ceph: switch to sock_recvmsg()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 /*
27 * Ceph uses the messenger to exchange ceph_msg messages with other
28 * hosts in the system. The messenger provides ordered and reliable
29 * delivery. We tolerate TCP disconnects by reconnecting (with
30 * exponential backoff) in the case of a fault (disconnection, bad
31 * crc, protocol error). Acks allow sent messages to be discarded by
32 * the sender.
33 */
34
35 /*
36 * We track the state of the socket on a given connection using
37 * values defined below. The transition to a new socket state is
38 * handled by a function which verifies we aren't coming from an
39 * unexpected state.
40 *
41 * --------
42 * | NEW* | transient initial state
43 * --------
44 * | con_sock_state_init()
45 * v
46 * ----------
47 * | CLOSED | initialized, but no socket (and no
48 * ---------- TCP connection)
49 * ^ \
50 * | \ con_sock_state_connecting()
51 * | ----------------------
52 * | \
53 * + con_sock_state_closed() \
54 * |+--------------------------- \
55 * | \ \ \
56 * | ----------- \ \
57 * | | CLOSING | socket event; \ \
58 * | ----------- await close \ \
59 * | ^ \ |
60 * | | \ |
61 * | + con_sock_state_closing() \ |
62 * | / \ | |
63 * | / --------------- | |
64 * | / \ v v
65 * | / --------------
66 * | / -----------------| CONNECTING | socket created, TCP
67 * | | / -------------- connect initiated
68 * | | | con_sock_state_connected()
69 * | | v
70 * -------------
71 * | CONNECTED | TCP connection established
72 * -------------
73 *
74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75 */
76
77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
82
83 /*
84 * connection states
85 */
86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
92
93 /*
94 * ceph_connection flag bits
95 */
96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
97 * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
102
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 switch (con_flag) {
106 case CON_FLAG_LOSSYTX:
107 case CON_FLAG_KEEPALIVE_PENDING:
108 case CON_FLAG_WRITE_PENDING:
109 case CON_FLAG_SOCK_CLOSED:
110 case CON_FLAG_BACKOFF:
111 return true;
112 default:
113 return false;
114 }
115 }
116
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 BUG_ON(!con_flag_valid(con_flag));
120
121 clear_bit(con_flag, &con->flags);
122 }
123
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 BUG_ON(!con_flag_valid(con_flag));
127
128 set_bit(con_flag, &con->flags);
129 }
130
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 BUG_ON(!con_flag_valid(con_flag));
134
135 return test_bit(con_flag, &con->flags);
136 }
137
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 unsigned long con_flag)
140 {
141 BUG_ON(!con_flag_valid(con_flag));
142
143 return test_and_clear_bit(con_flag, &con->flags);
144 }
145
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 unsigned long con_flag)
148 {
149 BUG_ON(!con_flag_valid(con_flag));
150
151 return test_and_set_bit(con_flag, &con->flags);
152 }
153
154 /* Slab caches for frequently-allocated structures */
155
156 static struct kmem_cache *ceph_msg_cache;
157 static struct kmem_cache *ceph_msg_data_cache;
158
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239 if (!ceph_msg_cache)
240 return -ENOMEM;
241
242 BUG_ON(ceph_msg_data_cache);
243 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244 if (ceph_msg_data_cache)
245 return 0;
246
247 kmem_cache_destroy(ceph_msg_cache);
248 ceph_msg_cache = NULL;
249
250 return -ENOMEM;
251 }
252
253 static void ceph_msgr_slab_exit(void)
254 {
255 BUG_ON(!ceph_msg_data_cache);
256 kmem_cache_destroy(ceph_msg_data_cache);
257 ceph_msg_data_cache = NULL;
258
259 BUG_ON(!ceph_msg_cache);
260 kmem_cache_destroy(ceph_msg_cache);
261 ceph_msg_cache = NULL;
262 }
263
264 static void _ceph_msgr_exit(void)
265 {
266 if (ceph_msgr_wq) {
267 destroy_workqueue(ceph_msgr_wq);
268 ceph_msgr_wq = NULL;
269 }
270
271 BUG_ON(zero_page == NULL);
272 put_page(zero_page);
273 zero_page = NULL;
274
275 ceph_msgr_slab_exit();
276 }
277
278 int ceph_msgr_init(void)
279 {
280 if (ceph_msgr_slab_init())
281 return -ENOMEM;
282
283 BUG_ON(zero_page != NULL);
284 zero_page = ZERO_PAGE(0);
285 get_page(zero_page);
286
287 /*
288 * The number of active work items is limited by the number of
289 * connections, so leave @max_active at default.
290 */
291 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292 if (ceph_msgr_wq)
293 return 0;
294
295 pr_err("msgr_init failed to create workqueue\n");
296 _ceph_msgr_exit();
297
298 return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301
302 void ceph_msgr_exit(void)
303 {
304 BUG_ON(ceph_msgr_wq == NULL);
305
306 _ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309
310 void ceph_msgr_flush(void)
311 {
312 flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315
316 /* Connection socket state transition functions */
317
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 printk("%s: unexpected old state %d\n", __func__, old_state);
325 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 CON_SOCK_STATE_CLOSED);
327 }
328
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 int old_state;
332
333 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CONNECTING);
338 }
339
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 int old_state;
343
344 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 printk("%s: unexpected old state %d\n", __func__, old_state);
347 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 CON_SOCK_STATE_CONNECTED);
349 }
350
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 int old_state;
354
355 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 old_state != CON_SOCK_STATE_CONNECTED &&
358 old_state != CON_SOCK_STATE_CLOSING))
359 printk("%s: unexpected old state %d\n", __func__, old_state);
360 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 CON_SOCK_STATE_CLOSING);
362 }
363
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 int old_state;
367
368 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 old_state != CON_SOCK_STATE_CLOSING &&
371 old_state != CON_SOCK_STATE_CONNECTING &&
372 old_state != CON_SOCK_STATE_CLOSED))
373 printk("%s: unexpected old state %d\n", __func__, old_state);
374 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 CON_SOCK_STATE_CLOSED);
376 }
377
378 /*
379 * socket callback functions
380 */
381
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 struct ceph_connection *con = sk->sk_user_data;
386 if (atomic_read(&con->msgr->stopping)) {
387 return;
388 }
389
390 if (sk->sk_state != TCP_CLOSE_WAIT) {
391 dout("%s on %p state = %lu, queueing work\n", __func__,
392 con, con->state);
393 queue_con(con);
394 }
395 }
396
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 struct ceph_connection *con = sk->sk_user_data;
401
402 /* only queue to workqueue if there is data we want to write,
403 * and there is sufficient space in the socket buffer to accept
404 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
405 * doesn't get called again until try_write() fills the socket
406 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 * and net/core/stream.c:sk_stream_write_space().
408 */
409 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 if (sk_stream_is_writeable(sk)) {
411 dout("%s %p queueing write work\n", __func__, con);
412 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 queue_con(con);
414 }
415 } else {
416 dout("%s %p nothing to write\n", __func__, con);
417 }
418 }
419
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 struct ceph_connection *con = sk->sk_user_data;
424
425 dout("%s %p state = %lu sk_state = %u\n", __func__,
426 con, con->state, sk->sk_state);
427
428 switch (sk->sk_state) {
429 case TCP_CLOSE:
430 dout("%s TCP_CLOSE\n", __func__);
431 case TCP_CLOSE_WAIT:
432 dout("%s TCP_CLOSE_WAIT\n", __func__);
433 con_sock_state_closing(con);
434 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435 queue_con(con);
436 break;
437 case TCP_ESTABLISHED:
438 dout("%s TCP_ESTABLISHED\n", __func__);
439 con_sock_state_connected(con);
440 queue_con(con);
441 break;
442 default: /* Everything else is uninteresting */
443 break;
444 }
445 }
446
447 /*
448 * set up socket callbacks
449 */
450 static void set_sock_callbacks(struct socket *sock,
451 struct ceph_connection *con)
452 {
453 struct sock *sk = sock->sk;
454 sk->sk_user_data = con;
455 sk->sk_data_ready = ceph_sock_data_ready;
456 sk->sk_write_space = ceph_sock_write_space;
457 sk->sk_state_change = ceph_sock_state_change;
458 }
459
460
461 /*
462 * socket helpers
463 */
464
465 /*
466 * initiate connection to a remote socket.
467 */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471 struct socket *sock;
472 int ret;
473
474 BUG_ON(con->sock);
475 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476 SOCK_STREAM, IPPROTO_TCP, &sock);
477 if (ret)
478 return ret;
479 sock->sk->sk_allocation = GFP_NOFS;
480
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484
485 set_sock_callbacks(sock, con);
486
487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488
489 con_sock_state_connecting(con);
490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 O_NONBLOCK);
492 if (ret == -EINPROGRESS) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con->peer_addr.in_addr),
495 sock->sk->sk_state);
496 } else if (ret < 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 sock_release(sock);
500 return ret;
501 }
502
503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 int optval = 1;
505
506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 (char *)&optval, sizeof(optval));
508 if (ret)
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 ret);
511 }
512
513 con->sock = sock;
514 return 0;
515 }
516
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
522
523 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
524 r = sock_recvmsg(sock, &msg, msg.msg_flags);
525 if (r == -EAGAIN)
526 r = 0;
527 return r;
528 }
529
530 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
531 int page_offset, size_t length)
532 {
533 struct bio_vec bvec = {
534 .bv_page = page,
535 .bv_offset = page_offset,
536 .bv_len = length
537 };
538 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
539 int r;
540
541 BUG_ON(page_offset + length > PAGE_SIZE);
542 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
543 r = sock_recvmsg(sock, &msg, msg.msg_flags);
544 if (r == -EAGAIN)
545 r = 0;
546 return r;
547 }
548
549 /*
550 * write something. @more is true if caller will be sending more data
551 * shortly.
552 */
553 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
554 size_t kvlen, size_t len, int more)
555 {
556 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
557 int r;
558
559 if (more)
560 msg.msg_flags |= MSG_MORE;
561 else
562 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
563
564 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
565 if (r == -EAGAIN)
566 r = 0;
567 return r;
568 }
569
570 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
571 int offset, size_t size, bool more)
572 {
573 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
574 int ret;
575
576 ret = kernel_sendpage(sock, page, offset, size, flags);
577 if (ret == -EAGAIN)
578 ret = 0;
579
580 return ret;
581 }
582
583 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
584 int offset, size_t size, bool more)
585 {
586 int ret;
587 struct kvec iov;
588
589 /* sendpage cannot properly handle pages with page_count == 0,
590 * we need to fallback to sendmsg if that's the case */
591 if (page_count(page) >= 1)
592 return __ceph_tcp_sendpage(sock, page, offset, size, more);
593
594 iov.iov_base = kmap(page) + offset;
595 iov.iov_len = size;
596 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
597 kunmap(page);
598
599 return ret;
600 }
601
602 /*
603 * Shutdown/close the socket for the given connection.
604 */
605 static int con_close_socket(struct ceph_connection *con)
606 {
607 int rc = 0;
608
609 dout("con_close_socket on %p sock %p\n", con, con->sock);
610 if (con->sock) {
611 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
612 sock_release(con->sock);
613 con->sock = NULL;
614 }
615
616 /*
617 * Forcibly clear the SOCK_CLOSED flag. It gets set
618 * independent of the connection mutex, and we could have
619 * received a socket close event before we had the chance to
620 * shut the socket down.
621 */
622 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
623
624 con_sock_state_closed(con);
625 return rc;
626 }
627
628 /*
629 * Reset a connection. Discard all incoming and outgoing messages
630 * and clear *_seq state.
631 */
632 static void ceph_msg_remove(struct ceph_msg *msg)
633 {
634 list_del_init(&msg->list_head);
635
636 ceph_msg_put(msg);
637 }
638 static void ceph_msg_remove_list(struct list_head *head)
639 {
640 while (!list_empty(head)) {
641 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
642 list_head);
643 ceph_msg_remove(msg);
644 }
645 }
646
647 static void reset_connection(struct ceph_connection *con)
648 {
649 /* reset connection, out_queue, msg_ and connect_seq */
650 /* discard existing out_queue and msg_seq */
651 dout("reset_connection %p\n", con);
652 ceph_msg_remove_list(&con->out_queue);
653 ceph_msg_remove_list(&con->out_sent);
654
655 if (con->in_msg) {
656 BUG_ON(con->in_msg->con != con);
657 ceph_msg_put(con->in_msg);
658 con->in_msg = NULL;
659 }
660
661 con->connect_seq = 0;
662 con->out_seq = 0;
663 if (con->out_msg) {
664 BUG_ON(con->out_msg->con != con);
665 ceph_msg_put(con->out_msg);
666 con->out_msg = NULL;
667 }
668 con->in_seq = 0;
669 con->in_seq_acked = 0;
670
671 con->out_skip = 0;
672 }
673
674 /*
675 * mark a peer down. drop any open connections.
676 */
677 void ceph_con_close(struct ceph_connection *con)
678 {
679 mutex_lock(&con->mutex);
680 dout("con_close %p peer %s\n", con,
681 ceph_pr_addr(&con->peer_addr.in_addr));
682 con->state = CON_STATE_CLOSED;
683
684 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
685 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
686 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
687 con_flag_clear(con, CON_FLAG_BACKOFF);
688
689 reset_connection(con);
690 con->peer_global_seq = 0;
691 cancel_con(con);
692 con_close_socket(con);
693 mutex_unlock(&con->mutex);
694 }
695 EXPORT_SYMBOL(ceph_con_close);
696
697 /*
698 * Reopen a closed connection, with a new peer address.
699 */
700 void ceph_con_open(struct ceph_connection *con,
701 __u8 entity_type, __u64 entity_num,
702 struct ceph_entity_addr *addr)
703 {
704 mutex_lock(&con->mutex);
705 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
706
707 WARN_ON(con->state != CON_STATE_CLOSED);
708 con->state = CON_STATE_PREOPEN;
709
710 con->peer_name.type = (__u8) entity_type;
711 con->peer_name.num = cpu_to_le64(entity_num);
712
713 memcpy(&con->peer_addr, addr, sizeof(*addr));
714 con->delay = 0; /* reset backoff memory */
715 mutex_unlock(&con->mutex);
716 queue_con(con);
717 }
718 EXPORT_SYMBOL(ceph_con_open);
719
720 /*
721 * return true if this connection ever successfully opened
722 */
723 bool ceph_con_opened(struct ceph_connection *con)
724 {
725 return con->connect_seq > 0;
726 }
727
728 /*
729 * initialize a new connection.
730 */
731 void ceph_con_init(struct ceph_connection *con, void *private,
732 const struct ceph_connection_operations *ops,
733 struct ceph_messenger *msgr)
734 {
735 dout("con_init %p\n", con);
736 memset(con, 0, sizeof(*con));
737 con->private = private;
738 con->ops = ops;
739 con->msgr = msgr;
740
741 con_sock_state_init(con);
742
743 mutex_init(&con->mutex);
744 INIT_LIST_HEAD(&con->out_queue);
745 INIT_LIST_HEAD(&con->out_sent);
746 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
747
748 con->state = CON_STATE_CLOSED;
749 }
750 EXPORT_SYMBOL(ceph_con_init);
751
752
753 /*
754 * We maintain a global counter to order connection attempts. Get
755 * a unique seq greater than @gt.
756 */
757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
758 {
759 u32 ret;
760
761 spin_lock(&msgr->global_seq_lock);
762 if (msgr->global_seq < gt)
763 msgr->global_seq = gt;
764 ret = ++msgr->global_seq;
765 spin_unlock(&msgr->global_seq_lock);
766 return ret;
767 }
768
769 static void con_out_kvec_reset(struct ceph_connection *con)
770 {
771 BUG_ON(con->out_skip);
772
773 con->out_kvec_left = 0;
774 con->out_kvec_bytes = 0;
775 con->out_kvec_cur = &con->out_kvec[0];
776 }
777
778 static void con_out_kvec_add(struct ceph_connection *con,
779 size_t size, void *data)
780 {
781 int index = con->out_kvec_left;
782
783 BUG_ON(con->out_skip);
784 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
785
786 con->out_kvec[index].iov_len = size;
787 con->out_kvec[index].iov_base = data;
788 con->out_kvec_left++;
789 con->out_kvec_bytes += size;
790 }
791
792 /*
793 * Chop off a kvec from the end. Return residual number of bytes for
794 * that kvec, i.e. how many bytes would have been written if the kvec
795 * hadn't been nuked.
796 */
797 static int con_out_kvec_skip(struct ceph_connection *con)
798 {
799 int off = con->out_kvec_cur - con->out_kvec;
800 int skip = 0;
801
802 if (con->out_kvec_bytes > 0) {
803 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
804 BUG_ON(con->out_kvec_bytes < skip);
805 BUG_ON(!con->out_kvec_left);
806 con->out_kvec_bytes -= skip;
807 con->out_kvec_left--;
808 }
809
810 return skip;
811 }
812
813 #ifdef CONFIG_BLOCK
814
815 /*
816 * For a bio data item, a piece is whatever remains of the next
817 * entry in the current bio iovec, or the first entry in the next
818 * bio in the list.
819 */
820 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
821 size_t length)
822 {
823 struct ceph_msg_data *data = cursor->data;
824 struct bio *bio;
825
826 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
827
828 bio = data->bio;
829 BUG_ON(!bio);
830
831 cursor->resid = min(length, data->bio_length);
832 cursor->bio = bio;
833 cursor->bvec_iter = bio->bi_iter;
834 cursor->last_piece =
835 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
836 }
837
838 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
839 size_t *page_offset,
840 size_t *length)
841 {
842 struct ceph_msg_data *data = cursor->data;
843 struct bio *bio;
844 struct bio_vec bio_vec;
845
846 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
847
848 bio = cursor->bio;
849 BUG_ON(!bio);
850
851 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
852
853 *page_offset = (size_t) bio_vec.bv_offset;
854 BUG_ON(*page_offset >= PAGE_SIZE);
855 if (cursor->last_piece) /* pagelist offset is always 0 */
856 *length = cursor->resid;
857 else
858 *length = (size_t) bio_vec.bv_len;
859 BUG_ON(*length > cursor->resid);
860 BUG_ON(*page_offset + *length > PAGE_SIZE);
861
862 return bio_vec.bv_page;
863 }
864
865 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
866 size_t bytes)
867 {
868 struct bio *bio;
869 struct bio_vec bio_vec;
870
871 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
872
873 bio = cursor->bio;
874 BUG_ON(!bio);
875
876 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
877
878 /* Advance the cursor offset */
879
880 BUG_ON(cursor->resid < bytes);
881 cursor->resid -= bytes;
882
883 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
884
885 if (bytes < bio_vec.bv_len)
886 return false; /* more bytes to process in this segment */
887
888 /* Move on to the next segment, and possibly the next bio */
889
890 if (!cursor->bvec_iter.bi_size) {
891 bio = bio->bi_next;
892 cursor->bio = bio;
893 if (bio)
894 cursor->bvec_iter = bio->bi_iter;
895 else
896 memset(&cursor->bvec_iter, 0,
897 sizeof(cursor->bvec_iter));
898 }
899
900 if (!cursor->last_piece) {
901 BUG_ON(!cursor->resid);
902 BUG_ON(!bio);
903 /* A short read is OK, so use <= rather than == */
904 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
905 cursor->last_piece = true;
906 }
907
908 return true;
909 }
910 #endif /* CONFIG_BLOCK */
911
912 /*
913 * For a page array, a piece comes from the first page in the array
914 * that has not already been fully consumed.
915 */
916 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
917 size_t length)
918 {
919 struct ceph_msg_data *data = cursor->data;
920 int page_count;
921
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
923
924 BUG_ON(!data->pages);
925 BUG_ON(!data->length);
926
927 cursor->resid = min(length, data->length);
928 page_count = calc_pages_for(data->alignment, (u64)data->length);
929 cursor->page_offset = data->alignment & ~PAGE_MASK;
930 cursor->page_index = 0;
931 BUG_ON(page_count > (int)USHRT_MAX);
932 cursor->page_count = (unsigned short)page_count;
933 BUG_ON(length > SIZE_MAX - cursor->page_offset);
934 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
935 }
936
937 static struct page *
938 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
939 size_t *page_offset, size_t *length)
940 {
941 struct ceph_msg_data *data = cursor->data;
942
943 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
944
945 BUG_ON(cursor->page_index >= cursor->page_count);
946 BUG_ON(cursor->page_offset >= PAGE_SIZE);
947
948 *page_offset = cursor->page_offset;
949 if (cursor->last_piece)
950 *length = cursor->resid;
951 else
952 *length = PAGE_SIZE - *page_offset;
953
954 return data->pages[cursor->page_index];
955 }
956
957 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
958 size_t bytes)
959 {
960 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
961
962 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
963
964 /* Advance the cursor page offset */
965
966 cursor->resid -= bytes;
967 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
968 if (!bytes || cursor->page_offset)
969 return false; /* more bytes to process in the current page */
970
971 if (!cursor->resid)
972 return false; /* no more data */
973
974 /* Move on to the next page; offset is already at 0 */
975
976 BUG_ON(cursor->page_index >= cursor->page_count);
977 cursor->page_index++;
978 cursor->last_piece = cursor->resid <= PAGE_SIZE;
979
980 return true;
981 }
982
983 /*
984 * For a pagelist, a piece is whatever remains to be consumed in the
985 * first page in the list, or the front of the next page.
986 */
987 static void
988 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
989 size_t length)
990 {
991 struct ceph_msg_data *data = cursor->data;
992 struct ceph_pagelist *pagelist;
993 struct page *page;
994
995 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
996
997 pagelist = data->pagelist;
998 BUG_ON(!pagelist);
999
1000 if (!length)
1001 return; /* pagelist can be assigned but empty */
1002
1003 BUG_ON(list_empty(&pagelist->head));
1004 page = list_first_entry(&pagelist->head, struct page, lru);
1005
1006 cursor->resid = min(length, pagelist->length);
1007 cursor->page = page;
1008 cursor->offset = 0;
1009 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1010 }
1011
1012 static struct page *
1013 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1014 size_t *page_offset, size_t *length)
1015 {
1016 struct ceph_msg_data *data = cursor->data;
1017 struct ceph_pagelist *pagelist;
1018
1019 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1020
1021 pagelist = data->pagelist;
1022 BUG_ON(!pagelist);
1023
1024 BUG_ON(!cursor->page);
1025 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1026
1027 /* offset of first page in pagelist is always 0 */
1028 *page_offset = cursor->offset & ~PAGE_MASK;
1029 if (cursor->last_piece)
1030 *length = cursor->resid;
1031 else
1032 *length = PAGE_SIZE - *page_offset;
1033
1034 return cursor->page;
1035 }
1036
1037 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1038 size_t bytes)
1039 {
1040 struct ceph_msg_data *data = cursor->data;
1041 struct ceph_pagelist *pagelist;
1042
1043 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1044
1045 pagelist = data->pagelist;
1046 BUG_ON(!pagelist);
1047
1048 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1049 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1050
1051 /* Advance the cursor offset */
1052
1053 cursor->resid -= bytes;
1054 cursor->offset += bytes;
1055 /* offset of first page in pagelist is always 0 */
1056 if (!bytes || cursor->offset & ~PAGE_MASK)
1057 return false; /* more bytes to process in the current page */
1058
1059 if (!cursor->resid)
1060 return false; /* no more data */
1061
1062 /* Move on to the next page */
1063
1064 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1065 cursor->page = list_next_entry(cursor->page, lru);
1066 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Message data is handled (sent or received) in pieces, where each
1073 * piece resides on a single page. The network layer might not
1074 * consume an entire piece at once. A data item's cursor keeps
1075 * track of which piece is next to process and how much remains to
1076 * be processed in that piece. It also tracks whether the current
1077 * piece is the last one in the data item.
1078 */
1079 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1080 {
1081 size_t length = cursor->total_resid;
1082
1083 switch (cursor->data->type) {
1084 case CEPH_MSG_DATA_PAGELIST:
1085 ceph_msg_data_pagelist_cursor_init(cursor, length);
1086 break;
1087 case CEPH_MSG_DATA_PAGES:
1088 ceph_msg_data_pages_cursor_init(cursor, length);
1089 break;
1090 #ifdef CONFIG_BLOCK
1091 case CEPH_MSG_DATA_BIO:
1092 ceph_msg_data_bio_cursor_init(cursor, length);
1093 break;
1094 #endif /* CONFIG_BLOCK */
1095 case CEPH_MSG_DATA_NONE:
1096 default:
1097 /* BUG(); */
1098 break;
1099 }
1100 cursor->need_crc = true;
1101 }
1102
1103 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1104 {
1105 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1106 struct ceph_msg_data *data;
1107
1108 BUG_ON(!length);
1109 BUG_ON(length > msg->data_length);
1110 BUG_ON(list_empty(&msg->data));
1111
1112 cursor->data_head = &msg->data;
1113 cursor->total_resid = length;
1114 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1115 cursor->data = data;
1116
1117 __ceph_msg_data_cursor_init(cursor);
1118 }
1119
1120 /*
1121 * Return the page containing the next piece to process for a given
1122 * data item, and supply the page offset and length of that piece.
1123 * Indicate whether this is the last piece in this data item.
1124 */
1125 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1126 size_t *page_offset, size_t *length,
1127 bool *last_piece)
1128 {
1129 struct page *page;
1130
1131 switch (cursor->data->type) {
1132 case CEPH_MSG_DATA_PAGELIST:
1133 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1134 break;
1135 case CEPH_MSG_DATA_PAGES:
1136 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1137 break;
1138 #ifdef CONFIG_BLOCK
1139 case CEPH_MSG_DATA_BIO:
1140 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1141 break;
1142 #endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_NONE:
1144 default:
1145 page = NULL;
1146 break;
1147 }
1148 BUG_ON(!page);
1149 BUG_ON(*page_offset + *length > PAGE_SIZE);
1150 BUG_ON(!*length);
1151 if (last_piece)
1152 *last_piece = cursor->last_piece;
1153
1154 return page;
1155 }
1156
1157 /*
1158 * Returns true if the result moves the cursor on to the next piece
1159 * of the data item.
1160 */
1161 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1162 size_t bytes)
1163 {
1164 bool new_piece;
1165
1166 BUG_ON(bytes > cursor->resid);
1167 switch (cursor->data->type) {
1168 case CEPH_MSG_DATA_PAGELIST:
1169 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1170 break;
1171 case CEPH_MSG_DATA_PAGES:
1172 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1173 break;
1174 #ifdef CONFIG_BLOCK
1175 case CEPH_MSG_DATA_BIO:
1176 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1177 break;
1178 #endif /* CONFIG_BLOCK */
1179 case CEPH_MSG_DATA_NONE:
1180 default:
1181 BUG();
1182 break;
1183 }
1184 cursor->total_resid -= bytes;
1185
1186 if (!cursor->resid && cursor->total_resid) {
1187 WARN_ON(!cursor->last_piece);
1188 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1189 cursor->data = list_next_entry(cursor->data, links);
1190 __ceph_msg_data_cursor_init(cursor);
1191 new_piece = true;
1192 }
1193 cursor->need_crc = new_piece;
1194
1195 return new_piece;
1196 }
1197
1198 static size_t sizeof_footer(struct ceph_connection *con)
1199 {
1200 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1201 sizeof(struct ceph_msg_footer) :
1202 sizeof(struct ceph_msg_footer_old);
1203 }
1204
1205 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1206 {
1207 BUG_ON(!msg);
1208 BUG_ON(!data_len);
1209
1210 /* Initialize data cursor */
1211
1212 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1213 }
1214
1215 /*
1216 * Prepare footer for currently outgoing message, and finish things
1217 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1218 */
1219 static void prepare_write_message_footer(struct ceph_connection *con)
1220 {
1221 struct ceph_msg *m = con->out_msg;
1222
1223 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1224
1225 dout("prepare_write_message_footer %p\n", con);
1226 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1227 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1228 if (con->ops->sign_message)
1229 con->ops->sign_message(m);
1230 else
1231 m->footer.sig = 0;
1232 } else {
1233 m->old_footer.flags = m->footer.flags;
1234 }
1235 con->out_more = m->more_to_follow;
1236 con->out_msg_done = true;
1237 }
1238
1239 /*
1240 * Prepare headers for the next outgoing message.
1241 */
1242 static void prepare_write_message(struct ceph_connection *con)
1243 {
1244 struct ceph_msg *m;
1245 u32 crc;
1246
1247 con_out_kvec_reset(con);
1248 con->out_msg_done = false;
1249
1250 /* Sneak an ack in there first? If we can get it into the same
1251 * TCP packet that's a good thing. */
1252 if (con->in_seq > con->in_seq_acked) {
1253 con->in_seq_acked = con->in_seq;
1254 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1255 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1256 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1257 &con->out_temp_ack);
1258 }
1259
1260 BUG_ON(list_empty(&con->out_queue));
1261 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1262 con->out_msg = m;
1263 BUG_ON(m->con != con);
1264
1265 /* put message on sent list */
1266 ceph_msg_get(m);
1267 list_move_tail(&m->list_head, &con->out_sent);
1268
1269 /*
1270 * only assign outgoing seq # if we haven't sent this message
1271 * yet. if it is requeued, resend with it's original seq.
1272 */
1273 if (m->needs_out_seq) {
1274 m->hdr.seq = cpu_to_le64(++con->out_seq);
1275 m->needs_out_seq = false;
1276 }
1277 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1278
1279 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1280 m, con->out_seq, le16_to_cpu(m->hdr.type),
1281 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1282 m->data_length);
1283 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1284
1285 /* tag + hdr + front + middle */
1286 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1287 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1288 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1289
1290 if (m->middle)
1291 con_out_kvec_add(con, m->middle->vec.iov_len,
1292 m->middle->vec.iov_base);
1293
1294 /* fill in hdr crc and finalize hdr */
1295 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1296 con->out_msg->hdr.crc = cpu_to_le32(crc);
1297 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1298
1299 /* fill in front and middle crc, footer */
1300 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1301 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1302 if (m->middle) {
1303 crc = crc32c(0, m->middle->vec.iov_base,
1304 m->middle->vec.iov_len);
1305 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1306 } else
1307 con->out_msg->footer.middle_crc = 0;
1308 dout("%s front_crc %u middle_crc %u\n", __func__,
1309 le32_to_cpu(con->out_msg->footer.front_crc),
1310 le32_to_cpu(con->out_msg->footer.middle_crc));
1311 con->out_msg->footer.flags = 0;
1312
1313 /* is there a data payload? */
1314 con->out_msg->footer.data_crc = 0;
1315 if (m->data_length) {
1316 prepare_message_data(con->out_msg, m->data_length);
1317 con->out_more = 1; /* data + footer will follow */
1318 } else {
1319 /* no, queue up footer too and be done */
1320 prepare_write_message_footer(con);
1321 }
1322
1323 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1324 }
1325
1326 /*
1327 * Prepare an ack.
1328 */
1329 static void prepare_write_ack(struct ceph_connection *con)
1330 {
1331 dout("prepare_write_ack %p %llu -> %llu\n", con,
1332 con->in_seq_acked, con->in_seq);
1333 con->in_seq_acked = con->in_seq;
1334
1335 con_out_kvec_reset(con);
1336
1337 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1338
1339 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1340 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1341 &con->out_temp_ack);
1342
1343 con->out_more = 1; /* more will follow.. eventually.. */
1344 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1345 }
1346
1347 /*
1348 * Prepare to share the seq during handshake
1349 */
1350 static void prepare_write_seq(struct ceph_connection *con)
1351 {
1352 dout("prepare_write_seq %p %llu -> %llu\n", con,
1353 con->in_seq_acked, con->in_seq);
1354 con->in_seq_acked = con->in_seq;
1355
1356 con_out_kvec_reset(con);
1357
1358 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1359 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1360 &con->out_temp_ack);
1361
1362 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1363 }
1364
1365 /*
1366 * Prepare to write keepalive byte.
1367 */
1368 static void prepare_write_keepalive(struct ceph_connection *con)
1369 {
1370 dout("prepare_write_keepalive %p\n", con);
1371 con_out_kvec_reset(con);
1372 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1373 struct timespec now = CURRENT_TIME;
1374
1375 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1376 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1377 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1378 &con->out_temp_keepalive2);
1379 } else {
1380 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1381 }
1382 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1383 }
1384
1385 /*
1386 * Connection negotiation.
1387 */
1388
1389 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1390 int *auth_proto)
1391 {
1392 struct ceph_auth_handshake *auth;
1393
1394 if (!con->ops->get_authorizer) {
1395 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1396 con->out_connect.authorizer_len = 0;
1397 return NULL;
1398 }
1399
1400 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1401 if (IS_ERR(auth))
1402 return auth;
1403
1404 con->auth_reply_buf = auth->authorizer_reply_buf;
1405 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1406 return auth;
1407 }
1408
1409 /*
1410 * We connected to a peer and are saying hello.
1411 */
1412 static void prepare_write_banner(struct ceph_connection *con)
1413 {
1414 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1415 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1416 &con->msgr->my_enc_addr);
1417
1418 con->out_more = 0;
1419 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1420 }
1421
1422 static int prepare_write_connect(struct ceph_connection *con)
1423 {
1424 unsigned int global_seq = get_global_seq(con->msgr, 0);
1425 int proto;
1426 int auth_proto;
1427 struct ceph_auth_handshake *auth;
1428
1429 switch (con->peer_name.type) {
1430 case CEPH_ENTITY_TYPE_MON:
1431 proto = CEPH_MONC_PROTOCOL;
1432 break;
1433 case CEPH_ENTITY_TYPE_OSD:
1434 proto = CEPH_OSDC_PROTOCOL;
1435 break;
1436 case CEPH_ENTITY_TYPE_MDS:
1437 proto = CEPH_MDSC_PROTOCOL;
1438 break;
1439 default:
1440 BUG();
1441 }
1442
1443 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1444 con->connect_seq, global_seq, proto);
1445
1446 con->out_connect.features =
1447 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1448 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1449 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1450 con->out_connect.global_seq = cpu_to_le32(global_seq);
1451 con->out_connect.protocol_version = cpu_to_le32(proto);
1452 con->out_connect.flags = 0;
1453
1454 auth_proto = CEPH_AUTH_UNKNOWN;
1455 auth = get_connect_authorizer(con, &auth_proto);
1456 if (IS_ERR(auth))
1457 return PTR_ERR(auth);
1458
1459 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1460 con->out_connect.authorizer_len = auth ?
1461 cpu_to_le32(auth->authorizer_buf_len) : 0;
1462
1463 con_out_kvec_add(con, sizeof (con->out_connect),
1464 &con->out_connect);
1465 if (auth && auth->authorizer_buf_len)
1466 con_out_kvec_add(con, auth->authorizer_buf_len,
1467 auth->authorizer_buf);
1468
1469 con->out_more = 0;
1470 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1471
1472 return 0;
1473 }
1474
1475 /*
1476 * write as much of pending kvecs to the socket as we can.
1477 * 1 -> done
1478 * 0 -> socket full, but more to do
1479 * <0 -> error
1480 */
1481 static int write_partial_kvec(struct ceph_connection *con)
1482 {
1483 int ret;
1484
1485 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1486 while (con->out_kvec_bytes > 0) {
1487 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1488 con->out_kvec_left, con->out_kvec_bytes,
1489 con->out_more);
1490 if (ret <= 0)
1491 goto out;
1492 con->out_kvec_bytes -= ret;
1493 if (con->out_kvec_bytes == 0)
1494 break; /* done */
1495
1496 /* account for full iov entries consumed */
1497 while (ret >= con->out_kvec_cur->iov_len) {
1498 BUG_ON(!con->out_kvec_left);
1499 ret -= con->out_kvec_cur->iov_len;
1500 con->out_kvec_cur++;
1501 con->out_kvec_left--;
1502 }
1503 /* and for a partially-consumed entry */
1504 if (ret) {
1505 con->out_kvec_cur->iov_len -= ret;
1506 con->out_kvec_cur->iov_base += ret;
1507 }
1508 }
1509 con->out_kvec_left = 0;
1510 ret = 1;
1511 out:
1512 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1513 con->out_kvec_bytes, con->out_kvec_left, ret);
1514 return ret; /* done! */
1515 }
1516
1517 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1518 unsigned int page_offset,
1519 unsigned int length)
1520 {
1521 char *kaddr;
1522
1523 kaddr = kmap(page);
1524 BUG_ON(kaddr == NULL);
1525 crc = crc32c(crc, kaddr + page_offset, length);
1526 kunmap(page);
1527
1528 return crc;
1529 }
1530 /*
1531 * Write as much message data payload as we can. If we finish, queue
1532 * up the footer.
1533 * 1 -> done, footer is now queued in out_kvec[].
1534 * 0 -> socket full, but more to do
1535 * <0 -> error
1536 */
1537 static int write_partial_message_data(struct ceph_connection *con)
1538 {
1539 struct ceph_msg *msg = con->out_msg;
1540 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1541 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1542 u32 crc;
1543
1544 dout("%s %p msg %p\n", __func__, con, msg);
1545
1546 if (list_empty(&msg->data))
1547 return -EINVAL;
1548
1549 /*
1550 * Iterate through each page that contains data to be
1551 * written, and send as much as possible for each.
1552 *
1553 * If we are calculating the data crc (the default), we will
1554 * need to map the page. If we have no pages, they have
1555 * been revoked, so use the zero page.
1556 */
1557 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1558 while (cursor->resid) {
1559 struct page *page;
1560 size_t page_offset;
1561 size_t length;
1562 bool last_piece;
1563 bool need_crc;
1564 int ret;
1565
1566 page = ceph_msg_data_next(cursor, &page_offset, &length,
1567 &last_piece);
1568 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1569 length, !last_piece);
1570 if (ret <= 0) {
1571 if (do_datacrc)
1572 msg->footer.data_crc = cpu_to_le32(crc);
1573
1574 return ret;
1575 }
1576 if (do_datacrc && cursor->need_crc)
1577 crc = ceph_crc32c_page(crc, page, page_offset, length);
1578 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1579 }
1580
1581 dout("%s %p msg %p done\n", __func__, con, msg);
1582
1583 /* prepare and queue up footer, too */
1584 if (do_datacrc)
1585 msg->footer.data_crc = cpu_to_le32(crc);
1586 else
1587 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1588 con_out_kvec_reset(con);
1589 prepare_write_message_footer(con);
1590
1591 return 1; /* must return > 0 to indicate success */
1592 }
1593
1594 /*
1595 * write some zeros
1596 */
1597 static int write_partial_skip(struct ceph_connection *con)
1598 {
1599 int ret;
1600
1601 dout("%s %p %d left\n", __func__, con, con->out_skip);
1602 while (con->out_skip > 0) {
1603 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1604
1605 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1606 if (ret <= 0)
1607 goto out;
1608 con->out_skip -= ret;
1609 }
1610 ret = 1;
1611 out:
1612 return ret;
1613 }
1614
1615 /*
1616 * Prepare to read connection handshake, or an ack.
1617 */
1618 static void prepare_read_banner(struct ceph_connection *con)
1619 {
1620 dout("prepare_read_banner %p\n", con);
1621 con->in_base_pos = 0;
1622 }
1623
1624 static void prepare_read_connect(struct ceph_connection *con)
1625 {
1626 dout("prepare_read_connect %p\n", con);
1627 con->in_base_pos = 0;
1628 }
1629
1630 static void prepare_read_ack(struct ceph_connection *con)
1631 {
1632 dout("prepare_read_ack %p\n", con);
1633 con->in_base_pos = 0;
1634 }
1635
1636 static void prepare_read_seq(struct ceph_connection *con)
1637 {
1638 dout("prepare_read_seq %p\n", con);
1639 con->in_base_pos = 0;
1640 con->in_tag = CEPH_MSGR_TAG_SEQ;
1641 }
1642
1643 static void prepare_read_tag(struct ceph_connection *con)
1644 {
1645 dout("prepare_read_tag %p\n", con);
1646 con->in_base_pos = 0;
1647 con->in_tag = CEPH_MSGR_TAG_READY;
1648 }
1649
1650 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1651 {
1652 dout("prepare_read_keepalive_ack %p\n", con);
1653 con->in_base_pos = 0;
1654 }
1655
1656 /*
1657 * Prepare to read a message.
1658 */
1659 static int prepare_read_message(struct ceph_connection *con)
1660 {
1661 dout("prepare_read_message %p\n", con);
1662 BUG_ON(con->in_msg != NULL);
1663 con->in_base_pos = 0;
1664 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1665 return 0;
1666 }
1667
1668
1669 static int read_partial(struct ceph_connection *con,
1670 int end, int size, void *object)
1671 {
1672 while (con->in_base_pos < end) {
1673 int left = end - con->in_base_pos;
1674 int have = size - left;
1675 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1676 if (ret <= 0)
1677 return ret;
1678 con->in_base_pos += ret;
1679 }
1680 return 1;
1681 }
1682
1683
1684 /*
1685 * Read all or part of the connect-side handshake on a new connection
1686 */
1687 static int read_partial_banner(struct ceph_connection *con)
1688 {
1689 int size;
1690 int end;
1691 int ret;
1692
1693 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1694
1695 /* peer's banner */
1696 size = strlen(CEPH_BANNER);
1697 end = size;
1698 ret = read_partial(con, end, size, con->in_banner);
1699 if (ret <= 0)
1700 goto out;
1701
1702 size = sizeof (con->actual_peer_addr);
1703 end += size;
1704 ret = read_partial(con, end, size, &con->actual_peer_addr);
1705 if (ret <= 0)
1706 goto out;
1707
1708 size = sizeof (con->peer_addr_for_me);
1709 end += size;
1710 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1711 if (ret <= 0)
1712 goto out;
1713
1714 out:
1715 return ret;
1716 }
1717
1718 static int read_partial_connect(struct ceph_connection *con)
1719 {
1720 int size;
1721 int end;
1722 int ret;
1723
1724 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1725
1726 size = sizeof (con->in_reply);
1727 end = size;
1728 ret = read_partial(con, end, size, &con->in_reply);
1729 if (ret <= 0)
1730 goto out;
1731
1732 size = le32_to_cpu(con->in_reply.authorizer_len);
1733 end += size;
1734 ret = read_partial(con, end, size, con->auth_reply_buf);
1735 if (ret <= 0)
1736 goto out;
1737
1738 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1739 con, (int)con->in_reply.tag,
1740 le32_to_cpu(con->in_reply.connect_seq),
1741 le32_to_cpu(con->in_reply.global_seq));
1742 out:
1743 return ret;
1744
1745 }
1746
1747 /*
1748 * Verify the hello banner looks okay.
1749 */
1750 static int verify_hello(struct ceph_connection *con)
1751 {
1752 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1753 pr_err("connect to %s got bad banner\n",
1754 ceph_pr_addr(&con->peer_addr.in_addr));
1755 con->error_msg = "protocol error, bad banner";
1756 return -1;
1757 }
1758 return 0;
1759 }
1760
1761 static bool addr_is_blank(struct sockaddr_storage *ss)
1762 {
1763 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1764 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1765
1766 switch (ss->ss_family) {
1767 case AF_INET:
1768 return addr->s_addr == htonl(INADDR_ANY);
1769 case AF_INET6:
1770 return ipv6_addr_any(addr6);
1771 default:
1772 return true;
1773 }
1774 }
1775
1776 static int addr_port(struct sockaddr_storage *ss)
1777 {
1778 switch (ss->ss_family) {
1779 case AF_INET:
1780 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1781 case AF_INET6:
1782 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1783 }
1784 return 0;
1785 }
1786
1787 static void addr_set_port(struct sockaddr_storage *ss, int p)
1788 {
1789 switch (ss->ss_family) {
1790 case AF_INET:
1791 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1792 break;
1793 case AF_INET6:
1794 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1795 break;
1796 }
1797 }
1798
1799 /*
1800 * Unlike other *_pton function semantics, zero indicates success.
1801 */
1802 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1803 char delim, const char **ipend)
1804 {
1805 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1806 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1807
1808 memset(ss, 0, sizeof(*ss));
1809
1810 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1811 ss->ss_family = AF_INET;
1812 return 0;
1813 }
1814
1815 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1816 ss->ss_family = AF_INET6;
1817 return 0;
1818 }
1819
1820 return -EINVAL;
1821 }
1822
1823 /*
1824 * Extract hostname string and resolve using kernel DNS facility.
1825 */
1826 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1827 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1828 struct sockaddr_storage *ss, char delim, const char **ipend)
1829 {
1830 const char *end, *delim_p;
1831 char *colon_p, *ip_addr = NULL;
1832 int ip_len, ret;
1833
1834 /*
1835 * The end of the hostname occurs immediately preceding the delimiter or
1836 * the port marker (':') where the delimiter takes precedence.
1837 */
1838 delim_p = memchr(name, delim, namelen);
1839 colon_p = memchr(name, ':', namelen);
1840
1841 if (delim_p && colon_p)
1842 end = delim_p < colon_p ? delim_p : colon_p;
1843 else if (!delim_p && colon_p)
1844 end = colon_p;
1845 else {
1846 end = delim_p;
1847 if (!end) /* case: hostname:/ */
1848 end = name + namelen;
1849 }
1850
1851 if (end <= name)
1852 return -EINVAL;
1853
1854 /* do dns_resolve upcall */
1855 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1856 if (ip_len > 0)
1857 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1858 else
1859 ret = -ESRCH;
1860
1861 kfree(ip_addr);
1862
1863 *ipend = end;
1864
1865 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1866 ret, ret ? "failed" : ceph_pr_addr(ss));
1867
1868 return ret;
1869 }
1870 #else
1871 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1872 struct sockaddr_storage *ss, char delim, const char **ipend)
1873 {
1874 return -EINVAL;
1875 }
1876 #endif
1877
1878 /*
1879 * Parse a server name (IP or hostname). If a valid IP address is not found
1880 * then try to extract a hostname to resolve using userspace DNS upcall.
1881 */
1882 static int ceph_parse_server_name(const char *name, size_t namelen,
1883 struct sockaddr_storage *ss, char delim, const char **ipend)
1884 {
1885 int ret;
1886
1887 ret = ceph_pton(name, namelen, ss, delim, ipend);
1888 if (ret)
1889 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1890
1891 return ret;
1892 }
1893
1894 /*
1895 * Parse an ip[:port] list into an addr array. Use the default
1896 * monitor port if a port isn't specified.
1897 */
1898 int ceph_parse_ips(const char *c, const char *end,
1899 struct ceph_entity_addr *addr,
1900 int max_count, int *count)
1901 {
1902 int i, ret = -EINVAL;
1903 const char *p = c;
1904
1905 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1906 for (i = 0; i < max_count; i++) {
1907 const char *ipend;
1908 struct sockaddr_storage *ss = &addr[i].in_addr;
1909 int port;
1910 char delim = ',';
1911
1912 if (*p == '[') {
1913 delim = ']';
1914 p++;
1915 }
1916
1917 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1918 if (ret)
1919 goto bad;
1920 ret = -EINVAL;
1921
1922 p = ipend;
1923
1924 if (delim == ']') {
1925 if (*p != ']') {
1926 dout("missing matching ']'\n");
1927 goto bad;
1928 }
1929 p++;
1930 }
1931
1932 /* port? */
1933 if (p < end && *p == ':') {
1934 port = 0;
1935 p++;
1936 while (p < end && *p >= '0' && *p <= '9') {
1937 port = (port * 10) + (*p - '0');
1938 p++;
1939 }
1940 if (port == 0)
1941 port = CEPH_MON_PORT;
1942 else if (port > 65535)
1943 goto bad;
1944 } else {
1945 port = CEPH_MON_PORT;
1946 }
1947
1948 addr_set_port(ss, port);
1949
1950 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1951
1952 if (p == end)
1953 break;
1954 if (*p != ',')
1955 goto bad;
1956 p++;
1957 }
1958
1959 if (p != end)
1960 goto bad;
1961
1962 if (count)
1963 *count = i + 1;
1964 return 0;
1965
1966 bad:
1967 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1968 return ret;
1969 }
1970 EXPORT_SYMBOL(ceph_parse_ips);
1971
1972 static int process_banner(struct ceph_connection *con)
1973 {
1974 dout("process_banner on %p\n", con);
1975
1976 if (verify_hello(con) < 0)
1977 return -1;
1978
1979 ceph_decode_addr(&con->actual_peer_addr);
1980 ceph_decode_addr(&con->peer_addr_for_me);
1981
1982 /*
1983 * Make sure the other end is who we wanted. note that the other
1984 * end may not yet know their ip address, so if it's 0.0.0.0, give
1985 * them the benefit of the doubt.
1986 */
1987 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1988 sizeof(con->peer_addr)) != 0 &&
1989 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1990 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1991 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1992 ceph_pr_addr(&con->peer_addr.in_addr),
1993 (int)le32_to_cpu(con->peer_addr.nonce),
1994 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1995 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1996 con->error_msg = "wrong peer at address";
1997 return -1;
1998 }
1999
2000 /*
2001 * did we learn our address?
2002 */
2003 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2004 int port = addr_port(&con->msgr->inst.addr.in_addr);
2005
2006 memcpy(&con->msgr->inst.addr.in_addr,
2007 &con->peer_addr_for_me.in_addr,
2008 sizeof(con->peer_addr_for_me.in_addr));
2009 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2010 encode_my_addr(con->msgr);
2011 dout("process_banner learned my addr is %s\n",
2012 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2013 }
2014
2015 return 0;
2016 }
2017
2018 static int process_connect(struct ceph_connection *con)
2019 {
2020 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2021 u64 req_feat = from_msgr(con->msgr)->required_features;
2022 u64 server_feat = ceph_sanitize_features(
2023 le64_to_cpu(con->in_reply.features));
2024 int ret;
2025
2026 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2027
2028 if (con->auth_reply_buf) {
2029 /*
2030 * Any connection that defines ->get_authorizer()
2031 * should also define ->verify_authorizer_reply().
2032 * See get_connect_authorizer().
2033 */
2034 ret = con->ops->verify_authorizer_reply(con);
2035 if (ret < 0) {
2036 con->error_msg = "bad authorize reply";
2037 return ret;
2038 }
2039 }
2040
2041 switch (con->in_reply.tag) {
2042 case CEPH_MSGR_TAG_FEATURES:
2043 pr_err("%s%lld %s feature set mismatch,"
2044 " my %llx < server's %llx, missing %llx\n",
2045 ENTITY_NAME(con->peer_name),
2046 ceph_pr_addr(&con->peer_addr.in_addr),
2047 sup_feat, server_feat, server_feat & ~sup_feat);
2048 con->error_msg = "missing required protocol features";
2049 reset_connection(con);
2050 return -1;
2051
2052 case CEPH_MSGR_TAG_BADPROTOVER:
2053 pr_err("%s%lld %s protocol version mismatch,"
2054 " my %d != server's %d\n",
2055 ENTITY_NAME(con->peer_name),
2056 ceph_pr_addr(&con->peer_addr.in_addr),
2057 le32_to_cpu(con->out_connect.protocol_version),
2058 le32_to_cpu(con->in_reply.protocol_version));
2059 con->error_msg = "protocol version mismatch";
2060 reset_connection(con);
2061 return -1;
2062
2063 case CEPH_MSGR_TAG_BADAUTHORIZER:
2064 con->auth_retry++;
2065 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2066 con->auth_retry);
2067 if (con->auth_retry == 2) {
2068 con->error_msg = "connect authorization failure";
2069 return -1;
2070 }
2071 con_out_kvec_reset(con);
2072 ret = prepare_write_connect(con);
2073 if (ret < 0)
2074 return ret;
2075 prepare_read_connect(con);
2076 break;
2077
2078 case CEPH_MSGR_TAG_RESETSESSION:
2079 /*
2080 * If we connected with a large connect_seq but the peer
2081 * has no record of a session with us (no connection, or
2082 * connect_seq == 0), they will send RESETSESION to indicate
2083 * that they must have reset their session, and may have
2084 * dropped messages.
2085 */
2086 dout("process_connect got RESET peer seq %u\n",
2087 le32_to_cpu(con->in_reply.connect_seq));
2088 pr_err("%s%lld %s connection reset\n",
2089 ENTITY_NAME(con->peer_name),
2090 ceph_pr_addr(&con->peer_addr.in_addr));
2091 reset_connection(con);
2092 con_out_kvec_reset(con);
2093 ret = prepare_write_connect(con);
2094 if (ret < 0)
2095 return ret;
2096 prepare_read_connect(con);
2097
2098 /* Tell ceph about it. */
2099 mutex_unlock(&con->mutex);
2100 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2101 if (con->ops->peer_reset)
2102 con->ops->peer_reset(con);
2103 mutex_lock(&con->mutex);
2104 if (con->state != CON_STATE_NEGOTIATING)
2105 return -EAGAIN;
2106 break;
2107
2108 case CEPH_MSGR_TAG_RETRY_SESSION:
2109 /*
2110 * If we sent a smaller connect_seq than the peer has, try
2111 * again with a larger value.
2112 */
2113 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2114 le32_to_cpu(con->out_connect.connect_seq),
2115 le32_to_cpu(con->in_reply.connect_seq));
2116 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2117 con_out_kvec_reset(con);
2118 ret = prepare_write_connect(con);
2119 if (ret < 0)
2120 return ret;
2121 prepare_read_connect(con);
2122 break;
2123
2124 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2125 /*
2126 * If we sent a smaller global_seq than the peer has, try
2127 * again with a larger value.
2128 */
2129 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2130 con->peer_global_seq,
2131 le32_to_cpu(con->in_reply.global_seq));
2132 get_global_seq(con->msgr,
2133 le32_to_cpu(con->in_reply.global_seq));
2134 con_out_kvec_reset(con);
2135 ret = prepare_write_connect(con);
2136 if (ret < 0)
2137 return ret;
2138 prepare_read_connect(con);
2139 break;
2140
2141 case CEPH_MSGR_TAG_SEQ:
2142 case CEPH_MSGR_TAG_READY:
2143 if (req_feat & ~server_feat) {
2144 pr_err("%s%lld %s protocol feature mismatch,"
2145 " my required %llx > server's %llx, need %llx\n",
2146 ENTITY_NAME(con->peer_name),
2147 ceph_pr_addr(&con->peer_addr.in_addr),
2148 req_feat, server_feat, req_feat & ~server_feat);
2149 con->error_msg = "missing required protocol features";
2150 reset_connection(con);
2151 return -1;
2152 }
2153
2154 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2155 con->state = CON_STATE_OPEN;
2156 con->auth_retry = 0; /* we authenticated; clear flag */
2157 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2158 con->connect_seq++;
2159 con->peer_features = server_feat;
2160 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2161 con->peer_global_seq,
2162 le32_to_cpu(con->in_reply.connect_seq),
2163 con->connect_seq);
2164 WARN_ON(con->connect_seq !=
2165 le32_to_cpu(con->in_reply.connect_seq));
2166
2167 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2168 con_flag_set(con, CON_FLAG_LOSSYTX);
2169
2170 con->delay = 0; /* reset backoff memory */
2171
2172 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2173 prepare_write_seq(con);
2174 prepare_read_seq(con);
2175 } else {
2176 prepare_read_tag(con);
2177 }
2178 break;
2179
2180 case CEPH_MSGR_TAG_WAIT:
2181 /*
2182 * If there is a connection race (we are opening
2183 * connections to each other), one of us may just have
2184 * to WAIT. This shouldn't happen if we are the
2185 * client.
2186 */
2187 con->error_msg = "protocol error, got WAIT as client";
2188 return -1;
2189
2190 default:
2191 con->error_msg = "protocol error, garbage tag during connect";
2192 return -1;
2193 }
2194 return 0;
2195 }
2196
2197
2198 /*
2199 * read (part of) an ack
2200 */
2201 static int read_partial_ack(struct ceph_connection *con)
2202 {
2203 int size = sizeof (con->in_temp_ack);
2204 int end = size;
2205
2206 return read_partial(con, end, size, &con->in_temp_ack);
2207 }
2208
2209 /*
2210 * We can finally discard anything that's been acked.
2211 */
2212 static void process_ack(struct ceph_connection *con)
2213 {
2214 struct ceph_msg *m;
2215 u64 ack = le64_to_cpu(con->in_temp_ack);
2216 u64 seq;
2217
2218 while (!list_empty(&con->out_sent)) {
2219 m = list_first_entry(&con->out_sent, struct ceph_msg,
2220 list_head);
2221 seq = le64_to_cpu(m->hdr.seq);
2222 if (seq > ack)
2223 break;
2224 dout("got ack for seq %llu type %d at %p\n", seq,
2225 le16_to_cpu(m->hdr.type), m);
2226 m->ack_stamp = jiffies;
2227 ceph_msg_remove(m);
2228 }
2229 prepare_read_tag(con);
2230 }
2231
2232
2233 static int read_partial_message_section(struct ceph_connection *con,
2234 struct kvec *section,
2235 unsigned int sec_len, u32 *crc)
2236 {
2237 int ret, left;
2238
2239 BUG_ON(!section);
2240
2241 while (section->iov_len < sec_len) {
2242 BUG_ON(section->iov_base == NULL);
2243 left = sec_len - section->iov_len;
2244 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2245 section->iov_len, left);
2246 if (ret <= 0)
2247 return ret;
2248 section->iov_len += ret;
2249 }
2250 if (section->iov_len == sec_len)
2251 *crc = crc32c(0, section->iov_base, section->iov_len);
2252
2253 return 1;
2254 }
2255
2256 static int read_partial_msg_data(struct ceph_connection *con)
2257 {
2258 struct ceph_msg *msg = con->in_msg;
2259 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2260 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2261 struct page *page;
2262 size_t page_offset;
2263 size_t length;
2264 u32 crc = 0;
2265 int ret;
2266
2267 BUG_ON(!msg);
2268 if (list_empty(&msg->data))
2269 return -EIO;
2270
2271 if (do_datacrc)
2272 crc = con->in_data_crc;
2273 while (cursor->resid) {
2274 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2275 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2276 if (ret <= 0) {
2277 if (do_datacrc)
2278 con->in_data_crc = crc;
2279
2280 return ret;
2281 }
2282
2283 if (do_datacrc)
2284 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2285 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2286 }
2287 if (do_datacrc)
2288 con->in_data_crc = crc;
2289
2290 return 1; /* must return > 0 to indicate success */
2291 }
2292
2293 /*
2294 * read (part of) a message.
2295 */
2296 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2297
2298 static int read_partial_message(struct ceph_connection *con)
2299 {
2300 struct ceph_msg *m = con->in_msg;
2301 int size;
2302 int end;
2303 int ret;
2304 unsigned int front_len, middle_len, data_len;
2305 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2306 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2307 u64 seq;
2308 u32 crc;
2309
2310 dout("read_partial_message con %p msg %p\n", con, m);
2311
2312 /* header */
2313 size = sizeof (con->in_hdr);
2314 end = size;
2315 ret = read_partial(con, end, size, &con->in_hdr);
2316 if (ret <= 0)
2317 return ret;
2318
2319 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2320 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2321 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2322 crc, con->in_hdr.crc);
2323 return -EBADMSG;
2324 }
2325
2326 front_len = le32_to_cpu(con->in_hdr.front_len);
2327 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2328 return -EIO;
2329 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2330 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2331 return -EIO;
2332 data_len = le32_to_cpu(con->in_hdr.data_len);
2333 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2334 return -EIO;
2335
2336 /* verify seq# */
2337 seq = le64_to_cpu(con->in_hdr.seq);
2338 if ((s64)seq - (s64)con->in_seq < 1) {
2339 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2340 ENTITY_NAME(con->peer_name),
2341 ceph_pr_addr(&con->peer_addr.in_addr),
2342 seq, con->in_seq + 1);
2343 con->in_base_pos = -front_len - middle_len - data_len -
2344 sizeof_footer(con);
2345 con->in_tag = CEPH_MSGR_TAG_READY;
2346 return 1;
2347 } else if ((s64)seq - (s64)con->in_seq > 1) {
2348 pr_err("read_partial_message bad seq %lld expected %lld\n",
2349 seq, con->in_seq + 1);
2350 con->error_msg = "bad message sequence # for incoming message";
2351 return -EBADE;
2352 }
2353
2354 /* allocate message? */
2355 if (!con->in_msg) {
2356 int skip = 0;
2357
2358 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2359 front_len, data_len);
2360 ret = ceph_con_in_msg_alloc(con, &skip);
2361 if (ret < 0)
2362 return ret;
2363
2364 BUG_ON(!con->in_msg ^ skip);
2365 if (skip) {
2366 /* skip this message */
2367 dout("alloc_msg said skip message\n");
2368 con->in_base_pos = -front_len - middle_len - data_len -
2369 sizeof_footer(con);
2370 con->in_tag = CEPH_MSGR_TAG_READY;
2371 con->in_seq++;
2372 return 1;
2373 }
2374
2375 BUG_ON(!con->in_msg);
2376 BUG_ON(con->in_msg->con != con);
2377 m = con->in_msg;
2378 m->front.iov_len = 0; /* haven't read it yet */
2379 if (m->middle)
2380 m->middle->vec.iov_len = 0;
2381
2382 /* prepare for data payload, if any */
2383
2384 if (data_len)
2385 prepare_message_data(con->in_msg, data_len);
2386 }
2387
2388 /* front */
2389 ret = read_partial_message_section(con, &m->front, front_len,
2390 &con->in_front_crc);
2391 if (ret <= 0)
2392 return ret;
2393
2394 /* middle */
2395 if (m->middle) {
2396 ret = read_partial_message_section(con, &m->middle->vec,
2397 middle_len,
2398 &con->in_middle_crc);
2399 if (ret <= 0)
2400 return ret;
2401 }
2402
2403 /* (page) data */
2404 if (data_len) {
2405 ret = read_partial_msg_data(con);
2406 if (ret <= 0)
2407 return ret;
2408 }
2409
2410 /* footer */
2411 size = sizeof_footer(con);
2412 end += size;
2413 ret = read_partial(con, end, size, &m->footer);
2414 if (ret <= 0)
2415 return ret;
2416
2417 if (!need_sign) {
2418 m->footer.flags = m->old_footer.flags;
2419 m->footer.sig = 0;
2420 }
2421
2422 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2423 m, front_len, m->footer.front_crc, middle_len,
2424 m->footer.middle_crc, data_len, m->footer.data_crc);
2425
2426 /* crc ok? */
2427 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2428 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2429 m, con->in_front_crc, m->footer.front_crc);
2430 return -EBADMSG;
2431 }
2432 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2433 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2434 m, con->in_middle_crc, m->footer.middle_crc);
2435 return -EBADMSG;
2436 }
2437 if (do_datacrc &&
2438 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2439 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2440 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2441 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2442 return -EBADMSG;
2443 }
2444
2445 if (need_sign && con->ops->check_message_signature &&
2446 con->ops->check_message_signature(m)) {
2447 pr_err("read_partial_message %p signature check failed\n", m);
2448 return -EBADMSG;
2449 }
2450
2451 return 1; /* done! */
2452 }
2453
2454 /*
2455 * Process message. This happens in the worker thread. The callback should
2456 * be careful not to do anything that waits on other incoming messages or it
2457 * may deadlock.
2458 */
2459 static void process_message(struct ceph_connection *con)
2460 {
2461 struct ceph_msg *msg = con->in_msg;
2462
2463 BUG_ON(con->in_msg->con != con);
2464 con->in_msg = NULL;
2465
2466 /* if first message, set peer_name */
2467 if (con->peer_name.type == 0)
2468 con->peer_name = msg->hdr.src;
2469
2470 con->in_seq++;
2471 mutex_unlock(&con->mutex);
2472
2473 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2474 msg, le64_to_cpu(msg->hdr.seq),
2475 ENTITY_NAME(msg->hdr.src),
2476 le16_to_cpu(msg->hdr.type),
2477 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2478 le32_to_cpu(msg->hdr.front_len),
2479 le32_to_cpu(msg->hdr.data_len),
2480 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2481 con->ops->dispatch(con, msg);
2482
2483 mutex_lock(&con->mutex);
2484 }
2485
2486 static int read_keepalive_ack(struct ceph_connection *con)
2487 {
2488 struct ceph_timespec ceph_ts;
2489 size_t size = sizeof(ceph_ts);
2490 int ret = read_partial(con, size, size, &ceph_ts);
2491 if (ret <= 0)
2492 return ret;
2493 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2494 prepare_read_tag(con);
2495 return 1;
2496 }
2497
2498 /*
2499 * Write something to the socket. Called in a worker thread when the
2500 * socket appears to be writeable and we have something ready to send.
2501 */
2502 static int try_write(struct ceph_connection *con)
2503 {
2504 int ret = 1;
2505
2506 dout("try_write start %p state %lu\n", con, con->state);
2507
2508 more:
2509 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2510
2511 /* open the socket first? */
2512 if (con->state == CON_STATE_PREOPEN) {
2513 BUG_ON(con->sock);
2514 con->state = CON_STATE_CONNECTING;
2515
2516 con_out_kvec_reset(con);
2517 prepare_write_banner(con);
2518 prepare_read_banner(con);
2519
2520 BUG_ON(con->in_msg);
2521 con->in_tag = CEPH_MSGR_TAG_READY;
2522 dout("try_write initiating connect on %p new state %lu\n",
2523 con, con->state);
2524 ret = ceph_tcp_connect(con);
2525 if (ret < 0) {
2526 con->error_msg = "connect error";
2527 goto out;
2528 }
2529 }
2530
2531 more_kvec:
2532 /* kvec data queued? */
2533 if (con->out_kvec_left) {
2534 ret = write_partial_kvec(con);
2535 if (ret <= 0)
2536 goto out;
2537 }
2538 if (con->out_skip) {
2539 ret = write_partial_skip(con);
2540 if (ret <= 0)
2541 goto out;
2542 }
2543
2544 /* msg pages? */
2545 if (con->out_msg) {
2546 if (con->out_msg_done) {
2547 ceph_msg_put(con->out_msg);
2548 con->out_msg = NULL; /* we're done with this one */
2549 goto do_next;
2550 }
2551
2552 ret = write_partial_message_data(con);
2553 if (ret == 1)
2554 goto more_kvec; /* we need to send the footer, too! */
2555 if (ret == 0)
2556 goto out;
2557 if (ret < 0) {
2558 dout("try_write write_partial_message_data err %d\n",
2559 ret);
2560 goto out;
2561 }
2562 }
2563
2564 do_next:
2565 if (con->state == CON_STATE_OPEN) {
2566 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2567 prepare_write_keepalive(con);
2568 goto more;
2569 }
2570 /* is anything else pending? */
2571 if (!list_empty(&con->out_queue)) {
2572 prepare_write_message(con);
2573 goto more;
2574 }
2575 if (con->in_seq > con->in_seq_acked) {
2576 prepare_write_ack(con);
2577 goto more;
2578 }
2579 }
2580
2581 /* Nothing to do! */
2582 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2583 dout("try_write nothing else to write.\n");
2584 ret = 0;
2585 out:
2586 dout("try_write done on %p ret %d\n", con, ret);
2587 return ret;
2588 }
2589
2590
2591
2592 /*
2593 * Read what we can from the socket.
2594 */
2595 static int try_read(struct ceph_connection *con)
2596 {
2597 int ret = -1;
2598
2599 more:
2600 dout("try_read start on %p state %lu\n", con, con->state);
2601 if (con->state != CON_STATE_CONNECTING &&
2602 con->state != CON_STATE_NEGOTIATING &&
2603 con->state != CON_STATE_OPEN)
2604 return 0;
2605
2606 BUG_ON(!con->sock);
2607
2608 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2609 con->in_base_pos);
2610
2611 if (con->state == CON_STATE_CONNECTING) {
2612 dout("try_read connecting\n");
2613 ret = read_partial_banner(con);
2614 if (ret <= 0)
2615 goto out;
2616 ret = process_banner(con);
2617 if (ret < 0)
2618 goto out;
2619
2620 con->state = CON_STATE_NEGOTIATING;
2621
2622 /*
2623 * Received banner is good, exchange connection info.
2624 * Do not reset out_kvec, as sending our banner raced
2625 * with receiving peer banner after connect completed.
2626 */
2627 ret = prepare_write_connect(con);
2628 if (ret < 0)
2629 goto out;
2630 prepare_read_connect(con);
2631
2632 /* Send connection info before awaiting response */
2633 goto out;
2634 }
2635
2636 if (con->state == CON_STATE_NEGOTIATING) {
2637 dout("try_read negotiating\n");
2638 ret = read_partial_connect(con);
2639 if (ret <= 0)
2640 goto out;
2641 ret = process_connect(con);
2642 if (ret < 0)
2643 goto out;
2644 goto more;
2645 }
2646
2647 WARN_ON(con->state != CON_STATE_OPEN);
2648
2649 if (con->in_base_pos < 0) {
2650 /*
2651 * skipping + discarding content.
2652 *
2653 * FIXME: there must be a better way to do this!
2654 */
2655 static char buf[SKIP_BUF_SIZE];
2656 int skip = min((int) sizeof (buf), -con->in_base_pos);
2657
2658 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2659 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2660 if (ret <= 0)
2661 goto out;
2662 con->in_base_pos += ret;
2663 if (con->in_base_pos)
2664 goto more;
2665 }
2666 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2667 /*
2668 * what's next?
2669 */
2670 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2671 if (ret <= 0)
2672 goto out;
2673 dout("try_read got tag %d\n", (int)con->in_tag);
2674 switch (con->in_tag) {
2675 case CEPH_MSGR_TAG_MSG:
2676 prepare_read_message(con);
2677 break;
2678 case CEPH_MSGR_TAG_ACK:
2679 prepare_read_ack(con);
2680 break;
2681 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2682 prepare_read_keepalive_ack(con);
2683 break;
2684 case CEPH_MSGR_TAG_CLOSE:
2685 con_close_socket(con);
2686 con->state = CON_STATE_CLOSED;
2687 goto out;
2688 default:
2689 goto bad_tag;
2690 }
2691 }
2692 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2693 ret = read_partial_message(con);
2694 if (ret <= 0) {
2695 switch (ret) {
2696 case -EBADMSG:
2697 con->error_msg = "bad crc/signature";
2698 /* fall through */
2699 case -EBADE:
2700 ret = -EIO;
2701 break;
2702 case -EIO:
2703 con->error_msg = "io error";
2704 break;
2705 }
2706 goto out;
2707 }
2708 if (con->in_tag == CEPH_MSGR_TAG_READY)
2709 goto more;
2710 process_message(con);
2711 if (con->state == CON_STATE_OPEN)
2712 prepare_read_tag(con);
2713 goto more;
2714 }
2715 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2716 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2717 /*
2718 * the final handshake seq exchange is semantically
2719 * equivalent to an ACK
2720 */
2721 ret = read_partial_ack(con);
2722 if (ret <= 0)
2723 goto out;
2724 process_ack(con);
2725 goto more;
2726 }
2727 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2728 ret = read_keepalive_ack(con);
2729 if (ret <= 0)
2730 goto out;
2731 goto more;
2732 }
2733
2734 out:
2735 dout("try_read done on %p ret %d\n", con, ret);
2736 return ret;
2737
2738 bad_tag:
2739 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2740 con->error_msg = "protocol error, garbage tag";
2741 ret = -1;
2742 goto out;
2743 }
2744
2745
2746 /*
2747 * Atomically queue work on a connection after the specified delay.
2748 * Bump @con reference to avoid races with connection teardown.
2749 * Returns 0 if work was queued, or an error code otherwise.
2750 */
2751 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2752 {
2753 if (!con->ops->get(con)) {
2754 dout("%s %p ref count 0\n", __func__, con);
2755 return -ENOENT;
2756 }
2757
2758 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2759 dout("%s %p - already queued\n", __func__, con);
2760 con->ops->put(con);
2761 return -EBUSY;
2762 }
2763
2764 dout("%s %p %lu\n", __func__, con, delay);
2765 return 0;
2766 }
2767
2768 static void queue_con(struct ceph_connection *con)
2769 {
2770 (void) queue_con_delay(con, 0);
2771 }
2772
2773 static void cancel_con(struct ceph_connection *con)
2774 {
2775 if (cancel_delayed_work(&con->work)) {
2776 dout("%s %p\n", __func__, con);
2777 con->ops->put(con);
2778 }
2779 }
2780
2781 static bool con_sock_closed(struct ceph_connection *con)
2782 {
2783 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2784 return false;
2785
2786 #define CASE(x) \
2787 case CON_STATE_ ## x: \
2788 con->error_msg = "socket closed (con state " #x ")"; \
2789 break;
2790
2791 switch (con->state) {
2792 CASE(CLOSED);
2793 CASE(PREOPEN);
2794 CASE(CONNECTING);
2795 CASE(NEGOTIATING);
2796 CASE(OPEN);
2797 CASE(STANDBY);
2798 default:
2799 pr_warn("%s con %p unrecognized state %lu\n",
2800 __func__, con, con->state);
2801 con->error_msg = "unrecognized con state";
2802 BUG();
2803 break;
2804 }
2805 #undef CASE
2806
2807 return true;
2808 }
2809
2810 static bool con_backoff(struct ceph_connection *con)
2811 {
2812 int ret;
2813
2814 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2815 return false;
2816
2817 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2818 if (ret) {
2819 dout("%s: con %p FAILED to back off %lu\n", __func__,
2820 con, con->delay);
2821 BUG_ON(ret == -ENOENT);
2822 con_flag_set(con, CON_FLAG_BACKOFF);
2823 }
2824
2825 return true;
2826 }
2827
2828 /* Finish fault handling; con->mutex must *not* be held here */
2829
2830 static void con_fault_finish(struct ceph_connection *con)
2831 {
2832 dout("%s %p\n", __func__, con);
2833
2834 /*
2835 * in case we faulted due to authentication, invalidate our
2836 * current tickets so that we can get new ones.
2837 */
2838 if (con->auth_retry) {
2839 dout("auth_retry %d, invalidating\n", con->auth_retry);
2840 if (con->ops->invalidate_authorizer)
2841 con->ops->invalidate_authorizer(con);
2842 con->auth_retry = 0;
2843 }
2844
2845 if (con->ops->fault)
2846 con->ops->fault(con);
2847 }
2848
2849 /*
2850 * Do some work on a connection. Drop a connection ref when we're done.
2851 */
2852 static void ceph_con_workfn(struct work_struct *work)
2853 {
2854 struct ceph_connection *con = container_of(work, struct ceph_connection,
2855 work.work);
2856 bool fault;
2857
2858 mutex_lock(&con->mutex);
2859 while (true) {
2860 int ret;
2861
2862 if ((fault = con_sock_closed(con))) {
2863 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2864 break;
2865 }
2866 if (con_backoff(con)) {
2867 dout("%s: con %p BACKOFF\n", __func__, con);
2868 break;
2869 }
2870 if (con->state == CON_STATE_STANDBY) {
2871 dout("%s: con %p STANDBY\n", __func__, con);
2872 break;
2873 }
2874 if (con->state == CON_STATE_CLOSED) {
2875 dout("%s: con %p CLOSED\n", __func__, con);
2876 BUG_ON(con->sock);
2877 break;
2878 }
2879 if (con->state == CON_STATE_PREOPEN) {
2880 dout("%s: con %p PREOPEN\n", __func__, con);
2881 BUG_ON(con->sock);
2882 }
2883
2884 ret = try_read(con);
2885 if (ret < 0) {
2886 if (ret == -EAGAIN)
2887 continue;
2888 if (!con->error_msg)
2889 con->error_msg = "socket error on read";
2890 fault = true;
2891 break;
2892 }
2893
2894 ret = try_write(con);
2895 if (ret < 0) {
2896 if (ret == -EAGAIN)
2897 continue;
2898 if (!con->error_msg)
2899 con->error_msg = "socket error on write";
2900 fault = true;
2901 }
2902
2903 break; /* If we make it to here, we're done */
2904 }
2905 if (fault)
2906 con_fault(con);
2907 mutex_unlock(&con->mutex);
2908
2909 if (fault)
2910 con_fault_finish(con);
2911
2912 con->ops->put(con);
2913 }
2914
2915 /*
2916 * Generic error/fault handler. A retry mechanism is used with
2917 * exponential backoff
2918 */
2919 static void con_fault(struct ceph_connection *con)
2920 {
2921 dout("fault %p state %lu to peer %s\n",
2922 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2923
2924 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2925 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2926 con->error_msg = NULL;
2927
2928 WARN_ON(con->state != CON_STATE_CONNECTING &&
2929 con->state != CON_STATE_NEGOTIATING &&
2930 con->state != CON_STATE_OPEN);
2931
2932 con_close_socket(con);
2933
2934 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2935 dout("fault on LOSSYTX channel, marking CLOSED\n");
2936 con->state = CON_STATE_CLOSED;
2937 return;
2938 }
2939
2940 if (con->in_msg) {
2941 BUG_ON(con->in_msg->con != con);
2942 ceph_msg_put(con->in_msg);
2943 con->in_msg = NULL;
2944 }
2945
2946 /* Requeue anything that hasn't been acked */
2947 list_splice_init(&con->out_sent, &con->out_queue);
2948
2949 /* If there are no messages queued or keepalive pending, place
2950 * the connection in a STANDBY state */
2951 if (list_empty(&con->out_queue) &&
2952 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2953 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2954 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2955 con->state = CON_STATE_STANDBY;
2956 } else {
2957 /* retry after a delay. */
2958 con->state = CON_STATE_PREOPEN;
2959 if (con->delay == 0)
2960 con->delay = BASE_DELAY_INTERVAL;
2961 else if (con->delay < MAX_DELAY_INTERVAL)
2962 con->delay *= 2;
2963 con_flag_set(con, CON_FLAG_BACKOFF);
2964 queue_con(con);
2965 }
2966 }
2967
2968
2969
2970 /*
2971 * initialize a new messenger instance
2972 */
2973 void ceph_messenger_init(struct ceph_messenger *msgr,
2974 struct ceph_entity_addr *myaddr)
2975 {
2976 spin_lock_init(&msgr->global_seq_lock);
2977
2978 if (myaddr)
2979 msgr->inst.addr = *myaddr;
2980
2981 /* select a random nonce */
2982 msgr->inst.addr.type = 0;
2983 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2984 encode_my_addr(msgr);
2985
2986 atomic_set(&msgr->stopping, 0);
2987 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2988
2989 dout("%s %p\n", __func__, msgr);
2990 }
2991 EXPORT_SYMBOL(ceph_messenger_init);
2992
2993 void ceph_messenger_fini(struct ceph_messenger *msgr)
2994 {
2995 put_net(read_pnet(&msgr->net));
2996 }
2997 EXPORT_SYMBOL(ceph_messenger_fini);
2998
2999 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3000 {
3001 if (msg->con)
3002 msg->con->ops->put(msg->con);
3003
3004 msg->con = con ? con->ops->get(con) : NULL;
3005 BUG_ON(msg->con != con);
3006 }
3007
3008 static void clear_standby(struct ceph_connection *con)
3009 {
3010 /* come back from STANDBY? */
3011 if (con->state == CON_STATE_STANDBY) {
3012 dout("clear_standby %p and ++connect_seq\n", con);
3013 con->state = CON_STATE_PREOPEN;
3014 con->connect_seq++;
3015 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3016 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3017 }
3018 }
3019
3020 /*
3021 * Queue up an outgoing message on the given connection.
3022 */
3023 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3024 {
3025 /* set src+dst */
3026 msg->hdr.src = con->msgr->inst.name;
3027 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3028 msg->needs_out_seq = true;
3029
3030 mutex_lock(&con->mutex);
3031
3032 if (con->state == CON_STATE_CLOSED) {
3033 dout("con_send %p closed, dropping %p\n", con, msg);
3034 ceph_msg_put(msg);
3035 mutex_unlock(&con->mutex);
3036 return;
3037 }
3038
3039 msg_con_set(msg, con);
3040
3041 BUG_ON(!list_empty(&msg->list_head));
3042 list_add_tail(&msg->list_head, &con->out_queue);
3043 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3044 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3045 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3046 le32_to_cpu(msg->hdr.front_len),
3047 le32_to_cpu(msg->hdr.middle_len),
3048 le32_to_cpu(msg->hdr.data_len));
3049
3050 clear_standby(con);
3051 mutex_unlock(&con->mutex);
3052
3053 /* if there wasn't anything waiting to send before, queue
3054 * new work */
3055 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3056 queue_con(con);
3057 }
3058 EXPORT_SYMBOL(ceph_con_send);
3059
3060 /*
3061 * Revoke a message that was previously queued for send
3062 */
3063 void ceph_msg_revoke(struct ceph_msg *msg)
3064 {
3065 struct ceph_connection *con = msg->con;
3066
3067 if (!con) {
3068 dout("%s msg %p null con\n", __func__, msg);
3069 return; /* Message not in our possession */
3070 }
3071
3072 mutex_lock(&con->mutex);
3073 if (!list_empty(&msg->list_head)) {
3074 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3075 list_del_init(&msg->list_head);
3076 msg->hdr.seq = 0;
3077
3078 ceph_msg_put(msg);
3079 }
3080 if (con->out_msg == msg) {
3081 BUG_ON(con->out_skip);
3082 /* footer */
3083 if (con->out_msg_done) {
3084 con->out_skip += con_out_kvec_skip(con);
3085 } else {
3086 BUG_ON(!msg->data_length);
3087 con->out_skip += sizeof_footer(con);
3088 }
3089 /* data, middle, front */
3090 if (msg->data_length)
3091 con->out_skip += msg->cursor.total_resid;
3092 if (msg->middle)
3093 con->out_skip += con_out_kvec_skip(con);
3094 con->out_skip += con_out_kvec_skip(con);
3095
3096 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3097 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3098 msg->hdr.seq = 0;
3099 con->out_msg = NULL;
3100 ceph_msg_put(msg);
3101 }
3102
3103 mutex_unlock(&con->mutex);
3104 }
3105
3106 /*
3107 * Revoke a message that we may be reading data into
3108 */
3109 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3110 {
3111 struct ceph_connection *con = msg->con;
3112
3113 if (!con) {
3114 dout("%s msg %p null con\n", __func__, msg);
3115 return; /* Message not in our possession */
3116 }
3117
3118 mutex_lock(&con->mutex);
3119 if (con->in_msg == msg) {
3120 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3121 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3122 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3123
3124 /* skip rest of message */
3125 dout("%s %p msg %p revoked\n", __func__, con, msg);
3126 con->in_base_pos = con->in_base_pos -
3127 sizeof(struct ceph_msg_header) -
3128 front_len -
3129 middle_len -
3130 data_len -
3131 sizeof(struct ceph_msg_footer);
3132 ceph_msg_put(con->in_msg);
3133 con->in_msg = NULL;
3134 con->in_tag = CEPH_MSGR_TAG_READY;
3135 con->in_seq++;
3136 } else {
3137 dout("%s %p in_msg %p msg %p no-op\n",
3138 __func__, con, con->in_msg, msg);
3139 }
3140 mutex_unlock(&con->mutex);
3141 }
3142
3143 /*
3144 * Queue a keepalive byte to ensure the tcp connection is alive.
3145 */
3146 void ceph_con_keepalive(struct ceph_connection *con)
3147 {
3148 dout("con_keepalive %p\n", con);
3149 mutex_lock(&con->mutex);
3150 clear_standby(con);
3151 mutex_unlock(&con->mutex);
3152 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3153 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3154 queue_con(con);
3155 }
3156 EXPORT_SYMBOL(ceph_con_keepalive);
3157
3158 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3159 unsigned long interval)
3160 {
3161 if (interval > 0 &&
3162 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3163 struct timespec now = CURRENT_TIME;
3164 struct timespec ts;
3165 jiffies_to_timespec(interval, &ts);
3166 ts = timespec_add(con->last_keepalive_ack, ts);
3167 return timespec_compare(&now, &ts) >= 0;
3168 }
3169 return false;
3170 }
3171
3172 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3173 {
3174 struct ceph_msg_data *data;
3175
3176 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3177 return NULL;
3178
3179 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3180 if (data)
3181 data->type = type;
3182 INIT_LIST_HEAD(&data->links);
3183
3184 return data;
3185 }
3186
3187 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3188 {
3189 if (!data)
3190 return;
3191
3192 WARN_ON(!list_empty(&data->links));
3193 if (data->type == CEPH_MSG_DATA_PAGELIST)
3194 ceph_pagelist_release(data->pagelist);
3195 kmem_cache_free(ceph_msg_data_cache, data);
3196 }
3197
3198 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3199 size_t length, size_t alignment)
3200 {
3201 struct ceph_msg_data *data;
3202
3203 BUG_ON(!pages);
3204 BUG_ON(!length);
3205
3206 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3207 BUG_ON(!data);
3208 data->pages = pages;
3209 data->length = length;
3210 data->alignment = alignment & ~PAGE_MASK;
3211
3212 list_add_tail(&data->links, &msg->data);
3213 msg->data_length += length;
3214 }
3215 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3216
3217 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3218 struct ceph_pagelist *pagelist)
3219 {
3220 struct ceph_msg_data *data;
3221
3222 BUG_ON(!pagelist);
3223 BUG_ON(!pagelist->length);
3224
3225 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3226 BUG_ON(!data);
3227 data->pagelist = pagelist;
3228
3229 list_add_tail(&data->links, &msg->data);
3230 msg->data_length += pagelist->length;
3231 }
3232 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3233
3234 #ifdef CONFIG_BLOCK
3235 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3236 size_t length)
3237 {
3238 struct ceph_msg_data *data;
3239
3240 BUG_ON(!bio);
3241
3242 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3243 BUG_ON(!data);
3244 data->bio = bio;
3245 data->bio_length = length;
3246
3247 list_add_tail(&data->links, &msg->data);
3248 msg->data_length += length;
3249 }
3250 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3251 #endif /* CONFIG_BLOCK */
3252
3253 /*
3254 * construct a new message with given type, size
3255 * the new msg has a ref count of 1.
3256 */
3257 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3258 bool can_fail)
3259 {
3260 struct ceph_msg *m;
3261
3262 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3263 if (m == NULL)
3264 goto out;
3265
3266 m->hdr.type = cpu_to_le16(type);
3267 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3268 m->hdr.front_len = cpu_to_le32(front_len);
3269
3270 INIT_LIST_HEAD(&m->list_head);
3271 kref_init(&m->kref);
3272 INIT_LIST_HEAD(&m->data);
3273
3274 /* front */
3275 if (front_len) {
3276 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3277 if (m->front.iov_base == NULL) {
3278 dout("ceph_msg_new can't allocate %d bytes\n",
3279 front_len);
3280 goto out2;
3281 }
3282 } else {
3283 m->front.iov_base = NULL;
3284 }
3285 m->front_alloc_len = m->front.iov_len = front_len;
3286
3287 dout("ceph_msg_new %p front %d\n", m, front_len);
3288 return m;
3289
3290 out2:
3291 ceph_msg_put(m);
3292 out:
3293 if (!can_fail) {
3294 pr_err("msg_new can't create type %d front %d\n", type,
3295 front_len);
3296 WARN_ON(1);
3297 } else {
3298 dout("msg_new can't create type %d front %d\n", type,
3299 front_len);
3300 }
3301 return NULL;
3302 }
3303 EXPORT_SYMBOL(ceph_msg_new);
3304
3305 /*
3306 * Allocate "middle" portion of a message, if it is needed and wasn't
3307 * allocated by alloc_msg. This allows us to read a small fixed-size
3308 * per-type header in the front and then gracefully fail (i.e.,
3309 * propagate the error to the caller based on info in the front) when
3310 * the middle is too large.
3311 */
3312 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3313 {
3314 int type = le16_to_cpu(msg->hdr.type);
3315 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3316
3317 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3318 ceph_msg_type_name(type), middle_len);
3319 BUG_ON(!middle_len);
3320 BUG_ON(msg->middle);
3321
3322 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3323 if (!msg->middle)
3324 return -ENOMEM;
3325 return 0;
3326 }
3327
3328 /*
3329 * Allocate a message for receiving an incoming message on a
3330 * connection, and save the result in con->in_msg. Uses the
3331 * connection's private alloc_msg op if available.
3332 *
3333 * Returns 0 on success, or a negative error code.
3334 *
3335 * On success, if we set *skip = 1:
3336 * - the next message should be skipped and ignored.
3337 * - con->in_msg == NULL
3338 * or if we set *skip = 0:
3339 * - con->in_msg is non-null.
3340 * On error (ENOMEM, EAGAIN, ...),
3341 * - con->in_msg == NULL
3342 */
3343 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3344 {
3345 struct ceph_msg_header *hdr = &con->in_hdr;
3346 int middle_len = le32_to_cpu(hdr->middle_len);
3347 struct ceph_msg *msg;
3348 int ret = 0;
3349
3350 BUG_ON(con->in_msg != NULL);
3351 BUG_ON(!con->ops->alloc_msg);
3352
3353 mutex_unlock(&con->mutex);
3354 msg = con->ops->alloc_msg(con, hdr, skip);
3355 mutex_lock(&con->mutex);
3356 if (con->state != CON_STATE_OPEN) {
3357 if (msg)
3358 ceph_msg_put(msg);
3359 return -EAGAIN;
3360 }
3361 if (msg) {
3362 BUG_ON(*skip);
3363 msg_con_set(msg, con);
3364 con->in_msg = msg;
3365 } else {
3366 /*
3367 * Null message pointer means either we should skip
3368 * this message or we couldn't allocate memory. The
3369 * former is not an error.
3370 */
3371 if (*skip)
3372 return 0;
3373
3374 con->error_msg = "error allocating memory for incoming message";
3375 return -ENOMEM;
3376 }
3377 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3378
3379 if (middle_len && !con->in_msg->middle) {
3380 ret = ceph_alloc_middle(con, con->in_msg);
3381 if (ret < 0) {
3382 ceph_msg_put(con->in_msg);
3383 con->in_msg = NULL;
3384 }
3385 }
3386
3387 return ret;
3388 }
3389
3390
3391 /*
3392 * Free a generically kmalloc'd message.
3393 */
3394 static void ceph_msg_free(struct ceph_msg *m)
3395 {
3396 dout("%s %p\n", __func__, m);
3397 kvfree(m->front.iov_base);
3398 kmem_cache_free(ceph_msg_cache, m);
3399 }
3400
3401 static void ceph_msg_release(struct kref *kref)
3402 {
3403 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3404 struct ceph_msg_data *data, *next;
3405
3406 dout("%s %p\n", __func__, m);
3407 WARN_ON(!list_empty(&m->list_head));
3408
3409 msg_con_set(m, NULL);
3410
3411 /* drop middle, data, if any */
3412 if (m->middle) {
3413 ceph_buffer_put(m->middle);
3414 m->middle = NULL;
3415 }
3416
3417 list_for_each_entry_safe(data, next, &m->data, links) {
3418 list_del_init(&data->links);
3419 ceph_msg_data_destroy(data);
3420 }
3421 m->data_length = 0;
3422
3423 if (m->pool)
3424 ceph_msgpool_put(m->pool, m);
3425 else
3426 ceph_msg_free(m);
3427 }
3428
3429 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3430 {
3431 dout("%s %p (was %d)\n", __func__, msg,
3432 atomic_read(&msg->kref.refcount));
3433 kref_get(&msg->kref);
3434 return msg;
3435 }
3436 EXPORT_SYMBOL(ceph_msg_get);
3437
3438 void ceph_msg_put(struct ceph_msg *msg)
3439 {
3440 dout("%s %p (was %d)\n", __func__, msg,
3441 atomic_read(&msg->kref.refcount));
3442 kref_put(&msg->kref, ceph_msg_release);
3443 }
3444 EXPORT_SYMBOL(ceph_msg_put);
3445
3446 void ceph_msg_dump(struct ceph_msg *msg)
3447 {
3448 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3449 msg->front_alloc_len, msg->data_length);
3450 print_hex_dump(KERN_DEBUG, "header: ",
3451 DUMP_PREFIX_OFFSET, 16, 1,
3452 &msg->hdr, sizeof(msg->hdr), true);
3453 print_hex_dump(KERN_DEBUG, " front: ",
3454 DUMP_PREFIX_OFFSET, 16, 1,
3455 msg->front.iov_base, msg->front.iov_len, true);
3456 if (msg->middle)
3457 print_hex_dump(KERN_DEBUG, "middle: ",
3458 DUMP_PREFIX_OFFSET, 16, 1,
3459 msg->middle->vec.iov_base,
3460 msg->middle->vec.iov_len, true);
3461 print_hex_dump(KERN_DEBUG, "footer: ",
3462 DUMP_PREFIX_OFFSET, 16, 1,
3463 &msg->footer, sizeof(msg->footer), true);
3464 }
3465 EXPORT_SYMBOL(ceph_msg_dump);