zsmalloc: factor out obj_[malloc|free]
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/debugfs.h>
95 #include <linux/zsmalloc.h>
96 #include <linux/zpool.h>
97
98 /*
99 * This must be power of 2 and greater than of equal to sizeof(link_free).
100 * These two conditions ensure that any 'struct link_free' itself doesn't
101 * span more than 1 page which avoids complex case of mapping 2 pages simply
102 * to restore link_free pointer values.
103 */
104 #define ZS_ALIGN 8
105
106 /*
107 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
108 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 */
110 #define ZS_MAX_ZSPAGE_ORDER 2
111 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
112
113 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
114
115 /*
116 * Object location (<PFN>, <obj_idx>) is encoded as
117 * as single (unsigned long) handle value.
118 *
119 * Note that object index <obj_idx> is relative to system
120 * page <PFN> it is stored in, so for each sub-page belonging
121 * to a zspage, obj_idx starts with 0.
122 *
123 * This is made more complicated by various memory models and PAE.
124 */
125
126 #ifndef MAX_PHYSMEM_BITS
127 #ifdef CONFIG_HIGHMEM64G
128 #define MAX_PHYSMEM_BITS 36
129 #else /* !CONFIG_HIGHMEM64G */
130 /*
131 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
132 * be PAGE_SHIFT
133 */
134 #define MAX_PHYSMEM_BITS BITS_PER_LONG
135 #endif
136 #endif
137 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
138 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
139 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
140
141 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
142 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
143 #define ZS_MIN_ALLOC_SIZE \
144 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
145 /* each chunk includes extra space to keep handle */
146 #define ZS_MAX_ALLOC_SIZE (PAGE_SIZE + ZS_HANDLE_SIZE)
147
148 /*
149 * On systems with 4K page size, this gives 255 size classes! There is a
150 * trader-off here:
151 * - Large number of size classes is potentially wasteful as free page are
152 * spread across these classes
153 * - Small number of size classes causes large internal fragmentation
154 * - Probably its better to use specific size classes (empirically
155 * determined). NOTE: all those class sizes must be set as multiple of
156 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
157 *
158 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
159 * (reason above)
160 */
161 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
162
163 /*
164 * We do not maintain any list for completely empty or full pages
165 */
166 enum fullness_group {
167 ZS_ALMOST_FULL,
168 ZS_ALMOST_EMPTY,
169 _ZS_NR_FULLNESS_GROUPS,
170
171 ZS_EMPTY,
172 ZS_FULL
173 };
174
175 enum zs_stat_type {
176 OBJ_ALLOCATED,
177 OBJ_USED,
178 NR_ZS_STAT_TYPE,
179 };
180
181 #ifdef CONFIG_ZSMALLOC_STAT
182
183 static struct dentry *zs_stat_root;
184
185 struct zs_size_stat {
186 unsigned long objs[NR_ZS_STAT_TYPE];
187 };
188
189 #endif
190
191 /*
192 * number of size_classes
193 */
194 static int zs_size_classes;
195
196 /*
197 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
198 * n <= N / f, where
199 * n = number of allocated objects
200 * N = total number of objects zspage can store
201 * f = fullness_threshold_frac
202 *
203 * Similarly, we assign zspage to:
204 * ZS_ALMOST_FULL when n > N / f
205 * ZS_EMPTY when n == 0
206 * ZS_FULL when n == N
207 *
208 * (see: fix_fullness_group())
209 */
210 static const int fullness_threshold_frac = 4;
211
212 struct size_class {
213 /*
214 * Size of objects stored in this class. Must be multiple
215 * of ZS_ALIGN.
216 */
217 int size;
218 unsigned int index;
219
220 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
221 int pages_per_zspage;
222
223 #ifdef CONFIG_ZSMALLOC_STAT
224 struct zs_size_stat stats;
225 #endif
226
227 spinlock_t lock;
228
229 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
230 };
231
232 /*
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, first_page->freelist gives head of this list.
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238 struct link_free {
239 union {
240 /*
241 * Position of next free chunk (encodes <PFN, obj_idx>)
242 * It's valid for non-allocated object
243 */
244 void *next;
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
250 };
251
252 struct zs_pool {
253 char *name;
254
255 struct size_class **size_class;
256 struct kmem_cache *handle_cachep;
257
258 gfp_t flags; /* allocation flags used when growing pool */
259 atomic_long_t pages_allocated;
260
261 #ifdef CONFIG_ZSMALLOC_STAT
262 struct dentry *stat_dentry;
263 #endif
264 };
265
266 /*
267 * A zspage's class index and fullness group
268 * are encoded in its (first)page->mapping
269 */
270 #define CLASS_IDX_BITS 28
271 #define FULLNESS_BITS 4
272 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
273 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
274
275 struct mapping_area {
276 #ifdef CONFIG_PGTABLE_MAPPING
277 struct vm_struct *vm; /* vm area for mapping object that span pages */
278 #else
279 char *vm_buf; /* copy buffer for objects that span pages */
280 #endif
281 char *vm_addr; /* address of kmap_atomic()'ed pages */
282 enum zs_mapmode vm_mm; /* mapping mode */
283 };
284
285 static int create_handle_cache(struct zs_pool *pool)
286 {
287 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
288 0, 0, NULL);
289 return pool->handle_cachep ? 0 : 1;
290 }
291
292 static void destroy_handle_cache(struct zs_pool *pool)
293 {
294 kmem_cache_destroy(pool->handle_cachep);
295 }
296
297 static unsigned long alloc_handle(struct zs_pool *pool)
298 {
299 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
300 pool->flags & ~__GFP_HIGHMEM);
301 }
302
303 static void free_handle(struct zs_pool *pool, unsigned long handle)
304 {
305 kmem_cache_free(pool->handle_cachep, (void *)handle);
306 }
307
308 static void record_obj(unsigned long handle, unsigned long obj)
309 {
310 *(unsigned long *)handle = obj;
311 }
312
313 /* zpool driver */
314
315 #ifdef CONFIG_ZPOOL
316
317 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
318 {
319 return zs_create_pool(name, gfp);
320 }
321
322 static void zs_zpool_destroy(void *pool)
323 {
324 zs_destroy_pool(pool);
325 }
326
327 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
328 unsigned long *handle)
329 {
330 *handle = zs_malloc(pool, size);
331 return *handle ? 0 : -1;
332 }
333 static void zs_zpool_free(void *pool, unsigned long handle)
334 {
335 zs_free(pool, handle);
336 }
337
338 static int zs_zpool_shrink(void *pool, unsigned int pages,
339 unsigned int *reclaimed)
340 {
341 return -EINVAL;
342 }
343
344 static void *zs_zpool_map(void *pool, unsigned long handle,
345 enum zpool_mapmode mm)
346 {
347 enum zs_mapmode zs_mm;
348
349 switch (mm) {
350 case ZPOOL_MM_RO:
351 zs_mm = ZS_MM_RO;
352 break;
353 case ZPOOL_MM_WO:
354 zs_mm = ZS_MM_WO;
355 break;
356 case ZPOOL_MM_RW: /* fallthru */
357 default:
358 zs_mm = ZS_MM_RW;
359 break;
360 }
361
362 return zs_map_object(pool, handle, zs_mm);
363 }
364 static void zs_zpool_unmap(void *pool, unsigned long handle)
365 {
366 zs_unmap_object(pool, handle);
367 }
368
369 static u64 zs_zpool_total_size(void *pool)
370 {
371 return zs_get_total_pages(pool) << PAGE_SHIFT;
372 }
373
374 static struct zpool_driver zs_zpool_driver = {
375 .type = "zsmalloc",
376 .owner = THIS_MODULE,
377 .create = zs_zpool_create,
378 .destroy = zs_zpool_destroy,
379 .malloc = zs_zpool_malloc,
380 .free = zs_zpool_free,
381 .shrink = zs_zpool_shrink,
382 .map = zs_zpool_map,
383 .unmap = zs_zpool_unmap,
384 .total_size = zs_zpool_total_size,
385 };
386
387 MODULE_ALIAS("zpool-zsmalloc");
388 #endif /* CONFIG_ZPOOL */
389
390 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
391 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
392
393 static int is_first_page(struct page *page)
394 {
395 return PagePrivate(page);
396 }
397
398 static int is_last_page(struct page *page)
399 {
400 return PagePrivate2(page);
401 }
402
403 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
404 enum fullness_group *fullness)
405 {
406 unsigned long m;
407 BUG_ON(!is_first_page(page));
408
409 m = (unsigned long)page->mapping;
410 *fullness = m & FULLNESS_MASK;
411 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
412 }
413
414 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
415 enum fullness_group fullness)
416 {
417 unsigned long m;
418 BUG_ON(!is_first_page(page));
419
420 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
421 (fullness & FULLNESS_MASK);
422 page->mapping = (struct address_space *)m;
423 }
424
425 /*
426 * zsmalloc divides the pool into various size classes where each
427 * class maintains a list of zspages where each zspage is divided
428 * into equal sized chunks. Each allocation falls into one of these
429 * classes depending on its size. This function returns index of the
430 * size class which has chunk size big enough to hold the give size.
431 */
432 static int get_size_class_index(int size)
433 {
434 int idx = 0;
435
436 if (likely(size > ZS_MIN_ALLOC_SIZE))
437 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
438 ZS_SIZE_CLASS_DELTA);
439
440 return idx;
441 }
442
443 /*
444 * For each size class, zspages are divided into different groups
445 * depending on how "full" they are. This was done so that we could
446 * easily find empty or nearly empty zspages when we try to shrink
447 * the pool (not yet implemented). This function returns fullness
448 * status of the given page.
449 */
450 static enum fullness_group get_fullness_group(struct page *page)
451 {
452 int inuse, max_objects;
453 enum fullness_group fg;
454 BUG_ON(!is_first_page(page));
455
456 inuse = page->inuse;
457 max_objects = page->objects;
458
459 if (inuse == 0)
460 fg = ZS_EMPTY;
461 else if (inuse == max_objects)
462 fg = ZS_FULL;
463 else if (inuse <= max_objects / fullness_threshold_frac)
464 fg = ZS_ALMOST_EMPTY;
465 else
466 fg = ZS_ALMOST_FULL;
467
468 return fg;
469 }
470
471 /*
472 * Each size class maintains various freelists and zspages are assigned
473 * to one of these freelists based on the number of live objects they
474 * have. This functions inserts the given zspage into the freelist
475 * identified by <class, fullness_group>.
476 */
477 static void insert_zspage(struct page *page, struct size_class *class,
478 enum fullness_group fullness)
479 {
480 struct page **head;
481
482 BUG_ON(!is_first_page(page));
483
484 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
485 return;
486
487 head = &class->fullness_list[fullness];
488 if (*head)
489 list_add_tail(&page->lru, &(*head)->lru);
490
491 *head = page;
492 }
493
494 /*
495 * This function removes the given zspage from the freelist identified
496 * by <class, fullness_group>.
497 */
498 static void remove_zspage(struct page *page, struct size_class *class,
499 enum fullness_group fullness)
500 {
501 struct page **head;
502
503 BUG_ON(!is_first_page(page));
504
505 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
506 return;
507
508 head = &class->fullness_list[fullness];
509 BUG_ON(!*head);
510 if (list_empty(&(*head)->lru))
511 *head = NULL;
512 else if (*head == page)
513 *head = (struct page *)list_entry((*head)->lru.next,
514 struct page, lru);
515
516 list_del_init(&page->lru);
517 }
518
519 /*
520 * Each size class maintains zspages in different fullness groups depending
521 * on the number of live objects they contain. When allocating or freeing
522 * objects, the fullness status of the page can change, say, from ALMOST_FULL
523 * to ALMOST_EMPTY when freeing an object. This function checks if such
524 * a status change has occurred for the given page and accordingly moves the
525 * page from the freelist of the old fullness group to that of the new
526 * fullness group.
527 */
528 static enum fullness_group fix_fullness_group(struct size_class *class,
529 struct page *page)
530 {
531 int class_idx;
532 enum fullness_group currfg, newfg;
533
534 BUG_ON(!is_first_page(page));
535
536 get_zspage_mapping(page, &class_idx, &currfg);
537 newfg = get_fullness_group(page);
538 if (newfg == currfg)
539 goto out;
540
541 remove_zspage(page, class, currfg);
542 insert_zspage(page, class, newfg);
543 set_zspage_mapping(page, class_idx, newfg);
544
545 out:
546 return newfg;
547 }
548
549 /*
550 * We have to decide on how many pages to link together
551 * to form a zspage for each size class. This is important
552 * to reduce wastage due to unusable space left at end of
553 * each zspage which is given as:
554 * wastage = Zp - Zp % size_class
555 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
556 *
557 * For example, for size class of 3/8 * PAGE_SIZE, we should
558 * link together 3 PAGE_SIZE sized pages to form a zspage
559 * since then we can perfectly fit in 8 such objects.
560 */
561 static int get_pages_per_zspage(int class_size)
562 {
563 int i, max_usedpc = 0;
564 /* zspage order which gives maximum used size per KB */
565 int max_usedpc_order = 1;
566
567 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
568 int zspage_size;
569 int waste, usedpc;
570
571 zspage_size = i * PAGE_SIZE;
572 waste = zspage_size % class_size;
573 usedpc = (zspage_size - waste) * 100 / zspage_size;
574
575 if (usedpc > max_usedpc) {
576 max_usedpc = usedpc;
577 max_usedpc_order = i;
578 }
579 }
580
581 return max_usedpc_order;
582 }
583
584 /*
585 * A single 'zspage' is composed of many system pages which are
586 * linked together using fields in struct page. This function finds
587 * the first/head page, given any component page of a zspage.
588 */
589 static struct page *get_first_page(struct page *page)
590 {
591 if (is_first_page(page))
592 return page;
593 else
594 return page->first_page;
595 }
596
597 static struct page *get_next_page(struct page *page)
598 {
599 struct page *next;
600
601 if (is_last_page(page))
602 next = NULL;
603 else if (is_first_page(page))
604 next = (struct page *)page_private(page);
605 else
606 next = list_entry(page->lru.next, struct page, lru);
607
608 return next;
609 }
610
611 /*
612 * Encode <page, obj_idx> as a single handle value.
613 * On hardware platforms with physical memory starting at 0x0 the pfn
614 * could be 0 so we ensure that the handle will never be 0 by adjusting the
615 * encoded obj_idx value before encoding.
616 */
617 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
618 {
619 unsigned long handle;
620
621 if (!page) {
622 BUG_ON(obj_idx);
623 return NULL;
624 }
625
626 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
627 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
628
629 return (void *)handle;
630 }
631
632 /*
633 * Decode <page, obj_idx> pair from the given object handle. We adjust the
634 * decoded obj_idx back to its original value since it was adjusted in
635 * obj_location_to_handle().
636 */
637 static void obj_to_location(unsigned long handle, struct page **page,
638 unsigned long *obj_idx)
639 {
640 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
641 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
642 }
643
644 static unsigned long handle_to_obj(unsigned long handle)
645 {
646 return *(unsigned long *)handle;
647 }
648
649 static unsigned long obj_idx_to_offset(struct page *page,
650 unsigned long obj_idx, int class_size)
651 {
652 unsigned long off = 0;
653
654 if (!is_first_page(page))
655 off = page->index;
656
657 return off + obj_idx * class_size;
658 }
659
660 static void reset_page(struct page *page)
661 {
662 clear_bit(PG_private, &page->flags);
663 clear_bit(PG_private_2, &page->flags);
664 set_page_private(page, 0);
665 page->mapping = NULL;
666 page->freelist = NULL;
667 page_mapcount_reset(page);
668 }
669
670 static void free_zspage(struct page *first_page)
671 {
672 struct page *nextp, *tmp, *head_extra;
673
674 BUG_ON(!is_first_page(first_page));
675 BUG_ON(first_page->inuse);
676
677 head_extra = (struct page *)page_private(first_page);
678
679 reset_page(first_page);
680 __free_page(first_page);
681
682 /* zspage with only 1 system page */
683 if (!head_extra)
684 return;
685
686 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
687 list_del(&nextp->lru);
688 reset_page(nextp);
689 __free_page(nextp);
690 }
691 reset_page(head_extra);
692 __free_page(head_extra);
693 }
694
695 /* Initialize a newly allocated zspage */
696 static void init_zspage(struct page *first_page, struct size_class *class)
697 {
698 unsigned long off = 0;
699 struct page *page = first_page;
700
701 BUG_ON(!is_first_page(first_page));
702 while (page) {
703 struct page *next_page;
704 struct link_free *link;
705 unsigned int i = 1;
706 void *vaddr;
707
708 /*
709 * page->index stores offset of first object starting
710 * in the page. For the first page, this is always 0,
711 * so we use first_page->index (aka ->freelist) to store
712 * head of corresponding zspage's freelist.
713 */
714 if (page != first_page)
715 page->index = off;
716
717 vaddr = kmap_atomic(page);
718 link = (struct link_free *)vaddr + off / sizeof(*link);
719
720 while ((off += class->size) < PAGE_SIZE) {
721 link->next = obj_location_to_handle(page, i++);
722 link += class->size / sizeof(*link);
723 }
724
725 /*
726 * We now come to the last (full or partial) object on this
727 * page, which must point to the first object on the next
728 * page (if present)
729 */
730 next_page = get_next_page(page);
731 link->next = obj_location_to_handle(next_page, 0);
732 kunmap_atomic(vaddr);
733 page = next_page;
734 off %= PAGE_SIZE;
735 }
736 }
737
738 /*
739 * Allocate a zspage for the given size class
740 */
741 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
742 {
743 int i, error;
744 struct page *first_page = NULL, *uninitialized_var(prev_page);
745
746 /*
747 * Allocate individual pages and link them together as:
748 * 1. first page->private = first sub-page
749 * 2. all sub-pages are linked together using page->lru
750 * 3. each sub-page is linked to the first page using page->first_page
751 *
752 * For each size class, First/Head pages are linked together using
753 * page->lru. Also, we set PG_private to identify the first page
754 * (i.e. no other sub-page has this flag set) and PG_private_2 to
755 * identify the last page.
756 */
757 error = -ENOMEM;
758 for (i = 0; i < class->pages_per_zspage; i++) {
759 struct page *page;
760
761 page = alloc_page(flags);
762 if (!page)
763 goto cleanup;
764
765 INIT_LIST_HEAD(&page->lru);
766 if (i == 0) { /* first page */
767 SetPagePrivate(page);
768 set_page_private(page, 0);
769 first_page = page;
770 first_page->inuse = 0;
771 }
772 if (i == 1)
773 set_page_private(first_page, (unsigned long)page);
774 if (i >= 1)
775 page->first_page = first_page;
776 if (i >= 2)
777 list_add(&page->lru, &prev_page->lru);
778 if (i == class->pages_per_zspage - 1) /* last page */
779 SetPagePrivate2(page);
780 prev_page = page;
781 }
782
783 init_zspage(first_page, class);
784
785 first_page->freelist = obj_location_to_handle(first_page, 0);
786 /* Maximum number of objects we can store in this zspage */
787 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
788
789 error = 0; /* Success */
790
791 cleanup:
792 if (unlikely(error) && first_page) {
793 free_zspage(first_page);
794 first_page = NULL;
795 }
796
797 return first_page;
798 }
799
800 static struct page *find_get_zspage(struct size_class *class)
801 {
802 int i;
803 struct page *page;
804
805 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
806 page = class->fullness_list[i];
807 if (page)
808 break;
809 }
810
811 return page;
812 }
813
814 #ifdef CONFIG_PGTABLE_MAPPING
815 static inline int __zs_cpu_up(struct mapping_area *area)
816 {
817 /*
818 * Make sure we don't leak memory if a cpu UP notification
819 * and zs_init() race and both call zs_cpu_up() on the same cpu
820 */
821 if (area->vm)
822 return 0;
823 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
824 if (!area->vm)
825 return -ENOMEM;
826 return 0;
827 }
828
829 static inline void __zs_cpu_down(struct mapping_area *area)
830 {
831 if (area->vm)
832 free_vm_area(area->vm);
833 area->vm = NULL;
834 }
835
836 static inline void *__zs_map_object(struct mapping_area *area,
837 struct page *pages[2], int off, int size)
838 {
839 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
840 area->vm_addr = area->vm->addr;
841 return area->vm_addr + off;
842 }
843
844 static inline void __zs_unmap_object(struct mapping_area *area,
845 struct page *pages[2], int off, int size)
846 {
847 unsigned long addr = (unsigned long)area->vm_addr;
848
849 unmap_kernel_range(addr, PAGE_SIZE * 2);
850 }
851
852 #else /* CONFIG_PGTABLE_MAPPING */
853
854 static inline int __zs_cpu_up(struct mapping_area *area)
855 {
856 /*
857 * Make sure we don't leak memory if a cpu UP notification
858 * and zs_init() race and both call zs_cpu_up() on the same cpu
859 */
860 if (area->vm_buf)
861 return 0;
862 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
863 if (!area->vm_buf)
864 return -ENOMEM;
865 return 0;
866 }
867
868 static inline void __zs_cpu_down(struct mapping_area *area)
869 {
870 kfree(area->vm_buf);
871 area->vm_buf = NULL;
872 }
873
874 static void *__zs_map_object(struct mapping_area *area,
875 struct page *pages[2], int off, int size)
876 {
877 int sizes[2];
878 void *addr;
879 char *buf = area->vm_buf;
880
881 /* disable page faults to match kmap_atomic() return conditions */
882 pagefault_disable();
883
884 /* no read fastpath */
885 if (area->vm_mm == ZS_MM_WO)
886 goto out;
887
888 sizes[0] = PAGE_SIZE - off;
889 sizes[1] = size - sizes[0];
890
891 /* copy object to per-cpu buffer */
892 addr = kmap_atomic(pages[0]);
893 memcpy(buf, addr + off, sizes[0]);
894 kunmap_atomic(addr);
895 addr = kmap_atomic(pages[1]);
896 memcpy(buf + sizes[0], addr, sizes[1]);
897 kunmap_atomic(addr);
898 out:
899 return area->vm_buf;
900 }
901
902 static void __zs_unmap_object(struct mapping_area *area,
903 struct page *pages[2], int off, int size)
904 {
905 int sizes[2];
906 void *addr;
907 char *buf;
908
909 /* no write fastpath */
910 if (area->vm_mm == ZS_MM_RO)
911 goto out;
912
913 buf = area->vm_buf + ZS_HANDLE_SIZE;
914 size -= ZS_HANDLE_SIZE;
915 off += ZS_HANDLE_SIZE;
916
917 sizes[0] = PAGE_SIZE - off;
918 sizes[1] = size - sizes[0];
919
920 /* copy per-cpu buffer to object */
921 addr = kmap_atomic(pages[0]);
922 memcpy(addr + off, buf, sizes[0]);
923 kunmap_atomic(addr);
924 addr = kmap_atomic(pages[1]);
925 memcpy(addr, buf + sizes[0], sizes[1]);
926 kunmap_atomic(addr);
927
928 out:
929 /* enable page faults to match kunmap_atomic() return conditions */
930 pagefault_enable();
931 }
932
933 #endif /* CONFIG_PGTABLE_MAPPING */
934
935 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
936 void *pcpu)
937 {
938 int ret, cpu = (long)pcpu;
939 struct mapping_area *area;
940
941 switch (action) {
942 case CPU_UP_PREPARE:
943 area = &per_cpu(zs_map_area, cpu);
944 ret = __zs_cpu_up(area);
945 if (ret)
946 return notifier_from_errno(ret);
947 break;
948 case CPU_DEAD:
949 case CPU_UP_CANCELED:
950 area = &per_cpu(zs_map_area, cpu);
951 __zs_cpu_down(area);
952 break;
953 }
954
955 return NOTIFY_OK;
956 }
957
958 static struct notifier_block zs_cpu_nb = {
959 .notifier_call = zs_cpu_notifier
960 };
961
962 static int zs_register_cpu_notifier(void)
963 {
964 int cpu, uninitialized_var(ret);
965
966 cpu_notifier_register_begin();
967
968 __register_cpu_notifier(&zs_cpu_nb);
969 for_each_online_cpu(cpu) {
970 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
971 if (notifier_to_errno(ret))
972 break;
973 }
974
975 cpu_notifier_register_done();
976 return notifier_to_errno(ret);
977 }
978
979 static void zs_unregister_cpu_notifier(void)
980 {
981 int cpu;
982
983 cpu_notifier_register_begin();
984
985 for_each_online_cpu(cpu)
986 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
987 __unregister_cpu_notifier(&zs_cpu_nb);
988
989 cpu_notifier_register_done();
990 }
991
992 static void init_zs_size_classes(void)
993 {
994 int nr;
995
996 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
997 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
998 nr += 1;
999
1000 zs_size_classes = nr;
1001 }
1002
1003 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
1004 {
1005 return pages_per_zspage * PAGE_SIZE / size;
1006 }
1007
1008 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1009 {
1010 if (prev->pages_per_zspage != pages_per_zspage)
1011 return false;
1012
1013 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1014 != get_maxobj_per_zspage(size, pages_per_zspage))
1015 return false;
1016
1017 return true;
1018 }
1019
1020 #ifdef CONFIG_ZSMALLOC_STAT
1021
1022 static inline void zs_stat_inc(struct size_class *class,
1023 enum zs_stat_type type, unsigned long cnt)
1024 {
1025 class->stats.objs[type] += cnt;
1026 }
1027
1028 static inline void zs_stat_dec(struct size_class *class,
1029 enum zs_stat_type type, unsigned long cnt)
1030 {
1031 class->stats.objs[type] -= cnt;
1032 }
1033
1034 static inline unsigned long zs_stat_get(struct size_class *class,
1035 enum zs_stat_type type)
1036 {
1037 return class->stats.objs[type];
1038 }
1039
1040 static int __init zs_stat_init(void)
1041 {
1042 if (!debugfs_initialized())
1043 return -ENODEV;
1044
1045 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
1046 if (!zs_stat_root)
1047 return -ENOMEM;
1048
1049 return 0;
1050 }
1051
1052 static void __exit zs_stat_exit(void)
1053 {
1054 debugfs_remove_recursive(zs_stat_root);
1055 }
1056
1057 static int zs_stats_size_show(struct seq_file *s, void *v)
1058 {
1059 int i;
1060 struct zs_pool *pool = s->private;
1061 struct size_class *class;
1062 int objs_per_zspage;
1063 unsigned long obj_allocated, obj_used, pages_used;
1064 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1065
1066 seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
1067 "obj_allocated", "obj_used", "pages_used");
1068
1069 for (i = 0; i < zs_size_classes; i++) {
1070 class = pool->size_class[i];
1071
1072 if (class->index != i)
1073 continue;
1074
1075 spin_lock(&class->lock);
1076 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1077 obj_used = zs_stat_get(class, OBJ_USED);
1078 spin_unlock(&class->lock);
1079
1080 objs_per_zspage = get_maxobj_per_zspage(class->size,
1081 class->pages_per_zspage);
1082 pages_used = obj_allocated / objs_per_zspage *
1083 class->pages_per_zspage;
1084
1085 seq_printf(s, " %5u %5u %10lu %10lu %10lu\n", i,
1086 class->size, obj_allocated, obj_used, pages_used);
1087
1088 total_objs += obj_allocated;
1089 total_used_objs += obj_used;
1090 total_pages += pages_used;
1091 }
1092
1093 seq_puts(s, "\n");
1094 seq_printf(s, " %5s %5s %10lu %10lu %10lu\n", "Total", "",
1095 total_objs, total_used_objs, total_pages);
1096
1097 return 0;
1098 }
1099
1100 static int zs_stats_size_open(struct inode *inode, struct file *file)
1101 {
1102 return single_open(file, zs_stats_size_show, inode->i_private);
1103 }
1104
1105 static const struct file_operations zs_stat_size_ops = {
1106 .open = zs_stats_size_open,
1107 .read = seq_read,
1108 .llseek = seq_lseek,
1109 .release = single_release,
1110 };
1111
1112 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
1113 {
1114 struct dentry *entry;
1115
1116 if (!zs_stat_root)
1117 return -ENODEV;
1118
1119 entry = debugfs_create_dir(name, zs_stat_root);
1120 if (!entry) {
1121 pr_warn("debugfs dir <%s> creation failed\n", name);
1122 return -ENOMEM;
1123 }
1124 pool->stat_dentry = entry;
1125
1126 entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
1127 pool->stat_dentry, pool, &zs_stat_size_ops);
1128 if (!entry) {
1129 pr_warn("%s: debugfs file entry <%s> creation failed\n",
1130 name, "obj_in_classes");
1131 return -ENOMEM;
1132 }
1133
1134 return 0;
1135 }
1136
1137 static void zs_pool_stat_destroy(struct zs_pool *pool)
1138 {
1139 debugfs_remove_recursive(pool->stat_dentry);
1140 }
1141
1142 #else /* CONFIG_ZSMALLOC_STAT */
1143
1144 static inline void zs_stat_inc(struct size_class *class,
1145 enum zs_stat_type type, unsigned long cnt)
1146 {
1147 }
1148
1149 static inline void zs_stat_dec(struct size_class *class,
1150 enum zs_stat_type type, unsigned long cnt)
1151 {
1152 }
1153
1154 static inline unsigned long zs_stat_get(struct size_class *class,
1155 enum zs_stat_type type)
1156 {
1157 return 0;
1158 }
1159
1160 static int __init zs_stat_init(void)
1161 {
1162 return 0;
1163 }
1164
1165 static void __exit zs_stat_exit(void)
1166 {
1167 }
1168
1169 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
1170 {
1171 return 0;
1172 }
1173
1174 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
1175 {
1176 }
1177
1178 #endif
1179
1180 unsigned long zs_get_total_pages(struct zs_pool *pool)
1181 {
1182 return atomic_long_read(&pool->pages_allocated);
1183 }
1184 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1185
1186 /**
1187 * zs_map_object - get address of allocated object from handle.
1188 * @pool: pool from which the object was allocated
1189 * @handle: handle returned from zs_malloc
1190 *
1191 * Before using an object allocated from zs_malloc, it must be mapped using
1192 * this function. When done with the object, it must be unmapped using
1193 * zs_unmap_object.
1194 *
1195 * Only one object can be mapped per cpu at a time. There is no protection
1196 * against nested mappings.
1197 *
1198 * This function returns with preemption and page faults disabled.
1199 */
1200 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1201 enum zs_mapmode mm)
1202 {
1203 struct page *page;
1204 unsigned long obj, obj_idx, off;
1205
1206 unsigned int class_idx;
1207 enum fullness_group fg;
1208 struct size_class *class;
1209 struct mapping_area *area;
1210 struct page *pages[2];
1211 void *ret;
1212
1213 BUG_ON(!handle);
1214
1215 /*
1216 * Because we use per-cpu mapping areas shared among the
1217 * pools/users, we can't allow mapping in interrupt context
1218 * because it can corrupt another users mappings.
1219 */
1220 BUG_ON(in_interrupt());
1221
1222 obj = handle_to_obj(handle);
1223 obj_to_location(obj, &page, &obj_idx);
1224 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1225 class = pool->size_class[class_idx];
1226 off = obj_idx_to_offset(page, obj_idx, class->size);
1227
1228 area = &get_cpu_var(zs_map_area);
1229 area->vm_mm = mm;
1230 if (off + class->size <= PAGE_SIZE) {
1231 /* this object is contained entirely within a page */
1232 area->vm_addr = kmap_atomic(page);
1233 ret = area->vm_addr + off;
1234 goto out;
1235 }
1236
1237 /* this object spans two pages */
1238 pages[0] = page;
1239 pages[1] = get_next_page(page);
1240 BUG_ON(!pages[1]);
1241
1242 ret = __zs_map_object(area, pages, off, class->size);
1243 out:
1244 return ret + ZS_HANDLE_SIZE;
1245 }
1246 EXPORT_SYMBOL_GPL(zs_map_object);
1247
1248 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1249 {
1250 struct page *page;
1251 unsigned long obj, obj_idx, off;
1252
1253 unsigned int class_idx;
1254 enum fullness_group fg;
1255 struct size_class *class;
1256 struct mapping_area *area;
1257
1258 BUG_ON(!handle);
1259
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &page, &obj_idx);
1262 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1263 class = pool->size_class[class_idx];
1264 off = obj_idx_to_offset(page, obj_idx, class->size);
1265
1266 area = this_cpu_ptr(&zs_map_area);
1267 if (off + class->size <= PAGE_SIZE)
1268 kunmap_atomic(area->vm_addr);
1269 else {
1270 struct page *pages[2];
1271
1272 pages[0] = page;
1273 pages[1] = get_next_page(page);
1274 BUG_ON(!pages[1]);
1275
1276 __zs_unmap_object(area, pages, off, class->size);
1277 }
1278 put_cpu_var(zs_map_area);
1279 }
1280 EXPORT_SYMBOL_GPL(zs_unmap_object);
1281
1282 static unsigned long obj_malloc(struct page *first_page,
1283 struct size_class *class, unsigned long handle)
1284 {
1285 unsigned long obj;
1286 struct link_free *link;
1287
1288 struct page *m_page;
1289 unsigned long m_objidx, m_offset;
1290 void *vaddr;
1291
1292 obj = (unsigned long)first_page->freelist;
1293 obj_to_location(obj, &m_page, &m_objidx);
1294 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1295
1296 vaddr = kmap_atomic(m_page);
1297 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1298 first_page->freelist = link->next;
1299 /* record handle in the header of allocated chunk */
1300 link->handle = handle;
1301 kunmap_atomic(vaddr);
1302 first_page->inuse++;
1303 zs_stat_inc(class, OBJ_USED, 1);
1304
1305 return obj;
1306 }
1307
1308
1309 /**
1310 * zs_malloc - Allocate block of given size from pool.
1311 * @pool: pool to allocate from
1312 * @size: size of block to allocate
1313 *
1314 * On success, handle to the allocated object is returned,
1315 * otherwise 0.
1316 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1317 */
1318 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1319 {
1320 unsigned long handle, obj;
1321 struct size_class *class;
1322 struct page *first_page;
1323
1324 if (unlikely(!size || (size + ZS_HANDLE_SIZE) > ZS_MAX_ALLOC_SIZE))
1325 return 0;
1326
1327 handle = alloc_handle(pool);
1328 if (!handle)
1329 return 0;
1330
1331 /* extra space in chunk to keep the handle */
1332 size += ZS_HANDLE_SIZE;
1333 class = pool->size_class[get_size_class_index(size)];
1334
1335 spin_lock(&class->lock);
1336 first_page = find_get_zspage(class);
1337
1338 if (!first_page) {
1339 spin_unlock(&class->lock);
1340 first_page = alloc_zspage(class, pool->flags);
1341 if (unlikely(!first_page)) {
1342 free_handle(pool, handle);
1343 return 0;
1344 }
1345
1346 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1347 atomic_long_add(class->pages_per_zspage,
1348 &pool->pages_allocated);
1349
1350 spin_lock(&class->lock);
1351 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1352 class->size, class->pages_per_zspage));
1353 }
1354
1355 obj = obj_malloc(first_page, class, handle);
1356 /* Now move the zspage to another fullness group, if required */
1357 fix_fullness_group(class, first_page);
1358 record_obj(handle, obj);
1359 spin_unlock(&class->lock);
1360
1361 return handle;
1362 }
1363 EXPORT_SYMBOL_GPL(zs_malloc);
1364
1365 static void obj_free(struct zs_pool *pool, struct size_class *class,
1366 unsigned long obj)
1367 {
1368 struct link_free *link;
1369 struct page *first_page, *f_page;
1370 unsigned long f_objidx, f_offset;
1371 void *vaddr;
1372 int class_idx;
1373 enum fullness_group fullness;
1374
1375 BUG_ON(!obj);
1376
1377 obj_to_location(obj, &f_page, &f_objidx);
1378 first_page = get_first_page(f_page);
1379
1380 get_zspage_mapping(first_page, &class_idx, &fullness);
1381 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1382
1383 vaddr = kmap_atomic(f_page);
1384
1385 /* Insert this object in containing zspage's freelist */
1386 link = (struct link_free *)(vaddr + f_offset);
1387 link->next = first_page->freelist;
1388 kunmap_atomic(vaddr);
1389 first_page->freelist = (void *)obj;
1390 first_page->inuse--;
1391 zs_stat_dec(class, OBJ_USED, 1);
1392 }
1393
1394 void zs_free(struct zs_pool *pool, unsigned long handle)
1395 {
1396 struct page *first_page, *f_page;
1397 unsigned long obj, f_objidx;
1398 int class_idx;
1399 struct size_class *class;
1400 enum fullness_group fullness;
1401
1402 if (unlikely(!handle))
1403 return;
1404
1405 obj = handle_to_obj(handle);
1406 free_handle(pool, handle);
1407 obj_to_location(obj, &f_page, &f_objidx);
1408 first_page = get_first_page(f_page);
1409
1410 get_zspage_mapping(first_page, &class_idx, &fullness);
1411 class = pool->size_class[class_idx];
1412
1413 spin_lock(&class->lock);
1414 obj_free(pool, class, obj);
1415 fullness = fix_fullness_group(class, first_page);
1416 if (fullness == ZS_EMPTY)
1417 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1418 class->size, class->pages_per_zspage));
1419 spin_unlock(&class->lock);
1420
1421 if (fullness == ZS_EMPTY) {
1422 atomic_long_sub(class->pages_per_zspage,
1423 &pool->pages_allocated);
1424 free_zspage(first_page);
1425 }
1426 }
1427 EXPORT_SYMBOL_GPL(zs_free);
1428
1429 /**
1430 * zs_create_pool - Creates an allocation pool to work from.
1431 * @flags: allocation flags used to allocate pool metadata
1432 *
1433 * This function must be called before anything when using
1434 * the zsmalloc allocator.
1435 *
1436 * On success, a pointer to the newly created pool is returned,
1437 * otherwise NULL.
1438 */
1439 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1440 {
1441 int i;
1442 struct zs_pool *pool;
1443 struct size_class *prev_class = NULL;
1444
1445 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1446 if (!pool)
1447 return NULL;
1448
1449 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1450 GFP_KERNEL);
1451 if (!pool->size_class) {
1452 kfree(pool);
1453 return NULL;
1454 }
1455
1456 pool->name = kstrdup(name, GFP_KERNEL);
1457 if (!pool->name)
1458 goto err;
1459
1460 if (create_handle_cache(pool))
1461 goto err;
1462
1463 /*
1464 * Iterate reversly, because, size of size_class that we want to use
1465 * for merging should be larger or equal to current size.
1466 */
1467 for (i = zs_size_classes - 1; i >= 0; i--) {
1468 int size;
1469 int pages_per_zspage;
1470 struct size_class *class;
1471
1472 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1473 if (size > ZS_MAX_ALLOC_SIZE)
1474 size = ZS_MAX_ALLOC_SIZE;
1475 pages_per_zspage = get_pages_per_zspage(size);
1476
1477 /*
1478 * size_class is used for normal zsmalloc operation such
1479 * as alloc/free for that size. Although it is natural that we
1480 * have one size_class for each size, there is a chance that we
1481 * can get more memory utilization if we use one size_class for
1482 * many different sizes whose size_class have same
1483 * characteristics. So, we makes size_class point to
1484 * previous size_class if possible.
1485 */
1486 if (prev_class) {
1487 if (can_merge(prev_class, size, pages_per_zspage)) {
1488 pool->size_class[i] = prev_class;
1489 continue;
1490 }
1491 }
1492
1493 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1494 if (!class)
1495 goto err;
1496
1497 class->size = size;
1498 class->index = i;
1499 class->pages_per_zspage = pages_per_zspage;
1500 spin_lock_init(&class->lock);
1501 pool->size_class[i] = class;
1502
1503 prev_class = class;
1504 }
1505
1506 pool->flags = flags;
1507
1508 if (zs_pool_stat_create(name, pool))
1509 goto err;
1510
1511 return pool;
1512
1513 err:
1514 zs_destroy_pool(pool);
1515 return NULL;
1516 }
1517 EXPORT_SYMBOL_GPL(zs_create_pool);
1518
1519 void zs_destroy_pool(struct zs_pool *pool)
1520 {
1521 int i;
1522
1523 zs_pool_stat_destroy(pool);
1524
1525 for (i = 0; i < zs_size_classes; i++) {
1526 int fg;
1527 struct size_class *class = pool->size_class[i];
1528
1529 if (!class)
1530 continue;
1531
1532 if (class->index != i)
1533 continue;
1534
1535 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1536 if (class->fullness_list[fg]) {
1537 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1538 class->size, fg);
1539 }
1540 }
1541 kfree(class);
1542 }
1543
1544 destroy_handle_cache(pool);
1545 kfree(pool->size_class);
1546 kfree(pool->name);
1547 kfree(pool);
1548 }
1549 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1550
1551 static int __init zs_init(void)
1552 {
1553 int ret = zs_register_cpu_notifier();
1554
1555 if (ret)
1556 goto notifier_fail;
1557
1558 init_zs_size_classes();
1559
1560 #ifdef CONFIG_ZPOOL
1561 zpool_register_driver(&zs_zpool_driver);
1562 #endif
1563
1564 ret = zs_stat_init();
1565 if (ret) {
1566 pr_err("zs stat initialization failed\n");
1567 goto stat_fail;
1568 }
1569 return 0;
1570
1571 stat_fail:
1572 #ifdef CONFIG_ZPOOL
1573 zpool_unregister_driver(&zs_zpool_driver);
1574 #endif
1575 notifier_fail:
1576 zs_unregister_cpu_notifier();
1577
1578 return ret;
1579 }
1580
1581 static void __exit zs_exit(void)
1582 {
1583 #ifdef CONFIG_ZPOOL
1584 zpool_unregister_driver(&zs_zpool_driver);
1585 #endif
1586 zs_unregister_cpu_notifier();
1587
1588 zs_stat_exit();
1589 }
1590
1591 module_init(zs_init);
1592 module_exit(zs_exit);
1593
1594 MODULE_LICENSE("Dual BSD/GPL");
1595 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");