Merge branch 'for-linux-next' of git://people.freedesktop.org/~danvet/drm-intel into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 static_key_slow_inc(&netstamp_needed);
1549 }
1550 EXPORT_SYMBOL(net_enable_timestamp);
1551
1552 void net_disable_timestamp(void)
1553 {
1554 #ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1558 }
1559 #endif
1560 static_key_slow_dec(&netstamp_needed);
1561 }
1562 EXPORT_SYMBOL(net_disable_timestamp);
1563
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1565 {
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1569 }
1570
1571 #define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1575 } \
1576
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1579 {
1580 unsigned int len;
1581
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1584
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1588
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1591 */
1592 if (skb_is_gso(skb))
1593 return true;
1594
1595 return false;
1596 }
1597
1598 /**
1599 * dev_forward_skb - loopback an skb to another netif
1600 *
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1603 *
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1607 *
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1611 *
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1615 */
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617 {
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1623 }
1624 }
1625
1626 skb_orphan(skb);
1627
1628 if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 atomic_long_inc(&dev->rx_dropped);
1630 kfree_skb(skb);
1631 return NET_RX_DROP;
1632 }
1633 skb->skb_iif = 0;
1634 skb->dev = dev;
1635 skb_dst_drop(skb);
1636 skb->tstamp.tv64 = 0;
1637 skb->pkt_type = PACKET_HOST;
1638 skb->protocol = eth_type_trans(skb, dev);
1639 skb->mark = 0;
1640 secpath_reset(skb);
1641 nf_reset(skb);
1642 return netif_rx(skb);
1643 }
1644 EXPORT_SYMBOL_GPL(dev_forward_skb);
1645
1646 static inline int deliver_skb(struct sk_buff *skb,
1647 struct packet_type *pt_prev,
1648 struct net_device *orig_dev)
1649 {
1650 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1651 return -ENOMEM;
1652 atomic_inc(&skb->users);
1653 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1654 }
1655
1656 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1657 {
1658 if (!ptype->af_packet_priv || !skb->sk)
1659 return false;
1660
1661 if (ptype->id_match)
1662 return ptype->id_match(ptype, skb->sk);
1663 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1664 return true;
1665
1666 return false;
1667 }
1668
1669 /*
1670 * Support routine. Sends outgoing frames to any network
1671 * taps currently in use.
1672 */
1673
1674 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1675 {
1676 struct packet_type *ptype;
1677 struct sk_buff *skb2 = NULL;
1678 struct packet_type *pt_prev = NULL;
1679
1680 rcu_read_lock();
1681 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1682 /* Never send packets back to the socket
1683 * they originated from - MvS (miquels@drinkel.ow.org)
1684 */
1685 if ((ptype->dev == dev || !ptype->dev) &&
1686 (!skb_loop_sk(ptype, skb))) {
1687 if (pt_prev) {
1688 deliver_skb(skb2, pt_prev, skb->dev);
1689 pt_prev = ptype;
1690 continue;
1691 }
1692
1693 skb2 = skb_clone(skb, GFP_ATOMIC);
1694 if (!skb2)
1695 break;
1696
1697 net_timestamp_set(skb2);
1698
1699 /* skb->nh should be correctly
1700 set by sender, so that the second statement is
1701 just protection against buggy protocols.
1702 */
1703 skb_reset_mac_header(skb2);
1704
1705 if (skb_network_header(skb2) < skb2->data ||
1706 skb2->network_header > skb2->tail) {
1707 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1708 ntohs(skb2->protocol),
1709 dev->name);
1710 skb_reset_network_header(skb2);
1711 }
1712
1713 skb2->transport_header = skb2->network_header;
1714 skb2->pkt_type = PACKET_OUTGOING;
1715 pt_prev = ptype;
1716 }
1717 }
1718 if (pt_prev)
1719 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1720 rcu_read_unlock();
1721 }
1722
1723 /**
1724 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1725 * @dev: Network device
1726 * @txq: number of queues available
1727 *
1728 * If real_num_tx_queues is changed the tc mappings may no longer be
1729 * valid. To resolve this verify the tc mapping remains valid and if
1730 * not NULL the mapping. With no priorities mapping to this
1731 * offset/count pair it will no longer be used. In the worst case TC0
1732 * is invalid nothing can be done so disable priority mappings. If is
1733 * expected that drivers will fix this mapping if they can before
1734 * calling netif_set_real_num_tx_queues.
1735 */
1736 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1737 {
1738 int i;
1739 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1740
1741 /* If TC0 is invalidated disable TC mapping */
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1744 dev->num_tc = 0;
1745 return;
1746 }
1747
1748 /* Invalidated prio to tc mappings set to TC0 */
1749 for (i = 1; i < TC_BITMASK + 1; i++) {
1750 int q = netdev_get_prio_tc_map(dev, i);
1751
1752 tc = &dev->tc_to_txq[q];
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1755 i, q);
1756 netdev_set_prio_tc_map(dev, i, 0);
1757 }
1758 }
1759 }
1760
1761 #ifdef CONFIG_XPS
1762 static DEFINE_MUTEX(xps_map_mutex);
1763 #define xmap_dereference(P) \
1764 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1765
1766 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1767 int cpu, u16 index)
1768 {
1769 struct xps_map *map = NULL;
1770 int pos;
1771
1772 if (dev_maps)
1773 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1774
1775 for (pos = 0; map && pos < map->len; pos++) {
1776 if (map->queues[pos] == index) {
1777 if (map->len > 1) {
1778 map->queues[pos] = map->queues[--map->len];
1779 } else {
1780 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1781 kfree_rcu(map, rcu);
1782 map = NULL;
1783 }
1784 break;
1785 }
1786 }
1787
1788 return map;
1789 }
1790
1791 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1792 {
1793 struct xps_dev_maps *dev_maps;
1794 int cpu, i;
1795 bool active = false;
1796
1797 mutex_lock(&xps_map_mutex);
1798 dev_maps = xmap_dereference(dev->xps_maps);
1799
1800 if (!dev_maps)
1801 goto out_no_maps;
1802
1803 for_each_possible_cpu(cpu) {
1804 for (i = index; i < dev->num_tx_queues; i++) {
1805 if (!remove_xps_queue(dev_maps, cpu, i))
1806 break;
1807 }
1808 if (i == dev->num_tx_queues)
1809 active = true;
1810 }
1811
1812 if (!active) {
1813 RCU_INIT_POINTER(dev->xps_maps, NULL);
1814 kfree_rcu(dev_maps, rcu);
1815 }
1816
1817 for (i = index; i < dev->num_tx_queues; i++)
1818 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1819 NUMA_NO_NODE);
1820
1821 out_no_maps:
1822 mutex_unlock(&xps_map_mutex);
1823 }
1824
1825 static struct xps_map *expand_xps_map(struct xps_map *map,
1826 int cpu, u16 index)
1827 {
1828 struct xps_map *new_map;
1829 int alloc_len = XPS_MIN_MAP_ALLOC;
1830 int i, pos;
1831
1832 for (pos = 0; map && pos < map->len; pos++) {
1833 if (map->queues[pos] != index)
1834 continue;
1835 return map;
1836 }
1837
1838 /* Need to add queue to this CPU's existing map */
1839 if (map) {
1840 if (pos < map->alloc_len)
1841 return map;
1842
1843 alloc_len = map->alloc_len * 2;
1844 }
1845
1846 /* Need to allocate new map to store queue on this CPU's map */
1847 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1848 cpu_to_node(cpu));
1849 if (!new_map)
1850 return NULL;
1851
1852 for (i = 0; i < pos; i++)
1853 new_map->queues[i] = map->queues[i];
1854 new_map->alloc_len = alloc_len;
1855 new_map->len = pos;
1856
1857 return new_map;
1858 }
1859
1860 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1861 {
1862 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1863 struct xps_map *map, *new_map;
1864 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1865 int cpu, numa_node_id = -2;
1866 bool active = false;
1867
1868 mutex_lock(&xps_map_mutex);
1869
1870 dev_maps = xmap_dereference(dev->xps_maps);
1871
1872 /* allocate memory for queue storage */
1873 for_each_online_cpu(cpu) {
1874 if (!cpumask_test_cpu(cpu, mask))
1875 continue;
1876
1877 if (!new_dev_maps)
1878 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1879 if (!new_dev_maps) {
1880 mutex_unlock(&xps_map_mutex);
1881 return -ENOMEM;
1882 }
1883
1884 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1885 NULL;
1886
1887 map = expand_xps_map(map, cpu, index);
1888 if (!map)
1889 goto error;
1890
1891 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1892 }
1893
1894 if (!new_dev_maps)
1895 goto out_no_new_maps;
1896
1897 for_each_possible_cpu(cpu) {
1898 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1899 /* add queue to CPU maps */
1900 int pos = 0;
1901
1902 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1903 while ((pos < map->len) && (map->queues[pos] != index))
1904 pos++;
1905
1906 if (pos == map->len)
1907 map->queues[map->len++] = index;
1908 #ifdef CONFIG_NUMA
1909 if (numa_node_id == -2)
1910 numa_node_id = cpu_to_node(cpu);
1911 else if (numa_node_id != cpu_to_node(cpu))
1912 numa_node_id = -1;
1913 #endif
1914 } else if (dev_maps) {
1915 /* fill in the new device map from the old device map */
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1918 }
1919
1920 }
1921
1922 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1923
1924 /* Cleanup old maps */
1925 if (dev_maps) {
1926 for_each_possible_cpu(cpu) {
1927 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1928 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1929 if (map && map != new_map)
1930 kfree_rcu(map, rcu);
1931 }
1932
1933 kfree_rcu(dev_maps, rcu);
1934 }
1935
1936 dev_maps = new_dev_maps;
1937 active = true;
1938
1939 out_no_new_maps:
1940 /* update Tx queue numa node */
1941 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1942 (numa_node_id >= 0) ? numa_node_id :
1943 NUMA_NO_NODE);
1944
1945 if (!dev_maps)
1946 goto out_no_maps;
1947
1948 /* removes queue from unused CPUs */
1949 for_each_possible_cpu(cpu) {
1950 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1951 continue;
1952
1953 if (remove_xps_queue(dev_maps, cpu, index))
1954 active = true;
1955 }
1956
1957 /* free map if not active */
1958 if (!active) {
1959 RCU_INIT_POINTER(dev->xps_maps, NULL);
1960 kfree_rcu(dev_maps, rcu);
1961 }
1962
1963 out_no_maps:
1964 mutex_unlock(&xps_map_mutex);
1965
1966 return 0;
1967 error:
1968 /* remove any maps that we added */
1969 for_each_possible_cpu(cpu) {
1970 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1971 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1972 NULL;
1973 if (new_map && new_map != map)
1974 kfree(new_map);
1975 }
1976
1977 mutex_unlock(&xps_map_mutex);
1978
1979 kfree(new_dev_maps);
1980 return -ENOMEM;
1981 }
1982 EXPORT_SYMBOL(netif_set_xps_queue);
1983
1984 #endif
1985 /*
1986 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1987 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1988 */
1989 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1990 {
1991 int rc;
1992
1993 if (txq < 1 || txq > dev->num_tx_queues)
1994 return -EINVAL;
1995
1996 if (dev->reg_state == NETREG_REGISTERED ||
1997 dev->reg_state == NETREG_UNREGISTERING) {
1998 ASSERT_RTNL();
1999
2000 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2001 txq);
2002 if (rc)
2003 return rc;
2004
2005 if (dev->num_tc)
2006 netif_setup_tc(dev, txq);
2007
2008 if (txq < dev->real_num_tx_queues) {
2009 qdisc_reset_all_tx_gt(dev, txq);
2010 #ifdef CONFIG_XPS
2011 netif_reset_xps_queues_gt(dev, txq);
2012 #endif
2013 }
2014 }
2015
2016 dev->real_num_tx_queues = txq;
2017 return 0;
2018 }
2019 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2020
2021 #ifdef CONFIG_RPS
2022 /**
2023 * netif_set_real_num_rx_queues - set actual number of RX queues used
2024 * @dev: Network device
2025 * @rxq: Actual number of RX queues
2026 *
2027 * This must be called either with the rtnl_lock held or before
2028 * registration of the net device. Returns 0 on success, or a
2029 * negative error code. If called before registration, it always
2030 * succeeds.
2031 */
2032 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2033 {
2034 int rc;
2035
2036 if (rxq < 1 || rxq > dev->num_rx_queues)
2037 return -EINVAL;
2038
2039 if (dev->reg_state == NETREG_REGISTERED) {
2040 ASSERT_RTNL();
2041
2042 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2043 rxq);
2044 if (rc)
2045 return rc;
2046 }
2047
2048 dev->real_num_rx_queues = rxq;
2049 return 0;
2050 }
2051 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2052 #endif
2053
2054 /**
2055 * netif_get_num_default_rss_queues - default number of RSS queues
2056 *
2057 * This routine should set an upper limit on the number of RSS queues
2058 * used by default by multiqueue devices.
2059 */
2060 int netif_get_num_default_rss_queues(void)
2061 {
2062 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2063 }
2064 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2065
2066 static inline void __netif_reschedule(struct Qdisc *q)
2067 {
2068 struct softnet_data *sd;
2069 unsigned long flags;
2070
2071 local_irq_save(flags);
2072 sd = &__get_cpu_var(softnet_data);
2073 q->next_sched = NULL;
2074 *sd->output_queue_tailp = q;
2075 sd->output_queue_tailp = &q->next_sched;
2076 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2077 local_irq_restore(flags);
2078 }
2079
2080 void __netif_schedule(struct Qdisc *q)
2081 {
2082 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2083 __netif_reschedule(q);
2084 }
2085 EXPORT_SYMBOL(__netif_schedule);
2086
2087 void dev_kfree_skb_irq(struct sk_buff *skb)
2088 {
2089 if (atomic_dec_and_test(&skb->users)) {
2090 struct softnet_data *sd;
2091 unsigned long flags;
2092
2093 local_irq_save(flags);
2094 sd = &__get_cpu_var(softnet_data);
2095 skb->next = sd->completion_queue;
2096 sd->completion_queue = skb;
2097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2098 local_irq_restore(flags);
2099 }
2100 }
2101 EXPORT_SYMBOL(dev_kfree_skb_irq);
2102
2103 void dev_kfree_skb_any(struct sk_buff *skb)
2104 {
2105 if (in_irq() || irqs_disabled())
2106 dev_kfree_skb_irq(skb);
2107 else
2108 dev_kfree_skb(skb);
2109 }
2110 EXPORT_SYMBOL(dev_kfree_skb_any);
2111
2112
2113 /**
2114 * netif_device_detach - mark device as removed
2115 * @dev: network device
2116 *
2117 * Mark device as removed from system and therefore no longer available.
2118 */
2119 void netif_device_detach(struct net_device *dev)
2120 {
2121 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2122 netif_running(dev)) {
2123 netif_tx_stop_all_queues(dev);
2124 }
2125 }
2126 EXPORT_SYMBOL(netif_device_detach);
2127
2128 /**
2129 * netif_device_attach - mark device as attached
2130 * @dev: network device
2131 *
2132 * Mark device as attached from system and restart if needed.
2133 */
2134 void netif_device_attach(struct net_device *dev)
2135 {
2136 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2137 netif_running(dev)) {
2138 netif_tx_wake_all_queues(dev);
2139 __netdev_watchdog_up(dev);
2140 }
2141 }
2142 EXPORT_SYMBOL(netif_device_attach);
2143
2144 static void skb_warn_bad_offload(const struct sk_buff *skb)
2145 {
2146 static const netdev_features_t null_features = 0;
2147 struct net_device *dev = skb->dev;
2148 const char *driver = "";
2149
2150 if (dev && dev->dev.parent)
2151 driver = dev_driver_string(dev->dev.parent);
2152
2153 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2154 "gso_type=%d ip_summed=%d\n",
2155 driver, dev ? &dev->features : &null_features,
2156 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2157 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2158 skb_shinfo(skb)->gso_type, skb->ip_summed);
2159 }
2160
2161 /*
2162 * Invalidate hardware checksum when packet is to be mangled, and
2163 * complete checksum manually on outgoing path.
2164 */
2165 int skb_checksum_help(struct sk_buff *skb)
2166 {
2167 __wsum csum;
2168 int ret = 0, offset;
2169
2170 if (skb->ip_summed == CHECKSUM_COMPLETE)
2171 goto out_set_summed;
2172
2173 if (unlikely(skb_shinfo(skb)->gso_size)) {
2174 skb_warn_bad_offload(skb);
2175 return -EINVAL;
2176 }
2177
2178 /* Before computing a checksum, we should make sure no frag could
2179 * be modified by an external entity : checksum could be wrong.
2180 */
2181 if (skb_has_shared_frag(skb)) {
2182 ret = __skb_linearize(skb);
2183 if (ret)
2184 goto out;
2185 }
2186
2187 offset = skb_checksum_start_offset(skb);
2188 BUG_ON(offset >= skb_headlen(skb));
2189 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2190
2191 offset += skb->csum_offset;
2192 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2193
2194 if (skb_cloned(skb) &&
2195 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2196 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2197 if (ret)
2198 goto out;
2199 }
2200
2201 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2202 out_set_summed:
2203 skb->ip_summed = CHECKSUM_NONE;
2204 out:
2205 return ret;
2206 }
2207 EXPORT_SYMBOL(skb_checksum_help);
2208
2209 /**
2210 * skb_mac_gso_segment - mac layer segmentation handler.
2211 * @skb: buffer to segment
2212 * @features: features for the output path (see dev->features)
2213 */
2214 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2215 netdev_features_t features)
2216 {
2217 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2218 struct packet_offload *ptype;
2219 __be16 type = skb->protocol;
2220 int vlan_depth = ETH_HLEN;
2221
2222 while (type == htons(ETH_P_8021Q)) {
2223 struct vlan_hdr *vh;
2224
2225 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2226 return ERR_PTR(-EINVAL);
2227
2228 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2229 type = vh->h_vlan_encapsulated_proto;
2230 vlan_depth += VLAN_HLEN;
2231 }
2232
2233 __skb_pull(skb, skb->mac_len);
2234
2235 rcu_read_lock();
2236 list_for_each_entry_rcu(ptype, &offload_base, list) {
2237 if (ptype->type == type && ptype->callbacks.gso_segment) {
2238 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2239 int err;
2240
2241 err = ptype->callbacks.gso_send_check(skb);
2242 segs = ERR_PTR(err);
2243 if (err || skb_gso_ok(skb, features))
2244 break;
2245 __skb_push(skb, (skb->data -
2246 skb_network_header(skb)));
2247 }
2248 segs = ptype->callbacks.gso_segment(skb, features);
2249 break;
2250 }
2251 }
2252 rcu_read_unlock();
2253
2254 __skb_push(skb, skb->data - skb_mac_header(skb));
2255
2256 return segs;
2257 }
2258 EXPORT_SYMBOL(skb_mac_gso_segment);
2259
2260
2261 /* openvswitch calls this on rx path, so we need a different check.
2262 */
2263 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2264 {
2265 if (tx_path)
2266 return skb->ip_summed != CHECKSUM_PARTIAL;
2267 else
2268 return skb->ip_summed == CHECKSUM_NONE;
2269 }
2270
2271 /**
2272 * __skb_gso_segment - Perform segmentation on skb.
2273 * @skb: buffer to segment
2274 * @features: features for the output path (see dev->features)
2275 * @tx_path: whether it is called in TX path
2276 *
2277 * This function segments the given skb and returns a list of segments.
2278 *
2279 * It may return NULL if the skb requires no segmentation. This is
2280 * only possible when GSO is used for verifying header integrity.
2281 */
2282 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2283 netdev_features_t features, bool tx_path)
2284 {
2285 if (unlikely(skb_needs_check(skb, tx_path))) {
2286 int err;
2287
2288 skb_warn_bad_offload(skb);
2289
2290 if (skb_header_cloned(skb) &&
2291 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2292 return ERR_PTR(err);
2293 }
2294
2295 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2296 skb_reset_mac_header(skb);
2297 skb_reset_mac_len(skb);
2298
2299 return skb_mac_gso_segment(skb, features);
2300 }
2301 EXPORT_SYMBOL(__skb_gso_segment);
2302
2303 /* Take action when hardware reception checksum errors are detected. */
2304 #ifdef CONFIG_BUG
2305 void netdev_rx_csum_fault(struct net_device *dev)
2306 {
2307 if (net_ratelimit()) {
2308 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2309 dump_stack();
2310 }
2311 }
2312 EXPORT_SYMBOL(netdev_rx_csum_fault);
2313 #endif
2314
2315 /* Actually, we should eliminate this check as soon as we know, that:
2316 * 1. IOMMU is present and allows to map all the memory.
2317 * 2. No high memory really exists on this machine.
2318 */
2319
2320 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2321 {
2322 #ifdef CONFIG_HIGHMEM
2323 int i;
2324 if (!(dev->features & NETIF_F_HIGHDMA)) {
2325 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2327 if (PageHighMem(skb_frag_page(frag)))
2328 return 1;
2329 }
2330 }
2331
2332 if (PCI_DMA_BUS_IS_PHYS) {
2333 struct device *pdev = dev->dev.parent;
2334
2335 if (!pdev)
2336 return 0;
2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2339 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2340 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2341 return 1;
2342 }
2343 }
2344 #endif
2345 return 0;
2346 }
2347
2348 struct dev_gso_cb {
2349 void (*destructor)(struct sk_buff *skb);
2350 };
2351
2352 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2353
2354 static void dev_gso_skb_destructor(struct sk_buff *skb)
2355 {
2356 struct dev_gso_cb *cb;
2357
2358 do {
2359 struct sk_buff *nskb = skb->next;
2360
2361 skb->next = nskb->next;
2362 nskb->next = NULL;
2363 kfree_skb(nskb);
2364 } while (skb->next);
2365
2366 cb = DEV_GSO_CB(skb);
2367 if (cb->destructor)
2368 cb->destructor(skb);
2369 }
2370
2371 /**
2372 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2373 * @skb: buffer to segment
2374 * @features: device features as applicable to this skb
2375 *
2376 * This function segments the given skb and stores the list of segments
2377 * in skb->next.
2378 */
2379 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2380 {
2381 struct sk_buff *segs;
2382
2383 segs = skb_gso_segment(skb, features);
2384
2385 /* Verifying header integrity only. */
2386 if (!segs)
2387 return 0;
2388
2389 if (IS_ERR(segs))
2390 return PTR_ERR(segs);
2391
2392 skb->next = segs;
2393 DEV_GSO_CB(skb)->destructor = skb->destructor;
2394 skb->destructor = dev_gso_skb_destructor;
2395
2396 return 0;
2397 }
2398
2399 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2400 {
2401 return ((features & NETIF_F_GEN_CSUM) ||
2402 ((features & NETIF_F_V4_CSUM) &&
2403 protocol == htons(ETH_P_IP)) ||
2404 ((features & NETIF_F_V6_CSUM) &&
2405 protocol == htons(ETH_P_IPV6)) ||
2406 ((features & NETIF_F_FCOE_CRC) &&
2407 protocol == htons(ETH_P_FCOE)));
2408 }
2409
2410 static netdev_features_t harmonize_features(struct sk_buff *skb,
2411 __be16 protocol, netdev_features_t features)
2412 {
2413 if (skb->ip_summed != CHECKSUM_NONE &&
2414 !can_checksum_protocol(features, protocol)) {
2415 features &= ~NETIF_F_ALL_CSUM;
2416 features &= ~NETIF_F_SG;
2417 } else if (illegal_highdma(skb->dev, skb)) {
2418 features &= ~NETIF_F_SG;
2419 }
2420
2421 return features;
2422 }
2423
2424 netdev_features_t netif_skb_features(struct sk_buff *skb)
2425 {
2426 __be16 protocol = skb->protocol;
2427 netdev_features_t features = skb->dev->features;
2428
2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2430 features &= ~NETIF_F_GSO_MASK;
2431
2432 if (protocol == htons(ETH_P_8021Q)) {
2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2434 protocol = veh->h_vlan_encapsulated_proto;
2435 } else if (!vlan_tx_tag_present(skb)) {
2436 return harmonize_features(skb, protocol, features);
2437 }
2438
2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2440
2441 if (protocol != htons(ETH_P_8021Q)) {
2442 return harmonize_features(skb, protocol, features);
2443 } else {
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2446 return harmonize_features(skb, protocol, features);
2447 }
2448 }
2449 EXPORT_SYMBOL(netif_skb_features);
2450
2451 /*
2452 * Returns true if either:
2453 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2454 * 2. skb is fragmented and the device does not support SG.
2455 */
2456 static inline int skb_needs_linearize(struct sk_buff *skb,
2457 int features)
2458 {
2459 return skb_is_nonlinear(skb) &&
2460 ((skb_has_frag_list(skb) &&
2461 !(features & NETIF_F_FRAGLIST)) ||
2462 (skb_shinfo(skb)->nr_frags &&
2463 !(features & NETIF_F_SG)));
2464 }
2465
2466 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2467 struct netdev_queue *txq)
2468 {
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470 int rc = NETDEV_TX_OK;
2471 unsigned int skb_len;
2472
2473 if (likely(!skb->next)) {
2474 netdev_features_t features;
2475
2476 /*
2477 * If device doesn't need skb->dst, release it right now while
2478 * its hot in this cpu cache
2479 */
2480 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2481 skb_dst_drop(skb);
2482
2483 features = netif_skb_features(skb);
2484
2485 if (vlan_tx_tag_present(skb) &&
2486 !(features & NETIF_F_HW_VLAN_TX)) {
2487 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2488 if (unlikely(!skb))
2489 goto out;
2490
2491 skb->vlan_tci = 0;
2492 }
2493
2494 /* If encapsulation offload request, verify we are testing
2495 * hardware encapsulation features instead of standard
2496 * features for the netdev
2497 */
2498 if (skb->encapsulation)
2499 features &= dev->hw_enc_features;
2500
2501 if (netif_needs_gso(skb, features)) {
2502 if (unlikely(dev_gso_segment(skb, features)))
2503 goto out_kfree_skb;
2504 if (skb->next)
2505 goto gso;
2506 } else {
2507 if (skb_needs_linearize(skb, features) &&
2508 __skb_linearize(skb))
2509 goto out_kfree_skb;
2510
2511 /* If packet is not checksummed and device does not
2512 * support checksumming for this protocol, complete
2513 * checksumming here.
2514 */
2515 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2516 if (skb->encapsulation)
2517 skb_set_inner_transport_header(skb,
2518 skb_checksum_start_offset(skb));
2519 else
2520 skb_set_transport_header(skb,
2521 skb_checksum_start_offset(skb));
2522 if (!(features & NETIF_F_ALL_CSUM) &&
2523 skb_checksum_help(skb))
2524 goto out_kfree_skb;
2525 }
2526 }
2527
2528 if (!list_empty(&ptype_all))
2529 dev_queue_xmit_nit(skb, dev);
2530
2531 skb_len = skb->len;
2532 rc = ops->ndo_start_xmit(skb, dev);
2533 trace_net_dev_xmit(skb, rc, dev, skb_len);
2534 if (rc == NETDEV_TX_OK)
2535 txq_trans_update(txq);
2536 return rc;
2537 }
2538
2539 gso:
2540 do {
2541 struct sk_buff *nskb = skb->next;
2542
2543 skb->next = nskb->next;
2544 nskb->next = NULL;
2545
2546 /*
2547 * If device doesn't need nskb->dst, release it right now while
2548 * its hot in this cpu cache
2549 */
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2551 skb_dst_drop(nskb);
2552
2553 if (!list_empty(&ptype_all))
2554 dev_queue_xmit_nit(nskb, dev);
2555
2556 skb_len = nskb->len;
2557 rc = ops->ndo_start_xmit(nskb, dev);
2558 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2559 if (unlikely(rc != NETDEV_TX_OK)) {
2560 if (rc & ~NETDEV_TX_MASK)
2561 goto out_kfree_gso_skb;
2562 nskb->next = skb->next;
2563 skb->next = nskb;
2564 return rc;
2565 }
2566 txq_trans_update(txq);
2567 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2568 return NETDEV_TX_BUSY;
2569 } while (skb->next);
2570
2571 out_kfree_gso_skb:
2572 if (likely(skb->next == NULL))
2573 skb->destructor = DEV_GSO_CB(skb)->destructor;
2574 out_kfree_skb:
2575 kfree_skb(skb);
2576 out:
2577 return rc;
2578 }
2579
2580 static void qdisc_pkt_len_init(struct sk_buff *skb)
2581 {
2582 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2583
2584 qdisc_skb_cb(skb)->pkt_len = skb->len;
2585
2586 /* To get more precise estimation of bytes sent on wire,
2587 * we add to pkt_len the headers size of all segments
2588 */
2589 if (shinfo->gso_size) {
2590 unsigned int hdr_len;
2591
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2594
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2598 else
2599 hdr_len += sizeof(struct udphdr);
2600 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2601 }
2602 }
2603
2604 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2605 struct net_device *dev,
2606 struct netdev_queue *txq)
2607 {
2608 spinlock_t *root_lock = qdisc_lock(q);
2609 bool contended;
2610 int rc;
2611
2612 qdisc_pkt_len_init(skb);
2613 qdisc_calculate_pkt_len(skb, q);
2614 /*
2615 * Heuristic to force contended enqueues to serialize on a
2616 * separate lock before trying to get qdisc main lock.
2617 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2618 * and dequeue packets faster.
2619 */
2620 contended = qdisc_is_running(q);
2621 if (unlikely(contended))
2622 spin_lock(&q->busylock);
2623
2624 spin_lock(root_lock);
2625 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2626 kfree_skb(skb);
2627 rc = NET_XMIT_DROP;
2628 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2629 qdisc_run_begin(q)) {
2630 /*
2631 * This is a work-conserving queue; there are no old skbs
2632 * waiting to be sent out; and the qdisc is not running -
2633 * xmit the skb directly.
2634 */
2635 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2636 skb_dst_force(skb);
2637
2638 qdisc_bstats_update(q, skb);
2639
2640 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2641 if (unlikely(contended)) {
2642 spin_unlock(&q->busylock);
2643 contended = false;
2644 }
2645 __qdisc_run(q);
2646 } else
2647 qdisc_run_end(q);
2648
2649 rc = NET_XMIT_SUCCESS;
2650 } else {
2651 skb_dst_force(skb);
2652 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2653 if (qdisc_run_begin(q)) {
2654 if (unlikely(contended)) {
2655 spin_unlock(&q->busylock);
2656 contended = false;
2657 }
2658 __qdisc_run(q);
2659 }
2660 }
2661 spin_unlock(root_lock);
2662 if (unlikely(contended))
2663 spin_unlock(&q->busylock);
2664 return rc;
2665 }
2666
2667 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2668 static void skb_update_prio(struct sk_buff *skb)
2669 {
2670 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2671
2672 if (!skb->priority && skb->sk && map) {
2673 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2674
2675 if (prioidx < map->priomap_len)
2676 skb->priority = map->priomap[prioidx];
2677 }
2678 }
2679 #else
2680 #define skb_update_prio(skb)
2681 #endif
2682
2683 static DEFINE_PER_CPU(int, xmit_recursion);
2684 #define RECURSION_LIMIT 10
2685
2686 /**
2687 * dev_loopback_xmit - loop back @skb
2688 * @skb: buffer to transmit
2689 */
2690 int dev_loopback_xmit(struct sk_buff *skb)
2691 {
2692 skb_reset_mac_header(skb);
2693 __skb_pull(skb, skb_network_offset(skb));
2694 skb->pkt_type = PACKET_LOOPBACK;
2695 skb->ip_summed = CHECKSUM_UNNECESSARY;
2696 WARN_ON(!skb_dst(skb));
2697 skb_dst_force(skb);
2698 netif_rx_ni(skb);
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(dev_loopback_xmit);
2702
2703 /**
2704 * dev_queue_xmit - transmit a buffer
2705 * @skb: buffer to transmit
2706 *
2707 * Queue a buffer for transmission to a network device. The caller must
2708 * have set the device and priority and built the buffer before calling
2709 * this function. The function can be called from an interrupt.
2710 *
2711 * A negative errno code is returned on a failure. A success does not
2712 * guarantee the frame will be transmitted as it may be dropped due
2713 * to congestion or traffic shaping.
2714 *
2715 * -----------------------------------------------------------------------------------
2716 * I notice this method can also return errors from the queue disciplines,
2717 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2718 * be positive.
2719 *
2720 * Regardless of the return value, the skb is consumed, so it is currently
2721 * difficult to retry a send to this method. (You can bump the ref count
2722 * before sending to hold a reference for retry if you are careful.)
2723 *
2724 * When calling this method, interrupts MUST be enabled. This is because
2725 * the BH enable code must have IRQs enabled so that it will not deadlock.
2726 * --BLG
2727 */
2728 int dev_queue_xmit(struct sk_buff *skb)
2729 {
2730 struct net_device *dev = skb->dev;
2731 struct netdev_queue *txq;
2732 struct Qdisc *q;
2733 int rc = -ENOMEM;
2734
2735 skb_reset_mac_header(skb);
2736
2737 /* Disable soft irqs for various locks below. Also
2738 * stops preemption for RCU.
2739 */
2740 rcu_read_lock_bh();
2741
2742 skb_update_prio(skb);
2743
2744 txq = netdev_pick_tx(dev, skb);
2745 q = rcu_dereference_bh(txq->qdisc);
2746
2747 #ifdef CONFIG_NET_CLS_ACT
2748 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2749 #endif
2750 trace_net_dev_queue(skb);
2751 if (q->enqueue) {
2752 rc = __dev_xmit_skb(skb, q, dev, txq);
2753 goto out;
2754 }
2755
2756 /* The device has no queue. Common case for software devices:
2757 loopback, all the sorts of tunnels...
2758
2759 Really, it is unlikely that netif_tx_lock protection is necessary
2760 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2761 counters.)
2762 However, it is possible, that they rely on protection
2763 made by us here.
2764
2765 Check this and shot the lock. It is not prone from deadlocks.
2766 Either shot noqueue qdisc, it is even simpler 8)
2767 */
2768 if (dev->flags & IFF_UP) {
2769 int cpu = smp_processor_id(); /* ok because BHs are off */
2770
2771 if (txq->xmit_lock_owner != cpu) {
2772
2773 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2774 goto recursion_alert;
2775
2776 HARD_TX_LOCK(dev, txq, cpu);
2777
2778 if (!netif_xmit_stopped(txq)) {
2779 __this_cpu_inc(xmit_recursion);
2780 rc = dev_hard_start_xmit(skb, dev, txq);
2781 __this_cpu_dec(xmit_recursion);
2782 if (dev_xmit_complete(rc)) {
2783 HARD_TX_UNLOCK(dev, txq);
2784 goto out;
2785 }
2786 }
2787 HARD_TX_UNLOCK(dev, txq);
2788 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2789 dev->name);
2790 } else {
2791 /* Recursion is detected! It is possible,
2792 * unfortunately
2793 */
2794 recursion_alert:
2795 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2796 dev->name);
2797 }
2798 }
2799
2800 rc = -ENETDOWN;
2801 rcu_read_unlock_bh();
2802
2803 kfree_skb(skb);
2804 return rc;
2805 out:
2806 rcu_read_unlock_bh();
2807 return rc;
2808 }
2809 EXPORT_SYMBOL(dev_queue_xmit);
2810
2811
2812 /*=======================================================================
2813 Receiver routines
2814 =======================================================================*/
2815
2816 int netdev_max_backlog __read_mostly = 1000;
2817 EXPORT_SYMBOL(netdev_max_backlog);
2818
2819 int netdev_tstamp_prequeue __read_mostly = 1;
2820 int netdev_budget __read_mostly = 300;
2821 int weight_p __read_mostly = 64; /* old backlog weight */
2822
2823 /* Called with irq disabled */
2824 static inline void ____napi_schedule(struct softnet_data *sd,
2825 struct napi_struct *napi)
2826 {
2827 list_add_tail(&napi->poll_list, &sd->poll_list);
2828 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2829 }
2830
2831 #ifdef CONFIG_RPS
2832
2833 /* One global table that all flow-based protocols share. */
2834 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2835 EXPORT_SYMBOL(rps_sock_flow_table);
2836
2837 struct static_key rps_needed __read_mostly;
2838
2839 static struct rps_dev_flow *
2840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2841 struct rps_dev_flow *rflow, u16 next_cpu)
2842 {
2843 if (next_cpu != RPS_NO_CPU) {
2844 #ifdef CONFIG_RFS_ACCEL
2845 struct netdev_rx_queue *rxqueue;
2846 struct rps_dev_flow_table *flow_table;
2847 struct rps_dev_flow *old_rflow;
2848 u32 flow_id;
2849 u16 rxq_index;
2850 int rc;
2851
2852 /* Should we steer this flow to a different hardware queue? */
2853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2854 !(dev->features & NETIF_F_NTUPLE))
2855 goto out;
2856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2857 if (rxq_index == skb_get_rx_queue(skb))
2858 goto out;
2859
2860 rxqueue = dev->_rx + rxq_index;
2861 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2862 if (!flow_table)
2863 goto out;
2864 flow_id = skb->rxhash & flow_table->mask;
2865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2866 rxq_index, flow_id);
2867 if (rc < 0)
2868 goto out;
2869 old_rflow = rflow;
2870 rflow = &flow_table->flows[flow_id];
2871 rflow->filter = rc;
2872 if (old_rflow->filter == rflow->filter)
2873 old_rflow->filter = RPS_NO_FILTER;
2874 out:
2875 #endif
2876 rflow->last_qtail =
2877 per_cpu(softnet_data, next_cpu).input_queue_head;
2878 }
2879
2880 rflow->cpu = next_cpu;
2881 return rflow;
2882 }
2883
2884 /*
2885 * get_rps_cpu is called from netif_receive_skb and returns the target
2886 * CPU from the RPS map of the receiving queue for a given skb.
2887 * rcu_read_lock must be held on entry.
2888 */
2889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2890 struct rps_dev_flow **rflowp)
2891 {
2892 struct netdev_rx_queue *rxqueue;
2893 struct rps_map *map;
2894 struct rps_dev_flow_table *flow_table;
2895 struct rps_sock_flow_table *sock_flow_table;
2896 int cpu = -1;
2897 u16 tcpu;
2898
2899 if (skb_rx_queue_recorded(skb)) {
2900 u16 index = skb_get_rx_queue(skb);
2901 if (unlikely(index >= dev->real_num_rx_queues)) {
2902 WARN_ONCE(dev->real_num_rx_queues > 1,
2903 "%s received packet on queue %u, but number "
2904 "of RX queues is %u\n",
2905 dev->name, index, dev->real_num_rx_queues);
2906 goto done;
2907 }
2908 rxqueue = dev->_rx + index;
2909 } else
2910 rxqueue = dev->_rx;
2911
2912 map = rcu_dereference(rxqueue->rps_map);
2913 if (map) {
2914 if (map->len == 1 &&
2915 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2916 tcpu = map->cpus[0];
2917 if (cpu_online(tcpu))
2918 cpu = tcpu;
2919 goto done;
2920 }
2921 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2922 goto done;
2923 }
2924
2925 skb_reset_network_header(skb);
2926 if (!skb_get_rxhash(skb))
2927 goto done;
2928
2929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2930 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2931 if (flow_table && sock_flow_table) {
2932 u16 next_cpu;
2933 struct rps_dev_flow *rflow;
2934
2935 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2936 tcpu = rflow->cpu;
2937
2938 next_cpu = sock_flow_table->ents[skb->rxhash &
2939 sock_flow_table->mask];
2940
2941 /*
2942 * If the desired CPU (where last recvmsg was done) is
2943 * different from current CPU (one in the rx-queue flow
2944 * table entry), switch if one of the following holds:
2945 * - Current CPU is unset (equal to RPS_NO_CPU).
2946 * - Current CPU is offline.
2947 * - The current CPU's queue tail has advanced beyond the
2948 * last packet that was enqueued using this table entry.
2949 * This guarantees that all previous packets for the flow
2950 * have been dequeued, thus preserving in order delivery.
2951 */
2952 if (unlikely(tcpu != next_cpu) &&
2953 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2954 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2955 rflow->last_qtail)) >= 0)) {
2956 tcpu = next_cpu;
2957 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2958 }
2959
2960 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2961 *rflowp = rflow;
2962 cpu = tcpu;
2963 goto done;
2964 }
2965 }
2966
2967 if (map) {
2968 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2969
2970 if (cpu_online(tcpu)) {
2971 cpu = tcpu;
2972 goto done;
2973 }
2974 }
2975
2976 done:
2977 return cpu;
2978 }
2979
2980 #ifdef CONFIG_RFS_ACCEL
2981
2982 /**
2983 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2984 * @dev: Device on which the filter was set
2985 * @rxq_index: RX queue index
2986 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2987 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2988 *
2989 * Drivers that implement ndo_rx_flow_steer() should periodically call
2990 * this function for each installed filter and remove the filters for
2991 * which it returns %true.
2992 */
2993 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2994 u32 flow_id, u16 filter_id)
2995 {
2996 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *rflow;
2999 bool expire = true;
3000 int cpu;
3001
3002 rcu_read_lock();
3003 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3004 if (flow_table && flow_id <= flow_table->mask) {
3005 rflow = &flow_table->flows[flow_id];
3006 cpu = ACCESS_ONCE(rflow->cpu);
3007 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3008 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3009 rflow->last_qtail) <
3010 (int)(10 * flow_table->mask)))
3011 expire = false;
3012 }
3013 rcu_read_unlock();
3014 return expire;
3015 }
3016 EXPORT_SYMBOL(rps_may_expire_flow);
3017
3018 #endif /* CONFIG_RFS_ACCEL */
3019
3020 /* Called from hardirq (IPI) context */
3021 static void rps_trigger_softirq(void *data)
3022 {
3023 struct softnet_data *sd = data;
3024
3025 ____napi_schedule(sd, &sd->backlog);
3026 sd->received_rps++;
3027 }
3028
3029 #endif /* CONFIG_RPS */
3030
3031 /*
3032 * Check if this softnet_data structure is another cpu one
3033 * If yes, queue it to our IPI list and return 1
3034 * If no, return 0
3035 */
3036 static int rps_ipi_queued(struct softnet_data *sd)
3037 {
3038 #ifdef CONFIG_RPS
3039 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3040
3041 if (sd != mysd) {
3042 sd->rps_ipi_next = mysd->rps_ipi_list;
3043 mysd->rps_ipi_list = sd;
3044
3045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3046 return 1;
3047 }
3048 #endif /* CONFIG_RPS */
3049 return 0;
3050 }
3051
3052 /*
3053 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3054 * queue (may be a remote CPU queue).
3055 */
3056 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3057 unsigned int *qtail)
3058 {
3059 struct softnet_data *sd;
3060 unsigned long flags;
3061
3062 sd = &per_cpu(softnet_data, cpu);
3063
3064 local_irq_save(flags);
3065
3066 rps_lock(sd);
3067 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3068 if (skb_queue_len(&sd->input_pkt_queue)) {
3069 enqueue:
3070 __skb_queue_tail(&sd->input_pkt_queue, skb);
3071 input_queue_tail_incr_save(sd, qtail);
3072 rps_unlock(sd);
3073 local_irq_restore(flags);
3074 return NET_RX_SUCCESS;
3075 }
3076
3077 /* Schedule NAPI for backlog device
3078 * We can use non atomic operation since we own the queue lock
3079 */
3080 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3081 if (!rps_ipi_queued(sd))
3082 ____napi_schedule(sd, &sd->backlog);
3083 }
3084 goto enqueue;
3085 }
3086
3087 sd->dropped++;
3088 rps_unlock(sd);
3089
3090 local_irq_restore(flags);
3091
3092 atomic_long_inc(&skb->dev->rx_dropped);
3093 kfree_skb(skb);
3094 return NET_RX_DROP;
3095 }
3096
3097 /**
3098 * netif_rx - post buffer to the network code
3099 * @skb: buffer to post
3100 *
3101 * This function receives a packet from a device driver and queues it for
3102 * the upper (protocol) levels to process. It always succeeds. The buffer
3103 * may be dropped during processing for congestion control or by the
3104 * protocol layers.
3105 *
3106 * return values:
3107 * NET_RX_SUCCESS (no congestion)
3108 * NET_RX_DROP (packet was dropped)
3109 *
3110 */
3111
3112 int netif_rx(struct sk_buff *skb)
3113 {
3114 int ret;
3115
3116 /* if netpoll wants it, pretend we never saw it */
3117 if (netpoll_rx(skb))
3118 return NET_RX_DROP;
3119
3120 net_timestamp_check(netdev_tstamp_prequeue, skb);
3121
3122 trace_netif_rx(skb);
3123 #ifdef CONFIG_RPS
3124 if (static_key_false(&rps_needed)) {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu;
3127
3128 preempt_disable();
3129 rcu_read_lock();
3130
3131 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3132 if (cpu < 0)
3133 cpu = smp_processor_id();
3134
3135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3136
3137 rcu_read_unlock();
3138 preempt_enable();
3139 } else
3140 #endif
3141 {
3142 unsigned int qtail;
3143 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3144 put_cpu();
3145 }
3146 return ret;
3147 }
3148 EXPORT_SYMBOL(netif_rx);
3149
3150 int netif_rx_ni(struct sk_buff *skb)
3151 {
3152 int err;
3153
3154 preempt_disable();
3155 err = netif_rx(skb);
3156 if (local_softirq_pending())
3157 do_softirq();
3158 preempt_enable();
3159
3160 return err;
3161 }
3162 EXPORT_SYMBOL(netif_rx_ni);
3163
3164 static void net_tx_action(struct softirq_action *h)
3165 {
3166 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3167
3168 if (sd->completion_queue) {
3169 struct sk_buff *clist;
3170
3171 local_irq_disable();
3172 clist = sd->completion_queue;
3173 sd->completion_queue = NULL;
3174 local_irq_enable();
3175
3176 while (clist) {
3177 struct sk_buff *skb = clist;
3178 clist = clist->next;
3179
3180 WARN_ON(atomic_read(&skb->users));
3181 trace_kfree_skb(skb, net_tx_action);
3182 __kfree_skb(skb);
3183 }
3184 }
3185
3186 if (sd->output_queue) {
3187 struct Qdisc *head;
3188
3189 local_irq_disable();
3190 head = sd->output_queue;
3191 sd->output_queue = NULL;
3192 sd->output_queue_tailp = &sd->output_queue;
3193 local_irq_enable();
3194
3195 while (head) {
3196 struct Qdisc *q = head;
3197 spinlock_t *root_lock;
3198
3199 head = head->next_sched;
3200
3201 root_lock = qdisc_lock(q);
3202 if (spin_trylock(root_lock)) {
3203 smp_mb__before_clear_bit();
3204 clear_bit(__QDISC_STATE_SCHED,
3205 &q->state);
3206 qdisc_run(q);
3207 spin_unlock(root_lock);
3208 } else {
3209 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3210 &q->state)) {
3211 __netif_reschedule(q);
3212 } else {
3213 smp_mb__before_clear_bit();
3214 clear_bit(__QDISC_STATE_SCHED,
3215 &q->state);
3216 }
3217 }
3218 }
3219 }
3220 }
3221
3222 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3223 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3224 /* This hook is defined here for ATM LANE */
3225 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3226 unsigned char *addr) __read_mostly;
3227 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3228 #endif
3229
3230 #ifdef CONFIG_NET_CLS_ACT
3231 /* TODO: Maybe we should just force sch_ingress to be compiled in
3232 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3233 * a compare and 2 stores extra right now if we dont have it on
3234 * but have CONFIG_NET_CLS_ACT
3235 * NOTE: This doesn't stop any functionality; if you dont have
3236 * the ingress scheduler, you just can't add policies on ingress.
3237 *
3238 */
3239 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3240 {
3241 struct net_device *dev = skb->dev;
3242 u32 ttl = G_TC_RTTL(skb->tc_verd);
3243 int result = TC_ACT_OK;
3244 struct Qdisc *q;
3245
3246 if (unlikely(MAX_RED_LOOP < ttl++)) {
3247 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3248 skb->skb_iif, dev->ifindex);
3249 return TC_ACT_SHOT;
3250 }
3251
3252 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3253 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3254
3255 q = rxq->qdisc;
3256 if (q != &noop_qdisc) {
3257 spin_lock(qdisc_lock(q));
3258 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3259 result = qdisc_enqueue_root(skb, q);
3260 spin_unlock(qdisc_lock(q));
3261 }
3262
3263 return result;
3264 }
3265
3266 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3267 struct packet_type **pt_prev,
3268 int *ret, struct net_device *orig_dev)
3269 {
3270 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3271
3272 if (!rxq || rxq->qdisc == &noop_qdisc)
3273 goto out;
3274
3275 if (*pt_prev) {
3276 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3277 *pt_prev = NULL;
3278 }
3279
3280 switch (ing_filter(skb, rxq)) {
3281 case TC_ACT_SHOT:
3282 case TC_ACT_STOLEN:
3283 kfree_skb(skb);
3284 return NULL;
3285 }
3286
3287 out:
3288 skb->tc_verd = 0;
3289 return skb;
3290 }
3291 #endif
3292
3293 /**
3294 * netdev_rx_handler_register - register receive handler
3295 * @dev: device to register a handler for
3296 * @rx_handler: receive handler to register
3297 * @rx_handler_data: data pointer that is used by rx handler
3298 *
3299 * Register a receive hander for a device. This handler will then be
3300 * called from __netif_receive_skb. A negative errno code is returned
3301 * on a failure.
3302 *
3303 * The caller must hold the rtnl_mutex.
3304 *
3305 * For a general description of rx_handler, see enum rx_handler_result.
3306 */
3307 int netdev_rx_handler_register(struct net_device *dev,
3308 rx_handler_func_t *rx_handler,
3309 void *rx_handler_data)
3310 {
3311 ASSERT_RTNL();
3312
3313 if (dev->rx_handler)
3314 return -EBUSY;
3315
3316 /* Note: rx_handler_data must be set before rx_handler */
3317 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3318 rcu_assign_pointer(dev->rx_handler, rx_handler);
3319
3320 return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3323
3324 /**
3325 * netdev_rx_handler_unregister - unregister receive handler
3326 * @dev: device to unregister a handler from
3327 *
3328 * Unregister a receive hander from a device.
3329 *
3330 * The caller must hold the rtnl_mutex.
3331 */
3332 void netdev_rx_handler_unregister(struct net_device *dev)
3333 {
3334
3335 ASSERT_RTNL();
3336 RCU_INIT_POINTER(dev->rx_handler, NULL);
3337 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3338 * section has a guarantee to see a non NULL rx_handler_data
3339 * as well.
3340 */
3341 synchronize_net();
3342 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3343 }
3344 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3345
3346 /*
3347 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3348 * the special handling of PFMEMALLOC skbs.
3349 */
3350 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3351 {
3352 switch (skb->protocol) {
3353 case __constant_htons(ETH_P_ARP):
3354 case __constant_htons(ETH_P_IP):
3355 case __constant_htons(ETH_P_IPV6):
3356 case __constant_htons(ETH_P_8021Q):
3357 return true;
3358 default:
3359 return false;
3360 }
3361 }
3362
3363 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3364 {
3365 struct packet_type *ptype, *pt_prev;
3366 rx_handler_func_t *rx_handler;
3367 struct net_device *orig_dev;
3368 struct net_device *null_or_dev;
3369 bool deliver_exact = false;
3370 int ret = NET_RX_DROP;
3371 __be16 type;
3372
3373 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3374
3375 trace_netif_receive_skb(skb);
3376
3377 /* if we've gotten here through NAPI, check netpoll */
3378 if (netpoll_receive_skb(skb))
3379 goto out;
3380
3381 orig_dev = skb->dev;
3382
3383 skb_reset_network_header(skb);
3384 if (!skb_transport_header_was_set(skb))
3385 skb_reset_transport_header(skb);
3386 skb_reset_mac_len(skb);
3387
3388 pt_prev = NULL;
3389
3390 rcu_read_lock();
3391
3392 another_round:
3393 skb->skb_iif = skb->dev->ifindex;
3394
3395 __this_cpu_inc(softnet_data.processed);
3396
3397 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3398 skb = vlan_untag(skb);
3399 if (unlikely(!skb))
3400 goto unlock;
3401 }
3402
3403 #ifdef CONFIG_NET_CLS_ACT
3404 if (skb->tc_verd & TC_NCLS) {
3405 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3406 goto ncls;
3407 }
3408 #endif
3409
3410 if (pfmemalloc)
3411 goto skip_taps;
3412
3413 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3414 if (!ptype->dev || ptype->dev == skb->dev) {
3415 if (pt_prev)
3416 ret = deliver_skb(skb, pt_prev, orig_dev);
3417 pt_prev = ptype;
3418 }
3419 }
3420
3421 skip_taps:
3422 #ifdef CONFIG_NET_CLS_ACT
3423 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3424 if (!skb)
3425 goto unlock;
3426 ncls:
3427 #endif
3428
3429 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3430 goto drop;
3431
3432 if (vlan_tx_tag_present(skb)) {
3433 if (pt_prev) {
3434 ret = deliver_skb(skb, pt_prev, orig_dev);
3435 pt_prev = NULL;
3436 }
3437 if (vlan_do_receive(&skb))
3438 goto another_round;
3439 else if (unlikely(!skb))
3440 goto unlock;
3441 }
3442
3443 rx_handler = rcu_dereference(skb->dev->rx_handler);
3444 if (rx_handler) {
3445 if (pt_prev) {
3446 ret = deliver_skb(skb, pt_prev, orig_dev);
3447 pt_prev = NULL;
3448 }
3449 switch (rx_handler(&skb)) {
3450 case RX_HANDLER_CONSUMED:
3451 ret = NET_RX_SUCCESS;
3452 goto unlock;
3453 case RX_HANDLER_ANOTHER:
3454 goto another_round;
3455 case RX_HANDLER_EXACT:
3456 deliver_exact = true;
3457 case RX_HANDLER_PASS:
3458 break;
3459 default:
3460 BUG();
3461 }
3462 }
3463
3464 if (vlan_tx_nonzero_tag_present(skb))
3465 skb->pkt_type = PACKET_OTHERHOST;
3466
3467 /* deliver only exact match when indicated */
3468 null_or_dev = deliver_exact ? skb->dev : NULL;
3469
3470 type = skb->protocol;
3471 list_for_each_entry_rcu(ptype,
3472 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3473 if (ptype->type == type &&
3474 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3475 ptype->dev == orig_dev)) {
3476 if (pt_prev)
3477 ret = deliver_skb(skb, pt_prev, orig_dev);
3478 pt_prev = ptype;
3479 }
3480 }
3481
3482 if (pt_prev) {
3483 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3484 goto drop;
3485 else
3486 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3487 } else {
3488 drop:
3489 atomic_long_inc(&skb->dev->rx_dropped);
3490 kfree_skb(skb);
3491 /* Jamal, now you will not able to escape explaining
3492 * me how you were going to use this. :-)
3493 */
3494 ret = NET_RX_DROP;
3495 }
3496
3497 unlock:
3498 rcu_read_unlock();
3499 out:
3500 return ret;
3501 }
3502
3503 static int __netif_receive_skb(struct sk_buff *skb)
3504 {
3505 int ret;
3506
3507 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3508 unsigned long pflags = current->flags;
3509
3510 /*
3511 * PFMEMALLOC skbs are special, they should
3512 * - be delivered to SOCK_MEMALLOC sockets only
3513 * - stay away from userspace
3514 * - have bounded memory usage
3515 *
3516 * Use PF_MEMALLOC as this saves us from propagating the allocation
3517 * context down to all allocation sites.
3518 */
3519 current->flags |= PF_MEMALLOC;
3520 ret = __netif_receive_skb_core(skb, true);
3521 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3522 } else
3523 ret = __netif_receive_skb_core(skb, false);
3524
3525 return ret;
3526 }
3527
3528 /**
3529 * netif_receive_skb - process receive buffer from network
3530 * @skb: buffer to process
3531 *
3532 * netif_receive_skb() is the main receive data processing function.
3533 * It always succeeds. The buffer may be dropped during processing
3534 * for congestion control or by the protocol layers.
3535 *
3536 * This function may only be called from softirq context and interrupts
3537 * should be enabled.
3538 *
3539 * Return values (usually ignored):
3540 * NET_RX_SUCCESS: no congestion
3541 * NET_RX_DROP: packet was dropped
3542 */
3543 int netif_receive_skb(struct sk_buff *skb)
3544 {
3545 net_timestamp_check(netdev_tstamp_prequeue, skb);
3546
3547 if (skb_defer_rx_timestamp(skb))
3548 return NET_RX_SUCCESS;
3549
3550 #ifdef CONFIG_RPS
3551 if (static_key_false(&rps_needed)) {
3552 struct rps_dev_flow voidflow, *rflow = &voidflow;
3553 int cpu, ret;
3554
3555 rcu_read_lock();
3556
3557 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3558
3559 if (cpu >= 0) {
3560 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3561 rcu_read_unlock();
3562 return ret;
3563 }
3564 rcu_read_unlock();
3565 }
3566 #endif
3567 return __netif_receive_skb(skb);
3568 }
3569 EXPORT_SYMBOL(netif_receive_skb);
3570
3571 /* Network device is going away, flush any packets still pending
3572 * Called with irqs disabled.
3573 */
3574 static void flush_backlog(void *arg)
3575 {
3576 struct net_device *dev = arg;
3577 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3578 struct sk_buff *skb, *tmp;
3579
3580 rps_lock(sd);
3581 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3582 if (skb->dev == dev) {
3583 __skb_unlink(skb, &sd->input_pkt_queue);
3584 kfree_skb(skb);
3585 input_queue_head_incr(sd);
3586 }
3587 }
3588 rps_unlock(sd);
3589
3590 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3591 if (skb->dev == dev) {
3592 __skb_unlink(skb, &sd->process_queue);
3593 kfree_skb(skb);
3594 input_queue_head_incr(sd);
3595 }
3596 }
3597 }
3598
3599 static int napi_gro_complete(struct sk_buff *skb)
3600 {
3601 struct packet_offload *ptype;
3602 __be16 type = skb->protocol;
3603 struct list_head *head = &offload_base;
3604 int err = -ENOENT;
3605
3606 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3607
3608 if (NAPI_GRO_CB(skb)->count == 1) {
3609 skb_shinfo(skb)->gso_size = 0;
3610 goto out;
3611 }
3612
3613 rcu_read_lock();
3614 list_for_each_entry_rcu(ptype, head, list) {
3615 if (ptype->type != type || !ptype->callbacks.gro_complete)
3616 continue;
3617
3618 err = ptype->callbacks.gro_complete(skb);
3619 break;
3620 }
3621 rcu_read_unlock();
3622
3623 if (err) {
3624 WARN_ON(&ptype->list == head);
3625 kfree_skb(skb);
3626 return NET_RX_SUCCESS;
3627 }
3628
3629 out:
3630 return netif_receive_skb(skb);
3631 }
3632
3633 /* napi->gro_list contains packets ordered by age.
3634 * youngest packets at the head of it.
3635 * Complete skbs in reverse order to reduce latencies.
3636 */
3637 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3638 {
3639 struct sk_buff *skb, *prev = NULL;
3640
3641 /* scan list and build reverse chain */
3642 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3643 skb->prev = prev;
3644 prev = skb;
3645 }
3646
3647 for (skb = prev; skb; skb = prev) {
3648 skb->next = NULL;
3649
3650 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3651 return;
3652
3653 prev = skb->prev;
3654 napi_gro_complete(skb);
3655 napi->gro_count--;
3656 }
3657
3658 napi->gro_list = NULL;
3659 }
3660 EXPORT_SYMBOL(napi_gro_flush);
3661
3662 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3663 {
3664 struct sk_buff *p;
3665 unsigned int maclen = skb->dev->hard_header_len;
3666
3667 for (p = napi->gro_list; p; p = p->next) {
3668 unsigned long diffs;
3669
3670 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3671 diffs |= p->vlan_tci ^ skb->vlan_tci;
3672 if (maclen == ETH_HLEN)
3673 diffs |= compare_ether_header(skb_mac_header(p),
3674 skb_gro_mac_header(skb));
3675 else if (!diffs)
3676 diffs = memcmp(skb_mac_header(p),
3677 skb_gro_mac_header(skb),
3678 maclen);
3679 NAPI_GRO_CB(p)->same_flow = !diffs;
3680 NAPI_GRO_CB(p)->flush = 0;
3681 }
3682 }
3683
3684 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3685 {
3686 struct sk_buff **pp = NULL;
3687 struct packet_offload *ptype;
3688 __be16 type = skb->protocol;
3689 struct list_head *head = &offload_base;
3690 int same_flow;
3691 enum gro_result ret;
3692
3693 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3694 goto normal;
3695
3696 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3697 goto normal;
3698
3699 gro_list_prepare(napi, skb);
3700
3701 rcu_read_lock();
3702 list_for_each_entry_rcu(ptype, head, list) {
3703 if (ptype->type != type || !ptype->callbacks.gro_receive)
3704 continue;
3705
3706 skb_set_network_header(skb, skb_gro_offset(skb));
3707 skb_reset_mac_len(skb);
3708 NAPI_GRO_CB(skb)->same_flow = 0;
3709 NAPI_GRO_CB(skb)->flush = 0;
3710 NAPI_GRO_CB(skb)->free = 0;
3711
3712 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3713 break;
3714 }
3715 rcu_read_unlock();
3716
3717 if (&ptype->list == head)
3718 goto normal;
3719
3720 same_flow = NAPI_GRO_CB(skb)->same_flow;
3721 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3722
3723 if (pp) {
3724 struct sk_buff *nskb = *pp;
3725
3726 *pp = nskb->next;
3727 nskb->next = NULL;
3728 napi_gro_complete(nskb);
3729 napi->gro_count--;
3730 }
3731
3732 if (same_flow)
3733 goto ok;
3734
3735 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3736 goto normal;
3737
3738 napi->gro_count++;
3739 NAPI_GRO_CB(skb)->count = 1;
3740 NAPI_GRO_CB(skb)->age = jiffies;
3741 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3742 skb->next = napi->gro_list;
3743 napi->gro_list = skb;
3744 ret = GRO_HELD;
3745
3746 pull:
3747 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3748 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3749
3750 BUG_ON(skb->end - skb->tail < grow);
3751
3752 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3753
3754 skb->tail += grow;
3755 skb->data_len -= grow;
3756
3757 skb_shinfo(skb)->frags[0].page_offset += grow;
3758 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3759
3760 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3761 skb_frag_unref(skb, 0);
3762 memmove(skb_shinfo(skb)->frags,
3763 skb_shinfo(skb)->frags + 1,
3764 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3765 }
3766 }
3767
3768 ok:
3769 return ret;
3770
3771 normal:
3772 ret = GRO_NORMAL;
3773 goto pull;
3774 }
3775
3776
3777 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3778 {
3779 switch (ret) {
3780 case GRO_NORMAL:
3781 if (netif_receive_skb(skb))
3782 ret = GRO_DROP;
3783 break;
3784
3785 case GRO_DROP:
3786 kfree_skb(skb);
3787 break;
3788
3789 case GRO_MERGED_FREE:
3790 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3791 kmem_cache_free(skbuff_head_cache, skb);
3792 else
3793 __kfree_skb(skb);
3794 break;
3795
3796 case GRO_HELD:
3797 case GRO_MERGED:
3798 break;
3799 }
3800
3801 return ret;
3802 }
3803
3804 static void skb_gro_reset_offset(struct sk_buff *skb)
3805 {
3806 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3807 const skb_frag_t *frag0 = &pinfo->frags[0];
3808
3809 NAPI_GRO_CB(skb)->data_offset = 0;
3810 NAPI_GRO_CB(skb)->frag0 = NULL;
3811 NAPI_GRO_CB(skb)->frag0_len = 0;
3812
3813 if (skb->mac_header == skb->tail &&
3814 pinfo->nr_frags &&
3815 !PageHighMem(skb_frag_page(frag0))) {
3816 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3817 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3818 }
3819 }
3820
3821 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3822 {
3823 skb_gro_reset_offset(skb);
3824
3825 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3826 }
3827 EXPORT_SYMBOL(napi_gro_receive);
3828
3829 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3830 {
3831 __skb_pull(skb, skb_headlen(skb));
3832 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3834 skb->vlan_tci = 0;
3835 skb->dev = napi->dev;
3836 skb->skb_iif = 0;
3837
3838 napi->skb = skb;
3839 }
3840
3841 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3842 {
3843 struct sk_buff *skb = napi->skb;
3844
3845 if (!skb) {
3846 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3847 if (skb)
3848 napi->skb = skb;
3849 }
3850 return skb;
3851 }
3852 EXPORT_SYMBOL(napi_get_frags);
3853
3854 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3855 gro_result_t ret)
3856 {
3857 switch (ret) {
3858 case GRO_NORMAL:
3859 case GRO_HELD:
3860 skb->protocol = eth_type_trans(skb, skb->dev);
3861
3862 if (ret == GRO_HELD)
3863 skb_gro_pull(skb, -ETH_HLEN);
3864 else if (netif_receive_skb(skb))
3865 ret = GRO_DROP;
3866 break;
3867
3868 case GRO_DROP:
3869 case GRO_MERGED_FREE:
3870 napi_reuse_skb(napi, skb);
3871 break;
3872
3873 case GRO_MERGED:
3874 break;
3875 }
3876
3877 return ret;
3878 }
3879
3880 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3881 {
3882 struct sk_buff *skb = napi->skb;
3883 struct ethhdr *eth;
3884 unsigned int hlen;
3885 unsigned int off;
3886
3887 napi->skb = NULL;
3888
3889 skb_reset_mac_header(skb);
3890 skb_gro_reset_offset(skb);
3891
3892 off = skb_gro_offset(skb);
3893 hlen = off + sizeof(*eth);
3894 eth = skb_gro_header_fast(skb, off);
3895 if (skb_gro_header_hard(skb, hlen)) {
3896 eth = skb_gro_header_slow(skb, hlen, off);
3897 if (unlikely(!eth)) {
3898 napi_reuse_skb(napi, skb);
3899 skb = NULL;
3900 goto out;
3901 }
3902 }
3903
3904 skb_gro_pull(skb, sizeof(*eth));
3905
3906 /*
3907 * This works because the only protocols we care about don't require
3908 * special handling. We'll fix it up properly at the end.
3909 */
3910 skb->protocol = eth->h_proto;
3911
3912 out:
3913 return skb;
3914 }
3915
3916 gro_result_t napi_gro_frags(struct napi_struct *napi)
3917 {
3918 struct sk_buff *skb = napi_frags_skb(napi);
3919
3920 if (!skb)
3921 return GRO_DROP;
3922
3923 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3924 }
3925 EXPORT_SYMBOL(napi_gro_frags);
3926
3927 /*
3928 * net_rps_action sends any pending IPI's for rps.
3929 * Note: called with local irq disabled, but exits with local irq enabled.
3930 */
3931 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3932 {
3933 #ifdef CONFIG_RPS
3934 struct softnet_data *remsd = sd->rps_ipi_list;
3935
3936 if (remsd) {
3937 sd->rps_ipi_list = NULL;
3938
3939 local_irq_enable();
3940
3941 /* Send pending IPI's to kick RPS processing on remote cpus. */
3942 while (remsd) {
3943 struct softnet_data *next = remsd->rps_ipi_next;
3944
3945 if (cpu_online(remsd->cpu))
3946 __smp_call_function_single(remsd->cpu,
3947 &remsd->csd, 0);
3948 remsd = next;
3949 }
3950 } else
3951 #endif
3952 local_irq_enable();
3953 }
3954
3955 static int process_backlog(struct napi_struct *napi, int quota)
3956 {
3957 int work = 0;
3958 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3959
3960 #ifdef CONFIG_RPS
3961 /* Check if we have pending ipi, its better to send them now,
3962 * not waiting net_rx_action() end.
3963 */
3964 if (sd->rps_ipi_list) {
3965 local_irq_disable();
3966 net_rps_action_and_irq_enable(sd);
3967 }
3968 #endif
3969 napi->weight = weight_p;
3970 local_irq_disable();
3971 while (work < quota) {
3972 struct sk_buff *skb;
3973 unsigned int qlen;
3974
3975 while ((skb = __skb_dequeue(&sd->process_queue))) {
3976 local_irq_enable();
3977 __netif_receive_skb(skb);
3978 local_irq_disable();
3979 input_queue_head_incr(sd);
3980 if (++work >= quota) {
3981 local_irq_enable();
3982 return work;
3983 }
3984 }
3985
3986 rps_lock(sd);
3987 qlen = skb_queue_len(&sd->input_pkt_queue);
3988 if (qlen)
3989 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3990 &sd->process_queue);
3991
3992 if (qlen < quota - work) {
3993 /*
3994 * Inline a custom version of __napi_complete().
3995 * only current cpu owns and manipulates this napi,
3996 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3997 * we can use a plain write instead of clear_bit(),
3998 * and we dont need an smp_mb() memory barrier.
3999 */
4000 list_del(&napi->poll_list);
4001 napi->state = 0;
4002
4003 quota = work + qlen;
4004 }
4005 rps_unlock(sd);
4006 }
4007 local_irq_enable();
4008
4009 return work;
4010 }
4011
4012 /**
4013 * __napi_schedule - schedule for receive
4014 * @n: entry to schedule
4015 *
4016 * The entry's receive function will be scheduled to run
4017 */
4018 void __napi_schedule(struct napi_struct *n)
4019 {
4020 unsigned long flags;
4021
4022 local_irq_save(flags);
4023 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4024 local_irq_restore(flags);
4025 }
4026 EXPORT_SYMBOL(__napi_schedule);
4027
4028 void __napi_complete(struct napi_struct *n)
4029 {
4030 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4031 BUG_ON(n->gro_list);
4032
4033 list_del(&n->poll_list);
4034 smp_mb__before_clear_bit();
4035 clear_bit(NAPI_STATE_SCHED, &n->state);
4036 }
4037 EXPORT_SYMBOL(__napi_complete);
4038
4039 void napi_complete(struct napi_struct *n)
4040 {
4041 unsigned long flags;
4042
4043 /*
4044 * don't let napi dequeue from the cpu poll list
4045 * just in case its running on a different cpu
4046 */
4047 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4048 return;
4049
4050 napi_gro_flush(n, false);
4051 local_irq_save(flags);
4052 __napi_complete(n);
4053 local_irq_restore(flags);
4054 }
4055 EXPORT_SYMBOL(napi_complete);
4056
4057 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4058 int (*poll)(struct napi_struct *, int), int weight)
4059 {
4060 INIT_LIST_HEAD(&napi->poll_list);
4061 napi->gro_count = 0;
4062 napi->gro_list = NULL;
4063 napi->skb = NULL;
4064 napi->poll = poll;
4065 napi->weight = weight;
4066 list_add(&napi->dev_list, &dev->napi_list);
4067 napi->dev = dev;
4068 #ifdef CONFIG_NETPOLL
4069 spin_lock_init(&napi->poll_lock);
4070 napi->poll_owner = -1;
4071 #endif
4072 set_bit(NAPI_STATE_SCHED, &napi->state);
4073 }
4074 EXPORT_SYMBOL(netif_napi_add);
4075
4076 void netif_napi_del(struct napi_struct *napi)
4077 {
4078 struct sk_buff *skb, *next;
4079
4080 list_del_init(&napi->dev_list);
4081 napi_free_frags(napi);
4082
4083 for (skb = napi->gro_list; skb; skb = next) {
4084 next = skb->next;
4085 skb->next = NULL;
4086 kfree_skb(skb);
4087 }
4088
4089 napi->gro_list = NULL;
4090 napi->gro_count = 0;
4091 }
4092 EXPORT_SYMBOL(netif_napi_del);
4093
4094 static void net_rx_action(struct softirq_action *h)
4095 {
4096 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4097 unsigned long time_limit = jiffies + 2;
4098 int budget = netdev_budget;
4099 void *have;
4100
4101 local_irq_disable();
4102
4103 while (!list_empty(&sd->poll_list)) {
4104 struct napi_struct *n;
4105 int work, weight;
4106
4107 /* If softirq window is exhuasted then punt.
4108 * Allow this to run for 2 jiffies since which will allow
4109 * an average latency of 1.5/HZ.
4110 */
4111 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4112 goto softnet_break;
4113
4114 local_irq_enable();
4115
4116 /* Even though interrupts have been re-enabled, this
4117 * access is safe because interrupts can only add new
4118 * entries to the tail of this list, and only ->poll()
4119 * calls can remove this head entry from the list.
4120 */
4121 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4122
4123 have = netpoll_poll_lock(n);
4124
4125 weight = n->weight;
4126
4127 /* This NAPI_STATE_SCHED test is for avoiding a race
4128 * with netpoll's poll_napi(). Only the entity which
4129 * obtains the lock and sees NAPI_STATE_SCHED set will
4130 * actually make the ->poll() call. Therefore we avoid
4131 * accidentally calling ->poll() when NAPI is not scheduled.
4132 */
4133 work = 0;
4134 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4135 work = n->poll(n, weight);
4136 trace_napi_poll(n);
4137 }
4138
4139 WARN_ON_ONCE(work > weight);
4140
4141 budget -= work;
4142
4143 local_irq_disable();
4144
4145 /* Drivers must not modify the NAPI state if they
4146 * consume the entire weight. In such cases this code
4147 * still "owns" the NAPI instance and therefore can
4148 * move the instance around on the list at-will.
4149 */
4150 if (unlikely(work == weight)) {
4151 if (unlikely(napi_disable_pending(n))) {
4152 local_irq_enable();
4153 napi_complete(n);
4154 local_irq_disable();
4155 } else {
4156 if (n->gro_list) {
4157 /* flush too old packets
4158 * If HZ < 1000, flush all packets.
4159 */
4160 local_irq_enable();
4161 napi_gro_flush(n, HZ >= 1000);
4162 local_irq_disable();
4163 }
4164 list_move_tail(&n->poll_list, &sd->poll_list);
4165 }
4166 }
4167
4168 netpoll_poll_unlock(have);
4169 }
4170 out:
4171 net_rps_action_and_irq_enable(sd);
4172
4173 #ifdef CONFIG_NET_DMA
4174 /*
4175 * There may not be any more sk_buffs coming right now, so push
4176 * any pending DMA copies to hardware
4177 */
4178 dma_issue_pending_all();
4179 #endif
4180
4181 return;
4182
4183 softnet_break:
4184 sd->time_squeeze++;
4185 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4186 goto out;
4187 }
4188
4189 struct netdev_upper {
4190 struct net_device *dev;
4191 bool master;
4192 struct list_head list;
4193 struct rcu_head rcu;
4194 struct list_head search_list;
4195 };
4196
4197 static void __append_search_uppers(struct list_head *search_list,
4198 struct net_device *dev)
4199 {
4200 struct netdev_upper *upper;
4201
4202 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4203 /* check if this upper is not already in search list */
4204 if (list_empty(&upper->search_list))
4205 list_add_tail(&upper->search_list, search_list);
4206 }
4207 }
4208
4209 static bool __netdev_search_upper_dev(struct net_device *dev,
4210 struct net_device *upper_dev)
4211 {
4212 LIST_HEAD(search_list);
4213 struct netdev_upper *upper;
4214 struct netdev_upper *tmp;
4215 bool ret = false;
4216
4217 __append_search_uppers(&search_list, dev);
4218 list_for_each_entry(upper, &search_list, search_list) {
4219 if (upper->dev == upper_dev) {
4220 ret = true;
4221 break;
4222 }
4223 __append_search_uppers(&search_list, upper->dev);
4224 }
4225 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4226 INIT_LIST_HEAD(&upper->search_list);
4227 return ret;
4228 }
4229
4230 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4231 struct net_device *upper_dev)
4232 {
4233 struct netdev_upper *upper;
4234
4235 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4236 if (upper->dev == upper_dev)
4237 return upper;
4238 }
4239 return NULL;
4240 }
4241
4242 /**
4243 * netdev_has_upper_dev - Check if device is linked to an upper device
4244 * @dev: device
4245 * @upper_dev: upper device to check
4246 *
4247 * Find out if a device is linked to specified upper device and return true
4248 * in case it is. Note that this checks only immediate upper device,
4249 * not through a complete stack of devices. The caller must hold the RTNL lock.
4250 */
4251 bool netdev_has_upper_dev(struct net_device *dev,
4252 struct net_device *upper_dev)
4253 {
4254 ASSERT_RTNL();
4255
4256 return __netdev_find_upper(dev, upper_dev);
4257 }
4258 EXPORT_SYMBOL(netdev_has_upper_dev);
4259
4260 /**
4261 * netdev_has_any_upper_dev - Check if device is linked to some device
4262 * @dev: device
4263 *
4264 * Find out if a device is linked to an upper device and return true in case
4265 * it is. The caller must hold the RTNL lock.
4266 */
4267 bool netdev_has_any_upper_dev(struct net_device *dev)
4268 {
4269 ASSERT_RTNL();
4270
4271 return !list_empty(&dev->upper_dev_list);
4272 }
4273 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4274
4275 /**
4276 * netdev_master_upper_dev_get - Get master upper device
4277 * @dev: device
4278 *
4279 * Find a master upper device and return pointer to it or NULL in case
4280 * it's not there. The caller must hold the RTNL lock.
4281 */
4282 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4283 {
4284 struct netdev_upper *upper;
4285
4286 ASSERT_RTNL();
4287
4288 if (list_empty(&dev->upper_dev_list))
4289 return NULL;
4290
4291 upper = list_first_entry(&dev->upper_dev_list,
4292 struct netdev_upper, list);
4293 if (likely(upper->master))
4294 return upper->dev;
4295 return NULL;
4296 }
4297 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4298
4299 /**
4300 * netdev_master_upper_dev_get_rcu - Get master upper device
4301 * @dev: device
4302 *
4303 * Find a master upper device and return pointer to it or NULL in case
4304 * it's not there. The caller must hold the RCU read lock.
4305 */
4306 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4307 {
4308 struct netdev_upper *upper;
4309
4310 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4311 struct netdev_upper, list);
4312 if (upper && likely(upper->master))
4313 return upper->dev;
4314 return NULL;
4315 }
4316 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4317
4318 static int __netdev_upper_dev_link(struct net_device *dev,
4319 struct net_device *upper_dev, bool master)
4320 {
4321 struct netdev_upper *upper;
4322
4323 ASSERT_RTNL();
4324
4325 if (dev == upper_dev)
4326 return -EBUSY;
4327
4328 /* To prevent loops, check if dev is not upper device to upper_dev. */
4329 if (__netdev_search_upper_dev(upper_dev, dev))
4330 return -EBUSY;
4331
4332 if (__netdev_find_upper(dev, upper_dev))
4333 return -EEXIST;
4334
4335 if (master && netdev_master_upper_dev_get(dev))
4336 return -EBUSY;
4337
4338 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4339 if (!upper)
4340 return -ENOMEM;
4341
4342 upper->dev = upper_dev;
4343 upper->master = master;
4344 INIT_LIST_HEAD(&upper->search_list);
4345
4346 /* Ensure that master upper link is always the first item in list. */
4347 if (master)
4348 list_add_rcu(&upper->list, &dev->upper_dev_list);
4349 else
4350 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4351 dev_hold(upper_dev);
4352
4353 return 0;
4354 }
4355
4356 /**
4357 * netdev_upper_dev_link - Add a link to the upper device
4358 * @dev: device
4359 * @upper_dev: new upper device
4360 *
4361 * Adds a link to device which is upper to this one. The caller must hold
4362 * the RTNL lock. On a failure a negative errno code is returned.
4363 * On success the reference counts are adjusted and the function
4364 * returns zero.
4365 */
4366 int netdev_upper_dev_link(struct net_device *dev,
4367 struct net_device *upper_dev)
4368 {
4369 return __netdev_upper_dev_link(dev, upper_dev, false);
4370 }
4371 EXPORT_SYMBOL(netdev_upper_dev_link);
4372
4373 /**
4374 * netdev_master_upper_dev_link - Add a master link to the upper device
4375 * @dev: device
4376 * @upper_dev: new upper device
4377 *
4378 * Adds a link to device which is upper to this one. In this case, only
4379 * one master upper device can be linked, although other non-master devices
4380 * might be linked as well. The caller must hold the RTNL lock.
4381 * On a failure a negative errno code is returned. On success the reference
4382 * counts are adjusted and the function returns zero.
4383 */
4384 int netdev_master_upper_dev_link(struct net_device *dev,
4385 struct net_device *upper_dev)
4386 {
4387 return __netdev_upper_dev_link(dev, upper_dev, true);
4388 }
4389 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4390
4391 /**
4392 * netdev_upper_dev_unlink - Removes a link to upper device
4393 * @dev: device
4394 * @upper_dev: new upper device
4395 *
4396 * Removes a link to device which is upper to this one. The caller must hold
4397 * the RTNL lock.
4398 */
4399 void netdev_upper_dev_unlink(struct net_device *dev,
4400 struct net_device *upper_dev)
4401 {
4402 struct netdev_upper *upper;
4403
4404 ASSERT_RTNL();
4405
4406 upper = __netdev_find_upper(dev, upper_dev);
4407 if (!upper)
4408 return;
4409 list_del_rcu(&upper->list);
4410 dev_put(upper_dev);
4411 kfree_rcu(upper, rcu);
4412 }
4413 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4414
4415 static void dev_change_rx_flags(struct net_device *dev, int flags)
4416 {
4417 const struct net_device_ops *ops = dev->netdev_ops;
4418
4419 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4420 ops->ndo_change_rx_flags(dev, flags);
4421 }
4422
4423 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4424 {
4425 unsigned int old_flags = dev->flags;
4426 kuid_t uid;
4427 kgid_t gid;
4428
4429 ASSERT_RTNL();
4430
4431 dev->flags |= IFF_PROMISC;
4432 dev->promiscuity += inc;
4433 if (dev->promiscuity == 0) {
4434 /*
4435 * Avoid overflow.
4436 * If inc causes overflow, untouch promisc and return error.
4437 */
4438 if (inc < 0)
4439 dev->flags &= ~IFF_PROMISC;
4440 else {
4441 dev->promiscuity -= inc;
4442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4443 dev->name);
4444 return -EOVERFLOW;
4445 }
4446 }
4447 if (dev->flags != old_flags) {
4448 pr_info("device %s %s promiscuous mode\n",
4449 dev->name,
4450 dev->flags & IFF_PROMISC ? "entered" : "left");
4451 if (audit_enabled) {
4452 current_uid_gid(&uid, &gid);
4453 audit_log(current->audit_context, GFP_ATOMIC,
4454 AUDIT_ANOM_PROMISCUOUS,
4455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4456 dev->name, (dev->flags & IFF_PROMISC),
4457 (old_flags & IFF_PROMISC),
4458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4459 from_kuid(&init_user_ns, uid),
4460 from_kgid(&init_user_ns, gid),
4461 audit_get_sessionid(current));
4462 }
4463
4464 dev_change_rx_flags(dev, IFF_PROMISC);
4465 }
4466 return 0;
4467 }
4468
4469 /**
4470 * dev_set_promiscuity - update promiscuity count on a device
4471 * @dev: device
4472 * @inc: modifier
4473 *
4474 * Add or remove promiscuity from a device. While the count in the device
4475 * remains above zero the interface remains promiscuous. Once it hits zero
4476 * the device reverts back to normal filtering operation. A negative inc
4477 * value is used to drop promiscuity on the device.
4478 * Return 0 if successful or a negative errno code on error.
4479 */
4480 int dev_set_promiscuity(struct net_device *dev, int inc)
4481 {
4482 unsigned int old_flags = dev->flags;
4483 int err;
4484
4485 err = __dev_set_promiscuity(dev, inc);
4486 if (err < 0)
4487 return err;
4488 if (dev->flags != old_flags)
4489 dev_set_rx_mode(dev);
4490 return err;
4491 }
4492 EXPORT_SYMBOL(dev_set_promiscuity);
4493
4494 /**
4495 * dev_set_allmulti - update allmulti count on a device
4496 * @dev: device
4497 * @inc: modifier
4498 *
4499 * Add or remove reception of all multicast frames to a device. While the
4500 * count in the device remains above zero the interface remains listening
4501 * to all interfaces. Once it hits zero the device reverts back to normal
4502 * filtering operation. A negative @inc value is used to drop the counter
4503 * when releasing a resource needing all multicasts.
4504 * Return 0 if successful or a negative errno code on error.
4505 */
4506
4507 int dev_set_allmulti(struct net_device *dev, int inc)
4508 {
4509 unsigned int old_flags = dev->flags;
4510
4511 ASSERT_RTNL();
4512
4513 dev->flags |= IFF_ALLMULTI;
4514 dev->allmulti += inc;
4515 if (dev->allmulti == 0) {
4516 /*
4517 * Avoid overflow.
4518 * If inc causes overflow, untouch allmulti and return error.
4519 */
4520 if (inc < 0)
4521 dev->flags &= ~IFF_ALLMULTI;
4522 else {
4523 dev->allmulti -= inc;
4524 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4525 dev->name);
4526 return -EOVERFLOW;
4527 }
4528 }
4529 if (dev->flags ^ old_flags) {
4530 dev_change_rx_flags(dev, IFF_ALLMULTI);
4531 dev_set_rx_mode(dev);
4532 }
4533 return 0;
4534 }
4535 EXPORT_SYMBOL(dev_set_allmulti);
4536
4537 /*
4538 * Upload unicast and multicast address lists to device and
4539 * configure RX filtering. When the device doesn't support unicast
4540 * filtering it is put in promiscuous mode while unicast addresses
4541 * are present.
4542 */
4543 void __dev_set_rx_mode(struct net_device *dev)
4544 {
4545 const struct net_device_ops *ops = dev->netdev_ops;
4546
4547 /* dev_open will call this function so the list will stay sane. */
4548 if (!(dev->flags&IFF_UP))
4549 return;
4550
4551 if (!netif_device_present(dev))
4552 return;
4553
4554 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4555 /* Unicast addresses changes may only happen under the rtnl,
4556 * therefore calling __dev_set_promiscuity here is safe.
4557 */
4558 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4559 __dev_set_promiscuity(dev, 1);
4560 dev->uc_promisc = true;
4561 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4562 __dev_set_promiscuity(dev, -1);
4563 dev->uc_promisc = false;
4564 }
4565 }
4566
4567 if (ops->ndo_set_rx_mode)
4568 ops->ndo_set_rx_mode(dev);
4569 }
4570
4571 void dev_set_rx_mode(struct net_device *dev)
4572 {
4573 netif_addr_lock_bh(dev);
4574 __dev_set_rx_mode(dev);
4575 netif_addr_unlock_bh(dev);
4576 }
4577
4578 /**
4579 * dev_get_flags - get flags reported to userspace
4580 * @dev: device
4581 *
4582 * Get the combination of flag bits exported through APIs to userspace.
4583 */
4584 unsigned int dev_get_flags(const struct net_device *dev)
4585 {
4586 unsigned int flags;
4587
4588 flags = (dev->flags & ~(IFF_PROMISC |
4589 IFF_ALLMULTI |
4590 IFF_RUNNING |
4591 IFF_LOWER_UP |
4592 IFF_DORMANT)) |
4593 (dev->gflags & (IFF_PROMISC |
4594 IFF_ALLMULTI));
4595
4596 if (netif_running(dev)) {
4597 if (netif_oper_up(dev))
4598 flags |= IFF_RUNNING;
4599 if (netif_carrier_ok(dev))
4600 flags |= IFF_LOWER_UP;
4601 if (netif_dormant(dev))
4602 flags |= IFF_DORMANT;
4603 }
4604
4605 return flags;
4606 }
4607 EXPORT_SYMBOL(dev_get_flags);
4608
4609 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4610 {
4611 unsigned int old_flags = dev->flags;
4612 int ret;
4613
4614 ASSERT_RTNL();
4615
4616 /*
4617 * Set the flags on our device.
4618 */
4619
4620 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4621 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4622 IFF_AUTOMEDIA)) |
4623 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4624 IFF_ALLMULTI));
4625
4626 /*
4627 * Load in the correct multicast list now the flags have changed.
4628 */
4629
4630 if ((old_flags ^ flags) & IFF_MULTICAST)
4631 dev_change_rx_flags(dev, IFF_MULTICAST);
4632
4633 dev_set_rx_mode(dev);
4634
4635 /*
4636 * Have we downed the interface. We handle IFF_UP ourselves
4637 * according to user attempts to set it, rather than blindly
4638 * setting it.
4639 */
4640
4641 ret = 0;
4642 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4643 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4644
4645 if (!ret)
4646 dev_set_rx_mode(dev);
4647 }
4648
4649 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4650 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4651
4652 dev->gflags ^= IFF_PROMISC;
4653 dev_set_promiscuity(dev, inc);
4654 }
4655
4656 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4657 is important. Some (broken) drivers set IFF_PROMISC, when
4658 IFF_ALLMULTI is requested not asking us and not reporting.
4659 */
4660 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4661 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4662
4663 dev->gflags ^= IFF_ALLMULTI;
4664 dev_set_allmulti(dev, inc);
4665 }
4666
4667 return ret;
4668 }
4669
4670 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4671 {
4672 unsigned int changes = dev->flags ^ old_flags;
4673
4674 if (changes & IFF_UP) {
4675 if (dev->flags & IFF_UP)
4676 call_netdevice_notifiers(NETDEV_UP, dev);
4677 else
4678 call_netdevice_notifiers(NETDEV_DOWN, dev);
4679 }
4680
4681 if (dev->flags & IFF_UP &&
4682 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4683 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4684 }
4685
4686 /**
4687 * dev_change_flags - change device settings
4688 * @dev: device
4689 * @flags: device state flags
4690 *
4691 * Change settings on device based state flags. The flags are
4692 * in the userspace exported format.
4693 */
4694 int dev_change_flags(struct net_device *dev, unsigned int flags)
4695 {
4696 int ret;
4697 unsigned int changes, old_flags = dev->flags;
4698
4699 ret = __dev_change_flags(dev, flags);
4700 if (ret < 0)
4701 return ret;
4702
4703 changes = old_flags ^ dev->flags;
4704 if (changes)
4705 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4706
4707 __dev_notify_flags(dev, old_flags);
4708 return ret;
4709 }
4710 EXPORT_SYMBOL(dev_change_flags);
4711
4712 /**
4713 * dev_set_mtu - Change maximum transfer unit
4714 * @dev: device
4715 * @new_mtu: new transfer unit
4716 *
4717 * Change the maximum transfer size of the network device.
4718 */
4719 int dev_set_mtu(struct net_device *dev, int new_mtu)
4720 {
4721 const struct net_device_ops *ops = dev->netdev_ops;
4722 int err;
4723
4724 if (new_mtu == dev->mtu)
4725 return 0;
4726
4727 /* MTU must be positive. */
4728 if (new_mtu < 0)
4729 return -EINVAL;
4730
4731 if (!netif_device_present(dev))
4732 return -ENODEV;
4733
4734 err = 0;
4735 if (ops->ndo_change_mtu)
4736 err = ops->ndo_change_mtu(dev, new_mtu);
4737 else
4738 dev->mtu = new_mtu;
4739
4740 if (!err)
4741 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4742 return err;
4743 }
4744 EXPORT_SYMBOL(dev_set_mtu);
4745
4746 /**
4747 * dev_set_group - Change group this device belongs to
4748 * @dev: device
4749 * @new_group: group this device should belong to
4750 */
4751 void dev_set_group(struct net_device *dev, int new_group)
4752 {
4753 dev->group = new_group;
4754 }
4755 EXPORT_SYMBOL(dev_set_group);
4756
4757 /**
4758 * dev_set_mac_address - Change Media Access Control Address
4759 * @dev: device
4760 * @sa: new address
4761 *
4762 * Change the hardware (MAC) address of the device
4763 */
4764 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4765 {
4766 const struct net_device_ops *ops = dev->netdev_ops;
4767 int err;
4768
4769 if (!ops->ndo_set_mac_address)
4770 return -EOPNOTSUPP;
4771 if (sa->sa_family != dev->type)
4772 return -EINVAL;
4773 if (!netif_device_present(dev))
4774 return -ENODEV;
4775 err = ops->ndo_set_mac_address(dev, sa);
4776 if (err)
4777 return err;
4778 dev->addr_assign_type = NET_ADDR_SET;
4779 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4780 add_device_randomness(dev->dev_addr, dev->addr_len);
4781 return 0;
4782 }
4783 EXPORT_SYMBOL(dev_set_mac_address);
4784
4785 /**
4786 * dev_change_carrier - Change device carrier
4787 * @dev: device
4788 * @new_carrier: new value
4789 *
4790 * Change device carrier
4791 */
4792 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4793 {
4794 const struct net_device_ops *ops = dev->netdev_ops;
4795
4796 if (!ops->ndo_change_carrier)
4797 return -EOPNOTSUPP;
4798 if (!netif_device_present(dev))
4799 return -ENODEV;
4800 return ops->ndo_change_carrier(dev, new_carrier);
4801 }
4802 EXPORT_SYMBOL(dev_change_carrier);
4803
4804 /**
4805 * dev_new_index - allocate an ifindex
4806 * @net: the applicable net namespace
4807 *
4808 * Returns a suitable unique value for a new device interface
4809 * number. The caller must hold the rtnl semaphore or the
4810 * dev_base_lock to be sure it remains unique.
4811 */
4812 static int dev_new_index(struct net *net)
4813 {
4814 int ifindex = net->ifindex;
4815 for (;;) {
4816 if (++ifindex <= 0)
4817 ifindex = 1;
4818 if (!__dev_get_by_index(net, ifindex))
4819 return net->ifindex = ifindex;
4820 }
4821 }
4822
4823 /* Delayed registration/unregisteration */
4824 static LIST_HEAD(net_todo_list);
4825
4826 static void net_set_todo(struct net_device *dev)
4827 {
4828 list_add_tail(&dev->todo_list, &net_todo_list);
4829 }
4830
4831 static void rollback_registered_many(struct list_head *head)
4832 {
4833 struct net_device *dev, *tmp;
4834
4835 BUG_ON(dev_boot_phase);
4836 ASSERT_RTNL();
4837
4838 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4839 /* Some devices call without registering
4840 * for initialization unwind. Remove those
4841 * devices and proceed with the remaining.
4842 */
4843 if (dev->reg_state == NETREG_UNINITIALIZED) {
4844 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4845 dev->name, dev);
4846
4847 WARN_ON(1);
4848 list_del(&dev->unreg_list);
4849 continue;
4850 }
4851 dev->dismantle = true;
4852 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4853 }
4854
4855 /* If device is running, close it first. */
4856 dev_close_many(head);
4857
4858 list_for_each_entry(dev, head, unreg_list) {
4859 /* And unlink it from device chain. */
4860 unlist_netdevice(dev);
4861
4862 dev->reg_state = NETREG_UNREGISTERING;
4863 }
4864
4865 synchronize_net();
4866
4867 list_for_each_entry(dev, head, unreg_list) {
4868 /* Shutdown queueing discipline. */
4869 dev_shutdown(dev);
4870
4871
4872 /* Notify protocols, that we are about to destroy
4873 this device. They should clean all the things.
4874 */
4875 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4876
4877 if (!dev->rtnl_link_ops ||
4878 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4879 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4880
4881 /*
4882 * Flush the unicast and multicast chains
4883 */
4884 dev_uc_flush(dev);
4885 dev_mc_flush(dev);
4886
4887 if (dev->netdev_ops->ndo_uninit)
4888 dev->netdev_ops->ndo_uninit(dev);
4889
4890 /* Notifier chain MUST detach us all upper devices. */
4891 WARN_ON(netdev_has_any_upper_dev(dev));
4892
4893 /* Remove entries from kobject tree */
4894 netdev_unregister_kobject(dev);
4895 #ifdef CONFIG_XPS
4896 /* Remove XPS queueing entries */
4897 netif_reset_xps_queues_gt(dev, 0);
4898 #endif
4899 }
4900
4901 synchronize_net();
4902
4903 list_for_each_entry(dev, head, unreg_list)
4904 dev_put(dev);
4905 }
4906
4907 static void rollback_registered(struct net_device *dev)
4908 {
4909 LIST_HEAD(single);
4910
4911 list_add(&dev->unreg_list, &single);
4912 rollback_registered_many(&single);
4913 list_del(&single);
4914 }
4915
4916 static netdev_features_t netdev_fix_features(struct net_device *dev,
4917 netdev_features_t features)
4918 {
4919 /* Fix illegal checksum combinations */
4920 if ((features & NETIF_F_HW_CSUM) &&
4921 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4922 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4923 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4924 }
4925
4926 /* Fix illegal SG+CSUM combinations. */
4927 if ((features & NETIF_F_SG) &&
4928 !(features & NETIF_F_ALL_CSUM)) {
4929 netdev_dbg(dev,
4930 "Dropping NETIF_F_SG since no checksum feature.\n");
4931 features &= ~NETIF_F_SG;
4932 }
4933
4934 /* TSO requires that SG is present as well. */
4935 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4936 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4937 features &= ~NETIF_F_ALL_TSO;
4938 }
4939
4940 /* TSO ECN requires that TSO is present as well. */
4941 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4942 features &= ~NETIF_F_TSO_ECN;
4943
4944 /* Software GSO depends on SG. */
4945 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4946 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4947 features &= ~NETIF_F_GSO;
4948 }
4949
4950 /* UFO needs SG and checksumming */
4951 if (features & NETIF_F_UFO) {
4952 /* maybe split UFO into V4 and V6? */
4953 if (!((features & NETIF_F_GEN_CSUM) ||
4954 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4955 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4956 netdev_dbg(dev,
4957 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4958 features &= ~NETIF_F_UFO;
4959 }
4960
4961 if (!(features & NETIF_F_SG)) {
4962 netdev_dbg(dev,
4963 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4964 features &= ~NETIF_F_UFO;
4965 }
4966 }
4967
4968 return features;
4969 }
4970
4971 int __netdev_update_features(struct net_device *dev)
4972 {
4973 netdev_features_t features;
4974 int err = 0;
4975
4976 ASSERT_RTNL();
4977
4978 features = netdev_get_wanted_features(dev);
4979
4980 if (dev->netdev_ops->ndo_fix_features)
4981 features = dev->netdev_ops->ndo_fix_features(dev, features);
4982
4983 /* driver might be less strict about feature dependencies */
4984 features = netdev_fix_features(dev, features);
4985
4986 if (dev->features == features)
4987 return 0;
4988
4989 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4990 &dev->features, &features);
4991
4992 if (dev->netdev_ops->ndo_set_features)
4993 err = dev->netdev_ops->ndo_set_features(dev, features);
4994
4995 if (unlikely(err < 0)) {
4996 netdev_err(dev,
4997 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4998 err, &features, &dev->features);
4999 return -1;
5000 }
5001
5002 if (!err)
5003 dev->features = features;
5004
5005 return 1;
5006 }
5007
5008 /**
5009 * netdev_update_features - recalculate device features
5010 * @dev: the device to check
5011 *
5012 * Recalculate dev->features set and send notifications if it
5013 * has changed. Should be called after driver or hardware dependent
5014 * conditions might have changed that influence the features.
5015 */
5016 void netdev_update_features(struct net_device *dev)
5017 {
5018 if (__netdev_update_features(dev))
5019 netdev_features_change(dev);
5020 }
5021 EXPORT_SYMBOL(netdev_update_features);
5022
5023 /**
5024 * netdev_change_features - recalculate device features
5025 * @dev: the device to check
5026 *
5027 * Recalculate dev->features set and send notifications even
5028 * if they have not changed. Should be called instead of
5029 * netdev_update_features() if also dev->vlan_features might
5030 * have changed to allow the changes to be propagated to stacked
5031 * VLAN devices.
5032 */
5033 void netdev_change_features(struct net_device *dev)
5034 {
5035 __netdev_update_features(dev);
5036 netdev_features_change(dev);
5037 }
5038 EXPORT_SYMBOL(netdev_change_features);
5039
5040 /**
5041 * netif_stacked_transfer_operstate - transfer operstate
5042 * @rootdev: the root or lower level device to transfer state from
5043 * @dev: the device to transfer operstate to
5044 *
5045 * Transfer operational state from root to device. This is normally
5046 * called when a stacking relationship exists between the root
5047 * device and the device(a leaf device).
5048 */
5049 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5050 struct net_device *dev)
5051 {
5052 if (rootdev->operstate == IF_OPER_DORMANT)
5053 netif_dormant_on(dev);
5054 else
5055 netif_dormant_off(dev);
5056
5057 if (netif_carrier_ok(rootdev)) {
5058 if (!netif_carrier_ok(dev))
5059 netif_carrier_on(dev);
5060 } else {
5061 if (netif_carrier_ok(dev))
5062 netif_carrier_off(dev);
5063 }
5064 }
5065 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5066
5067 #ifdef CONFIG_RPS
5068 static int netif_alloc_rx_queues(struct net_device *dev)
5069 {
5070 unsigned int i, count = dev->num_rx_queues;
5071 struct netdev_rx_queue *rx;
5072
5073 BUG_ON(count < 1);
5074
5075 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5076 if (!rx)
5077 return -ENOMEM;
5078
5079 dev->_rx = rx;
5080
5081 for (i = 0; i < count; i++)
5082 rx[i].dev = dev;
5083 return 0;
5084 }
5085 #endif
5086
5087 static void netdev_init_one_queue(struct net_device *dev,
5088 struct netdev_queue *queue, void *_unused)
5089 {
5090 /* Initialize queue lock */
5091 spin_lock_init(&queue->_xmit_lock);
5092 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5093 queue->xmit_lock_owner = -1;
5094 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5095 queue->dev = dev;
5096 #ifdef CONFIG_BQL
5097 dql_init(&queue->dql, HZ);
5098 #endif
5099 }
5100
5101 static int netif_alloc_netdev_queues(struct net_device *dev)
5102 {
5103 unsigned int count = dev->num_tx_queues;
5104 struct netdev_queue *tx;
5105
5106 BUG_ON(count < 1);
5107
5108 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5109 if (!tx)
5110 return -ENOMEM;
5111
5112 dev->_tx = tx;
5113
5114 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5115 spin_lock_init(&dev->tx_global_lock);
5116
5117 return 0;
5118 }
5119
5120 /**
5121 * register_netdevice - register a network device
5122 * @dev: device to register
5123 *
5124 * Take a completed network device structure and add it to the kernel
5125 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5126 * chain. 0 is returned on success. A negative errno code is returned
5127 * on a failure to set up the device, or if the name is a duplicate.
5128 *
5129 * Callers must hold the rtnl semaphore. You may want
5130 * register_netdev() instead of this.
5131 *
5132 * BUGS:
5133 * The locking appears insufficient to guarantee two parallel registers
5134 * will not get the same name.
5135 */
5136
5137 int register_netdevice(struct net_device *dev)
5138 {
5139 int ret;
5140 struct net *net = dev_net(dev);
5141
5142 BUG_ON(dev_boot_phase);
5143 ASSERT_RTNL();
5144
5145 might_sleep();
5146
5147 /* When net_device's are persistent, this will be fatal. */
5148 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5149 BUG_ON(!net);
5150
5151 spin_lock_init(&dev->addr_list_lock);
5152 netdev_set_addr_lockdep_class(dev);
5153
5154 dev->iflink = -1;
5155
5156 ret = dev_get_valid_name(net, dev, dev->name);
5157 if (ret < 0)
5158 goto out;
5159
5160 /* Init, if this function is available */
5161 if (dev->netdev_ops->ndo_init) {
5162 ret = dev->netdev_ops->ndo_init(dev);
5163 if (ret) {
5164 if (ret > 0)
5165 ret = -EIO;
5166 goto out;
5167 }
5168 }
5169
5170 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5171 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5172 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5173 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5174 ret = -EINVAL;
5175 goto err_uninit;
5176 }
5177
5178 ret = -EBUSY;
5179 if (!dev->ifindex)
5180 dev->ifindex = dev_new_index(net);
5181 else if (__dev_get_by_index(net, dev->ifindex))
5182 goto err_uninit;
5183
5184 if (dev->iflink == -1)
5185 dev->iflink = dev->ifindex;
5186
5187 /* Transfer changeable features to wanted_features and enable
5188 * software offloads (GSO and GRO).
5189 */
5190 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5191 dev->features |= NETIF_F_SOFT_FEATURES;
5192 dev->wanted_features = dev->features & dev->hw_features;
5193
5194 /* Turn on no cache copy if HW is doing checksum */
5195 if (!(dev->flags & IFF_LOOPBACK)) {
5196 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5197 if (dev->features & NETIF_F_ALL_CSUM) {
5198 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5199 dev->features |= NETIF_F_NOCACHE_COPY;
5200 }
5201 }
5202
5203 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5204 */
5205 dev->vlan_features |= NETIF_F_HIGHDMA;
5206
5207 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5208 ret = notifier_to_errno(ret);
5209 if (ret)
5210 goto err_uninit;
5211
5212 ret = netdev_register_kobject(dev);
5213 if (ret)
5214 goto err_uninit;
5215 dev->reg_state = NETREG_REGISTERED;
5216
5217 __netdev_update_features(dev);
5218
5219 /*
5220 * Default initial state at registry is that the
5221 * device is present.
5222 */
5223
5224 set_bit(__LINK_STATE_PRESENT, &dev->state);
5225
5226 linkwatch_init_dev(dev);
5227
5228 dev_init_scheduler(dev);
5229 dev_hold(dev);
5230 list_netdevice(dev);
5231 add_device_randomness(dev->dev_addr, dev->addr_len);
5232
5233 /* If the device has permanent device address, driver should
5234 * set dev_addr and also addr_assign_type should be set to
5235 * NET_ADDR_PERM (default value).
5236 */
5237 if (dev->addr_assign_type == NET_ADDR_PERM)
5238 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5239
5240 /* Notify protocols, that a new device appeared. */
5241 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5242 ret = notifier_to_errno(ret);
5243 if (ret) {
5244 rollback_registered(dev);
5245 dev->reg_state = NETREG_UNREGISTERED;
5246 }
5247 /*
5248 * Prevent userspace races by waiting until the network
5249 * device is fully setup before sending notifications.
5250 */
5251 if (!dev->rtnl_link_ops ||
5252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5254
5255 out:
5256 return ret;
5257
5258 err_uninit:
5259 if (dev->netdev_ops->ndo_uninit)
5260 dev->netdev_ops->ndo_uninit(dev);
5261 goto out;
5262 }
5263 EXPORT_SYMBOL(register_netdevice);
5264
5265 /**
5266 * init_dummy_netdev - init a dummy network device for NAPI
5267 * @dev: device to init
5268 *
5269 * This takes a network device structure and initialize the minimum
5270 * amount of fields so it can be used to schedule NAPI polls without
5271 * registering a full blown interface. This is to be used by drivers
5272 * that need to tie several hardware interfaces to a single NAPI
5273 * poll scheduler due to HW limitations.
5274 */
5275 int init_dummy_netdev(struct net_device *dev)
5276 {
5277 /* Clear everything. Note we don't initialize spinlocks
5278 * are they aren't supposed to be taken by any of the
5279 * NAPI code and this dummy netdev is supposed to be
5280 * only ever used for NAPI polls
5281 */
5282 memset(dev, 0, sizeof(struct net_device));
5283
5284 /* make sure we BUG if trying to hit standard
5285 * register/unregister code path
5286 */
5287 dev->reg_state = NETREG_DUMMY;
5288
5289 /* NAPI wants this */
5290 INIT_LIST_HEAD(&dev->napi_list);
5291
5292 /* a dummy interface is started by default */
5293 set_bit(__LINK_STATE_PRESENT, &dev->state);
5294 set_bit(__LINK_STATE_START, &dev->state);
5295
5296 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5297 * because users of this 'device' dont need to change
5298 * its refcount.
5299 */
5300
5301 return 0;
5302 }
5303 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5304
5305
5306 /**
5307 * register_netdev - register a network device
5308 * @dev: device to register
5309 *
5310 * Take a completed network device structure and add it to the kernel
5311 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5312 * chain. 0 is returned on success. A negative errno code is returned
5313 * on a failure to set up the device, or if the name is a duplicate.
5314 *
5315 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5316 * and expands the device name if you passed a format string to
5317 * alloc_netdev.
5318 */
5319 int register_netdev(struct net_device *dev)
5320 {
5321 int err;
5322
5323 rtnl_lock();
5324 err = register_netdevice(dev);
5325 rtnl_unlock();
5326 return err;
5327 }
5328 EXPORT_SYMBOL(register_netdev);
5329
5330 int netdev_refcnt_read(const struct net_device *dev)
5331 {
5332 int i, refcnt = 0;
5333
5334 for_each_possible_cpu(i)
5335 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5336 return refcnt;
5337 }
5338 EXPORT_SYMBOL(netdev_refcnt_read);
5339
5340 /**
5341 * netdev_wait_allrefs - wait until all references are gone.
5342 * @dev: target net_device
5343 *
5344 * This is called when unregistering network devices.
5345 *
5346 * Any protocol or device that holds a reference should register
5347 * for netdevice notification, and cleanup and put back the
5348 * reference if they receive an UNREGISTER event.
5349 * We can get stuck here if buggy protocols don't correctly
5350 * call dev_put.
5351 */
5352 static void netdev_wait_allrefs(struct net_device *dev)
5353 {
5354 unsigned long rebroadcast_time, warning_time;
5355 int refcnt;
5356
5357 linkwatch_forget_dev(dev);
5358
5359 rebroadcast_time = warning_time = jiffies;
5360 refcnt = netdev_refcnt_read(dev);
5361
5362 while (refcnt != 0) {
5363 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5364 rtnl_lock();
5365
5366 /* Rebroadcast unregister notification */
5367 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5368
5369 __rtnl_unlock();
5370 rcu_barrier();
5371 rtnl_lock();
5372
5373 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5374 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5375 &dev->state)) {
5376 /* We must not have linkwatch events
5377 * pending on unregister. If this
5378 * happens, we simply run the queue
5379 * unscheduled, resulting in a noop
5380 * for this device.
5381 */
5382 linkwatch_run_queue();
5383 }
5384
5385 __rtnl_unlock();
5386
5387 rebroadcast_time = jiffies;
5388 }
5389
5390 msleep(250);
5391
5392 refcnt = netdev_refcnt_read(dev);
5393
5394 if (time_after(jiffies, warning_time + 10 * HZ)) {
5395 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5396 dev->name, refcnt);
5397 warning_time = jiffies;
5398 }
5399 }
5400 }
5401
5402 /* The sequence is:
5403 *
5404 * rtnl_lock();
5405 * ...
5406 * register_netdevice(x1);
5407 * register_netdevice(x2);
5408 * ...
5409 * unregister_netdevice(y1);
5410 * unregister_netdevice(y2);
5411 * ...
5412 * rtnl_unlock();
5413 * free_netdev(y1);
5414 * free_netdev(y2);
5415 *
5416 * We are invoked by rtnl_unlock().
5417 * This allows us to deal with problems:
5418 * 1) We can delete sysfs objects which invoke hotplug
5419 * without deadlocking with linkwatch via keventd.
5420 * 2) Since we run with the RTNL semaphore not held, we can sleep
5421 * safely in order to wait for the netdev refcnt to drop to zero.
5422 *
5423 * We must not return until all unregister events added during
5424 * the interval the lock was held have been completed.
5425 */
5426 void netdev_run_todo(void)
5427 {
5428 struct list_head list;
5429
5430 /* Snapshot list, allow later requests */
5431 list_replace_init(&net_todo_list, &list);
5432
5433 __rtnl_unlock();
5434
5435
5436 /* Wait for rcu callbacks to finish before next phase */
5437 if (!list_empty(&list))
5438 rcu_barrier();
5439
5440 while (!list_empty(&list)) {
5441 struct net_device *dev
5442 = list_first_entry(&list, struct net_device, todo_list);
5443 list_del(&dev->todo_list);
5444
5445 rtnl_lock();
5446 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5447 __rtnl_unlock();
5448
5449 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5450 pr_err("network todo '%s' but state %d\n",
5451 dev->name, dev->reg_state);
5452 dump_stack();
5453 continue;
5454 }
5455
5456 dev->reg_state = NETREG_UNREGISTERED;
5457
5458 on_each_cpu(flush_backlog, dev, 1);
5459
5460 netdev_wait_allrefs(dev);
5461
5462 /* paranoia */
5463 BUG_ON(netdev_refcnt_read(dev));
5464 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5465 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5466 WARN_ON(dev->dn_ptr);
5467
5468 if (dev->destructor)
5469 dev->destructor(dev);
5470
5471 /* Free network device */
5472 kobject_put(&dev->dev.kobj);
5473 }
5474 }
5475
5476 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5477 * fields in the same order, with only the type differing.
5478 */
5479 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5480 const struct net_device_stats *netdev_stats)
5481 {
5482 #if BITS_PER_LONG == 64
5483 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5484 memcpy(stats64, netdev_stats, sizeof(*stats64));
5485 #else
5486 size_t i, n = sizeof(*stats64) / sizeof(u64);
5487 const unsigned long *src = (const unsigned long *)netdev_stats;
5488 u64 *dst = (u64 *)stats64;
5489
5490 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5491 sizeof(*stats64) / sizeof(u64));
5492 for (i = 0; i < n; i++)
5493 dst[i] = src[i];
5494 #endif
5495 }
5496 EXPORT_SYMBOL(netdev_stats_to_stats64);
5497
5498 /**
5499 * dev_get_stats - get network device statistics
5500 * @dev: device to get statistics from
5501 * @storage: place to store stats
5502 *
5503 * Get network statistics from device. Return @storage.
5504 * The device driver may provide its own method by setting
5505 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5506 * otherwise the internal statistics structure is used.
5507 */
5508 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5509 struct rtnl_link_stats64 *storage)
5510 {
5511 const struct net_device_ops *ops = dev->netdev_ops;
5512
5513 if (ops->ndo_get_stats64) {
5514 memset(storage, 0, sizeof(*storage));
5515 ops->ndo_get_stats64(dev, storage);
5516 } else if (ops->ndo_get_stats) {
5517 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5518 } else {
5519 netdev_stats_to_stats64(storage, &dev->stats);
5520 }
5521 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5522 return storage;
5523 }
5524 EXPORT_SYMBOL(dev_get_stats);
5525
5526 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5527 {
5528 struct netdev_queue *queue = dev_ingress_queue(dev);
5529
5530 #ifdef CONFIG_NET_CLS_ACT
5531 if (queue)
5532 return queue;
5533 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5534 if (!queue)
5535 return NULL;
5536 netdev_init_one_queue(dev, queue, NULL);
5537 queue->qdisc = &noop_qdisc;
5538 queue->qdisc_sleeping = &noop_qdisc;
5539 rcu_assign_pointer(dev->ingress_queue, queue);
5540 #endif
5541 return queue;
5542 }
5543
5544 static const struct ethtool_ops default_ethtool_ops;
5545
5546 void netdev_set_default_ethtool_ops(struct net_device *dev,
5547 const struct ethtool_ops *ops)
5548 {
5549 if (dev->ethtool_ops == &default_ethtool_ops)
5550 dev->ethtool_ops = ops;
5551 }
5552 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5553
5554 /**
5555 * alloc_netdev_mqs - allocate network device
5556 * @sizeof_priv: size of private data to allocate space for
5557 * @name: device name format string
5558 * @setup: callback to initialize device
5559 * @txqs: the number of TX subqueues to allocate
5560 * @rxqs: the number of RX subqueues to allocate
5561 *
5562 * Allocates a struct net_device with private data area for driver use
5563 * and performs basic initialization. Also allocates subquue structs
5564 * for each queue on the device.
5565 */
5566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5567 void (*setup)(struct net_device *),
5568 unsigned int txqs, unsigned int rxqs)
5569 {
5570 struct net_device *dev;
5571 size_t alloc_size;
5572 struct net_device *p;
5573
5574 BUG_ON(strlen(name) >= sizeof(dev->name));
5575
5576 if (txqs < 1) {
5577 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5578 return NULL;
5579 }
5580
5581 #ifdef CONFIG_RPS
5582 if (rxqs < 1) {
5583 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5584 return NULL;
5585 }
5586 #endif
5587
5588 alloc_size = sizeof(struct net_device);
5589 if (sizeof_priv) {
5590 /* ensure 32-byte alignment of private area */
5591 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5592 alloc_size += sizeof_priv;
5593 }
5594 /* ensure 32-byte alignment of whole construct */
5595 alloc_size += NETDEV_ALIGN - 1;
5596
5597 p = kzalloc(alloc_size, GFP_KERNEL);
5598 if (!p)
5599 return NULL;
5600
5601 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5602 dev->padded = (char *)dev - (char *)p;
5603
5604 dev->pcpu_refcnt = alloc_percpu(int);
5605 if (!dev->pcpu_refcnt)
5606 goto free_p;
5607
5608 if (dev_addr_init(dev))
5609 goto free_pcpu;
5610
5611 dev_mc_init(dev);
5612 dev_uc_init(dev);
5613
5614 dev_net_set(dev, &init_net);
5615
5616 dev->gso_max_size = GSO_MAX_SIZE;
5617 dev->gso_max_segs = GSO_MAX_SEGS;
5618
5619 INIT_LIST_HEAD(&dev->napi_list);
5620 INIT_LIST_HEAD(&dev->unreg_list);
5621 INIT_LIST_HEAD(&dev->link_watch_list);
5622 INIT_LIST_HEAD(&dev->upper_dev_list);
5623 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5624 setup(dev);
5625
5626 dev->num_tx_queues = txqs;
5627 dev->real_num_tx_queues = txqs;
5628 if (netif_alloc_netdev_queues(dev))
5629 goto free_all;
5630
5631 #ifdef CONFIG_RPS
5632 dev->num_rx_queues = rxqs;
5633 dev->real_num_rx_queues = rxqs;
5634 if (netif_alloc_rx_queues(dev))
5635 goto free_all;
5636 #endif
5637
5638 strcpy(dev->name, name);
5639 dev->group = INIT_NETDEV_GROUP;
5640 if (!dev->ethtool_ops)
5641 dev->ethtool_ops = &default_ethtool_ops;
5642 return dev;
5643
5644 free_all:
5645 free_netdev(dev);
5646 return NULL;
5647
5648 free_pcpu:
5649 free_percpu(dev->pcpu_refcnt);
5650 kfree(dev->_tx);
5651 #ifdef CONFIG_RPS
5652 kfree(dev->_rx);
5653 #endif
5654
5655 free_p:
5656 kfree(p);
5657 return NULL;
5658 }
5659 EXPORT_SYMBOL(alloc_netdev_mqs);
5660
5661 /**
5662 * free_netdev - free network device
5663 * @dev: device
5664 *
5665 * This function does the last stage of destroying an allocated device
5666 * interface. The reference to the device object is released.
5667 * If this is the last reference then it will be freed.
5668 */
5669 void free_netdev(struct net_device *dev)
5670 {
5671 struct napi_struct *p, *n;
5672
5673 release_net(dev_net(dev));
5674
5675 kfree(dev->_tx);
5676 #ifdef CONFIG_RPS
5677 kfree(dev->_rx);
5678 #endif
5679
5680 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5681
5682 /* Flush device addresses */
5683 dev_addr_flush(dev);
5684
5685 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5686 netif_napi_del(p);
5687
5688 free_percpu(dev->pcpu_refcnt);
5689 dev->pcpu_refcnt = NULL;
5690
5691 /* Compatibility with error handling in drivers */
5692 if (dev->reg_state == NETREG_UNINITIALIZED) {
5693 kfree((char *)dev - dev->padded);
5694 return;
5695 }
5696
5697 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5698 dev->reg_state = NETREG_RELEASED;
5699
5700 /* will free via device release */
5701 put_device(&dev->dev);
5702 }
5703 EXPORT_SYMBOL(free_netdev);
5704
5705 /**
5706 * synchronize_net - Synchronize with packet receive processing
5707 *
5708 * Wait for packets currently being received to be done.
5709 * Does not block later packets from starting.
5710 */
5711 void synchronize_net(void)
5712 {
5713 might_sleep();
5714 if (rtnl_is_locked())
5715 synchronize_rcu_expedited();
5716 else
5717 synchronize_rcu();
5718 }
5719 EXPORT_SYMBOL(synchronize_net);
5720
5721 /**
5722 * unregister_netdevice_queue - remove device from the kernel
5723 * @dev: device
5724 * @head: list
5725 *
5726 * This function shuts down a device interface and removes it
5727 * from the kernel tables.
5728 * If head not NULL, device is queued to be unregistered later.
5729 *
5730 * Callers must hold the rtnl semaphore. You may want
5731 * unregister_netdev() instead of this.
5732 */
5733
5734 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5735 {
5736 ASSERT_RTNL();
5737
5738 if (head) {
5739 list_move_tail(&dev->unreg_list, head);
5740 } else {
5741 rollback_registered(dev);
5742 /* Finish processing unregister after unlock */
5743 net_set_todo(dev);
5744 }
5745 }
5746 EXPORT_SYMBOL(unregister_netdevice_queue);
5747
5748 /**
5749 * unregister_netdevice_many - unregister many devices
5750 * @head: list of devices
5751 */
5752 void unregister_netdevice_many(struct list_head *head)
5753 {
5754 struct net_device *dev;
5755
5756 if (!list_empty(head)) {
5757 rollback_registered_many(head);
5758 list_for_each_entry(dev, head, unreg_list)
5759 net_set_todo(dev);
5760 }
5761 }
5762 EXPORT_SYMBOL(unregister_netdevice_many);
5763
5764 /**
5765 * unregister_netdev - remove device from the kernel
5766 * @dev: device
5767 *
5768 * This function shuts down a device interface and removes it
5769 * from the kernel tables.
5770 *
5771 * This is just a wrapper for unregister_netdevice that takes
5772 * the rtnl semaphore. In general you want to use this and not
5773 * unregister_netdevice.
5774 */
5775 void unregister_netdev(struct net_device *dev)
5776 {
5777 rtnl_lock();
5778 unregister_netdevice(dev);
5779 rtnl_unlock();
5780 }
5781 EXPORT_SYMBOL(unregister_netdev);
5782
5783 /**
5784 * dev_change_net_namespace - move device to different nethost namespace
5785 * @dev: device
5786 * @net: network namespace
5787 * @pat: If not NULL name pattern to try if the current device name
5788 * is already taken in the destination network namespace.
5789 *
5790 * This function shuts down a device interface and moves it
5791 * to a new network namespace. On success 0 is returned, on
5792 * a failure a netagive errno code is returned.
5793 *
5794 * Callers must hold the rtnl semaphore.
5795 */
5796
5797 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5798 {
5799 int err;
5800
5801 ASSERT_RTNL();
5802
5803 /* Don't allow namespace local devices to be moved. */
5804 err = -EINVAL;
5805 if (dev->features & NETIF_F_NETNS_LOCAL)
5806 goto out;
5807
5808 /* Ensure the device has been registrered */
5809 if (dev->reg_state != NETREG_REGISTERED)
5810 goto out;
5811
5812 /* Get out if there is nothing todo */
5813 err = 0;
5814 if (net_eq(dev_net(dev), net))
5815 goto out;
5816
5817 /* Pick the destination device name, and ensure
5818 * we can use it in the destination network namespace.
5819 */
5820 err = -EEXIST;
5821 if (__dev_get_by_name(net, dev->name)) {
5822 /* We get here if we can't use the current device name */
5823 if (!pat)
5824 goto out;
5825 if (dev_get_valid_name(net, dev, pat) < 0)
5826 goto out;
5827 }
5828
5829 /*
5830 * And now a mini version of register_netdevice unregister_netdevice.
5831 */
5832
5833 /* If device is running close it first. */
5834 dev_close(dev);
5835
5836 /* And unlink it from device chain */
5837 err = -ENODEV;
5838 unlist_netdevice(dev);
5839
5840 synchronize_net();
5841
5842 /* Shutdown queueing discipline. */
5843 dev_shutdown(dev);
5844
5845 /* Notify protocols, that we are about to destroy
5846 this device. They should clean all the things.
5847
5848 Note that dev->reg_state stays at NETREG_REGISTERED.
5849 This is wanted because this way 8021q and macvlan know
5850 the device is just moving and can keep their slaves up.
5851 */
5852 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5853 rcu_barrier();
5854 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5855 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5856
5857 /*
5858 * Flush the unicast and multicast chains
5859 */
5860 dev_uc_flush(dev);
5861 dev_mc_flush(dev);
5862
5863 /* Send a netdev-removed uevent to the old namespace */
5864 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5865
5866 /* Actually switch the network namespace */
5867 dev_net_set(dev, net);
5868
5869 /* If there is an ifindex conflict assign a new one */
5870 if (__dev_get_by_index(net, dev->ifindex)) {
5871 int iflink = (dev->iflink == dev->ifindex);
5872 dev->ifindex = dev_new_index(net);
5873 if (iflink)
5874 dev->iflink = dev->ifindex;
5875 }
5876
5877 /* Send a netdev-add uevent to the new namespace */
5878 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5879
5880 /* Fixup kobjects */
5881 err = device_rename(&dev->dev, dev->name);
5882 WARN_ON(err);
5883
5884 /* Add the device back in the hashes */
5885 list_netdevice(dev);
5886
5887 /* Notify protocols, that a new device appeared. */
5888 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5889
5890 /*
5891 * Prevent userspace races by waiting until the network
5892 * device is fully setup before sending notifications.
5893 */
5894 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5895
5896 synchronize_net();
5897 err = 0;
5898 out:
5899 return err;
5900 }
5901 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5902
5903 static int dev_cpu_callback(struct notifier_block *nfb,
5904 unsigned long action,
5905 void *ocpu)
5906 {
5907 struct sk_buff **list_skb;
5908 struct sk_buff *skb;
5909 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5910 struct softnet_data *sd, *oldsd;
5911
5912 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5913 return NOTIFY_OK;
5914
5915 local_irq_disable();
5916 cpu = smp_processor_id();
5917 sd = &per_cpu(softnet_data, cpu);
5918 oldsd = &per_cpu(softnet_data, oldcpu);
5919
5920 /* Find end of our completion_queue. */
5921 list_skb = &sd->completion_queue;
5922 while (*list_skb)
5923 list_skb = &(*list_skb)->next;
5924 /* Append completion queue from offline CPU. */
5925 *list_skb = oldsd->completion_queue;
5926 oldsd->completion_queue = NULL;
5927
5928 /* Append output queue from offline CPU. */
5929 if (oldsd->output_queue) {
5930 *sd->output_queue_tailp = oldsd->output_queue;
5931 sd->output_queue_tailp = oldsd->output_queue_tailp;
5932 oldsd->output_queue = NULL;
5933 oldsd->output_queue_tailp = &oldsd->output_queue;
5934 }
5935 /* Append NAPI poll list from offline CPU. */
5936 if (!list_empty(&oldsd->poll_list)) {
5937 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5938 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5939 }
5940
5941 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5942 local_irq_enable();
5943
5944 /* Process offline CPU's input_pkt_queue */
5945 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5946 netif_rx(skb);
5947 input_queue_head_incr(oldsd);
5948 }
5949 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5950 netif_rx(skb);
5951 input_queue_head_incr(oldsd);
5952 }
5953
5954 return NOTIFY_OK;
5955 }
5956
5957
5958 /**
5959 * netdev_increment_features - increment feature set by one
5960 * @all: current feature set
5961 * @one: new feature set
5962 * @mask: mask feature set
5963 *
5964 * Computes a new feature set after adding a device with feature set
5965 * @one to the master device with current feature set @all. Will not
5966 * enable anything that is off in @mask. Returns the new feature set.
5967 */
5968 netdev_features_t netdev_increment_features(netdev_features_t all,
5969 netdev_features_t one, netdev_features_t mask)
5970 {
5971 if (mask & NETIF_F_GEN_CSUM)
5972 mask |= NETIF_F_ALL_CSUM;
5973 mask |= NETIF_F_VLAN_CHALLENGED;
5974
5975 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5976 all &= one | ~NETIF_F_ALL_FOR_ALL;
5977
5978 /* If one device supports hw checksumming, set for all. */
5979 if (all & NETIF_F_GEN_CSUM)
5980 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5981
5982 return all;
5983 }
5984 EXPORT_SYMBOL(netdev_increment_features);
5985
5986 static struct hlist_head *netdev_create_hash(void)
5987 {
5988 int i;
5989 struct hlist_head *hash;
5990
5991 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5992 if (hash != NULL)
5993 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5994 INIT_HLIST_HEAD(&hash[i]);
5995
5996 return hash;
5997 }
5998
5999 /* Initialize per network namespace state */
6000 static int __net_init netdev_init(struct net *net)
6001 {
6002 if (net != &init_net)
6003 INIT_LIST_HEAD(&net->dev_base_head);
6004
6005 net->dev_name_head = netdev_create_hash();
6006 if (net->dev_name_head == NULL)
6007 goto err_name;
6008
6009 net->dev_index_head = netdev_create_hash();
6010 if (net->dev_index_head == NULL)
6011 goto err_idx;
6012
6013 return 0;
6014
6015 err_idx:
6016 kfree(net->dev_name_head);
6017 err_name:
6018 return -ENOMEM;
6019 }
6020
6021 /**
6022 * netdev_drivername - network driver for the device
6023 * @dev: network device
6024 *
6025 * Determine network driver for device.
6026 */
6027 const char *netdev_drivername(const struct net_device *dev)
6028 {
6029 const struct device_driver *driver;
6030 const struct device *parent;
6031 const char *empty = "";
6032
6033 parent = dev->dev.parent;
6034 if (!parent)
6035 return empty;
6036
6037 driver = parent->driver;
6038 if (driver && driver->name)
6039 return driver->name;
6040 return empty;
6041 }
6042
6043 static int __netdev_printk(const char *level, const struct net_device *dev,
6044 struct va_format *vaf)
6045 {
6046 int r;
6047
6048 if (dev && dev->dev.parent) {
6049 r = dev_printk_emit(level[1] - '0',
6050 dev->dev.parent,
6051 "%s %s %s: %pV",
6052 dev_driver_string(dev->dev.parent),
6053 dev_name(dev->dev.parent),
6054 netdev_name(dev), vaf);
6055 } else if (dev) {
6056 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6057 } else {
6058 r = printk("%s(NULL net_device): %pV", level, vaf);
6059 }
6060
6061 return r;
6062 }
6063
6064 int netdev_printk(const char *level, const struct net_device *dev,
6065 const char *format, ...)
6066 {
6067 struct va_format vaf;
6068 va_list args;
6069 int r;
6070
6071 va_start(args, format);
6072
6073 vaf.fmt = format;
6074 vaf.va = &args;
6075
6076 r = __netdev_printk(level, dev, &vaf);
6077
6078 va_end(args);
6079
6080 return r;
6081 }
6082 EXPORT_SYMBOL(netdev_printk);
6083
6084 #define define_netdev_printk_level(func, level) \
6085 int func(const struct net_device *dev, const char *fmt, ...) \
6086 { \
6087 int r; \
6088 struct va_format vaf; \
6089 va_list args; \
6090 \
6091 va_start(args, fmt); \
6092 \
6093 vaf.fmt = fmt; \
6094 vaf.va = &args; \
6095 \
6096 r = __netdev_printk(level, dev, &vaf); \
6097 \
6098 va_end(args); \
6099 \
6100 return r; \
6101 } \
6102 EXPORT_SYMBOL(func);
6103
6104 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6105 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6106 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6107 define_netdev_printk_level(netdev_err, KERN_ERR);
6108 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6109 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6110 define_netdev_printk_level(netdev_info, KERN_INFO);
6111
6112 static void __net_exit netdev_exit(struct net *net)
6113 {
6114 kfree(net->dev_name_head);
6115 kfree(net->dev_index_head);
6116 }
6117
6118 static struct pernet_operations __net_initdata netdev_net_ops = {
6119 .init = netdev_init,
6120 .exit = netdev_exit,
6121 };
6122
6123 static void __net_exit default_device_exit(struct net *net)
6124 {
6125 struct net_device *dev, *aux;
6126 /*
6127 * Push all migratable network devices back to the
6128 * initial network namespace
6129 */
6130 rtnl_lock();
6131 for_each_netdev_safe(net, dev, aux) {
6132 int err;
6133 char fb_name[IFNAMSIZ];
6134
6135 /* Ignore unmoveable devices (i.e. loopback) */
6136 if (dev->features & NETIF_F_NETNS_LOCAL)
6137 continue;
6138
6139 /* Leave virtual devices for the generic cleanup */
6140 if (dev->rtnl_link_ops)
6141 continue;
6142
6143 /* Push remaining network devices to init_net */
6144 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6145 err = dev_change_net_namespace(dev, &init_net, fb_name);
6146 if (err) {
6147 pr_emerg("%s: failed to move %s to init_net: %d\n",
6148 __func__, dev->name, err);
6149 BUG();
6150 }
6151 }
6152 rtnl_unlock();
6153 }
6154
6155 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6156 {
6157 /* At exit all network devices most be removed from a network
6158 * namespace. Do this in the reverse order of registration.
6159 * Do this across as many network namespaces as possible to
6160 * improve batching efficiency.
6161 */
6162 struct net_device *dev;
6163 struct net *net;
6164 LIST_HEAD(dev_kill_list);
6165
6166 rtnl_lock();
6167 list_for_each_entry(net, net_list, exit_list) {
6168 for_each_netdev_reverse(net, dev) {
6169 if (dev->rtnl_link_ops)
6170 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6171 else
6172 unregister_netdevice_queue(dev, &dev_kill_list);
6173 }
6174 }
6175 unregister_netdevice_many(&dev_kill_list);
6176 list_del(&dev_kill_list);
6177 rtnl_unlock();
6178 }
6179
6180 static struct pernet_operations __net_initdata default_device_ops = {
6181 .exit = default_device_exit,
6182 .exit_batch = default_device_exit_batch,
6183 };
6184
6185 /*
6186 * Initialize the DEV module. At boot time this walks the device list and
6187 * unhooks any devices that fail to initialise (normally hardware not
6188 * present) and leaves us with a valid list of present and active devices.
6189 *
6190 */
6191
6192 /*
6193 * This is called single threaded during boot, so no need
6194 * to take the rtnl semaphore.
6195 */
6196 static int __init net_dev_init(void)
6197 {
6198 int i, rc = -ENOMEM;
6199
6200 BUG_ON(!dev_boot_phase);
6201
6202 if (dev_proc_init())
6203 goto out;
6204
6205 if (netdev_kobject_init())
6206 goto out;
6207
6208 INIT_LIST_HEAD(&ptype_all);
6209 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6210 INIT_LIST_HEAD(&ptype_base[i]);
6211
6212 INIT_LIST_HEAD(&offload_base);
6213
6214 if (register_pernet_subsys(&netdev_net_ops))
6215 goto out;
6216
6217 /*
6218 * Initialise the packet receive queues.
6219 */
6220
6221 for_each_possible_cpu(i) {
6222 struct softnet_data *sd = &per_cpu(softnet_data, i);
6223
6224 memset(sd, 0, sizeof(*sd));
6225 skb_queue_head_init(&sd->input_pkt_queue);
6226 skb_queue_head_init(&sd->process_queue);
6227 sd->completion_queue = NULL;
6228 INIT_LIST_HEAD(&sd->poll_list);
6229 sd->output_queue = NULL;
6230 sd->output_queue_tailp = &sd->output_queue;
6231 #ifdef CONFIG_RPS
6232 sd->csd.func = rps_trigger_softirq;
6233 sd->csd.info = sd;
6234 sd->csd.flags = 0;
6235 sd->cpu = i;
6236 #endif
6237
6238 sd->backlog.poll = process_backlog;
6239 sd->backlog.weight = weight_p;
6240 sd->backlog.gro_list = NULL;
6241 sd->backlog.gro_count = 0;
6242 }
6243
6244 dev_boot_phase = 0;
6245
6246 /* The loopback device is special if any other network devices
6247 * is present in a network namespace the loopback device must
6248 * be present. Since we now dynamically allocate and free the
6249 * loopback device ensure this invariant is maintained by
6250 * keeping the loopback device as the first device on the
6251 * list of network devices. Ensuring the loopback devices
6252 * is the first device that appears and the last network device
6253 * that disappears.
6254 */
6255 if (register_pernet_device(&loopback_net_ops))
6256 goto out;
6257
6258 if (register_pernet_device(&default_device_ops))
6259 goto out;
6260
6261 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6262 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6263
6264 hotcpu_notifier(dev_cpu_callback, 0);
6265 dst_init();
6266 rc = 0;
6267 out:
6268 return rc;
6269 }
6270
6271 subsys_initcall(net_dev_init);