can: Fix CAN_(EFF|RTR)_FLAG handling in can_filter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 * Send feedback to <socketcan-users@lists.berlios.de>
42 *
43 */
44
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63
64 #include "af_can.h"
65
66 static __initdata const char banner[] = KERN_INFO
67 "can: controller area network core (" CAN_VERSION_STRING ")\n";
68
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83
84 static struct kmem_cache *rcv_cache __read_mostly;
85
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89
90 struct timer_list can_stattimer; /* timer for statistics update */
91 struct s_stats can_stats; /* packet statistics */
92 struct s_pstats can_pstats; /* receive list statistics */
93
94 /*
95 * af_can socket functions
96 */
97
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 struct sock *sk = sock->sk;
101
102 switch (cmd) {
103
104 case SIOCGSTAMP:
105 return sock_get_timestamp(sk, (struct timeval __user *)arg);
106
107 default:
108 return -ENOIOCTLCMD;
109 }
110 }
111
112 static void can_sock_destruct(struct sock *sk)
113 {
114 skb_queue_purge(&sk->sk_receive_queue);
115 }
116
117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 struct sock *sk;
120 struct can_proto *cp;
121 int err = 0;
122
123 sock->state = SS_UNCONNECTED;
124
125 if (protocol < 0 || protocol >= CAN_NPROTO)
126 return -EINVAL;
127
128 if (net != &init_net)
129 return -EAFNOSUPPORT;
130
131 #ifdef CONFIG_MODULES
132 /* try to load protocol module kernel is modular */
133 if (!proto_tab[protocol]) {
134 err = request_module("can-proto-%d", protocol);
135
136 /*
137 * In case of error we only print a message but don't
138 * return the error code immediately. Below we will
139 * return -EPROTONOSUPPORT
140 */
141 if (err && printk_ratelimit())
142 printk(KERN_ERR "can: request_module "
143 "(can-proto-%d) failed.\n", protocol);
144 }
145 #endif
146
147 spin_lock(&proto_tab_lock);
148 cp = proto_tab[protocol];
149 if (cp && !try_module_get(cp->prot->owner))
150 cp = NULL;
151 spin_unlock(&proto_tab_lock);
152
153 /* check for available protocol and correct usage */
154
155 if (!cp)
156 return -EPROTONOSUPPORT;
157
158 if (cp->type != sock->type) {
159 err = -EPROTONOSUPPORT;
160 goto errout;
161 }
162
163 if (cp->capability >= 0 && !capable(cp->capability)) {
164 err = -EPERM;
165 goto errout;
166 }
167
168 sock->ops = cp->ops;
169
170 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 if (!sk) {
172 err = -ENOMEM;
173 goto errout;
174 }
175
176 sock_init_data(sock, sk);
177 sk->sk_destruct = can_sock_destruct;
178
179 if (sk->sk_prot->init)
180 err = sk->sk_prot->init(sk);
181
182 if (err) {
183 /* release sk on errors */
184 sock_orphan(sk);
185 sock_put(sk);
186 }
187
188 errout:
189 module_put(cp->prot->owner);
190 return err;
191 }
192
193 /*
194 * af_can tx path
195 */
196
197 /**
198 * can_send - transmit a CAN frame (optional with local loopback)
199 * @skb: pointer to socket buffer with CAN frame in data section
200 * @loop: loopback for listeners on local CAN sockets (recommended default!)
201 *
202 * Return:
203 * 0 on success
204 * -ENETDOWN when the selected interface is down
205 * -ENOBUFS on full driver queue (see net_xmit_errno())
206 * -ENOMEM when local loopback failed at calling skb_clone()
207 * -EPERM when trying to send on a non-CAN interface
208 * -EINVAL when the skb->data does not contain a valid CAN frame
209 */
210 int can_send(struct sk_buff *skb, int loop)
211 {
212 struct sk_buff *newskb = NULL;
213 struct can_frame *cf = (struct can_frame *)skb->data;
214 int err;
215
216 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
217 kfree_skb(skb);
218 return -EINVAL;
219 }
220
221 if (skb->dev->type != ARPHRD_CAN) {
222 kfree_skb(skb);
223 return -EPERM;
224 }
225
226 if (!(skb->dev->flags & IFF_UP)) {
227 kfree_skb(skb);
228 return -ENETDOWN;
229 }
230
231 skb->protocol = htons(ETH_P_CAN);
232 skb_reset_network_header(skb);
233 skb_reset_transport_header(skb);
234
235 if (loop) {
236 /* local loopback of sent CAN frames */
237
238 /* indication for the CAN driver: do loopback */
239 skb->pkt_type = PACKET_LOOPBACK;
240
241 /*
242 * The reference to the originating sock may be required
243 * by the receiving socket to check whether the frame is
244 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
245 * Therefore we have to ensure that skb->sk remains the
246 * reference to the originating sock by restoring skb->sk
247 * after each skb_clone() or skb_orphan() usage.
248 */
249
250 if (!(skb->dev->flags & IFF_ECHO)) {
251 /*
252 * If the interface is not capable to do loopback
253 * itself, we do it here.
254 */
255 newskb = skb_clone(skb, GFP_ATOMIC);
256 if (!newskb) {
257 kfree_skb(skb);
258 return -ENOMEM;
259 }
260
261 newskb->sk = skb->sk;
262 newskb->ip_summed = CHECKSUM_UNNECESSARY;
263 newskb->pkt_type = PACKET_BROADCAST;
264 }
265 } else {
266 /* indication for the CAN driver: no loopback required */
267 skb->pkt_type = PACKET_HOST;
268 }
269
270 /* send to netdevice */
271 err = dev_queue_xmit(skb);
272 if (err > 0)
273 err = net_xmit_errno(err);
274
275 if (err) {
276 if (newskb)
277 kfree_skb(newskb);
278 return err;
279 }
280
281 if (newskb)
282 netif_rx(newskb);
283
284 /* update statistics */
285 can_stats.tx_frames++;
286 can_stats.tx_frames_delta++;
287
288 return 0;
289 }
290 EXPORT_SYMBOL(can_send);
291
292 /*
293 * af_can rx path
294 */
295
296 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
297 {
298 struct dev_rcv_lists *d = NULL;
299 struct hlist_node *n;
300
301 /*
302 * find receive list for this device
303 *
304 * The hlist_for_each_entry*() macros curse through the list
305 * using the pointer variable n and set d to the containing
306 * struct in each list iteration. Therefore, after list
307 * iteration, d is unmodified when the list is empty, and it
308 * points to last list element, when the list is non-empty
309 * but no match in the loop body is found. I.e. d is *not*
310 * NULL when no match is found. We can, however, use the
311 * cursor variable n to decide if a match was found.
312 */
313
314 hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
315 if (d->dev == dev)
316 break;
317 }
318
319 return n ? d : NULL;
320 }
321
322 /**
323 * find_rcv_list - determine optimal filterlist inside device filter struct
324 * @can_id: pointer to CAN identifier of a given can_filter
325 * @mask: pointer to CAN mask of a given can_filter
326 * @d: pointer to the device filter struct
327 *
328 * Description:
329 * Returns the optimal filterlist to reduce the filter handling in the
330 * receive path. This function is called by service functions that need
331 * to register or unregister a can_filter in the filter lists.
332 *
333 * A filter matches in general, when
334 *
335 * <received_can_id> & mask == can_id & mask
336 *
337 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
338 * relevant bits for the filter.
339 *
340 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
341 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
342 * there is a special filterlist and a special rx path filter handling.
343 *
344 * Return:
345 * Pointer to optimal filterlist for the given can_id/mask pair.
346 * Constistency checked mask.
347 * Reduced can_id to have a preprocessed filter compare value.
348 */
349 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
350 struct dev_rcv_lists *d)
351 {
352 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
353
354 /* filter for error frames in extra filterlist */
355 if (*mask & CAN_ERR_FLAG) {
356 /* clear CAN_ERR_FLAG in filter entry */
357 *mask &= CAN_ERR_MASK;
358 return &d->rx[RX_ERR];
359 }
360
361 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
362
363 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
364
365 /* ensure valid values in can_mask for 'SFF only' frame filtering */
366 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
367 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
368
369 /* reduce condition testing at receive time */
370 *can_id &= *mask;
371
372 /* inverse can_id/can_mask filter */
373 if (inv)
374 return &d->rx[RX_INV];
375
376 /* mask == 0 => no condition testing at receive time */
377 if (!(*mask))
378 return &d->rx[RX_ALL];
379
380 /* extra filterlists for the subscription of a single non-RTR can_id */
381 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS)
382 && !(*can_id & CAN_RTR_FLAG)) {
383
384 if (*can_id & CAN_EFF_FLAG) {
385 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
386 /* RFC: a future use-case for hash-tables? */
387 return &d->rx[RX_EFF];
388 }
389 } else {
390 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
391 return &d->rx_sff[*can_id];
392 }
393 }
394
395 /* default: filter via can_id/can_mask */
396 return &d->rx[RX_FIL];
397 }
398
399 /**
400 * can_rx_register - subscribe CAN frames from a specific interface
401 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
402 * @can_id: CAN identifier (see description)
403 * @mask: CAN mask (see description)
404 * @func: callback function on filter match
405 * @data: returned parameter for callback function
406 * @ident: string for calling module indentification
407 *
408 * Description:
409 * Invokes the callback function with the received sk_buff and the given
410 * parameter 'data' on a matching receive filter. A filter matches, when
411 *
412 * <received_can_id> & mask == can_id & mask
413 *
414 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
415 * filter for error frames (CAN_ERR_FLAG bit set in mask).
416 *
417 * Return:
418 * 0 on success
419 * -ENOMEM on missing cache mem to create subscription entry
420 * -ENODEV unknown device
421 */
422 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
423 void (*func)(struct sk_buff *, void *), void *data,
424 char *ident)
425 {
426 struct receiver *r;
427 struct hlist_head *rl;
428 struct dev_rcv_lists *d;
429 int err = 0;
430
431 /* insert new receiver (dev,canid,mask) -> (func,data) */
432
433 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
434 if (!r)
435 return -ENOMEM;
436
437 spin_lock(&can_rcvlists_lock);
438
439 d = find_dev_rcv_lists(dev);
440 if (d) {
441 rl = find_rcv_list(&can_id, &mask, d);
442
443 r->can_id = can_id;
444 r->mask = mask;
445 r->matches = 0;
446 r->func = func;
447 r->data = data;
448 r->ident = ident;
449
450 hlist_add_head_rcu(&r->list, rl);
451 d->entries++;
452
453 can_pstats.rcv_entries++;
454 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
455 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
456 } else {
457 kmem_cache_free(rcv_cache, r);
458 err = -ENODEV;
459 }
460
461 spin_unlock(&can_rcvlists_lock);
462
463 return err;
464 }
465 EXPORT_SYMBOL(can_rx_register);
466
467 /*
468 * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
469 */
470 static void can_rx_delete_device(struct rcu_head *rp)
471 {
472 struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
473
474 kfree(d);
475 }
476
477 /*
478 * can_rx_delete_receiver - rcu callback for single receiver entry removal
479 */
480 static void can_rx_delete_receiver(struct rcu_head *rp)
481 {
482 struct receiver *r = container_of(rp, struct receiver, rcu);
483
484 kmem_cache_free(rcv_cache, r);
485 }
486
487 /**
488 * can_rx_unregister - unsubscribe CAN frames from a specific interface
489 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
490 * @can_id: CAN identifier
491 * @mask: CAN mask
492 * @func: callback function on filter match
493 * @data: returned parameter for callback function
494 *
495 * Description:
496 * Removes subscription entry depending on given (subscription) values.
497 */
498 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
499 void (*func)(struct sk_buff *, void *), void *data)
500 {
501 struct receiver *r = NULL;
502 struct hlist_head *rl;
503 struct hlist_node *next;
504 struct dev_rcv_lists *d;
505
506 spin_lock(&can_rcvlists_lock);
507
508 d = find_dev_rcv_lists(dev);
509 if (!d) {
510 printk(KERN_ERR "BUG: receive list not found for "
511 "dev %s, id %03X, mask %03X\n",
512 DNAME(dev), can_id, mask);
513 goto out;
514 }
515
516 rl = find_rcv_list(&can_id, &mask, d);
517
518 /*
519 * Search the receiver list for the item to delete. This should
520 * exist, since no receiver may be unregistered that hasn't
521 * been registered before.
522 */
523
524 hlist_for_each_entry_rcu(r, next, rl, list) {
525 if (r->can_id == can_id && r->mask == mask
526 && r->func == func && r->data == data)
527 break;
528 }
529
530 /*
531 * Check for bugs in CAN protocol implementations:
532 * If no matching list item was found, the list cursor variable next
533 * will be NULL, while r will point to the last item of the list.
534 */
535
536 if (!next) {
537 printk(KERN_ERR "BUG: receive list entry not found for "
538 "dev %s, id %03X, mask %03X\n",
539 DNAME(dev), can_id, mask);
540 r = NULL;
541 d = NULL;
542 goto out;
543 }
544
545 hlist_del_rcu(&r->list);
546 d->entries--;
547
548 if (can_pstats.rcv_entries > 0)
549 can_pstats.rcv_entries--;
550
551 /* remove device structure requested by NETDEV_UNREGISTER */
552 if (d->remove_on_zero_entries && !d->entries)
553 hlist_del_rcu(&d->list);
554 else
555 d = NULL;
556
557 out:
558 spin_unlock(&can_rcvlists_lock);
559
560 /* schedule the receiver item for deletion */
561 if (r)
562 call_rcu(&r->rcu, can_rx_delete_receiver);
563
564 /* schedule the device structure for deletion */
565 if (d)
566 call_rcu(&d->rcu, can_rx_delete_device);
567 }
568 EXPORT_SYMBOL(can_rx_unregister);
569
570 static inline void deliver(struct sk_buff *skb, struct receiver *r)
571 {
572 struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC);
573
574 if (clone) {
575 clone->sk = skb->sk;
576 r->func(clone, r->data);
577 r->matches++;
578 }
579 }
580
581 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
582 {
583 struct receiver *r;
584 struct hlist_node *n;
585 int matches = 0;
586 struct can_frame *cf = (struct can_frame *)skb->data;
587 canid_t can_id = cf->can_id;
588
589 if (d->entries == 0)
590 return 0;
591
592 if (can_id & CAN_ERR_FLAG) {
593 /* check for error frame entries only */
594 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
595 if (can_id & r->mask) {
596 deliver(skb, r);
597 matches++;
598 }
599 }
600 return matches;
601 }
602
603 /* check for unfiltered entries */
604 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
605 deliver(skb, r);
606 matches++;
607 }
608
609 /* check for can_id/mask entries */
610 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
611 if ((can_id & r->mask) == r->can_id) {
612 deliver(skb, r);
613 matches++;
614 }
615 }
616
617 /* check for inverted can_id/mask entries */
618 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
619 if ((can_id & r->mask) != r->can_id) {
620 deliver(skb, r);
621 matches++;
622 }
623 }
624
625 /* check CAN_ID specific entries */
626 if (can_id & CAN_EFF_FLAG) {
627 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
628 if (r->can_id == can_id) {
629 deliver(skb, r);
630 matches++;
631 }
632 }
633 } else {
634 can_id &= CAN_SFF_MASK;
635 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
636 deliver(skb, r);
637 matches++;
638 }
639 }
640
641 return matches;
642 }
643
644 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
645 struct packet_type *pt, struct net_device *orig_dev)
646 {
647 struct dev_rcv_lists *d;
648 struct can_frame *cf = (struct can_frame *)skb->data;
649 int matches;
650
651 if (dev->type != ARPHRD_CAN || !net_eq(dev_net(dev), &init_net)) {
652 kfree_skb(skb);
653 return 0;
654 }
655
656 BUG_ON(skb->len != sizeof(struct can_frame) || cf->can_dlc > 8);
657
658 /* update statistics */
659 can_stats.rx_frames++;
660 can_stats.rx_frames_delta++;
661
662 rcu_read_lock();
663
664 /* deliver the packet to sockets listening on all devices */
665 matches = can_rcv_filter(&can_rx_alldev_list, skb);
666
667 /* find receive list for this device */
668 d = find_dev_rcv_lists(dev);
669 if (d)
670 matches += can_rcv_filter(d, skb);
671
672 rcu_read_unlock();
673
674 /* free the skbuff allocated by the netdevice driver */
675 kfree_skb(skb);
676
677 if (matches > 0) {
678 can_stats.matches++;
679 can_stats.matches_delta++;
680 }
681
682 return 0;
683 }
684
685 /*
686 * af_can protocol functions
687 */
688
689 /**
690 * can_proto_register - register CAN transport protocol
691 * @cp: pointer to CAN protocol structure
692 *
693 * Return:
694 * 0 on success
695 * -EINVAL invalid (out of range) protocol number
696 * -EBUSY protocol already in use
697 * -ENOBUF if proto_register() fails
698 */
699 int can_proto_register(struct can_proto *cp)
700 {
701 int proto = cp->protocol;
702 int err = 0;
703
704 if (proto < 0 || proto >= CAN_NPROTO) {
705 printk(KERN_ERR "can: protocol number %d out of range\n",
706 proto);
707 return -EINVAL;
708 }
709
710 err = proto_register(cp->prot, 0);
711 if (err < 0)
712 return err;
713
714 spin_lock(&proto_tab_lock);
715 if (proto_tab[proto]) {
716 printk(KERN_ERR "can: protocol %d already registered\n",
717 proto);
718 err = -EBUSY;
719 } else {
720 proto_tab[proto] = cp;
721
722 /* use generic ioctl function if not defined by module */
723 if (!cp->ops->ioctl)
724 cp->ops->ioctl = can_ioctl;
725 }
726 spin_unlock(&proto_tab_lock);
727
728 if (err < 0)
729 proto_unregister(cp->prot);
730
731 return err;
732 }
733 EXPORT_SYMBOL(can_proto_register);
734
735 /**
736 * can_proto_unregister - unregister CAN transport protocol
737 * @cp: pointer to CAN protocol structure
738 */
739 void can_proto_unregister(struct can_proto *cp)
740 {
741 int proto = cp->protocol;
742
743 spin_lock(&proto_tab_lock);
744 if (!proto_tab[proto]) {
745 printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
746 proto);
747 }
748 proto_tab[proto] = NULL;
749 spin_unlock(&proto_tab_lock);
750
751 proto_unregister(cp->prot);
752 }
753 EXPORT_SYMBOL(can_proto_unregister);
754
755 /*
756 * af_can notifier to create/remove CAN netdevice specific structs
757 */
758 static int can_notifier(struct notifier_block *nb, unsigned long msg,
759 void *data)
760 {
761 struct net_device *dev = (struct net_device *)data;
762 struct dev_rcv_lists *d;
763
764 if (!net_eq(dev_net(dev), &init_net))
765 return NOTIFY_DONE;
766
767 if (dev->type != ARPHRD_CAN)
768 return NOTIFY_DONE;
769
770 switch (msg) {
771
772 case NETDEV_REGISTER:
773
774 /*
775 * create new dev_rcv_lists for this device
776 *
777 * N.B. zeroing the struct is the correct initialization
778 * for the embedded hlist_head structs.
779 * Another list type, e.g. list_head, would require
780 * explicit initialization.
781 */
782
783 d = kzalloc(sizeof(*d), GFP_KERNEL);
784 if (!d) {
785 printk(KERN_ERR
786 "can: allocation of receive list failed\n");
787 return NOTIFY_DONE;
788 }
789 d->dev = dev;
790
791 spin_lock(&can_rcvlists_lock);
792 hlist_add_head_rcu(&d->list, &can_rx_dev_list);
793 spin_unlock(&can_rcvlists_lock);
794
795 break;
796
797 case NETDEV_UNREGISTER:
798 spin_lock(&can_rcvlists_lock);
799
800 d = find_dev_rcv_lists(dev);
801 if (d) {
802 if (d->entries) {
803 d->remove_on_zero_entries = 1;
804 d = NULL;
805 } else
806 hlist_del_rcu(&d->list);
807 } else
808 printk(KERN_ERR "can: notifier: receive list not "
809 "found for dev %s\n", dev->name);
810
811 spin_unlock(&can_rcvlists_lock);
812
813 if (d)
814 call_rcu(&d->rcu, can_rx_delete_device);
815
816 break;
817 }
818
819 return NOTIFY_DONE;
820 }
821
822 /*
823 * af_can module init/exit functions
824 */
825
826 static struct packet_type can_packet __read_mostly = {
827 .type = __constant_htons(ETH_P_CAN),
828 .dev = NULL,
829 .func = can_rcv,
830 };
831
832 static struct net_proto_family can_family_ops __read_mostly = {
833 .family = PF_CAN,
834 .create = can_create,
835 .owner = THIS_MODULE,
836 };
837
838 /* notifier block for netdevice event */
839 static struct notifier_block can_netdev_notifier __read_mostly = {
840 .notifier_call = can_notifier,
841 };
842
843 static __init int can_init(void)
844 {
845 printk(banner);
846
847 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
848 0, 0, NULL);
849 if (!rcv_cache)
850 return -ENOMEM;
851
852 /*
853 * Insert can_rx_alldev_list for reception on all devices.
854 * This struct is zero initialized which is correct for the
855 * embedded hlist heads, the dev pointer, and the entries counter.
856 */
857
858 spin_lock(&can_rcvlists_lock);
859 hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
860 spin_unlock(&can_rcvlists_lock);
861
862 if (stats_timer) {
863 /* the statistics are updated every second (timer triggered) */
864 setup_timer(&can_stattimer, can_stat_update, 0);
865 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
866 } else
867 can_stattimer.function = NULL;
868
869 can_init_proc();
870
871 /* protocol register */
872 sock_register(&can_family_ops);
873 register_netdevice_notifier(&can_netdev_notifier);
874 dev_add_pack(&can_packet);
875
876 return 0;
877 }
878
879 static __exit void can_exit(void)
880 {
881 struct dev_rcv_lists *d;
882 struct hlist_node *n, *next;
883
884 if (stats_timer)
885 del_timer(&can_stattimer);
886
887 can_remove_proc();
888
889 /* protocol unregister */
890 dev_remove_pack(&can_packet);
891 unregister_netdevice_notifier(&can_netdev_notifier);
892 sock_unregister(PF_CAN);
893
894 /* remove can_rx_dev_list */
895 spin_lock(&can_rcvlists_lock);
896 hlist_del(&can_rx_alldev_list.list);
897 hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
898 hlist_del(&d->list);
899 kfree(d);
900 }
901 spin_unlock(&can_rcvlists_lock);
902
903 kmem_cache_destroy(rcv_cache);
904 }
905
906 module_init(can_init);
907 module_exit(can_exit);