include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal
227 * caller must respect a RCU grace period before freeing/reusing dev
228 */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 ASSERT_RTNL();
232
233 /* Unlink dev from the device chain */
234 write_lock_bh(&dev_base_lock);
235 list_del_rcu(&dev->dev_list);
236 hlist_del_rcu(&dev->name_hlist);
237 hlist_del_rcu(&dev->index_hlist);
238 write_unlock_bh(&dev_base_lock);
239 }
240
241 /*
242 * Our notifier list
243 */
244
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246
247 /*
248 * Device drivers call our routines to queue packets here. We empty the
249 * queue in the local softnet handler.
250 */
251
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 EXPORT_PER_CPU_SYMBOL(softnet_data);
254
255 #ifdef CONFIG_LOCKDEP
256 /*
257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
258 * according to dev->type
259 */
260 static const unsigned short netdev_lock_type[] =
261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
276 ARPHRD_VOID, ARPHRD_NONE};
277
278 static const char *const netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
294 "_xmit_VOID", "_xmit_NONE"};
295
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 {
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
305 return i;
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
308 }
309
310 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
312 {
313 int i;
314
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
318 }
319
320 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 {
322 int i;
323
324 i = netdev_lock_pos(dev->type);
325 lockdep_set_class_and_name(&dev->addr_list_lock,
326 &netdev_addr_lock_key[i],
327 netdev_lock_name[i]);
328 }
329 #else
330 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
331 unsigned short dev_type)
332 {
333 }
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 }
337 #endif
338
339 /*******************************************************************************
340
341 Protocol management and registration routines
342
343 *******************************************************************************/
344
345 /*
346 * Add a protocol ID to the list. Now that the input handler is
347 * smarter we can dispense with all the messy stuff that used to be
348 * here.
349 *
350 * BEWARE!!! Protocol handlers, mangling input packets,
351 * MUST BE last in hash buckets and checking protocol handlers
352 * MUST start from promiscuous ptype_all chain in net_bh.
353 * It is true now, do not change it.
354 * Explanation follows: if protocol handler, mangling packet, will
355 * be the first on list, it is not able to sense, that packet
356 * is cloned and should be copied-on-write, so that it will
357 * change it and subsequent readers will get broken packet.
358 * --ANK (980803)
359 */
360
361 /**
362 * dev_add_pack - add packet handler
363 * @pt: packet type declaration
364 *
365 * Add a protocol handler to the networking stack. The passed &packet_type
366 * is linked into kernel lists and may not be freed until it has been
367 * removed from the kernel lists.
368 *
369 * This call does not sleep therefore it can not
370 * guarantee all CPU's that are in middle of receiving packets
371 * will see the new packet type (until the next received packet).
372 */
373
374 void dev_add_pack(struct packet_type *pt)
375 {
376 int hash;
377
378 spin_lock_bh(&ptype_lock);
379 if (pt->type == htons(ETH_P_ALL))
380 list_add_rcu(&pt->list, &ptype_all);
381 else {
382 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
383 list_add_rcu(&pt->list, &ptype_base[hash]);
384 }
385 spin_unlock_bh(&ptype_lock);
386 }
387 EXPORT_SYMBOL(dev_add_pack);
388
389 /**
390 * __dev_remove_pack - remove packet handler
391 * @pt: packet type declaration
392 *
393 * Remove a protocol handler that was previously added to the kernel
394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
395 * from the kernel lists and can be freed or reused once this function
396 * returns.
397 *
398 * The packet type might still be in use by receivers
399 * and must not be freed until after all the CPU's have gone
400 * through a quiescent state.
401 */
402 void __dev_remove_pack(struct packet_type *pt)
403 {
404 struct list_head *head;
405 struct packet_type *pt1;
406
407 spin_lock_bh(&ptype_lock);
408
409 if (pt->type == htons(ETH_P_ALL))
410 head = &ptype_all;
411 else
412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
422 out:
423 spin_unlock_bh(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426
427 /**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446
447 /******************************************************************************
448
449 Device Boot-time Settings Routines
450
451 *******************************************************************************/
452
453 /* Boot time configuration table */
454 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455
456 /**
457 * netdev_boot_setup_add - add new setup entry
458 * @name: name of the device
459 * @map: configured settings for the device
460 *
461 * Adds new setup entry to the dev_boot_setup list. The function
462 * returns 0 on error and 1 on success. This is a generic routine to
463 * all netdevices.
464 */
465 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 {
467 struct netdev_boot_setup *s;
468 int i;
469
470 s = dev_boot_setup;
471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
473 memset(s[i].name, 0, sizeof(s[i].name));
474 strlcpy(s[i].name, name, IFNAMSIZ);
475 memcpy(&s[i].map, map, sizeof(s[i].map));
476 break;
477 }
478 }
479
480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 }
482
483 /**
484 * netdev_boot_setup_check - check boot time settings
485 * @dev: the netdevice
486 *
487 * Check boot time settings for the device.
488 * The found settings are set for the device to be used
489 * later in the device probing.
490 * Returns 0 if no settings found, 1 if they are.
491 */
492 int netdev_boot_setup_check(struct net_device *dev)
493 {
494 struct netdev_boot_setup *s = dev_boot_setup;
495 int i;
496
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
499 !strcmp(dev->name, s[i].name)) {
500 dev->irq = s[i].map.irq;
501 dev->base_addr = s[i].map.base_addr;
502 dev->mem_start = s[i].map.mem_start;
503 dev->mem_end = s[i].map.mem_end;
504 return 1;
505 }
506 }
507 return 0;
508 }
509 EXPORT_SYMBOL(netdev_boot_setup_check);
510
511
512 /**
513 * netdev_boot_base - get address from boot time settings
514 * @prefix: prefix for network device
515 * @unit: id for network device
516 *
517 * Check boot time settings for the base address of device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found.
521 */
522 unsigned long netdev_boot_base(const char *prefix, int unit)
523 {
524 const struct netdev_boot_setup *s = dev_boot_setup;
525 char name[IFNAMSIZ];
526 int i;
527
528 sprintf(name, "%s%d", prefix, unit);
529
530 /*
531 * If device already registered then return base of 1
532 * to indicate not to probe for this interface
533 */
534 if (__dev_get_by_name(&init_net, name))
535 return 1;
536
537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
538 if (!strcmp(name, s[i].name))
539 return s[i].map.base_addr;
540 return 0;
541 }
542
543 /*
544 * Saves at boot time configured settings for any netdevice.
545 */
546 int __init netdev_boot_setup(char *str)
547 {
548 int ints[5];
549 struct ifmap map;
550
551 str = get_options(str, ARRAY_SIZE(ints), ints);
552 if (!str || !*str)
553 return 0;
554
555 /* Save settings */
556 memset(&map, 0, sizeof(map));
557 if (ints[0] > 0)
558 map.irq = ints[1];
559 if (ints[0] > 1)
560 map.base_addr = ints[2];
561 if (ints[0] > 2)
562 map.mem_start = ints[3];
563 if (ints[0] > 3)
564 map.mem_end = ints[4];
565
566 /* Add new entry to the list */
567 return netdev_boot_setup_add(str, &map);
568 }
569
570 __setup("netdev=", netdev_boot_setup);
571
572 /*******************************************************************************
573
574 Device Interface Subroutines
575
576 *******************************************************************************/
577
578 /**
579 * __dev_get_by_name - find a device by its name
580 * @net: the applicable net namespace
581 * @name: name to find
582 *
583 * Find an interface by name. Must be called under RTNL semaphore
584 * or @dev_base_lock. If the name is found a pointer to the device
585 * is returned. If the name is not found then %NULL is returned. The
586 * reference counters are not incremented so the caller must be
587 * careful with locks.
588 */
589
590 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 {
592 struct hlist_node *p;
593 struct net_device *dev;
594 struct hlist_head *head = dev_name_hash(net, name);
595
596 hlist_for_each_entry(dev, p, head, name_hlist)
597 if (!strncmp(dev->name, name, IFNAMSIZ))
598 return dev;
599
600 return NULL;
601 }
602 EXPORT_SYMBOL(__dev_get_by_name);
603
604 /**
605 * dev_get_by_name_rcu - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name.
610 * If the name is found a pointer to the device is returned.
611 * If the name is not found then %NULL is returned.
612 * The reference counters are not incremented so the caller must be
613 * careful with locks. The caller must hold RCU lock.
614 */
615
616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(dev_get_by_name_rcu);
629
630 /**
631 * dev_get_by_name - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name. This can be called from any
636 * context and does its own locking. The returned handle has
637 * the usage count incremented and the caller must use dev_put() to
638 * release it when it is no longer needed. %NULL is returned if no
639 * matching device is found.
640 */
641
642 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 {
644 struct net_device *dev;
645
646 rcu_read_lock();
647 dev = dev_get_by_name_rcu(net, name);
648 if (dev)
649 dev_hold(dev);
650 rcu_read_unlock();
651 return dev;
652 }
653 EXPORT_SYMBOL(dev_get_by_name);
654
655 /**
656 * __dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
659 *
660 * Search for an interface by index. Returns %NULL if the device
661 * is not found or a pointer to the device. The device has not
662 * had its reference counter increased so the caller must be careful
663 * about locking. The caller must hold either the RTNL semaphore
664 * or @dev_base_lock.
665 */
666
667 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 {
669 struct hlist_node *p;
670 struct net_device *dev;
671 struct hlist_head *head = dev_index_hash(net, ifindex);
672
673 hlist_for_each_entry(dev, p, head, index_hlist)
674 if (dev->ifindex == ifindex)
675 return dev;
676
677 return NULL;
678 }
679 EXPORT_SYMBOL(__dev_get_by_index);
680
681 /**
682 * dev_get_by_index_rcu - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 {
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
697
698 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
700 return dev;
701
702 return NULL;
703 }
704 EXPORT_SYMBOL(dev_get_by_index_rcu);
705
706
707 /**
708 * dev_get_by_index - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns NULL if the device
713 * is not found or a pointer to the device. The device returned has
714 * had a reference added and the pointer is safe until the user calls
715 * dev_put to indicate they have finished with it.
716 */
717
718 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 {
720 struct net_device *dev;
721
722 rcu_read_lock();
723 dev = dev_get_by_index_rcu(net, ifindex);
724 if (dev)
725 dev_hold(dev);
726 rcu_read_unlock();
727 return dev;
728 }
729 EXPORT_SYMBOL(dev_get_by_index);
730
731 /**
732 * dev_getbyhwaddr - find a device by its hardware address
733 * @net: the applicable net namespace
734 * @type: media type of device
735 * @ha: hardware address
736 *
737 * Search for an interface by MAC address. Returns NULL if the device
738 * is not found or a pointer to the device. The caller must hold the
739 * rtnl semaphore. The returned device has not had its ref count increased
740 * and the caller must therefore be careful about locking
741 *
742 * BUGS:
743 * If the API was consistent this would be __dev_get_by_hwaddr
744 */
745
746 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 {
748 struct net_device *dev;
749
750 ASSERT_RTNL();
751
752 for_each_netdev(net, dev)
753 if (dev->type == type &&
754 !memcmp(dev->dev_addr, ha, dev->addr_len))
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(dev_getbyhwaddr);
760
761 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766 for_each_netdev(net, dev)
767 if (dev->type == type)
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773
774 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 rtnl_lock();
779 dev = __dev_getfirstbyhwtype(net, type);
780 if (dev)
781 dev_hold(dev);
782 rtnl_unlock();
783 return dev;
784 }
785 EXPORT_SYMBOL(dev_getfirstbyhwtype);
786
787 /**
788 * dev_get_by_flags - find any device with given flags
789 * @net: the applicable net namespace
790 * @if_flags: IFF_* values
791 * @mask: bitmask of bits in if_flags to check
792 *
793 * Search for any interface with the given flags. Returns NULL if a device
794 * is not found or a pointer to the device. The device returned has
795 * had a reference added and the pointer is safe until the user calls
796 * dev_put to indicate they have finished with it.
797 */
798
799 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
800 unsigned short mask)
801 {
802 struct net_device *dev, *ret;
803
804 ret = NULL;
805 rcu_read_lock();
806 for_each_netdev_rcu(net, dev) {
807 if (((dev->flags ^ if_flags) & mask) == 0) {
808 dev_hold(dev);
809 ret = dev;
810 break;
811 }
812 }
813 rcu_read_unlock();
814 return ret;
815 }
816 EXPORT_SYMBOL(dev_get_by_flags);
817
818 /**
819 * dev_valid_name - check if name is okay for network device
820 * @name: name string
821 *
822 * Network device names need to be valid file names to
823 * to allow sysfs to work. We also disallow any kind of
824 * whitespace.
825 */
826 int dev_valid_name(const char *name)
827 {
828 if (*name == '\0')
829 return 0;
830 if (strlen(name) >= IFNAMSIZ)
831 return 0;
832 if (!strcmp(name, ".") || !strcmp(name, ".."))
833 return 0;
834
835 while (*name) {
836 if (*name == '/' || isspace(*name))
837 return 0;
838 name++;
839 }
840 return 1;
841 }
842 EXPORT_SYMBOL(dev_valid_name);
843
844 /**
845 * __dev_alloc_name - allocate a name for a device
846 * @net: network namespace to allocate the device name in
847 * @name: name format string
848 * @buf: scratch buffer and result name string
849 *
850 * Passed a format string - eg "lt%d" it will try and find a suitable
851 * id. It scans list of devices to build up a free map, then chooses
852 * the first empty slot. The caller must hold the dev_base or rtnl lock
853 * while allocating the name and adding the device in order to avoid
854 * duplicates.
855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
856 * Returns the number of the unit assigned or a negative errno code.
857 */
858
859 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 {
861 int i = 0;
862 const char *p;
863 const int max_netdevices = 8*PAGE_SIZE;
864 unsigned long *inuse;
865 struct net_device *d;
866
867 p = strnchr(name, IFNAMSIZ-1, '%');
868 if (p) {
869 /*
870 * Verify the string as this thing may have come from
871 * the user. There must be either one "%d" and no other "%"
872 * characters.
873 */
874 if (p[1] != 'd' || strchr(p + 2, '%'))
875 return -EINVAL;
876
877 /* Use one page as a bit array of possible slots */
878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
879 if (!inuse)
880 return -ENOMEM;
881
882 for_each_netdev(net, d) {
883 if (!sscanf(d->name, name, &i))
884 continue;
885 if (i < 0 || i >= max_netdevices)
886 continue;
887
888 /* avoid cases where sscanf is not exact inverse of printf */
889 snprintf(buf, IFNAMSIZ, name, i);
890 if (!strncmp(buf, d->name, IFNAMSIZ))
891 set_bit(i, inuse);
892 }
893
894 i = find_first_zero_bit(inuse, max_netdevices);
895 free_page((unsigned long) inuse);
896 }
897
898 if (buf != name)
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!__dev_get_by_name(net, buf))
901 return i;
902
903 /* It is possible to run out of possible slots
904 * when the name is long and there isn't enough space left
905 * for the digits, or if all bits are used.
906 */
907 return -ENFILE;
908 }
909
910 /**
911 * dev_alloc_name - allocate a name for a device
912 * @dev: device
913 * @name: name format string
914 *
915 * Passed a format string - eg "lt%d" it will try and find a suitable
916 * id. It scans list of devices to build up a free map, then chooses
917 * the first empty slot. The caller must hold the dev_base or rtnl lock
918 * while allocating the name and adding the device in order to avoid
919 * duplicates.
920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
921 * Returns the number of the unit assigned or a negative errno code.
922 */
923
924 int dev_alloc_name(struct net_device *dev, const char *name)
925 {
926 char buf[IFNAMSIZ];
927 struct net *net;
928 int ret;
929
930 BUG_ON(!dev_net(dev));
931 net = dev_net(dev);
932 ret = __dev_alloc_name(net, name, buf);
933 if (ret >= 0)
934 strlcpy(dev->name, buf, IFNAMSIZ);
935 return ret;
936 }
937 EXPORT_SYMBOL(dev_alloc_name);
938
939 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
940 bool fmt)
941 {
942 if (!dev_valid_name(name))
943 return -EINVAL;
944
945 if (fmt && strchr(name, '%'))
946 return __dev_alloc_name(net, name, buf);
947 else if (__dev_get_by_name(net, name))
948 return -EEXIST;
949 else if (buf != name)
950 strlcpy(buf, name, IFNAMSIZ);
951
952 return 0;
953 }
954
955 /**
956 * dev_change_name - change name of a device
957 * @dev: device
958 * @newname: name (or format string) must be at least IFNAMSIZ
959 *
960 * Change name of a device, can pass format strings "eth%d".
961 * for wildcarding.
962 */
963 int dev_change_name(struct net_device *dev, const char *newname)
964 {
965 char oldname[IFNAMSIZ];
966 int err = 0;
967 int ret;
968 struct net *net;
969
970 ASSERT_RTNL();
971 BUG_ON(!dev_net(dev));
972
973 net = dev_net(dev);
974 if (dev->flags & IFF_UP)
975 return -EBUSY;
976
977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
978 return 0;
979
980 memcpy(oldname, dev->name, IFNAMSIZ);
981
982 err = dev_get_valid_name(net, newname, dev->name, 1);
983 if (err < 0)
984 return err;
985
986 rollback:
987 /* For now only devices in the initial network namespace
988 * are in sysfs.
989 */
990 if (net_eq(net, &init_net)) {
991 ret = device_rename(&dev->dev, dev->name);
992 if (ret) {
993 memcpy(dev->name, oldname, IFNAMSIZ);
994 return ret;
995 }
996 }
997
998 write_lock_bh(&dev_base_lock);
999 hlist_del(&dev->name_hlist);
1000 write_unlock_bh(&dev_base_lock);
1001
1002 synchronize_rcu();
1003
1004 write_lock_bh(&dev_base_lock);
1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1006 write_unlock_bh(&dev_base_lock);
1007
1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1009 ret = notifier_to_errno(ret);
1010
1011 if (ret) {
1012 /* err >= 0 after dev_alloc_name() or stores the first errno */
1013 if (err >= 0) {
1014 err = ret;
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1016 goto rollback;
1017 } else {
1018 printk(KERN_ERR
1019 "%s: name change rollback failed: %d.\n",
1020 dev->name, ret);
1021 }
1022 }
1023
1024 return err;
1025 }
1026
1027 /**
1028 * dev_set_alias - change ifalias of a device
1029 * @dev: device
1030 * @alias: name up to IFALIASZ
1031 * @len: limit of bytes to copy from info
1032 *
1033 * Set ifalias for a device,
1034 */
1035 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 {
1037 ASSERT_RTNL();
1038
1039 if (len >= IFALIASZ)
1040 return -EINVAL;
1041
1042 if (!len) {
1043 if (dev->ifalias) {
1044 kfree(dev->ifalias);
1045 dev->ifalias = NULL;
1046 }
1047 return 0;
1048 }
1049
1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1051 if (!dev->ifalias)
1052 return -ENOMEM;
1053
1054 strlcpy(dev->ifalias, alias, len+1);
1055 return len;
1056 }
1057
1058
1059 /**
1060 * netdev_features_change - device changes features
1061 * @dev: device to cause notification
1062 *
1063 * Called to indicate a device has changed features.
1064 */
1065 void netdev_features_change(struct net_device *dev)
1066 {
1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 }
1069 EXPORT_SYMBOL(netdev_features_change);
1070
1071 /**
1072 * netdev_state_change - device changes state
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed state. This function calls
1076 * the notifier chains for netdev_chain and sends a NEWLINK message
1077 * to the routing socket.
1078 */
1079 void netdev_state_change(struct net_device *dev)
1080 {
1081 if (dev->flags & IFF_UP) {
1082 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1084 }
1085 }
1086 EXPORT_SYMBOL(netdev_state_change);
1087
1088 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 {
1090 call_netdevice_notifiers(event, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_bonding_change);
1093
1094 /**
1095 * dev_load - load a network module
1096 * @net: the applicable net namespace
1097 * @name: name of interface
1098 *
1099 * If a network interface is not present and the process has suitable
1100 * privileges this function loads the module. If module loading is not
1101 * available in this kernel then it becomes a nop.
1102 */
1103
1104 void dev_load(struct net *net, const char *name)
1105 {
1106 struct net_device *dev;
1107
1108 rcu_read_lock();
1109 dev = dev_get_by_name_rcu(net, name);
1110 rcu_read_unlock();
1111
1112 if (!dev && capable(CAP_NET_ADMIN))
1113 request_module("%s", name);
1114 }
1115 EXPORT_SYMBOL(dev_load);
1116
1117 static int __dev_open(struct net_device *dev)
1118 {
1119 const struct net_device_ops *ops = dev->netdev_ops;
1120 int ret;
1121
1122 ASSERT_RTNL();
1123
1124 /*
1125 * Is it even present?
1126 */
1127 if (!netif_device_present(dev))
1128 return -ENODEV;
1129
1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1131 ret = notifier_to_errno(ret);
1132 if (ret)
1133 return ret;
1134
1135 /*
1136 * Call device private open method
1137 */
1138 set_bit(__LINK_STATE_START, &dev->state);
1139
1140 if (ops->ndo_validate_addr)
1141 ret = ops->ndo_validate_addr(dev);
1142
1143 if (!ret && ops->ndo_open)
1144 ret = ops->ndo_open(dev);
1145
1146 /*
1147 * If it went open OK then:
1148 */
1149
1150 if (ret)
1151 clear_bit(__LINK_STATE_START, &dev->state);
1152 else {
1153 /*
1154 * Set the flags.
1155 */
1156 dev->flags |= IFF_UP;
1157
1158 /*
1159 * Enable NET_DMA
1160 */
1161 net_dmaengine_get();
1162
1163 /*
1164 * Initialize multicasting status
1165 */
1166 dev_set_rx_mode(dev);
1167
1168 /*
1169 * Wakeup transmit queue engine
1170 */
1171 dev_activate(dev);
1172 }
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * dev_open - prepare an interface for use.
1179 * @dev: device to open
1180 *
1181 * Takes a device from down to up state. The device's private open
1182 * function is invoked and then the multicast lists are loaded. Finally
1183 * the device is moved into the up state and a %NETDEV_UP message is
1184 * sent to the netdev notifier chain.
1185 *
1186 * Calling this function on an active interface is a nop. On a failure
1187 * a negative errno code is returned.
1188 */
1189 int dev_open(struct net_device *dev)
1190 {
1191 int ret;
1192
1193 /*
1194 * Is it already up?
1195 */
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 /*
1200 * Open device
1201 */
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1205
1206 /*
1207 * ... and announce new interface.
1208 */
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1211
1212 return ret;
1213 }
1214 EXPORT_SYMBOL(dev_open);
1215
1216 static int __dev_close(struct net_device *dev)
1217 {
1218 const struct net_device_ops *ops = dev->netdev_ops;
1219
1220 ASSERT_RTNL();
1221 might_sleep();
1222
1223 /*
1224 * Tell people we are going down, so that they can
1225 * prepare to death, when device is still operating.
1226 */
1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1228
1229 clear_bit(__LINK_STATE_START, &dev->state);
1230
1231 /* Synchronize to scheduled poll. We cannot touch poll list,
1232 * it can be even on different cpu. So just clear netif_running().
1233 *
1234 * dev->stop() will invoke napi_disable() on all of it's
1235 * napi_struct instances on this device.
1236 */
1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1238
1239 dev_deactivate(dev);
1240
1241 /*
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1244 *
1245 * We allow it to be called even after a DETACH hot-plug
1246 * event.
1247 */
1248 if (ops->ndo_stop)
1249 ops->ndo_stop(dev);
1250
1251 /*
1252 * Device is now down.
1253 */
1254
1255 dev->flags &= ~IFF_UP;
1256
1257 /*
1258 * Shutdown NET_DMA
1259 */
1260 net_dmaengine_put();
1261
1262 return 0;
1263 }
1264
1265 /**
1266 * dev_close - shutdown an interface.
1267 * @dev: device to shutdown
1268 *
1269 * This function moves an active device into down state. A
1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1272 * chain.
1273 */
1274 int dev_close(struct net_device *dev)
1275 {
1276 if (!(dev->flags & IFF_UP))
1277 return 0;
1278
1279 __dev_close(dev);
1280
1281 /*
1282 * Tell people we are down
1283 */
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1285 call_netdevice_notifiers(NETDEV_DOWN, dev);
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(dev_close);
1290
1291
1292 /**
1293 * dev_disable_lro - disable Large Receive Offload on a device
1294 * @dev: device
1295 *
1296 * Disable Large Receive Offload (LRO) on a net device. Must be
1297 * called under RTNL. This is needed if received packets may be
1298 * forwarded to another interface.
1299 */
1300 void dev_disable_lro(struct net_device *dev)
1301 {
1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1303 dev->ethtool_ops->set_flags) {
1304 u32 flags = dev->ethtool_ops->get_flags(dev);
1305 if (flags & ETH_FLAG_LRO) {
1306 flags &= ~ETH_FLAG_LRO;
1307 dev->ethtool_ops->set_flags(dev, flags);
1308 }
1309 }
1310 WARN_ON(dev->features & NETIF_F_LRO);
1311 }
1312 EXPORT_SYMBOL(dev_disable_lro);
1313
1314
1315 static int dev_boot_phase = 1;
1316
1317 /*
1318 * Device change register/unregister. These are not inline or static
1319 * as we export them to the world.
1320 */
1321
1322 /**
1323 * register_netdevice_notifier - register a network notifier block
1324 * @nb: notifier
1325 *
1326 * Register a notifier to be called when network device events occur.
1327 * The notifier passed is linked into the kernel structures and must
1328 * not be reused until it has been unregistered. A negative errno code
1329 * is returned on a failure.
1330 *
1331 * When registered all registration and up events are replayed
1332 * to the new notifier to allow device to have a race free
1333 * view of the network device list.
1334 */
1335
1336 int register_netdevice_notifier(struct notifier_block *nb)
1337 {
1338 struct net_device *dev;
1339 struct net_device *last;
1340 struct net *net;
1341 int err;
1342
1343 rtnl_lock();
1344 err = raw_notifier_chain_register(&netdev_chain, nb);
1345 if (err)
1346 goto unlock;
1347 if (dev_boot_phase)
1348 goto unlock;
1349 for_each_net(net) {
1350 for_each_netdev(net, dev) {
1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1352 err = notifier_to_errno(err);
1353 if (err)
1354 goto rollback;
1355
1356 if (!(dev->flags & IFF_UP))
1357 continue;
1358
1359 nb->notifier_call(nb, NETDEV_UP, dev);
1360 }
1361 }
1362
1363 unlock:
1364 rtnl_unlock();
1365 return err;
1366
1367 rollback:
1368 last = dev;
1369 for_each_net(net) {
1370 for_each_netdev(net, dev) {
1371 if (dev == last)
1372 break;
1373
1374 if (dev->flags & IFF_UP) {
1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1376 nb->notifier_call(nb, NETDEV_DOWN, dev);
1377 }
1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1380 }
1381 }
1382
1383 raw_notifier_chain_unregister(&netdev_chain, nb);
1384 goto unlock;
1385 }
1386 EXPORT_SYMBOL(register_netdevice_notifier);
1387
1388 /**
1389 * unregister_netdevice_notifier - unregister a network notifier block
1390 * @nb: notifier
1391 *
1392 * Unregister a notifier previously registered by
1393 * register_netdevice_notifier(). The notifier is unlinked into the
1394 * kernel structures and may then be reused. A negative errno code
1395 * is returned on a failure.
1396 */
1397
1398 int unregister_netdevice_notifier(struct notifier_block *nb)
1399 {
1400 int err;
1401
1402 rtnl_lock();
1403 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1404 rtnl_unlock();
1405 return err;
1406 }
1407 EXPORT_SYMBOL(unregister_netdevice_notifier);
1408
1409 /**
1410 * call_netdevice_notifiers - call all network notifier blocks
1411 * @val: value passed unmodified to notifier function
1412 * @dev: net_device pointer passed unmodified to notifier function
1413 *
1414 * Call all network notifier blocks. Parameters and return value
1415 * are as for raw_notifier_call_chain().
1416 */
1417
1418 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1419 {
1420 return raw_notifier_call_chain(&netdev_chain, val, dev);
1421 }
1422
1423 /* When > 0 there are consumers of rx skb time stamps */
1424 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1425
1426 void net_enable_timestamp(void)
1427 {
1428 atomic_inc(&netstamp_needed);
1429 }
1430 EXPORT_SYMBOL(net_enable_timestamp);
1431
1432 void net_disable_timestamp(void)
1433 {
1434 atomic_dec(&netstamp_needed);
1435 }
1436 EXPORT_SYMBOL(net_disable_timestamp);
1437
1438 static inline void net_timestamp(struct sk_buff *skb)
1439 {
1440 if (atomic_read(&netstamp_needed))
1441 __net_timestamp(skb);
1442 else
1443 skb->tstamp.tv64 = 0;
1444 }
1445
1446 /**
1447 * dev_forward_skb - loopback an skb to another netif
1448 *
1449 * @dev: destination network device
1450 * @skb: buffer to forward
1451 *
1452 * return values:
1453 * NET_RX_SUCCESS (no congestion)
1454 * NET_RX_DROP (packet was dropped)
1455 *
1456 * dev_forward_skb can be used for injecting an skb from the
1457 * start_xmit function of one device into the receive queue
1458 * of another device.
1459 *
1460 * The receiving device may be in another namespace, so
1461 * we have to clear all information in the skb that could
1462 * impact namespace isolation.
1463 */
1464 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1465 {
1466 skb_orphan(skb);
1467
1468 if (!(dev->flags & IFF_UP))
1469 return NET_RX_DROP;
1470
1471 if (skb->len > (dev->mtu + dev->hard_header_len))
1472 return NET_RX_DROP;
1473
1474 skb_set_dev(skb, dev);
1475 skb->tstamp.tv64 = 0;
1476 skb->pkt_type = PACKET_HOST;
1477 skb->protocol = eth_type_trans(skb, dev);
1478 return netif_rx(skb);
1479 }
1480 EXPORT_SYMBOL_GPL(dev_forward_skb);
1481
1482 /*
1483 * Support routine. Sends outgoing frames to any network
1484 * taps currently in use.
1485 */
1486
1487 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1488 {
1489 struct packet_type *ptype;
1490
1491 #ifdef CONFIG_NET_CLS_ACT
1492 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1493 net_timestamp(skb);
1494 #else
1495 net_timestamp(skb);
1496 #endif
1497
1498 rcu_read_lock();
1499 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1500 /* Never send packets back to the socket
1501 * they originated from - MvS (miquels@drinkel.ow.org)
1502 */
1503 if ((ptype->dev == dev || !ptype->dev) &&
1504 (ptype->af_packet_priv == NULL ||
1505 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1506 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1507 if (!skb2)
1508 break;
1509
1510 /* skb->nh should be correctly
1511 set by sender, so that the second statement is
1512 just protection against buggy protocols.
1513 */
1514 skb_reset_mac_header(skb2);
1515
1516 if (skb_network_header(skb2) < skb2->data ||
1517 skb2->network_header > skb2->tail) {
1518 if (net_ratelimit())
1519 printk(KERN_CRIT "protocol %04x is "
1520 "buggy, dev %s\n",
1521 skb2->protocol, dev->name);
1522 skb_reset_network_header(skb2);
1523 }
1524
1525 skb2->transport_header = skb2->network_header;
1526 skb2->pkt_type = PACKET_OUTGOING;
1527 ptype->func(skb2, skb->dev, ptype, skb->dev);
1528 }
1529 }
1530 rcu_read_unlock();
1531 }
1532
1533
1534 static inline void __netif_reschedule(struct Qdisc *q)
1535 {
1536 struct softnet_data *sd;
1537 unsigned long flags;
1538
1539 local_irq_save(flags);
1540 sd = &__get_cpu_var(softnet_data);
1541 q->next_sched = sd->output_queue;
1542 sd->output_queue = q;
1543 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1544 local_irq_restore(flags);
1545 }
1546
1547 void __netif_schedule(struct Qdisc *q)
1548 {
1549 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1550 __netif_reschedule(q);
1551 }
1552 EXPORT_SYMBOL(__netif_schedule);
1553
1554 void dev_kfree_skb_irq(struct sk_buff *skb)
1555 {
1556 if (atomic_dec_and_test(&skb->users)) {
1557 struct softnet_data *sd;
1558 unsigned long flags;
1559
1560 local_irq_save(flags);
1561 sd = &__get_cpu_var(softnet_data);
1562 skb->next = sd->completion_queue;
1563 sd->completion_queue = skb;
1564 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1565 local_irq_restore(flags);
1566 }
1567 }
1568 EXPORT_SYMBOL(dev_kfree_skb_irq);
1569
1570 void dev_kfree_skb_any(struct sk_buff *skb)
1571 {
1572 if (in_irq() || irqs_disabled())
1573 dev_kfree_skb_irq(skb);
1574 else
1575 dev_kfree_skb(skb);
1576 }
1577 EXPORT_SYMBOL(dev_kfree_skb_any);
1578
1579
1580 /**
1581 * netif_device_detach - mark device as removed
1582 * @dev: network device
1583 *
1584 * Mark device as removed from system and therefore no longer available.
1585 */
1586 void netif_device_detach(struct net_device *dev)
1587 {
1588 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1589 netif_running(dev)) {
1590 netif_tx_stop_all_queues(dev);
1591 }
1592 }
1593 EXPORT_SYMBOL(netif_device_detach);
1594
1595 /**
1596 * netif_device_attach - mark device as attached
1597 * @dev: network device
1598 *
1599 * Mark device as attached from system and restart if needed.
1600 */
1601 void netif_device_attach(struct net_device *dev)
1602 {
1603 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1604 netif_running(dev)) {
1605 netif_tx_wake_all_queues(dev);
1606 __netdev_watchdog_up(dev);
1607 }
1608 }
1609 EXPORT_SYMBOL(netif_device_attach);
1610
1611 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1612 {
1613 return ((features & NETIF_F_GEN_CSUM) ||
1614 ((features & NETIF_F_IP_CSUM) &&
1615 protocol == htons(ETH_P_IP)) ||
1616 ((features & NETIF_F_IPV6_CSUM) &&
1617 protocol == htons(ETH_P_IPV6)) ||
1618 ((features & NETIF_F_FCOE_CRC) &&
1619 protocol == htons(ETH_P_FCOE)));
1620 }
1621
1622 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1623 {
1624 if (can_checksum_protocol(dev->features, skb->protocol))
1625 return true;
1626
1627 if (skb->protocol == htons(ETH_P_8021Q)) {
1628 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1629 if (can_checksum_protocol(dev->features & dev->vlan_features,
1630 veh->h_vlan_encapsulated_proto))
1631 return true;
1632 }
1633
1634 return false;
1635 }
1636
1637 /**
1638 * skb_dev_set -- assign a new device to a buffer
1639 * @skb: buffer for the new device
1640 * @dev: network device
1641 *
1642 * If an skb is owned by a device already, we have to reset
1643 * all data private to the namespace a device belongs to
1644 * before assigning it a new device.
1645 */
1646 #ifdef CONFIG_NET_NS
1647 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1648 {
1649 skb_dst_drop(skb);
1650 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 skb_init_secmark(skb);
1654 skb->mark = 0;
1655 skb->priority = 0;
1656 skb->nf_trace = 0;
1657 skb->ipvs_property = 0;
1658 #ifdef CONFIG_NET_SCHED
1659 skb->tc_index = 0;
1660 #endif
1661 }
1662 skb->dev = dev;
1663 }
1664 EXPORT_SYMBOL(skb_set_dev);
1665 #endif /* CONFIG_NET_NS */
1666
1667 /*
1668 * Invalidate hardware checksum when packet is to be mangled, and
1669 * complete checksum manually on outgoing path.
1670 */
1671 int skb_checksum_help(struct sk_buff *skb)
1672 {
1673 __wsum csum;
1674 int ret = 0, offset;
1675
1676 if (skb->ip_summed == CHECKSUM_COMPLETE)
1677 goto out_set_summed;
1678
1679 if (unlikely(skb_shinfo(skb)->gso_size)) {
1680 /* Let GSO fix up the checksum. */
1681 goto out_set_summed;
1682 }
1683
1684 offset = skb->csum_start - skb_headroom(skb);
1685 BUG_ON(offset >= skb_headlen(skb));
1686 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1687
1688 offset += skb->csum_offset;
1689 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1690
1691 if (skb_cloned(skb) &&
1692 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1693 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1694 if (ret)
1695 goto out;
1696 }
1697
1698 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1699 out_set_summed:
1700 skb->ip_summed = CHECKSUM_NONE;
1701 out:
1702 return ret;
1703 }
1704 EXPORT_SYMBOL(skb_checksum_help);
1705
1706 /**
1707 * skb_gso_segment - Perform segmentation on skb.
1708 * @skb: buffer to segment
1709 * @features: features for the output path (see dev->features)
1710 *
1711 * This function segments the given skb and returns a list of segments.
1712 *
1713 * It may return NULL if the skb requires no segmentation. This is
1714 * only possible when GSO is used for verifying header integrity.
1715 */
1716 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1717 {
1718 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1719 struct packet_type *ptype;
1720 __be16 type = skb->protocol;
1721 int err;
1722
1723 skb_reset_mac_header(skb);
1724 skb->mac_len = skb->network_header - skb->mac_header;
1725 __skb_pull(skb, skb->mac_len);
1726
1727 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1728 struct net_device *dev = skb->dev;
1729 struct ethtool_drvinfo info = {};
1730
1731 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1732 dev->ethtool_ops->get_drvinfo(dev, &info);
1733
1734 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1735 "ip_summed=%d",
1736 info.driver, dev ? dev->features : 0L,
1737 skb->sk ? skb->sk->sk_route_caps : 0L,
1738 skb->len, skb->data_len, skb->ip_summed);
1739
1740 if (skb_header_cloned(skb) &&
1741 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1742 return ERR_PTR(err);
1743 }
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(ptype,
1747 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1748 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1749 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1750 err = ptype->gso_send_check(skb);
1751 segs = ERR_PTR(err);
1752 if (err || skb_gso_ok(skb, features))
1753 break;
1754 __skb_push(skb, (skb->data -
1755 skb_network_header(skb)));
1756 }
1757 segs = ptype->gso_segment(skb, features);
1758 break;
1759 }
1760 }
1761 rcu_read_unlock();
1762
1763 __skb_push(skb, skb->data - skb_mac_header(skb));
1764
1765 return segs;
1766 }
1767 EXPORT_SYMBOL(skb_gso_segment);
1768
1769 /* Take action when hardware reception checksum errors are detected. */
1770 #ifdef CONFIG_BUG
1771 void netdev_rx_csum_fault(struct net_device *dev)
1772 {
1773 if (net_ratelimit()) {
1774 printk(KERN_ERR "%s: hw csum failure.\n",
1775 dev ? dev->name : "<unknown>");
1776 dump_stack();
1777 }
1778 }
1779 EXPORT_SYMBOL(netdev_rx_csum_fault);
1780 #endif
1781
1782 /* Actually, we should eliminate this check as soon as we know, that:
1783 * 1. IOMMU is present and allows to map all the memory.
1784 * 2. No high memory really exists on this machine.
1785 */
1786
1787 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1788 {
1789 #ifdef CONFIG_HIGHMEM
1790 int i;
1791
1792 if (dev->features & NETIF_F_HIGHDMA)
1793 return 0;
1794
1795 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1796 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1797 return 1;
1798
1799 #endif
1800 return 0;
1801 }
1802
1803 struct dev_gso_cb {
1804 void (*destructor)(struct sk_buff *skb);
1805 };
1806
1807 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1808
1809 static void dev_gso_skb_destructor(struct sk_buff *skb)
1810 {
1811 struct dev_gso_cb *cb;
1812
1813 do {
1814 struct sk_buff *nskb = skb->next;
1815
1816 skb->next = nskb->next;
1817 nskb->next = NULL;
1818 kfree_skb(nskb);
1819 } while (skb->next);
1820
1821 cb = DEV_GSO_CB(skb);
1822 if (cb->destructor)
1823 cb->destructor(skb);
1824 }
1825
1826 /**
1827 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1828 * @skb: buffer to segment
1829 *
1830 * This function segments the given skb and stores the list of segments
1831 * in skb->next.
1832 */
1833 static int dev_gso_segment(struct sk_buff *skb)
1834 {
1835 struct net_device *dev = skb->dev;
1836 struct sk_buff *segs;
1837 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1838 NETIF_F_SG : 0);
1839
1840 segs = skb_gso_segment(skb, features);
1841
1842 /* Verifying header integrity only. */
1843 if (!segs)
1844 return 0;
1845
1846 if (IS_ERR(segs))
1847 return PTR_ERR(segs);
1848
1849 skb->next = segs;
1850 DEV_GSO_CB(skb)->destructor = skb->destructor;
1851 skb->destructor = dev_gso_skb_destructor;
1852
1853 return 0;
1854 }
1855
1856 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1857 struct netdev_queue *txq)
1858 {
1859 const struct net_device_ops *ops = dev->netdev_ops;
1860 int rc = NETDEV_TX_OK;
1861
1862 if (likely(!skb->next)) {
1863 if (!list_empty(&ptype_all))
1864 dev_queue_xmit_nit(skb, dev);
1865
1866 if (netif_needs_gso(dev, skb)) {
1867 if (unlikely(dev_gso_segment(skb)))
1868 goto out_kfree_skb;
1869 if (skb->next)
1870 goto gso;
1871 }
1872
1873 /*
1874 * If device doesnt need skb->dst, release it right now while
1875 * its hot in this cpu cache
1876 */
1877 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1878 skb_dst_drop(skb);
1879
1880 rc = ops->ndo_start_xmit(skb, dev);
1881 if (rc == NETDEV_TX_OK)
1882 txq_trans_update(txq);
1883 /*
1884 * TODO: if skb_orphan() was called by
1885 * dev->hard_start_xmit() (for example, the unmodified
1886 * igb driver does that; bnx2 doesn't), then
1887 * skb_tx_software_timestamp() will be unable to send
1888 * back the time stamp.
1889 *
1890 * How can this be prevented? Always create another
1891 * reference to the socket before calling
1892 * dev->hard_start_xmit()? Prevent that skb_orphan()
1893 * does anything in dev->hard_start_xmit() by clearing
1894 * the skb destructor before the call and restoring it
1895 * afterwards, then doing the skb_orphan() ourselves?
1896 */
1897 return rc;
1898 }
1899
1900 gso:
1901 do {
1902 struct sk_buff *nskb = skb->next;
1903
1904 skb->next = nskb->next;
1905 nskb->next = NULL;
1906
1907 /*
1908 * If device doesnt need nskb->dst, release it right now while
1909 * its hot in this cpu cache
1910 */
1911 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1912 skb_dst_drop(nskb);
1913
1914 rc = ops->ndo_start_xmit(nskb, dev);
1915 if (unlikely(rc != NETDEV_TX_OK)) {
1916 if (rc & ~NETDEV_TX_MASK)
1917 goto out_kfree_gso_skb;
1918 nskb->next = skb->next;
1919 skb->next = nskb;
1920 return rc;
1921 }
1922 txq_trans_update(txq);
1923 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1924 return NETDEV_TX_BUSY;
1925 } while (skb->next);
1926
1927 out_kfree_gso_skb:
1928 if (likely(skb->next == NULL))
1929 skb->destructor = DEV_GSO_CB(skb)->destructor;
1930 out_kfree_skb:
1931 kfree_skb(skb);
1932 return rc;
1933 }
1934
1935 static u32 skb_tx_hashrnd;
1936
1937 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1938 {
1939 u32 hash;
1940
1941 if (skb_rx_queue_recorded(skb)) {
1942 hash = skb_get_rx_queue(skb);
1943 while (unlikely(hash >= dev->real_num_tx_queues))
1944 hash -= dev->real_num_tx_queues;
1945 return hash;
1946 }
1947
1948 if (skb->sk && skb->sk->sk_hash)
1949 hash = skb->sk->sk_hash;
1950 else
1951 hash = skb->protocol;
1952
1953 hash = jhash_1word(hash, skb_tx_hashrnd);
1954
1955 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1956 }
1957 EXPORT_SYMBOL(skb_tx_hash);
1958
1959 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1960 {
1961 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1962 if (net_ratelimit()) {
1963 WARN(1, "%s selects TX queue %d, but "
1964 "real number of TX queues is %d\n",
1965 dev->name, queue_index,
1966 dev->real_num_tx_queues);
1967 }
1968 return 0;
1969 }
1970 return queue_index;
1971 }
1972
1973 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1974 struct sk_buff *skb)
1975 {
1976 u16 queue_index;
1977 struct sock *sk = skb->sk;
1978
1979 if (sk_tx_queue_recorded(sk)) {
1980 queue_index = sk_tx_queue_get(sk);
1981 } else {
1982 const struct net_device_ops *ops = dev->netdev_ops;
1983
1984 if (ops->ndo_select_queue) {
1985 queue_index = ops->ndo_select_queue(dev, skb);
1986 queue_index = dev_cap_txqueue(dev, queue_index);
1987 } else {
1988 queue_index = 0;
1989 if (dev->real_num_tx_queues > 1)
1990 queue_index = skb_tx_hash(dev, skb);
1991
1992 if (sk && sk->sk_dst_cache)
1993 sk_tx_queue_set(sk, queue_index);
1994 }
1995 }
1996
1997 skb_set_queue_mapping(skb, queue_index);
1998 return netdev_get_tx_queue(dev, queue_index);
1999 }
2000
2001 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2002 struct net_device *dev,
2003 struct netdev_queue *txq)
2004 {
2005 spinlock_t *root_lock = qdisc_lock(q);
2006 int rc;
2007
2008 spin_lock(root_lock);
2009 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2010 kfree_skb(skb);
2011 rc = NET_XMIT_DROP;
2012 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2013 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2014 /*
2015 * This is a work-conserving queue; there are no old skbs
2016 * waiting to be sent out; and the qdisc is not running -
2017 * xmit the skb directly.
2018 */
2019 __qdisc_update_bstats(q, skb->len);
2020 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2021 __qdisc_run(q);
2022 else
2023 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2024
2025 rc = NET_XMIT_SUCCESS;
2026 } else {
2027 rc = qdisc_enqueue_root(skb, q);
2028 qdisc_run(q);
2029 }
2030 spin_unlock(root_lock);
2031
2032 return rc;
2033 }
2034
2035 /*
2036 * Returns true if either:
2037 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2038 * 2. skb is fragmented and the device does not support SG, or if
2039 * at least one of fragments is in highmem and device does not
2040 * support DMA from it.
2041 */
2042 static inline int skb_needs_linearize(struct sk_buff *skb,
2043 struct net_device *dev)
2044 {
2045 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2046 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2047 illegal_highdma(dev, skb)));
2048 }
2049
2050 /**
2051 * dev_queue_xmit - transmit a buffer
2052 * @skb: buffer to transmit
2053 *
2054 * Queue a buffer for transmission to a network device. The caller must
2055 * have set the device and priority and built the buffer before calling
2056 * this function. The function can be called from an interrupt.
2057 *
2058 * A negative errno code is returned on a failure. A success does not
2059 * guarantee the frame will be transmitted as it may be dropped due
2060 * to congestion or traffic shaping.
2061 *
2062 * -----------------------------------------------------------------------------------
2063 * I notice this method can also return errors from the queue disciplines,
2064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2065 * be positive.
2066 *
2067 * Regardless of the return value, the skb is consumed, so it is currently
2068 * difficult to retry a send to this method. (You can bump the ref count
2069 * before sending to hold a reference for retry if you are careful.)
2070 *
2071 * When calling this method, interrupts MUST be enabled. This is because
2072 * the BH enable code must have IRQs enabled so that it will not deadlock.
2073 * --BLG
2074 */
2075 int dev_queue_xmit(struct sk_buff *skb)
2076 {
2077 struct net_device *dev = skb->dev;
2078 struct netdev_queue *txq;
2079 struct Qdisc *q;
2080 int rc = -ENOMEM;
2081
2082 /* GSO will handle the following emulations directly. */
2083 if (netif_needs_gso(dev, skb))
2084 goto gso;
2085
2086 /* Convert a paged skb to linear, if required */
2087 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2088 goto out_kfree_skb;
2089
2090 /* If packet is not checksummed and device does not support
2091 * checksumming for this protocol, complete checksumming here.
2092 */
2093 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2094 skb_set_transport_header(skb, skb->csum_start -
2095 skb_headroom(skb));
2096 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2097 goto out_kfree_skb;
2098 }
2099
2100 gso:
2101 /* Disable soft irqs for various locks below. Also
2102 * stops preemption for RCU.
2103 */
2104 rcu_read_lock_bh();
2105
2106 txq = dev_pick_tx(dev, skb);
2107 q = rcu_dereference_bh(txq->qdisc);
2108
2109 #ifdef CONFIG_NET_CLS_ACT
2110 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2111 #endif
2112 if (q->enqueue) {
2113 rc = __dev_xmit_skb(skb, q, dev, txq);
2114 goto out;
2115 }
2116
2117 /* The device has no queue. Common case for software devices:
2118 loopback, all the sorts of tunnels...
2119
2120 Really, it is unlikely that netif_tx_lock protection is necessary
2121 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2122 counters.)
2123 However, it is possible, that they rely on protection
2124 made by us here.
2125
2126 Check this and shot the lock. It is not prone from deadlocks.
2127 Either shot noqueue qdisc, it is even simpler 8)
2128 */
2129 if (dev->flags & IFF_UP) {
2130 int cpu = smp_processor_id(); /* ok because BHs are off */
2131
2132 if (txq->xmit_lock_owner != cpu) {
2133
2134 HARD_TX_LOCK(dev, txq, cpu);
2135
2136 if (!netif_tx_queue_stopped(txq)) {
2137 rc = dev_hard_start_xmit(skb, dev, txq);
2138 if (dev_xmit_complete(rc)) {
2139 HARD_TX_UNLOCK(dev, txq);
2140 goto out;
2141 }
2142 }
2143 HARD_TX_UNLOCK(dev, txq);
2144 if (net_ratelimit())
2145 printk(KERN_CRIT "Virtual device %s asks to "
2146 "queue packet!\n", dev->name);
2147 } else {
2148 /* Recursion is detected! It is possible,
2149 * unfortunately */
2150 if (net_ratelimit())
2151 printk(KERN_CRIT "Dead loop on virtual device "
2152 "%s, fix it urgently!\n", dev->name);
2153 }
2154 }
2155
2156 rc = -ENETDOWN;
2157 rcu_read_unlock_bh();
2158
2159 out_kfree_skb:
2160 kfree_skb(skb);
2161 return rc;
2162 out:
2163 rcu_read_unlock_bh();
2164 return rc;
2165 }
2166 EXPORT_SYMBOL(dev_queue_xmit);
2167
2168
2169 /*=======================================================================
2170 Receiver routines
2171 =======================================================================*/
2172
2173 int netdev_max_backlog __read_mostly = 1000;
2174 int netdev_budget __read_mostly = 300;
2175 int weight_p __read_mostly = 64; /* old backlog weight */
2176
2177 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2178
2179
2180 /**
2181 * netif_rx - post buffer to the network code
2182 * @skb: buffer to post
2183 *
2184 * This function receives a packet from a device driver and queues it for
2185 * the upper (protocol) levels to process. It always succeeds. The buffer
2186 * may be dropped during processing for congestion control or by the
2187 * protocol layers.
2188 *
2189 * return values:
2190 * NET_RX_SUCCESS (no congestion)
2191 * NET_RX_DROP (packet was dropped)
2192 *
2193 */
2194
2195 int netif_rx(struct sk_buff *skb)
2196 {
2197 struct softnet_data *queue;
2198 unsigned long flags;
2199
2200 /* if netpoll wants it, pretend we never saw it */
2201 if (netpoll_rx(skb))
2202 return NET_RX_DROP;
2203
2204 if (!skb->tstamp.tv64)
2205 net_timestamp(skb);
2206
2207 /*
2208 * The code is rearranged so that the path is the most
2209 * short when CPU is congested, but is still operating.
2210 */
2211 local_irq_save(flags);
2212 queue = &__get_cpu_var(softnet_data);
2213
2214 __get_cpu_var(netdev_rx_stat).total++;
2215 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2216 if (queue->input_pkt_queue.qlen) {
2217 enqueue:
2218 __skb_queue_tail(&queue->input_pkt_queue, skb);
2219 local_irq_restore(flags);
2220 return NET_RX_SUCCESS;
2221 }
2222
2223 napi_schedule(&queue->backlog);
2224 goto enqueue;
2225 }
2226
2227 __get_cpu_var(netdev_rx_stat).dropped++;
2228 local_irq_restore(flags);
2229
2230 kfree_skb(skb);
2231 return NET_RX_DROP;
2232 }
2233 EXPORT_SYMBOL(netif_rx);
2234
2235 int netif_rx_ni(struct sk_buff *skb)
2236 {
2237 int err;
2238
2239 preempt_disable();
2240 err = netif_rx(skb);
2241 if (local_softirq_pending())
2242 do_softirq();
2243 preempt_enable();
2244
2245 return err;
2246 }
2247 EXPORT_SYMBOL(netif_rx_ni);
2248
2249 static void net_tx_action(struct softirq_action *h)
2250 {
2251 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2252
2253 if (sd->completion_queue) {
2254 struct sk_buff *clist;
2255
2256 local_irq_disable();
2257 clist = sd->completion_queue;
2258 sd->completion_queue = NULL;
2259 local_irq_enable();
2260
2261 while (clist) {
2262 struct sk_buff *skb = clist;
2263 clist = clist->next;
2264
2265 WARN_ON(atomic_read(&skb->users));
2266 __kfree_skb(skb);
2267 }
2268 }
2269
2270 if (sd->output_queue) {
2271 struct Qdisc *head;
2272
2273 local_irq_disable();
2274 head = sd->output_queue;
2275 sd->output_queue = NULL;
2276 local_irq_enable();
2277
2278 while (head) {
2279 struct Qdisc *q = head;
2280 spinlock_t *root_lock;
2281
2282 head = head->next_sched;
2283
2284 root_lock = qdisc_lock(q);
2285 if (spin_trylock(root_lock)) {
2286 smp_mb__before_clear_bit();
2287 clear_bit(__QDISC_STATE_SCHED,
2288 &q->state);
2289 qdisc_run(q);
2290 spin_unlock(root_lock);
2291 } else {
2292 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2293 &q->state)) {
2294 __netif_reschedule(q);
2295 } else {
2296 smp_mb__before_clear_bit();
2297 clear_bit(__QDISC_STATE_SCHED,
2298 &q->state);
2299 }
2300 }
2301 }
2302 }
2303 }
2304
2305 static inline int deliver_skb(struct sk_buff *skb,
2306 struct packet_type *pt_prev,
2307 struct net_device *orig_dev)
2308 {
2309 atomic_inc(&skb->users);
2310 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2311 }
2312
2313 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2314
2315 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2316 /* This hook is defined here for ATM LANE */
2317 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2318 unsigned char *addr) __read_mostly;
2319 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2320 #endif
2321
2322 /*
2323 * If bridge module is loaded call bridging hook.
2324 * returns NULL if packet was consumed.
2325 */
2326 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2327 struct sk_buff *skb) __read_mostly;
2328 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2329
2330 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2331 struct packet_type **pt_prev, int *ret,
2332 struct net_device *orig_dev)
2333 {
2334 struct net_bridge_port *port;
2335
2336 if (skb->pkt_type == PACKET_LOOPBACK ||
2337 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2338 return skb;
2339
2340 if (*pt_prev) {
2341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2342 *pt_prev = NULL;
2343 }
2344
2345 return br_handle_frame_hook(port, skb);
2346 }
2347 #else
2348 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2349 #endif
2350
2351 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2352 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2353 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2354
2355 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2356 struct packet_type **pt_prev,
2357 int *ret,
2358 struct net_device *orig_dev)
2359 {
2360 if (skb->dev->macvlan_port == NULL)
2361 return skb;
2362
2363 if (*pt_prev) {
2364 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2365 *pt_prev = NULL;
2366 }
2367 return macvlan_handle_frame_hook(skb);
2368 }
2369 #else
2370 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2371 #endif
2372
2373 #ifdef CONFIG_NET_CLS_ACT
2374 /* TODO: Maybe we should just force sch_ingress to be compiled in
2375 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2376 * a compare and 2 stores extra right now if we dont have it on
2377 * but have CONFIG_NET_CLS_ACT
2378 * NOTE: This doesnt stop any functionality; if you dont have
2379 * the ingress scheduler, you just cant add policies on ingress.
2380 *
2381 */
2382 static int ing_filter(struct sk_buff *skb)
2383 {
2384 struct net_device *dev = skb->dev;
2385 u32 ttl = G_TC_RTTL(skb->tc_verd);
2386 struct netdev_queue *rxq;
2387 int result = TC_ACT_OK;
2388 struct Qdisc *q;
2389
2390 if (MAX_RED_LOOP < ttl++) {
2391 printk(KERN_WARNING
2392 "Redir loop detected Dropping packet (%d->%d)\n",
2393 skb->skb_iif, dev->ifindex);
2394 return TC_ACT_SHOT;
2395 }
2396
2397 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2398 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2399
2400 rxq = &dev->rx_queue;
2401
2402 q = rxq->qdisc;
2403 if (q != &noop_qdisc) {
2404 spin_lock(qdisc_lock(q));
2405 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2406 result = qdisc_enqueue_root(skb, q);
2407 spin_unlock(qdisc_lock(q));
2408 }
2409
2410 return result;
2411 }
2412
2413 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2414 struct packet_type **pt_prev,
2415 int *ret, struct net_device *orig_dev)
2416 {
2417 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2418 goto out;
2419
2420 if (*pt_prev) {
2421 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2422 *pt_prev = NULL;
2423 } else {
2424 /* Huh? Why does turning on AF_PACKET affect this? */
2425 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2426 }
2427
2428 switch (ing_filter(skb)) {
2429 case TC_ACT_SHOT:
2430 case TC_ACT_STOLEN:
2431 kfree_skb(skb);
2432 return NULL;
2433 }
2434
2435 out:
2436 skb->tc_verd = 0;
2437 return skb;
2438 }
2439 #endif
2440
2441 /*
2442 * netif_nit_deliver - deliver received packets to network taps
2443 * @skb: buffer
2444 *
2445 * This function is used to deliver incoming packets to network
2446 * taps. It should be used when the normal netif_receive_skb path
2447 * is bypassed, for example because of VLAN acceleration.
2448 */
2449 void netif_nit_deliver(struct sk_buff *skb)
2450 {
2451 struct packet_type *ptype;
2452
2453 if (list_empty(&ptype_all))
2454 return;
2455
2456 skb_reset_network_header(skb);
2457 skb_reset_transport_header(skb);
2458 skb->mac_len = skb->network_header - skb->mac_header;
2459
2460 rcu_read_lock();
2461 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2462 if (!ptype->dev || ptype->dev == skb->dev)
2463 deliver_skb(skb, ptype, skb->dev);
2464 }
2465 rcu_read_unlock();
2466 }
2467
2468 /**
2469 * netif_receive_skb - process receive buffer from network
2470 * @skb: buffer to process
2471 *
2472 * netif_receive_skb() is the main receive data processing function.
2473 * It always succeeds. The buffer may be dropped during processing
2474 * for congestion control or by the protocol layers.
2475 *
2476 * This function may only be called from softirq context and interrupts
2477 * should be enabled.
2478 *
2479 * Return values (usually ignored):
2480 * NET_RX_SUCCESS: no congestion
2481 * NET_RX_DROP: packet was dropped
2482 */
2483 int netif_receive_skb(struct sk_buff *skb)
2484 {
2485 struct packet_type *ptype, *pt_prev;
2486 struct net_device *orig_dev;
2487 struct net_device *master;
2488 struct net_device *null_or_orig;
2489 struct net_device *null_or_bond;
2490 int ret = NET_RX_DROP;
2491 __be16 type;
2492
2493 if (!skb->tstamp.tv64)
2494 net_timestamp(skb);
2495
2496 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2497 return NET_RX_SUCCESS;
2498
2499 /* if we've gotten here through NAPI, check netpoll */
2500 if (netpoll_receive_skb(skb))
2501 return NET_RX_DROP;
2502
2503 if (!skb->skb_iif)
2504 skb->skb_iif = skb->dev->ifindex;
2505
2506 null_or_orig = NULL;
2507 orig_dev = skb->dev;
2508 master = ACCESS_ONCE(orig_dev->master);
2509 if (master) {
2510 if (skb_bond_should_drop(skb, master))
2511 null_or_orig = orig_dev; /* deliver only exact match */
2512 else
2513 skb->dev = master;
2514 }
2515
2516 __get_cpu_var(netdev_rx_stat).total++;
2517
2518 skb_reset_network_header(skb);
2519 skb_reset_transport_header(skb);
2520 skb->mac_len = skb->network_header - skb->mac_header;
2521
2522 pt_prev = NULL;
2523
2524 rcu_read_lock();
2525
2526 #ifdef CONFIG_NET_CLS_ACT
2527 if (skb->tc_verd & TC_NCLS) {
2528 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2529 goto ncls;
2530 }
2531 #endif
2532
2533 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2534 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2535 ptype->dev == orig_dev) {
2536 if (pt_prev)
2537 ret = deliver_skb(skb, pt_prev, orig_dev);
2538 pt_prev = ptype;
2539 }
2540 }
2541
2542 #ifdef CONFIG_NET_CLS_ACT
2543 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2544 if (!skb)
2545 goto out;
2546 ncls:
2547 #endif
2548
2549 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2550 if (!skb)
2551 goto out;
2552 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2553 if (!skb)
2554 goto out;
2555
2556 /*
2557 * Make sure frames received on VLAN interfaces stacked on
2558 * bonding interfaces still make their way to any base bonding
2559 * device that may have registered for a specific ptype. The
2560 * handler may have to adjust skb->dev and orig_dev.
2561 */
2562 null_or_bond = NULL;
2563 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2564 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2565 null_or_bond = vlan_dev_real_dev(skb->dev);
2566 }
2567
2568 type = skb->protocol;
2569 list_for_each_entry_rcu(ptype,
2570 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2571 if (ptype->type == type && (ptype->dev == null_or_orig ||
2572 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2573 ptype->dev == null_or_bond)) {
2574 if (pt_prev)
2575 ret = deliver_skb(skb, pt_prev, orig_dev);
2576 pt_prev = ptype;
2577 }
2578 }
2579
2580 if (pt_prev) {
2581 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2582 } else {
2583 kfree_skb(skb);
2584 /* Jamal, now you will not able to escape explaining
2585 * me how you were going to use this. :-)
2586 */
2587 ret = NET_RX_DROP;
2588 }
2589
2590 out:
2591 rcu_read_unlock();
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(netif_receive_skb);
2595
2596 /* Network device is going away, flush any packets still pending */
2597 static void flush_backlog(void *arg)
2598 {
2599 struct net_device *dev = arg;
2600 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2601 struct sk_buff *skb, *tmp;
2602
2603 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2604 if (skb->dev == dev) {
2605 __skb_unlink(skb, &queue->input_pkt_queue);
2606 kfree_skb(skb);
2607 }
2608 }
2609
2610 static int napi_gro_complete(struct sk_buff *skb)
2611 {
2612 struct packet_type *ptype;
2613 __be16 type = skb->protocol;
2614 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2615 int err = -ENOENT;
2616
2617 if (NAPI_GRO_CB(skb)->count == 1) {
2618 skb_shinfo(skb)->gso_size = 0;
2619 goto out;
2620 }
2621
2622 rcu_read_lock();
2623 list_for_each_entry_rcu(ptype, head, list) {
2624 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2625 continue;
2626
2627 err = ptype->gro_complete(skb);
2628 break;
2629 }
2630 rcu_read_unlock();
2631
2632 if (err) {
2633 WARN_ON(&ptype->list == head);
2634 kfree_skb(skb);
2635 return NET_RX_SUCCESS;
2636 }
2637
2638 out:
2639 return netif_receive_skb(skb);
2640 }
2641
2642 static void napi_gro_flush(struct napi_struct *napi)
2643 {
2644 struct sk_buff *skb, *next;
2645
2646 for (skb = napi->gro_list; skb; skb = next) {
2647 next = skb->next;
2648 skb->next = NULL;
2649 napi_gro_complete(skb);
2650 }
2651
2652 napi->gro_count = 0;
2653 napi->gro_list = NULL;
2654 }
2655
2656 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2657 {
2658 struct sk_buff **pp = NULL;
2659 struct packet_type *ptype;
2660 __be16 type = skb->protocol;
2661 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2662 int same_flow;
2663 int mac_len;
2664 enum gro_result ret;
2665
2666 if (!(skb->dev->features & NETIF_F_GRO))
2667 goto normal;
2668
2669 if (skb_is_gso(skb) || skb_has_frags(skb))
2670 goto normal;
2671
2672 rcu_read_lock();
2673 list_for_each_entry_rcu(ptype, head, list) {
2674 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2675 continue;
2676
2677 skb_set_network_header(skb, skb_gro_offset(skb));
2678 mac_len = skb->network_header - skb->mac_header;
2679 skb->mac_len = mac_len;
2680 NAPI_GRO_CB(skb)->same_flow = 0;
2681 NAPI_GRO_CB(skb)->flush = 0;
2682 NAPI_GRO_CB(skb)->free = 0;
2683
2684 pp = ptype->gro_receive(&napi->gro_list, skb);
2685 break;
2686 }
2687 rcu_read_unlock();
2688
2689 if (&ptype->list == head)
2690 goto normal;
2691
2692 same_flow = NAPI_GRO_CB(skb)->same_flow;
2693 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2694
2695 if (pp) {
2696 struct sk_buff *nskb = *pp;
2697
2698 *pp = nskb->next;
2699 nskb->next = NULL;
2700 napi_gro_complete(nskb);
2701 napi->gro_count--;
2702 }
2703
2704 if (same_flow)
2705 goto ok;
2706
2707 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2708 goto normal;
2709
2710 napi->gro_count++;
2711 NAPI_GRO_CB(skb)->count = 1;
2712 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2713 skb->next = napi->gro_list;
2714 napi->gro_list = skb;
2715 ret = GRO_HELD;
2716
2717 pull:
2718 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2719 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2720
2721 BUG_ON(skb->end - skb->tail < grow);
2722
2723 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2724
2725 skb->tail += grow;
2726 skb->data_len -= grow;
2727
2728 skb_shinfo(skb)->frags[0].page_offset += grow;
2729 skb_shinfo(skb)->frags[0].size -= grow;
2730
2731 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2732 put_page(skb_shinfo(skb)->frags[0].page);
2733 memmove(skb_shinfo(skb)->frags,
2734 skb_shinfo(skb)->frags + 1,
2735 --skb_shinfo(skb)->nr_frags);
2736 }
2737 }
2738
2739 ok:
2740 return ret;
2741
2742 normal:
2743 ret = GRO_NORMAL;
2744 goto pull;
2745 }
2746 EXPORT_SYMBOL(dev_gro_receive);
2747
2748 static gro_result_t
2749 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2750 {
2751 struct sk_buff *p;
2752
2753 if (netpoll_rx_on(skb))
2754 return GRO_NORMAL;
2755
2756 for (p = napi->gro_list; p; p = p->next) {
2757 NAPI_GRO_CB(p)->same_flow =
2758 (p->dev == skb->dev) &&
2759 !compare_ether_header(skb_mac_header(p),
2760 skb_gro_mac_header(skb));
2761 NAPI_GRO_CB(p)->flush = 0;
2762 }
2763
2764 return dev_gro_receive(napi, skb);
2765 }
2766
2767 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2768 {
2769 switch (ret) {
2770 case GRO_NORMAL:
2771 if (netif_receive_skb(skb))
2772 ret = GRO_DROP;
2773 break;
2774
2775 case GRO_DROP:
2776 case GRO_MERGED_FREE:
2777 kfree_skb(skb);
2778 break;
2779
2780 case GRO_HELD:
2781 case GRO_MERGED:
2782 break;
2783 }
2784
2785 return ret;
2786 }
2787 EXPORT_SYMBOL(napi_skb_finish);
2788
2789 void skb_gro_reset_offset(struct sk_buff *skb)
2790 {
2791 NAPI_GRO_CB(skb)->data_offset = 0;
2792 NAPI_GRO_CB(skb)->frag0 = NULL;
2793 NAPI_GRO_CB(skb)->frag0_len = 0;
2794
2795 if (skb->mac_header == skb->tail &&
2796 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2797 NAPI_GRO_CB(skb)->frag0 =
2798 page_address(skb_shinfo(skb)->frags[0].page) +
2799 skb_shinfo(skb)->frags[0].page_offset;
2800 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2801 }
2802 }
2803 EXPORT_SYMBOL(skb_gro_reset_offset);
2804
2805 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2806 {
2807 skb_gro_reset_offset(skb);
2808
2809 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2810 }
2811 EXPORT_SYMBOL(napi_gro_receive);
2812
2813 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2814 {
2815 __skb_pull(skb, skb_headlen(skb));
2816 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2817
2818 napi->skb = skb;
2819 }
2820 EXPORT_SYMBOL(napi_reuse_skb);
2821
2822 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2823 {
2824 struct sk_buff *skb = napi->skb;
2825
2826 if (!skb) {
2827 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2828 if (skb)
2829 napi->skb = skb;
2830 }
2831 return skb;
2832 }
2833 EXPORT_SYMBOL(napi_get_frags);
2834
2835 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2836 gro_result_t ret)
2837 {
2838 switch (ret) {
2839 case GRO_NORMAL:
2840 case GRO_HELD:
2841 skb->protocol = eth_type_trans(skb, skb->dev);
2842
2843 if (ret == GRO_HELD)
2844 skb_gro_pull(skb, -ETH_HLEN);
2845 else if (netif_receive_skb(skb))
2846 ret = GRO_DROP;
2847 break;
2848
2849 case GRO_DROP:
2850 case GRO_MERGED_FREE:
2851 napi_reuse_skb(napi, skb);
2852 break;
2853
2854 case GRO_MERGED:
2855 break;
2856 }
2857
2858 return ret;
2859 }
2860 EXPORT_SYMBOL(napi_frags_finish);
2861
2862 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2863 {
2864 struct sk_buff *skb = napi->skb;
2865 struct ethhdr *eth;
2866 unsigned int hlen;
2867 unsigned int off;
2868
2869 napi->skb = NULL;
2870
2871 skb_reset_mac_header(skb);
2872 skb_gro_reset_offset(skb);
2873
2874 off = skb_gro_offset(skb);
2875 hlen = off + sizeof(*eth);
2876 eth = skb_gro_header_fast(skb, off);
2877 if (skb_gro_header_hard(skb, hlen)) {
2878 eth = skb_gro_header_slow(skb, hlen, off);
2879 if (unlikely(!eth)) {
2880 napi_reuse_skb(napi, skb);
2881 skb = NULL;
2882 goto out;
2883 }
2884 }
2885
2886 skb_gro_pull(skb, sizeof(*eth));
2887
2888 /*
2889 * This works because the only protocols we care about don't require
2890 * special handling. We'll fix it up properly at the end.
2891 */
2892 skb->protocol = eth->h_proto;
2893
2894 out:
2895 return skb;
2896 }
2897 EXPORT_SYMBOL(napi_frags_skb);
2898
2899 gro_result_t napi_gro_frags(struct napi_struct *napi)
2900 {
2901 struct sk_buff *skb = napi_frags_skb(napi);
2902
2903 if (!skb)
2904 return GRO_DROP;
2905
2906 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2907 }
2908 EXPORT_SYMBOL(napi_gro_frags);
2909
2910 static int process_backlog(struct napi_struct *napi, int quota)
2911 {
2912 int work = 0;
2913 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2914 unsigned long start_time = jiffies;
2915
2916 napi->weight = weight_p;
2917 do {
2918 struct sk_buff *skb;
2919
2920 local_irq_disable();
2921 skb = __skb_dequeue(&queue->input_pkt_queue);
2922 if (!skb) {
2923 __napi_complete(napi);
2924 local_irq_enable();
2925 break;
2926 }
2927 local_irq_enable();
2928
2929 netif_receive_skb(skb);
2930 } while (++work < quota && jiffies == start_time);
2931
2932 return work;
2933 }
2934
2935 /**
2936 * __napi_schedule - schedule for receive
2937 * @n: entry to schedule
2938 *
2939 * The entry's receive function will be scheduled to run
2940 */
2941 void __napi_schedule(struct napi_struct *n)
2942 {
2943 unsigned long flags;
2944
2945 local_irq_save(flags);
2946 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2947 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2948 local_irq_restore(flags);
2949 }
2950 EXPORT_SYMBOL(__napi_schedule);
2951
2952 void __napi_complete(struct napi_struct *n)
2953 {
2954 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2955 BUG_ON(n->gro_list);
2956
2957 list_del(&n->poll_list);
2958 smp_mb__before_clear_bit();
2959 clear_bit(NAPI_STATE_SCHED, &n->state);
2960 }
2961 EXPORT_SYMBOL(__napi_complete);
2962
2963 void napi_complete(struct napi_struct *n)
2964 {
2965 unsigned long flags;
2966
2967 /*
2968 * don't let napi dequeue from the cpu poll list
2969 * just in case its running on a different cpu
2970 */
2971 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2972 return;
2973
2974 napi_gro_flush(n);
2975 local_irq_save(flags);
2976 __napi_complete(n);
2977 local_irq_restore(flags);
2978 }
2979 EXPORT_SYMBOL(napi_complete);
2980
2981 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2982 int (*poll)(struct napi_struct *, int), int weight)
2983 {
2984 INIT_LIST_HEAD(&napi->poll_list);
2985 napi->gro_count = 0;
2986 napi->gro_list = NULL;
2987 napi->skb = NULL;
2988 napi->poll = poll;
2989 napi->weight = weight;
2990 list_add(&napi->dev_list, &dev->napi_list);
2991 napi->dev = dev;
2992 #ifdef CONFIG_NETPOLL
2993 spin_lock_init(&napi->poll_lock);
2994 napi->poll_owner = -1;
2995 #endif
2996 set_bit(NAPI_STATE_SCHED, &napi->state);
2997 }
2998 EXPORT_SYMBOL(netif_napi_add);
2999
3000 void netif_napi_del(struct napi_struct *napi)
3001 {
3002 struct sk_buff *skb, *next;
3003
3004 list_del_init(&napi->dev_list);
3005 napi_free_frags(napi);
3006
3007 for (skb = napi->gro_list; skb; skb = next) {
3008 next = skb->next;
3009 skb->next = NULL;
3010 kfree_skb(skb);
3011 }
3012
3013 napi->gro_list = NULL;
3014 napi->gro_count = 0;
3015 }
3016 EXPORT_SYMBOL(netif_napi_del);
3017
3018
3019 static void net_rx_action(struct softirq_action *h)
3020 {
3021 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3022 unsigned long time_limit = jiffies + 2;
3023 int budget = netdev_budget;
3024 void *have;
3025
3026 local_irq_disable();
3027
3028 while (!list_empty(list)) {
3029 struct napi_struct *n;
3030 int work, weight;
3031
3032 /* If softirq window is exhuasted then punt.
3033 * Allow this to run for 2 jiffies since which will allow
3034 * an average latency of 1.5/HZ.
3035 */
3036 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3037 goto softnet_break;
3038
3039 local_irq_enable();
3040
3041 /* Even though interrupts have been re-enabled, this
3042 * access is safe because interrupts can only add new
3043 * entries to the tail of this list, and only ->poll()
3044 * calls can remove this head entry from the list.
3045 */
3046 n = list_first_entry(list, struct napi_struct, poll_list);
3047
3048 have = netpoll_poll_lock(n);
3049
3050 weight = n->weight;
3051
3052 /* This NAPI_STATE_SCHED test is for avoiding a race
3053 * with netpoll's poll_napi(). Only the entity which
3054 * obtains the lock and sees NAPI_STATE_SCHED set will
3055 * actually make the ->poll() call. Therefore we avoid
3056 * accidently calling ->poll() when NAPI is not scheduled.
3057 */
3058 work = 0;
3059 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3060 work = n->poll(n, weight);
3061 trace_napi_poll(n);
3062 }
3063
3064 WARN_ON_ONCE(work > weight);
3065
3066 budget -= work;
3067
3068 local_irq_disable();
3069
3070 /* Drivers must not modify the NAPI state if they
3071 * consume the entire weight. In such cases this code
3072 * still "owns" the NAPI instance and therefore can
3073 * move the instance around on the list at-will.
3074 */
3075 if (unlikely(work == weight)) {
3076 if (unlikely(napi_disable_pending(n))) {
3077 local_irq_enable();
3078 napi_complete(n);
3079 local_irq_disable();
3080 } else
3081 list_move_tail(&n->poll_list, list);
3082 }
3083
3084 netpoll_poll_unlock(have);
3085 }
3086 out:
3087 local_irq_enable();
3088
3089 #ifdef CONFIG_NET_DMA
3090 /*
3091 * There may not be any more sk_buffs coming right now, so push
3092 * any pending DMA copies to hardware
3093 */
3094 dma_issue_pending_all();
3095 #endif
3096
3097 return;
3098
3099 softnet_break:
3100 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3101 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3102 goto out;
3103 }
3104
3105 static gifconf_func_t *gifconf_list[NPROTO];
3106
3107 /**
3108 * register_gifconf - register a SIOCGIF handler
3109 * @family: Address family
3110 * @gifconf: Function handler
3111 *
3112 * Register protocol dependent address dumping routines. The handler
3113 * that is passed must not be freed or reused until it has been replaced
3114 * by another handler.
3115 */
3116 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3117 {
3118 if (family >= NPROTO)
3119 return -EINVAL;
3120 gifconf_list[family] = gifconf;
3121 return 0;
3122 }
3123 EXPORT_SYMBOL(register_gifconf);
3124
3125
3126 /*
3127 * Map an interface index to its name (SIOCGIFNAME)
3128 */
3129
3130 /*
3131 * We need this ioctl for efficient implementation of the
3132 * if_indextoname() function required by the IPv6 API. Without
3133 * it, we would have to search all the interfaces to find a
3134 * match. --pb
3135 */
3136
3137 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3138 {
3139 struct net_device *dev;
3140 struct ifreq ifr;
3141
3142 /*
3143 * Fetch the caller's info block.
3144 */
3145
3146 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3147 return -EFAULT;
3148
3149 rcu_read_lock();
3150 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3151 if (!dev) {
3152 rcu_read_unlock();
3153 return -ENODEV;
3154 }
3155
3156 strcpy(ifr.ifr_name, dev->name);
3157 rcu_read_unlock();
3158
3159 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3160 return -EFAULT;
3161 return 0;
3162 }
3163
3164 /*
3165 * Perform a SIOCGIFCONF call. This structure will change
3166 * size eventually, and there is nothing I can do about it.
3167 * Thus we will need a 'compatibility mode'.
3168 */
3169
3170 static int dev_ifconf(struct net *net, char __user *arg)
3171 {
3172 struct ifconf ifc;
3173 struct net_device *dev;
3174 char __user *pos;
3175 int len;
3176 int total;
3177 int i;
3178
3179 /*
3180 * Fetch the caller's info block.
3181 */
3182
3183 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3184 return -EFAULT;
3185
3186 pos = ifc.ifc_buf;
3187 len = ifc.ifc_len;
3188
3189 /*
3190 * Loop over the interfaces, and write an info block for each.
3191 */
3192
3193 total = 0;
3194 for_each_netdev(net, dev) {
3195 for (i = 0; i < NPROTO; i++) {
3196 if (gifconf_list[i]) {
3197 int done;
3198 if (!pos)
3199 done = gifconf_list[i](dev, NULL, 0);
3200 else
3201 done = gifconf_list[i](dev, pos + total,
3202 len - total);
3203 if (done < 0)
3204 return -EFAULT;
3205 total += done;
3206 }
3207 }
3208 }
3209
3210 /*
3211 * All done. Write the updated control block back to the caller.
3212 */
3213 ifc.ifc_len = total;
3214
3215 /*
3216 * Both BSD and Solaris return 0 here, so we do too.
3217 */
3218 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3219 }
3220
3221 #ifdef CONFIG_PROC_FS
3222 /*
3223 * This is invoked by the /proc filesystem handler to display a device
3224 * in detail.
3225 */
3226 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3227 __acquires(RCU)
3228 {
3229 struct net *net = seq_file_net(seq);
3230 loff_t off;
3231 struct net_device *dev;
3232
3233 rcu_read_lock();
3234 if (!*pos)
3235 return SEQ_START_TOKEN;
3236
3237 off = 1;
3238 for_each_netdev_rcu(net, dev)
3239 if (off++ == *pos)
3240 return dev;
3241
3242 return NULL;
3243 }
3244
3245 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3246 {
3247 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3248 first_net_device(seq_file_net(seq)) :
3249 next_net_device((struct net_device *)v);
3250
3251 ++*pos;
3252 return rcu_dereference(dev);
3253 }
3254
3255 void dev_seq_stop(struct seq_file *seq, void *v)
3256 __releases(RCU)
3257 {
3258 rcu_read_unlock();
3259 }
3260
3261 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3262 {
3263 const struct net_device_stats *stats = dev_get_stats(dev);
3264
3265 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3266 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3267 dev->name, stats->rx_bytes, stats->rx_packets,
3268 stats->rx_errors,
3269 stats->rx_dropped + stats->rx_missed_errors,
3270 stats->rx_fifo_errors,
3271 stats->rx_length_errors + stats->rx_over_errors +
3272 stats->rx_crc_errors + stats->rx_frame_errors,
3273 stats->rx_compressed, stats->multicast,
3274 stats->tx_bytes, stats->tx_packets,
3275 stats->tx_errors, stats->tx_dropped,
3276 stats->tx_fifo_errors, stats->collisions,
3277 stats->tx_carrier_errors +
3278 stats->tx_aborted_errors +
3279 stats->tx_window_errors +
3280 stats->tx_heartbeat_errors,
3281 stats->tx_compressed);
3282 }
3283
3284 /*
3285 * Called from the PROCfs module. This now uses the new arbitrary sized
3286 * /proc/net interface to create /proc/net/dev
3287 */
3288 static int dev_seq_show(struct seq_file *seq, void *v)
3289 {
3290 if (v == SEQ_START_TOKEN)
3291 seq_puts(seq, "Inter-| Receive "
3292 " | Transmit\n"
3293 " face |bytes packets errs drop fifo frame "
3294 "compressed multicast|bytes packets errs "
3295 "drop fifo colls carrier compressed\n");
3296 else
3297 dev_seq_printf_stats(seq, v);
3298 return 0;
3299 }
3300
3301 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3302 {
3303 struct netif_rx_stats *rc = NULL;
3304
3305 while (*pos < nr_cpu_ids)
3306 if (cpu_online(*pos)) {
3307 rc = &per_cpu(netdev_rx_stat, *pos);
3308 break;
3309 } else
3310 ++*pos;
3311 return rc;
3312 }
3313
3314 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3315 {
3316 return softnet_get_online(pos);
3317 }
3318
3319 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3320 {
3321 ++*pos;
3322 return softnet_get_online(pos);
3323 }
3324
3325 static void softnet_seq_stop(struct seq_file *seq, void *v)
3326 {
3327 }
3328
3329 static int softnet_seq_show(struct seq_file *seq, void *v)
3330 {
3331 struct netif_rx_stats *s = v;
3332
3333 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3334 s->total, s->dropped, s->time_squeeze, 0,
3335 0, 0, 0, 0, /* was fastroute */
3336 s->cpu_collision);
3337 return 0;
3338 }
3339
3340 static const struct seq_operations dev_seq_ops = {
3341 .start = dev_seq_start,
3342 .next = dev_seq_next,
3343 .stop = dev_seq_stop,
3344 .show = dev_seq_show,
3345 };
3346
3347 static int dev_seq_open(struct inode *inode, struct file *file)
3348 {
3349 return seq_open_net(inode, file, &dev_seq_ops,
3350 sizeof(struct seq_net_private));
3351 }
3352
3353 static const struct file_operations dev_seq_fops = {
3354 .owner = THIS_MODULE,
3355 .open = dev_seq_open,
3356 .read = seq_read,
3357 .llseek = seq_lseek,
3358 .release = seq_release_net,
3359 };
3360
3361 static const struct seq_operations softnet_seq_ops = {
3362 .start = softnet_seq_start,
3363 .next = softnet_seq_next,
3364 .stop = softnet_seq_stop,
3365 .show = softnet_seq_show,
3366 };
3367
3368 static int softnet_seq_open(struct inode *inode, struct file *file)
3369 {
3370 return seq_open(file, &softnet_seq_ops);
3371 }
3372
3373 static const struct file_operations softnet_seq_fops = {
3374 .owner = THIS_MODULE,
3375 .open = softnet_seq_open,
3376 .read = seq_read,
3377 .llseek = seq_lseek,
3378 .release = seq_release,
3379 };
3380
3381 static void *ptype_get_idx(loff_t pos)
3382 {
3383 struct packet_type *pt = NULL;
3384 loff_t i = 0;
3385 int t;
3386
3387 list_for_each_entry_rcu(pt, &ptype_all, list) {
3388 if (i == pos)
3389 return pt;
3390 ++i;
3391 }
3392
3393 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3394 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3395 if (i == pos)
3396 return pt;
3397 ++i;
3398 }
3399 }
3400 return NULL;
3401 }
3402
3403 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3404 __acquires(RCU)
3405 {
3406 rcu_read_lock();
3407 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3408 }
3409
3410 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3411 {
3412 struct packet_type *pt;
3413 struct list_head *nxt;
3414 int hash;
3415
3416 ++*pos;
3417 if (v == SEQ_START_TOKEN)
3418 return ptype_get_idx(0);
3419
3420 pt = v;
3421 nxt = pt->list.next;
3422 if (pt->type == htons(ETH_P_ALL)) {
3423 if (nxt != &ptype_all)
3424 goto found;
3425 hash = 0;
3426 nxt = ptype_base[0].next;
3427 } else
3428 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3429
3430 while (nxt == &ptype_base[hash]) {
3431 if (++hash >= PTYPE_HASH_SIZE)
3432 return NULL;
3433 nxt = ptype_base[hash].next;
3434 }
3435 found:
3436 return list_entry(nxt, struct packet_type, list);
3437 }
3438
3439 static void ptype_seq_stop(struct seq_file *seq, void *v)
3440 __releases(RCU)
3441 {
3442 rcu_read_unlock();
3443 }
3444
3445 static int ptype_seq_show(struct seq_file *seq, void *v)
3446 {
3447 struct packet_type *pt = v;
3448
3449 if (v == SEQ_START_TOKEN)
3450 seq_puts(seq, "Type Device Function\n");
3451 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3452 if (pt->type == htons(ETH_P_ALL))
3453 seq_puts(seq, "ALL ");
3454 else
3455 seq_printf(seq, "%04x", ntohs(pt->type));
3456
3457 seq_printf(seq, " %-8s %pF\n",
3458 pt->dev ? pt->dev->name : "", pt->func);
3459 }
3460
3461 return 0;
3462 }
3463
3464 static const struct seq_operations ptype_seq_ops = {
3465 .start = ptype_seq_start,
3466 .next = ptype_seq_next,
3467 .stop = ptype_seq_stop,
3468 .show = ptype_seq_show,
3469 };
3470
3471 static int ptype_seq_open(struct inode *inode, struct file *file)
3472 {
3473 return seq_open_net(inode, file, &ptype_seq_ops,
3474 sizeof(struct seq_net_private));
3475 }
3476
3477 static const struct file_operations ptype_seq_fops = {
3478 .owner = THIS_MODULE,
3479 .open = ptype_seq_open,
3480 .read = seq_read,
3481 .llseek = seq_lseek,
3482 .release = seq_release_net,
3483 };
3484
3485
3486 static int __net_init dev_proc_net_init(struct net *net)
3487 {
3488 int rc = -ENOMEM;
3489
3490 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3491 goto out;
3492 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3493 goto out_dev;
3494 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3495 goto out_softnet;
3496
3497 if (wext_proc_init(net))
3498 goto out_ptype;
3499 rc = 0;
3500 out:
3501 return rc;
3502 out_ptype:
3503 proc_net_remove(net, "ptype");
3504 out_softnet:
3505 proc_net_remove(net, "softnet_stat");
3506 out_dev:
3507 proc_net_remove(net, "dev");
3508 goto out;
3509 }
3510
3511 static void __net_exit dev_proc_net_exit(struct net *net)
3512 {
3513 wext_proc_exit(net);
3514
3515 proc_net_remove(net, "ptype");
3516 proc_net_remove(net, "softnet_stat");
3517 proc_net_remove(net, "dev");
3518 }
3519
3520 static struct pernet_operations __net_initdata dev_proc_ops = {
3521 .init = dev_proc_net_init,
3522 .exit = dev_proc_net_exit,
3523 };
3524
3525 static int __init dev_proc_init(void)
3526 {
3527 return register_pernet_subsys(&dev_proc_ops);
3528 }
3529 #else
3530 #define dev_proc_init() 0
3531 #endif /* CONFIG_PROC_FS */
3532
3533
3534 /**
3535 * netdev_set_master - set up master/slave pair
3536 * @slave: slave device
3537 * @master: new master device
3538 *
3539 * Changes the master device of the slave. Pass %NULL to break the
3540 * bonding. The caller must hold the RTNL semaphore. On a failure
3541 * a negative errno code is returned. On success the reference counts
3542 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3543 * function returns zero.
3544 */
3545 int netdev_set_master(struct net_device *slave, struct net_device *master)
3546 {
3547 struct net_device *old = slave->master;
3548
3549 ASSERT_RTNL();
3550
3551 if (master) {
3552 if (old)
3553 return -EBUSY;
3554 dev_hold(master);
3555 }
3556
3557 slave->master = master;
3558
3559 synchronize_net();
3560
3561 if (old)
3562 dev_put(old);
3563
3564 if (master)
3565 slave->flags |= IFF_SLAVE;
3566 else
3567 slave->flags &= ~IFF_SLAVE;
3568
3569 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3570 return 0;
3571 }
3572 EXPORT_SYMBOL(netdev_set_master);
3573
3574 static void dev_change_rx_flags(struct net_device *dev, int flags)
3575 {
3576 const struct net_device_ops *ops = dev->netdev_ops;
3577
3578 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3579 ops->ndo_change_rx_flags(dev, flags);
3580 }
3581
3582 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3583 {
3584 unsigned short old_flags = dev->flags;
3585 uid_t uid;
3586 gid_t gid;
3587
3588 ASSERT_RTNL();
3589
3590 dev->flags |= IFF_PROMISC;
3591 dev->promiscuity += inc;
3592 if (dev->promiscuity == 0) {
3593 /*
3594 * Avoid overflow.
3595 * If inc causes overflow, untouch promisc and return error.
3596 */
3597 if (inc < 0)
3598 dev->flags &= ~IFF_PROMISC;
3599 else {
3600 dev->promiscuity -= inc;
3601 printk(KERN_WARNING "%s: promiscuity touches roof, "
3602 "set promiscuity failed, promiscuity feature "
3603 "of device might be broken.\n", dev->name);
3604 return -EOVERFLOW;
3605 }
3606 }
3607 if (dev->flags != old_flags) {
3608 printk(KERN_INFO "device %s %s promiscuous mode\n",
3609 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3610 "left");
3611 if (audit_enabled) {
3612 current_uid_gid(&uid, &gid);
3613 audit_log(current->audit_context, GFP_ATOMIC,
3614 AUDIT_ANOM_PROMISCUOUS,
3615 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3616 dev->name, (dev->flags & IFF_PROMISC),
3617 (old_flags & IFF_PROMISC),
3618 audit_get_loginuid(current),
3619 uid, gid,
3620 audit_get_sessionid(current));
3621 }
3622
3623 dev_change_rx_flags(dev, IFF_PROMISC);
3624 }
3625 return 0;
3626 }
3627
3628 /**
3629 * dev_set_promiscuity - update promiscuity count on a device
3630 * @dev: device
3631 * @inc: modifier
3632 *
3633 * Add or remove promiscuity from a device. While the count in the device
3634 * remains above zero the interface remains promiscuous. Once it hits zero
3635 * the device reverts back to normal filtering operation. A negative inc
3636 * value is used to drop promiscuity on the device.
3637 * Return 0 if successful or a negative errno code on error.
3638 */
3639 int dev_set_promiscuity(struct net_device *dev, int inc)
3640 {
3641 unsigned short old_flags = dev->flags;
3642 int err;
3643
3644 err = __dev_set_promiscuity(dev, inc);
3645 if (err < 0)
3646 return err;
3647 if (dev->flags != old_flags)
3648 dev_set_rx_mode(dev);
3649 return err;
3650 }
3651 EXPORT_SYMBOL(dev_set_promiscuity);
3652
3653 /**
3654 * dev_set_allmulti - update allmulti count on a device
3655 * @dev: device
3656 * @inc: modifier
3657 *
3658 * Add or remove reception of all multicast frames to a device. While the
3659 * count in the device remains above zero the interface remains listening
3660 * to all interfaces. Once it hits zero the device reverts back to normal
3661 * filtering operation. A negative @inc value is used to drop the counter
3662 * when releasing a resource needing all multicasts.
3663 * Return 0 if successful or a negative errno code on error.
3664 */
3665
3666 int dev_set_allmulti(struct net_device *dev, int inc)
3667 {
3668 unsigned short old_flags = dev->flags;
3669
3670 ASSERT_RTNL();
3671
3672 dev->flags |= IFF_ALLMULTI;
3673 dev->allmulti += inc;
3674 if (dev->allmulti == 0) {
3675 /*
3676 * Avoid overflow.
3677 * If inc causes overflow, untouch allmulti and return error.
3678 */
3679 if (inc < 0)
3680 dev->flags &= ~IFF_ALLMULTI;
3681 else {
3682 dev->allmulti -= inc;
3683 printk(KERN_WARNING "%s: allmulti touches roof, "
3684 "set allmulti failed, allmulti feature of "
3685 "device might be broken.\n", dev->name);
3686 return -EOVERFLOW;
3687 }
3688 }
3689 if (dev->flags ^ old_flags) {
3690 dev_change_rx_flags(dev, IFF_ALLMULTI);
3691 dev_set_rx_mode(dev);
3692 }
3693 return 0;
3694 }
3695 EXPORT_SYMBOL(dev_set_allmulti);
3696
3697 /*
3698 * Upload unicast and multicast address lists to device and
3699 * configure RX filtering. When the device doesn't support unicast
3700 * filtering it is put in promiscuous mode while unicast addresses
3701 * are present.
3702 */
3703 void __dev_set_rx_mode(struct net_device *dev)
3704 {
3705 const struct net_device_ops *ops = dev->netdev_ops;
3706
3707 /* dev_open will call this function so the list will stay sane. */
3708 if (!(dev->flags&IFF_UP))
3709 return;
3710
3711 if (!netif_device_present(dev))
3712 return;
3713
3714 if (ops->ndo_set_rx_mode)
3715 ops->ndo_set_rx_mode(dev);
3716 else {
3717 /* Unicast addresses changes may only happen under the rtnl,
3718 * therefore calling __dev_set_promiscuity here is safe.
3719 */
3720 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3721 __dev_set_promiscuity(dev, 1);
3722 dev->uc_promisc = 1;
3723 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3724 __dev_set_promiscuity(dev, -1);
3725 dev->uc_promisc = 0;
3726 }
3727
3728 if (ops->ndo_set_multicast_list)
3729 ops->ndo_set_multicast_list(dev);
3730 }
3731 }
3732
3733 void dev_set_rx_mode(struct net_device *dev)
3734 {
3735 netif_addr_lock_bh(dev);
3736 __dev_set_rx_mode(dev);
3737 netif_addr_unlock_bh(dev);
3738 }
3739
3740 /* hw addresses list handling functions */
3741
3742 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3743 int addr_len, unsigned char addr_type)
3744 {
3745 struct netdev_hw_addr *ha;
3746 int alloc_size;
3747
3748 if (addr_len > MAX_ADDR_LEN)
3749 return -EINVAL;
3750
3751 list_for_each_entry(ha, &list->list, list) {
3752 if (!memcmp(ha->addr, addr, addr_len) &&
3753 ha->type == addr_type) {
3754 ha->refcount++;
3755 return 0;
3756 }
3757 }
3758
3759
3760 alloc_size = sizeof(*ha);
3761 if (alloc_size < L1_CACHE_BYTES)
3762 alloc_size = L1_CACHE_BYTES;
3763 ha = kmalloc(alloc_size, GFP_ATOMIC);
3764 if (!ha)
3765 return -ENOMEM;
3766 memcpy(ha->addr, addr, addr_len);
3767 ha->type = addr_type;
3768 ha->refcount = 1;
3769 ha->synced = false;
3770 list_add_tail_rcu(&ha->list, &list->list);
3771 list->count++;
3772 return 0;
3773 }
3774
3775 static void ha_rcu_free(struct rcu_head *head)
3776 {
3777 struct netdev_hw_addr *ha;
3778
3779 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3780 kfree(ha);
3781 }
3782
3783 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3784 int addr_len, unsigned char addr_type)
3785 {
3786 struct netdev_hw_addr *ha;
3787
3788 list_for_each_entry(ha, &list->list, list) {
3789 if (!memcmp(ha->addr, addr, addr_len) &&
3790 (ha->type == addr_type || !addr_type)) {
3791 if (--ha->refcount)
3792 return 0;
3793 list_del_rcu(&ha->list);
3794 call_rcu(&ha->rcu_head, ha_rcu_free);
3795 list->count--;
3796 return 0;
3797 }
3798 }
3799 return -ENOENT;
3800 }
3801
3802 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3803 struct netdev_hw_addr_list *from_list,
3804 int addr_len,
3805 unsigned char addr_type)
3806 {
3807 int err;
3808 struct netdev_hw_addr *ha, *ha2;
3809 unsigned char type;
3810
3811 list_for_each_entry(ha, &from_list->list, list) {
3812 type = addr_type ? addr_type : ha->type;
3813 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3814 if (err)
3815 goto unroll;
3816 }
3817 return 0;
3818
3819 unroll:
3820 list_for_each_entry(ha2, &from_list->list, list) {
3821 if (ha2 == ha)
3822 break;
3823 type = addr_type ? addr_type : ha2->type;
3824 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3825 }
3826 return err;
3827 }
3828
3829 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3830 struct netdev_hw_addr_list *from_list,
3831 int addr_len,
3832 unsigned char addr_type)
3833 {
3834 struct netdev_hw_addr *ha;
3835 unsigned char type;
3836
3837 list_for_each_entry(ha, &from_list->list, list) {
3838 type = addr_type ? addr_type : ha->type;
3839 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3840 }
3841 }
3842
3843 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3844 struct netdev_hw_addr_list *from_list,
3845 int addr_len)
3846 {
3847 int err = 0;
3848 struct netdev_hw_addr *ha, *tmp;
3849
3850 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3851 if (!ha->synced) {
3852 err = __hw_addr_add(to_list, ha->addr,
3853 addr_len, ha->type);
3854 if (err)
3855 break;
3856 ha->synced = true;
3857 ha->refcount++;
3858 } else if (ha->refcount == 1) {
3859 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3860 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3861 }
3862 }
3863 return err;
3864 }
3865
3866 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3867 struct netdev_hw_addr_list *from_list,
3868 int addr_len)
3869 {
3870 struct netdev_hw_addr *ha, *tmp;
3871
3872 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3873 if (ha->synced) {
3874 __hw_addr_del(to_list, ha->addr,
3875 addr_len, ha->type);
3876 ha->synced = false;
3877 __hw_addr_del(from_list, ha->addr,
3878 addr_len, ha->type);
3879 }
3880 }
3881 }
3882
3883 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3884 {
3885 struct netdev_hw_addr *ha, *tmp;
3886
3887 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3888 list_del_rcu(&ha->list);
3889 call_rcu(&ha->rcu_head, ha_rcu_free);
3890 }
3891 list->count = 0;
3892 }
3893
3894 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3895 {
3896 INIT_LIST_HEAD(&list->list);
3897 list->count = 0;
3898 }
3899
3900 /* Device addresses handling functions */
3901
3902 static void dev_addr_flush(struct net_device *dev)
3903 {
3904 /* rtnl_mutex must be held here */
3905
3906 __hw_addr_flush(&dev->dev_addrs);
3907 dev->dev_addr = NULL;
3908 }
3909
3910 static int dev_addr_init(struct net_device *dev)
3911 {
3912 unsigned char addr[MAX_ADDR_LEN];
3913 struct netdev_hw_addr *ha;
3914 int err;
3915
3916 /* rtnl_mutex must be held here */
3917
3918 __hw_addr_init(&dev->dev_addrs);
3919 memset(addr, 0, sizeof(addr));
3920 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3921 NETDEV_HW_ADDR_T_LAN);
3922 if (!err) {
3923 /*
3924 * Get the first (previously created) address from the list
3925 * and set dev_addr pointer to this location.
3926 */
3927 ha = list_first_entry(&dev->dev_addrs.list,
3928 struct netdev_hw_addr, list);
3929 dev->dev_addr = ha->addr;
3930 }
3931 return err;
3932 }
3933
3934 /**
3935 * dev_addr_add - Add a device address
3936 * @dev: device
3937 * @addr: address to add
3938 * @addr_type: address type
3939 *
3940 * Add a device address to the device or increase the reference count if
3941 * it already exists.
3942 *
3943 * The caller must hold the rtnl_mutex.
3944 */
3945 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3946 unsigned char addr_type)
3947 {
3948 int err;
3949
3950 ASSERT_RTNL();
3951
3952 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3953 if (!err)
3954 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3955 return err;
3956 }
3957 EXPORT_SYMBOL(dev_addr_add);
3958
3959 /**
3960 * dev_addr_del - Release a device address.
3961 * @dev: device
3962 * @addr: address to delete
3963 * @addr_type: address type
3964 *
3965 * Release reference to a device address and remove it from the device
3966 * if the reference count drops to zero.
3967 *
3968 * The caller must hold the rtnl_mutex.
3969 */
3970 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3971 unsigned char addr_type)
3972 {
3973 int err;
3974 struct netdev_hw_addr *ha;
3975
3976 ASSERT_RTNL();
3977
3978 /*
3979 * We can not remove the first address from the list because
3980 * dev->dev_addr points to that.
3981 */
3982 ha = list_first_entry(&dev->dev_addrs.list,
3983 struct netdev_hw_addr, list);
3984 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3985 return -ENOENT;
3986
3987 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3988 addr_type);
3989 if (!err)
3990 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3991 return err;
3992 }
3993 EXPORT_SYMBOL(dev_addr_del);
3994
3995 /**
3996 * dev_addr_add_multiple - Add device addresses from another device
3997 * @to_dev: device to which addresses will be added
3998 * @from_dev: device from which addresses will be added
3999 * @addr_type: address type - 0 means type will be used from from_dev
4000 *
4001 * Add device addresses of the one device to another.
4002 **
4003 * The caller must hold the rtnl_mutex.
4004 */
4005 int dev_addr_add_multiple(struct net_device *to_dev,
4006 struct net_device *from_dev,
4007 unsigned char addr_type)
4008 {
4009 int err;
4010
4011 ASSERT_RTNL();
4012
4013 if (from_dev->addr_len != to_dev->addr_len)
4014 return -EINVAL;
4015 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4016 to_dev->addr_len, addr_type);
4017 if (!err)
4018 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4019 return err;
4020 }
4021 EXPORT_SYMBOL(dev_addr_add_multiple);
4022
4023 /**
4024 * dev_addr_del_multiple - Delete device addresses by another device
4025 * @to_dev: device where the addresses will be deleted
4026 * @from_dev: device by which addresses the addresses will be deleted
4027 * @addr_type: address type - 0 means type will used from from_dev
4028 *
4029 * Deletes addresses in to device by the list of addresses in from device.
4030 *
4031 * The caller must hold the rtnl_mutex.
4032 */
4033 int dev_addr_del_multiple(struct net_device *to_dev,
4034 struct net_device *from_dev,
4035 unsigned char addr_type)
4036 {
4037 ASSERT_RTNL();
4038
4039 if (from_dev->addr_len != to_dev->addr_len)
4040 return -EINVAL;
4041 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4042 to_dev->addr_len, addr_type);
4043 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4044 return 0;
4045 }
4046 EXPORT_SYMBOL(dev_addr_del_multiple);
4047
4048 /* multicast addresses handling functions */
4049
4050 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4051 void *addr, int alen, int glbl)
4052 {
4053 struct dev_addr_list *da;
4054
4055 for (; (da = *list) != NULL; list = &da->next) {
4056 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4057 alen == da->da_addrlen) {
4058 if (glbl) {
4059 int old_glbl = da->da_gusers;
4060 da->da_gusers = 0;
4061 if (old_glbl == 0)
4062 break;
4063 }
4064 if (--da->da_users)
4065 return 0;
4066
4067 *list = da->next;
4068 kfree(da);
4069 (*count)--;
4070 return 0;
4071 }
4072 }
4073 return -ENOENT;
4074 }
4075
4076 int __dev_addr_add(struct dev_addr_list **list, int *count,
4077 void *addr, int alen, int glbl)
4078 {
4079 struct dev_addr_list *da;
4080
4081 for (da = *list; da != NULL; da = da->next) {
4082 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4083 da->da_addrlen == alen) {
4084 if (glbl) {
4085 int old_glbl = da->da_gusers;
4086 da->da_gusers = 1;
4087 if (old_glbl)
4088 return 0;
4089 }
4090 da->da_users++;
4091 return 0;
4092 }
4093 }
4094
4095 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4096 if (da == NULL)
4097 return -ENOMEM;
4098 memcpy(da->da_addr, addr, alen);
4099 da->da_addrlen = alen;
4100 da->da_users = 1;
4101 da->da_gusers = glbl ? 1 : 0;
4102 da->next = *list;
4103 *list = da;
4104 (*count)++;
4105 return 0;
4106 }
4107
4108 /**
4109 * dev_unicast_delete - Release secondary unicast address.
4110 * @dev: device
4111 * @addr: address to delete
4112 *
4113 * Release reference to a secondary unicast address and remove it
4114 * from the device if the reference count drops to zero.
4115 *
4116 * The caller must hold the rtnl_mutex.
4117 */
4118 int dev_unicast_delete(struct net_device *dev, void *addr)
4119 {
4120 int err;
4121
4122 ASSERT_RTNL();
4123
4124 netif_addr_lock_bh(dev);
4125 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4126 NETDEV_HW_ADDR_T_UNICAST);
4127 if (!err)
4128 __dev_set_rx_mode(dev);
4129 netif_addr_unlock_bh(dev);
4130 return err;
4131 }
4132 EXPORT_SYMBOL(dev_unicast_delete);
4133
4134 /**
4135 * dev_unicast_add - add a secondary unicast address
4136 * @dev: device
4137 * @addr: address to add
4138 *
4139 * Add a secondary unicast address to the device or increase
4140 * the reference count if it already exists.
4141 *
4142 * The caller must hold the rtnl_mutex.
4143 */
4144 int dev_unicast_add(struct net_device *dev, void *addr)
4145 {
4146 int err;
4147
4148 ASSERT_RTNL();
4149
4150 netif_addr_lock_bh(dev);
4151 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4152 NETDEV_HW_ADDR_T_UNICAST);
4153 if (!err)
4154 __dev_set_rx_mode(dev);
4155 netif_addr_unlock_bh(dev);
4156 return err;
4157 }
4158 EXPORT_SYMBOL(dev_unicast_add);
4159
4160 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4161 struct dev_addr_list **from, int *from_count)
4162 {
4163 struct dev_addr_list *da, *next;
4164 int err = 0;
4165
4166 da = *from;
4167 while (da != NULL) {
4168 next = da->next;
4169 if (!da->da_synced) {
4170 err = __dev_addr_add(to, to_count,
4171 da->da_addr, da->da_addrlen, 0);
4172 if (err < 0)
4173 break;
4174 da->da_synced = 1;
4175 da->da_users++;
4176 } else if (da->da_users == 1) {
4177 __dev_addr_delete(to, to_count,
4178 da->da_addr, da->da_addrlen, 0);
4179 __dev_addr_delete(from, from_count,
4180 da->da_addr, da->da_addrlen, 0);
4181 }
4182 da = next;
4183 }
4184 return err;
4185 }
4186 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4187
4188 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4189 struct dev_addr_list **from, int *from_count)
4190 {
4191 struct dev_addr_list *da, *next;
4192
4193 da = *from;
4194 while (da != NULL) {
4195 next = da->next;
4196 if (da->da_synced) {
4197 __dev_addr_delete(to, to_count,
4198 da->da_addr, da->da_addrlen, 0);
4199 da->da_synced = 0;
4200 __dev_addr_delete(from, from_count,
4201 da->da_addr, da->da_addrlen, 0);
4202 }
4203 da = next;
4204 }
4205 }
4206 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4207
4208 /**
4209 * dev_unicast_sync - Synchronize device's unicast list to another device
4210 * @to: destination device
4211 * @from: source device
4212 *
4213 * Add newly added addresses to the destination device and release
4214 * addresses that have no users left. The source device must be
4215 * locked by netif_tx_lock_bh.
4216 *
4217 * This function is intended to be called from the dev->set_rx_mode
4218 * function of layered software devices.
4219 */
4220 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4221 {
4222 int err = 0;
4223
4224 if (to->addr_len != from->addr_len)
4225 return -EINVAL;
4226
4227 netif_addr_lock_bh(to);
4228 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4229 if (!err)
4230 __dev_set_rx_mode(to);
4231 netif_addr_unlock_bh(to);
4232 return err;
4233 }
4234 EXPORT_SYMBOL(dev_unicast_sync);
4235
4236 /**
4237 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4238 * @to: destination device
4239 * @from: source device
4240 *
4241 * Remove all addresses that were added to the destination device by
4242 * dev_unicast_sync(). This function is intended to be called from the
4243 * dev->stop function of layered software devices.
4244 */
4245 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4246 {
4247 if (to->addr_len != from->addr_len)
4248 return;
4249
4250 netif_addr_lock_bh(from);
4251 netif_addr_lock(to);
4252 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4253 __dev_set_rx_mode(to);
4254 netif_addr_unlock(to);
4255 netif_addr_unlock_bh(from);
4256 }
4257 EXPORT_SYMBOL(dev_unicast_unsync);
4258
4259 static void dev_unicast_flush(struct net_device *dev)
4260 {
4261 netif_addr_lock_bh(dev);
4262 __hw_addr_flush(&dev->uc);
4263 netif_addr_unlock_bh(dev);
4264 }
4265
4266 static void dev_unicast_init(struct net_device *dev)
4267 {
4268 __hw_addr_init(&dev->uc);
4269 }
4270
4271
4272 static void __dev_addr_discard(struct dev_addr_list **list)
4273 {
4274 struct dev_addr_list *tmp;
4275
4276 while (*list != NULL) {
4277 tmp = *list;
4278 *list = tmp->next;
4279 if (tmp->da_users > tmp->da_gusers)
4280 printk("__dev_addr_discard: address leakage! "
4281 "da_users=%d\n", tmp->da_users);
4282 kfree(tmp);
4283 }
4284 }
4285
4286 static void dev_addr_discard(struct net_device *dev)
4287 {
4288 netif_addr_lock_bh(dev);
4289
4290 __dev_addr_discard(&dev->mc_list);
4291 netdev_mc_count(dev) = 0;
4292
4293 netif_addr_unlock_bh(dev);
4294 }
4295
4296 /**
4297 * dev_get_flags - get flags reported to userspace
4298 * @dev: device
4299 *
4300 * Get the combination of flag bits exported through APIs to userspace.
4301 */
4302 unsigned dev_get_flags(const struct net_device *dev)
4303 {
4304 unsigned flags;
4305
4306 flags = (dev->flags & ~(IFF_PROMISC |
4307 IFF_ALLMULTI |
4308 IFF_RUNNING |
4309 IFF_LOWER_UP |
4310 IFF_DORMANT)) |
4311 (dev->gflags & (IFF_PROMISC |
4312 IFF_ALLMULTI));
4313
4314 if (netif_running(dev)) {
4315 if (netif_oper_up(dev))
4316 flags |= IFF_RUNNING;
4317 if (netif_carrier_ok(dev))
4318 flags |= IFF_LOWER_UP;
4319 if (netif_dormant(dev))
4320 flags |= IFF_DORMANT;
4321 }
4322
4323 return flags;
4324 }
4325 EXPORT_SYMBOL(dev_get_flags);
4326
4327 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4328 {
4329 int old_flags = dev->flags;
4330 int ret;
4331
4332 ASSERT_RTNL();
4333
4334 /*
4335 * Set the flags on our device.
4336 */
4337
4338 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4339 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4340 IFF_AUTOMEDIA)) |
4341 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4342 IFF_ALLMULTI));
4343
4344 /*
4345 * Load in the correct multicast list now the flags have changed.
4346 */
4347
4348 if ((old_flags ^ flags) & IFF_MULTICAST)
4349 dev_change_rx_flags(dev, IFF_MULTICAST);
4350
4351 dev_set_rx_mode(dev);
4352
4353 /*
4354 * Have we downed the interface. We handle IFF_UP ourselves
4355 * according to user attempts to set it, rather than blindly
4356 * setting it.
4357 */
4358
4359 ret = 0;
4360 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4361 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4362
4363 if (!ret)
4364 dev_set_rx_mode(dev);
4365 }
4366
4367 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4368 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4369
4370 dev->gflags ^= IFF_PROMISC;
4371 dev_set_promiscuity(dev, inc);
4372 }
4373
4374 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4375 is important. Some (broken) drivers set IFF_PROMISC, when
4376 IFF_ALLMULTI is requested not asking us and not reporting.
4377 */
4378 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4379 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4380
4381 dev->gflags ^= IFF_ALLMULTI;
4382 dev_set_allmulti(dev, inc);
4383 }
4384
4385 return ret;
4386 }
4387
4388 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4389 {
4390 unsigned int changes = dev->flags ^ old_flags;
4391
4392 if (changes & IFF_UP) {
4393 if (dev->flags & IFF_UP)
4394 call_netdevice_notifiers(NETDEV_UP, dev);
4395 else
4396 call_netdevice_notifiers(NETDEV_DOWN, dev);
4397 }
4398
4399 if (dev->flags & IFF_UP &&
4400 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4401 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4402 }
4403
4404 /**
4405 * dev_change_flags - change device settings
4406 * @dev: device
4407 * @flags: device state flags
4408 *
4409 * Change settings on device based state flags. The flags are
4410 * in the userspace exported format.
4411 */
4412 int dev_change_flags(struct net_device *dev, unsigned flags)
4413 {
4414 int ret, changes;
4415 int old_flags = dev->flags;
4416
4417 ret = __dev_change_flags(dev, flags);
4418 if (ret < 0)
4419 return ret;
4420
4421 changes = old_flags ^ dev->flags;
4422 if (changes)
4423 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4424
4425 __dev_notify_flags(dev, old_flags);
4426 return ret;
4427 }
4428 EXPORT_SYMBOL(dev_change_flags);
4429
4430 /**
4431 * dev_set_mtu - Change maximum transfer unit
4432 * @dev: device
4433 * @new_mtu: new transfer unit
4434 *
4435 * Change the maximum transfer size of the network device.
4436 */
4437 int dev_set_mtu(struct net_device *dev, int new_mtu)
4438 {
4439 const struct net_device_ops *ops = dev->netdev_ops;
4440 int err;
4441
4442 if (new_mtu == dev->mtu)
4443 return 0;
4444
4445 /* MTU must be positive. */
4446 if (new_mtu < 0)
4447 return -EINVAL;
4448
4449 if (!netif_device_present(dev))
4450 return -ENODEV;
4451
4452 err = 0;
4453 if (ops->ndo_change_mtu)
4454 err = ops->ndo_change_mtu(dev, new_mtu);
4455 else
4456 dev->mtu = new_mtu;
4457
4458 if (!err && dev->flags & IFF_UP)
4459 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4460 return err;
4461 }
4462 EXPORT_SYMBOL(dev_set_mtu);
4463
4464 /**
4465 * dev_set_mac_address - Change Media Access Control Address
4466 * @dev: device
4467 * @sa: new address
4468 *
4469 * Change the hardware (MAC) address of the device
4470 */
4471 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4472 {
4473 const struct net_device_ops *ops = dev->netdev_ops;
4474 int err;
4475
4476 if (!ops->ndo_set_mac_address)
4477 return -EOPNOTSUPP;
4478 if (sa->sa_family != dev->type)
4479 return -EINVAL;
4480 if (!netif_device_present(dev))
4481 return -ENODEV;
4482 err = ops->ndo_set_mac_address(dev, sa);
4483 if (!err)
4484 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4485 return err;
4486 }
4487 EXPORT_SYMBOL(dev_set_mac_address);
4488
4489 /*
4490 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4491 */
4492 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4493 {
4494 int err;
4495 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4496
4497 if (!dev)
4498 return -ENODEV;
4499
4500 switch (cmd) {
4501 case SIOCGIFFLAGS: /* Get interface flags */
4502 ifr->ifr_flags = (short) dev_get_flags(dev);
4503 return 0;
4504
4505 case SIOCGIFMETRIC: /* Get the metric on the interface
4506 (currently unused) */
4507 ifr->ifr_metric = 0;
4508 return 0;
4509
4510 case SIOCGIFMTU: /* Get the MTU of a device */
4511 ifr->ifr_mtu = dev->mtu;
4512 return 0;
4513
4514 case SIOCGIFHWADDR:
4515 if (!dev->addr_len)
4516 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4517 else
4518 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4520 ifr->ifr_hwaddr.sa_family = dev->type;
4521 return 0;
4522
4523 case SIOCGIFSLAVE:
4524 err = -EINVAL;
4525 break;
4526
4527 case SIOCGIFMAP:
4528 ifr->ifr_map.mem_start = dev->mem_start;
4529 ifr->ifr_map.mem_end = dev->mem_end;
4530 ifr->ifr_map.base_addr = dev->base_addr;
4531 ifr->ifr_map.irq = dev->irq;
4532 ifr->ifr_map.dma = dev->dma;
4533 ifr->ifr_map.port = dev->if_port;
4534 return 0;
4535
4536 case SIOCGIFINDEX:
4537 ifr->ifr_ifindex = dev->ifindex;
4538 return 0;
4539
4540 case SIOCGIFTXQLEN:
4541 ifr->ifr_qlen = dev->tx_queue_len;
4542 return 0;
4543
4544 default:
4545 /* dev_ioctl() should ensure this case
4546 * is never reached
4547 */
4548 WARN_ON(1);
4549 err = -EINVAL;
4550 break;
4551
4552 }
4553 return err;
4554 }
4555
4556 /*
4557 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4558 */
4559 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4560 {
4561 int err;
4562 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4563 const struct net_device_ops *ops;
4564
4565 if (!dev)
4566 return -ENODEV;
4567
4568 ops = dev->netdev_ops;
4569
4570 switch (cmd) {
4571 case SIOCSIFFLAGS: /* Set interface flags */
4572 return dev_change_flags(dev, ifr->ifr_flags);
4573
4574 case SIOCSIFMETRIC: /* Set the metric on the interface
4575 (currently unused) */
4576 return -EOPNOTSUPP;
4577
4578 case SIOCSIFMTU: /* Set the MTU of a device */
4579 return dev_set_mtu(dev, ifr->ifr_mtu);
4580
4581 case SIOCSIFHWADDR:
4582 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4583
4584 case SIOCSIFHWBROADCAST:
4585 if (ifr->ifr_hwaddr.sa_family != dev->type)
4586 return -EINVAL;
4587 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4588 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4589 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4590 return 0;
4591
4592 case SIOCSIFMAP:
4593 if (ops->ndo_set_config) {
4594 if (!netif_device_present(dev))
4595 return -ENODEV;
4596 return ops->ndo_set_config(dev, &ifr->ifr_map);
4597 }
4598 return -EOPNOTSUPP;
4599
4600 case SIOCADDMULTI:
4601 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4602 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4603 return -EINVAL;
4604 if (!netif_device_present(dev))
4605 return -ENODEV;
4606 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4607 dev->addr_len, 1);
4608
4609 case SIOCDELMULTI:
4610 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4611 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4612 return -EINVAL;
4613 if (!netif_device_present(dev))
4614 return -ENODEV;
4615 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4616 dev->addr_len, 1);
4617
4618 case SIOCSIFTXQLEN:
4619 if (ifr->ifr_qlen < 0)
4620 return -EINVAL;
4621 dev->tx_queue_len = ifr->ifr_qlen;
4622 return 0;
4623
4624 case SIOCSIFNAME:
4625 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4626 return dev_change_name(dev, ifr->ifr_newname);
4627
4628 /*
4629 * Unknown or private ioctl
4630 */
4631 default:
4632 if ((cmd >= SIOCDEVPRIVATE &&
4633 cmd <= SIOCDEVPRIVATE + 15) ||
4634 cmd == SIOCBONDENSLAVE ||
4635 cmd == SIOCBONDRELEASE ||
4636 cmd == SIOCBONDSETHWADDR ||
4637 cmd == SIOCBONDSLAVEINFOQUERY ||
4638 cmd == SIOCBONDINFOQUERY ||
4639 cmd == SIOCBONDCHANGEACTIVE ||
4640 cmd == SIOCGMIIPHY ||
4641 cmd == SIOCGMIIREG ||
4642 cmd == SIOCSMIIREG ||
4643 cmd == SIOCBRADDIF ||
4644 cmd == SIOCBRDELIF ||
4645 cmd == SIOCSHWTSTAMP ||
4646 cmd == SIOCWANDEV) {
4647 err = -EOPNOTSUPP;
4648 if (ops->ndo_do_ioctl) {
4649 if (netif_device_present(dev))
4650 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4651 else
4652 err = -ENODEV;
4653 }
4654 } else
4655 err = -EINVAL;
4656
4657 }
4658 return err;
4659 }
4660
4661 /*
4662 * This function handles all "interface"-type I/O control requests. The actual
4663 * 'doing' part of this is dev_ifsioc above.
4664 */
4665
4666 /**
4667 * dev_ioctl - network device ioctl
4668 * @net: the applicable net namespace
4669 * @cmd: command to issue
4670 * @arg: pointer to a struct ifreq in user space
4671 *
4672 * Issue ioctl functions to devices. This is normally called by the
4673 * user space syscall interfaces but can sometimes be useful for
4674 * other purposes. The return value is the return from the syscall if
4675 * positive or a negative errno code on error.
4676 */
4677
4678 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4679 {
4680 struct ifreq ifr;
4681 int ret;
4682 char *colon;
4683
4684 /* One special case: SIOCGIFCONF takes ifconf argument
4685 and requires shared lock, because it sleeps writing
4686 to user space.
4687 */
4688
4689 if (cmd == SIOCGIFCONF) {
4690 rtnl_lock();
4691 ret = dev_ifconf(net, (char __user *) arg);
4692 rtnl_unlock();
4693 return ret;
4694 }
4695 if (cmd == SIOCGIFNAME)
4696 return dev_ifname(net, (struct ifreq __user *)arg);
4697
4698 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4699 return -EFAULT;
4700
4701 ifr.ifr_name[IFNAMSIZ-1] = 0;
4702
4703 colon = strchr(ifr.ifr_name, ':');
4704 if (colon)
4705 *colon = 0;
4706
4707 /*
4708 * See which interface the caller is talking about.
4709 */
4710
4711 switch (cmd) {
4712 /*
4713 * These ioctl calls:
4714 * - can be done by all.
4715 * - atomic and do not require locking.
4716 * - return a value
4717 */
4718 case SIOCGIFFLAGS:
4719 case SIOCGIFMETRIC:
4720 case SIOCGIFMTU:
4721 case SIOCGIFHWADDR:
4722 case SIOCGIFSLAVE:
4723 case SIOCGIFMAP:
4724 case SIOCGIFINDEX:
4725 case SIOCGIFTXQLEN:
4726 dev_load(net, ifr.ifr_name);
4727 rcu_read_lock();
4728 ret = dev_ifsioc_locked(net, &ifr, cmd);
4729 rcu_read_unlock();
4730 if (!ret) {
4731 if (colon)
4732 *colon = ':';
4733 if (copy_to_user(arg, &ifr,
4734 sizeof(struct ifreq)))
4735 ret = -EFAULT;
4736 }
4737 return ret;
4738
4739 case SIOCETHTOOL:
4740 dev_load(net, ifr.ifr_name);
4741 rtnl_lock();
4742 ret = dev_ethtool(net, &ifr);
4743 rtnl_unlock();
4744 if (!ret) {
4745 if (colon)
4746 *colon = ':';
4747 if (copy_to_user(arg, &ifr,
4748 sizeof(struct ifreq)))
4749 ret = -EFAULT;
4750 }
4751 return ret;
4752
4753 /*
4754 * These ioctl calls:
4755 * - require superuser power.
4756 * - require strict serialization.
4757 * - return a value
4758 */
4759 case SIOCGMIIPHY:
4760 case SIOCGMIIREG:
4761 case SIOCSIFNAME:
4762 if (!capable(CAP_NET_ADMIN))
4763 return -EPERM;
4764 dev_load(net, ifr.ifr_name);
4765 rtnl_lock();
4766 ret = dev_ifsioc(net, &ifr, cmd);
4767 rtnl_unlock();
4768 if (!ret) {
4769 if (colon)
4770 *colon = ':';
4771 if (copy_to_user(arg, &ifr,
4772 sizeof(struct ifreq)))
4773 ret = -EFAULT;
4774 }
4775 return ret;
4776
4777 /*
4778 * These ioctl calls:
4779 * - require superuser power.
4780 * - require strict serialization.
4781 * - do not return a value
4782 */
4783 case SIOCSIFFLAGS:
4784 case SIOCSIFMETRIC:
4785 case SIOCSIFMTU:
4786 case SIOCSIFMAP:
4787 case SIOCSIFHWADDR:
4788 case SIOCSIFSLAVE:
4789 case SIOCADDMULTI:
4790 case SIOCDELMULTI:
4791 case SIOCSIFHWBROADCAST:
4792 case SIOCSIFTXQLEN:
4793 case SIOCSMIIREG:
4794 case SIOCBONDENSLAVE:
4795 case SIOCBONDRELEASE:
4796 case SIOCBONDSETHWADDR:
4797 case SIOCBONDCHANGEACTIVE:
4798 case SIOCBRADDIF:
4799 case SIOCBRDELIF:
4800 case SIOCSHWTSTAMP:
4801 if (!capable(CAP_NET_ADMIN))
4802 return -EPERM;
4803 /* fall through */
4804 case SIOCBONDSLAVEINFOQUERY:
4805 case SIOCBONDINFOQUERY:
4806 dev_load(net, ifr.ifr_name);
4807 rtnl_lock();
4808 ret = dev_ifsioc(net, &ifr, cmd);
4809 rtnl_unlock();
4810 return ret;
4811
4812 case SIOCGIFMEM:
4813 /* Get the per device memory space. We can add this but
4814 * currently do not support it */
4815 case SIOCSIFMEM:
4816 /* Set the per device memory buffer space.
4817 * Not applicable in our case */
4818 case SIOCSIFLINK:
4819 return -EINVAL;
4820
4821 /*
4822 * Unknown or private ioctl.
4823 */
4824 default:
4825 if (cmd == SIOCWANDEV ||
4826 (cmd >= SIOCDEVPRIVATE &&
4827 cmd <= SIOCDEVPRIVATE + 15)) {
4828 dev_load(net, ifr.ifr_name);
4829 rtnl_lock();
4830 ret = dev_ifsioc(net, &ifr, cmd);
4831 rtnl_unlock();
4832 if (!ret && copy_to_user(arg, &ifr,
4833 sizeof(struct ifreq)))
4834 ret = -EFAULT;
4835 return ret;
4836 }
4837 /* Take care of Wireless Extensions */
4838 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4839 return wext_handle_ioctl(net, &ifr, cmd, arg);
4840 return -EINVAL;
4841 }
4842 }
4843
4844
4845 /**
4846 * dev_new_index - allocate an ifindex
4847 * @net: the applicable net namespace
4848 *
4849 * Returns a suitable unique value for a new device interface
4850 * number. The caller must hold the rtnl semaphore or the
4851 * dev_base_lock to be sure it remains unique.
4852 */
4853 static int dev_new_index(struct net *net)
4854 {
4855 static int ifindex;
4856 for (;;) {
4857 if (++ifindex <= 0)
4858 ifindex = 1;
4859 if (!__dev_get_by_index(net, ifindex))
4860 return ifindex;
4861 }
4862 }
4863
4864 /* Delayed registration/unregisteration */
4865 static LIST_HEAD(net_todo_list);
4866
4867 static void net_set_todo(struct net_device *dev)
4868 {
4869 list_add_tail(&dev->todo_list, &net_todo_list);
4870 }
4871
4872 static void rollback_registered_many(struct list_head *head)
4873 {
4874 struct net_device *dev, *tmp;
4875
4876 BUG_ON(dev_boot_phase);
4877 ASSERT_RTNL();
4878
4879 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4880 /* Some devices call without registering
4881 * for initialization unwind. Remove those
4882 * devices and proceed with the remaining.
4883 */
4884 if (dev->reg_state == NETREG_UNINITIALIZED) {
4885 pr_debug("unregister_netdevice: device %s/%p never "
4886 "was registered\n", dev->name, dev);
4887
4888 WARN_ON(1);
4889 list_del(&dev->unreg_list);
4890 continue;
4891 }
4892
4893 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4894
4895 /* If device is running, close it first. */
4896 dev_close(dev);
4897
4898 /* And unlink it from device chain. */
4899 unlist_netdevice(dev);
4900
4901 dev->reg_state = NETREG_UNREGISTERING;
4902 }
4903
4904 synchronize_net();
4905
4906 list_for_each_entry(dev, head, unreg_list) {
4907 /* Shutdown queueing discipline. */
4908 dev_shutdown(dev);
4909
4910
4911 /* Notify protocols, that we are about to destroy
4912 this device. They should clean all the things.
4913 */
4914 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4915
4916 if (!dev->rtnl_link_ops ||
4917 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4918 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4919
4920 /*
4921 * Flush the unicast and multicast chains
4922 */
4923 dev_unicast_flush(dev);
4924 dev_addr_discard(dev);
4925
4926 if (dev->netdev_ops->ndo_uninit)
4927 dev->netdev_ops->ndo_uninit(dev);
4928
4929 /* Notifier chain MUST detach us from master device. */
4930 WARN_ON(dev->master);
4931
4932 /* Remove entries from kobject tree */
4933 netdev_unregister_kobject(dev);
4934 }
4935
4936 /* Process any work delayed until the end of the batch */
4937 dev = list_first_entry(head, struct net_device, unreg_list);
4938 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4939
4940 synchronize_net();
4941
4942 list_for_each_entry(dev, head, unreg_list)
4943 dev_put(dev);
4944 }
4945
4946 static void rollback_registered(struct net_device *dev)
4947 {
4948 LIST_HEAD(single);
4949
4950 list_add(&dev->unreg_list, &single);
4951 rollback_registered_many(&single);
4952 }
4953
4954 static void __netdev_init_queue_locks_one(struct net_device *dev,
4955 struct netdev_queue *dev_queue,
4956 void *_unused)
4957 {
4958 spin_lock_init(&dev_queue->_xmit_lock);
4959 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4960 dev_queue->xmit_lock_owner = -1;
4961 }
4962
4963 static void netdev_init_queue_locks(struct net_device *dev)
4964 {
4965 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4966 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4967 }
4968
4969 unsigned long netdev_fix_features(unsigned long features, const char *name)
4970 {
4971 /* Fix illegal SG+CSUM combinations. */
4972 if ((features & NETIF_F_SG) &&
4973 !(features & NETIF_F_ALL_CSUM)) {
4974 if (name)
4975 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4976 "checksum feature.\n", name);
4977 features &= ~NETIF_F_SG;
4978 }
4979
4980 /* TSO requires that SG is present as well. */
4981 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4982 if (name)
4983 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4984 "SG feature.\n", name);
4985 features &= ~NETIF_F_TSO;
4986 }
4987
4988 if (features & NETIF_F_UFO) {
4989 if (!(features & NETIF_F_GEN_CSUM)) {
4990 if (name)
4991 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4992 "since no NETIF_F_HW_CSUM feature.\n",
4993 name);
4994 features &= ~NETIF_F_UFO;
4995 }
4996
4997 if (!(features & NETIF_F_SG)) {
4998 if (name)
4999 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5000 "since no NETIF_F_SG feature.\n", name);
5001 features &= ~NETIF_F_UFO;
5002 }
5003 }
5004
5005 return features;
5006 }
5007 EXPORT_SYMBOL(netdev_fix_features);
5008
5009 /**
5010 * netif_stacked_transfer_operstate - transfer operstate
5011 * @rootdev: the root or lower level device to transfer state from
5012 * @dev: the device to transfer operstate to
5013 *
5014 * Transfer operational state from root to device. This is normally
5015 * called when a stacking relationship exists between the root
5016 * device and the device(a leaf device).
5017 */
5018 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5019 struct net_device *dev)
5020 {
5021 if (rootdev->operstate == IF_OPER_DORMANT)
5022 netif_dormant_on(dev);
5023 else
5024 netif_dormant_off(dev);
5025
5026 if (netif_carrier_ok(rootdev)) {
5027 if (!netif_carrier_ok(dev))
5028 netif_carrier_on(dev);
5029 } else {
5030 if (netif_carrier_ok(dev))
5031 netif_carrier_off(dev);
5032 }
5033 }
5034 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5035
5036 /**
5037 * register_netdevice - register a network device
5038 * @dev: device to register
5039 *
5040 * Take a completed network device structure and add it to the kernel
5041 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5042 * chain. 0 is returned on success. A negative errno code is returned
5043 * on a failure to set up the device, or if the name is a duplicate.
5044 *
5045 * Callers must hold the rtnl semaphore. You may want
5046 * register_netdev() instead of this.
5047 *
5048 * BUGS:
5049 * The locking appears insufficient to guarantee two parallel registers
5050 * will not get the same name.
5051 */
5052
5053 int register_netdevice(struct net_device *dev)
5054 {
5055 int ret;
5056 struct net *net = dev_net(dev);
5057
5058 BUG_ON(dev_boot_phase);
5059 ASSERT_RTNL();
5060
5061 might_sleep();
5062
5063 /* When net_device's are persistent, this will be fatal. */
5064 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5065 BUG_ON(!net);
5066
5067 spin_lock_init(&dev->addr_list_lock);
5068 netdev_set_addr_lockdep_class(dev);
5069 netdev_init_queue_locks(dev);
5070
5071 dev->iflink = -1;
5072
5073 /* Init, if this function is available */
5074 if (dev->netdev_ops->ndo_init) {
5075 ret = dev->netdev_ops->ndo_init(dev);
5076 if (ret) {
5077 if (ret > 0)
5078 ret = -EIO;
5079 goto out;
5080 }
5081 }
5082
5083 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5084 if (ret)
5085 goto err_uninit;
5086
5087 dev->ifindex = dev_new_index(net);
5088 if (dev->iflink == -1)
5089 dev->iflink = dev->ifindex;
5090
5091 /* Fix illegal checksum combinations */
5092 if ((dev->features & NETIF_F_HW_CSUM) &&
5093 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5094 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5095 dev->name);
5096 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5097 }
5098
5099 if ((dev->features & NETIF_F_NO_CSUM) &&
5100 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5101 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5102 dev->name);
5103 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5104 }
5105
5106 dev->features = netdev_fix_features(dev->features, dev->name);
5107
5108 /* Enable software GSO if SG is supported. */
5109 if (dev->features & NETIF_F_SG)
5110 dev->features |= NETIF_F_GSO;
5111
5112 netdev_initialize_kobject(dev);
5113
5114 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5115 ret = notifier_to_errno(ret);
5116 if (ret)
5117 goto err_uninit;
5118
5119 ret = netdev_register_kobject(dev);
5120 if (ret)
5121 goto err_uninit;
5122 dev->reg_state = NETREG_REGISTERED;
5123
5124 /*
5125 * Default initial state at registry is that the
5126 * device is present.
5127 */
5128
5129 set_bit(__LINK_STATE_PRESENT, &dev->state);
5130
5131 dev_init_scheduler(dev);
5132 dev_hold(dev);
5133 list_netdevice(dev);
5134
5135 /* Notify protocols, that a new device appeared. */
5136 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5137 ret = notifier_to_errno(ret);
5138 if (ret) {
5139 rollback_registered(dev);
5140 dev->reg_state = NETREG_UNREGISTERED;
5141 }
5142 /*
5143 * Prevent userspace races by waiting until the network
5144 * device is fully setup before sending notifications.
5145 */
5146 if (!dev->rtnl_link_ops ||
5147 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5148 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5149
5150 out:
5151 return ret;
5152
5153 err_uninit:
5154 if (dev->netdev_ops->ndo_uninit)
5155 dev->netdev_ops->ndo_uninit(dev);
5156 goto out;
5157 }
5158 EXPORT_SYMBOL(register_netdevice);
5159
5160 /**
5161 * init_dummy_netdev - init a dummy network device for NAPI
5162 * @dev: device to init
5163 *
5164 * This takes a network device structure and initialize the minimum
5165 * amount of fields so it can be used to schedule NAPI polls without
5166 * registering a full blown interface. This is to be used by drivers
5167 * that need to tie several hardware interfaces to a single NAPI
5168 * poll scheduler due to HW limitations.
5169 */
5170 int init_dummy_netdev(struct net_device *dev)
5171 {
5172 /* Clear everything. Note we don't initialize spinlocks
5173 * are they aren't supposed to be taken by any of the
5174 * NAPI code and this dummy netdev is supposed to be
5175 * only ever used for NAPI polls
5176 */
5177 memset(dev, 0, sizeof(struct net_device));
5178
5179 /* make sure we BUG if trying to hit standard
5180 * register/unregister code path
5181 */
5182 dev->reg_state = NETREG_DUMMY;
5183
5184 /* initialize the ref count */
5185 atomic_set(&dev->refcnt, 1);
5186
5187 /* NAPI wants this */
5188 INIT_LIST_HEAD(&dev->napi_list);
5189
5190 /* a dummy interface is started by default */
5191 set_bit(__LINK_STATE_PRESENT, &dev->state);
5192 set_bit(__LINK_STATE_START, &dev->state);
5193
5194 return 0;
5195 }
5196 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5197
5198
5199 /**
5200 * register_netdev - register a network device
5201 * @dev: device to register
5202 *
5203 * Take a completed network device structure and add it to the kernel
5204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5205 * chain. 0 is returned on success. A negative errno code is returned
5206 * on a failure to set up the device, or if the name is a duplicate.
5207 *
5208 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5209 * and expands the device name if you passed a format string to
5210 * alloc_netdev.
5211 */
5212 int register_netdev(struct net_device *dev)
5213 {
5214 int err;
5215
5216 rtnl_lock();
5217
5218 /*
5219 * If the name is a format string the caller wants us to do a
5220 * name allocation.
5221 */
5222 if (strchr(dev->name, '%')) {
5223 err = dev_alloc_name(dev, dev->name);
5224 if (err < 0)
5225 goto out;
5226 }
5227
5228 err = register_netdevice(dev);
5229 out:
5230 rtnl_unlock();
5231 return err;
5232 }
5233 EXPORT_SYMBOL(register_netdev);
5234
5235 /*
5236 * netdev_wait_allrefs - wait until all references are gone.
5237 *
5238 * This is called when unregistering network devices.
5239 *
5240 * Any protocol or device that holds a reference should register
5241 * for netdevice notification, and cleanup and put back the
5242 * reference if they receive an UNREGISTER event.
5243 * We can get stuck here if buggy protocols don't correctly
5244 * call dev_put.
5245 */
5246 static void netdev_wait_allrefs(struct net_device *dev)
5247 {
5248 unsigned long rebroadcast_time, warning_time;
5249
5250 linkwatch_forget_dev(dev);
5251
5252 rebroadcast_time = warning_time = jiffies;
5253 while (atomic_read(&dev->refcnt) != 0) {
5254 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5255 rtnl_lock();
5256
5257 /* Rebroadcast unregister notification */
5258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5259 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5260 * should have already handle it the first time */
5261
5262 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5263 &dev->state)) {
5264 /* We must not have linkwatch events
5265 * pending on unregister. If this
5266 * happens, we simply run the queue
5267 * unscheduled, resulting in a noop
5268 * for this device.
5269 */
5270 linkwatch_run_queue();
5271 }
5272
5273 __rtnl_unlock();
5274
5275 rebroadcast_time = jiffies;
5276 }
5277
5278 msleep(250);
5279
5280 if (time_after(jiffies, warning_time + 10 * HZ)) {
5281 printk(KERN_EMERG "unregister_netdevice: "
5282 "waiting for %s to become free. Usage "
5283 "count = %d\n",
5284 dev->name, atomic_read(&dev->refcnt));
5285 warning_time = jiffies;
5286 }
5287 }
5288 }
5289
5290 /* The sequence is:
5291 *
5292 * rtnl_lock();
5293 * ...
5294 * register_netdevice(x1);
5295 * register_netdevice(x2);
5296 * ...
5297 * unregister_netdevice(y1);
5298 * unregister_netdevice(y2);
5299 * ...
5300 * rtnl_unlock();
5301 * free_netdev(y1);
5302 * free_netdev(y2);
5303 *
5304 * We are invoked by rtnl_unlock().
5305 * This allows us to deal with problems:
5306 * 1) We can delete sysfs objects which invoke hotplug
5307 * without deadlocking with linkwatch via keventd.
5308 * 2) Since we run with the RTNL semaphore not held, we can sleep
5309 * safely in order to wait for the netdev refcnt to drop to zero.
5310 *
5311 * We must not return until all unregister events added during
5312 * the interval the lock was held have been completed.
5313 */
5314 void netdev_run_todo(void)
5315 {
5316 struct list_head list;
5317
5318 /* Snapshot list, allow later requests */
5319 list_replace_init(&net_todo_list, &list);
5320
5321 __rtnl_unlock();
5322
5323 while (!list_empty(&list)) {
5324 struct net_device *dev
5325 = list_first_entry(&list, struct net_device, todo_list);
5326 list_del(&dev->todo_list);
5327
5328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5329 printk(KERN_ERR "network todo '%s' but state %d\n",
5330 dev->name, dev->reg_state);
5331 dump_stack();
5332 continue;
5333 }
5334
5335 dev->reg_state = NETREG_UNREGISTERED;
5336
5337 on_each_cpu(flush_backlog, dev, 1);
5338
5339 netdev_wait_allrefs(dev);
5340
5341 /* paranoia */
5342 BUG_ON(atomic_read(&dev->refcnt));
5343 WARN_ON(dev->ip_ptr);
5344 WARN_ON(dev->ip6_ptr);
5345 WARN_ON(dev->dn_ptr);
5346
5347 if (dev->destructor)
5348 dev->destructor(dev);
5349
5350 /* Free network device */
5351 kobject_put(&dev->dev.kobj);
5352 }
5353 }
5354
5355 /**
5356 * dev_txq_stats_fold - fold tx_queues stats
5357 * @dev: device to get statistics from
5358 * @stats: struct net_device_stats to hold results
5359 */
5360 void dev_txq_stats_fold(const struct net_device *dev,
5361 struct net_device_stats *stats)
5362 {
5363 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5364 unsigned int i;
5365 struct netdev_queue *txq;
5366
5367 for (i = 0; i < dev->num_tx_queues; i++) {
5368 txq = netdev_get_tx_queue(dev, i);
5369 tx_bytes += txq->tx_bytes;
5370 tx_packets += txq->tx_packets;
5371 tx_dropped += txq->tx_dropped;
5372 }
5373 if (tx_bytes || tx_packets || tx_dropped) {
5374 stats->tx_bytes = tx_bytes;
5375 stats->tx_packets = tx_packets;
5376 stats->tx_dropped = tx_dropped;
5377 }
5378 }
5379 EXPORT_SYMBOL(dev_txq_stats_fold);
5380
5381 /**
5382 * dev_get_stats - get network device statistics
5383 * @dev: device to get statistics from
5384 *
5385 * Get network statistics from device. The device driver may provide
5386 * its own method by setting dev->netdev_ops->get_stats; otherwise
5387 * the internal statistics structure is used.
5388 */
5389 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5390 {
5391 const struct net_device_ops *ops = dev->netdev_ops;
5392
5393 if (ops->ndo_get_stats)
5394 return ops->ndo_get_stats(dev);
5395
5396 dev_txq_stats_fold(dev, &dev->stats);
5397 return &dev->stats;
5398 }
5399 EXPORT_SYMBOL(dev_get_stats);
5400
5401 static void netdev_init_one_queue(struct net_device *dev,
5402 struct netdev_queue *queue,
5403 void *_unused)
5404 {
5405 queue->dev = dev;
5406 }
5407
5408 static void netdev_init_queues(struct net_device *dev)
5409 {
5410 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5411 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5412 spin_lock_init(&dev->tx_global_lock);
5413 }
5414
5415 /**
5416 * alloc_netdev_mq - allocate network device
5417 * @sizeof_priv: size of private data to allocate space for
5418 * @name: device name format string
5419 * @setup: callback to initialize device
5420 * @queue_count: the number of subqueues to allocate
5421 *
5422 * Allocates a struct net_device with private data area for driver use
5423 * and performs basic initialization. Also allocates subquue structs
5424 * for each queue on the device at the end of the netdevice.
5425 */
5426 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5427 void (*setup)(struct net_device *), unsigned int queue_count)
5428 {
5429 struct netdev_queue *tx;
5430 struct net_device *dev;
5431 size_t alloc_size;
5432 struct net_device *p;
5433
5434 BUG_ON(strlen(name) >= sizeof(dev->name));
5435
5436 alloc_size = sizeof(struct net_device);
5437 if (sizeof_priv) {
5438 /* ensure 32-byte alignment of private area */
5439 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5440 alloc_size += sizeof_priv;
5441 }
5442 /* ensure 32-byte alignment of whole construct */
5443 alloc_size += NETDEV_ALIGN - 1;
5444
5445 p = kzalloc(alloc_size, GFP_KERNEL);
5446 if (!p) {
5447 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5448 return NULL;
5449 }
5450
5451 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5452 if (!tx) {
5453 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5454 "tx qdiscs.\n");
5455 goto free_p;
5456 }
5457
5458 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5459 dev->padded = (char *)dev - (char *)p;
5460
5461 if (dev_addr_init(dev))
5462 goto free_tx;
5463
5464 dev_unicast_init(dev);
5465
5466 dev_net_set(dev, &init_net);
5467
5468 dev->_tx = tx;
5469 dev->num_tx_queues = queue_count;
5470 dev->real_num_tx_queues = queue_count;
5471
5472 dev->gso_max_size = GSO_MAX_SIZE;
5473
5474 netdev_init_queues(dev);
5475
5476 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5477 dev->ethtool_ntuple_list.count = 0;
5478 INIT_LIST_HEAD(&dev->napi_list);
5479 INIT_LIST_HEAD(&dev->unreg_list);
5480 INIT_LIST_HEAD(&dev->link_watch_list);
5481 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5482 setup(dev);
5483 strcpy(dev->name, name);
5484 return dev;
5485
5486 free_tx:
5487 kfree(tx);
5488
5489 free_p:
5490 kfree(p);
5491 return NULL;
5492 }
5493 EXPORT_SYMBOL(alloc_netdev_mq);
5494
5495 /**
5496 * free_netdev - free network device
5497 * @dev: device
5498 *
5499 * This function does the last stage of destroying an allocated device
5500 * interface. The reference to the device object is released.
5501 * If this is the last reference then it will be freed.
5502 */
5503 void free_netdev(struct net_device *dev)
5504 {
5505 struct napi_struct *p, *n;
5506
5507 release_net(dev_net(dev));
5508
5509 kfree(dev->_tx);
5510
5511 /* Flush device addresses */
5512 dev_addr_flush(dev);
5513
5514 /* Clear ethtool n-tuple list */
5515 ethtool_ntuple_flush(dev);
5516
5517 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5518 netif_napi_del(p);
5519
5520 /* Compatibility with error handling in drivers */
5521 if (dev->reg_state == NETREG_UNINITIALIZED) {
5522 kfree((char *)dev - dev->padded);
5523 return;
5524 }
5525
5526 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5527 dev->reg_state = NETREG_RELEASED;
5528
5529 /* will free via device release */
5530 put_device(&dev->dev);
5531 }
5532 EXPORT_SYMBOL(free_netdev);
5533
5534 /**
5535 * synchronize_net - Synchronize with packet receive processing
5536 *
5537 * Wait for packets currently being received to be done.
5538 * Does not block later packets from starting.
5539 */
5540 void synchronize_net(void)
5541 {
5542 might_sleep();
5543 synchronize_rcu();
5544 }
5545 EXPORT_SYMBOL(synchronize_net);
5546
5547 /**
5548 * unregister_netdevice_queue - remove device from the kernel
5549 * @dev: device
5550 * @head: list
5551 *
5552 * This function shuts down a device interface and removes it
5553 * from the kernel tables.
5554 * If head not NULL, device is queued to be unregistered later.
5555 *
5556 * Callers must hold the rtnl semaphore. You may want
5557 * unregister_netdev() instead of this.
5558 */
5559
5560 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5561 {
5562 ASSERT_RTNL();
5563
5564 if (head) {
5565 list_move_tail(&dev->unreg_list, head);
5566 } else {
5567 rollback_registered(dev);
5568 /* Finish processing unregister after unlock */
5569 net_set_todo(dev);
5570 }
5571 }
5572 EXPORT_SYMBOL(unregister_netdevice_queue);
5573
5574 /**
5575 * unregister_netdevice_many - unregister many devices
5576 * @head: list of devices
5577 */
5578 void unregister_netdevice_many(struct list_head *head)
5579 {
5580 struct net_device *dev;
5581
5582 if (!list_empty(head)) {
5583 rollback_registered_many(head);
5584 list_for_each_entry(dev, head, unreg_list)
5585 net_set_todo(dev);
5586 }
5587 }
5588 EXPORT_SYMBOL(unregister_netdevice_many);
5589
5590 /**
5591 * unregister_netdev - remove device from the kernel
5592 * @dev: device
5593 *
5594 * This function shuts down a device interface and removes it
5595 * from the kernel tables.
5596 *
5597 * This is just a wrapper for unregister_netdevice that takes
5598 * the rtnl semaphore. In general you want to use this and not
5599 * unregister_netdevice.
5600 */
5601 void unregister_netdev(struct net_device *dev)
5602 {
5603 rtnl_lock();
5604 unregister_netdevice(dev);
5605 rtnl_unlock();
5606 }
5607 EXPORT_SYMBOL(unregister_netdev);
5608
5609 /**
5610 * dev_change_net_namespace - move device to different nethost namespace
5611 * @dev: device
5612 * @net: network namespace
5613 * @pat: If not NULL name pattern to try if the current device name
5614 * is already taken in the destination network namespace.
5615 *
5616 * This function shuts down a device interface and moves it
5617 * to a new network namespace. On success 0 is returned, on
5618 * a failure a netagive errno code is returned.
5619 *
5620 * Callers must hold the rtnl semaphore.
5621 */
5622
5623 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5624 {
5625 int err;
5626
5627 ASSERT_RTNL();
5628
5629 /* Don't allow namespace local devices to be moved. */
5630 err = -EINVAL;
5631 if (dev->features & NETIF_F_NETNS_LOCAL)
5632 goto out;
5633
5634 #ifdef CONFIG_SYSFS
5635 /* Don't allow real devices to be moved when sysfs
5636 * is enabled.
5637 */
5638 err = -EINVAL;
5639 if (dev->dev.parent)
5640 goto out;
5641 #endif
5642
5643 /* Ensure the device has been registrered */
5644 err = -EINVAL;
5645 if (dev->reg_state != NETREG_REGISTERED)
5646 goto out;
5647
5648 /* Get out if there is nothing todo */
5649 err = 0;
5650 if (net_eq(dev_net(dev), net))
5651 goto out;
5652
5653 /* Pick the destination device name, and ensure
5654 * we can use it in the destination network namespace.
5655 */
5656 err = -EEXIST;
5657 if (__dev_get_by_name(net, dev->name)) {
5658 /* We get here if we can't use the current device name */
5659 if (!pat)
5660 goto out;
5661 if (dev_get_valid_name(net, pat, dev->name, 1))
5662 goto out;
5663 }
5664
5665 /*
5666 * And now a mini version of register_netdevice unregister_netdevice.
5667 */
5668
5669 /* If device is running close it first. */
5670 dev_close(dev);
5671
5672 /* And unlink it from device chain */
5673 err = -ENODEV;
5674 unlist_netdevice(dev);
5675
5676 synchronize_net();
5677
5678 /* Shutdown queueing discipline. */
5679 dev_shutdown(dev);
5680
5681 /* Notify protocols, that we are about to destroy
5682 this device. They should clean all the things.
5683 */
5684 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5685 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5686
5687 /*
5688 * Flush the unicast and multicast chains
5689 */
5690 dev_unicast_flush(dev);
5691 dev_addr_discard(dev);
5692
5693 netdev_unregister_kobject(dev);
5694
5695 /* Actually switch the network namespace */
5696 dev_net_set(dev, net);
5697
5698 /* If there is an ifindex conflict assign a new one */
5699 if (__dev_get_by_index(net, dev->ifindex)) {
5700 int iflink = (dev->iflink == dev->ifindex);
5701 dev->ifindex = dev_new_index(net);
5702 if (iflink)
5703 dev->iflink = dev->ifindex;
5704 }
5705
5706 /* Fixup kobjects */
5707 err = netdev_register_kobject(dev);
5708 WARN_ON(err);
5709
5710 /* Add the device back in the hashes */
5711 list_netdevice(dev);
5712
5713 /* Notify protocols, that a new device appeared. */
5714 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5715
5716 /*
5717 * Prevent userspace races by waiting until the network
5718 * device is fully setup before sending notifications.
5719 */
5720 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5721
5722 synchronize_net();
5723 err = 0;
5724 out:
5725 return err;
5726 }
5727 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5728
5729 static int dev_cpu_callback(struct notifier_block *nfb,
5730 unsigned long action,
5731 void *ocpu)
5732 {
5733 struct sk_buff **list_skb;
5734 struct Qdisc **list_net;
5735 struct sk_buff *skb;
5736 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5737 struct softnet_data *sd, *oldsd;
5738
5739 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5740 return NOTIFY_OK;
5741
5742 local_irq_disable();
5743 cpu = smp_processor_id();
5744 sd = &per_cpu(softnet_data, cpu);
5745 oldsd = &per_cpu(softnet_data, oldcpu);
5746
5747 /* Find end of our completion_queue. */
5748 list_skb = &sd->completion_queue;
5749 while (*list_skb)
5750 list_skb = &(*list_skb)->next;
5751 /* Append completion queue from offline CPU. */
5752 *list_skb = oldsd->completion_queue;
5753 oldsd->completion_queue = NULL;
5754
5755 /* Find end of our output_queue. */
5756 list_net = &sd->output_queue;
5757 while (*list_net)
5758 list_net = &(*list_net)->next_sched;
5759 /* Append output queue from offline CPU. */
5760 *list_net = oldsd->output_queue;
5761 oldsd->output_queue = NULL;
5762
5763 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5764 local_irq_enable();
5765
5766 /* Process offline CPU's input_pkt_queue */
5767 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5768 netif_rx(skb);
5769
5770 return NOTIFY_OK;
5771 }
5772
5773
5774 /**
5775 * netdev_increment_features - increment feature set by one
5776 * @all: current feature set
5777 * @one: new feature set
5778 * @mask: mask feature set
5779 *
5780 * Computes a new feature set after adding a device with feature set
5781 * @one to the master device with current feature set @all. Will not
5782 * enable anything that is off in @mask. Returns the new feature set.
5783 */
5784 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5785 unsigned long mask)
5786 {
5787 /* If device needs checksumming, downgrade to it. */
5788 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5789 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5790 else if (mask & NETIF_F_ALL_CSUM) {
5791 /* If one device supports v4/v6 checksumming, set for all. */
5792 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5793 !(all & NETIF_F_GEN_CSUM)) {
5794 all &= ~NETIF_F_ALL_CSUM;
5795 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5796 }
5797
5798 /* If one device supports hw checksumming, set for all. */
5799 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5800 all &= ~NETIF_F_ALL_CSUM;
5801 all |= NETIF_F_HW_CSUM;
5802 }
5803 }
5804
5805 one |= NETIF_F_ALL_CSUM;
5806
5807 one |= all & NETIF_F_ONE_FOR_ALL;
5808 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5809 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5810
5811 return all;
5812 }
5813 EXPORT_SYMBOL(netdev_increment_features);
5814
5815 static struct hlist_head *netdev_create_hash(void)
5816 {
5817 int i;
5818 struct hlist_head *hash;
5819
5820 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5821 if (hash != NULL)
5822 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5823 INIT_HLIST_HEAD(&hash[i]);
5824
5825 return hash;
5826 }
5827
5828 /* Initialize per network namespace state */
5829 static int __net_init netdev_init(struct net *net)
5830 {
5831 INIT_LIST_HEAD(&net->dev_base_head);
5832
5833 net->dev_name_head = netdev_create_hash();
5834 if (net->dev_name_head == NULL)
5835 goto err_name;
5836
5837 net->dev_index_head = netdev_create_hash();
5838 if (net->dev_index_head == NULL)
5839 goto err_idx;
5840
5841 return 0;
5842
5843 err_idx:
5844 kfree(net->dev_name_head);
5845 err_name:
5846 return -ENOMEM;
5847 }
5848
5849 /**
5850 * netdev_drivername - network driver for the device
5851 * @dev: network device
5852 * @buffer: buffer for resulting name
5853 * @len: size of buffer
5854 *
5855 * Determine network driver for device.
5856 */
5857 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5858 {
5859 const struct device_driver *driver;
5860 const struct device *parent;
5861
5862 if (len <= 0 || !buffer)
5863 return buffer;
5864 buffer[0] = 0;
5865
5866 parent = dev->dev.parent;
5867
5868 if (!parent)
5869 return buffer;
5870
5871 driver = parent->driver;
5872 if (driver && driver->name)
5873 strlcpy(buffer, driver->name, len);
5874 return buffer;
5875 }
5876
5877 static void __net_exit netdev_exit(struct net *net)
5878 {
5879 kfree(net->dev_name_head);
5880 kfree(net->dev_index_head);
5881 }
5882
5883 static struct pernet_operations __net_initdata netdev_net_ops = {
5884 .init = netdev_init,
5885 .exit = netdev_exit,
5886 };
5887
5888 static void __net_exit default_device_exit(struct net *net)
5889 {
5890 struct net_device *dev, *aux;
5891 /*
5892 * Push all migratable network devices back to the
5893 * initial network namespace
5894 */
5895 rtnl_lock();
5896 for_each_netdev_safe(net, dev, aux) {
5897 int err;
5898 char fb_name[IFNAMSIZ];
5899
5900 /* Ignore unmoveable devices (i.e. loopback) */
5901 if (dev->features & NETIF_F_NETNS_LOCAL)
5902 continue;
5903
5904 /* Leave virtual devices for the generic cleanup */
5905 if (dev->rtnl_link_ops)
5906 continue;
5907
5908 /* Push remaing network devices to init_net */
5909 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5910 err = dev_change_net_namespace(dev, &init_net, fb_name);
5911 if (err) {
5912 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5913 __func__, dev->name, err);
5914 BUG();
5915 }
5916 }
5917 rtnl_unlock();
5918 }
5919
5920 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5921 {
5922 /* At exit all network devices most be removed from a network
5923 * namespace. Do this in the reverse order of registeration.
5924 * Do this across as many network namespaces as possible to
5925 * improve batching efficiency.
5926 */
5927 struct net_device *dev;
5928 struct net *net;
5929 LIST_HEAD(dev_kill_list);
5930
5931 rtnl_lock();
5932 list_for_each_entry(net, net_list, exit_list) {
5933 for_each_netdev_reverse(net, dev) {
5934 if (dev->rtnl_link_ops)
5935 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5936 else
5937 unregister_netdevice_queue(dev, &dev_kill_list);
5938 }
5939 }
5940 unregister_netdevice_many(&dev_kill_list);
5941 rtnl_unlock();
5942 }
5943
5944 static struct pernet_operations __net_initdata default_device_ops = {
5945 .exit = default_device_exit,
5946 .exit_batch = default_device_exit_batch,
5947 };
5948
5949 /*
5950 * Initialize the DEV module. At boot time this walks the device list and
5951 * unhooks any devices that fail to initialise (normally hardware not
5952 * present) and leaves us with a valid list of present and active devices.
5953 *
5954 */
5955
5956 /*
5957 * This is called single threaded during boot, so no need
5958 * to take the rtnl semaphore.
5959 */
5960 static int __init net_dev_init(void)
5961 {
5962 int i, rc = -ENOMEM;
5963
5964 BUG_ON(!dev_boot_phase);
5965
5966 if (dev_proc_init())
5967 goto out;
5968
5969 if (netdev_kobject_init())
5970 goto out;
5971
5972 INIT_LIST_HEAD(&ptype_all);
5973 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5974 INIT_LIST_HEAD(&ptype_base[i]);
5975
5976 if (register_pernet_subsys(&netdev_net_ops))
5977 goto out;
5978
5979 /*
5980 * Initialise the packet receive queues.
5981 */
5982
5983 for_each_possible_cpu(i) {
5984 struct softnet_data *queue;
5985
5986 queue = &per_cpu(softnet_data, i);
5987 skb_queue_head_init(&queue->input_pkt_queue);
5988 queue->completion_queue = NULL;
5989 INIT_LIST_HEAD(&queue->poll_list);
5990
5991 queue->backlog.poll = process_backlog;
5992 queue->backlog.weight = weight_p;
5993 queue->backlog.gro_list = NULL;
5994 queue->backlog.gro_count = 0;
5995 }
5996
5997 dev_boot_phase = 0;
5998
5999 /* The loopback device is special if any other network devices
6000 * is present in a network namespace the loopback device must
6001 * be present. Since we now dynamically allocate and free the
6002 * loopback device ensure this invariant is maintained by
6003 * keeping the loopback device as the first device on the
6004 * list of network devices. Ensuring the loopback devices
6005 * is the first device that appears and the last network device
6006 * that disappears.
6007 */
6008 if (register_pernet_device(&loopback_net_ops))
6009 goto out;
6010
6011 if (register_pernet_device(&default_device_ops))
6012 goto out;
6013
6014 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6015 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6016
6017 hotcpu_notifier(dev_cpu_callback, 0);
6018 dst_init();
6019 dev_mcast_init();
6020 rc = 0;
6021 out:
6022 return rc;
6023 }
6024
6025 subsys_initcall(net_dev_init);
6026
6027 static int __init initialize_hashrnd(void)
6028 {
6029 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6030 return 0;
6031 }
6032
6033 late_initcall_sync(initialize_hashrnd);
6034