drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 static __initconst const char banner[] = KERN_INFO
68 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84
85 static struct kmem_cache *rcv_cache __read_mostly;
86
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90
91 struct timer_list can_stattimer; /* timer for statistics update */
92 struct s_stats can_stats; /* packet statistics */
93 struct s_pstats can_pstats; /* receive list statistics */
94
95 /*
96 * af_can socket functions
97 */
98
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 struct sock *sk = sock->sk;
102
103 switch (cmd) {
104
105 case SIOCGSTAMP:
106 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107
108 default:
109 return -ENOIOCTLCMD;
110 }
111 }
112 EXPORT_SYMBOL(can_ioctl);
113
114 static void can_sock_destruct(struct sock *sk)
115 {
116 skb_queue_purge(&sk->sk_receive_queue);
117 }
118
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 const struct can_proto *cp;
122
123 rcu_read_lock();
124 cp = rcu_dereference(proto_tab[protocol]);
125 if (cp && !try_module_get(cp->prot->owner))
126 cp = NULL;
127 rcu_read_unlock();
128
129 return cp;
130 }
131
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 module_put(cp->prot->owner);
135 }
136
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 int kern)
139 {
140 struct sock *sk;
141 const struct can_proto *cp;
142 int err = 0;
143
144 sock->state = SS_UNCONNECTED;
145
146 if (protocol < 0 || protocol >= CAN_NPROTO)
147 return -EINVAL;
148
149 if (!net_eq(net, &init_net))
150 return -EAFNOSUPPORT;
151
152 cp = can_get_proto(protocol);
153
154 #ifdef CONFIG_MODULES
155 if (!cp) {
156 /* try to load protocol module if kernel is modular */
157
158 err = request_module("can-proto-%d", protocol);
159
160 /*
161 * In case of error we only print a message but don't
162 * return the error code immediately. Below we will
163 * return -EPROTONOSUPPORT
164 */
165 if (err)
166 printk_ratelimited(KERN_ERR "can: request_module "
167 "(can-proto-%d) failed.\n", protocol);
168
169 cp = can_get_proto(protocol);
170 }
171 #endif
172
173 /* check for available protocol and correct usage */
174
175 if (!cp)
176 return -EPROTONOSUPPORT;
177
178 if (cp->type != sock->type) {
179 err = -EPROTOTYPE;
180 goto errout;
181 }
182
183 sock->ops = cp->ops;
184
185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 if (!sk) {
187 err = -ENOMEM;
188 goto errout;
189 }
190
191 sock_init_data(sock, sk);
192 sk->sk_destruct = can_sock_destruct;
193
194 if (sk->sk_prot->init)
195 err = sk->sk_prot->init(sk);
196
197 if (err) {
198 /* release sk on errors */
199 sock_orphan(sk);
200 sock_put(sk);
201 }
202
203 errout:
204 can_put_proto(cp);
205 return err;
206 }
207
208 /*
209 * af_can tx path
210 */
211
212 /**
213 * can_send - transmit a CAN frame (optional with local loopback)
214 * @skb: pointer to socket buffer with CAN frame in data section
215 * @loop: loopback for listeners on local CAN sockets (recommended default!)
216 *
217 * Due to the loopback this routine must not be called from hardirq context.
218 *
219 * Return:
220 * 0 on success
221 * -ENETDOWN when the selected interface is down
222 * -ENOBUFS on full driver queue (see net_xmit_errno())
223 * -ENOMEM when local loopback failed at calling skb_clone()
224 * -EPERM when trying to send on a non-CAN interface
225 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226 * -EINVAL when the skb->data does not contain a valid CAN frame
227 */
228 int can_send(struct sk_buff *skb, int loop)
229 {
230 struct sk_buff *newskb = NULL;
231 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 int err = -EINVAL;
233
234 if (skb->len == CAN_MTU) {
235 skb->protocol = htons(ETH_P_CAN);
236 if (unlikely(cfd->len > CAN_MAX_DLEN))
237 goto inval_skb;
238 } else if (skb->len == CANFD_MTU) {
239 skb->protocol = htons(ETH_P_CANFD);
240 if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 goto inval_skb;
242 } else
243 goto inval_skb;
244
245 /*
246 * Make sure the CAN frame can pass the selected CAN netdevice.
247 * As structs can_frame and canfd_frame are similar, we can provide
248 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 */
250 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 err = -EMSGSIZE;
252 goto inval_skb;
253 }
254
255 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 err = -EPERM;
257 goto inval_skb;
258 }
259
260 if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 err = -ENETDOWN;
262 goto inval_skb;
263 }
264
265 skb->ip_summed = CHECKSUM_UNNECESSARY;
266
267 skb_reset_mac_header(skb);
268 skb_reset_network_header(skb);
269 skb_reset_transport_header(skb);
270
271 if (loop) {
272 /* local loopback of sent CAN frames */
273
274 /* indication for the CAN driver: do loopback */
275 skb->pkt_type = PACKET_LOOPBACK;
276
277 /*
278 * The reference to the originating sock may be required
279 * by the receiving socket to check whether the frame is
280 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
281 * Therefore we have to ensure that skb->sk remains the
282 * reference to the originating sock by restoring skb->sk
283 * after each skb_clone() or skb_orphan() usage.
284 */
285
286 if (!(skb->dev->flags & IFF_ECHO)) {
287 /*
288 * If the interface is not capable to do loopback
289 * itself, we do it here.
290 */
291 newskb = skb_clone(skb, GFP_ATOMIC);
292 if (!newskb) {
293 kfree_skb(skb);
294 return -ENOMEM;
295 }
296
297 can_skb_set_owner(newskb, skb->sk);
298 newskb->ip_summed = CHECKSUM_UNNECESSARY;
299 newskb->pkt_type = PACKET_BROADCAST;
300 }
301 } else {
302 /* indication for the CAN driver: no loopback required */
303 skb->pkt_type = PACKET_HOST;
304 }
305
306 /* send to netdevice */
307 err = dev_queue_xmit(skb);
308 if (err > 0)
309 err = net_xmit_errno(err);
310
311 if (err) {
312 kfree_skb(newskb);
313 return err;
314 }
315
316 if (newskb)
317 netif_rx_ni(newskb);
318
319 /* update statistics */
320 can_stats.tx_frames++;
321 can_stats.tx_frames_delta++;
322
323 return 0;
324
325 inval_skb:
326 kfree_skb(skb);
327 return err;
328 }
329 EXPORT_SYMBOL(can_send);
330
331 /*
332 * af_can rx path
333 */
334
335 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
336 {
337 if (!dev)
338 return &can_rx_alldev_list;
339 else
340 return (struct dev_rcv_lists *)dev->ml_priv;
341 }
342
343 /**
344 * find_rcv_list - determine optimal filterlist inside device filter struct
345 * @can_id: pointer to CAN identifier of a given can_filter
346 * @mask: pointer to CAN mask of a given can_filter
347 * @d: pointer to the device filter struct
348 *
349 * Description:
350 * Returns the optimal filterlist to reduce the filter handling in the
351 * receive path. This function is called by service functions that need
352 * to register or unregister a can_filter in the filter lists.
353 *
354 * A filter matches in general, when
355 *
356 * <received_can_id> & mask == can_id & mask
357 *
358 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
359 * relevant bits for the filter.
360 *
361 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
362 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
363 * frames there is a special filterlist and a special rx path filter handling.
364 *
365 * Return:
366 * Pointer to optimal filterlist for the given can_id/mask pair.
367 * Constistency checked mask.
368 * Reduced can_id to have a preprocessed filter compare value.
369 */
370 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
371 struct dev_rcv_lists *d)
372 {
373 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
374
375 /* filter for error message frames in extra filterlist */
376 if (*mask & CAN_ERR_FLAG) {
377 /* clear CAN_ERR_FLAG in filter entry */
378 *mask &= CAN_ERR_MASK;
379 return &d->rx[RX_ERR];
380 }
381
382 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
383
384 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
385
386 /* ensure valid values in can_mask for 'SFF only' frame filtering */
387 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
388 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
389
390 /* reduce condition testing at receive time */
391 *can_id &= *mask;
392
393 /* inverse can_id/can_mask filter */
394 if (inv)
395 return &d->rx[RX_INV];
396
397 /* mask == 0 => no condition testing at receive time */
398 if (!(*mask))
399 return &d->rx[RX_ALL];
400
401 /* extra filterlists for the subscription of a single non-RTR can_id */
402 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
403 !(*can_id & CAN_RTR_FLAG)) {
404
405 if (*can_id & CAN_EFF_FLAG) {
406 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
407 /* RFC: a future use-case for hash-tables? */
408 return &d->rx[RX_EFF];
409 }
410 } else {
411 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
412 return &d->rx_sff[*can_id];
413 }
414 }
415
416 /* default: filter via can_id/can_mask */
417 return &d->rx[RX_FIL];
418 }
419
420 /**
421 * can_rx_register - subscribe CAN frames from a specific interface
422 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
423 * @can_id: CAN identifier (see description)
424 * @mask: CAN mask (see description)
425 * @func: callback function on filter match
426 * @data: returned parameter for callback function
427 * @ident: string for calling module indentification
428 * @sk: socket pointer (might be NULL)
429 *
430 * Description:
431 * Invokes the callback function with the received sk_buff and the given
432 * parameter 'data' on a matching receive filter. A filter matches, when
433 *
434 * <received_can_id> & mask == can_id & mask
435 *
436 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
437 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
438 *
439 * The provided pointer to the sk_buff is guaranteed to be valid as long as
440 * the callback function is running. The callback function must *not* free
441 * the given sk_buff while processing it's task. When the given sk_buff is
442 * needed after the end of the callback function it must be cloned inside
443 * the callback function with skb_clone().
444 *
445 * Return:
446 * 0 on success
447 * -ENOMEM on missing cache mem to create subscription entry
448 * -ENODEV unknown device
449 */
450 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
451 void (*func)(struct sk_buff *, void *), void *data,
452 char *ident, struct sock *sk)
453 {
454 struct receiver *r;
455 struct hlist_head *rl;
456 struct dev_rcv_lists *d;
457 int err = 0;
458
459 /* insert new receiver (dev,canid,mask) -> (func,data) */
460
461 if (dev && dev->type != ARPHRD_CAN)
462 return -ENODEV;
463
464 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
465 if (!r)
466 return -ENOMEM;
467
468 spin_lock(&can_rcvlists_lock);
469
470 d = find_dev_rcv_lists(dev);
471 if (d) {
472 rl = find_rcv_list(&can_id, &mask, d);
473
474 r->can_id = can_id;
475 r->mask = mask;
476 r->matches = 0;
477 r->func = func;
478 r->data = data;
479 r->ident = ident;
480 r->sk = sk;
481
482 hlist_add_head_rcu(&r->list, rl);
483 d->entries++;
484
485 can_pstats.rcv_entries++;
486 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
487 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
488 } else {
489 kmem_cache_free(rcv_cache, r);
490 err = -ENODEV;
491 }
492
493 spin_unlock(&can_rcvlists_lock);
494
495 return err;
496 }
497 EXPORT_SYMBOL(can_rx_register);
498
499 /*
500 * can_rx_delete_receiver - rcu callback for single receiver entry removal
501 */
502 static void can_rx_delete_receiver(struct rcu_head *rp)
503 {
504 struct receiver *r = container_of(rp, struct receiver, rcu);
505 struct sock *sk = r->sk;
506
507 kmem_cache_free(rcv_cache, r);
508 if (sk)
509 sock_put(sk);
510 }
511
512 /**
513 * can_rx_unregister - unsubscribe CAN frames from a specific interface
514 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
515 * @can_id: CAN identifier
516 * @mask: CAN mask
517 * @func: callback function on filter match
518 * @data: returned parameter for callback function
519 *
520 * Description:
521 * Removes subscription entry depending on given (subscription) values.
522 */
523 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
524 void (*func)(struct sk_buff *, void *), void *data)
525 {
526 struct receiver *r = NULL;
527 struct hlist_head *rl;
528 struct dev_rcv_lists *d;
529
530 if (dev && dev->type != ARPHRD_CAN)
531 return;
532
533 spin_lock(&can_rcvlists_lock);
534
535 d = find_dev_rcv_lists(dev);
536 if (!d) {
537 pr_err("BUG: receive list not found for "
538 "dev %s, id %03X, mask %03X\n",
539 DNAME(dev), can_id, mask);
540 goto out;
541 }
542
543 rl = find_rcv_list(&can_id, &mask, d);
544
545 /*
546 * Search the receiver list for the item to delete. This should
547 * exist, since no receiver may be unregistered that hasn't
548 * been registered before.
549 */
550
551 hlist_for_each_entry_rcu(r, rl, list) {
552 if (r->can_id == can_id && r->mask == mask &&
553 r->func == func && r->data == data)
554 break;
555 }
556
557 /*
558 * Check for bugs in CAN protocol implementations using af_can.c:
559 * 'r' will be NULL if no matching list item was found for removal.
560 */
561
562 if (!r) {
563 WARN(1, "BUG: receive list entry not found for dev %s, "
564 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
565 goto out;
566 }
567
568 hlist_del_rcu(&r->list);
569 d->entries--;
570
571 if (can_pstats.rcv_entries > 0)
572 can_pstats.rcv_entries--;
573
574 /* remove device structure requested by NETDEV_UNREGISTER */
575 if (d->remove_on_zero_entries && !d->entries) {
576 kfree(d);
577 dev->ml_priv = NULL;
578 }
579
580 out:
581 spin_unlock(&can_rcvlists_lock);
582
583 /* schedule the receiver item for deletion */
584 if (r) {
585 if (r->sk)
586 sock_hold(r->sk);
587 call_rcu(&r->rcu, can_rx_delete_receiver);
588 }
589 }
590 EXPORT_SYMBOL(can_rx_unregister);
591
592 static inline void deliver(struct sk_buff *skb, struct receiver *r)
593 {
594 r->func(skb, r->data);
595 r->matches++;
596 }
597
598 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
599 {
600 struct receiver *r;
601 int matches = 0;
602 struct can_frame *cf = (struct can_frame *)skb->data;
603 canid_t can_id = cf->can_id;
604
605 if (d->entries == 0)
606 return 0;
607
608 if (can_id & CAN_ERR_FLAG) {
609 /* check for error message frame entries only */
610 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
611 if (can_id & r->mask) {
612 deliver(skb, r);
613 matches++;
614 }
615 }
616 return matches;
617 }
618
619 /* check for unfiltered entries */
620 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
621 deliver(skb, r);
622 matches++;
623 }
624
625 /* check for can_id/mask entries */
626 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
627 if ((can_id & r->mask) == r->can_id) {
628 deliver(skb, r);
629 matches++;
630 }
631 }
632
633 /* check for inverted can_id/mask entries */
634 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
635 if ((can_id & r->mask) != r->can_id) {
636 deliver(skb, r);
637 matches++;
638 }
639 }
640
641 /* check filterlists for single non-RTR can_ids */
642 if (can_id & CAN_RTR_FLAG)
643 return matches;
644
645 if (can_id & CAN_EFF_FLAG) {
646 hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) {
647 if (r->can_id == can_id) {
648 deliver(skb, r);
649 matches++;
650 }
651 }
652 } else {
653 can_id &= CAN_SFF_MASK;
654 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
655 deliver(skb, r);
656 matches++;
657 }
658 }
659
660 return matches;
661 }
662
663 static void can_receive(struct sk_buff *skb, struct net_device *dev)
664 {
665 struct dev_rcv_lists *d;
666 int matches;
667
668 /* update statistics */
669 can_stats.rx_frames++;
670 can_stats.rx_frames_delta++;
671
672 rcu_read_lock();
673
674 /* deliver the packet to sockets listening on all devices */
675 matches = can_rcv_filter(&can_rx_alldev_list, skb);
676
677 /* find receive list for this device */
678 d = find_dev_rcv_lists(dev);
679 if (d)
680 matches += can_rcv_filter(d, skb);
681
682 rcu_read_unlock();
683
684 /* consume the skbuff allocated by the netdevice driver */
685 consume_skb(skb);
686
687 if (matches > 0) {
688 can_stats.matches++;
689 can_stats.matches_delta++;
690 }
691 }
692
693 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
694 struct packet_type *pt, struct net_device *orig_dev)
695 {
696 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
697
698 if (unlikely(!net_eq(dev_net(dev), &init_net)))
699 goto drop;
700
701 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
702 skb->len != CAN_MTU ||
703 cfd->len > CAN_MAX_DLEN,
704 "PF_CAN: dropped non conform CAN skbuf: "
705 "dev type %d, len %d, datalen %d\n",
706 dev->type, skb->len, cfd->len))
707 goto drop;
708
709 can_receive(skb, dev);
710 return NET_RX_SUCCESS;
711
712 drop:
713 kfree_skb(skb);
714 return NET_RX_DROP;
715 }
716
717 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
718 struct packet_type *pt, struct net_device *orig_dev)
719 {
720 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
721
722 if (unlikely(!net_eq(dev_net(dev), &init_net)))
723 goto drop;
724
725 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
726 skb->len != CANFD_MTU ||
727 cfd->len > CANFD_MAX_DLEN,
728 "PF_CAN: dropped non conform CAN FD skbuf: "
729 "dev type %d, len %d, datalen %d\n",
730 dev->type, skb->len, cfd->len))
731 goto drop;
732
733 can_receive(skb, dev);
734 return NET_RX_SUCCESS;
735
736 drop:
737 kfree_skb(skb);
738 return NET_RX_DROP;
739 }
740
741 /*
742 * af_can protocol functions
743 */
744
745 /**
746 * can_proto_register - register CAN transport protocol
747 * @cp: pointer to CAN protocol structure
748 *
749 * Return:
750 * 0 on success
751 * -EINVAL invalid (out of range) protocol number
752 * -EBUSY protocol already in use
753 * -ENOBUF if proto_register() fails
754 */
755 int can_proto_register(const struct can_proto *cp)
756 {
757 int proto = cp->protocol;
758 int err = 0;
759
760 if (proto < 0 || proto >= CAN_NPROTO) {
761 pr_err("can: protocol number %d out of range\n", proto);
762 return -EINVAL;
763 }
764
765 err = proto_register(cp->prot, 0);
766 if (err < 0)
767 return err;
768
769 mutex_lock(&proto_tab_lock);
770
771 if (proto_tab[proto]) {
772 pr_err("can: protocol %d already registered\n", proto);
773 err = -EBUSY;
774 } else
775 RCU_INIT_POINTER(proto_tab[proto], cp);
776
777 mutex_unlock(&proto_tab_lock);
778
779 if (err < 0)
780 proto_unregister(cp->prot);
781
782 return err;
783 }
784 EXPORT_SYMBOL(can_proto_register);
785
786 /**
787 * can_proto_unregister - unregister CAN transport protocol
788 * @cp: pointer to CAN protocol structure
789 */
790 void can_proto_unregister(const struct can_proto *cp)
791 {
792 int proto = cp->protocol;
793
794 mutex_lock(&proto_tab_lock);
795 BUG_ON(proto_tab[proto] != cp);
796 RCU_INIT_POINTER(proto_tab[proto], NULL);
797 mutex_unlock(&proto_tab_lock);
798
799 synchronize_rcu();
800
801 proto_unregister(cp->prot);
802 }
803 EXPORT_SYMBOL(can_proto_unregister);
804
805 /*
806 * af_can notifier to create/remove CAN netdevice specific structs
807 */
808 static int can_notifier(struct notifier_block *nb, unsigned long msg,
809 void *data)
810 {
811 struct net_device *dev = (struct net_device *)data;
812 struct dev_rcv_lists *d;
813
814 if (!net_eq(dev_net(dev), &init_net))
815 return NOTIFY_DONE;
816
817 if (dev->type != ARPHRD_CAN)
818 return NOTIFY_DONE;
819
820 switch (msg) {
821
822 case NETDEV_REGISTER:
823
824 /* create new dev_rcv_lists for this device */
825 d = kzalloc(sizeof(*d), GFP_KERNEL);
826 if (!d)
827 return NOTIFY_DONE;
828 BUG_ON(dev->ml_priv);
829 dev->ml_priv = d;
830
831 break;
832
833 case NETDEV_UNREGISTER:
834 spin_lock(&can_rcvlists_lock);
835
836 d = dev->ml_priv;
837 if (d) {
838 if (d->entries)
839 d->remove_on_zero_entries = 1;
840 else {
841 kfree(d);
842 dev->ml_priv = NULL;
843 }
844 } else
845 pr_err("can: notifier: receive list not found for dev "
846 "%s\n", dev->name);
847
848 spin_unlock(&can_rcvlists_lock);
849
850 break;
851 }
852
853 return NOTIFY_DONE;
854 }
855
856 /*
857 * af_can module init/exit functions
858 */
859
860 static struct packet_type can_packet __read_mostly = {
861 .type = cpu_to_be16(ETH_P_CAN),
862 .func = can_rcv,
863 };
864
865 static struct packet_type canfd_packet __read_mostly = {
866 .type = cpu_to_be16(ETH_P_CANFD),
867 .func = canfd_rcv,
868 };
869
870 static const struct net_proto_family can_family_ops = {
871 .family = PF_CAN,
872 .create = can_create,
873 .owner = THIS_MODULE,
874 };
875
876 /* notifier block for netdevice event */
877 static struct notifier_block can_netdev_notifier __read_mostly = {
878 .notifier_call = can_notifier,
879 };
880
881 static __init int can_init(void)
882 {
883 /* check for correct padding to be able to use the structs similarly */
884 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
885 offsetof(struct canfd_frame, len) ||
886 offsetof(struct can_frame, data) !=
887 offsetof(struct canfd_frame, data));
888
889 printk(banner);
890
891 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
892
893 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
894 0, 0, NULL);
895 if (!rcv_cache)
896 return -ENOMEM;
897
898 if (stats_timer) {
899 /* the statistics are updated every second (timer triggered) */
900 setup_timer(&can_stattimer, can_stat_update, 0);
901 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
902 } else
903 can_stattimer.function = NULL;
904
905 can_init_proc();
906
907 /* protocol register */
908 sock_register(&can_family_ops);
909 register_netdevice_notifier(&can_netdev_notifier);
910 dev_add_pack(&can_packet);
911 dev_add_pack(&canfd_packet);
912
913 return 0;
914 }
915
916 static __exit void can_exit(void)
917 {
918 struct net_device *dev;
919
920 if (stats_timer)
921 del_timer_sync(&can_stattimer);
922
923 can_remove_proc();
924
925 /* protocol unregister */
926 dev_remove_pack(&canfd_packet);
927 dev_remove_pack(&can_packet);
928 unregister_netdevice_notifier(&can_netdev_notifier);
929 sock_unregister(PF_CAN);
930
931 /* remove created dev_rcv_lists from still registered CAN devices */
932 rcu_read_lock();
933 for_each_netdev_rcu(&init_net, dev) {
934 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
935
936 struct dev_rcv_lists *d = dev->ml_priv;
937
938 BUG_ON(d->entries);
939 kfree(d);
940 dev->ml_priv = NULL;
941 }
942 }
943 rcu_read_unlock();
944
945 rcu_barrier(); /* Wait for completion of call_rcu()'s */
946
947 kmem_cache_destroy(rcv_cache);
948 }
949
950 module_init(can_init);
951 module_exit(can_exit);