dev_change_name(dev, ifr->ifr_newname);
3561
3562 /*
3563 * Unknown or private ioctl
3564 */
3565
3566 default:
3567 if ((cmd >= SIOCDEVPRIVATE &&
3568 cmd <= SIOCDEVPRIVATE + 15) ||
3569 cmd == SIOCBONDENSLAVE ||
3570 cmd == SIOCBONDRELEASE ||
3571 cmd == SIOCBONDSETHWADDR ||
3572 cmd == SIOCBONDSLAVEINFOQUERY ||
3573 cmd == SIOCBONDINFOQUERY ||
3574 cmd == SIOCBONDCHANGEACTIVE ||
3575 cmd == SIOCGMIIPHY ||
3576 cmd == SIOCGMIIREG ||
3577 cmd == SIOCSMIIREG ||
3578 cmd == SIOCBRADDIF ||
3579 cmd == SIOCBRDELIF ||
3580 cmd == SIOCWANDEV) {
3581 err = -EOPNOTSUPP;
3582 if (dev->do_ioctl) {
3583 if (netif_device_present(dev))
3584 err = dev->do_ioctl(dev, ifr,
3585 cmd);
3586 else
3587 err = -ENODEV;
3588 }
3589 } else
3590 err = -EINVAL;
3591
3592 }
3593 return err;
3594 }
3595
3596 /*
3597 * This function handles all "interface"-type I/O control requests. The actual
3598 * 'doing' part of this is dev_ifsioc above.
3599 */
3600
3601 /**
3602 * dev_ioctl - network device ioctl
3603 * @net: the applicable net namespace
3604 * @cmd: command to issue
3605 * @arg: pointer to a struct ifreq in user space
3606 *
3607 * Issue ioctl functions to devices. This is normally called by the
3608 * user space syscall interfaces but can sometimes be useful for
3609 * other purposes. The return value is the return from the syscall if
3610 * positive or a negative errno code on error.
3611 */
3612
3613 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3614 {
3615 struct ifreq ifr;
3616 int ret;
3617 char *colon;
3618
3619 /* One special case: SIOCGIFCONF takes ifconf argument
3620 and requires shared lock, because it sleeps writing
3621 to user space.
3622 */
3623
3624 if (cmd == SIOCGIFCONF) {
3625 rtnl_lock();
3626 ret = dev_ifconf(net, (char __user *) arg);
3627 rtnl_unlock();
3628 return ret;
3629 }
3630 if (cmd == SIOCGIFNAME)
3631 return dev_ifname(net, (struct ifreq __user *)arg);
3632
3633 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3634 return -EFAULT;
3635
3636 ifr.ifr_name[IFNAMSIZ-1] = 0;
3637
3638 colon = strchr(ifr.ifr_name, ':');
3639 if (colon)
3640 *colon = 0;
3641
3642 /*
3643 * See which interface the caller is talking about.
3644 */
3645
3646 switch (cmd) {
3647 /*
3648 * These ioctl calls:
3649 * - can be done by all.
3650 * - atomic and do not require locking.
3651 * - return a value
3652 */
3653 case SIOCGIFFLAGS:
3654 case SIOCGIFMETRIC:
3655 case SIOCGIFMTU:
3656 case SIOCGIFHWADDR:
3657 case SIOCGIFSLAVE:
3658 case SIOCGIFMAP:
3659 case SIOCGIFINDEX:
3660 case SIOCGIFTXQLEN:
3661 dev_load(net, ifr.ifr_name);
3662 read_lock(&dev_base_lock);
3663 ret = dev_ifsioc_locked(net, &ifr, cmd);
3664 read_unlock(&dev_base_lock);
3665 if (!ret) {
3666 if (colon)
3667 *colon = ':';
3668 if (copy_to_user(arg, &ifr,
3669 sizeof(struct ifreq)))
3670 ret = -EFAULT;
3671 }
3672 return ret;
3673
3674 case SIOCETHTOOL:
3675 dev_load(net, ifr.ifr_name);
3676 rtnl_lock();
3677 ret = dev_ethtool(net, &ifr);
3678 rtnl_unlock();
3679 if (!ret) {
3680 if (colon)
3681 *colon = ':';
3682 if (copy_to_user(arg, &ifr,
3683 sizeof(struct ifreq)))
3684 ret = -EFAULT;
3685 }
3686 return ret;
3687
3688 /*
3689 * These ioctl calls:
3690 * - require superuser power.
3691 * - require strict serialization.
3692 * - return a value
3693 */
3694 case SIOCGMIIPHY:
3695 case SIOCGMIIREG:
3696 case SIOCSIFNAME:
3697 if (!capable(CAP_NET_ADMIN))
3698 return -EPERM;
3699 dev_load(net, ifr.ifr_name);
3700 rtnl_lock();
3701 ret = dev_ifsioc(net, &ifr, cmd);
3702 rtnl_unlock();
3703 if (!ret) {
3704 if (colon)
3705 *colon = ':';
3706 if (copy_to_user(arg, &ifr,
3707 sizeof(struct ifreq)))
3708 ret = -EFAULT;
3709 }
3710 return ret;
3711
3712 /*
3713 * These ioctl calls:
3714 * - require superuser power.
3715 * - require strict serialization.
3716 * - do not return a value
3717 */
3718 case SIOCSIFFLAGS:
3719 case SIOCSIFMETRIC:
3720 case SIOCSIFMTU:
3721 case SIOCSIFMAP:
3722 case SIOCSIFHWADDR:
3723 case SIOCSIFSLAVE:
3724 case SIOCADDMULTI:
3725 case SIOCDELMULTI:
3726 case SIOCSIFHWBROADCAST:
3727 case SIOCSIFTXQLEN:
3728 case SIOCSMIIREG:
3729 case SIOCBONDENSLAVE:
3730 case SIOCBONDRELEASE:
3731 case SIOCBONDSETHWADDR:
3732 case SIOCBONDCHANGEACTIVE:
3733 case SIOCBRADDIF:
3734 case SIOCBRDELIF:
3735 if (!capable(CAP_NET_ADMIN))
3736 return -EPERM;
3737 /* fall through */
3738 case SIOCBONDSLAVEINFOQUERY:
3739 case SIOCBONDINFOQUERY:
3740 dev_load(net, ifr.ifr_name);
3741 rtnl_lock();
3742 ret = dev_ifsioc(net, &ifr, cmd);
3743 rtnl_unlock();
3744 return ret;
3745
3746 case SIOCGIFMEM:
3747 /* Get the per device memory space. We can add this but
3748 * currently do not support it */
3749 case SIOCSIFMEM:
3750 /* Set the per device memory buffer space.
3751 * Not applicable in our case */
3752 case SIOCSIFLINK:
3753 return -EINVAL;
3754
3755 /*
3756 * Unknown or private ioctl.
3757 */
3758 default:
3759 if (cmd == SIOCWANDEV ||
3760 (cmd >= SIOCDEVPRIVATE &&
3761 cmd <= SIOCDEVPRIVATE + 15)) {
3762 dev_load(net, ifr.ifr_name);
3763 rtnl_lock();
3764 ret = dev_ifsioc(net, &ifr, cmd);
3765 rtnl_unlock();
3766 if (!ret && copy_to_user(arg, &ifr,
3767 sizeof(struct ifreq)))
3768 ret = -EFAULT;
3769 return ret;
3770 }
3771 /* Take care of Wireless Extensions */
3772 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3773 return wext_handle_ioctl(net, &ifr, cmd, arg);
3774 return -EINVAL;
3775 }
3776 }
3777
3778
3779 /**
3780 * dev_new_index - allocate an ifindex
3781 * @net: the applicable net namespace
3782 *
3783 * Returns a suitable unique value for a new device interface
3784 * number. The caller must hold the rtnl semaphore or the
3785 * dev_base_lock to be sure it remains unique.
3786 */
3787 static int dev_new_index(struct net *net)
3788 {
3789 static int ifindex;
3790 for (;;) {
3791 if (++ifindex <= 0)
3792 ifindex = 1;
3793 if (!__dev_get_by_index(net, ifindex))
3794 return ifindex;
3795 }
3796 }
3797
3798 /* Delayed registration/unregisteration */
3799 static DEFINE_SPINLOCK(net_todo_list_lock);
3800 static LIST_HEAD(net_todo_list);
3801
3802 static void net_set_todo(struct net_device *dev)
3803 {
3804 spin_lock(&net_todo_list_lock);
3805 list_add_tail(&dev->todo_list, &net_todo_list);
3806 spin_unlock(&net_todo_list_lock);
3807 }
3808
3809 static void rollback_registered(struct net_device *dev)
3810 {
3811 BUG_ON(dev_boot_phase);
3812 ASSERT_RTNL();
3813
3814 /* Some devices call without registering for initialization unwind. */
3815 if (dev->reg_state == NETREG_UNINITIALIZED) {
3816 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3817 "was registered\n", dev->name, dev);
3818
3819 WARN_ON(1);
3820 return;
3821 }
3822
3823 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3824
3825 /* If device is running, close it first. */
3826 dev_close(dev);
3827
3828 /* And unlink it from device chain. */
3829 unlist_netdevice(dev);
3830
3831 dev->reg_state = NETREG_UNREGISTERING;
3832
3833 synchronize_net();
3834
3835 /* Shutdown queueing discipline. */
3836 dev_shutdown(dev);
3837
3838
3839 /* Notify protocols, that we are about to destroy
3840 this device. They should clean all the things.
3841 */
3842 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3843
3844 /*
3845 * Flush the unicast and multicast chains
3846 */
3847 dev_addr_discard(dev);
3848
3849 if (dev->uninit)
3850 dev->uninit(dev);
3851
3852 /* Notifier chain MUST detach us from master device. */
3853 BUG_TRAP(!dev->master);
3854
3855 /* Remove entries from kobject tree */
3856 netdev_unregister_kobject(dev);
3857
3858 synchronize_net();
3859
3860 dev_put(dev);
3861 }
3862
3863 static void __netdev_init_queue_locks_one(struct net_device *dev,
3864 struct netdev_queue *dev_queue,
3865 void *_unused)
3866 {
3867 spin_lock_init(&dev_queue->_xmit_lock);
3868 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3869 dev_queue->xmit_lock_owner = -1;
3870 }
3871
3872 static void netdev_init_queue_locks(struct net_device *dev)
3873 {
3874 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3875 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3876 }
3877
3878 /**
3879 * register_netdevice - register a network device
3880 * @dev: device to register
3881 *
3882 * Take a completed network device structure and add it to the kernel
3883 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3884 * chain. 0 is returned on success. A negative errno code is returned
3885 * on a failure to set up the device, or if the name is a duplicate.
3886 *
3887 * Callers must hold the rtnl semaphore. You may want
3888 * register_netdev() instead of this.
3889 *
3890 * BUGS:
3891 * The locking appears insufficient to guarantee two parallel registers
3892 * will not get the same name.
3893 */
3894
3895 int register_netdevice(struct net_device *dev)
3896 {
3897 struct hlist_head *head;
3898 struct hlist_node *p;
3899 int ret;
3900 struct net *net;
3901
3902 BUG_ON(dev_boot_phase);
3903 ASSERT_RTNL();
3904
3905 might_sleep();
3906
3907 /* When net_device's are persistent, this will be fatal. */
3908 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3909 BUG_ON(!dev_net(dev));
3910 net = dev_net(dev);
3911
3912 spin_lock_init(&dev->addr_list_lock);
3913 netdev_set_addr_lockdep_class(dev);
3914 netdev_init_queue_locks(dev);
3915
3916 dev->iflink = -1;
3917
3918 /* Init, if this function is available */
3919 if (dev->init) {
3920 ret = dev->init(dev);
3921 if (ret) {
3922 if (ret > 0)
3923 ret = -EIO;
3924 goto out;
3925 }
3926 }
3927
3928 if (!dev_valid_name(dev->name)) {
3929 ret = -EINVAL;
3930 goto err_uninit;
3931 }
3932
3933 dev->ifindex = dev_new_index(net);
3934 if (dev->iflink == -1)
3935 dev->iflink = dev->ifindex;
3936
3937 /* Check for existence of name */
3938 head = dev_name_hash(net, dev->name);
3939 hlist_for_each(p, head) {
3940 struct net_device *d
3941 = hlist_entry(p, struct net_device, name_hlist);
3942 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3943 ret = -EEXIST;
3944 goto err_uninit;
3945 }
3946 }
3947
3948 /* Fix illegal checksum combinations */
3949 if ((dev->features & NETIF_F_HW_CSUM) &&
3950 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3951 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3952 dev->name);
3953 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3954 }
3955
3956 if ((dev->features & NETIF_F_NO_CSUM) &&
3957 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3958 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3959 dev->name);
3960 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3961 }
3962
3963
3964 /* Fix illegal SG+CSUM combinations. */
3965 if ((dev->features & NETIF_F_SG) &&
3966 !(dev->features & NETIF_F_ALL_CSUM)) {
3967 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3968 dev->name);
3969 dev->features &= ~NETIF_F_SG;
3970 }
3971
3972 /* TSO requires that SG is present as well. */
3973 if ((dev->features & NETIF_F_TSO) &&
3974 !(dev->features & NETIF_F_SG)) {
3975 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3976 dev->name);
3977 dev->features &= ~NETIF_F_TSO;
3978 }
3979 if (dev->features & NETIF_F_UFO) {
3980 if (!(dev->features & NETIF_F_HW_CSUM)) {
3981 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3982 "NETIF_F_HW_CSUM feature.\n",
3983 dev->name);
3984 dev->features &= ~NETIF_F_UFO;
3985 }
3986 if (!(dev->features & NETIF_F_SG)) {
3987 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3988 "NETIF_F_SG feature.\n",
3989 dev->name);
3990 dev->features &= ~NETIF_F_UFO;
3991 }
3992 }
3993
3994 netdev_initialize_kobject(dev);
3995 ret = netdev_register_kobject(dev);
3996 if (ret)
3997 goto err_uninit;
3998 dev->reg_state = NETREG_REGISTERED;
3999
4000 /*
4001 * Default initial state at registry is that the
4002 * device is present.
4003 */
4004
4005 set_bit(__LINK_STATE_PRESENT, &dev->state);
4006
4007 dev_init_scheduler(dev);
4008 dev_hold(dev);
4009 list_netdevice(dev);
4010
4011 /* Notify protocols, that a new device appeared. */
4012 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4013 ret = notifier_to_errno(ret);
4014 if (ret) {
4015 rollback_registered(dev);
4016 dev->reg_state = NETREG_UNREGISTERED;
4017 }
4018
4019 out:
4020 return ret;
4021
4022 err_uninit:
4023 if (dev->uninit)
4024 dev->uninit(dev);
4025 goto out;
4026 }
4027
4028 /**
4029 * register_netdev - register a network device
4030 * @dev: device to register
4031 *
4032 * Take a completed network device structure and add it to the kernel
4033 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4034 * chain. 0 is returned on success. A negative errno code is returned
4035 * on a failure to set up the device, or if the name is a duplicate.
4036 *
4037 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4038 * and expands the device name if you passed a format string to
4039 * alloc_netdev.
4040 */
4041 int register_netdev(struct net_device *dev)
4042 {
4043 int err;
4044
4045 rtnl_lock();
4046
4047 /*
4048 * If the name is a format string the caller wants us to do a
4049 * name allocation.
4050 */
4051 if (strchr(dev->name, '%')) {
4052 err = dev_alloc_name(dev, dev->name);
4053 if (err < 0)
4054 goto out;
4055 }
4056
4057 err = register_netdevice(dev);
4058 out:
4059 rtnl_unlock();
4060 return err;
4061 }
4062 EXPORT_SYMBOL(register_netdev);
4063
4064 /*
4065 * netdev_wait_allrefs - wait until all references are gone.
4066 *
4067 * This is called when unregistering network devices.
4068 *
4069 * Any protocol or device that holds a reference should register
4070 * for netdevice notification, and cleanup and put back the
4071 * reference if they receive an UNREGISTER event.
4072 * We can get stuck here if buggy protocols don't correctly
4073 * call dev_put.
4074 */
4075 static void netdev_wait_allrefs(struct net_device *dev)
4076 {
4077 unsigned long rebroadcast_time, warning_time;
4078
4079 rebroadcast_time = warning_time = jiffies;
4080 while (atomic_read(&dev->refcnt) != 0) {
4081 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4082 rtnl_lock();
4083
4084 /* Rebroadcast unregister notification */
4085 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4086
4087 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4088 &dev->state)) {
4089 /* We must not have linkwatch events
4090 * pending on unregister. If this
4091 * happens, we simply run the queue
4092 * unscheduled, resulting in a noop
4093 * for this device.
4094 */
4095 linkwatch_run_queue();
4096 }
4097
4098 __rtnl_unlock();
4099
4100 rebroadcast_time = jiffies;
4101 }
4102
4103 msleep(250);
4104
4105 if (time_after(jiffies, warning_time + 10 * HZ)) {
4106 printk(KERN_EMERG "unregister_netdevice: "
4107 "waiting for %s to become free. Usage "
4108 "count = %d\n",
4109 dev->name, atomic_read(&dev->refcnt));
4110 warning_time = jiffies;
4111 }
4112 }
4113 }
4114
4115 /* The sequence is:
4116 *
4117 * rtnl_lock();
4118 * ...
4119 * register_netdevice(x1);
4120 * register_netdevice(x2);
4121 * ...
4122 * unregister_netdevice(y1);
4123 * unregister_netdevice(y2);
4124 * ...
4125 * rtnl_unlock();
4126 * free_netdev(y1);
4127 * free_netdev(y2);
4128 *
4129 * We are invoked by rtnl_unlock() after it drops the semaphore.
4130 * This allows us to deal with problems:
4131 * 1) We can delete sysfs objects which invoke hotplug
4132 * without deadlocking with linkwatch via keventd.
4133 * 2) Since we run with the RTNL semaphore not held, we can sleep
4134 * safely in order to wait for the netdev refcnt to drop to zero.
4135 */
4136 static DEFINE_MUTEX(net_todo_run_mutex);
4137 void netdev_run_todo(void)
4138 {
4139 struct list_head list;
4140
4141 /* Need to guard against multiple cpu's getting out of order. */
4142 mutex_lock(&net_todo_run_mutex);
4143
4144 /* Not safe to do outside the semaphore. We must not return
4145 * until all unregister events invoked by the local processor
4146 * have been completed (either by this todo run, or one on
4147 * another cpu).
4148 */
4149 if (list_empty(&net_todo_list))
4150 goto out;
4151
4152 /* Snapshot list, allow later requests */
4153 spin_lock(&net_todo_list_lock);
4154 list_replace_init(&net_todo_list, &list);
4155 spin_unlock(&net_todo_list_lock);
4156
4157 while (!list_empty(&list)) {
4158 struct net_device *dev
4159 = list_entry(list.next, struct net_device, todo_list);
4160 list_del(&dev->todo_list);
4161
4162 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4163 printk(KERN_ERR "network todo '%s' but state %d\n",
4164 dev->name, dev->reg_state);
4165 dump_stack();
4166 continue;
4167 }
4168
4169 dev->reg_state = NETREG_UNREGISTERED;
4170
4171 netdev_wait_allrefs(dev);
4172
4173 /* paranoia */
4174 BUG_ON(atomic_read(&dev->refcnt));
4175 BUG_TRAP(!dev->ip_ptr);
4176 BUG_TRAP(!dev->ip6_ptr);
4177 BUG_TRAP(!dev->dn_ptr);
4178
4179 if (dev->destructor)
4180 dev->destructor(dev);
4181
4182 /* Free network device */
4183 kobject_put(&dev->dev.kobj);
4184 }
4185
4186 out:
4187 mutex_unlock(&net_todo_run_mutex);
4188 }
4189
4190 static struct net_device_stats *internal_stats(struct net_device *dev)
4191 {
4192 return &dev->stats;
4193 }
4194
4195 static void netdev_init_one_queue(struct net_device *dev,
4196 struct netdev_queue *queue,
4197 void *_unused)
4198 {
4199 queue->dev = dev;
4200 }
4201
4202 static void netdev_init_queues(struct net_device *dev)
4203 {
4204 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4205 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4206 }
4207
4208 /**
4209 * alloc_netdev_mq - allocate network device
4210 * @sizeof_priv: size of private data to allocate space for
4211 * @name: device name format string
4212 * @setup: callback to initialize device
4213 * @queue_count: the number of subqueues to allocate
4214 *
4215 * Allocates a struct net_device with private data area for driver use
4216 * and performs basic initialization. Also allocates subquue structs
4217 * for each queue on the device at the end of the netdevice.
4218 */
4219 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4220 void (*setup)(struct net_device *), unsigned int queue_count)
4221 {
4222 struct netdev_queue *tx;
4223 struct net_device *dev;
4224 size_t alloc_size;
4225 void *p;
4226
4227 BUG_ON(strlen(name) >= sizeof(dev->name));
4228
4229 alloc_size = sizeof(struct net_device);
4230 if (sizeof_priv) {
4231 /* ensure 32-byte alignment of private area */
4232 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4233 alloc_size += sizeof_priv;
4234 }
4235 /* ensure 32-byte alignment of whole construct */
4236 alloc_size += NETDEV_ALIGN_CONST;
4237
4238 p = kzalloc(alloc_size, GFP_KERNEL);
4239 if (!p) {
4240 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4241 return NULL;
4242 }
4243
4244 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4245 if (!tx) {
4246 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4247 "tx qdiscs.\n");
4248 kfree(p);
4249 return NULL;
4250 }
4251
4252 dev = (struct net_device *)
4253 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4254 dev->padded = (char *)dev - (char *)p;
4255 dev_net_set(dev, &init_net);
4256
4257 dev->_tx = tx;
4258 dev->num_tx_queues = queue_count;
4259 dev->real_num_tx_queues = queue_count;
4260
4261 if (sizeof_priv) {
4262 dev->priv = ((char *)dev +
4263 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4264 & ~NETDEV_ALIGN_CONST));
4265 }
4266
4267 dev->gso_max_size = GSO_MAX_SIZE;
4268
4269 netdev_init_queues(dev);
4270
4271 dev->get_stats = internal_stats;
4272 netpoll_netdev_init(dev);
4273 setup(dev);
4274 strcpy(dev->name, name);
4275 return dev;
4276 }
4277 EXPORT_SYMBOL(alloc_netdev_mq);
4278
4279 /**
4280 * free_netdev - free network device
4281 * @dev: device
4282 *
4283 * This function does the last stage of destroying an allocated device
4284 * interface. The reference to the device object is released.
4285 * If this is the last reference then it will be freed.
4286 */
4287 void free_netdev(struct net_device *dev)
4288 {
4289 release_net(dev_net(dev));
4290
4291 kfree(dev->_tx);
4292
4293 /* Compatibility with error handling in drivers */
4294 if (dev->reg_state == NETREG_UNINITIALIZED) {
4295 kfree((char *)dev - dev->padded);
4296 return;
4297 }
4298
4299 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4300 dev->reg_state = NETREG_RELEASED;
4301
4302 /* will free via device release */
4303 put_device(&dev->dev);
4304 }
4305
4306 /* Synchronize with packet receive processing. */
4307 void synchronize_net(void)
4308 {
4309 might_sleep();
4310 synchronize_rcu();
4311 }
4312
4313 /**
4314 * unregister_netdevice - remove device from the kernel
4315 * @dev: device
4316 *
4317 * This function shuts down a device interface and removes it
4318 * from the kernel tables.
4319 *
4320 * Callers must hold the rtnl semaphore. You may want
4321 * unregister_netdev() instead of this.
4322 */
4323
4324 void unregister_netdevice(struct net_device *dev)
4325 {
4326 ASSERT_RTNL();
4327
4328 rollback_registered(dev);
4329 /* Finish processing unregister after unlock */
4330 net_set_todo(dev);
4331 }
4332
4333 /**
4334 * unregister_netdev - remove device from the kernel
4335 * @dev: device
4336 *
4337 * This function shuts down a device interface and removes it
4338 * from the kernel tables.
4339 *
4340 * This is just a wrapper for unregister_netdevice that takes
4341 * the rtnl semaphore. In general you want to use this and not
4342 * unregister_netdevice.
4343 */
4344 void unregister_netdev(struct net_device *dev)
4345 {
4346 rtnl_lock();
4347 unregister_netdevice(dev);
4348 rtnl_unlock();
4349 }
4350
4351 EXPORT_SYMBOL(unregister_netdev);
4352
4353 /**
4354 * dev_change_net_namespace - move device to different nethost namespace
4355 * @dev: device
4356 * @net: network namespace
4357 * @pat: If not NULL name pattern to try if the current device name
4358 * is already taken in the destination network namespace.
4359 *
4360 * This function shuts down a device interface and moves it
4361 * to a new network namespace. On success 0 is returned, on
4362 * a failure a netagive errno code is returned.
4363 *
4364 * Callers must hold the rtnl semaphore.
4365 */
4366
4367 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4368 {
4369 char buf[IFNAMSIZ];
4370 const char *destname;
4371 int err;
4372
4373 ASSERT_RTNL();
4374
4375 /* Don't allow namespace local devices to be moved. */
4376 err = -EINVAL;
4377 if (dev->features & NETIF_F_NETNS_LOCAL)
4378 goto out;
4379
4380 /* Ensure the device has been registrered */
4381 err = -EINVAL;
4382 if (dev->reg_state != NETREG_REGISTERED)
4383 goto out;
4384
4385 /* Get out if there is nothing todo */
4386 err = 0;
4387 if (net_eq(dev_net(dev), net))
4388 goto out;
4389
4390 /* Pick the destination device name, and ensure
4391 * we can use it in the destination network namespace.
4392 */
4393 err = -EEXIST;
4394 destname = dev->name;
4395 if (__dev_get_by_name(net, destname)) {
4396 /* We get here if we can't use the current device name */
4397 if (!pat)
4398 goto out;
4399 if (!dev_valid_name(pat))
4400 goto out;
4401 if (strchr(pat, '%')) {
4402 if (__dev_alloc_name(net, pat, buf) < 0)
4403 goto out;
4404 destname = buf;
4405 } else
4406 destname = pat;
4407 if (__dev_get_by_name(net, destname))
4408 goto out;
4409 }
4410
4411 /*
4412 * And now a mini version of register_netdevice unregister_netdevice.
4413 */
4414
4415 /* If device is running close it first. */
4416 dev_close(dev);
4417
4418 /* And unlink it from device chain */
4419 err = -ENODEV;
4420 unlist_netdevice(dev);
4421
4422 synchronize_net();
4423
4424 /* Shutdown queueing discipline. */
4425 dev_shutdown(dev);
4426
4427 /* Notify protocols, that we are about to destroy
4428 this device. They should clean all the things.
4429 */
4430 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4431
4432 /*
4433 * Flush the unicast and multicast chains
4434 */
4435 dev_addr_discard(dev);
4436
4437 /* Actually switch the network namespace */
4438 dev_net_set(dev, net);
4439
4440 /* Assign the new device name */
4441 if (destname != dev->name)
4442 strcpy(dev->name, destname);
4443
4444 /* If there is an ifindex conflict assign a new one */
4445 if (__dev_get_by_index(net, dev->ifindex)) {
4446 int iflink = (dev->iflink == dev->ifindex);
4447 dev->ifindex = dev_new_index(net);
4448 if (iflink)
4449 dev->iflink = dev->ifindex;
4450 }
4451
4452 /* Fixup kobjects */
4453 netdev_unregister_kobject(dev);
4454 err = netdev_register_kobject(dev);
4455 WARN_ON(err);
4456
4457 /* Add the device back in the hashes */
4458 list_netdevice(dev);
4459
4460 /* Notify protocols, that a new device appeared. */
4461 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4462
4463 synchronize_net();
4464 err = 0;
4465 out:
4466 return err;
4467 }
4468
4469 static int dev_cpu_callback(struct notifier_block *nfb,
4470 unsigned long action,
4471 void *ocpu)
4472 {
4473 struct sk_buff **list_skb;
4474 struct Qdisc **list_net;
4475 struct sk_buff *skb;
4476 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4477 struct softnet_data *sd, *oldsd;
4478
4479 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4480 return NOTIFY_OK;
4481
4482 local_irq_disable();
4483 cpu = smp_processor_id();
4484 sd = &per_cpu(softnet_data, cpu);
4485 oldsd = &per_cpu(softnet_data, oldcpu);
4486
4487 /* Find end of our completion_queue. */
4488 list_skb = &sd->completion_queue;
4489 while (*list_skb)
4490 list_skb = &(*list_skb)->next;
4491 /* Append completion queue from offline CPU. */
4492 *list_skb = oldsd->completion_queue;
4493 oldsd->completion_queue = NULL;
4494
4495 /* Find end of our output_queue. */
4496 list_net = &sd->output_queue;
4497 while (*list_net)
4498 list_net = &(*list_net)->next_sched;
4499 /* Append output queue from offline CPU. */
4500 *list_net = oldsd->output_queue;
4501 oldsd->output_queue = NULL;
4502
4503 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4504 local_irq_enable();
4505
4506 /* Process offline CPU's input_pkt_queue */
4507 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4508 netif_rx(skb);
4509
4510 return NOTIFY_OK;
4511 }
4512
4513 #ifdef CONFIG_NET_DMA
4514 /**
4515 * net_dma_rebalance - try to maintain one DMA channel per CPU
4516 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4517 *
4518 * This is called when the number of channels allocated to the net_dma client
4519 * changes. The net_dma client tries to have one DMA channel per CPU.
4520 */
4521
4522 static void net_dma_rebalance(struct net_dma *net_dma)
4523 {
4524 unsigned int cpu, i, n, chan_idx;
4525 struct dma_chan *chan;
4526
4527 if (cpus_empty(net_dma->channel_mask)) {
4528 for_each_online_cpu(cpu)
4529 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4530 return;
4531 }
4532
4533 i = 0;
4534 cpu = first_cpu(cpu_online_map);
4535
4536 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4537 chan = net_dma->channels[chan_idx];
4538
4539 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4540 + (i < (num_online_cpus() %
4541 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4542
4543 while(n) {
4544 per_cpu(softnet_data, cpu).net_dma = chan;
4545 cpu = next_cpu(cpu, cpu_online_map);
4546 n--;
4547 }
4548 i++;
4549 }
4550 }
4551
4552 /**
4553 * netdev_dma_event - event callback for the net_dma_client
4554 * @client: should always be net_dma_client
4555 * @chan: DMA channel for the event
4556 * @state: DMA state to be handled
4557 */
4558 static enum dma_state_client
4559 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4560 enum dma_state state)
4561 {
4562 int i, found = 0, pos = -1;
4563 struct net_dma *net_dma =
4564 container_of(client, struct net_dma, client);
4565 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4566
4567 spin_lock(&net_dma->lock);
4568 switch (state) {
4569 case DMA_RESOURCE_AVAILABLE:
4570 for (i = 0; i < nr_cpu_ids; i++)
4571 if (net_dma->channels[i] == chan) {
4572 found = 1;
4573 break;
4574 } else if (net_dma->channels[i] == NULL && pos < 0)
4575 pos = i;
4576
4577 if (!found && pos >= 0) {
4578 ack = DMA_ACK;
4579 net_dma->channels[pos] = chan;
4580 cpu_set(pos, net_dma->channel_mask);
4581 net_dma_rebalance(net_dma);
4582 }
4583 break;
4584 case DMA_RESOURCE_REMOVED:
4585 for (i = 0; i < nr_cpu_ids; i++)
4586 if (net_dma->channels[i] == chan) {
4587 found = 1;
4588 pos = i;
4589 break;
4590 }
4591
4592 if (found) {
4593 ack = DMA_ACK;
4594 cpu_clear(pos, net_dma->channel_mask);
4595 net_dma->channels[i] = NULL;
4596 net_dma_rebalance(net_dma);
4597 }
4598 break;
4599 default:
4600 break;
4601 }
4602 spin_unlock(&net_dma->lock);
4603
4604 return ack;
4605 }
4606
4607 /**
4608 * netdev_dma_regiser - register the networking subsystem as a DMA client
4609 */
4610 static int __init netdev_dma_register(void)
4611 {
4612 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4613 GFP_KERNEL);
4614 if (unlikely(!net_dma.channels)) {
4615 printk(KERN_NOTICE
4616 "netdev_dma: no memory for net_dma.channels\n");
4617 return -ENOMEM;
4618 }
4619 spin_lock_init(&net_dma.lock);
4620 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4621 dma_async_client_register(&net_dma.client);
4622 dma_async_client_chan_request(&net_dma.client);
4623 return 0;
4624 }
4625
4626 #else
4627 static int __init netdev_dma_register(void) { return -ENODEV; }
4628 #endif /* CONFIG_NET_DMA */
4629
4630 /**
4631 * netdev_compute_feature - compute conjunction of two feature sets
4632 * @all: first feature set
4633 * @one: second feature set
4634 *
4635 * Computes a new feature set after adding a device with feature set
4636 * @one to the master device with current feature set @all. Returns
4637 * the new feature set.
4638 */
4639 int netdev_compute_features(unsigned long all, unsigned long one)
4640 {
4641 /* if device needs checksumming, downgrade to hw checksumming */
4642 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4643 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4644
4645 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4646 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4647 all ^= NETIF_F_HW_CSUM
4648 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4649
4650 if (one & NETIF_F_GSO)
4651 one |= NETIF_F_GSO_SOFTWARE;
4652 one |= NETIF_F_GSO;
4653
4654 /* If even one device supports robust GSO, enable it for all. */
4655 if (one & NETIF_F_GSO_ROBUST)
4656 all |= NETIF_F_GSO_ROBUST;
4657
4658 all &= one | NETIF_F_LLTX;
4659
4660 if (!(all & NETIF_F_ALL_CSUM))
4661 all &= ~NETIF_F_SG;
4662 if (!(all & NETIF_F_SG))
4663 all &= ~NETIF_F_GSO_MASK;
4664
4665 return all;
4666 }
4667 EXPORT_SYMBOL(netdev_compute_features);
4668
4669 static struct hlist_head *netdev_create_hash(void)
4670 {
4671 int i;
4672 struct hlist_head *hash;
4673
4674 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4675 if (hash != NULL)
4676 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4677 INIT_HLIST_HEAD(&hash[i]);
4678
4679 return hash;
4680 }
4681
4682 /* Initialize per network namespace state */
4683 static int __net_init netdev_init(struct net *net)
4684 {
4685 INIT_LIST_HEAD(&net->dev_base_head);
4686
4687 net->dev_name_head = netdev_create_hash();
4688 if (net->dev_name_head == NULL)
4689 goto err_name;
4690
4691 net->dev_index_head = netdev_create_hash();
4692 if (net->dev_index_head == NULL)
4693 goto err_idx;
4694
4695 return 0;
4696
4697 err_idx:
4698 kfree(net->dev_name_head);
4699 err_name:
4700 return -ENOMEM;
4701 }
4702
4703 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4704 {
4705 struct device_driver *driver;
4706 struct device *parent;
4707
4708 if (len <= 0 || !buffer)
4709 return buffer;
4710 buffer[0] = 0;
4711
4712 parent = dev->dev.parent;
4713
4714 if (!parent)
4715 return buffer;
4716
4717 driver = parent->driver;
4718 if (driver && driver->name)
4719 strlcpy(buffer, driver->name, len);
4720 return buffer;
4721 }
4722
4723 static void __net_exit netdev_exit(struct net *net)
4724 {
4725 kfree(net->dev_name_head);
4726 kfree(net->dev_index_head);
4727 }
4728
4729 static struct pernet_operations __net_initdata netdev_net_ops = {
4730 .init = netdev_init,
4731 .exit = netdev_exit,
4732 };
4733
4734 static void __net_exit default_device_exit(struct net *net)
4735 {
4736 struct net_device *dev, *next;
4737 /*
4738 * Push all migratable of the network devices back to the
4739 * initial network namespace
4740 */
4741 rtnl_lock();
4742 for_each_netdev_safe(net, dev, next) {
4743 int err;
4744 char fb_name[IFNAMSIZ];
4745
4746 /* Ignore unmoveable devices (i.e. loopback) */
4747 if (dev->features & NETIF_F_NETNS_LOCAL)
4748 continue;
4749
4750 /* Push remaing network devices to init_net */
4751 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4752 err = dev_change_net_namespace(dev, &init_net, fb_name);
4753 if (err) {
4754 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4755 __func__, dev->name, err);
4756 BUG();
4757 }
4758 }
4759 rtnl_unlock();
4760 }
4761
4762 static struct pernet_operations __net_initdata default_device_ops = {
4763 .exit = default_device_exit,
4764 };
4765
4766 /*
4767 * Initialize the DEV module. At boot time this walks the device list and
4768 * unhooks any devices that fail to initialise (normally hardware not
4769 * present) and leaves us with a valid list of present and active devices.
4770 *
4771 */
4772
4773 /*
4774 * This is called single threaded during boot, so no need
4775 * to take the rtnl semaphore.
4776 */
4777 static int __init net_dev_init(void)
4778 {
4779 int i, rc = -ENOMEM;
4780
4781 BUG_ON(!dev_boot_phase);
4782
4783 if (dev_proc_init())
4784 goto out;
4785
4786 if (netdev_kobject_init())
4787 goto out;
4788
4789 INIT_LIST_HEAD(&ptype_all);
4790 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4791 INIT_LIST_HEAD(&ptype_base[i]);
4792
4793 if (register_pernet_subsys(&netdev_net_ops))
4794 goto out;
4795
4796 if (register_pernet_device(&default_device_ops))
4797 goto out;
4798
4799 /*
4800 * Initialise the packet receive queues.
4801 */
4802
4803 for_each_possible_cpu(i) {
4804 struct softnet_data *queue;
4805
4806 queue = &per_cpu(softnet_data, i);
4807 skb_queue_head_init(&queue->input_pkt_queue);
4808 queue->completion_queue = NULL;
4809 INIT_LIST_HEAD(&queue->poll_list);
4810
4811 queue->backlog.poll = process_backlog;
4812 queue->backlog.weight = weight_p;
4813 }
4814
4815 netdev_dma_register();
4816
4817 dev_boot_phase = 0;
4818
4819 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4820 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4821
4822 hotcpu_notifier(dev_cpu_callback, 0);
4823 dst_init();
4824 dev_mcast_init();
4825 rc = 0;
4826 out:
4827 return rc;
4828 }
4829
4830 subsys_initcall(net_dev_init);
4831
4832 EXPORT_SYMBOL(__dev_get_by_index);
4833 EXPORT_SYMBOL(__dev_get_by_name);
4834 EXPORT_SYMBOL(__dev_remove_pack);
4835 EXPORT_SYMBOL(dev_valid_name);
4836 EXPORT_SYMBOL(dev_add_pack);
4837 EXPORT_SYMBOL(dev_alloc_name);
4838 EXPORT_SYMBOL(dev_close);
4839 EXPORT_SYMBOL(dev_get_by_flags);
4840 EXPORT_SYMBOL(dev_get_by_index);
4841 EXPORT_SYMBOL(dev_get_by_name);
4842 EXPORT_SYMBOL(dev_open);
4843 EXPORT_SYMBOL(dev_queue_xmit);
4844 EXPORT_SYMBOL(dev_remove_pack);
4845 EXPORT_SYMBOL(dev_set_allmulti);
4846 EXPORT_SYMBOL(dev_set_promiscuity);
4847 EXPORT_SYMBOL(dev_change_flags);
4848 EXPORT_SYMBOL(dev_set_mtu);
4849 EXPORT_SYMBOL(dev_set_mac_address);
4850 EXPORT_SYMBOL(free_netdev);
4851 EXPORT_SYMBOL(netdev_boot_setup_check);
4852 EXPORT_SYMBOL(netdev_set_master);
4853 EXPORT_SYMBOL(netdev_state_change);
4854 EXPORT_SYMBOL(netif_receive_skb);
4855 EXPORT_SYMBOL(netif_rx);
4856 EXPORT_SYMBOL(register_gifconf);
4857 EXPORT_SYMBOL(register_netdevice);
4858 EXPORT_SYMBOL(register_netdevice_notifier);
4859 EXPORT_SYMBOL(skb_checksum_help);
4860 EXPORT_SYMBOL(synchronize_net);
4861 EXPORT_SYMBOL(unregister_netdevice);
4862 EXPORT_SYMBOL(unregister_netdevice_notifier);
4863 EXPORT_SYMBOL(net_enable_timestamp);
4864 EXPORT_SYMBOL(net_disable_timestamp);
4865 EXPORT_SYMBOL(dev_get_flags);
4866
4867 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4868 EXPORT_SYMBOL(br_handle_frame_hook);
4869 EXPORT_SYMBOL(br_fdb_get_hook);
4870 EXPORT_SYMBOL(br_fdb_put_hook);
4871 #endif
4872
4873 #ifdef CONFIG_KMOD
4874 EXPORT_SYMBOL(dev_load);
4875 #endif
4876
4877 EXPORT_PER_CPU_SYMBOL(softnet_data);