locking: Remove atomicy checks from {READ,WRITE}_ONCE
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96
97 /*
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
102 */
103 #define ZS_ALIGN 8
104
105 /*
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108 */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111
112 /*
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
115 *
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
119 *
120 * This is made more complicated by various memory models and PAE.
121 */
122
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
130 */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
143
144 /*
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153 *
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
156 */
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
160
161 /*
162 * We do not maintain any list for completely empty zspages,
163 * since a zspage is freed when it becomes empty.
164 */
165 enum fullness_group {
166 ZS_ALMOST_FULL,
167 ZS_ALMOST_EMPTY,
168 ZS_FULL,
169
170 _ZS_NR_FULLNESS_GROUPS,
171
172 ZS_EMPTY,
173 ZS_RECLAIM
174 };
175 #define _ZS_NR_AVAILABLE_FULLNESS_GROUPS ZS_FULL
176
177 /*
178 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n <= N / f, where
180 * n = number of allocated objects
181 * N = total number of objects zspage can store
182 * f = fullness_threshold_frac
183 *
184 * Similarly, we assign zspage to:
185 * ZS_ALMOST_FULL when n > N / f
186 * ZS_EMPTY when n == 0
187 * ZS_FULL when n == N
188 *
189 * (see: fix_fullness_group())
190 */
191 static const int fullness_threshold_frac = 4;
192
193 struct size_class {
194 /*
195 * Size of objects stored in this class. Must be multiple
196 * of ZS_ALIGN.
197 */
198 int size;
199 unsigned int index;
200
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
203
204 spinlock_t lock;
205
206 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
207 };
208
209 /*
210 * Placed within free objects to form a singly linked list.
211 * For every zspage, first_page->freelist gives head of this list.
212 *
213 * This must be power of 2 and less than or equal to ZS_ALIGN
214 */
215 struct link_free {
216 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
217 void *next;
218 };
219
220 struct zs_pool {
221 struct size_class *size_class[ZS_SIZE_CLASSES];
222
223 gfp_t flags; /* allocation flags used when growing pool */
224 atomic_long_t pages_allocated;
225
226 struct zs_ops *ops;
227 };
228
229 /*
230 * A zspage's class index and fullness group
231 * are encoded in its (first)page->mapping
232 */
233 #define CLASS_IDX_BITS 28
234 #define FULLNESS_BITS 4
235 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
236 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
237
238 struct mapping_area {
239 #ifdef CONFIG_PGTABLE_MAPPING
240 struct vm_struct *vm; /* vm area for mapping object that span pages */
241 #else
242 char *vm_buf; /* copy buffer for objects that span pages */
243 #endif
244 char *vm_addr; /* address of kmap_atomic()'ed pages */
245 enum zs_mapmode vm_mm; /* mapping mode */
246 };
247
248 /* atomic counter indicating which class/fg to reclaim from */
249 static atomic_t lru_class_fg;
250 /* specific order of fg we want to reclaim from */
251 static enum fullness_group lru_fg[] = {
252 ZS_ALMOST_EMPTY,
253 ZS_ALMOST_FULL,
254 ZS_FULL
255 };
256 #define _ZS_NR_LRU_CLASS_FG (ZS_SIZE_CLASSES * ARRAY_SIZE(lru_fg))
257
258 /* zpool driver */
259
260 #ifdef CONFIG_ZPOOL
261
262 static int zs_zpool_evict(struct zs_pool *pool, unsigned long handle)
263 {
264 return zpool_evict(pool, handle);
265 }
266
267 static struct zs_ops zs_zpool_ops = {
268 .evict = zs_zpool_evict
269 };
270
271 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
272 {
273 return zs_create_pool(gfp, &zs_zpool_ops);
274 }
275
276 static void zs_zpool_destroy(void *pool)
277 {
278 zs_destroy_pool(pool);
279 }
280
281 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
282 unsigned long *handle)
283 {
284 *handle = zs_malloc(pool, size);
285 return *handle ? 0 : -1;
286 }
287 static void zs_zpool_free(void *pool, unsigned long handle)
288 {
289 zs_free(pool, handle);
290 }
291
292 static int zs_zpool_shrink(void *pool, unsigned int pages,
293 unsigned int *reclaimed)
294 {
295 int total = 0, ret = 0;
296
297 while (total < pages) {
298 ret = zs_shrink(pool);
299 WARN_ON(!ret);
300 if (ret <= 0)
301 break;
302 total += ret;
303 ret = 0;
304 }
305
306 if (reclaimed)
307 *reclaimed = total;
308 return ret;
309 }
310
311 static void *zs_zpool_map(void *pool, unsigned long handle,
312 enum zpool_mapmode mm)
313 {
314 enum zs_mapmode zs_mm;
315
316 switch (mm) {
317 case ZPOOL_MM_RO:
318 zs_mm = ZS_MM_RO;
319 break;
320 case ZPOOL_MM_WO:
321 zs_mm = ZS_MM_WO;
322 break;
323 case ZPOOL_MM_RW: /* fallthru */
324 default:
325 zs_mm = ZS_MM_RW;
326 break;
327 }
328
329 return zs_map_object(pool, handle, zs_mm);
330 }
331 static void zs_zpool_unmap(void *pool, unsigned long handle)
332 {
333 zs_unmap_object(pool, handle);
334 }
335
336 static u64 zs_zpool_total_size(void *pool)
337 {
338 return zs_get_total_pages(pool) << PAGE_SHIFT;
339 }
340
341 static struct zpool_driver zs_zpool_driver = {
342 .type = "zsmalloc",
343 .owner = THIS_MODULE,
344 .create = zs_zpool_create,
345 .destroy = zs_zpool_destroy,
346 .malloc = zs_zpool_malloc,
347 .free = zs_zpool_free,
348 .shrink = zs_zpool_shrink,
349 .map = zs_zpool_map,
350 .unmap = zs_zpool_unmap,
351 .total_size = zs_zpool_total_size,
352 };
353
354 MODULE_ALIAS("zpool-zsmalloc");
355 #endif /* CONFIG_ZPOOL */
356
357 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
358 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
359
360 static int is_first_page(struct page *page)
361 {
362 return PagePrivate(page);
363 }
364
365 static int is_last_page(struct page *page)
366 {
367 return PagePrivate2(page);
368 }
369
370 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
371 enum fullness_group *fullness)
372 {
373 unsigned long m;
374 BUG_ON(!is_first_page(page));
375
376 m = (unsigned long)page->mapping;
377 *fullness = m & FULLNESS_MASK;
378 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
379 }
380
381 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
382 enum fullness_group fullness)
383 {
384 unsigned long m;
385 BUG_ON(!is_first_page(page));
386
387 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
388 (fullness & FULLNESS_MASK);
389 page->mapping = (struct address_space *)m;
390 }
391
392 /*
393 * zsmalloc divides the pool into various size classes where each
394 * class maintains a list of zspages where each zspage is divided
395 * into equal sized chunks. Each allocation falls into one of these
396 * classes depending on its size. This function returns index of the
397 * size class which has chunk size big enough to hold the give size.
398 */
399 static int get_size_class_index(int size)
400 {
401 int idx = 0;
402
403 if (likely(size > ZS_MIN_ALLOC_SIZE))
404 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
405 ZS_SIZE_CLASS_DELTA);
406
407 return idx;
408 }
409
410 /*
411 * For each size class, zspages are divided into different groups
412 * depending on how "full" they are. This was done so that we could
413 * easily find empty or nearly empty zspages when we try to shrink
414 * the pool (not yet implemented). This function returns fullness
415 * status of the given page.
416 */
417 static enum fullness_group get_fullness_group(struct page *page)
418 {
419 int inuse, max_objects;
420 enum fullness_group fg;
421 BUG_ON(!is_first_page(page));
422
423 inuse = page->inuse;
424 max_objects = page->objects;
425
426 if (inuse == 0)
427 fg = ZS_EMPTY;
428 else if (inuse == max_objects)
429 fg = ZS_FULL;
430 else if (inuse <= max_objects / fullness_threshold_frac)
431 fg = ZS_ALMOST_EMPTY;
432 else
433 fg = ZS_ALMOST_FULL;
434
435 return fg;
436 }
437
438 /*
439 * Each size class maintains various freelists and zspages are assigned
440 * to one of these freelists based on the number of live objects they
441 * have. This functions inserts the given zspage into the freelist
442 * identified by <class, fullness_group>.
443 */
444 static void insert_zspage(struct page *page, struct size_class *class,
445 enum fullness_group fullness)
446 {
447 struct page **head;
448
449 BUG_ON(!is_first_page(page));
450
451 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
452 return;
453
454 head = &class->fullness_list[fullness];
455 if (*head)
456 list_add_tail(&page->lru, &(*head)->lru);
457
458 *head = page;
459 }
460
461 /*
462 * This function removes the given zspage from the freelist identified
463 * by <class, fullness_group>.
464 */
465 static void remove_zspage(struct page *page, struct size_class *class,
466 enum fullness_group fullness)
467 {
468 struct page **head;
469
470 BUG_ON(!is_first_page(page));
471
472 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
473 return;
474
475 head = &class->fullness_list[fullness];
476 BUG_ON(!*head);
477 if (list_empty(&(*head)->lru))
478 *head = NULL;
479 else if (*head == page)
480 *head = (struct page *)list_entry((*head)->lru.next,
481 struct page, lru);
482
483 list_del_init(&page->lru);
484 }
485
486 /*
487 * Each size class maintains zspages in different fullness groups depending
488 * on the number of live objects they contain. When allocating or freeing
489 * objects, the fullness status of the page can change, say, from ALMOST_FULL
490 * to ALMOST_EMPTY when freeing an object. This function checks if such
491 * a status change has occurred for the given page and accordingly moves the
492 * page from the freelist of the old fullness group to that of the new
493 * fullness group.
494 */
495 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
496 struct page *page)
497 {
498 int class_idx;
499 struct size_class *class;
500 enum fullness_group currfg, newfg;
501
502 BUG_ON(!is_first_page(page));
503
504 get_zspage_mapping(page, &class_idx, &currfg);
505 class = pool->size_class[class_idx];
506 newfg = get_fullness_group(page);
507 /* Need to do this even if currfg == newfg, to update lru */
508 remove_zspage(page, class, currfg);
509 insert_zspage(page, class, newfg);
510 if (currfg != newfg)
511 set_zspage_mapping(page, class_idx, newfg);
512
513 return newfg;
514 }
515
516 /*
517 * We have to decide on how many pages to link together
518 * to form a zspage for each size class. This is important
519 * to reduce wastage due to unusable space left at end of
520 * each zspage which is given as:
521 * wastage = Zp - Zp % size_class
522 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
523 *
524 * For example, for size class of 3/8 * PAGE_SIZE, we should
525 * link together 3 PAGE_SIZE sized pages to form a zspage
526 * since then we can perfectly fit in 8 such objects.
527 */
528 static int get_pages_per_zspage(int class_size)
529 {
530 int i, max_usedpc = 0;
531 /* zspage order which gives maximum used size per KB */
532 int max_usedpc_order = 1;
533
534 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
535 int zspage_size;
536 int waste, usedpc;
537
538 zspage_size = i * PAGE_SIZE;
539 waste = zspage_size % class_size;
540 usedpc = (zspage_size - waste) * 100 / zspage_size;
541
542 if (usedpc > max_usedpc) {
543 max_usedpc = usedpc;
544 max_usedpc_order = i;
545 }
546 }
547
548 return max_usedpc_order;
549 }
550
551 /*
552 * A single 'zspage' is composed of many system pages which are
553 * linked together using fields in struct page. This function finds
554 * the first/head page, given any component page of a zspage.
555 */
556 static struct page *get_first_page(struct page *page)
557 {
558 if (is_first_page(page))
559 return page;
560 else
561 return page->first_page;
562 }
563
564 static struct page *get_next_page(struct page *page)
565 {
566 struct page *next;
567
568 if (is_last_page(page))
569 next = NULL;
570 else if (is_first_page(page))
571 next = (struct page *)page_private(page);
572 else
573 next = list_entry(page->lru.next, struct page, lru);
574
575 return next;
576 }
577
578 /*
579 * Encode <page, obj_idx> as a single handle value.
580 * On hardware platforms with physical memory starting at 0x0 the pfn
581 * could be 0 so we ensure that the handle will never be 0 by adjusting the
582 * encoded obj_idx value before encoding.
583 */
584 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
585 {
586 unsigned long handle;
587
588 if (!page) {
589 BUG_ON(obj_idx);
590 return NULL;
591 }
592
593 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
594 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
595
596 return (void *)handle;
597 }
598
599 /*
600 * Decode <page, obj_idx> pair from the given object handle. We adjust the
601 * decoded obj_idx back to its original value since it was adjusted in
602 * obj_location_to_handle().
603 */
604 static void obj_handle_to_location(unsigned long handle, struct page **page,
605 unsigned long *obj_idx)
606 {
607 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
608 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
609 }
610
611 static unsigned long obj_idx_to_offset(struct page *page,
612 unsigned long obj_idx, int class_size)
613 {
614 unsigned long off = 0;
615
616 if (!is_first_page(page))
617 off = page->index;
618
619 return off + obj_idx * class_size;
620 }
621
622 static bool obj_handle_is_free(struct page *first_page,
623 struct size_class *class, unsigned long handle)
624 {
625 unsigned long obj, idx, offset;
626 struct page *page;
627 struct link_free *link;
628
629 BUG_ON(!is_first_page(first_page));
630
631 obj = (unsigned long)first_page->freelist;
632
633 while (obj) {
634 if (obj == handle)
635 return true;
636
637 obj_handle_to_location(obj, &page, &idx);
638 offset = obj_idx_to_offset(page, idx, class->size);
639
640 link = (struct link_free *)kmap_atomic(page) +
641 offset / sizeof(*link);
642 obj = (unsigned long)link->next;
643 kunmap_atomic(link);
644 }
645
646 return false;
647 }
648
649 static void obj_free(unsigned long obj, struct page *page, unsigned long offset)
650 {
651 struct page *first_page = get_first_page(page);
652 struct link_free *link;
653
654 /* Insert this object in containing zspage's freelist */
655 link = (struct link_free *)((unsigned char *)kmap_atomic(page)
656 + offset);
657 link->next = first_page->freelist;
658 kunmap_atomic(link);
659 first_page->freelist = (void *)obj;
660
661 first_page->inuse--;
662 }
663
664 static void reset_page(struct page *page)
665 {
666 clear_bit(PG_private, &page->flags);
667 clear_bit(PG_private_2, &page->flags);
668 set_page_private(page, 0);
669 page->mapping = NULL;
670 page->freelist = NULL;
671 page_mapcount_reset(page);
672 }
673
674 static void free_zspage(struct page *first_page)
675 {
676 struct page *nextp, *tmp, *head_extra;
677
678 BUG_ON(!is_first_page(first_page));
679 BUG_ON(first_page->inuse);
680
681 head_extra = (struct page *)page_private(first_page);
682
683 reset_page(first_page);
684 __free_page(first_page);
685
686 /* zspage with only 1 system page */
687 if (!head_extra)
688 return;
689
690 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
691 list_del(&nextp->lru);
692 reset_page(nextp);
693 __free_page(nextp);
694 }
695 reset_page(head_extra);
696 __free_page(head_extra);
697 }
698
699 /* Initialize a newly allocated zspage */
700 static void init_zspage(struct page *first_page, struct size_class *class)
701 {
702 unsigned long off = 0;
703 struct page *page = first_page;
704
705 BUG_ON(!is_first_page(first_page));
706 while (page) {
707 struct page *next_page;
708 struct link_free *link;
709 unsigned int i, objs_on_page;
710
711 /*
712 * page->index stores offset of first object starting
713 * in the page. For the first page, this is always 0,
714 * so we use first_page->index (aka ->freelist) to store
715 * head of corresponding zspage's freelist.
716 */
717 if (page != first_page)
718 page->index = off;
719
720 link = (struct link_free *)kmap_atomic(page) +
721 off / sizeof(*link);
722 objs_on_page = (PAGE_SIZE - off) / class->size;
723
724 for (i = 1; i <= objs_on_page; i++) {
725 off += class->size;
726 if (off < PAGE_SIZE) {
727 link->next = obj_location_to_handle(page, i);
728 link += class->size / sizeof(*link);
729 }
730 }
731
732 /*
733 * We now come to the last (full or partial) object on this
734 * page, which must point to the first object on the next
735 * page (if present)
736 */
737 next_page = get_next_page(page);
738 link->next = obj_location_to_handle(next_page, 0);
739 kunmap_atomic(link);
740 page = next_page;
741 off = (off + class->size) % PAGE_SIZE;
742 }
743 }
744
745 /*
746 * Allocate a zspage for the given size class
747 */
748 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
749 {
750 int i, error;
751 struct page *first_page = NULL, *uninitialized_var(prev_page);
752
753 /*
754 * Allocate individual pages and link them together as:
755 * 1. first page->private = first sub-page
756 * 2. all sub-pages are linked together using page->lru
757 * 3. each sub-page is linked to the first page using page->first_page
758 *
759 * For each size class, First/Head pages are linked together using
760 * page->lru. Also, we set PG_private to identify the first page
761 * (i.e. no other sub-page has this flag set) and PG_private_2 to
762 * identify the last page.
763 */
764 error = -ENOMEM;
765 for (i = 0; i < class->pages_per_zspage; i++) {
766 struct page *page;
767
768 page = alloc_page(flags);
769 if (!page)
770 goto cleanup;
771
772 INIT_LIST_HEAD(&page->lru);
773 if (i == 0) { /* first page */
774 SetPagePrivate(page);
775 set_page_private(page, 0);
776 first_page = page;
777 first_page->inuse = 0;
778 }
779 if (i == 1)
780 set_page_private(first_page, (unsigned long)page);
781 if (i >= 1)
782 page->first_page = first_page;
783 if (i >= 2)
784 list_add(&page->lru, &prev_page->lru);
785 if (i == class->pages_per_zspage - 1) /* last page */
786 SetPagePrivate2(page);
787 prev_page = page;
788 }
789
790 init_zspage(first_page, class);
791
792 first_page->freelist = obj_location_to_handle(first_page, 0);
793 /* Maximum number of objects we can store in this zspage */
794 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
795
796 error = 0; /* Success */
797
798 cleanup:
799 if (unlikely(error) && first_page) {
800 free_zspage(first_page);
801 first_page = NULL;
802 }
803
804 return first_page;
805 }
806
807 /*
808 * This tries to reclaim all the provided zspage's objects by calling the
809 * zs_pool's ops->evict function for each object in use. This requires
810 * the zspage's class lock to be held when calling this function. Since
811 * the evict function may sleep, this drops the class lock before evicting
812 * and objects. No other locks should be held when calling this function.
813 * This will return with the class lock unlocked.
814 *
815 * If there is no zs_pool->ops or ops->evict function, this returns error.
816 *
817 * This returns 0 on success, -err on failure. On failure, some of the
818 * objects may have been freed, but not all. On success, the entire zspage
819 * has been freed and should not be used anymore.
820 */
821 static int reclaim_zspage(struct zs_pool *pool, struct page *first_page)
822 {
823 struct size_class *class;
824 enum fullness_group fullness;
825 struct page *page = first_page;
826 unsigned long handle;
827 int class_idx, ret = 0;
828
829 BUG_ON(!is_first_page(first_page));
830
831 get_zspage_mapping(first_page, &class_idx, &fullness);
832 class = pool->size_class[class_idx];
833
834 assert_spin_locked(&class->lock);
835
836 if (!pool->ops || !pool->ops->evict) {
837 spin_unlock(&class->lock);
838 return -EINVAL;
839 }
840
841 /* move the zspage into the reclaim fullness group,
842 * so it's not available for use by zs_malloc,
843 * and won't be freed by zs_free
844 */
845 remove_zspage(first_page, class, fullness);
846 set_zspage_mapping(first_page, class_idx, ZS_RECLAIM);
847
848 spin_unlock(&class->lock);
849
850 might_sleep();
851
852 while (page) {
853 unsigned long offset, idx = 0;
854
855 while ((offset = obj_idx_to_offset(page, idx, class->size))
856 < PAGE_SIZE) {
857 handle = (unsigned long)obj_location_to_handle(page,
858 idx++);
859 if (obj_handle_is_free(first_page, class, handle))
860 continue;
861 ret = pool->ops->evict(pool, handle);
862 if (ret) {
863 spin_lock(&class->lock);
864 fix_fullness_group(pool, first_page);
865 spin_unlock(&class->lock);
866 return ret;
867 }
868 obj_free(handle, page, offset);
869 }
870
871 page = get_next_page(page);
872 }
873
874 free_zspage(first_page);
875
876 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
877
878 return 0;
879 }
880
881 static struct page *find_available_zspage(struct size_class *class)
882 {
883 int i;
884 struct page *page;
885
886 for (i = 0; i < _ZS_NR_AVAILABLE_FULLNESS_GROUPS; i++) {
887 page = class->fullness_list[i];
888 if (page)
889 break;
890 }
891
892 return page;
893 }
894
895 /* this simply iterates atomically through all classes,
896 * using a specific fullness group. At the end, it starts
897 * over using the next fullness group, and so on. The
898 * fullness groups are used in a specific order, from
899 * least to most full.
900 */
901 static void find_next_lru_class_fg(struct zs_pool *pool,
902 struct size_class **class, enum fullness_group *fg)
903 {
904 int i = atomic_inc_return(&lru_class_fg);
905
906 if (i >= _ZS_NR_LRU_CLASS_FG) {
907 int orig = i;
908
909 i %= _ZS_NR_LRU_CLASS_FG;
910 /* only need to try once, since if we don't
911 * succeed whoever changed it will also try
912 * and eventually someone will reset it
913 */
914 atomic_cmpxchg(&lru_class_fg, orig, i);
915 }
916 *class = pool->size_class[i % ZS_SIZE_CLASSES];
917 *fg = lru_fg[i / ZS_SIZE_CLASSES];
918 }
919
920 /*
921 * This attempts to find the LRU zspage, but that's not really possible
922 * because zspages are not contained in a single LRU list, they're
923 * contained inside fullness groups which are themselves contained
924 * inside classes. So this simply iterates through the classes and
925 * fullness groups to find the next non-empty fullness group, and
926 * uses the LRU zspage there.
927 *
928 * On success, the zspage is returned with its class locked.
929 * On failure, NULL is returned.
930 */
931 static struct page *find_lru_zspage(struct zs_pool *pool)
932 {
933 struct size_class *class;
934 struct page *page;
935 enum fullness_group fg;
936 int tries = 0;
937
938 while (tries++ < _ZS_NR_LRU_CLASS_FG) {
939 find_next_lru_class_fg(pool, &class, &fg);
940
941 spin_lock(&class->lock);
942
943 page = class->fullness_list[fg];
944 if (page)
945 return list_prev_entry(page, lru);
946
947 spin_unlock(&class->lock);
948 }
949
950 return NULL;
951 }
952
953 #ifdef CONFIG_PGTABLE_MAPPING
954 static inline int __zs_cpu_up(struct mapping_area *area)
955 {
956 /*
957 * Make sure we don't leak memory if a cpu UP notification
958 * and zs_init() race and both call zs_cpu_up() on the same cpu
959 */
960 if (area->vm)
961 return 0;
962 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
963 if (!area->vm)
964 return -ENOMEM;
965 return 0;
966 }
967
968 static inline void __zs_cpu_down(struct mapping_area *area)
969 {
970 if (area->vm)
971 free_vm_area(area->vm);
972 area->vm = NULL;
973 }
974
975 static inline void *__zs_map_object(struct mapping_area *area,
976 struct page *pages[2], int off, int size)
977 {
978 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
979 area->vm_addr = area->vm->addr;
980 return area->vm_addr + off;
981 }
982
983 static inline void __zs_unmap_object(struct mapping_area *area,
984 struct page *pages[2], int off, int size)
985 {
986 unsigned long addr = (unsigned long)area->vm_addr;
987
988 unmap_kernel_range(addr, PAGE_SIZE * 2);
989 }
990
991 #else /* CONFIG_PGTABLE_MAPPING */
992
993 static inline int __zs_cpu_up(struct mapping_area *area)
994 {
995 /*
996 * Make sure we don't leak memory if a cpu UP notification
997 * and zs_init() race and both call zs_cpu_up() on the same cpu
998 */
999 if (area->vm_buf)
1000 return 0;
1001 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
1002 if (!area->vm_buf)
1003 return -ENOMEM;
1004 return 0;
1005 }
1006
1007 static inline void __zs_cpu_down(struct mapping_area *area)
1008 {
1009 if (area->vm_buf)
1010 free_page((unsigned long)area->vm_buf);
1011 area->vm_buf = NULL;
1012 }
1013
1014 static void *__zs_map_object(struct mapping_area *area,
1015 struct page *pages[2], int off, int size)
1016 {
1017 int sizes[2];
1018 void *addr;
1019 char *buf = area->vm_buf;
1020
1021 /* disable page faults to match kmap_atomic() return conditions */
1022 pagefault_disable();
1023
1024 /* no read fastpath */
1025 if (area->vm_mm == ZS_MM_WO)
1026 goto out;
1027
1028 sizes[0] = PAGE_SIZE - off;
1029 sizes[1] = size - sizes[0];
1030
1031 /* copy object to per-cpu buffer */
1032 addr = kmap_atomic(pages[0]);
1033 memcpy(buf, addr + off, sizes[0]);
1034 kunmap_atomic(addr);
1035 addr = kmap_atomic(pages[1]);
1036 memcpy(buf + sizes[0], addr, sizes[1]);
1037 kunmap_atomic(addr);
1038 out:
1039 return area->vm_buf;
1040 }
1041
1042 static void __zs_unmap_object(struct mapping_area *area,
1043 struct page *pages[2], int off, int size)
1044 {
1045 int sizes[2];
1046 void *addr;
1047 char *buf = area->vm_buf;
1048
1049 /* no write fastpath */
1050 if (area->vm_mm == ZS_MM_RO)
1051 goto out;
1052
1053 sizes[0] = PAGE_SIZE - off;
1054 sizes[1] = size - sizes[0];
1055
1056 /* copy per-cpu buffer to object */
1057 addr = kmap_atomic(pages[0]);
1058 memcpy(addr + off, buf, sizes[0]);
1059 kunmap_atomic(addr);
1060 addr = kmap_atomic(pages[1]);
1061 memcpy(addr, buf + sizes[0], sizes[1]);
1062 kunmap_atomic(addr);
1063
1064 out:
1065 /* enable page faults to match kunmap_atomic() return conditions */
1066 pagefault_enable();
1067 }
1068
1069 #endif /* CONFIG_PGTABLE_MAPPING */
1070
1071 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1072 void *pcpu)
1073 {
1074 int ret, cpu = (long)pcpu;
1075 struct mapping_area *area;
1076
1077 switch (action) {
1078 case CPU_UP_PREPARE:
1079 area = &per_cpu(zs_map_area, cpu);
1080 ret = __zs_cpu_up(area);
1081 if (ret)
1082 return notifier_from_errno(ret);
1083 break;
1084 case CPU_DEAD:
1085 case CPU_UP_CANCELED:
1086 area = &per_cpu(zs_map_area, cpu);
1087 __zs_cpu_down(area);
1088 break;
1089 }
1090
1091 return NOTIFY_OK;
1092 }
1093
1094 static struct notifier_block zs_cpu_nb = {
1095 .notifier_call = zs_cpu_notifier
1096 };
1097
1098 static void zs_exit(void)
1099 {
1100 int cpu;
1101
1102 #ifdef CONFIG_ZPOOL
1103 zpool_unregister_driver(&zs_zpool_driver);
1104 #endif
1105
1106 cpu_notifier_register_begin();
1107
1108 for_each_online_cpu(cpu)
1109 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1110 __unregister_cpu_notifier(&zs_cpu_nb);
1111
1112 cpu_notifier_register_done();
1113 }
1114
1115 static int zs_init(void)
1116 {
1117 int cpu, ret;
1118
1119 cpu_notifier_register_begin();
1120
1121 __register_cpu_notifier(&zs_cpu_nb);
1122 for_each_online_cpu(cpu) {
1123 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1124 if (notifier_to_errno(ret)) {
1125 cpu_notifier_register_done();
1126 goto fail;
1127 }
1128 }
1129
1130 cpu_notifier_register_done();
1131
1132 #ifdef CONFIG_ZPOOL
1133 zpool_register_driver(&zs_zpool_driver);
1134 #endif
1135
1136 return 0;
1137 fail:
1138 zs_exit();
1139 return notifier_to_errno(ret);
1140 }
1141
1142 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
1143 {
1144 return pages_per_zspage * PAGE_SIZE / size;
1145 }
1146
1147 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1148 {
1149 if (prev->pages_per_zspage != pages_per_zspage)
1150 return false;
1151
1152 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1153 != get_maxobj_per_zspage(size, pages_per_zspage))
1154 return false;
1155
1156 return true;
1157 }
1158
1159 /**
1160 * zs_create_pool - Creates an allocation pool to work from.
1161 * @flags: allocation flags used to allocate pool metadata
1162 *
1163 * This function must be called before anything when using
1164 * the zsmalloc allocator.
1165 *
1166 * On success, a pointer to the newly created pool is returned,
1167 * otherwise NULL.
1168 */
1169 struct zs_pool *zs_create_pool(gfp_t flags, struct zs_ops *ops)
1170 {
1171 int i, ovhd_size;
1172 struct zs_pool *pool;
1173
1174 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
1175 pool = kzalloc(ovhd_size, GFP_KERNEL);
1176 if (!pool)
1177 return NULL;
1178
1179 /*
1180 * Iterate reversly, because, size of size_class that we want to use
1181 * for merging should be larger or equal to current size.
1182 */
1183 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1184 int size;
1185 int pages_per_zspage;
1186 struct size_class *class;
1187 struct size_class *prev_class;
1188
1189 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1190 if (size > ZS_MAX_ALLOC_SIZE)
1191 size = ZS_MAX_ALLOC_SIZE;
1192 pages_per_zspage = get_pages_per_zspage(size);
1193
1194 /*
1195 * size_class is used for normal zsmalloc operation such
1196 * as alloc/free for that size. Although it is natural that we
1197 * have one size_class for each size, there is a chance that we
1198 * can get more memory utilization if we use one size_class for
1199 * many different sizes whose size_class have same
1200 * characteristics. So, we makes size_class point to
1201 * previous size_class if possible.
1202 */
1203 if (i < ZS_SIZE_CLASSES - 1) {
1204 prev_class = pool->size_class[i + 1];
1205 if (can_merge(prev_class, size, pages_per_zspage)) {
1206 pool->size_class[i] = prev_class;
1207 continue;
1208 }
1209 }
1210
1211 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1212 if (!class)
1213 goto err;
1214
1215 class->size = size;
1216 class->index = i;
1217 class->pages_per_zspage = pages_per_zspage;
1218 spin_lock_init(&class->lock);
1219 pool->size_class[i] = class;
1220 }
1221
1222 pool->flags = flags;
1223 pool->ops = ops;
1224
1225 return pool;
1226
1227 err:
1228 zs_destroy_pool(pool);
1229 return NULL;
1230 }
1231 EXPORT_SYMBOL_GPL(zs_create_pool);
1232
1233 void zs_destroy_pool(struct zs_pool *pool)
1234 {
1235 int i;
1236
1237 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1238 int fg;
1239 struct size_class *class = pool->size_class[i];
1240
1241 if (!class)
1242 continue;
1243
1244 if (class->index != i)
1245 continue;
1246
1247 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1248 if (class->fullness_list[fg]) {
1249 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1250 class->size, fg);
1251 }
1252 }
1253 kfree(class);
1254 }
1255 kfree(pool);
1256 }
1257 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1258
1259 /**
1260 * zs_malloc - Allocate block of given size from pool.
1261 * @pool: pool to allocate from
1262 * @size: size of block to allocate
1263 *
1264 * On success, handle to the allocated object is returned,
1265 * otherwise 0.
1266 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1267 */
1268 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1269 {
1270 unsigned long obj;
1271 struct link_free *link;
1272 struct size_class *class;
1273
1274 struct page *first_page, *m_page;
1275 unsigned long m_objidx, m_offset;
1276
1277 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1278 return 0;
1279
1280 class = pool->size_class[get_size_class_index(size)];
1281
1282 spin_lock(&class->lock);
1283 first_page = find_available_zspage(class);
1284
1285 if (!first_page) {
1286 spin_unlock(&class->lock);
1287 first_page = alloc_zspage(class, pool->flags);
1288 if (unlikely(!first_page))
1289 return 0;
1290
1291 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1292 atomic_long_add(class->pages_per_zspage,
1293 &pool->pages_allocated);
1294 spin_lock(&class->lock);
1295 }
1296
1297 obj = (unsigned long)first_page->freelist;
1298 obj_handle_to_location(obj, &m_page, &m_objidx);
1299 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1300
1301 link = (struct link_free *)kmap_atomic(m_page) +
1302 m_offset / sizeof(*link);
1303 first_page->freelist = link->next;
1304 memset(link, POISON_INUSE, sizeof(*link));
1305 kunmap_atomic(link);
1306
1307 first_page->inuse++;
1308 /* Now move the zspage to another fullness group, if required */
1309 fix_fullness_group(pool, first_page);
1310 spin_unlock(&class->lock);
1311
1312 return obj;
1313 }
1314 EXPORT_SYMBOL_GPL(zs_malloc);
1315
1316 /**
1317 * zs_free - Free the handle from this pool.
1318 * @pool: pool containing the handle
1319 * @obj: the handle to free
1320 *
1321 * The caller must provide a valid handle that is contained
1322 * in the provided pool. The caller must ensure this is
1323 * not called after evict() has returned successfully for the
1324 * handle.
1325 */
1326 void zs_free(struct zs_pool *pool, unsigned long obj)
1327 {
1328 struct page *first_page, *f_page;
1329 unsigned long f_objidx, f_offset;
1330
1331 int class_idx;
1332 struct size_class *class;
1333 enum fullness_group fullness;
1334
1335 if (unlikely(!obj))
1336 return;
1337
1338 obj_handle_to_location(obj, &f_page, &f_objidx);
1339 first_page = get_first_page(f_page);
1340
1341 get_zspage_mapping(first_page, &class_idx, &fullness);
1342 class = pool->size_class[class_idx];
1343 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1344
1345 spin_lock(&class->lock);
1346
1347 /* must re-check fullness after taking class lock */
1348 get_zspage_mapping(first_page, &class_idx, &fullness);
1349 if (fullness == ZS_RECLAIM) {
1350 spin_unlock(&class->lock);
1351 return; /* will be freed during reclaim */
1352 }
1353
1354 obj_free(obj, f_page, f_offset);
1355
1356 fullness = fix_fullness_group(pool, first_page);
1357 spin_unlock(&class->lock);
1358
1359 if (fullness == ZS_EMPTY) {
1360 atomic_long_sub(class->pages_per_zspage,
1361 &pool->pages_allocated);
1362 free_zspage(first_page);
1363 }
1364 }
1365 EXPORT_SYMBOL_GPL(zs_free);
1366
1367 /**
1368 * zs_shrink - Shrink the pool
1369 * @pool: pool to shrink
1370 *
1371 * The pool will be shrunk by one zspage, which is some
1372 * number of pages in size. On success, the number of freed
1373 * pages is returned. On failure, the error is returned.
1374 */
1375 int zs_shrink(struct zs_pool *pool)
1376 {
1377 struct size_class *class;
1378 enum fullness_group fullness;
1379 struct page *page;
1380 int class_idx, ret;
1381
1382 if (!pool->ops || !pool->ops->evict)
1383 return -EINVAL;
1384
1385 /* if a page is found, the class is locked */
1386 page = find_lru_zspage(pool);
1387 if (!page)
1388 return -ENOENT;
1389
1390 get_zspage_mapping(page, &class_idx, &fullness);
1391 class = pool->size_class[class_idx];
1392
1393 /* reclaim_zspage unlocks the class lock */
1394 ret = reclaim_zspage(pool, page);
1395 if (ret)
1396 return ret;
1397
1398 return class->pages_per_zspage;
1399 }
1400 EXPORT_SYMBOL_GPL(zs_shrink);
1401
1402 /**
1403 * zs_map_object - get address of allocated object from handle.
1404 * @pool: pool from which the object was allocated
1405 * @handle: handle returned from zs_malloc
1406 *
1407 * Before using an object allocated from zs_malloc, it must be mapped using
1408 * this function. When done with the object, it must be unmapped using
1409 * zs_unmap_object.
1410 *
1411 * Only one object can be mapped per cpu at a time. There is no protection
1412 * against nested mappings.
1413 *
1414 * This function returns with preemption and page faults disabled.
1415 */
1416 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1417 enum zs_mapmode mm)
1418 {
1419 struct page *page;
1420 unsigned long obj_idx, off;
1421
1422 unsigned int class_idx;
1423 enum fullness_group fg;
1424 struct size_class *class;
1425 struct mapping_area *area;
1426 struct page *pages[2];
1427
1428 BUG_ON(!handle);
1429
1430 /*
1431 * Because we use per-cpu mapping areas shared among the
1432 * pools/users, we can't allow mapping in interrupt context
1433 * because it can corrupt another users mappings.
1434 */
1435 BUG_ON(in_interrupt());
1436
1437 obj_handle_to_location(handle, &page, &obj_idx);
1438 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1439 class = pool->size_class[class_idx];
1440 off = obj_idx_to_offset(page, obj_idx, class->size);
1441
1442 area = &get_cpu_var(zs_map_area);
1443 area->vm_mm = mm;
1444 if (off + class->size <= PAGE_SIZE) {
1445 /* this object is contained entirely within a page */
1446 area->vm_addr = kmap_atomic(page);
1447 return area->vm_addr + off;
1448 }
1449
1450 /* this object spans two pages */
1451 pages[0] = page;
1452 pages[1] = get_next_page(page);
1453 BUG_ON(!pages[1]);
1454
1455 return __zs_map_object(area, pages, off, class->size);
1456 }
1457 EXPORT_SYMBOL_GPL(zs_map_object);
1458
1459 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1460 {
1461 struct page *page;
1462 unsigned long obj_idx, off;
1463
1464 unsigned int class_idx;
1465 enum fullness_group fg;
1466 struct size_class *class;
1467 struct mapping_area *area;
1468
1469 BUG_ON(!handle);
1470
1471 obj_handle_to_location(handle, &page, &obj_idx);
1472 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1473 class = pool->size_class[class_idx];
1474 off = obj_idx_to_offset(page, obj_idx, class->size);
1475
1476 area = this_cpu_ptr(&zs_map_area);
1477 if (off + class->size <= PAGE_SIZE)
1478 kunmap_atomic(area->vm_addr);
1479 else {
1480 struct page *pages[2];
1481
1482 pages[0] = page;
1483 pages[1] = get_next_page(page);
1484 BUG_ON(!pages[1]);
1485
1486 __zs_unmap_object(area, pages, off, class->size);
1487 }
1488 put_cpu_var(zs_map_area);
1489 }
1490 EXPORT_SYMBOL_GPL(zs_unmap_object);
1491
1492 unsigned long zs_get_total_pages(struct zs_pool *pool)
1493 {
1494 return atomic_long_read(&pool->pages_allocated);
1495 }
1496 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1497
1498 module_init(zs_init);
1499 module_exit(zs_exit);
1500
1501 MODULE_LICENSE("Dual BSD/GPL");
1502 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");