Merge tag 'v4.4.32' into android-4.4.y
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 #ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517 #endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521 }
522
523 /*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
528 void cpu_vm_stats_fold(int cpu)
529 {
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551 }
552
553 /*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
575 *
576 * Must be called with interrupts disabled.
577 *
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
581 */
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 }
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
595 }
596
597 /*
598 * Determine the per node value of a stat item.
599 */
600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602 struct zone *zones = NODE_DATA(node)->node_zones;
603
604 return
605 #ifdef CONFIG_ZONE_DMA
606 zone_page_state(&zones[ZONE_DMA], item) +
607 #endif
608 #ifdef CONFIG_ZONE_DMA32
609 zone_page_state(&zones[ZONE_DMA32], item) +
610 #endif
611 #ifdef CONFIG_HIGHMEM
612 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613 #endif
614 zone_page_state(&zones[ZONE_NORMAL], item) +
615 zone_page_state(&zones[ZONE_MOVABLE], item);
616 }
617
618 #endif
619
620 #ifdef CONFIG_COMPACTION
621
622 struct contig_page_info {
623 unsigned long free_pages;
624 unsigned long free_blocks_total;
625 unsigned long free_blocks_suitable;
626 };
627
628 /*
629 * Calculate the number of free pages in a zone, how many contiguous
630 * pages are free and how many are large enough to satisfy an allocation of
631 * the target size. Note that this function makes no attempt to estimate
632 * how many suitable free blocks there *might* be if MOVABLE pages were
633 * migrated. Calculating that is possible, but expensive and can be
634 * figured out from userspace
635 */
636 static void fill_contig_page_info(struct zone *zone,
637 unsigned int suitable_order,
638 struct contig_page_info *info)
639 {
640 unsigned int order;
641
642 info->free_pages = 0;
643 info->free_blocks_total = 0;
644 info->free_blocks_suitable = 0;
645
646 for (order = 0; order < MAX_ORDER; order++) {
647 unsigned long blocks;
648
649 /* Count number of free blocks */
650 blocks = zone->free_area[order].nr_free;
651 info->free_blocks_total += blocks;
652
653 /* Count free base pages */
654 info->free_pages += blocks << order;
655
656 /* Count the suitable free blocks */
657 if (order >= suitable_order)
658 info->free_blocks_suitable += blocks <<
659 (order - suitable_order);
660 }
661 }
662
663 /*
664 * A fragmentation index only makes sense if an allocation of a requested
665 * size would fail. If that is true, the fragmentation index indicates
666 * whether external fragmentation or a lack of memory was the problem.
667 * The value can be used to determine if page reclaim or compaction
668 * should be used
669 */
670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671 {
672 unsigned long requested = 1UL << order;
673
674 if (!info->free_blocks_total)
675 return 0;
676
677 /* Fragmentation index only makes sense when a request would fail */
678 if (info->free_blocks_suitable)
679 return -1000;
680
681 /*
682 * Index is between 0 and 1 so return within 3 decimal places
683 *
684 * 0 => allocation would fail due to lack of memory
685 * 1 => allocation would fail due to fragmentation
686 */
687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688 }
689
690 /* Same as __fragmentation index but allocs contig_page_info on stack */
691 int fragmentation_index(struct zone *zone, unsigned int order)
692 {
693 struct contig_page_info info;
694
695 fill_contig_page_info(zone, order, &info);
696 return __fragmentation_index(order, &info);
697 }
698 #endif
699
700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701 #ifdef CONFIG_ZONE_DMA
702 #define TEXT_FOR_DMA(xx) xx "_dma",
703 #else
704 #define TEXT_FOR_DMA(xx)
705 #endif
706
707 #ifdef CONFIG_ZONE_DMA32
708 #define TEXT_FOR_DMA32(xx) xx "_dma32",
709 #else
710 #define TEXT_FOR_DMA32(xx)
711 #endif
712
713 #ifdef CONFIG_HIGHMEM
714 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
715 #else
716 #define TEXT_FOR_HIGHMEM(xx)
717 #endif
718
719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 TEXT_FOR_HIGHMEM(xx) xx "_movable",
721
722 const char * const vmstat_text[] = {
723 /* enum zone_stat_item countes */
724 "nr_free_pages",
725 "nr_alloc_batch",
726 "nr_inactive_anon",
727 "nr_active_anon",
728 "nr_inactive_file",
729 "nr_active_file",
730 "nr_unevictable",
731 "nr_mlock",
732 "nr_anon_pages",
733 "nr_mapped",
734 "nr_file_pages",
735 "nr_dirty",
736 "nr_writeback",
737 "nr_slab_reclaimable",
738 "nr_slab_unreclaimable",
739 "nr_page_table_pages",
740 "nr_kernel_stack",
741 "nr_unstable",
742 "nr_bounce",
743 "nr_vmscan_write",
744 "nr_vmscan_immediate_reclaim",
745 "nr_writeback_temp",
746 "nr_isolated_anon",
747 "nr_isolated_file",
748 "nr_shmem",
749 "nr_dirtied",
750 "nr_written",
751 "nr_pages_scanned",
752
753 #ifdef CONFIG_NUMA
754 "numa_hit",
755 "numa_miss",
756 "numa_foreign",
757 "numa_interleave",
758 "numa_local",
759 "numa_other",
760 #endif
761 "workingset_refault",
762 "workingset_activate",
763 "workingset_nodereclaim",
764 "nr_anon_transparent_hugepages",
765 "nr_free_cma",
766
767 /* enum writeback_stat_item counters */
768 "nr_dirty_threshold",
769 "nr_dirty_background_threshold",
770
771 #ifdef CONFIG_VM_EVENT_COUNTERS
772 /* enum vm_event_item counters */
773 "pgpgin",
774 "pgpgout",
775 "pswpin",
776 "pswpout",
777
778 TEXTS_FOR_ZONES("pgalloc")
779
780 "pgfree",
781 "pgactivate",
782 "pgdeactivate",
783
784 "pgfault",
785 "pgmajfault",
786
787 TEXTS_FOR_ZONES("pgrefill")
788 TEXTS_FOR_ZONES("pgsteal_kswapd")
789 TEXTS_FOR_ZONES("pgsteal_direct")
790 TEXTS_FOR_ZONES("pgscan_kswapd")
791 TEXTS_FOR_ZONES("pgscan_direct")
792 "pgscan_direct_throttle",
793
794 #ifdef CONFIG_NUMA
795 "zone_reclaim_failed",
796 #endif
797 "pginodesteal",
798 "slabs_scanned",
799 "kswapd_inodesteal",
800 "kswapd_low_wmark_hit_quickly",
801 "kswapd_high_wmark_hit_quickly",
802 "pageoutrun",
803 "allocstall",
804
805 "pgrotated",
806
807 "drop_pagecache",
808 "drop_slab",
809
810 #ifdef CONFIG_NUMA_BALANCING
811 "numa_pte_updates",
812 "numa_huge_pte_updates",
813 "numa_hint_faults",
814 "numa_hint_faults_local",
815 "numa_pages_migrated",
816 #endif
817 #ifdef CONFIG_MIGRATION
818 "pgmigrate_success",
819 "pgmigrate_fail",
820 #endif
821 #ifdef CONFIG_COMPACTION
822 "compact_migrate_scanned",
823 "compact_free_scanned",
824 "compact_isolated",
825 "compact_stall",
826 "compact_fail",
827 "compact_success",
828 #endif
829
830 #ifdef CONFIG_HUGETLB_PAGE
831 "htlb_buddy_alloc_success",
832 "htlb_buddy_alloc_fail",
833 #endif
834 "unevictable_pgs_culled",
835 "unevictable_pgs_scanned",
836 "unevictable_pgs_rescued",
837 "unevictable_pgs_mlocked",
838 "unevictable_pgs_munlocked",
839 "unevictable_pgs_cleared",
840 "unevictable_pgs_stranded",
841
842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
843 "thp_fault_alloc",
844 "thp_fault_fallback",
845 "thp_collapse_alloc",
846 "thp_collapse_alloc_failed",
847 "thp_split",
848 "thp_zero_page_alloc",
849 "thp_zero_page_alloc_failed",
850 #endif
851 #ifdef CONFIG_MEMORY_BALLOON
852 "balloon_inflate",
853 "balloon_deflate",
854 #ifdef CONFIG_BALLOON_COMPACTION
855 "balloon_migrate",
856 #endif
857 #endif /* CONFIG_MEMORY_BALLOON */
858 #ifdef CONFIG_DEBUG_TLBFLUSH
859 #ifdef CONFIG_SMP
860 "nr_tlb_remote_flush",
861 "nr_tlb_remote_flush_received",
862 #endif /* CONFIG_SMP */
863 "nr_tlb_local_flush_all",
864 "nr_tlb_local_flush_one",
865 #endif /* CONFIG_DEBUG_TLBFLUSH */
866
867 #ifdef CONFIG_DEBUG_VM_VMACACHE
868 "vmacache_find_calls",
869 "vmacache_find_hits",
870 "vmacache_full_flushes",
871 #endif
872 #endif /* CONFIG_VM_EVENTS_COUNTERS */
873 };
874 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
875
876
877 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
878 defined(CONFIG_PROC_FS)
879 static void *frag_start(struct seq_file *m, loff_t *pos)
880 {
881 pg_data_t *pgdat;
882 loff_t node = *pos;
883
884 for (pgdat = first_online_pgdat();
885 pgdat && node;
886 pgdat = next_online_pgdat(pgdat))
887 --node;
888
889 return pgdat;
890 }
891
892 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
893 {
894 pg_data_t *pgdat = (pg_data_t *)arg;
895
896 (*pos)++;
897 return next_online_pgdat(pgdat);
898 }
899
900 static void frag_stop(struct seq_file *m, void *arg)
901 {
902 }
903
904 /* Walk all the zones in a node and print using a callback */
905 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
906 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
907 {
908 struct zone *zone;
909 struct zone *node_zones = pgdat->node_zones;
910 unsigned long flags;
911
912 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
913 if (!populated_zone(zone))
914 continue;
915
916 spin_lock_irqsave(&zone->lock, flags);
917 print(m, pgdat, zone);
918 spin_unlock_irqrestore(&zone->lock, flags);
919 }
920 }
921 #endif
922
923 #ifdef CONFIG_PROC_FS
924 static char * const migratetype_names[MIGRATE_TYPES] = {
925 "Unmovable",
926 "Movable",
927 "Reclaimable",
928 "HighAtomic",
929 #ifdef CONFIG_CMA
930 "CMA",
931 #endif
932 #ifdef CONFIG_MEMORY_ISOLATION
933 "Isolate",
934 #endif
935 };
936
937 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
938 struct zone *zone)
939 {
940 int order;
941
942 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
943 for (order = 0; order < MAX_ORDER; ++order)
944 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
945 seq_putc(m, '\n');
946 }
947
948 /*
949 * This walks the free areas for each zone.
950 */
951 static int frag_show(struct seq_file *m, void *arg)
952 {
953 pg_data_t *pgdat = (pg_data_t *)arg;
954 walk_zones_in_node(m, pgdat, frag_show_print);
955 return 0;
956 }
957
958 static void pagetypeinfo_showfree_print(struct seq_file *m,
959 pg_data_t *pgdat, struct zone *zone)
960 {
961 int order, mtype;
962
963 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
964 seq_printf(m, "Node %4d, zone %8s, type %12s ",
965 pgdat->node_id,
966 zone->name,
967 migratetype_names[mtype]);
968 for (order = 0; order < MAX_ORDER; ++order) {
969 unsigned long freecount = 0;
970 struct free_area *area;
971 struct list_head *curr;
972
973 area = &(zone->free_area[order]);
974
975 list_for_each(curr, &area->free_list[mtype])
976 freecount++;
977 seq_printf(m, "%6lu ", freecount);
978 }
979 seq_putc(m, '\n');
980 }
981 }
982
983 /* Print out the free pages at each order for each migatetype */
984 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
985 {
986 int order;
987 pg_data_t *pgdat = (pg_data_t *)arg;
988
989 /* Print header */
990 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
991 for (order = 0; order < MAX_ORDER; ++order)
992 seq_printf(m, "%6d ", order);
993 seq_putc(m, '\n');
994
995 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
996
997 return 0;
998 }
999
1000 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1001 pg_data_t *pgdat, struct zone *zone)
1002 {
1003 int mtype;
1004 unsigned long pfn;
1005 unsigned long start_pfn = zone->zone_start_pfn;
1006 unsigned long end_pfn = zone_end_pfn(zone);
1007 unsigned long count[MIGRATE_TYPES] = { 0, };
1008
1009 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1010 struct page *page;
1011
1012 if (!pfn_valid(pfn))
1013 continue;
1014
1015 page = pfn_to_page(pfn);
1016
1017 /* Watch for unexpected holes punched in the memmap */
1018 if (!memmap_valid_within(pfn, page, zone))
1019 continue;
1020
1021 mtype = get_pageblock_migratetype(page);
1022
1023 if (mtype < MIGRATE_TYPES)
1024 count[mtype]++;
1025 }
1026
1027 /* Print counts */
1028 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1029 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1030 seq_printf(m, "%12lu ", count[mtype]);
1031 seq_putc(m, '\n');
1032 }
1033
1034 /* Print out the free pages at each order for each migratetype */
1035 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1036 {
1037 int mtype;
1038 pg_data_t *pgdat = (pg_data_t *)arg;
1039
1040 seq_printf(m, "\n%-23s", "Number of blocks type ");
1041 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1042 seq_printf(m, "%12s ", migratetype_names[mtype]);
1043 seq_putc(m, '\n');
1044 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1045
1046 return 0;
1047 }
1048
1049 #ifdef CONFIG_PAGE_OWNER
1050 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1051 pg_data_t *pgdat,
1052 struct zone *zone)
1053 {
1054 struct page *page;
1055 struct page_ext *page_ext;
1056 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1057 unsigned long end_pfn = pfn + zone->spanned_pages;
1058 unsigned long count[MIGRATE_TYPES] = { 0, };
1059 int pageblock_mt, page_mt;
1060 int i;
1061
1062 /* Scan block by block. First and last block may be incomplete */
1063 pfn = zone->zone_start_pfn;
1064
1065 /*
1066 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1067 * a zone boundary, it will be double counted between zones. This does
1068 * not matter as the mixed block count will still be correct
1069 */
1070 for (; pfn < end_pfn; ) {
1071 if (!pfn_valid(pfn)) {
1072 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1073 continue;
1074 }
1075
1076 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1077 block_end_pfn = min(block_end_pfn, end_pfn);
1078
1079 page = pfn_to_page(pfn);
1080 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1081
1082 for (; pfn < block_end_pfn; pfn++) {
1083 if (!pfn_valid_within(pfn))
1084 continue;
1085
1086 page = pfn_to_page(pfn);
1087 if (PageBuddy(page)) {
1088 pfn += (1UL << page_order(page)) - 1;
1089 continue;
1090 }
1091
1092 if (PageReserved(page))
1093 continue;
1094
1095 page_ext = lookup_page_ext(page);
1096
1097 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1098 continue;
1099
1100 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1101 if (pageblock_mt != page_mt) {
1102 if (is_migrate_cma(pageblock_mt))
1103 count[MIGRATE_MOVABLE]++;
1104 else
1105 count[pageblock_mt]++;
1106
1107 pfn = block_end_pfn;
1108 break;
1109 }
1110 pfn += (1UL << page_ext->order) - 1;
1111 }
1112 }
1113
1114 /* Print counts */
1115 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1116 for (i = 0; i < MIGRATE_TYPES; i++)
1117 seq_printf(m, "%12lu ", count[i]);
1118 seq_putc(m, '\n');
1119 }
1120 #endif /* CONFIG_PAGE_OWNER */
1121
1122 /*
1123 * Print out the number of pageblocks for each migratetype that contain pages
1124 * of other types. This gives an indication of how well fallbacks are being
1125 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1126 * to determine what is going on
1127 */
1128 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1129 {
1130 #ifdef CONFIG_PAGE_OWNER
1131 int mtype;
1132
1133 if (!page_owner_inited)
1134 return;
1135
1136 drain_all_pages(NULL);
1137
1138 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1139 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1140 seq_printf(m, "%12s ", migratetype_names[mtype]);
1141 seq_putc(m, '\n');
1142
1143 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1144 #endif /* CONFIG_PAGE_OWNER */
1145 }
1146
1147 /*
1148 * This prints out statistics in relation to grouping pages by mobility.
1149 * It is expensive to collect so do not constantly read the file.
1150 */
1151 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1152 {
1153 pg_data_t *pgdat = (pg_data_t *)arg;
1154
1155 /* check memoryless node */
1156 if (!node_state(pgdat->node_id, N_MEMORY))
1157 return 0;
1158
1159 seq_printf(m, "Page block order: %d\n", pageblock_order);
1160 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1161 seq_putc(m, '\n');
1162 pagetypeinfo_showfree(m, pgdat);
1163 pagetypeinfo_showblockcount(m, pgdat);
1164 pagetypeinfo_showmixedcount(m, pgdat);
1165
1166 return 0;
1167 }
1168
1169 static const struct seq_operations fragmentation_op = {
1170 .start = frag_start,
1171 .next = frag_next,
1172 .stop = frag_stop,
1173 .show = frag_show,
1174 };
1175
1176 static int fragmentation_open(struct inode *inode, struct file *file)
1177 {
1178 return seq_open(file, &fragmentation_op);
1179 }
1180
1181 static const struct file_operations fragmentation_file_operations = {
1182 .open = fragmentation_open,
1183 .read = seq_read,
1184 .llseek = seq_lseek,
1185 .release = seq_release,
1186 };
1187
1188 static const struct seq_operations pagetypeinfo_op = {
1189 .start = frag_start,
1190 .next = frag_next,
1191 .stop = frag_stop,
1192 .show = pagetypeinfo_show,
1193 };
1194
1195 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1196 {
1197 return seq_open(file, &pagetypeinfo_op);
1198 }
1199
1200 static const struct file_operations pagetypeinfo_file_ops = {
1201 .open = pagetypeinfo_open,
1202 .read = seq_read,
1203 .llseek = seq_lseek,
1204 .release = seq_release,
1205 };
1206
1207 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1208 struct zone *zone)
1209 {
1210 int i;
1211 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1212 seq_printf(m,
1213 "\n pages free %lu"
1214 "\n min %lu"
1215 "\n low %lu"
1216 "\n high %lu"
1217 "\n scanned %lu"
1218 "\n spanned %lu"
1219 "\n present %lu"
1220 "\n managed %lu",
1221 zone_page_state(zone, NR_FREE_PAGES),
1222 min_wmark_pages(zone),
1223 low_wmark_pages(zone),
1224 high_wmark_pages(zone),
1225 zone_page_state(zone, NR_PAGES_SCANNED),
1226 zone->spanned_pages,
1227 zone->present_pages,
1228 zone->managed_pages);
1229
1230 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1231 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1232 zone_page_state(zone, i));
1233
1234 seq_printf(m,
1235 "\n protection: (%ld",
1236 zone->lowmem_reserve[0]);
1237 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1238 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1239 seq_printf(m,
1240 ")"
1241 "\n pagesets");
1242 for_each_online_cpu(i) {
1243 struct per_cpu_pageset *pageset;
1244
1245 pageset = per_cpu_ptr(zone->pageset, i);
1246 seq_printf(m,
1247 "\n cpu: %i"
1248 "\n count: %i"
1249 "\n high: %i"
1250 "\n batch: %i",
1251 i,
1252 pageset->pcp.count,
1253 pageset->pcp.high,
1254 pageset->pcp.batch);
1255 #ifdef CONFIG_SMP
1256 seq_printf(m, "\n vm stats threshold: %d",
1257 pageset->stat_threshold);
1258 #endif
1259 }
1260 seq_printf(m,
1261 "\n all_unreclaimable: %u"
1262 "\n start_pfn: %lu"
1263 "\n inactive_ratio: %u",
1264 !zone_reclaimable(zone),
1265 zone->zone_start_pfn,
1266 zone->inactive_ratio);
1267 seq_putc(m, '\n');
1268 }
1269
1270 /*
1271 * Output information about zones in @pgdat.
1272 */
1273 static int zoneinfo_show(struct seq_file *m, void *arg)
1274 {
1275 pg_data_t *pgdat = (pg_data_t *)arg;
1276 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1277 return 0;
1278 }
1279
1280 static const struct seq_operations zoneinfo_op = {
1281 .start = frag_start, /* iterate over all zones. The same as in
1282 * fragmentation. */
1283 .next = frag_next,
1284 .stop = frag_stop,
1285 .show = zoneinfo_show,
1286 };
1287
1288 static int zoneinfo_open(struct inode *inode, struct file *file)
1289 {
1290 return seq_open(file, &zoneinfo_op);
1291 }
1292
1293 static const struct file_operations proc_zoneinfo_file_operations = {
1294 .open = zoneinfo_open,
1295 .read = seq_read,
1296 .llseek = seq_lseek,
1297 .release = seq_release,
1298 };
1299
1300 enum writeback_stat_item {
1301 NR_DIRTY_THRESHOLD,
1302 NR_DIRTY_BG_THRESHOLD,
1303 NR_VM_WRITEBACK_STAT_ITEMS,
1304 };
1305
1306 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1307 {
1308 unsigned long *v;
1309 int i, stat_items_size;
1310
1311 if (*pos >= ARRAY_SIZE(vmstat_text))
1312 return NULL;
1313 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1314 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1315
1316 #ifdef CONFIG_VM_EVENT_COUNTERS
1317 stat_items_size += sizeof(struct vm_event_state);
1318 #endif
1319
1320 v = kmalloc(stat_items_size, GFP_KERNEL);
1321 m->private = v;
1322 if (!v)
1323 return ERR_PTR(-ENOMEM);
1324 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1325 v[i] = global_page_state(i);
1326 v += NR_VM_ZONE_STAT_ITEMS;
1327
1328 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1329 v + NR_DIRTY_THRESHOLD);
1330 v += NR_VM_WRITEBACK_STAT_ITEMS;
1331
1332 #ifdef CONFIG_VM_EVENT_COUNTERS
1333 all_vm_events(v);
1334 v[PGPGIN] /= 2; /* sectors -> kbytes */
1335 v[PGPGOUT] /= 2;
1336 #endif
1337 return (unsigned long *)m->private + *pos;
1338 }
1339
1340 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1341 {
1342 (*pos)++;
1343 if (*pos >= ARRAY_SIZE(vmstat_text))
1344 return NULL;
1345 return (unsigned long *)m->private + *pos;
1346 }
1347
1348 static int vmstat_show(struct seq_file *m, void *arg)
1349 {
1350 unsigned long *l = arg;
1351 unsigned long off = l - (unsigned long *)m->private;
1352
1353 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1354 return 0;
1355 }
1356
1357 static void vmstat_stop(struct seq_file *m, void *arg)
1358 {
1359 kfree(m->private);
1360 m->private = NULL;
1361 }
1362
1363 static const struct seq_operations vmstat_op = {
1364 .start = vmstat_start,
1365 .next = vmstat_next,
1366 .stop = vmstat_stop,
1367 .show = vmstat_show,
1368 };
1369
1370 static int vmstat_open(struct inode *inode, struct file *file)
1371 {
1372 return seq_open(file, &vmstat_op);
1373 }
1374
1375 static const struct file_operations proc_vmstat_file_operations = {
1376 .open = vmstat_open,
1377 .read = seq_read,
1378 .llseek = seq_lseek,
1379 .release = seq_release,
1380 };
1381 #endif /* CONFIG_PROC_FS */
1382
1383 #ifdef CONFIG_SMP
1384 static struct workqueue_struct *vmstat_wq;
1385 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1386 int sysctl_stat_interval __read_mostly = HZ;
1387 static cpumask_var_t cpu_stat_off;
1388
1389 static void vmstat_update(struct work_struct *w)
1390 {
1391 if (refresh_cpu_vm_stats(true)) {
1392 /*
1393 * Counters were updated so we expect more updates
1394 * to occur in the future. Keep on running the
1395 * update worker thread.
1396 */
1397 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1398 this_cpu_ptr(&vmstat_work),
1399 round_jiffies_relative(sysctl_stat_interval));
1400 } else {
1401 /*
1402 * We did not update any counters so the app may be in
1403 * a mode where it does not cause counter updates.
1404 * We may be uselessly running vmstat_update.
1405 * Defer the checking for differentials to the
1406 * shepherd thread on a different processor.
1407 */
1408 int r;
1409 /*
1410 * Shepherd work thread does not race since it never
1411 * changes the bit if its zero but the cpu
1412 * online / off line code may race if
1413 * worker threads are still allowed during
1414 * shutdown / startup.
1415 */
1416 r = cpumask_test_and_set_cpu(smp_processor_id(),
1417 cpu_stat_off);
1418 VM_BUG_ON(r);
1419 }
1420 }
1421
1422 /*
1423 * Switch off vmstat processing and then fold all the remaining differentials
1424 * until the diffs stay at zero. The function is used by NOHZ and can only be
1425 * invoked when tick processing is not active.
1426 */
1427 void quiet_vmstat(void)
1428 {
1429 if (system_state != SYSTEM_RUNNING)
1430 return;
1431
1432 do {
1433 if (!cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1434 cancel_delayed_work(this_cpu_ptr(&vmstat_work));
1435
1436 } while (refresh_cpu_vm_stats(false));
1437 }
1438
1439 /*
1440 * Check if the diffs for a certain cpu indicate that
1441 * an update is needed.
1442 */
1443 static bool need_update(int cpu)
1444 {
1445 struct zone *zone;
1446
1447 for_each_populated_zone(zone) {
1448 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1449
1450 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1451 /*
1452 * The fast way of checking if there are any vmstat diffs.
1453 * This works because the diffs are byte sized items.
1454 */
1455 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1456 return true;
1457
1458 }
1459 return false;
1460 }
1461
1462
1463 /*
1464 * Shepherd worker thread that checks the
1465 * differentials of processors that have their worker
1466 * threads for vm statistics updates disabled because of
1467 * inactivity.
1468 */
1469 static void vmstat_shepherd(struct work_struct *w);
1470
1471 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1472
1473 static void vmstat_shepherd(struct work_struct *w)
1474 {
1475 int cpu;
1476
1477 get_online_cpus();
1478 /* Check processors whose vmstat worker threads have been disabled */
1479 for_each_cpu(cpu, cpu_stat_off)
1480 if (need_update(cpu) &&
1481 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1482
1483 queue_delayed_work_on(cpu, vmstat_wq,
1484 &per_cpu(vmstat_work, cpu), 0);
1485
1486 put_online_cpus();
1487
1488 schedule_delayed_work(&shepherd,
1489 round_jiffies_relative(sysctl_stat_interval));
1490
1491 }
1492
1493 static void __init start_shepherd_timer(void)
1494 {
1495 int cpu;
1496
1497 for_each_possible_cpu(cpu)
1498 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1499 vmstat_update);
1500
1501 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1502 BUG();
1503 cpumask_copy(cpu_stat_off, cpu_online_mask);
1504
1505 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1506 schedule_delayed_work(&shepherd,
1507 round_jiffies_relative(sysctl_stat_interval));
1508 }
1509
1510 static void vmstat_cpu_dead(int node)
1511 {
1512 int cpu;
1513
1514 get_online_cpus();
1515 for_each_online_cpu(cpu)
1516 if (cpu_to_node(cpu) == node)
1517 goto end;
1518
1519 node_clear_state(node, N_CPU);
1520 end:
1521 put_online_cpus();
1522 }
1523
1524 /*
1525 * Use the cpu notifier to insure that the thresholds are recalculated
1526 * when necessary.
1527 */
1528 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1529 unsigned long action,
1530 void *hcpu)
1531 {
1532 long cpu = (long)hcpu;
1533
1534 switch (action) {
1535 case CPU_ONLINE:
1536 case CPU_ONLINE_FROZEN:
1537 refresh_zone_stat_thresholds();
1538 node_set_state(cpu_to_node(cpu), N_CPU);
1539 cpumask_set_cpu(cpu, cpu_stat_off);
1540 break;
1541 case CPU_DOWN_PREPARE:
1542 case CPU_DOWN_PREPARE_FROZEN:
1543 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1544 cpumask_clear_cpu(cpu, cpu_stat_off);
1545 break;
1546 case CPU_DOWN_FAILED:
1547 case CPU_DOWN_FAILED_FROZEN:
1548 cpumask_set_cpu(cpu, cpu_stat_off);
1549 break;
1550 case CPU_DEAD:
1551 case CPU_DEAD_FROZEN:
1552 refresh_zone_stat_thresholds();
1553 vmstat_cpu_dead(cpu_to_node(cpu));
1554 break;
1555 default:
1556 break;
1557 }
1558 return NOTIFY_OK;
1559 }
1560
1561 static struct notifier_block vmstat_notifier =
1562 { &vmstat_cpuup_callback, NULL, 0 };
1563 #endif
1564
1565 static int __init setup_vmstat(void)
1566 {
1567 #ifdef CONFIG_SMP
1568 cpu_notifier_register_begin();
1569 __register_cpu_notifier(&vmstat_notifier);
1570
1571 start_shepherd_timer();
1572 cpu_notifier_register_done();
1573 #endif
1574 #ifdef CONFIG_PROC_FS
1575 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1576 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1577 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1578 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1579 #endif
1580 return 0;
1581 }
1582 module_init(setup_vmstat)
1583
1584 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1585
1586 /*
1587 * Return an index indicating how much of the available free memory is
1588 * unusable for an allocation of the requested size.
1589 */
1590 static int unusable_free_index(unsigned int order,
1591 struct contig_page_info *info)
1592 {
1593 /* No free memory is interpreted as all free memory is unusable */
1594 if (info->free_pages == 0)
1595 return 1000;
1596
1597 /*
1598 * Index should be a value between 0 and 1. Return a value to 3
1599 * decimal places.
1600 *
1601 * 0 => no fragmentation
1602 * 1 => high fragmentation
1603 */
1604 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1605
1606 }
1607
1608 static void unusable_show_print(struct seq_file *m,
1609 pg_data_t *pgdat, struct zone *zone)
1610 {
1611 unsigned int order;
1612 int index;
1613 struct contig_page_info info;
1614
1615 seq_printf(m, "Node %d, zone %8s ",
1616 pgdat->node_id,
1617 zone->name);
1618 for (order = 0; order < MAX_ORDER; ++order) {
1619 fill_contig_page_info(zone, order, &info);
1620 index = unusable_free_index(order, &info);
1621 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1622 }
1623
1624 seq_putc(m, '\n');
1625 }
1626
1627 /*
1628 * Display unusable free space index
1629 *
1630 * The unusable free space index measures how much of the available free
1631 * memory cannot be used to satisfy an allocation of a given size and is a
1632 * value between 0 and 1. The higher the value, the more of free memory is
1633 * unusable and by implication, the worse the external fragmentation is. This
1634 * can be expressed as a percentage by multiplying by 100.
1635 */
1636 static int unusable_show(struct seq_file *m, void *arg)
1637 {
1638 pg_data_t *pgdat = (pg_data_t *)arg;
1639
1640 /* check memoryless node */
1641 if (!node_state(pgdat->node_id, N_MEMORY))
1642 return 0;
1643
1644 walk_zones_in_node(m, pgdat, unusable_show_print);
1645
1646 return 0;
1647 }
1648
1649 static const struct seq_operations unusable_op = {
1650 .start = frag_start,
1651 .next = frag_next,
1652 .stop = frag_stop,
1653 .show = unusable_show,
1654 };
1655
1656 static int unusable_open(struct inode *inode, struct file *file)
1657 {
1658 return seq_open(file, &unusable_op);
1659 }
1660
1661 static const struct file_operations unusable_file_ops = {
1662 .open = unusable_open,
1663 .read = seq_read,
1664 .llseek = seq_lseek,
1665 .release = seq_release,
1666 };
1667
1668 static void extfrag_show_print(struct seq_file *m,
1669 pg_data_t *pgdat, struct zone *zone)
1670 {
1671 unsigned int order;
1672 int index;
1673
1674 /* Alloc on stack as interrupts are disabled for zone walk */
1675 struct contig_page_info info;
1676
1677 seq_printf(m, "Node %d, zone %8s ",
1678 pgdat->node_id,
1679 zone->name);
1680 for (order = 0; order < MAX_ORDER; ++order) {
1681 fill_contig_page_info(zone, order, &info);
1682 index = __fragmentation_index(order, &info);
1683 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1684 }
1685
1686 seq_putc(m, '\n');
1687 }
1688
1689 /*
1690 * Display fragmentation index for orders that allocations would fail for
1691 */
1692 static int extfrag_show(struct seq_file *m, void *arg)
1693 {
1694 pg_data_t *pgdat = (pg_data_t *)arg;
1695
1696 walk_zones_in_node(m, pgdat, extfrag_show_print);
1697
1698 return 0;
1699 }
1700
1701 static const struct seq_operations extfrag_op = {
1702 .start = frag_start,
1703 .next = frag_next,
1704 .stop = frag_stop,
1705 .show = extfrag_show,
1706 };
1707
1708 static int extfrag_open(struct inode *inode, struct file *file)
1709 {
1710 return seq_open(file, &extfrag_op);
1711 }
1712
1713 static const struct file_operations extfrag_file_ops = {
1714 .open = extfrag_open,
1715 .read = seq_read,
1716 .llseek = seq_lseek,
1717 .release = seq_release,
1718 };
1719
1720 static int __init extfrag_debug_init(void)
1721 {
1722 struct dentry *extfrag_debug_root;
1723
1724 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1725 if (!extfrag_debug_root)
1726 return -ENOMEM;
1727
1728 if (!debugfs_create_file("unusable_index", 0444,
1729 extfrag_debug_root, NULL, &unusable_file_ops))
1730 goto fail;
1731
1732 if (!debugfs_create_file("extfrag_index", 0444,
1733 extfrag_debug_root, NULL, &extfrag_file_ops))
1734 goto fail;
1735
1736 return 0;
1737 fail:
1738 debugfs_remove_recursive(extfrag_debug_root);
1739 return -ENOMEM;
1740 }
1741
1742 module_init(extfrag_debug_init);
1743 #endif