zsmalloc: remove synchronize_rcu from zs_compact()
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48 #ifdef CONFIG_ZSMALLOC_DEBUG
49 #define DEBUG
50 #endif
51
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <asm/tlbflush.h>
61 #include <asm/pgtable.h>
62 #include <linux/cpumask.h>
63 #include <linux/cpu.h>
64 #include <linux/vmalloc.h>
65 #include <linux/hardirq.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/debugfs.h>
69 #include <linux/zsmalloc.h>
70 #include <linux/zpool.h>
71
72 /*
73 * This must be power of 2 and greater than of equal to sizeof(link_free).
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
77 */
78 #define ZS_ALIGN 8
79
80 /*
81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83 */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88
89 /*
90 * Object location (<PFN>, <obj_idx>) is encoded as
91 * as single (unsigned long) handle value.
92 *
93 * Note that object index <obj_idx> is relative to system
94 * page <PFN> it is stored in, so for each sub-page belonging
95 * to a zspage, obj_idx starts with 0.
96 *
97 * This is made more complicated by various memory models and PAE.
98 */
99
100 #ifndef MAX_PHYSMEM_BITS
101 #ifdef CONFIG_HIGHMEM64G
102 #define MAX_PHYSMEM_BITS 36
103 #else /* !CONFIG_HIGHMEM64G */
104 /*
105 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106 * be PAGE_SHIFT
107 */
108 #define MAX_PHYSMEM_BITS BITS_PER_LONG
109 #endif
110 #endif
111 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
112
113 /*
114 * Memory for allocating for handle keeps object position by
115 * encoding <page, obj_idx> and the encoded value has a room
116 * in least bit(ie, look at obj_to_location).
117 * We use the bit to synchronize between object access by
118 * user and migration.
119 */
120 #define HANDLE_PIN_BIT 0
121
122 /*
123 * Head in allocated object should have OBJ_ALLOCATED_TAG
124 * to identify the object was allocated or not.
125 * It's okay to add the status bit in the least bit because
126 * header keeps handle which is 4byte-aligned address so we
127 * have room for two bit at least.
128 */
129 #define OBJ_ALLOCATED_TAG 1
130 #define OBJ_TAG_BITS 1
131 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
133
134 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
135 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
136 #define ZS_MIN_ALLOC_SIZE \
137 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138 /* each chunk includes extra space to keep handle */
139 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
140
141 /*
142 * On systems with 4K page size, this gives 255 size classes! There is a
143 * trader-off here:
144 * - Large number of size classes is potentially wasteful as free page are
145 * spread across these classes
146 * - Small number of size classes causes large internal fragmentation
147 * - Probably its better to use specific size classes (empirically
148 * determined). NOTE: all those class sizes must be set as multiple of
149 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
150 *
151 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
152 * (reason above)
153 */
154 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
155
156 /*
157 * We do not maintain any list for completely empty or full pages
158 */
159 enum fullness_group {
160 ZS_ALMOST_FULL,
161 ZS_ALMOST_EMPTY,
162 _ZS_NR_FULLNESS_GROUPS,
163
164 ZS_EMPTY,
165 ZS_FULL
166 };
167
168 enum zs_stat_type {
169 OBJ_ALLOCATED,
170 OBJ_USED,
171 CLASS_ALMOST_FULL,
172 CLASS_ALMOST_EMPTY,
173 NR_ZS_STAT_TYPE,
174 };
175
176 #ifdef CONFIG_ZSMALLOC_STAT
177
178 static struct dentry *zs_stat_root;
179
180 struct zs_size_stat {
181 unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183
184 #endif
185
186 /*
187 * number of size_classes
188 */
189 static int zs_size_classes;
190
191 /*
192 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
193 * n <= N / f, where
194 * n = number of allocated objects
195 * N = total number of objects zspage can store
196 * f = fullness_threshold_frac
197 *
198 * Similarly, we assign zspage to:
199 * ZS_ALMOST_FULL when n > N / f
200 * ZS_EMPTY when n == 0
201 * ZS_FULL when n == N
202 *
203 * (see: fix_fullness_group())
204 */
205 static const int fullness_threshold_frac = 4;
206
207 struct size_class {
208 /*
209 * Size of objects stored in this class. Must be multiple
210 * of ZS_ALIGN.
211 */
212 int size;
213 unsigned int index;
214
215 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
216 int pages_per_zspage;
217 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
218 bool huge;
219
220 #ifdef CONFIG_ZSMALLOC_STAT
221 struct zs_size_stat stats;
222 #endif
223
224 spinlock_t lock;
225
226 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
227 };
228
229 /*
230 * Placed within free objects to form a singly linked list.
231 * For every zspage, first_page->freelist gives head of this list.
232 *
233 * This must be power of 2 and less than or equal to ZS_ALIGN
234 */
235 struct link_free {
236 union {
237 /*
238 * Position of next free chunk (encodes <PFN, obj_idx>)
239 * It's valid for non-allocated object
240 */
241 void *next;
242 /*
243 * Handle of allocated object.
244 */
245 unsigned long handle;
246 };
247 };
248
249 struct zs_pool {
250 char *name;
251
252 struct size_class **size_class;
253 struct kmem_cache *handle_cachep;
254
255 gfp_t flags; /* allocation flags used when growing pool */
256 atomic_long_t pages_allocated;
257
258 #ifdef CONFIG_ZSMALLOC_STAT
259 struct dentry *stat_dentry;
260 #endif
261 };
262
263 /*
264 * A zspage's class index and fullness group
265 * are encoded in its (first)page->mapping
266 */
267 #define CLASS_IDX_BITS 28
268 #define FULLNESS_BITS 4
269 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
271
272 struct mapping_area {
273 #ifdef CONFIG_PGTABLE_MAPPING
274 struct vm_struct *vm; /* vm area for mapping object that span pages */
275 #else
276 char *vm_buf; /* copy buffer for objects that span pages */
277 #endif
278 char *vm_addr; /* address of kmap_atomic()'ed pages */
279 enum zs_mapmode vm_mm; /* mapping mode */
280 bool huge;
281 };
282
283 static int create_handle_cache(struct zs_pool *pool)
284 {
285 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
286 0, 0, NULL);
287 return pool->handle_cachep ? 0 : 1;
288 }
289
290 static void destroy_handle_cache(struct zs_pool *pool)
291 {
292 kmem_cache_destroy(pool->handle_cachep);
293 }
294
295 static unsigned long alloc_handle(struct zs_pool *pool)
296 {
297 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
298 pool->flags & ~__GFP_HIGHMEM);
299 }
300
301 static void free_handle(struct zs_pool *pool, unsigned long handle)
302 {
303 kmem_cache_free(pool->handle_cachep, (void *)handle);
304 }
305
306 static void record_obj(unsigned long handle, unsigned long obj)
307 {
308 *(unsigned long *)handle = obj;
309 }
310
311 /* zpool driver */
312
313 #ifdef CONFIG_ZPOOL
314
315 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
316 {
317 return zs_create_pool(name, gfp);
318 }
319
320 static void zs_zpool_destroy(void *pool)
321 {
322 zs_destroy_pool(pool);
323 }
324
325 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
326 unsigned long *handle)
327 {
328 *handle = zs_malloc(pool, size);
329 return *handle ? 0 : -1;
330 }
331 static void zs_zpool_free(void *pool, unsigned long handle)
332 {
333 zs_free(pool, handle);
334 }
335
336 static int zs_zpool_shrink(void *pool, unsigned int pages,
337 unsigned int *reclaimed)
338 {
339 return -EINVAL;
340 }
341
342 static void *zs_zpool_map(void *pool, unsigned long handle,
343 enum zpool_mapmode mm)
344 {
345 enum zs_mapmode zs_mm;
346
347 switch (mm) {
348 case ZPOOL_MM_RO:
349 zs_mm = ZS_MM_RO;
350 break;
351 case ZPOOL_MM_WO:
352 zs_mm = ZS_MM_WO;
353 break;
354 case ZPOOL_MM_RW: /* fallthru */
355 default:
356 zs_mm = ZS_MM_RW;
357 break;
358 }
359
360 return zs_map_object(pool, handle, zs_mm);
361 }
362 static void zs_zpool_unmap(void *pool, unsigned long handle)
363 {
364 zs_unmap_object(pool, handle);
365 }
366
367 static u64 zs_zpool_total_size(void *pool)
368 {
369 return zs_get_total_pages(pool) << PAGE_SHIFT;
370 }
371
372 static struct zpool_driver zs_zpool_driver = {
373 .type = "zsmalloc",
374 .owner = THIS_MODULE,
375 .create = zs_zpool_create,
376 .destroy = zs_zpool_destroy,
377 .malloc = zs_zpool_malloc,
378 .free = zs_zpool_free,
379 .shrink = zs_zpool_shrink,
380 .map = zs_zpool_map,
381 .unmap = zs_zpool_unmap,
382 .total_size = zs_zpool_total_size,
383 };
384
385 MODULE_ALIAS("zpool-zsmalloc");
386 #endif /* CONFIG_ZPOOL */
387
388 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
389 {
390 return pages_per_zspage * PAGE_SIZE / size;
391 }
392
393 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
394 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
395
396 static int is_first_page(struct page *page)
397 {
398 return PagePrivate(page);
399 }
400
401 static int is_last_page(struct page *page)
402 {
403 return PagePrivate2(page);
404 }
405
406 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
407 enum fullness_group *fullness)
408 {
409 unsigned long m;
410 BUG_ON(!is_first_page(page));
411
412 m = (unsigned long)page->mapping;
413 *fullness = m & FULLNESS_MASK;
414 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
415 }
416
417 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
418 enum fullness_group fullness)
419 {
420 unsigned long m;
421 BUG_ON(!is_first_page(page));
422
423 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
424 (fullness & FULLNESS_MASK);
425 page->mapping = (struct address_space *)m;
426 }
427
428 /*
429 * zsmalloc divides the pool into various size classes where each
430 * class maintains a list of zspages where each zspage is divided
431 * into equal sized chunks. Each allocation falls into one of these
432 * classes depending on its size. This function returns index of the
433 * size class which has chunk size big enough to hold the give size.
434 */
435 static int get_size_class_index(int size)
436 {
437 int idx = 0;
438
439 if (likely(size > ZS_MIN_ALLOC_SIZE))
440 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
441 ZS_SIZE_CLASS_DELTA);
442
443 return min(zs_size_classes - 1, idx);
444 }
445
446 #ifdef CONFIG_ZSMALLOC_STAT
447
448 static inline void zs_stat_inc(struct size_class *class,
449 enum zs_stat_type type, unsigned long cnt)
450 {
451 class->stats.objs[type] += cnt;
452 }
453
454 static inline void zs_stat_dec(struct size_class *class,
455 enum zs_stat_type type, unsigned long cnt)
456 {
457 class->stats.objs[type] -= cnt;
458 }
459
460 static inline unsigned long zs_stat_get(struct size_class *class,
461 enum zs_stat_type type)
462 {
463 return class->stats.objs[type];
464 }
465
466 static int __init zs_stat_init(void)
467 {
468 if (!debugfs_initialized())
469 return -ENODEV;
470
471 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
472 if (!zs_stat_root)
473 return -ENOMEM;
474
475 return 0;
476 }
477
478 static void __exit zs_stat_exit(void)
479 {
480 debugfs_remove_recursive(zs_stat_root);
481 }
482
483 static int zs_stats_size_show(struct seq_file *s, void *v)
484 {
485 int i;
486 struct zs_pool *pool = s->private;
487 struct size_class *class;
488 int objs_per_zspage;
489 unsigned long class_almost_full, class_almost_empty;
490 unsigned long obj_allocated, obj_used, pages_used;
491 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
492 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
493
494 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
495 "class", "size", "almost_full", "almost_empty",
496 "obj_allocated", "obj_used", "pages_used",
497 "pages_per_zspage");
498
499 for (i = 0; i < zs_size_classes; i++) {
500 class = pool->size_class[i];
501
502 if (class->index != i)
503 continue;
504
505 spin_lock(&class->lock);
506 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
507 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
508 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
509 obj_used = zs_stat_get(class, OBJ_USED);
510 spin_unlock(&class->lock);
511
512 objs_per_zspage = get_maxobj_per_zspage(class->size,
513 class->pages_per_zspage);
514 pages_used = obj_allocated / objs_per_zspage *
515 class->pages_per_zspage;
516
517 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
518 i, class->size, class_almost_full, class_almost_empty,
519 obj_allocated, obj_used, pages_used,
520 class->pages_per_zspage);
521
522 total_class_almost_full += class_almost_full;
523 total_class_almost_empty += class_almost_empty;
524 total_objs += obj_allocated;
525 total_used_objs += obj_used;
526 total_pages += pages_used;
527 }
528
529 seq_puts(s, "\n");
530 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
531 "Total", "", total_class_almost_full,
532 total_class_almost_empty, total_objs,
533 total_used_objs, total_pages);
534
535 return 0;
536 }
537
538 static int zs_stats_size_open(struct inode *inode, struct file *file)
539 {
540 return single_open(file, zs_stats_size_show, inode->i_private);
541 }
542
543 static const struct file_operations zs_stat_size_ops = {
544 .open = zs_stats_size_open,
545 .read = seq_read,
546 .llseek = seq_lseek,
547 .release = single_release,
548 };
549
550 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
551 {
552 struct dentry *entry;
553
554 if (!zs_stat_root)
555 return -ENODEV;
556
557 entry = debugfs_create_dir(name, zs_stat_root);
558 if (!entry) {
559 pr_warn("debugfs dir <%s> creation failed\n", name);
560 return -ENOMEM;
561 }
562 pool->stat_dentry = entry;
563
564 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
565 pool->stat_dentry, pool, &zs_stat_size_ops);
566 if (!entry) {
567 pr_warn("%s: debugfs file entry <%s> creation failed\n",
568 name, "classes");
569 return -ENOMEM;
570 }
571
572 return 0;
573 }
574
575 static void zs_pool_stat_destroy(struct zs_pool *pool)
576 {
577 debugfs_remove_recursive(pool->stat_dentry);
578 }
579
580 #else /* CONFIG_ZSMALLOC_STAT */
581
582 static inline void zs_stat_inc(struct size_class *class,
583 enum zs_stat_type type, unsigned long cnt)
584 {
585 }
586
587 static inline void zs_stat_dec(struct size_class *class,
588 enum zs_stat_type type, unsigned long cnt)
589 {
590 }
591
592 static inline unsigned long zs_stat_get(struct size_class *class,
593 enum zs_stat_type type)
594 {
595 return 0;
596 }
597
598 static int __init zs_stat_init(void)
599 {
600 return 0;
601 }
602
603 static void __exit zs_stat_exit(void)
604 {
605 }
606
607 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
608 {
609 return 0;
610 }
611
612 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
613 {
614 }
615
616 #endif
617
618
619 /*
620 * For each size class, zspages are divided into different groups
621 * depending on how "full" they are. This was done so that we could
622 * easily find empty or nearly empty zspages when we try to shrink
623 * the pool (not yet implemented). This function returns fullness
624 * status of the given page.
625 */
626 static enum fullness_group get_fullness_group(struct page *page)
627 {
628 int inuse, max_objects;
629 enum fullness_group fg;
630 BUG_ON(!is_first_page(page));
631
632 inuse = page->inuse;
633 max_objects = page->objects;
634
635 if (inuse == 0)
636 fg = ZS_EMPTY;
637 else if (inuse == max_objects)
638 fg = ZS_FULL;
639 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
640 fg = ZS_ALMOST_EMPTY;
641 else
642 fg = ZS_ALMOST_FULL;
643
644 return fg;
645 }
646
647 /*
648 * Each size class maintains various freelists and zspages are assigned
649 * to one of these freelists based on the number of live objects they
650 * have. This functions inserts the given zspage into the freelist
651 * identified by <class, fullness_group>.
652 */
653 static void insert_zspage(struct page *page, struct size_class *class,
654 enum fullness_group fullness)
655 {
656 struct page **head;
657
658 BUG_ON(!is_first_page(page));
659
660 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
661 return;
662
663 head = &class->fullness_list[fullness];
664 if (*head)
665 list_add_tail(&page->lru, &(*head)->lru);
666
667 *head = page;
668 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
669 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
670 }
671
672 /*
673 * This function removes the given zspage from the freelist identified
674 * by <class, fullness_group>.
675 */
676 static void remove_zspage(struct page *page, struct size_class *class,
677 enum fullness_group fullness)
678 {
679 struct page **head;
680
681 BUG_ON(!is_first_page(page));
682
683 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
684 return;
685
686 head = &class->fullness_list[fullness];
687 BUG_ON(!*head);
688 if (list_empty(&(*head)->lru))
689 *head = NULL;
690 else if (*head == page)
691 *head = (struct page *)list_entry((*head)->lru.next,
692 struct page, lru);
693
694 list_del_init(&page->lru);
695 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
696 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
697 }
698
699 /*
700 * Each size class maintains zspages in different fullness groups depending
701 * on the number of live objects they contain. When allocating or freeing
702 * objects, the fullness status of the page can change, say, from ALMOST_FULL
703 * to ALMOST_EMPTY when freeing an object. This function checks if such
704 * a status change has occurred for the given page and accordingly moves the
705 * page from the freelist of the old fullness group to that of the new
706 * fullness group.
707 */
708 static enum fullness_group fix_fullness_group(struct size_class *class,
709 struct page *page)
710 {
711 int class_idx;
712 enum fullness_group currfg, newfg;
713
714 BUG_ON(!is_first_page(page));
715
716 get_zspage_mapping(page, &class_idx, &currfg);
717 newfg = get_fullness_group(page);
718 if (newfg == currfg)
719 goto out;
720
721 remove_zspage(page, class, currfg);
722 insert_zspage(page, class, newfg);
723 set_zspage_mapping(page, class_idx, newfg);
724
725 out:
726 return newfg;
727 }
728
729 /*
730 * We have to decide on how many pages to link together
731 * to form a zspage for each size class. This is important
732 * to reduce wastage due to unusable space left at end of
733 * each zspage which is given as:
734 * wastage = Zp % class_size
735 * usage = Zp - wastage
736 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
737 *
738 * For example, for size class of 3/8 * PAGE_SIZE, we should
739 * link together 3 PAGE_SIZE sized pages to form a zspage
740 * since then we can perfectly fit in 8 such objects.
741 */
742 static int get_pages_per_zspage(int class_size)
743 {
744 int i, max_usedpc = 0;
745 /* zspage order which gives maximum used size per KB */
746 int max_usedpc_order = 1;
747
748 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
749 int zspage_size;
750 int waste, usedpc;
751
752 zspage_size = i * PAGE_SIZE;
753 waste = zspage_size % class_size;
754 usedpc = (zspage_size - waste) * 100 / zspage_size;
755
756 if (usedpc > max_usedpc) {
757 max_usedpc = usedpc;
758 max_usedpc_order = i;
759 }
760 }
761
762 return max_usedpc_order;
763 }
764
765 /*
766 * A single 'zspage' is composed of many system pages which are
767 * linked together using fields in struct page. This function finds
768 * the first/head page, given any component page of a zspage.
769 */
770 static struct page *get_first_page(struct page *page)
771 {
772 if (is_first_page(page))
773 return page;
774 else
775 return page->first_page;
776 }
777
778 static struct page *get_next_page(struct page *page)
779 {
780 struct page *next;
781
782 if (is_last_page(page))
783 next = NULL;
784 else if (is_first_page(page))
785 next = (struct page *)page_private(page);
786 else
787 next = list_entry(page->lru.next, struct page, lru);
788
789 return next;
790 }
791
792 /*
793 * Encode <page, obj_idx> as a single handle value.
794 * We use the least bit of handle for tagging.
795 */
796 static void *location_to_obj(struct page *page, unsigned long obj_idx)
797 {
798 unsigned long obj;
799
800 if (!page) {
801 BUG_ON(obj_idx);
802 return NULL;
803 }
804
805 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
806 obj |= ((obj_idx) & OBJ_INDEX_MASK);
807 obj <<= OBJ_TAG_BITS;
808
809 return (void *)obj;
810 }
811
812 /*
813 * Decode <page, obj_idx> pair from the given object handle. We adjust the
814 * decoded obj_idx back to its original value since it was adjusted in
815 * location_to_obj().
816 */
817 static void obj_to_location(unsigned long obj, struct page **page,
818 unsigned long *obj_idx)
819 {
820 obj >>= OBJ_TAG_BITS;
821 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
822 *obj_idx = (obj & OBJ_INDEX_MASK);
823 }
824
825 static unsigned long handle_to_obj(unsigned long handle)
826 {
827 return *(unsigned long *)handle;
828 }
829
830 static unsigned long obj_to_head(struct size_class *class, struct page *page,
831 void *obj)
832 {
833 if (class->huge) {
834 VM_BUG_ON(!is_first_page(page));
835 return *(unsigned long *)page_private(page);
836 } else
837 return *(unsigned long *)obj;
838 }
839
840 static unsigned long obj_idx_to_offset(struct page *page,
841 unsigned long obj_idx, int class_size)
842 {
843 unsigned long off = 0;
844
845 if (!is_first_page(page))
846 off = page->index;
847
848 return off + obj_idx * class_size;
849 }
850
851 static inline int trypin_tag(unsigned long handle)
852 {
853 unsigned long *ptr = (unsigned long *)handle;
854
855 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
856 }
857
858 static void pin_tag(unsigned long handle)
859 {
860 while (!trypin_tag(handle));
861 }
862
863 static void unpin_tag(unsigned long handle)
864 {
865 unsigned long *ptr = (unsigned long *)handle;
866
867 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
868 }
869
870 static void reset_page(struct page *page)
871 {
872 clear_bit(PG_private, &page->flags);
873 clear_bit(PG_private_2, &page->flags);
874 set_page_private(page, 0);
875 page->mapping = NULL;
876 page->freelist = NULL;
877 page_mapcount_reset(page);
878 }
879
880 static void free_zspage(struct page *first_page)
881 {
882 struct page *nextp, *tmp, *head_extra;
883
884 BUG_ON(!is_first_page(first_page));
885 BUG_ON(first_page->inuse);
886
887 head_extra = (struct page *)page_private(first_page);
888
889 reset_page(first_page);
890 __free_page(first_page);
891
892 /* zspage with only 1 system page */
893 if (!head_extra)
894 return;
895
896 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
897 list_del(&nextp->lru);
898 reset_page(nextp);
899 __free_page(nextp);
900 }
901 reset_page(head_extra);
902 __free_page(head_extra);
903 }
904
905 /* Initialize a newly allocated zspage */
906 static void init_zspage(struct page *first_page, struct size_class *class)
907 {
908 unsigned long off = 0;
909 struct page *page = first_page;
910
911 BUG_ON(!is_first_page(first_page));
912 while (page) {
913 struct page *next_page;
914 struct link_free *link;
915 unsigned int i = 1;
916 void *vaddr;
917
918 /*
919 * page->index stores offset of first object starting
920 * in the page. For the first page, this is always 0,
921 * so we use first_page->index (aka ->freelist) to store
922 * head of corresponding zspage's freelist.
923 */
924 if (page != first_page)
925 page->index = off;
926
927 vaddr = kmap_atomic(page);
928 link = (struct link_free *)vaddr + off / sizeof(*link);
929
930 while ((off += class->size) < PAGE_SIZE) {
931 link->next = location_to_obj(page, i++);
932 link += class->size / sizeof(*link);
933 }
934
935 /*
936 * We now come to the last (full or partial) object on this
937 * page, which must point to the first object on the next
938 * page (if present)
939 */
940 next_page = get_next_page(page);
941 link->next = location_to_obj(next_page, 0);
942 kunmap_atomic(vaddr);
943 page = next_page;
944 off %= PAGE_SIZE;
945 }
946 }
947
948 /*
949 * Allocate a zspage for the given size class
950 */
951 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
952 {
953 int i, error;
954 struct page *first_page = NULL, *uninitialized_var(prev_page);
955
956 /*
957 * Allocate individual pages and link them together as:
958 * 1. first page->private = first sub-page
959 * 2. all sub-pages are linked together using page->lru
960 * 3. each sub-page is linked to the first page using page->first_page
961 *
962 * For each size class, First/Head pages are linked together using
963 * page->lru. Also, we set PG_private to identify the first page
964 * (i.e. no other sub-page has this flag set) and PG_private_2 to
965 * identify the last page.
966 */
967 error = -ENOMEM;
968 for (i = 0; i < class->pages_per_zspage; i++) {
969 struct page *page;
970
971 page = alloc_page(flags);
972 if (!page)
973 goto cleanup;
974
975 INIT_LIST_HEAD(&page->lru);
976 if (i == 0) { /* first page */
977 SetPagePrivate(page);
978 set_page_private(page, 0);
979 first_page = page;
980 first_page->inuse = 0;
981 }
982 if (i == 1)
983 set_page_private(first_page, (unsigned long)page);
984 if (i >= 1)
985 page->first_page = first_page;
986 if (i >= 2)
987 list_add(&page->lru, &prev_page->lru);
988 if (i == class->pages_per_zspage - 1) /* last page */
989 SetPagePrivate2(page);
990 prev_page = page;
991 }
992
993 init_zspage(first_page, class);
994
995 first_page->freelist = location_to_obj(first_page, 0);
996 /* Maximum number of objects we can store in this zspage */
997 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
998
999 error = 0; /* Success */
1000
1001 cleanup:
1002 if (unlikely(error) && first_page) {
1003 free_zspage(first_page);
1004 first_page = NULL;
1005 }
1006
1007 return first_page;
1008 }
1009
1010 static struct page *find_get_zspage(struct size_class *class)
1011 {
1012 int i;
1013 struct page *page;
1014
1015 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1016 page = class->fullness_list[i];
1017 if (page)
1018 break;
1019 }
1020
1021 return page;
1022 }
1023
1024 #ifdef CONFIG_PGTABLE_MAPPING
1025 static inline int __zs_cpu_up(struct mapping_area *area)
1026 {
1027 /*
1028 * Make sure we don't leak memory if a cpu UP notification
1029 * and zs_init() race and both call zs_cpu_up() on the same cpu
1030 */
1031 if (area->vm)
1032 return 0;
1033 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1034 if (!area->vm)
1035 return -ENOMEM;
1036 return 0;
1037 }
1038
1039 static inline void __zs_cpu_down(struct mapping_area *area)
1040 {
1041 if (area->vm)
1042 free_vm_area(area->vm);
1043 area->vm = NULL;
1044 }
1045
1046 static inline void *__zs_map_object(struct mapping_area *area,
1047 struct page *pages[2], int off, int size)
1048 {
1049 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1050 area->vm_addr = area->vm->addr;
1051 return area->vm_addr + off;
1052 }
1053
1054 static inline void __zs_unmap_object(struct mapping_area *area,
1055 struct page *pages[2], int off, int size)
1056 {
1057 unsigned long addr = (unsigned long)area->vm_addr;
1058
1059 unmap_kernel_range(addr, PAGE_SIZE * 2);
1060 }
1061
1062 #else /* CONFIG_PGTABLE_MAPPING */
1063
1064 static inline int __zs_cpu_up(struct mapping_area *area)
1065 {
1066 /*
1067 * Make sure we don't leak memory if a cpu UP notification
1068 * and zs_init() race and both call zs_cpu_up() on the same cpu
1069 */
1070 if (area->vm_buf)
1071 return 0;
1072 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1073 if (!area->vm_buf)
1074 return -ENOMEM;
1075 return 0;
1076 }
1077
1078 static inline void __zs_cpu_down(struct mapping_area *area)
1079 {
1080 kfree(area->vm_buf);
1081 area->vm_buf = NULL;
1082 }
1083
1084 static void *__zs_map_object(struct mapping_area *area,
1085 struct page *pages[2], int off, int size)
1086 {
1087 int sizes[2];
1088 void *addr;
1089 char *buf = area->vm_buf;
1090
1091 /* disable page faults to match kmap_atomic() return conditions */
1092 pagefault_disable();
1093
1094 /* no read fastpath */
1095 if (area->vm_mm == ZS_MM_WO)
1096 goto out;
1097
1098 sizes[0] = PAGE_SIZE - off;
1099 sizes[1] = size - sizes[0];
1100
1101 /* copy object to per-cpu buffer */
1102 addr = kmap_atomic(pages[0]);
1103 memcpy(buf, addr + off, sizes[0]);
1104 kunmap_atomic(addr);
1105 addr = kmap_atomic(pages[1]);
1106 memcpy(buf + sizes[0], addr, sizes[1]);
1107 kunmap_atomic(addr);
1108 out:
1109 return area->vm_buf;
1110 }
1111
1112 static void __zs_unmap_object(struct mapping_area *area,
1113 struct page *pages[2], int off, int size)
1114 {
1115 int sizes[2];
1116 void *addr;
1117 char *buf;
1118
1119 /* no write fastpath */
1120 if (area->vm_mm == ZS_MM_RO)
1121 goto out;
1122
1123 buf = area->vm_buf;
1124 if (!area->huge) {
1125 buf = buf + ZS_HANDLE_SIZE;
1126 size -= ZS_HANDLE_SIZE;
1127 off += ZS_HANDLE_SIZE;
1128 }
1129
1130 sizes[0] = PAGE_SIZE - off;
1131 sizes[1] = size - sizes[0];
1132
1133 /* copy per-cpu buffer to object */
1134 addr = kmap_atomic(pages[0]);
1135 memcpy(addr + off, buf, sizes[0]);
1136 kunmap_atomic(addr);
1137 addr = kmap_atomic(pages[1]);
1138 memcpy(addr, buf + sizes[0], sizes[1]);
1139 kunmap_atomic(addr);
1140
1141 out:
1142 /* enable page faults to match kunmap_atomic() return conditions */
1143 pagefault_enable();
1144 }
1145
1146 #endif /* CONFIG_PGTABLE_MAPPING */
1147
1148 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1149 void *pcpu)
1150 {
1151 int ret, cpu = (long)pcpu;
1152 struct mapping_area *area;
1153
1154 switch (action) {
1155 case CPU_UP_PREPARE:
1156 area = &per_cpu(zs_map_area, cpu);
1157 ret = __zs_cpu_up(area);
1158 if (ret)
1159 return notifier_from_errno(ret);
1160 break;
1161 case CPU_DEAD:
1162 case CPU_UP_CANCELED:
1163 area = &per_cpu(zs_map_area, cpu);
1164 __zs_cpu_down(area);
1165 break;
1166 }
1167
1168 return NOTIFY_OK;
1169 }
1170
1171 static struct notifier_block zs_cpu_nb = {
1172 .notifier_call = zs_cpu_notifier
1173 };
1174
1175 static int zs_register_cpu_notifier(void)
1176 {
1177 int cpu, uninitialized_var(ret);
1178
1179 cpu_notifier_register_begin();
1180
1181 __register_cpu_notifier(&zs_cpu_nb);
1182 for_each_online_cpu(cpu) {
1183 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1184 if (notifier_to_errno(ret))
1185 break;
1186 }
1187
1188 cpu_notifier_register_done();
1189 return notifier_to_errno(ret);
1190 }
1191
1192 static void zs_unregister_cpu_notifier(void)
1193 {
1194 int cpu;
1195
1196 cpu_notifier_register_begin();
1197
1198 for_each_online_cpu(cpu)
1199 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1200 __unregister_cpu_notifier(&zs_cpu_nb);
1201
1202 cpu_notifier_register_done();
1203 }
1204
1205 static void init_zs_size_classes(void)
1206 {
1207 int nr;
1208
1209 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1210 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1211 nr += 1;
1212
1213 zs_size_classes = nr;
1214 }
1215
1216 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1217 {
1218 if (prev->pages_per_zspage != pages_per_zspage)
1219 return false;
1220
1221 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1222 != get_maxobj_per_zspage(size, pages_per_zspage))
1223 return false;
1224
1225 return true;
1226 }
1227
1228 static bool zspage_full(struct page *page)
1229 {
1230 BUG_ON(!is_first_page(page));
1231
1232 return page->inuse == page->objects;
1233 }
1234
1235 unsigned long zs_get_total_pages(struct zs_pool *pool)
1236 {
1237 return atomic_long_read(&pool->pages_allocated);
1238 }
1239 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1240
1241 /**
1242 * zs_map_object - get address of allocated object from handle.
1243 * @pool: pool from which the object was allocated
1244 * @handle: handle returned from zs_malloc
1245 *
1246 * Before using an object allocated from zs_malloc, it must be mapped using
1247 * this function. When done with the object, it must be unmapped using
1248 * zs_unmap_object.
1249 *
1250 * Only one object can be mapped per cpu at a time. There is no protection
1251 * against nested mappings.
1252 *
1253 * This function returns with preemption and page faults disabled.
1254 */
1255 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1256 enum zs_mapmode mm)
1257 {
1258 struct page *page;
1259 unsigned long obj, obj_idx, off;
1260
1261 unsigned int class_idx;
1262 enum fullness_group fg;
1263 struct size_class *class;
1264 struct mapping_area *area;
1265 struct page *pages[2];
1266 void *ret;
1267
1268 BUG_ON(!handle);
1269
1270 /*
1271 * Because we use per-cpu mapping areas shared among the
1272 * pools/users, we can't allow mapping in interrupt context
1273 * because it can corrupt another users mappings.
1274 */
1275 BUG_ON(in_interrupt());
1276
1277 /* From now on, migration cannot move the object */
1278 pin_tag(handle);
1279
1280 obj = handle_to_obj(handle);
1281 obj_to_location(obj, &page, &obj_idx);
1282 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1283 class = pool->size_class[class_idx];
1284 off = obj_idx_to_offset(page, obj_idx, class->size);
1285
1286 area = &get_cpu_var(zs_map_area);
1287 area->vm_mm = mm;
1288 if (off + class->size <= PAGE_SIZE) {
1289 /* this object is contained entirely within a page */
1290 area->vm_addr = kmap_atomic(page);
1291 ret = area->vm_addr + off;
1292 goto out;
1293 }
1294
1295 /* this object spans two pages */
1296 pages[0] = page;
1297 pages[1] = get_next_page(page);
1298 BUG_ON(!pages[1]);
1299
1300 ret = __zs_map_object(area, pages, off, class->size);
1301 out:
1302 if (!class->huge)
1303 ret += ZS_HANDLE_SIZE;
1304
1305 return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(zs_map_object);
1308
1309 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1310 {
1311 struct page *page;
1312 unsigned long obj, obj_idx, off;
1313
1314 unsigned int class_idx;
1315 enum fullness_group fg;
1316 struct size_class *class;
1317 struct mapping_area *area;
1318
1319 BUG_ON(!handle);
1320
1321 obj = handle_to_obj(handle);
1322 obj_to_location(obj, &page, &obj_idx);
1323 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1324 class = pool->size_class[class_idx];
1325 off = obj_idx_to_offset(page, obj_idx, class->size);
1326
1327 area = this_cpu_ptr(&zs_map_area);
1328 if (off + class->size <= PAGE_SIZE)
1329 kunmap_atomic(area->vm_addr);
1330 else {
1331 struct page *pages[2];
1332
1333 pages[0] = page;
1334 pages[1] = get_next_page(page);
1335 BUG_ON(!pages[1]);
1336
1337 __zs_unmap_object(area, pages, off, class->size);
1338 }
1339 put_cpu_var(zs_map_area);
1340 unpin_tag(handle);
1341 }
1342 EXPORT_SYMBOL_GPL(zs_unmap_object);
1343
1344 static unsigned long obj_malloc(struct page *first_page,
1345 struct size_class *class, unsigned long handle)
1346 {
1347 unsigned long obj;
1348 struct link_free *link;
1349
1350 struct page *m_page;
1351 unsigned long m_objidx, m_offset;
1352 void *vaddr;
1353
1354 handle |= OBJ_ALLOCATED_TAG;
1355 obj = (unsigned long)first_page->freelist;
1356 obj_to_location(obj, &m_page, &m_objidx);
1357 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1358
1359 vaddr = kmap_atomic(m_page);
1360 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1361 first_page->freelist = link->next;
1362 if (!class->huge)
1363 /* record handle in the header of allocated chunk */
1364 link->handle = handle;
1365 else
1366 /* record handle in first_page->private */
1367 set_page_private(first_page, handle);
1368 kunmap_atomic(vaddr);
1369 first_page->inuse++;
1370 zs_stat_inc(class, OBJ_USED, 1);
1371
1372 return obj;
1373 }
1374
1375
1376 /**
1377 * zs_malloc - Allocate block of given size from pool.
1378 * @pool: pool to allocate from
1379 * @size: size of block to allocate
1380 *
1381 * On success, handle to the allocated object is returned,
1382 * otherwise 0.
1383 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1384 */
1385 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1386 {
1387 unsigned long handle, obj;
1388 struct size_class *class;
1389 struct page *first_page;
1390
1391 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1392 return 0;
1393
1394 handle = alloc_handle(pool);
1395 if (!handle)
1396 return 0;
1397
1398 /* extra space in chunk to keep the handle */
1399 size += ZS_HANDLE_SIZE;
1400 class = pool->size_class[get_size_class_index(size)];
1401 /* In huge class size, we store the handle into first_page->private */
1402 if (class->huge) {
1403 size -= ZS_HANDLE_SIZE;
1404 class = pool->size_class[get_size_class_index(size)];
1405 }
1406
1407 spin_lock(&class->lock);
1408 first_page = find_get_zspage(class);
1409
1410 if (!first_page) {
1411 spin_unlock(&class->lock);
1412 first_page = alloc_zspage(class, pool->flags);
1413 if (unlikely(!first_page)) {
1414 free_handle(pool, handle);
1415 return 0;
1416 }
1417
1418 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1419 atomic_long_add(class->pages_per_zspage,
1420 &pool->pages_allocated);
1421
1422 spin_lock(&class->lock);
1423 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1424 class->size, class->pages_per_zspage));
1425 }
1426
1427 obj = obj_malloc(first_page, class, handle);
1428 /* Now move the zspage to another fullness group, if required */
1429 fix_fullness_group(class, first_page);
1430 record_obj(handle, obj);
1431 spin_unlock(&class->lock);
1432
1433 return handle;
1434 }
1435 EXPORT_SYMBOL_GPL(zs_malloc);
1436
1437 static void obj_free(struct zs_pool *pool, struct size_class *class,
1438 unsigned long obj)
1439 {
1440 struct link_free *link;
1441 struct page *first_page, *f_page;
1442 unsigned long f_objidx, f_offset;
1443 void *vaddr;
1444 int class_idx;
1445 enum fullness_group fullness;
1446
1447 BUG_ON(!obj);
1448
1449 obj &= ~OBJ_ALLOCATED_TAG;
1450 obj_to_location(obj, &f_page, &f_objidx);
1451 first_page = get_first_page(f_page);
1452
1453 get_zspage_mapping(first_page, &class_idx, &fullness);
1454 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1455
1456 vaddr = kmap_atomic(f_page);
1457
1458 /* Insert this object in containing zspage's freelist */
1459 link = (struct link_free *)(vaddr + f_offset);
1460 link->next = first_page->freelist;
1461 if (class->huge)
1462 set_page_private(first_page, 0);
1463 kunmap_atomic(vaddr);
1464 first_page->freelist = (void *)obj;
1465 first_page->inuse--;
1466 zs_stat_dec(class, OBJ_USED, 1);
1467 }
1468
1469 void zs_free(struct zs_pool *pool, unsigned long handle)
1470 {
1471 struct page *first_page, *f_page;
1472 unsigned long obj, f_objidx;
1473 int class_idx;
1474 struct size_class *class;
1475 enum fullness_group fullness;
1476
1477 if (unlikely(!handle))
1478 return;
1479
1480 pin_tag(handle);
1481 obj = handle_to_obj(handle);
1482 obj_to_location(obj, &f_page, &f_objidx);
1483 first_page = get_first_page(f_page);
1484
1485 get_zspage_mapping(first_page, &class_idx, &fullness);
1486 class = pool->size_class[class_idx];
1487
1488 spin_lock(&class->lock);
1489 obj_free(pool, class, obj);
1490 fullness = fix_fullness_group(class, first_page);
1491 if (fullness == ZS_EMPTY) {
1492 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1493 class->size, class->pages_per_zspage));
1494 atomic_long_sub(class->pages_per_zspage,
1495 &pool->pages_allocated);
1496 free_zspage(first_page);
1497 }
1498 spin_unlock(&class->lock);
1499 unpin_tag(handle);
1500
1501 free_handle(pool, handle);
1502 }
1503 EXPORT_SYMBOL_GPL(zs_free);
1504
1505 static void zs_object_copy(unsigned long src, unsigned long dst,
1506 struct size_class *class)
1507 {
1508 struct page *s_page, *d_page;
1509 unsigned long s_objidx, d_objidx;
1510 unsigned long s_off, d_off;
1511 void *s_addr, *d_addr;
1512 int s_size, d_size, size;
1513 int written = 0;
1514
1515 s_size = d_size = class->size;
1516
1517 obj_to_location(src, &s_page, &s_objidx);
1518 obj_to_location(dst, &d_page, &d_objidx);
1519
1520 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1521 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1522
1523 if (s_off + class->size > PAGE_SIZE)
1524 s_size = PAGE_SIZE - s_off;
1525
1526 if (d_off + class->size > PAGE_SIZE)
1527 d_size = PAGE_SIZE - d_off;
1528
1529 s_addr = kmap_atomic(s_page);
1530 d_addr = kmap_atomic(d_page);
1531
1532 while (1) {
1533 size = min(s_size, d_size);
1534 memcpy(d_addr + d_off, s_addr + s_off, size);
1535 written += size;
1536
1537 if (written == class->size)
1538 break;
1539
1540 if (s_off + size >= PAGE_SIZE) {
1541 kunmap_atomic(d_addr);
1542 kunmap_atomic(s_addr);
1543 s_page = get_next_page(s_page);
1544 BUG_ON(!s_page);
1545 s_addr = kmap_atomic(s_page);
1546 d_addr = kmap_atomic(d_page);
1547 s_size = class->size - written;
1548 s_off = 0;
1549 } else {
1550 s_off += size;
1551 s_size -= size;
1552 }
1553
1554 if (d_off + size >= PAGE_SIZE) {
1555 kunmap_atomic(d_addr);
1556 d_page = get_next_page(d_page);
1557 BUG_ON(!d_page);
1558 d_addr = kmap_atomic(d_page);
1559 d_size = class->size - written;
1560 d_off = 0;
1561 } else {
1562 d_off += size;
1563 d_size -= size;
1564 }
1565 }
1566
1567 kunmap_atomic(d_addr);
1568 kunmap_atomic(s_addr);
1569 }
1570
1571 /*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575 static unsigned long find_alloced_obj(struct page *page, int index,
1576 struct size_class *class)
1577 {
1578 unsigned long head;
1579 int offset = 0;
1580 unsigned long handle = 0;
1581 void *addr = kmap_atomic(page);
1582
1583 if (!is_first_page(page))
1584 offset = page->index;
1585 offset += class->size * index;
1586
1587 while (offset < PAGE_SIZE) {
1588 head = obj_to_head(class, page, addr + offset);
1589 if (head & OBJ_ALLOCATED_TAG) {
1590 handle = head & ~OBJ_ALLOCATED_TAG;
1591 if (trypin_tag(handle))
1592 break;
1593 handle = 0;
1594 }
1595
1596 offset += class->size;
1597 index++;
1598 }
1599
1600 kunmap_atomic(addr);
1601 return handle;
1602 }
1603
1604 struct zs_compact_control {
1605 /* Source page for migration which could be a subpage of zspage. */
1606 struct page *s_page;
1607 /* Destination page for migration which should be a first page
1608 * of zspage. */
1609 struct page *d_page;
1610 /* Starting object index within @s_page which used for live object
1611 * in the subpage. */
1612 int index;
1613 /* how many of objects are migrated */
1614 int nr_migrated;
1615 };
1616
1617 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1618 struct zs_compact_control *cc)
1619 {
1620 unsigned long used_obj, free_obj;
1621 unsigned long handle;
1622 struct page *s_page = cc->s_page;
1623 struct page *d_page = cc->d_page;
1624 unsigned long index = cc->index;
1625 int nr_migrated = 0;
1626 int ret = 0;
1627
1628 while (1) {
1629 handle = find_alloced_obj(s_page, index, class);
1630 if (!handle) {
1631 s_page = get_next_page(s_page);
1632 if (!s_page)
1633 break;
1634 index = 0;
1635 continue;
1636 }
1637
1638 /* Stop if there is no more space */
1639 if (zspage_full(d_page)) {
1640 unpin_tag(handle);
1641 ret = -ENOMEM;
1642 break;
1643 }
1644
1645 used_obj = handle_to_obj(handle);
1646 free_obj = obj_malloc(d_page, class, handle);
1647 zs_object_copy(used_obj, free_obj, class);
1648 index++;
1649 record_obj(handle, free_obj);
1650 unpin_tag(handle);
1651 obj_free(pool, class, used_obj);
1652 nr_migrated++;
1653 }
1654
1655 /* Remember last position in this iteration */
1656 cc->s_page = s_page;
1657 cc->index = index;
1658 cc->nr_migrated = nr_migrated;
1659
1660 return ret;
1661 }
1662
1663 static struct page *alloc_target_page(struct size_class *class)
1664 {
1665 int i;
1666 struct page *page;
1667
1668 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1669 page = class->fullness_list[i];
1670 if (page) {
1671 remove_zspage(page, class, i);
1672 break;
1673 }
1674 }
1675
1676 return page;
1677 }
1678
1679 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1680 struct page *first_page)
1681 {
1682 int class_idx;
1683 enum fullness_group fullness;
1684
1685 BUG_ON(!is_first_page(first_page));
1686
1687 get_zspage_mapping(first_page, &class_idx, &fullness);
1688 insert_zspage(first_page, class, fullness);
1689 fullness = fix_fullness_group(class, first_page);
1690 if (fullness == ZS_EMPTY) {
1691 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1692 class->size, class->pages_per_zspage));
1693 atomic_long_sub(class->pages_per_zspage,
1694 &pool->pages_allocated);
1695
1696 free_zspage(first_page);
1697 }
1698 }
1699
1700 static struct page *isolate_source_page(struct size_class *class)
1701 {
1702 struct page *page;
1703
1704 page = class->fullness_list[ZS_ALMOST_EMPTY];
1705 if (page)
1706 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1707
1708 return page;
1709 }
1710
1711 static unsigned long __zs_compact(struct zs_pool *pool,
1712 struct size_class *class)
1713 {
1714 int nr_to_migrate;
1715 struct zs_compact_control cc;
1716 struct page *src_page;
1717 struct page *dst_page = NULL;
1718 unsigned long nr_total_migrated = 0;
1719
1720 cond_resched();
1721
1722 spin_lock(&class->lock);
1723 while ((src_page = isolate_source_page(class))) {
1724
1725 BUG_ON(!is_first_page(src_page));
1726
1727 /* The goal is to migrate all live objects in source page */
1728 nr_to_migrate = src_page->inuse;
1729 cc.index = 0;
1730 cc.s_page = src_page;
1731
1732 while ((dst_page = alloc_target_page(class))) {
1733 cc.d_page = dst_page;
1734 /*
1735 * If there is no more space in dst_page, try to
1736 * allocate another zspage.
1737 */
1738 if (!migrate_zspage(pool, class, &cc))
1739 break;
1740
1741 putback_zspage(pool, class, dst_page);
1742 nr_total_migrated += cc.nr_migrated;
1743 nr_to_migrate -= cc.nr_migrated;
1744 }
1745
1746 /* Stop if we couldn't find slot */
1747 if (dst_page == NULL)
1748 break;
1749
1750 putback_zspage(pool, class, dst_page);
1751 putback_zspage(pool, class, src_page);
1752 spin_unlock(&class->lock);
1753 nr_total_migrated += cc.nr_migrated;
1754 cond_resched();
1755 spin_lock(&class->lock);
1756 }
1757
1758 if (src_page)
1759 putback_zspage(pool, class, src_page);
1760
1761 spin_unlock(&class->lock);
1762
1763 return nr_total_migrated;
1764 }
1765
1766 unsigned long zs_compact(struct zs_pool *pool)
1767 {
1768 int i;
1769 unsigned long nr_migrated = 0;
1770 struct size_class *class;
1771
1772 for (i = zs_size_classes - 1; i >= 0; i--) {
1773 class = pool->size_class[i];
1774 if (!class)
1775 continue;
1776 if (class->index != i)
1777 continue;
1778 nr_migrated += __zs_compact(pool, class);
1779 }
1780
1781 return nr_migrated;
1782 }
1783 EXPORT_SYMBOL_GPL(zs_compact);
1784
1785 /**
1786 * zs_create_pool - Creates an allocation pool to work from.
1787 * @flags: allocation flags used to allocate pool metadata
1788 *
1789 * This function must be called before anything when using
1790 * the zsmalloc allocator.
1791 *
1792 * On success, a pointer to the newly created pool is returned,
1793 * otherwise NULL.
1794 */
1795 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1796 {
1797 int i;
1798 struct zs_pool *pool;
1799 struct size_class *prev_class = NULL;
1800
1801 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1802 if (!pool)
1803 return NULL;
1804
1805 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1806 GFP_KERNEL);
1807 if (!pool->size_class) {
1808 kfree(pool);
1809 return NULL;
1810 }
1811
1812 pool->name = kstrdup(name, GFP_KERNEL);
1813 if (!pool->name)
1814 goto err;
1815
1816 if (create_handle_cache(pool))
1817 goto err;
1818
1819 /*
1820 * Iterate reversly, because, size of size_class that we want to use
1821 * for merging should be larger or equal to current size.
1822 */
1823 for (i = zs_size_classes - 1; i >= 0; i--) {
1824 int size;
1825 int pages_per_zspage;
1826 struct size_class *class;
1827
1828 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1829 if (size > ZS_MAX_ALLOC_SIZE)
1830 size = ZS_MAX_ALLOC_SIZE;
1831 pages_per_zspage = get_pages_per_zspage(size);
1832
1833 /*
1834 * size_class is used for normal zsmalloc operation such
1835 * as alloc/free for that size. Although it is natural that we
1836 * have one size_class for each size, there is a chance that we
1837 * can get more memory utilization if we use one size_class for
1838 * many different sizes whose size_class have same
1839 * characteristics. So, we makes size_class point to
1840 * previous size_class if possible.
1841 */
1842 if (prev_class) {
1843 if (can_merge(prev_class, size, pages_per_zspage)) {
1844 pool->size_class[i] = prev_class;
1845 continue;
1846 }
1847 }
1848
1849 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1850 if (!class)
1851 goto err;
1852
1853 class->size = size;
1854 class->index = i;
1855 class->pages_per_zspage = pages_per_zspage;
1856 if (pages_per_zspage == 1 &&
1857 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1858 class->huge = true;
1859 spin_lock_init(&class->lock);
1860 pool->size_class[i] = class;
1861
1862 prev_class = class;
1863 }
1864
1865 pool->flags = flags;
1866
1867 if (zs_pool_stat_create(name, pool))
1868 goto err;
1869
1870 return pool;
1871
1872 err:
1873 zs_destroy_pool(pool);
1874 return NULL;
1875 }
1876 EXPORT_SYMBOL_GPL(zs_create_pool);
1877
1878 void zs_destroy_pool(struct zs_pool *pool)
1879 {
1880 int i;
1881
1882 zs_pool_stat_destroy(pool);
1883
1884 for (i = 0; i < zs_size_classes; i++) {
1885 int fg;
1886 struct size_class *class = pool->size_class[i];
1887
1888 if (!class)
1889 continue;
1890
1891 if (class->index != i)
1892 continue;
1893
1894 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1895 if (class->fullness_list[fg]) {
1896 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1897 class->size, fg);
1898 }
1899 }
1900 kfree(class);
1901 }
1902
1903 destroy_handle_cache(pool);
1904 kfree(pool->size_class);
1905 kfree(pool->name);
1906 kfree(pool);
1907 }
1908 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1909
1910 static int __init zs_init(void)
1911 {
1912 int ret = zs_register_cpu_notifier();
1913
1914 if (ret)
1915 goto notifier_fail;
1916
1917 init_zs_size_classes();
1918
1919 #ifdef CONFIG_ZPOOL
1920 zpool_register_driver(&zs_zpool_driver);
1921 #endif
1922
1923 ret = zs_stat_init();
1924 if (ret) {
1925 pr_err("zs stat initialization failed\n");
1926 goto stat_fail;
1927 }
1928 return 0;
1929
1930 stat_fail:
1931 #ifdef CONFIG_ZPOOL
1932 zpool_unregister_driver(&zs_zpool_driver);
1933 #endif
1934 notifier_fail:
1935 zs_unregister_cpu_notifier();
1936
1937 return ret;
1938 }
1939
1940 static void __exit zs_exit(void)
1941 {
1942 #ifdef CONFIG_ZPOOL
1943 zpool_unregister_driver(&zs_zpool_driver);
1944 #endif
1945 zs_unregister_cpu_notifier();
1946
1947 zs_stat_exit();
1948 }
1949
1950 module_init(zs_init);
1951 module_exit(zs_exit);
1952
1953 MODULE_LICENSE("Dual BSD/GPL");
1954 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");