mm: do not grow the stack vma just because of an overrun on preceding vma
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 #ifdef CONFIG_HOTPLUG
56 /*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62 void vm_events_fold_cpu(int cpu)
63 {
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
66
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
70 }
71 }
72 #endif /* CONFIG_HOTPLUG */
73
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75
76 /*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
83
84 #ifdef CONFIG_SMP
85
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 int threshold;
89 int watermark_distance;
90
91 /*
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
97 * the min watermark
98 */
99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102 /*
103 * Maximum threshold is 125
104 */
105 threshold = min(125, threshold);
106
107 return threshold;
108 }
109
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 int threshold;
113 int mem; /* memory in 128 MB units */
114
115 /*
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
120 *
121 * Some sample thresholds:
122 *
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
125 * 8 1 1 0.9-1 GB 4
126 * 16 2 2 0.9-1 GB 4
127 * 20 2 2 1-2 GB 5
128 * 24 2 2 2-4 GB 6
129 * 28 2 2 4-8 GB 7
130 * 32 2 2 8-16 GB 8
131 * 4 2 2 <128M 1
132 * 30 4 3 2-4 GB 5
133 * 48 4 3 8-16 GB 8
134 * 32 8 4 1-2 GB 4
135 * 32 8 4 0.9-1GB 4
136 * 10 16 5 <128M 1
137 * 40 16 5 900M 4
138 * 70 64 7 2-4 GB 5
139 * 84 64 7 4-8 GB 6
140 * 108 512 9 4-8 GB 6
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
143 */
144
145 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
146
147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149 /*
150 * Maximum threshold is 125
151 */
152 threshold = min(125, threshold);
153
154 return threshold;
155 }
156
157 /*
158 * Refresh the thresholds for each zone.
159 */
160 void refresh_zone_stat_thresholds(void)
161 {
162 struct zone *zone;
163 int cpu;
164 int threshold;
165
166 for_each_populated_zone(zone) {
167 unsigned long max_drift, tolerate_drift;
168
169 threshold = calculate_normal_threshold(zone);
170
171 for_each_online_cpu(cpu)
172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 = threshold;
174
175 /*
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
179 */
180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 max_drift = num_online_cpus() * threshold;
182 if (max_drift > tolerate_drift)
183 zone->percpu_drift_mark = high_wmark_pages(zone) +
184 max_drift;
185 }
186 }
187
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 int (*calculate_pressure)(struct zone *))
190 {
191 struct zone *zone;
192 int cpu;
193 int threshold;
194 int i;
195
196 for (i = 0; i < pgdat->nr_zones; i++) {
197 zone = &pgdat->node_zones[i];
198 if (!zone->percpu_drift_mark)
199 continue;
200
201 threshold = (*calculate_pressure)(zone);
202 for_each_possible_cpu(cpu)
203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 = threshold;
205 }
206 }
207
208 /*
209 * For use when we know that interrupts are disabled.
210 */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 int delta)
213 {
214 struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 s8 __percpu *p = pcp->vm_stat_diff + item;
216 long x;
217 long t;
218
219 x = delta + __this_cpu_read(*p);
220
221 t = __this_cpu_read(pcp->stat_threshold);
222
223 if (unlikely(x > t || x < -t)) {
224 zone_page_state_add(x, zone, item);
225 x = 0;
226 }
227 __this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230
231 /*
232 * Optimized increment and decrement functions.
233 *
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
237 *
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
242 * be omitted.
243 *
244 * NOTE: These functions are very performance sensitive. Change only
245 * with care.
246 *
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
253 */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 s8 __percpu *p = pcp->vm_stat_diff + item;
258 s8 v, t;
259
260 v = __this_cpu_inc_return(*p);
261 t = __this_cpu_read(pcp->stat_threshold);
262 if (unlikely(v > t)) {
263 s8 overstep = t >> 1;
264
265 zone_page_state_add(v + overstep, zone, item);
266 __this_cpu_write(*p, -overstep);
267 }
268 }
269
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 __inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 s8 __percpu *p = pcp->vm_stat_diff + item;
280 s8 v, t;
281
282 v = __this_cpu_dec_return(*p);
283 t = __this_cpu_read(pcp->stat_threshold);
284 if (unlikely(v < - t)) {
285 s8 overstep = t >> 1;
286
287 zone_page_state_add(v - overstep, zone, item);
288 __this_cpu_write(*p, overstep);
289 }
290 }
291
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 __dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299 /*
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302 *
303 * mod_state() modifies the zone counter state through atomic per cpu
304 * operations.
305 *
306 * Overstep mode specifies how overstep should handled:
307 * 0 No overstepping
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312 enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 s8 __percpu *p = pcp->vm_stat_diff + item;
316 long o, n, t, z;
317
318 do {
319 z = 0; /* overflow to zone counters */
320
321 /*
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the next
325 * counter update will apply the threshold again and
326 * therefore bring the counter under the threshold again.
327 *
328 * Most of the time the thresholds are the same anyways
329 * for all cpus in a zone.
330 */
331 t = this_cpu_read(pcp->stat_threshold);
332
333 o = this_cpu_read(*p);
334 n = delta + o;
335
336 if (n > t || n < -t) {
337 int os = overstep_mode * (t >> 1) ;
338
339 /* Overflow must be added to zone counters */
340 z = n + os;
341 n = -os;
342 }
343 } while (this_cpu_cmpxchg(*p, o, n) != o);
344
345 if (z)
346 zone_page_state_add(z, zone, item);
347 }
348
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350 int delta)
351 {
352 mod_state(zone, item, delta, 0);
353 }
354 EXPORT_SYMBOL(mod_zone_page_state);
355
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357 {
358 mod_state(zone, item, 1, 1);
359 }
360
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362 {
363 mod_state(page_zone(page), item, 1, 1);
364 }
365 EXPORT_SYMBOL(inc_zone_page_state);
366
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368 {
369 mod_state(page_zone(page), item, -1, -1);
370 }
371 EXPORT_SYMBOL(dec_zone_page_state);
372 #else
373 /*
374 * Use interrupt disable to serialize counter updates
375 */
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377 int delta)
378 {
379 unsigned long flags;
380
381 local_irq_save(flags);
382 __mod_zone_page_state(zone, item, delta);
383 local_irq_restore(flags);
384 }
385 EXPORT_SYMBOL(mod_zone_page_state);
386
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __inc_zone_state(zone, item);
393 local_irq_restore(flags);
394 }
395
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397 {
398 unsigned long flags;
399 struct zone *zone;
400
401 zone = page_zone(page);
402 local_irq_save(flags);
403 __inc_zone_state(zone, item);
404 local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL(inc_zone_page_state);
407
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 __dec_zone_page_state(page, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(dec_zone_page_state);
417 #endif
418
419 /*
420 * Update the zone counters for one cpu.
421 *
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
425 *
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
430 * the processor.
431 *
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
436 */
437 void refresh_cpu_vm_stats(int cpu)
438 {
439 struct zone *zone;
440 int i;
441 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442
443 for_each_populated_zone(zone) {
444 struct per_cpu_pageset *p;
445
446 p = per_cpu_ptr(zone->pageset, cpu);
447
448 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449 if (p->vm_stat_diff[i]) {
450 unsigned long flags;
451 int v;
452
453 local_irq_save(flags);
454 v = p->vm_stat_diff[i];
455 p->vm_stat_diff[i] = 0;
456 local_irq_restore(flags);
457 atomic_long_add(v, &zone->vm_stat[i]);
458 global_diff[i] += v;
459 #ifdef CONFIG_NUMA
460 /* 3 seconds idle till flush */
461 p->expire = 3;
462 #endif
463 }
464 cond_resched();
465 #ifdef CONFIG_NUMA
466 /*
467 * Deal with draining the remote pageset of this
468 * processor
469 *
470 * Check if there are pages remaining in this pageset
471 * if not then there is nothing to expire.
472 */
473 if (!p->expire || !p->pcp.count)
474 continue;
475
476 /*
477 * We never drain zones local to this processor.
478 */
479 if (zone_to_nid(zone) == numa_node_id()) {
480 p->expire = 0;
481 continue;
482 }
483
484 p->expire--;
485 if (p->expire)
486 continue;
487
488 if (p->pcp.count)
489 drain_zone_pages(zone, &p->pcp);
490 #endif
491 }
492
493 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494 if (global_diff[i])
495 atomic_long_add(global_diff[i], &vm_stat[i]);
496 }
497
498 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
499 {
500 int i;
501
502 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
503 if (pset->vm_stat_diff[i]) {
504 int v = pset->vm_stat_diff[i];
505 pset->vm_stat_diff[i] = 0;
506 atomic_long_add(v, &zone->vm_stat[i]);
507 atomic_long_add(v, &vm_stat[i]);
508 }
509 }
510 #endif
511
512 #ifdef CONFIG_NUMA
513 /*
514 * zonelist = the list of zones passed to the allocator
515 * z = the zone from which the allocation occurred.
516 *
517 * Must be called with interrupts disabled.
518 *
519 * When __GFP_OTHER_NODE is set assume the node of the preferred
520 * zone is the local node. This is useful for daemons who allocate
521 * memory on behalf of other processes.
522 */
523 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
524 {
525 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
526 __inc_zone_state(z, NUMA_HIT);
527 } else {
528 __inc_zone_state(z, NUMA_MISS);
529 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
530 }
531 if (z->node == ((flags & __GFP_OTHER_NODE) ?
532 preferred_zone->node : numa_node_id()))
533 __inc_zone_state(z, NUMA_LOCAL);
534 else
535 __inc_zone_state(z, NUMA_OTHER);
536 }
537 #endif
538
539 #ifdef CONFIG_COMPACTION
540
541 struct contig_page_info {
542 unsigned long free_pages;
543 unsigned long free_blocks_total;
544 unsigned long free_blocks_suitable;
545 };
546
547 /*
548 * Calculate the number of free pages in a zone, how many contiguous
549 * pages are free and how many are large enough to satisfy an allocation of
550 * the target size. Note that this function makes no attempt to estimate
551 * how many suitable free blocks there *might* be if MOVABLE pages were
552 * migrated. Calculating that is possible, but expensive and can be
553 * figured out from userspace
554 */
555 static void fill_contig_page_info(struct zone *zone,
556 unsigned int suitable_order,
557 struct contig_page_info *info)
558 {
559 unsigned int order;
560
561 info->free_pages = 0;
562 info->free_blocks_total = 0;
563 info->free_blocks_suitable = 0;
564
565 for (order = 0; order < MAX_ORDER; order++) {
566 unsigned long blocks;
567
568 /* Count number of free blocks */
569 blocks = zone->free_area[order].nr_free;
570 info->free_blocks_total += blocks;
571
572 /* Count free base pages */
573 info->free_pages += blocks << order;
574
575 /* Count the suitable free blocks */
576 if (order >= suitable_order)
577 info->free_blocks_suitable += blocks <<
578 (order - suitable_order);
579 }
580 }
581
582 /*
583 * A fragmentation index only makes sense if an allocation of a requested
584 * size would fail. If that is true, the fragmentation index indicates
585 * whether external fragmentation or a lack of memory was the problem.
586 * The value can be used to determine if page reclaim or compaction
587 * should be used
588 */
589 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
590 {
591 unsigned long requested = 1UL << order;
592
593 if (!info->free_blocks_total)
594 return 0;
595
596 /* Fragmentation index only makes sense when a request would fail */
597 if (info->free_blocks_suitable)
598 return -1000;
599
600 /*
601 * Index is between 0 and 1 so return within 3 decimal places
602 *
603 * 0 => allocation would fail due to lack of memory
604 * 1 => allocation would fail due to fragmentation
605 */
606 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
607 }
608
609 /* Same as __fragmentation index but allocs contig_page_info on stack */
610 int fragmentation_index(struct zone *zone, unsigned int order)
611 {
612 struct contig_page_info info;
613
614 fill_contig_page_info(zone, order, &info);
615 return __fragmentation_index(order, &info);
616 }
617 #endif
618
619 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
620 #include <linux/proc_fs.h>
621 #include <linux/seq_file.h>
622
623 static char * const migratetype_names[MIGRATE_TYPES] = {
624 "Unmovable",
625 "Reclaimable",
626 "Movable",
627 "Reserve",
628 #ifdef CONFIG_CMA
629 "CMA",
630 #endif
631 #ifdef CONFIG_MEMORY_ISOLATION
632 "Isolate",
633 #endif
634 };
635
636 static void *frag_start(struct seq_file *m, loff_t *pos)
637 {
638 pg_data_t *pgdat;
639 loff_t node = *pos;
640 for (pgdat = first_online_pgdat();
641 pgdat && node;
642 pgdat = next_online_pgdat(pgdat))
643 --node;
644
645 return pgdat;
646 }
647
648 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
649 {
650 pg_data_t *pgdat = (pg_data_t *)arg;
651
652 (*pos)++;
653 return next_online_pgdat(pgdat);
654 }
655
656 static void frag_stop(struct seq_file *m, void *arg)
657 {
658 }
659
660 /* Walk all the zones in a node and print using a callback */
661 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
662 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
663 {
664 struct zone *zone;
665 struct zone *node_zones = pgdat->node_zones;
666 unsigned long flags;
667
668 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
669 if (!populated_zone(zone))
670 continue;
671
672 spin_lock_irqsave(&zone->lock, flags);
673 print(m, pgdat, zone);
674 spin_unlock_irqrestore(&zone->lock, flags);
675 }
676 }
677 #endif
678
679 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
680 #ifdef CONFIG_ZONE_DMA
681 #define TEXT_FOR_DMA(xx) xx "_dma",
682 #else
683 #define TEXT_FOR_DMA(xx)
684 #endif
685
686 #ifdef CONFIG_ZONE_DMA32
687 #define TEXT_FOR_DMA32(xx) xx "_dma32",
688 #else
689 #define TEXT_FOR_DMA32(xx)
690 #endif
691
692 #ifdef CONFIG_HIGHMEM
693 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
694 #else
695 #define TEXT_FOR_HIGHMEM(xx)
696 #endif
697
698 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
699 TEXT_FOR_HIGHMEM(xx) xx "_movable",
700
701 const char * const vmstat_text[] = {
702 /* Zoned VM counters */
703 "nr_free_pages",
704 "nr_inactive_anon",
705 "nr_active_anon",
706 "nr_inactive_file",
707 "nr_active_file",
708 "nr_unevictable",
709 "nr_mlock",
710 "nr_anon_pages",
711 "nr_mapped",
712 "nr_file_pages",
713 "nr_dirty",
714 "nr_writeback",
715 "nr_slab_reclaimable",
716 "nr_slab_unreclaimable",
717 "nr_page_table_pages",
718 "nr_kernel_stack",
719 "nr_unstable",
720 "nr_bounce",
721 "nr_vmscan_write",
722 "nr_vmscan_immediate_reclaim",
723 "nr_writeback_temp",
724 "nr_isolated_anon",
725 "nr_isolated_file",
726 "nr_shmem",
727 "nr_dirtied",
728 "nr_written",
729
730 #ifdef CONFIG_NUMA
731 "numa_hit",
732 "numa_miss",
733 "numa_foreign",
734 "numa_interleave",
735 "numa_local",
736 "numa_other",
737 #endif
738 "nr_anon_transparent_hugepages",
739 "nr_free_cma",
740 "nr_dirty_threshold",
741 "nr_dirty_background_threshold",
742
743 #ifdef CONFIG_VM_EVENT_COUNTERS
744 "pgpgin",
745 "pgpgout",
746 "pswpin",
747 "pswpout",
748
749 TEXTS_FOR_ZONES("pgalloc")
750
751 "pgfree",
752 "pgactivate",
753 "pgdeactivate",
754
755 "pgfault",
756 "pgmajfault",
757
758 TEXTS_FOR_ZONES("pgrefill")
759 TEXTS_FOR_ZONES("pgsteal_kswapd")
760 TEXTS_FOR_ZONES("pgsteal_direct")
761 TEXTS_FOR_ZONES("pgscan_kswapd")
762 TEXTS_FOR_ZONES("pgscan_direct")
763 "pgscan_direct_throttle",
764
765 #ifdef CONFIG_NUMA
766 "zone_reclaim_failed",
767 #endif
768 "pginodesteal",
769 "slabs_scanned",
770 "kswapd_inodesteal",
771 "kswapd_low_wmark_hit_quickly",
772 "kswapd_high_wmark_hit_quickly",
773 "pageoutrun",
774 "allocstall",
775
776 "pgrotated",
777
778 #ifdef CONFIG_NUMA_BALANCING
779 "numa_pte_updates",
780 "numa_hint_faults",
781 "numa_hint_faults_local",
782 "numa_pages_migrated",
783 #endif
784 #ifdef CONFIG_MIGRATION
785 "pgmigrate_success",
786 "pgmigrate_fail",
787 #endif
788 #ifdef CONFIG_COMPACTION
789 "compact_migrate_scanned",
790 "compact_free_scanned",
791 "compact_isolated",
792 "compact_stall",
793 "compact_fail",
794 "compact_success",
795 #endif
796
797 #ifdef CONFIG_HUGETLB_PAGE
798 "htlb_buddy_alloc_success",
799 "htlb_buddy_alloc_fail",
800 #endif
801 "unevictable_pgs_culled",
802 "unevictable_pgs_scanned",
803 "unevictable_pgs_rescued",
804 "unevictable_pgs_mlocked",
805 "unevictable_pgs_munlocked",
806 "unevictable_pgs_cleared",
807 "unevictable_pgs_stranded",
808
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 "thp_fault_alloc",
811 "thp_fault_fallback",
812 "thp_collapse_alloc",
813 "thp_collapse_alloc_failed",
814 "thp_split",
815 "thp_zero_page_alloc",
816 "thp_zero_page_alloc_failed",
817 #endif
818
819 #endif /* CONFIG_VM_EVENTS_COUNTERS */
820 };
821 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
822
823
824 #ifdef CONFIG_PROC_FS
825 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
826 struct zone *zone)
827 {
828 int order;
829
830 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
831 for (order = 0; order < MAX_ORDER; ++order)
832 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
833 seq_putc(m, '\n');
834 }
835
836 /*
837 * This walks the free areas for each zone.
838 */
839 static int frag_show(struct seq_file *m, void *arg)
840 {
841 pg_data_t *pgdat = (pg_data_t *)arg;
842 walk_zones_in_node(m, pgdat, frag_show_print);
843 return 0;
844 }
845
846 static void pagetypeinfo_showfree_print(struct seq_file *m,
847 pg_data_t *pgdat, struct zone *zone)
848 {
849 int order, mtype;
850
851 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
852 seq_printf(m, "Node %4d, zone %8s, type %12s ",
853 pgdat->node_id,
854 zone->name,
855 migratetype_names[mtype]);
856 for (order = 0; order < MAX_ORDER; ++order) {
857 unsigned long freecount = 0;
858 struct free_area *area;
859 struct list_head *curr;
860
861 area = &(zone->free_area[order]);
862
863 list_for_each(curr, &area->free_list[mtype])
864 freecount++;
865 seq_printf(m, "%6lu ", freecount);
866 }
867 seq_putc(m, '\n');
868 }
869 }
870
871 /* Print out the free pages at each order for each migatetype */
872 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
873 {
874 int order;
875 pg_data_t *pgdat = (pg_data_t *)arg;
876
877 /* Print header */
878 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
879 for (order = 0; order < MAX_ORDER; ++order)
880 seq_printf(m, "%6d ", order);
881 seq_putc(m, '\n');
882
883 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
884
885 return 0;
886 }
887
888 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
889 pg_data_t *pgdat, struct zone *zone)
890 {
891 int mtype;
892 unsigned long pfn;
893 unsigned long start_pfn = zone->zone_start_pfn;
894 unsigned long end_pfn = zone_end_pfn(zone);
895 unsigned long count[MIGRATE_TYPES] = { 0, };
896
897 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
898 struct page *page;
899
900 if (!pfn_valid(pfn))
901 continue;
902
903 page = pfn_to_page(pfn);
904
905 /* Watch for unexpected holes punched in the memmap */
906 if (!memmap_valid_within(pfn, page, zone))
907 continue;
908
909 mtype = get_pageblock_migratetype(page);
910
911 if (mtype < MIGRATE_TYPES)
912 count[mtype]++;
913 }
914
915 /* Print counts */
916 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
917 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
918 seq_printf(m, "%12lu ", count[mtype]);
919 seq_putc(m, '\n');
920 }
921
922 /* Print out the free pages at each order for each migratetype */
923 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
924 {
925 int mtype;
926 pg_data_t *pgdat = (pg_data_t *)arg;
927
928 seq_printf(m, "\n%-23s", "Number of blocks type ");
929 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
930 seq_printf(m, "%12s ", migratetype_names[mtype]);
931 seq_putc(m, '\n');
932 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
933
934 return 0;
935 }
936
937 /*
938 * This prints out statistics in relation to grouping pages by mobility.
939 * It is expensive to collect so do not constantly read the file.
940 */
941 static int pagetypeinfo_show(struct seq_file *m, void *arg)
942 {
943 pg_data_t *pgdat = (pg_data_t *)arg;
944
945 /* check memoryless node */
946 if (!node_state(pgdat->node_id, N_MEMORY))
947 return 0;
948
949 seq_printf(m, "Page block order: %d\n", pageblock_order);
950 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
951 seq_putc(m, '\n');
952 pagetypeinfo_showfree(m, pgdat);
953 pagetypeinfo_showblockcount(m, pgdat);
954
955 return 0;
956 }
957
958 static const struct seq_operations fragmentation_op = {
959 .start = frag_start,
960 .next = frag_next,
961 .stop = frag_stop,
962 .show = frag_show,
963 };
964
965 static int fragmentation_open(struct inode *inode, struct file *file)
966 {
967 return seq_open(file, &fragmentation_op);
968 }
969
970 static const struct file_operations fragmentation_file_operations = {
971 .open = fragmentation_open,
972 .read = seq_read,
973 .llseek = seq_lseek,
974 .release = seq_release,
975 };
976
977 static const struct seq_operations pagetypeinfo_op = {
978 .start = frag_start,
979 .next = frag_next,
980 .stop = frag_stop,
981 .show = pagetypeinfo_show,
982 };
983
984 static int pagetypeinfo_open(struct inode *inode, struct file *file)
985 {
986 return seq_open(file, &pagetypeinfo_op);
987 }
988
989 static const struct file_operations pagetypeinfo_file_ops = {
990 .open = pagetypeinfo_open,
991 .read = seq_read,
992 .llseek = seq_lseek,
993 .release = seq_release,
994 };
995
996 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
997 struct zone *zone)
998 {
999 int i;
1000 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1001 seq_printf(m,
1002 "\n pages free %lu"
1003 "\n min %lu"
1004 "\n low %lu"
1005 "\n high %lu"
1006 "\n scanned %lu"
1007 "\n spanned %lu"
1008 "\n present %lu"
1009 "\n managed %lu",
1010 zone_page_state(zone, NR_FREE_PAGES),
1011 min_wmark_pages(zone),
1012 low_wmark_pages(zone),
1013 high_wmark_pages(zone),
1014 zone->pages_scanned,
1015 zone->spanned_pages,
1016 zone->present_pages,
1017 zone->managed_pages);
1018
1019 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1020 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1021 zone_page_state(zone, i));
1022
1023 seq_printf(m,
1024 "\n protection: (%lu",
1025 zone->lowmem_reserve[0]);
1026 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1027 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1028 seq_printf(m,
1029 ")"
1030 "\n pagesets");
1031 for_each_online_cpu(i) {
1032 struct per_cpu_pageset *pageset;
1033
1034 pageset = per_cpu_ptr(zone->pageset, i);
1035 seq_printf(m,
1036 "\n cpu: %i"
1037 "\n count: %i"
1038 "\n high: %i"
1039 "\n batch: %i",
1040 i,
1041 pageset->pcp.count,
1042 pageset->pcp.high,
1043 pageset->pcp.batch);
1044 #ifdef CONFIG_SMP
1045 seq_printf(m, "\n vm stats threshold: %d",
1046 pageset->stat_threshold);
1047 #endif
1048 }
1049 seq_printf(m,
1050 "\n all_unreclaimable: %u"
1051 "\n start_pfn: %lu"
1052 "\n inactive_ratio: %u",
1053 zone->all_unreclaimable,
1054 zone->zone_start_pfn,
1055 zone->inactive_ratio);
1056 seq_putc(m, '\n');
1057 }
1058
1059 /*
1060 * Output information about zones in @pgdat.
1061 */
1062 static int zoneinfo_show(struct seq_file *m, void *arg)
1063 {
1064 pg_data_t *pgdat = (pg_data_t *)arg;
1065 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1066 return 0;
1067 }
1068
1069 static const struct seq_operations zoneinfo_op = {
1070 .start = frag_start, /* iterate over all zones. The same as in
1071 * fragmentation. */
1072 .next = frag_next,
1073 .stop = frag_stop,
1074 .show = zoneinfo_show,
1075 };
1076
1077 static int zoneinfo_open(struct inode *inode, struct file *file)
1078 {
1079 return seq_open(file, &zoneinfo_op);
1080 }
1081
1082 static const struct file_operations proc_zoneinfo_file_operations = {
1083 .open = zoneinfo_open,
1084 .read = seq_read,
1085 .llseek = seq_lseek,
1086 .release = seq_release,
1087 };
1088
1089 enum writeback_stat_item {
1090 NR_DIRTY_THRESHOLD,
1091 NR_DIRTY_BG_THRESHOLD,
1092 NR_VM_WRITEBACK_STAT_ITEMS,
1093 };
1094
1095 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1096 {
1097 unsigned long *v;
1098 int i, stat_items_size;
1099
1100 if (*pos >= ARRAY_SIZE(vmstat_text))
1101 return NULL;
1102 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1103 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1104
1105 #ifdef CONFIG_VM_EVENT_COUNTERS
1106 stat_items_size += sizeof(struct vm_event_state);
1107 #endif
1108
1109 v = kmalloc(stat_items_size, GFP_KERNEL);
1110 m->private = v;
1111 if (!v)
1112 return ERR_PTR(-ENOMEM);
1113 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1114 v[i] = global_page_state(i);
1115 v += NR_VM_ZONE_STAT_ITEMS;
1116
1117 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1118 v + NR_DIRTY_THRESHOLD);
1119 v += NR_VM_WRITEBACK_STAT_ITEMS;
1120
1121 #ifdef CONFIG_VM_EVENT_COUNTERS
1122 all_vm_events(v);
1123 v[PGPGIN] /= 2; /* sectors -> kbytes */
1124 v[PGPGOUT] /= 2;
1125 #endif
1126 return (unsigned long *)m->private + *pos;
1127 }
1128
1129 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1130 {
1131 (*pos)++;
1132 if (*pos >= ARRAY_SIZE(vmstat_text))
1133 return NULL;
1134 return (unsigned long *)m->private + *pos;
1135 }
1136
1137 static int vmstat_show(struct seq_file *m, void *arg)
1138 {
1139 unsigned long *l = arg;
1140 unsigned long off = l - (unsigned long *)m->private;
1141
1142 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1143 return 0;
1144 }
1145
1146 static void vmstat_stop(struct seq_file *m, void *arg)
1147 {
1148 kfree(m->private);
1149 m->private = NULL;
1150 }
1151
1152 static const struct seq_operations vmstat_op = {
1153 .start = vmstat_start,
1154 .next = vmstat_next,
1155 .stop = vmstat_stop,
1156 .show = vmstat_show,
1157 };
1158
1159 static int vmstat_open(struct inode *inode, struct file *file)
1160 {
1161 return seq_open(file, &vmstat_op);
1162 }
1163
1164 static const struct file_operations proc_vmstat_file_operations = {
1165 .open = vmstat_open,
1166 .read = seq_read,
1167 .llseek = seq_lseek,
1168 .release = seq_release,
1169 };
1170 #endif /* CONFIG_PROC_FS */
1171
1172 #ifdef CONFIG_SMP
1173 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1174 int sysctl_stat_interval __read_mostly = HZ;
1175
1176 static void vmstat_update(struct work_struct *w)
1177 {
1178 refresh_cpu_vm_stats(smp_processor_id());
1179 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1180 round_jiffies_relative(sysctl_stat_interval));
1181 }
1182
1183 static void __cpuinit start_cpu_timer(int cpu)
1184 {
1185 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1186
1187 INIT_DEFERRABLE_WORK(work, vmstat_update);
1188 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1189 }
1190
1191 /*
1192 * Use the cpu notifier to insure that the thresholds are recalculated
1193 * when necessary.
1194 */
1195 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1196 unsigned long action,
1197 void *hcpu)
1198 {
1199 long cpu = (long)hcpu;
1200
1201 switch (action) {
1202 case CPU_ONLINE:
1203 case CPU_ONLINE_FROZEN:
1204 refresh_zone_stat_thresholds();
1205 start_cpu_timer(cpu);
1206 node_set_state(cpu_to_node(cpu), N_CPU);
1207 break;
1208 case CPU_DOWN_PREPARE:
1209 case CPU_DOWN_PREPARE_FROZEN:
1210 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1211 per_cpu(vmstat_work, cpu).work.func = NULL;
1212 break;
1213 case CPU_DOWN_FAILED:
1214 case CPU_DOWN_FAILED_FROZEN:
1215 start_cpu_timer(cpu);
1216 break;
1217 case CPU_DEAD:
1218 case CPU_DEAD_FROZEN:
1219 refresh_zone_stat_thresholds();
1220 break;
1221 default:
1222 break;
1223 }
1224 return NOTIFY_OK;
1225 }
1226
1227 static struct notifier_block __cpuinitdata vmstat_notifier =
1228 { &vmstat_cpuup_callback, NULL, 0 };
1229 #endif
1230
1231 static int __init setup_vmstat(void)
1232 {
1233 #ifdef CONFIG_SMP
1234 int cpu;
1235
1236 register_cpu_notifier(&vmstat_notifier);
1237
1238 for_each_online_cpu(cpu)
1239 start_cpu_timer(cpu);
1240 #endif
1241 #ifdef CONFIG_PROC_FS
1242 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1243 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1244 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1245 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1246 #endif
1247 return 0;
1248 }
1249 module_init(setup_vmstat)
1250
1251 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1252 #include <linux/debugfs.h>
1253
1254
1255 /*
1256 * Return an index indicating how much of the available free memory is
1257 * unusable for an allocation of the requested size.
1258 */
1259 static int unusable_free_index(unsigned int order,
1260 struct contig_page_info *info)
1261 {
1262 /* No free memory is interpreted as all free memory is unusable */
1263 if (info->free_pages == 0)
1264 return 1000;
1265
1266 /*
1267 * Index should be a value between 0 and 1. Return a value to 3
1268 * decimal places.
1269 *
1270 * 0 => no fragmentation
1271 * 1 => high fragmentation
1272 */
1273 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1274
1275 }
1276
1277 static void unusable_show_print(struct seq_file *m,
1278 pg_data_t *pgdat, struct zone *zone)
1279 {
1280 unsigned int order;
1281 int index;
1282 struct contig_page_info info;
1283
1284 seq_printf(m, "Node %d, zone %8s ",
1285 pgdat->node_id,
1286 zone->name);
1287 for (order = 0; order < MAX_ORDER; ++order) {
1288 fill_contig_page_info(zone, order, &info);
1289 index = unusable_free_index(order, &info);
1290 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1291 }
1292
1293 seq_putc(m, '\n');
1294 }
1295
1296 /*
1297 * Display unusable free space index
1298 *
1299 * The unusable free space index measures how much of the available free
1300 * memory cannot be used to satisfy an allocation of a given size and is a
1301 * value between 0 and 1. The higher the value, the more of free memory is
1302 * unusable and by implication, the worse the external fragmentation is. This
1303 * can be expressed as a percentage by multiplying by 100.
1304 */
1305 static int unusable_show(struct seq_file *m, void *arg)
1306 {
1307 pg_data_t *pgdat = (pg_data_t *)arg;
1308
1309 /* check memoryless node */
1310 if (!node_state(pgdat->node_id, N_MEMORY))
1311 return 0;
1312
1313 walk_zones_in_node(m, pgdat, unusable_show_print);
1314
1315 return 0;
1316 }
1317
1318 static const struct seq_operations unusable_op = {
1319 .start = frag_start,
1320 .next = frag_next,
1321 .stop = frag_stop,
1322 .show = unusable_show,
1323 };
1324
1325 static int unusable_open(struct inode *inode, struct file *file)
1326 {
1327 return seq_open(file, &unusable_op);
1328 }
1329
1330 static const struct file_operations unusable_file_ops = {
1331 .open = unusable_open,
1332 .read = seq_read,
1333 .llseek = seq_lseek,
1334 .release = seq_release,
1335 };
1336
1337 static void extfrag_show_print(struct seq_file *m,
1338 pg_data_t *pgdat, struct zone *zone)
1339 {
1340 unsigned int order;
1341 int index;
1342
1343 /* Alloc on stack as interrupts are disabled for zone walk */
1344 struct contig_page_info info;
1345
1346 seq_printf(m, "Node %d, zone %8s ",
1347 pgdat->node_id,
1348 zone->name);
1349 for (order = 0; order < MAX_ORDER; ++order) {
1350 fill_contig_page_info(zone, order, &info);
1351 index = __fragmentation_index(order, &info);
1352 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1353 }
1354
1355 seq_putc(m, '\n');
1356 }
1357
1358 /*
1359 * Display fragmentation index for orders that allocations would fail for
1360 */
1361 static int extfrag_show(struct seq_file *m, void *arg)
1362 {
1363 pg_data_t *pgdat = (pg_data_t *)arg;
1364
1365 walk_zones_in_node(m, pgdat, extfrag_show_print);
1366
1367 return 0;
1368 }
1369
1370 static const struct seq_operations extfrag_op = {
1371 .start = frag_start,
1372 .next = frag_next,
1373 .stop = frag_stop,
1374 .show = extfrag_show,
1375 };
1376
1377 static int extfrag_open(struct inode *inode, struct file *file)
1378 {
1379 return seq_open(file, &extfrag_op);
1380 }
1381
1382 static const struct file_operations extfrag_file_ops = {
1383 .open = extfrag_open,
1384 .read = seq_read,
1385 .llseek = seq_lseek,
1386 .release = seq_release,
1387 };
1388
1389 static int __init extfrag_debug_init(void)
1390 {
1391 struct dentry *extfrag_debug_root;
1392
1393 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1394 if (!extfrag_debug_root)
1395 return -ENOMEM;
1396
1397 if (!debugfs_create_file("unusable_index", 0444,
1398 extfrag_debug_root, NULL, &unusable_file_ops))
1399 goto fail;
1400
1401 if (!debugfs_create_file("extfrag_index", 0444,
1402 extfrag_debug_root, NULL, &extfrag_file_ops))
1403 goto fail;
1404
1405 return 0;
1406 fail:
1407 debugfs_remove_recursive(extfrag_debug_root);
1408 return -ENOMEM;
1409 }
1410
1411 module_init(extfrag_debug_init);
1412 #endif