mm: vmstat: add isolate pages
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
60
61 int may_writepage;
62
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
65
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
74
75 int swappiness;
76
77 int all_unreclaimable;
78
79 int order;
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
94 int active, int file);
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148 return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153 {
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162 * Add a shrinker callback to be called from the vm
163 */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174 * Remove one
175 */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
206 {
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221 delta = (4 * scanned) / shrinker->seeks;
222 delta *= max_pass;
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
225 if (shrinker->nr < 0) {
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
246 int nr_before;
247
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 if (shrink_ret == -1)
251 break;
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
254 count_vm_events(SLABS_SCANNED, this_scan);
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
263 return ret;
264 }
265
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285 }
286
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 return page_count(page) - !!page_has_private(page) == 2;
290 }
291
292 static int may_write_to_queue(struct backing_dev_info *bdi)
293 {
294 if (current->flags & PF_SWAPWRITE)
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301 }
302
303 /*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315 static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317 {
318 lock_page(page);
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
321 unlock_page(page);
322 }
323
324 /* Request for sync pageout. */
325 enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328 };
329
330 /* possible outcome of pageout() */
331 typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340 } pageout_t;
341
342 /*
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
345 */
346 static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
348 {
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
373 if (page_has_private(page)) {
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
376 printk("%s: orphaned page\n", __func__);
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
392 .range_start = 0,
393 .range_end = LLONG_MAX,
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
402 if (res == AOP_WRITEPAGE_ACTIVATE) {
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424 }
425
426 /*
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
429 */
430 static int __remove_mapping(struct address_space *mapping, struct page *page)
431 {
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
434
435 spin_lock_irq(&mapping->tree_lock);
436 /*
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
460 */
461 if (!page_freeze_refs(page, 2))
462 goto cannot_free;
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
466 goto cannot_free;
467 }
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
472 spin_unlock_irq(&mapping->tree_lock);
473 swapcache_free(swap, page);
474 } else {
475 __remove_from_page_cache(page);
476 spin_unlock_irq(&mapping->tree_lock);
477 mem_cgroup_uncharge_cache_page(page);
478 }
479
480 return 1;
481
482 cannot_free:
483 spin_unlock_irq(&mapping->tree_lock);
484 return 0;
485 }
486
487 /*
488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
489 * someone else has a ref on the page, abort and return 0. If it was
490 * successfully detached, return 1. Assumes the caller has a single ref on
491 * this page.
492 */
493 int remove_mapping(struct address_space *mapping, struct page *page)
494 {
495 if (__remove_mapping(mapping, page)) {
496 /*
497 * Unfreezing the refcount with 1 rather than 2 effectively
498 * drops the pagecache ref for us without requiring another
499 * atomic operation.
500 */
501 page_unfreeze_refs(page, 1);
502 return 1;
503 }
504 return 0;
505 }
506
507 /**
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
510 *
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
513 *
514 * lru_lock must not be held, interrupts must be enabled.
515 */
516 void putback_lru_page(struct page *page)
517 {
518 int lru;
519 int active = !!TestClearPageActive(page);
520 int was_unevictable = PageUnevictable(page);
521
522 VM_BUG_ON(PageLRU(page));
523
524 redo:
525 ClearPageUnevictable(page);
526
527 if (page_evictable(page, NULL)) {
528 /*
529 * For evictable pages, we can use the cache.
530 * In event of a race, worst case is we end up with an
531 * unevictable page on [in]active list.
532 * We know how to handle that.
533 */
534 lru = active + page_is_file_cache(page);
535 lru_cache_add_lru(page, lru);
536 } else {
537 /*
538 * Put unevictable pages directly on zone's unevictable
539 * list.
540 */
541 lru = LRU_UNEVICTABLE;
542 add_page_to_unevictable_list(page);
543 }
544
545 /*
546 * page's status can change while we move it among lru. If an evictable
547 * page is on unevictable list, it never be freed. To avoid that,
548 * check after we added it to the list, again.
549 */
550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551 if (!isolate_lru_page(page)) {
552 put_page(page);
553 goto redo;
554 }
555 /* This means someone else dropped this page from LRU
556 * So, it will be freed or putback to LRU again. There is
557 * nothing to do here.
558 */
559 }
560
561 if (was_unevictable && lru != LRU_UNEVICTABLE)
562 count_vm_event(UNEVICTABLE_PGRESCUED);
563 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564 count_vm_event(UNEVICTABLE_PGCULLED);
565
566 put_page(page); /* drop ref from isolate */
567 }
568
569 /*
570 * shrink_page_list() returns the number of reclaimed pages
571 */
572 static unsigned long shrink_page_list(struct list_head *page_list,
573 struct scan_control *sc,
574 enum pageout_io sync_writeback)
575 {
576 LIST_HEAD(ret_pages);
577 struct pagevec freed_pvec;
578 int pgactivate = 0;
579 unsigned long nr_reclaimed = 0;
580 unsigned long vm_flags;
581
582 cond_resched();
583
584 pagevec_init(&freed_pvec, 1);
585 while (!list_empty(page_list)) {
586 struct address_space *mapping;
587 struct page *page;
588 int may_enter_fs;
589 int referenced;
590
591 cond_resched();
592
593 page = lru_to_page(page_list);
594 list_del(&page->lru);
595
596 if (!trylock_page(page))
597 goto keep;
598
599 VM_BUG_ON(PageActive(page));
600
601 sc->nr_scanned++;
602
603 if (unlikely(!page_evictable(page, NULL)))
604 goto cull_mlocked;
605
606 if (!sc->may_unmap && page_mapped(page))
607 goto keep_locked;
608
609 /* Double the slab pressure for mapped and swapcache pages */
610 if (page_mapped(page) || PageSwapCache(page))
611 sc->nr_scanned++;
612
613 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616 if (PageWriteback(page)) {
617 /*
618 * Synchronous reclaim is performed in two passes,
619 * first an asynchronous pass over the list to
620 * start parallel writeback, and a second synchronous
621 * pass to wait for the IO to complete. Wait here
622 * for any page for which writeback has already
623 * started.
624 */
625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 wait_on_page_writeback(page);
627 else
628 goto keep_locked;
629 }
630
631 referenced = page_referenced(page, 1,
632 sc->mem_cgroup, &vm_flags);
633 /*
634 * In active use or really unfreeable? Activate it.
635 * If page which have PG_mlocked lost isoltation race,
636 * try_to_unmap moves it to unevictable list
637 */
638 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
639 referenced && page_mapping_inuse(page)
640 && !(vm_flags & VM_LOCKED))
641 goto activate_locked;
642
643 /*
644 * Anonymous process memory has backing store?
645 * Try to allocate it some swap space here.
646 */
647 if (PageAnon(page) && !PageSwapCache(page)) {
648 if (!(sc->gfp_mask & __GFP_IO))
649 goto keep_locked;
650 if (!add_to_swap(page))
651 goto activate_locked;
652 may_enter_fs = 1;
653 }
654
655 mapping = page_mapping(page);
656
657 /*
658 * The page is mapped into the page tables of one or more
659 * processes. Try to unmap it here.
660 */
661 if (page_mapped(page) && mapping) {
662 switch (try_to_unmap(page, 0)) {
663 case SWAP_FAIL:
664 goto activate_locked;
665 case SWAP_AGAIN:
666 goto keep_locked;
667 case SWAP_MLOCK:
668 goto cull_mlocked;
669 case SWAP_SUCCESS:
670 ; /* try to free the page below */
671 }
672 }
673
674 if (PageDirty(page)) {
675 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
676 goto keep_locked;
677 if (!may_enter_fs)
678 goto keep_locked;
679 if (!sc->may_writepage)
680 goto keep_locked;
681
682 /* Page is dirty, try to write it out here */
683 switch (pageout(page, mapping, sync_writeback)) {
684 case PAGE_KEEP:
685 goto keep_locked;
686 case PAGE_ACTIVATE:
687 goto activate_locked;
688 case PAGE_SUCCESS:
689 if (PageWriteback(page) || PageDirty(page))
690 goto keep;
691 /*
692 * A synchronous write - probably a ramdisk. Go
693 * ahead and try to reclaim the page.
694 */
695 if (!trylock_page(page))
696 goto keep;
697 if (PageDirty(page) || PageWriteback(page))
698 goto keep_locked;
699 mapping = page_mapping(page);
700 case PAGE_CLEAN:
701 ; /* try to free the page below */
702 }
703 }
704
705 /*
706 * If the page has buffers, try to free the buffer mappings
707 * associated with this page. If we succeed we try to free
708 * the page as well.
709 *
710 * We do this even if the page is PageDirty().
711 * try_to_release_page() does not perform I/O, but it is
712 * possible for a page to have PageDirty set, but it is actually
713 * clean (all its buffers are clean). This happens if the
714 * buffers were written out directly, with submit_bh(). ext3
715 * will do this, as well as the blockdev mapping.
716 * try_to_release_page() will discover that cleanness and will
717 * drop the buffers and mark the page clean - it can be freed.
718 *
719 * Rarely, pages can have buffers and no ->mapping. These are
720 * the pages which were not successfully invalidated in
721 * truncate_complete_page(). We try to drop those buffers here
722 * and if that worked, and the page is no longer mapped into
723 * process address space (page_count == 1) it can be freed.
724 * Otherwise, leave the page on the LRU so it is swappable.
725 */
726 if (page_has_private(page)) {
727 if (!try_to_release_page(page, sc->gfp_mask))
728 goto activate_locked;
729 if (!mapping && page_count(page) == 1) {
730 unlock_page(page);
731 if (put_page_testzero(page))
732 goto free_it;
733 else {
734 /*
735 * rare race with speculative reference.
736 * the speculative reference will free
737 * this page shortly, so we may
738 * increment nr_reclaimed here (and
739 * leave it off the LRU).
740 */
741 nr_reclaimed++;
742 continue;
743 }
744 }
745 }
746
747 if (!mapping || !__remove_mapping(mapping, page))
748 goto keep_locked;
749
750 /*
751 * At this point, we have no other references and there is
752 * no way to pick any more up (removed from LRU, removed
753 * from pagecache). Can use non-atomic bitops now (and
754 * we obviously don't have to worry about waking up a process
755 * waiting on the page lock, because there are no references.
756 */
757 __clear_page_locked(page);
758 free_it:
759 nr_reclaimed++;
760 if (!pagevec_add(&freed_pvec, page)) {
761 __pagevec_free(&freed_pvec);
762 pagevec_reinit(&freed_pvec);
763 }
764 continue;
765
766 cull_mlocked:
767 if (PageSwapCache(page))
768 try_to_free_swap(page);
769 unlock_page(page);
770 putback_lru_page(page);
771 continue;
772
773 activate_locked:
774 /* Not a candidate for swapping, so reclaim swap space. */
775 if (PageSwapCache(page) && vm_swap_full())
776 try_to_free_swap(page);
777 VM_BUG_ON(PageActive(page));
778 SetPageActive(page);
779 pgactivate++;
780 keep_locked:
781 unlock_page(page);
782 keep:
783 list_add(&page->lru, &ret_pages);
784 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
785 }
786 list_splice(&ret_pages, page_list);
787 if (pagevec_count(&freed_pvec))
788 __pagevec_free(&freed_pvec);
789 count_vm_events(PGACTIVATE, pgactivate);
790 return nr_reclaimed;
791 }
792
793 /* LRU Isolation modes. */
794 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
795 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
796 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
797
798 /*
799 * Attempt to remove the specified page from its LRU. Only take this page
800 * if it is of the appropriate PageActive status. Pages which are being
801 * freed elsewhere are also ignored.
802 *
803 * page: page to consider
804 * mode: one of the LRU isolation modes defined above
805 *
806 * returns 0 on success, -ve errno on failure.
807 */
808 int __isolate_lru_page(struct page *page, int mode, int file)
809 {
810 int ret = -EINVAL;
811
812 /* Only take pages on the LRU. */
813 if (!PageLRU(page))
814 return ret;
815
816 /*
817 * When checking the active state, we need to be sure we are
818 * dealing with comparible boolean values. Take the logical not
819 * of each.
820 */
821 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
822 return ret;
823
824 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
825 return ret;
826
827 /*
828 * When this function is being called for lumpy reclaim, we
829 * initially look into all LRU pages, active, inactive and
830 * unevictable; only give shrink_page_list evictable pages.
831 */
832 if (PageUnevictable(page))
833 return ret;
834
835 ret = -EBUSY;
836
837 if (likely(get_page_unless_zero(page))) {
838 /*
839 * Be careful not to clear PageLRU until after we're
840 * sure the page is not being freed elsewhere -- the
841 * page release code relies on it.
842 */
843 ClearPageLRU(page);
844 ret = 0;
845 }
846
847 return ret;
848 }
849
850 /*
851 * zone->lru_lock is heavily contended. Some of the functions that
852 * shrink the lists perform better by taking out a batch of pages
853 * and working on them outside the LRU lock.
854 *
855 * For pagecache intensive workloads, this function is the hottest
856 * spot in the kernel (apart from copy_*_user functions).
857 *
858 * Appropriate locks must be held before calling this function.
859 *
860 * @nr_to_scan: The number of pages to look through on the list.
861 * @src: The LRU list to pull pages off.
862 * @dst: The temp list to put pages on to.
863 * @scanned: The number of pages that were scanned.
864 * @order: The caller's attempted allocation order
865 * @mode: One of the LRU isolation modes
866 * @file: True [1] if isolating file [!anon] pages
867 *
868 * returns how many pages were moved onto *@dst.
869 */
870 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
871 struct list_head *src, struct list_head *dst,
872 unsigned long *scanned, int order, int mode, int file)
873 {
874 unsigned long nr_taken = 0;
875 unsigned long scan;
876
877 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
878 struct page *page;
879 unsigned long pfn;
880 unsigned long end_pfn;
881 unsigned long page_pfn;
882 int zone_id;
883
884 page = lru_to_page(src);
885 prefetchw_prev_lru_page(page, src, flags);
886
887 VM_BUG_ON(!PageLRU(page));
888
889 switch (__isolate_lru_page(page, mode, file)) {
890 case 0:
891 list_move(&page->lru, dst);
892 mem_cgroup_del_lru(page);
893 nr_taken++;
894 break;
895
896 case -EBUSY:
897 /* else it is being freed elsewhere */
898 list_move(&page->lru, src);
899 mem_cgroup_rotate_lru_list(page, page_lru(page));
900 continue;
901
902 default:
903 BUG();
904 }
905
906 if (!order)
907 continue;
908
909 /*
910 * Attempt to take all pages in the order aligned region
911 * surrounding the tag page. Only take those pages of
912 * the same active state as that tag page. We may safely
913 * round the target page pfn down to the requested order
914 * as the mem_map is guarenteed valid out to MAX_ORDER,
915 * where that page is in a different zone we will detect
916 * it from its zone id and abort this block scan.
917 */
918 zone_id = page_zone_id(page);
919 page_pfn = page_to_pfn(page);
920 pfn = page_pfn & ~((1 << order) - 1);
921 end_pfn = pfn + (1 << order);
922 for (; pfn < end_pfn; pfn++) {
923 struct page *cursor_page;
924
925 /* The target page is in the block, ignore it. */
926 if (unlikely(pfn == page_pfn))
927 continue;
928
929 /* Avoid holes within the zone. */
930 if (unlikely(!pfn_valid_within(pfn)))
931 break;
932
933 cursor_page = pfn_to_page(pfn);
934
935 /* Check that we have not crossed a zone boundary. */
936 if (unlikely(page_zone_id(cursor_page) != zone_id))
937 continue;
938 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
939 list_move(&cursor_page->lru, dst);
940 mem_cgroup_del_lru(cursor_page);
941 nr_taken++;
942 scan++;
943 }
944 }
945 }
946
947 *scanned = scan;
948 return nr_taken;
949 }
950
951 static unsigned long isolate_pages_global(unsigned long nr,
952 struct list_head *dst,
953 unsigned long *scanned, int order,
954 int mode, struct zone *z,
955 struct mem_cgroup *mem_cont,
956 int active, int file)
957 {
958 int lru = LRU_BASE;
959 if (active)
960 lru += LRU_ACTIVE;
961 if (file)
962 lru += LRU_FILE;
963 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
964 mode, !!file);
965 }
966
967 /*
968 * clear_active_flags() is a helper for shrink_active_list(), clearing
969 * any active bits from the pages in the list.
970 */
971 static unsigned long clear_active_flags(struct list_head *page_list,
972 unsigned int *count)
973 {
974 int nr_active = 0;
975 int lru;
976 struct page *page;
977
978 list_for_each_entry(page, page_list, lru) {
979 lru = page_is_file_cache(page);
980 if (PageActive(page)) {
981 lru += LRU_ACTIVE;
982 ClearPageActive(page);
983 nr_active++;
984 }
985 count[lru]++;
986 }
987
988 return nr_active;
989 }
990
991 /**
992 * isolate_lru_page - tries to isolate a page from its LRU list
993 * @page: page to isolate from its LRU list
994 *
995 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
996 * vmstat statistic corresponding to whatever LRU list the page was on.
997 *
998 * Returns 0 if the page was removed from an LRU list.
999 * Returns -EBUSY if the page was not on an LRU list.
1000 *
1001 * The returned page will have PageLRU() cleared. If it was found on
1002 * the active list, it will have PageActive set. If it was found on
1003 * the unevictable list, it will have the PageUnevictable bit set. That flag
1004 * may need to be cleared by the caller before letting the page go.
1005 *
1006 * The vmstat statistic corresponding to the list on which the page was
1007 * found will be decremented.
1008 *
1009 * Restrictions:
1010 * (1) Must be called with an elevated refcount on the page. This is a
1011 * fundamentnal difference from isolate_lru_pages (which is called
1012 * without a stable reference).
1013 * (2) the lru_lock must not be held.
1014 * (3) interrupts must be enabled.
1015 */
1016 int isolate_lru_page(struct page *page)
1017 {
1018 int ret = -EBUSY;
1019
1020 if (PageLRU(page)) {
1021 struct zone *zone = page_zone(page);
1022
1023 spin_lock_irq(&zone->lru_lock);
1024 if (PageLRU(page) && get_page_unless_zero(page)) {
1025 int lru = page_lru(page);
1026 ret = 0;
1027 ClearPageLRU(page);
1028
1029 del_page_from_lru_list(zone, page, lru);
1030 }
1031 spin_unlock_irq(&zone->lru_lock);
1032 }
1033 return ret;
1034 }
1035
1036 /*
1037 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1038 * of reclaimed pages
1039 */
1040 static unsigned long shrink_inactive_list(unsigned long max_scan,
1041 struct zone *zone, struct scan_control *sc,
1042 int priority, int file)
1043 {
1044 LIST_HEAD(page_list);
1045 struct pagevec pvec;
1046 unsigned long nr_scanned = 0;
1047 unsigned long nr_reclaimed = 0;
1048 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1049 int lumpy_reclaim = 0;
1050
1051 /*
1052 * If we need a large contiguous chunk of memory, or have
1053 * trouble getting a small set of contiguous pages, we
1054 * will reclaim both active and inactive pages.
1055 *
1056 * We use the same threshold as pageout congestion_wait below.
1057 */
1058 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1059 lumpy_reclaim = 1;
1060 else if (sc->order && priority < DEF_PRIORITY - 2)
1061 lumpy_reclaim = 1;
1062
1063 pagevec_init(&pvec, 1);
1064
1065 lru_add_drain();
1066 spin_lock_irq(&zone->lru_lock);
1067 do {
1068 struct page *page;
1069 unsigned long nr_taken;
1070 unsigned long nr_scan;
1071 unsigned long nr_freed;
1072 unsigned long nr_active;
1073 unsigned int count[NR_LRU_LISTS] = { 0, };
1074 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1075 unsigned long nr_anon;
1076 unsigned long nr_file;
1077
1078 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079 &page_list, &nr_scan, sc->order, mode,
1080 zone, sc->mem_cgroup, 0, file);
1081
1082 if (scanning_global_lru(sc)) {
1083 zone->pages_scanned += nr_scan;
1084 if (current_is_kswapd())
1085 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1086 nr_scan);
1087 else
1088 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1089 nr_scan);
1090 }
1091
1092 if (nr_taken == 0)
1093 goto done;
1094
1095 nr_active = clear_active_flags(&page_list, count);
1096 __count_vm_events(PGDEACTIVATE, nr_active);
1097
1098 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1099 -count[LRU_ACTIVE_FILE]);
1100 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1101 -count[LRU_INACTIVE_FILE]);
1102 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1103 -count[LRU_ACTIVE_ANON]);
1104 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1105 -count[LRU_INACTIVE_ANON]);
1106
1107 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1108 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1109 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1110 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1111
1112 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1113 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1114 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1115 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1116
1117 spin_unlock_irq(&zone->lru_lock);
1118
1119 nr_scanned += nr_scan;
1120 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1121
1122 /*
1123 * If we are direct reclaiming for contiguous pages and we do
1124 * not reclaim everything in the list, try again and wait
1125 * for IO to complete. This will stall high-order allocations
1126 * but that should be acceptable to the caller
1127 */
1128 if (nr_freed < nr_taken && !current_is_kswapd() &&
1129 lumpy_reclaim) {
1130 congestion_wait(BLK_RW_ASYNC, HZ/10);
1131
1132 /*
1133 * The attempt at page out may have made some
1134 * of the pages active, mark them inactive again.
1135 */
1136 nr_active = clear_active_flags(&page_list, count);
1137 count_vm_events(PGDEACTIVATE, nr_active);
1138
1139 nr_freed += shrink_page_list(&page_list, sc,
1140 PAGEOUT_IO_SYNC);
1141 }
1142
1143 nr_reclaimed += nr_freed;
1144
1145 local_irq_disable();
1146 if (current_is_kswapd())
1147 __count_vm_events(KSWAPD_STEAL, nr_freed);
1148 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1149
1150 spin_lock(&zone->lru_lock);
1151 /*
1152 * Put back any unfreeable pages.
1153 */
1154 while (!list_empty(&page_list)) {
1155 int lru;
1156 page = lru_to_page(&page_list);
1157 VM_BUG_ON(PageLRU(page));
1158 list_del(&page->lru);
1159 if (unlikely(!page_evictable(page, NULL))) {
1160 spin_unlock_irq(&zone->lru_lock);
1161 putback_lru_page(page);
1162 spin_lock_irq(&zone->lru_lock);
1163 continue;
1164 }
1165 SetPageLRU(page);
1166 lru = page_lru(page);
1167 add_page_to_lru_list(zone, page, lru);
1168 if (PageActive(page)) {
1169 int file = !!page_is_file_cache(page);
1170 reclaim_stat->recent_rotated[file]++;
1171 }
1172 if (!pagevec_add(&pvec, page)) {
1173 spin_unlock_irq(&zone->lru_lock);
1174 __pagevec_release(&pvec);
1175 spin_lock_irq(&zone->lru_lock);
1176 }
1177 }
1178 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1179 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1180
1181 } while (nr_scanned < max_scan);
1182
1183 done:
1184 spin_unlock_irq(&zone->lru_lock);
1185 pagevec_release(&pvec);
1186 return nr_reclaimed;
1187 }
1188
1189 /*
1190 * We are about to scan this zone at a certain priority level. If that priority
1191 * level is smaller (ie: more urgent) than the previous priority, then note
1192 * that priority level within the zone. This is done so that when the next
1193 * process comes in to scan this zone, it will immediately start out at this
1194 * priority level rather than having to build up its own scanning priority.
1195 * Here, this priority affects only the reclaim-mapped threshold.
1196 */
1197 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1198 {
1199 if (priority < zone->prev_priority)
1200 zone->prev_priority = priority;
1201 }
1202
1203 /*
1204 * This moves pages from the active list to the inactive list.
1205 *
1206 * We move them the other way if the page is referenced by one or more
1207 * processes, from rmap.
1208 *
1209 * If the pages are mostly unmapped, the processing is fast and it is
1210 * appropriate to hold zone->lru_lock across the whole operation. But if
1211 * the pages are mapped, the processing is slow (page_referenced()) so we
1212 * should drop zone->lru_lock around each page. It's impossible to balance
1213 * this, so instead we remove the pages from the LRU while processing them.
1214 * It is safe to rely on PG_active against the non-LRU pages in here because
1215 * nobody will play with that bit on a non-LRU page.
1216 *
1217 * The downside is that we have to touch page->_count against each page.
1218 * But we had to alter page->flags anyway.
1219 */
1220
1221 static void move_active_pages_to_lru(struct zone *zone,
1222 struct list_head *list,
1223 enum lru_list lru)
1224 {
1225 unsigned long pgmoved = 0;
1226 struct pagevec pvec;
1227 struct page *page;
1228
1229 pagevec_init(&pvec, 1);
1230
1231 while (!list_empty(list)) {
1232 page = lru_to_page(list);
1233 prefetchw_prev_lru_page(page, list, flags);
1234
1235 VM_BUG_ON(PageLRU(page));
1236 SetPageLRU(page);
1237
1238 VM_BUG_ON(!PageActive(page));
1239 if (!is_active_lru(lru))
1240 ClearPageActive(page); /* we are de-activating */
1241
1242 list_move(&page->lru, &zone->lru[lru].list);
1243 mem_cgroup_add_lru_list(page, lru);
1244 pgmoved++;
1245
1246 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1247 spin_unlock_irq(&zone->lru_lock);
1248 if (buffer_heads_over_limit)
1249 pagevec_strip(&pvec);
1250 __pagevec_release(&pvec);
1251 spin_lock_irq(&zone->lru_lock);
1252 }
1253 }
1254 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1255 if (!is_active_lru(lru))
1256 __count_vm_events(PGDEACTIVATE, pgmoved);
1257 }
1258
1259 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1260 struct scan_control *sc, int priority, int file)
1261 {
1262 unsigned long nr_taken;
1263 unsigned long pgscanned;
1264 unsigned long vm_flags;
1265 LIST_HEAD(l_hold); /* The pages which were snipped off */
1266 LIST_HEAD(l_active);
1267 LIST_HEAD(l_inactive);
1268 struct page *page;
1269 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1270 unsigned long nr_rotated = 0;
1271
1272 lru_add_drain();
1273 spin_lock_irq(&zone->lru_lock);
1274 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1275 ISOLATE_ACTIVE, zone,
1276 sc->mem_cgroup, 1, file);
1277 /*
1278 * zone->pages_scanned is used for detect zone's oom
1279 * mem_cgroup remembers nr_scan by itself.
1280 */
1281 if (scanning_global_lru(sc)) {
1282 zone->pages_scanned += pgscanned;
1283 }
1284 reclaim_stat->recent_scanned[!!file] += nr_taken;
1285
1286 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1287 if (file)
1288 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1289 else
1290 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1291 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1292 spin_unlock_irq(&zone->lru_lock);
1293
1294 while (!list_empty(&l_hold)) {
1295 cond_resched();
1296 page = lru_to_page(&l_hold);
1297 list_del(&page->lru);
1298
1299 if (unlikely(!page_evictable(page, NULL))) {
1300 putback_lru_page(page);
1301 continue;
1302 }
1303
1304 /* page_referenced clears PageReferenced */
1305 if (page_mapping_inuse(page) &&
1306 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1307 nr_rotated++;
1308 /*
1309 * Identify referenced, file-backed active pages and
1310 * give them one more trip around the active list. So
1311 * that executable code get better chances to stay in
1312 * memory under moderate memory pressure. Anon pages
1313 * are not likely to be evicted by use-once streaming
1314 * IO, plus JVM can create lots of anon VM_EXEC pages,
1315 * so we ignore them here.
1316 */
1317 if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1318 list_add(&page->lru, &l_active);
1319 continue;
1320 }
1321 }
1322
1323 list_add(&page->lru, &l_inactive);
1324 }
1325
1326 /*
1327 * Move pages back to the lru list.
1328 */
1329 spin_lock_irq(&zone->lru_lock);
1330 /*
1331 * Count referenced pages from currently used mappings as rotated,
1332 * even though only some of them are actually re-activated. This
1333 * helps balance scan pressure between file and anonymous pages in
1334 * get_scan_ratio.
1335 */
1336 reclaim_stat->recent_rotated[!!file] += nr_rotated;
1337
1338 move_active_pages_to_lru(zone, &l_active,
1339 LRU_ACTIVE + file * LRU_FILE);
1340 move_active_pages_to_lru(zone, &l_inactive,
1341 LRU_BASE + file * LRU_FILE);
1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1343 spin_unlock_irq(&zone->lru_lock);
1344 }
1345
1346 static int inactive_anon_is_low_global(struct zone *zone)
1347 {
1348 unsigned long active, inactive;
1349
1350 active = zone_page_state(zone, NR_ACTIVE_ANON);
1351 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1352
1353 if (inactive * zone->inactive_ratio < active)
1354 return 1;
1355
1356 return 0;
1357 }
1358
1359 /**
1360 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1361 * @zone: zone to check
1362 * @sc: scan control of this context
1363 *
1364 * Returns true if the zone does not have enough inactive anon pages,
1365 * meaning some active anon pages need to be deactivated.
1366 */
1367 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1368 {
1369 int low;
1370
1371 if (scanning_global_lru(sc))
1372 low = inactive_anon_is_low_global(zone);
1373 else
1374 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1375 return low;
1376 }
1377
1378 static int inactive_file_is_low_global(struct zone *zone)
1379 {
1380 unsigned long active, inactive;
1381
1382 active = zone_page_state(zone, NR_ACTIVE_FILE);
1383 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1384
1385 return (active > inactive);
1386 }
1387
1388 /**
1389 * inactive_file_is_low - check if file pages need to be deactivated
1390 * @zone: zone to check
1391 * @sc: scan control of this context
1392 *
1393 * When the system is doing streaming IO, memory pressure here
1394 * ensures that active file pages get deactivated, until more
1395 * than half of the file pages are on the inactive list.
1396 *
1397 * Once we get to that situation, protect the system's working
1398 * set from being evicted by disabling active file page aging.
1399 *
1400 * This uses a different ratio than the anonymous pages, because
1401 * the page cache uses a use-once replacement algorithm.
1402 */
1403 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1404 {
1405 int low;
1406
1407 if (scanning_global_lru(sc))
1408 low = inactive_file_is_low_global(zone);
1409 else
1410 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1411 return low;
1412 }
1413
1414 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1415 struct zone *zone, struct scan_control *sc, int priority)
1416 {
1417 int file = is_file_lru(lru);
1418
1419 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1420 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1421 return 0;
1422 }
1423
1424 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1425 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1426 return 0;
1427 }
1428 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1429 }
1430
1431 /*
1432 * Determine how aggressively the anon and file LRU lists should be
1433 * scanned. The relative value of each set of LRU lists is determined
1434 * by looking at the fraction of the pages scanned we did rotate back
1435 * onto the active list instead of evict.
1436 *
1437 * percent[0] specifies how much pressure to put on ram/swap backed
1438 * memory, while percent[1] determines pressure on the file LRUs.
1439 */
1440 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1441 unsigned long *percent)
1442 {
1443 unsigned long anon, file, free;
1444 unsigned long anon_prio, file_prio;
1445 unsigned long ap, fp;
1446 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1447
1448 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1449 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1450 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1451 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1452
1453 if (scanning_global_lru(sc)) {
1454 free = zone_page_state(zone, NR_FREE_PAGES);
1455 /* If we have very few page cache pages,
1456 force-scan anon pages. */
1457 if (unlikely(file + free <= high_wmark_pages(zone))) {
1458 percent[0] = 100;
1459 percent[1] = 0;
1460 return;
1461 }
1462 }
1463
1464 /*
1465 * OK, so we have swap space and a fair amount of page cache
1466 * pages. We use the recently rotated / recently scanned
1467 * ratios to determine how valuable each cache is.
1468 *
1469 * Because workloads change over time (and to avoid overflow)
1470 * we keep these statistics as a floating average, which ends
1471 * up weighing recent references more than old ones.
1472 *
1473 * anon in [0], file in [1]
1474 */
1475 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1476 spin_lock_irq(&zone->lru_lock);
1477 reclaim_stat->recent_scanned[0] /= 2;
1478 reclaim_stat->recent_rotated[0] /= 2;
1479 spin_unlock_irq(&zone->lru_lock);
1480 }
1481
1482 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1483 spin_lock_irq(&zone->lru_lock);
1484 reclaim_stat->recent_scanned[1] /= 2;
1485 reclaim_stat->recent_rotated[1] /= 2;
1486 spin_unlock_irq(&zone->lru_lock);
1487 }
1488
1489 /*
1490 * With swappiness at 100, anonymous and file have the same priority.
1491 * This scanning priority is essentially the inverse of IO cost.
1492 */
1493 anon_prio = sc->swappiness;
1494 file_prio = 200 - sc->swappiness;
1495
1496 /*
1497 * The amount of pressure on anon vs file pages is inversely
1498 * proportional to the fraction of recently scanned pages on
1499 * each list that were recently referenced and in active use.
1500 */
1501 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1502 ap /= reclaim_stat->recent_rotated[0] + 1;
1503
1504 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1505 fp /= reclaim_stat->recent_rotated[1] + 1;
1506
1507 /* Normalize to percentages */
1508 percent[0] = 100 * ap / (ap + fp + 1);
1509 percent[1] = 100 - percent[0];
1510 }
1511
1512 /*
1513 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1514 * until we collected @swap_cluster_max pages to scan.
1515 */
1516 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1517 unsigned long *nr_saved_scan,
1518 unsigned long swap_cluster_max)
1519 {
1520 unsigned long nr;
1521
1522 *nr_saved_scan += nr_to_scan;
1523 nr = *nr_saved_scan;
1524
1525 if (nr >= swap_cluster_max)
1526 *nr_saved_scan = 0;
1527 else
1528 nr = 0;
1529
1530 return nr;
1531 }
1532
1533 /*
1534 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1535 */
1536 static void shrink_zone(int priority, struct zone *zone,
1537 struct scan_control *sc)
1538 {
1539 unsigned long nr[NR_LRU_LISTS];
1540 unsigned long nr_to_scan;
1541 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1542 enum lru_list l;
1543 unsigned long nr_reclaimed = sc->nr_reclaimed;
1544 unsigned long swap_cluster_max = sc->swap_cluster_max;
1545 int noswap = 0;
1546
1547 /* If we have no swap space, do not bother scanning anon pages. */
1548 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1549 noswap = 1;
1550 percent[0] = 0;
1551 percent[1] = 100;
1552 } else
1553 get_scan_ratio(zone, sc, percent);
1554
1555 for_each_evictable_lru(l) {
1556 int file = is_file_lru(l);
1557 unsigned long scan;
1558
1559 scan = zone_nr_pages(zone, sc, l);
1560 if (priority || noswap) {
1561 scan >>= priority;
1562 scan = (scan * percent[file]) / 100;
1563 }
1564 if (scanning_global_lru(sc))
1565 nr[l] = nr_scan_try_batch(scan,
1566 &zone->lru[l].nr_saved_scan,
1567 swap_cluster_max);
1568 else
1569 nr[l] = scan;
1570 }
1571
1572 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1573 nr[LRU_INACTIVE_FILE]) {
1574 for_each_evictable_lru(l) {
1575 if (nr[l]) {
1576 nr_to_scan = min(nr[l], swap_cluster_max);
1577 nr[l] -= nr_to_scan;
1578
1579 nr_reclaimed += shrink_list(l, nr_to_scan,
1580 zone, sc, priority);
1581 }
1582 }
1583 /*
1584 * On large memory systems, scan >> priority can become
1585 * really large. This is fine for the starting priority;
1586 * we want to put equal scanning pressure on each zone.
1587 * However, if the VM has a harder time of freeing pages,
1588 * with multiple processes reclaiming pages, the total
1589 * freeing target can get unreasonably large.
1590 */
1591 if (nr_reclaimed > swap_cluster_max &&
1592 priority < DEF_PRIORITY && !current_is_kswapd())
1593 break;
1594 }
1595
1596 sc->nr_reclaimed = nr_reclaimed;
1597
1598 /*
1599 * Even if we did not try to evict anon pages at all, we want to
1600 * rebalance the anon lru active/inactive ratio.
1601 */
1602 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1603 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1604
1605 throttle_vm_writeout(sc->gfp_mask);
1606 }
1607
1608 /*
1609 * This is the direct reclaim path, for page-allocating processes. We only
1610 * try to reclaim pages from zones which will satisfy the caller's allocation
1611 * request.
1612 *
1613 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1614 * Because:
1615 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1616 * allocation or
1617 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1618 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1619 * zone defense algorithm.
1620 *
1621 * If a zone is deemed to be full of pinned pages then just give it a light
1622 * scan then give up on it.
1623 */
1624 static void shrink_zones(int priority, struct zonelist *zonelist,
1625 struct scan_control *sc)
1626 {
1627 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1628 struct zoneref *z;
1629 struct zone *zone;
1630
1631 sc->all_unreclaimable = 1;
1632 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1633 sc->nodemask) {
1634 if (!populated_zone(zone))
1635 continue;
1636 /*
1637 * Take care memory controller reclaiming has small influence
1638 * to global LRU.
1639 */
1640 if (scanning_global_lru(sc)) {
1641 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1642 continue;
1643 note_zone_scanning_priority(zone, priority);
1644
1645 if (zone_is_all_unreclaimable(zone) &&
1646 priority != DEF_PRIORITY)
1647 continue; /* Let kswapd poll it */
1648 sc->all_unreclaimable = 0;
1649 } else {
1650 /*
1651 * Ignore cpuset limitation here. We just want to reduce
1652 * # of used pages by us regardless of memory shortage.
1653 */
1654 sc->all_unreclaimable = 0;
1655 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1656 priority);
1657 }
1658
1659 shrink_zone(priority, zone, sc);
1660 }
1661 }
1662
1663 /*
1664 * This is the main entry point to direct page reclaim.
1665 *
1666 * If a full scan of the inactive list fails to free enough memory then we
1667 * are "out of memory" and something needs to be killed.
1668 *
1669 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1670 * high - the zone may be full of dirty or under-writeback pages, which this
1671 * caller can't do much about. We kick pdflush and take explicit naps in the
1672 * hope that some of these pages can be written. But if the allocating task
1673 * holds filesystem locks which prevent writeout this might not work, and the
1674 * allocation attempt will fail.
1675 *
1676 * returns: 0, if no pages reclaimed
1677 * else, the number of pages reclaimed
1678 */
1679 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1680 struct scan_control *sc)
1681 {
1682 int priority;
1683 unsigned long ret = 0;
1684 unsigned long total_scanned = 0;
1685 struct reclaim_state *reclaim_state = current->reclaim_state;
1686 unsigned long lru_pages = 0;
1687 struct zoneref *z;
1688 struct zone *zone;
1689 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1690
1691 delayacct_freepages_start();
1692
1693 if (scanning_global_lru(sc))
1694 count_vm_event(ALLOCSTALL);
1695 /*
1696 * mem_cgroup will not do shrink_slab.
1697 */
1698 if (scanning_global_lru(sc)) {
1699 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1700
1701 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1702 continue;
1703
1704 lru_pages += zone_lru_pages(zone);
1705 }
1706 }
1707
1708 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1709 sc->nr_scanned = 0;
1710 if (!priority)
1711 disable_swap_token();
1712 shrink_zones(priority, zonelist, sc);
1713 /*
1714 * Don't shrink slabs when reclaiming memory from
1715 * over limit cgroups
1716 */
1717 if (scanning_global_lru(sc)) {
1718 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1719 if (reclaim_state) {
1720 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1721 reclaim_state->reclaimed_slab = 0;
1722 }
1723 }
1724 total_scanned += sc->nr_scanned;
1725 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1726 ret = sc->nr_reclaimed;
1727 goto out;
1728 }
1729
1730 /*
1731 * Try to write back as many pages as we just scanned. This
1732 * tends to cause slow streaming writers to write data to the
1733 * disk smoothly, at the dirtying rate, which is nice. But
1734 * that's undesirable in laptop mode, where we *want* lumpy
1735 * writeout. So in laptop mode, write out the whole world.
1736 */
1737 if (total_scanned > sc->swap_cluster_max +
1738 sc->swap_cluster_max / 2) {
1739 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1740 sc->may_writepage = 1;
1741 }
1742
1743 /* Take a nap, wait for some writeback to complete */
1744 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1745 congestion_wait(BLK_RW_ASYNC, HZ/10);
1746 }
1747 /* top priority shrink_zones still had more to do? don't OOM, then */
1748 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1749 ret = sc->nr_reclaimed;
1750 out:
1751 /*
1752 * Now that we've scanned all the zones at this priority level, note
1753 * that level within the zone so that the next thread which performs
1754 * scanning of this zone will immediately start out at this priority
1755 * level. This affects only the decision whether or not to bring
1756 * mapped pages onto the inactive list.
1757 */
1758 if (priority < 0)
1759 priority = 0;
1760
1761 if (scanning_global_lru(sc)) {
1762 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1763
1764 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1765 continue;
1766
1767 zone->prev_priority = priority;
1768 }
1769 } else
1770 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1771
1772 delayacct_freepages_end();
1773
1774 return ret;
1775 }
1776
1777 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1778 gfp_t gfp_mask, nodemask_t *nodemask)
1779 {
1780 struct scan_control sc = {
1781 .gfp_mask = gfp_mask,
1782 .may_writepage = !laptop_mode,
1783 .swap_cluster_max = SWAP_CLUSTER_MAX,
1784 .may_unmap = 1,
1785 .may_swap = 1,
1786 .swappiness = vm_swappiness,
1787 .order = order,
1788 .mem_cgroup = NULL,
1789 .isolate_pages = isolate_pages_global,
1790 .nodemask = nodemask,
1791 };
1792
1793 return do_try_to_free_pages(zonelist, &sc);
1794 }
1795
1796 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1797
1798 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1799 gfp_t gfp_mask,
1800 bool noswap,
1801 unsigned int swappiness)
1802 {
1803 struct scan_control sc = {
1804 .may_writepage = !laptop_mode,
1805 .may_unmap = 1,
1806 .may_swap = !noswap,
1807 .swap_cluster_max = SWAP_CLUSTER_MAX,
1808 .swappiness = swappiness,
1809 .order = 0,
1810 .mem_cgroup = mem_cont,
1811 .isolate_pages = mem_cgroup_isolate_pages,
1812 .nodemask = NULL, /* we don't care the placement */
1813 };
1814 struct zonelist *zonelist;
1815
1816 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1817 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1818 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1819 return do_try_to_free_pages(zonelist, &sc);
1820 }
1821 #endif
1822
1823 /*
1824 * For kswapd, balance_pgdat() will work across all this node's zones until
1825 * they are all at high_wmark_pages(zone).
1826 *
1827 * Returns the number of pages which were actually freed.
1828 *
1829 * There is special handling here for zones which are full of pinned pages.
1830 * This can happen if the pages are all mlocked, or if they are all used by
1831 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1832 * What we do is to detect the case where all pages in the zone have been
1833 * scanned twice and there has been zero successful reclaim. Mark the zone as
1834 * dead and from now on, only perform a short scan. Basically we're polling
1835 * the zone for when the problem goes away.
1836 *
1837 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1838 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1839 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1840 * lower zones regardless of the number of free pages in the lower zones. This
1841 * interoperates with the page allocator fallback scheme to ensure that aging
1842 * of pages is balanced across the zones.
1843 */
1844 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1845 {
1846 int all_zones_ok;
1847 int priority;
1848 int i;
1849 unsigned long total_scanned;
1850 struct reclaim_state *reclaim_state = current->reclaim_state;
1851 struct scan_control sc = {
1852 .gfp_mask = GFP_KERNEL,
1853 .may_unmap = 1,
1854 .may_swap = 1,
1855 .swap_cluster_max = SWAP_CLUSTER_MAX,
1856 .swappiness = vm_swappiness,
1857 .order = order,
1858 .mem_cgroup = NULL,
1859 .isolate_pages = isolate_pages_global,
1860 };
1861 /*
1862 * temp_priority is used to remember the scanning priority at which
1863 * this zone was successfully refilled to
1864 * free_pages == high_wmark_pages(zone).
1865 */
1866 int temp_priority[MAX_NR_ZONES];
1867
1868 loop_again:
1869 total_scanned = 0;
1870 sc.nr_reclaimed = 0;
1871 sc.may_writepage = !laptop_mode;
1872 count_vm_event(PAGEOUTRUN);
1873
1874 for (i = 0; i < pgdat->nr_zones; i++)
1875 temp_priority[i] = DEF_PRIORITY;
1876
1877 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1878 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1879 unsigned long lru_pages = 0;
1880
1881 /* The swap token gets in the way of swapout... */
1882 if (!priority)
1883 disable_swap_token();
1884
1885 all_zones_ok = 1;
1886
1887 /*
1888 * Scan in the highmem->dma direction for the highest
1889 * zone which needs scanning
1890 */
1891 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1892 struct zone *zone = pgdat->node_zones + i;
1893
1894 if (!populated_zone(zone))
1895 continue;
1896
1897 if (zone_is_all_unreclaimable(zone) &&
1898 priority != DEF_PRIORITY)
1899 continue;
1900
1901 /*
1902 * Do some background aging of the anon list, to give
1903 * pages a chance to be referenced before reclaiming.
1904 */
1905 if (inactive_anon_is_low(zone, &sc))
1906 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1907 &sc, priority, 0);
1908
1909 if (!zone_watermark_ok(zone, order,
1910 high_wmark_pages(zone), 0, 0)) {
1911 end_zone = i;
1912 break;
1913 }
1914 }
1915 if (i < 0)
1916 goto out;
1917
1918 for (i = 0; i <= end_zone; i++) {
1919 struct zone *zone = pgdat->node_zones + i;
1920
1921 lru_pages += zone_lru_pages(zone);
1922 }
1923
1924 /*
1925 * Now scan the zone in the dma->highmem direction, stopping
1926 * at the last zone which needs scanning.
1927 *
1928 * We do this because the page allocator works in the opposite
1929 * direction. This prevents the page allocator from allocating
1930 * pages behind kswapd's direction of progress, which would
1931 * cause too much scanning of the lower zones.
1932 */
1933 for (i = 0; i <= end_zone; i++) {
1934 struct zone *zone = pgdat->node_zones + i;
1935 int nr_slab;
1936
1937 if (!populated_zone(zone))
1938 continue;
1939
1940 if (zone_is_all_unreclaimable(zone) &&
1941 priority != DEF_PRIORITY)
1942 continue;
1943
1944 if (!zone_watermark_ok(zone, order,
1945 high_wmark_pages(zone), end_zone, 0))
1946 all_zones_ok = 0;
1947 temp_priority[i] = priority;
1948 sc.nr_scanned = 0;
1949 note_zone_scanning_priority(zone, priority);
1950 /*
1951 * We put equal pressure on every zone, unless one
1952 * zone has way too many pages free already.
1953 */
1954 if (!zone_watermark_ok(zone, order,
1955 8*high_wmark_pages(zone), end_zone, 0))
1956 shrink_zone(priority, zone, &sc);
1957 reclaim_state->reclaimed_slab = 0;
1958 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1959 lru_pages);
1960 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1961 total_scanned += sc.nr_scanned;
1962 if (zone_is_all_unreclaimable(zone))
1963 continue;
1964 if (nr_slab == 0 && zone->pages_scanned >=
1965 (zone_lru_pages(zone) * 6))
1966 zone_set_flag(zone,
1967 ZONE_ALL_UNRECLAIMABLE);
1968 /*
1969 * If we've done a decent amount of scanning and
1970 * the reclaim ratio is low, start doing writepage
1971 * even in laptop mode
1972 */
1973 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1974 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1975 sc.may_writepage = 1;
1976 }
1977 if (all_zones_ok)
1978 break; /* kswapd: all done */
1979 /*
1980 * OK, kswapd is getting into trouble. Take a nap, then take
1981 * another pass across the zones.
1982 */
1983 if (total_scanned && priority < DEF_PRIORITY - 2)
1984 congestion_wait(BLK_RW_ASYNC, HZ/10);
1985
1986 /*
1987 * We do this so kswapd doesn't build up large priorities for
1988 * example when it is freeing in parallel with allocators. It
1989 * matches the direct reclaim path behaviour in terms of impact
1990 * on zone->*_priority.
1991 */
1992 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1993 break;
1994 }
1995 out:
1996 /*
1997 * Note within each zone the priority level at which this zone was
1998 * brought into a happy state. So that the next thread which scans this
1999 * zone will start out at that priority level.
2000 */
2001 for (i = 0; i < pgdat->nr_zones; i++) {
2002 struct zone *zone = pgdat->node_zones + i;
2003
2004 zone->prev_priority = temp_priority[i];
2005 }
2006 if (!all_zones_ok) {
2007 cond_resched();
2008
2009 try_to_freeze();
2010
2011 /*
2012 * Fragmentation may mean that the system cannot be
2013 * rebalanced for high-order allocations in all zones.
2014 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2015 * it means the zones have been fully scanned and are still
2016 * not balanced. For high-order allocations, there is
2017 * little point trying all over again as kswapd may
2018 * infinite loop.
2019 *
2020 * Instead, recheck all watermarks at order-0 as they
2021 * are the most important. If watermarks are ok, kswapd will go
2022 * back to sleep. High-order users can still perform direct
2023 * reclaim if they wish.
2024 */
2025 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2026 order = sc.order = 0;
2027
2028 goto loop_again;
2029 }
2030
2031 return sc.nr_reclaimed;
2032 }
2033
2034 /*
2035 * The background pageout daemon, started as a kernel thread
2036 * from the init process.
2037 *
2038 * This basically trickles out pages so that we have _some_
2039 * free memory available even if there is no other activity
2040 * that frees anything up. This is needed for things like routing
2041 * etc, where we otherwise might have all activity going on in
2042 * asynchronous contexts that cannot page things out.
2043 *
2044 * If there are applications that are active memory-allocators
2045 * (most normal use), this basically shouldn't matter.
2046 */
2047 static int kswapd(void *p)
2048 {
2049 unsigned long order;
2050 pg_data_t *pgdat = (pg_data_t*)p;
2051 struct task_struct *tsk = current;
2052 DEFINE_WAIT(wait);
2053 struct reclaim_state reclaim_state = {
2054 .reclaimed_slab = 0,
2055 };
2056 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2057
2058 lockdep_set_current_reclaim_state(GFP_KERNEL);
2059
2060 if (!cpumask_empty(cpumask))
2061 set_cpus_allowed_ptr(tsk, cpumask);
2062 current->reclaim_state = &reclaim_state;
2063
2064 /*
2065 * Tell the memory management that we're a "memory allocator",
2066 * and that if we need more memory we should get access to it
2067 * regardless (see "__alloc_pages()"). "kswapd" should
2068 * never get caught in the normal page freeing logic.
2069 *
2070 * (Kswapd normally doesn't need memory anyway, but sometimes
2071 * you need a small amount of memory in order to be able to
2072 * page out something else, and this flag essentially protects
2073 * us from recursively trying to free more memory as we're
2074 * trying to free the first piece of memory in the first place).
2075 */
2076 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2077 set_freezable();
2078
2079 order = 0;
2080 for ( ; ; ) {
2081 unsigned long new_order;
2082
2083 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2084 new_order = pgdat->kswapd_max_order;
2085 pgdat->kswapd_max_order = 0;
2086 if (order < new_order) {
2087 /*
2088 * Don't sleep if someone wants a larger 'order'
2089 * allocation
2090 */
2091 order = new_order;
2092 } else {
2093 if (!freezing(current))
2094 schedule();
2095
2096 order = pgdat->kswapd_max_order;
2097 }
2098 finish_wait(&pgdat->kswapd_wait, &wait);
2099
2100 if (!try_to_freeze()) {
2101 /* We can speed up thawing tasks if we don't call
2102 * balance_pgdat after returning from the refrigerator
2103 */
2104 balance_pgdat(pgdat, order);
2105 }
2106 }
2107 return 0;
2108 }
2109
2110 /*
2111 * A zone is low on free memory, so wake its kswapd task to service it.
2112 */
2113 void wakeup_kswapd(struct zone *zone, int order)
2114 {
2115 pg_data_t *pgdat;
2116
2117 if (!populated_zone(zone))
2118 return;
2119
2120 pgdat = zone->zone_pgdat;
2121 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2122 return;
2123 if (pgdat->kswapd_max_order < order)
2124 pgdat->kswapd_max_order = order;
2125 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2126 return;
2127 if (!waitqueue_active(&pgdat->kswapd_wait))
2128 return;
2129 wake_up_interruptible(&pgdat->kswapd_wait);
2130 }
2131
2132 unsigned long global_lru_pages(void)
2133 {
2134 return global_page_state(NR_ACTIVE_ANON)
2135 + global_page_state(NR_ACTIVE_FILE)
2136 + global_page_state(NR_INACTIVE_ANON)
2137 + global_page_state(NR_INACTIVE_FILE);
2138 }
2139
2140 #ifdef CONFIG_HIBERNATION
2141 /*
2142 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2143 * from LRU lists system-wide, for given pass and priority.
2144 *
2145 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2146 */
2147 static void shrink_all_zones(unsigned long nr_pages, int prio,
2148 int pass, struct scan_control *sc)
2149 {
2150 struct zone *zone;
2151 unsigned long nr_reclaimed = 0;
2152
2153 for_each_populated_zone(zone) {
2154 enum lru_list l;
2155
2156 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2157 continue;
2158
2159 for_each_evictable_lru(l) {
2160 enum zone_stat_item ls = NR_LRU_BASE + l;
2161 unsigned long lru_pages = zone_page_state(zone, ls);
2162
2163 /* For pass = 0, we don't shrink the active list */
2164 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2165 l == LRU_ACTIVE_FILE))
2166 continue;
2167
2168 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2169 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2170 unsigned long nr_to_scan;
2171
2172 zone->lru[l].nr_saved_scan = 0;
2173 nr_to_scan = min(nr_pages, lru_pages);
2174 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2175 sc, prio);
2176 if (nr_reclaimed >= nr_pages) {
2177 sc->nr_reclaimed += nr_reclaimed;
2178 return;
2179 }
2180 }
2181 }
2182 }
2183 sc->nr_reclaimed += nr_reclaimed;
2184 }
2185
2186 /*
2187 * Try to free `nr_pages' of memory, system-wide, and return the number of
2188 * freed pages.
2189 *
2190 * Rather than trying to age LRUs the aim is to preserve the overall
2191 * LRU order by reclaiming preferentially
2192 * inactive > active > active referenced > active mapped
2193 */
2194 unsigned long shrink_all_memory(unsigned long nr_pages)
2195 {
2196 unsigned long lru_pages, nr_slab;
2197 int pass;
2198 struct reclaim_state reclaim_state;
2199 struct scan_control sc = {
2200 .gfp_mask = GFP_KERNEL,
2201 .may_unmap = 0,
2202 .may_writepage = 1,
2203 .isolate_pages = isolate_pages_global,
2204 .nr_reclaimed = 0,
2205 };
2206
2207 current->reclaim_state = &reclaim_state;
2208
2209 lru_pages = global_lru_pages();
2210 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2211 /* If slab caches are huge, it's better to hit them first */
2212 while (nr_slab >= lru_pages) {
2213 reclaim_state.reclaimed_slab = 0;
2214 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2215 if (!reclaim_state.reclaimed_slab)
2216 break;
2217
2218 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2219 if (sc.nr_reclaimed >= nr_pages)
2220 goto out;
2221
2222 nr_slab -= reclaim_state.reclaimed_slab;
2223 }
2224
2225 /*
2226 * We try to shrink LRUs in 5 passes:
2227 * 0 = Reclaim from inactive_list only
2228 * 1 = Reclaim from active list but don't reclaim mapped
2229 * 2 = 2nd pass of type 1
2230 * 3 = Reclaim mapped (normal reclaim)
2231 * 4 = 2nd pass of type 3
2232 */
2233 for (pass = 0; pass < 5; pass++) {
2234 int prio;
2235
2236 /* Force reclaiming mapped pages in the passes #3 and #4 */
2237 if (pass > 2)
2238 sc.may_unmap = 1;
2239
2240 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2241 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2242
2243 sc.nr_scanned = 0;
2244 sc.swap_cluster_max = nr_to_scan;
2245 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2246 if (sc.nr_reclaimed >= nr_pages)
2247 goto out;
2248
2249 reclaim_state.reclaimed_slab = 0;
2250 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2251 global_lru_pages());
2252 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2253 if (sc.nr_reclaimed >= nr_pages)
2254 goto out;
2255
2256 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2257 congestion_wait(BLK_RW_ASYNC, HZ / 10);
2258 }
2259 }
2260
2261 /*
2262 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2263 * something in slab caches
2264 */
2265 if (!sc.nr_reclaimed) {
2266 do {
2267 reclaim_state.reclaimed_slab = 0;
2268 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2269 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2270 } while (sc.nr_reclaimed < nr_pages &&
2271 reclaim_state.reclaimed_slab > 0);
2272 }
2273
2274
2275 out:
2276 current->reclaim_state = NULL;
2277
2278 return sc.nr_reclaimed;
2279 }
2280 #endif /* CONFIG_HIBERNATION */
2281
2282 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2283 not required for correctness. So if the last cpu in a node goes
2284 away, we get changed to run anywhere: as the first one comes back,
2285 restore their cpu bindings. */
2286 static int __devinit cpu_callback(struct notifier_block *nfb,
2287 unsigned long action, void *hcpu)
2288 {
2289 int nid;
2290
2291 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2292 for_each_node_state(nid, N_HIGH_MEMORY) {
2293 pg_data_t *pgdat = NODE_DATA(nid);
2294 const struct cpumask *mask;
2295
2296 mask = cpumask_of_node(pgdat->node_id);
2297
2298 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2299 /* One of our CPUs online: restore mask */
2300 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2301 }
2302 }
2303 return NOTIFY_OK;
2304 }
2305
2306 /*
2307 * This kswapd start function will be called by init and node-hot-add.
2308 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2309 */
2310 int kswapd_run(int nid)
2311 {
2312 pg_data_t *pgdat = NODE_DATA(nid);
2313 int ret = 0;
2314
2315 if (pgdat->kswapd)
2316 return 0;
2317
2318 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2319 if (IS_ERR(pgdat->kswapd)) {
2320 /* failure at boot is fatal */
2321 BUG_ON(system_state == SYSTEM_BOOTING);
2322 printk("Failed to start kswapd on node %d\n",nid);
2323 ret = -1;
2324 }
2325 return ret;
2326 }
2327
2328 static int __init kswapd_init(void)
2329 {
2330 int nid;
2331
2332 swap_setup();
2333 for_each_node_state(nid, N_HIGH_MEMORY)
2334 kswapd_run(nid);
2335 hotcpu_notifier(cpu_callback, 0);
2336 return 0;
2337 }
2338
2339 module_init(kswapd_init)
2340
2341 #ifdef CONFIG_NUMA
2342 /*
2343 * Zone reclaim mode
2344 *
2345 * If non-zero call zone_reclaim when the number of free pages falls below
2346 * the watermarks.
2347 */
2348 int zone_reclaim_mode __read_mostly;
2349
2350 #define RECLAIM_OFF 0
2351 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2352 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2353 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2354
2355 /*
2356 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2357 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2358 * a zone.
2359 */
2360 #define ZONE_RECLAIM_PRIORITY 4
2361
2362 /*
2363 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2364 * occur.
2365 */
2366 int sysctl_min_unmapped_ratio = 1;
2367
2368 /*
2369 * If the number of slab pages in a zone grows beyond this percentage then
2370 * slab reclaim needs to occur.
2371 */
2372 int sysctl_min_slab_ratio = 5;
2373
2374 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2375 {
2376 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2377 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2378 zone_page_state(zone, NR_ACTIVE_FILE);
2379
2380 /*
2381 * It's possible for there to be more file mapped pages than
2382 * accounted for by the pages on the file LRU lists because
2383 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2384 */
2385 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2386 }
2387
2388 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2389 static long zone_pagecache_reclaimable(struct zone *zone)
2390 {
2391 long nr_pagecache_reclaimable;
2392 long delta = 0;
2393
2394 /*
2395 * If RECLAIM_SWAP is set, then all file pages are considered
2396 * potentially reclaimable. Otherwise, we have to worry about
2397 * pages like swapcache and zone_unmapped_file_pages() provides
2398 * a better estimate
2399 */
2400 if (zone_reclaim_mode & RECLAIM_SWAP)
2401 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2402 else
2403 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2404
2405 /* If we can't clean pages, remove dirty pages from consideration */
2406 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2407 delta += zone_page_state(zone, NR_FILE_DIRTY);
2408
2409 /* Watch for any possible underflows due to delta */
2410 if (unlikely(delta > nr_pagecache_reclaimable))
2411 delta = nr_pagecache_reclaimable;
2412
2413 return nr_pagecache_reclaimable - delta;
2414 }
2415
2416 /*
2417 * Try to free up some pages from this zone through reclaim.
2418 */
2419 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2420 {
2421 /* Minimum pages needed in order to stay on node */
2422 const unsigned long nr_pages = 1 << order;
2423 struct task_struct *p = current;
2424 struct reclaim_state reclaim_state;
2425 int priority;
2426 struct scan_control sc = {
2427 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2428 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2429 .may_swap = 1,
2430 .swap_cluster_max = max_t(unsigned long, nr_pages,
2431 SWAP_CLUSTER_MAX),
2432 .gfp_mask = gfp_mask,
2433 .swappiness = vm_swappiness,
2434 .order = order,
2435 .isolate_pages = isolate_pages_global,
2436 };
2437 unsigned long slab_reclaimable;
2438
2439 disable_swap_token();
2440 cond_resched();
2441 /*
2442 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2443 * and we also need to be able to write out pages for RECLAIM_WRITE
2444 * and RECLAIM_SWAP.
2445 */
2446 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2447 reclaim_state.reclaimed_slab = 0;
2448 p->reclaim_state = &reclaim_state;
2449
2450 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2451 /*
2452 * Free memory by calling shrink zone with increasing
2453 * priorities until we have enough memory freed.
2454 */
2455 priority = ZONE_RECLAIM_PRIORITY;
2456 do {
2457 note_zone_scanning_priority(zone, priority);
2458 shrink_zone(priority, zone, &sc);
2459 priority--;
2460 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2461 }
2462
2463 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2464 if (slab_reclaimable > zone->min_slab_pages) {
2465 /*
2466 * shrink_slab() does not currently allow us to determine how
2467 * many pages were freed in this zone. So we take the current
2468 * number of slab pages and shake the slab until it is reduced
2469 * by the same nr_pages that we used for reclaiming unmapped
2470 * pages.
2471 *
2472 * Note that shrink_slab will free memory on all zones and may
2473 * take a long time.
2474 */
2475 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2476 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2477 slab_reclaimable - nr_pages)
2478 ;
2479
2480 /*
2481 * Update nr_reclaimed by the number of slab pages we
2482 * reclaimed from this zone.
2483 */
2484 sc.nr_reclaimed += slab_reclaimable -
2485 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2486 }
2487
2488 p->reclaim_state = NULL;
2489 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2490 return sc.nr_reclaimed >= nr_pages;
2491 }
2492
2493 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2494 {
2495 int node_id;
2496 int ret;
2497
2498 /*
2499 * Zone reclaim reclaims unmapped file backed pages and
2500 * slab pages if we are over the defined limits.
2501 *
2502 * A small portion of unmapped file backed pages is needed for
2503 * file I/O otherwise pages read by file I/O will be immediately
2504 * thrown out if the zone is overallocated. So we do not reclaim
2505 * if less than a specified percentage of the zone is used by
2506 * unmapped file backed pages.
2507 */
2508 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2509 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2510 return ZONE_RECLAIM_FULL;
2511
2512 if (zone_is_all_unreclaimable(zone))
2513 return ZONE_RECLAIM_FULL;
2514
2515 /*
2516 * Do not scan if the allocation should not be delayed.
2517 */
2518 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2519 return ZONE_RECLAIM_NOSCAN;
2520
2521 /*
2522 * Only run zone reclaim on the local zone or on zones that do not
2523 * have associated processors. This will favor the local processor
2524 * over remote processors and spread off node memory allocations
2525 * as wide as possible.
2526 */
2527 node_id = zone_to_nid(zone);
2528 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2529 return ZONE_RECLAIM_NOSCAN;
2530
2531 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2532 return ZONE_RECLAIM_NOSCAN;
2533
2534 ret = __zone_reclaim(zone, gfp_mask, order);
2535 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2536
2537 if (!ret)
2538 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2539
2540 return ret;
2541 }
2542 #endif
2543
2544 /*
2545 * page_evictable - test whether a page is evictable
2546 * @page: the page to test
2547 * @vma: the VMA in which the page is or will be mapped, may be NULL
2548 *
2549 * Test whether page is evictable--i.e., should be placed on active/inactive
2550 * lists vs unevictable list. The vma argument is !NULL when called from the
2551 * fault path to determine how to instantate a new page.
2552 *
2553 * Reasons page might not be evictable:
2554 * (1) page's mapping marked unevictable
2555 * (2) page is part of an mlocked VMA
2556 *
2557 */
2558 int page_evictable(struct page *page, struct vm_area_struct *vma)
2559 {
2560
2561 if (mapping_unevictable(page_mapping(page)))
2562 return 0;
2563
2564 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2565 return 0;
2566
2567 return 1;
2568 }
2569
2570 /**
2571 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2572 * @page: page to check evictability and move to appropriate lru list
2573 * @zone: zone page is in
2574 *
2575 * Checks a page for evictability and moves the page to the appropriate
2576 * zone lru list.
2577 *
2578 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2579 * have PageUnevictable set.
2580 */
2581 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2582 {
2583 VM_BUG_ON(PageActive(page));
2584
2585 retry:
2586 ClearPageUnevictable(page);
2587 if (page_evictable(page, NULL)) {
2588 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2589
2590 __dec_zone_state(zone, NR_UNEVICTABLE);
2591 list_move(&page->lru, &zone->lru[l].list);
2592 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2593 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2594 __count_vm_event(UNEVICTABLE_PGRESCUED);
2595 } else {
2596 /*
2597 * rotate unevictable list
2598 */
2599 SetPageUnevictable(page);
2600 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2601 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2602 if (page_evictable(page, NULL))
2603 goto retry;
2604 }
2605 }
2606
2607 /**
2608 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2609 * @mapping: struct address_space to scan for evictable pages
2610 *
2611 * Scan all pages in mapping. Check unevictable pages for
2612 * evictability and move them to the appropriate zone lru list.
2613 */
2614 void scan_mapping_unevictable_pages(struct address_space *mapping)
2615 {
2616 pgoff_t next = 0;
2617 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2618 PAGE_CACHE_SHIFT;
2619 struct zone *zone;
2620 struct pagevec pvec;
2621
2622 if (mapping->nrpages == 0)
2623 return;
2624
2625 pagevec_init(&pvec, 0);
2626 while (next < end &&
2627 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2628 int i;
2629 int pg_scanned = 0;
2630
2631 zone = NULL;
2632
2633 for (i = 0; i < pagevec_count(&pvec); i++) {
2634 struct page *page = pvec.pages[i];
2635 pgoff_t page_index = page->index;
2636 struct zone *pagezone = page_zone(page);
2637
2638 pg_scanned++;
2639 if (page_index > next)
2640 next = page_index;
2641 next++;
2642
2643 if (pagezone != zone) {
2644 if (zone)
2645 spin_unlock_irq(&zone->lru_lock);
2646 zone = pagezone;
2647 spin_lock_irq(&zone->lru_lock);
2648 }
2649
2650 if (PageLRU(page) && PageUnevictable(page))
2651 check_move_unevictable_page(page, zone);
2652 }
2653 if (zone)
2654 spin_unlock_irq(&zone->lru_lock);
2655 pagevec_release(&pvec);
2656
2657 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2658 }
2659
2660 }
2661
2662 /**
2663 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2664 * @zone - zone of which to scan the unevictable list
2665 *
2666 * Scan @zone's unevictable LRU lists to check for pages that have become
2667 * evictable. Move those that have to @zone's inactive list where they
2668 * become candidates for reclaim, unless shrink_inactive_zone() decides
2669 * to reactivate them. Pages that are still unevictable are rotated
2670 * back onto @zone's unevictable list.
2671 */
2672 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2673 static void scan_zone_unevictable_pages(struct zone *zone)
2674 {
2675 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2676 unsigned long scan;
2677 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2678
2679 while (nr_to_scan > 0) {
2680 unsigned long batch_size = min(nr_to_scan,
2681 SCAN_UNEVICTABLE_BATCH_SIZE);
2682
2683 spin_lock_irq(&zone->lru_lock);
2684 for (scan = 0; scan < batch_size; scan++) {
2685 struct page *page = lru_to_page(l_unevictable);
2686
2687 if (!trylock_page(page))
2688 continue;
2689
2690 prefetchw_prev_lru_page(page, l_unevictable, flags);
2691
2692 if (likely(PageLRU(page) && PageUnevictable(page)))
2693 check_move_unevictable_page(page, zone);
2694
2695 unlock_page(page);
2696 }
2697 spin_unlock_irq(&zone->lru_lock);
2698
2699 nr_to_scan -= batch_size;
2700 }
2701 }
2702
2703
2704 /**
2705 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2706 *
2707 * A really big hammer: scan all zones' unevictable LRU lists to check for
2708 * pages that have become evictable. Move those back to the zones'
2709 * inactive list where they become candidates for reclaim.
2710 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2711 * and we add swap to the system. As such, it runs in the context of a task
2712 * that has possibly/probably made some previously unevictable pages
2713 * evictable.
2714 */
2715 static void scan_all_zones_unevictable_pages(void)
2716 {
2717 struct zone *zone;
2718
2719 for_each_zone(zone) {
2720 scan_zone_unevictable_pages(zone);
2721 }
2722 }
2723
2724 /*
2725 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2726 * all nodes' unevictable lists for evictable pages
2727 */
2728 unsigned long scan_unevictable_pages;
2729
2730 int scan_unevictable_handler(struct ctl_table *table, int write,
2731 struct file *file, void __user *buffer,
2732 size_t *length, loff_t *ppos)
2733 {
2734 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2735
2736 if (write && *(unsigned long *)table->data)
2737 scan_all_zones_unevictable_pages();
2738
2739 scan_unevictable_pages = 0;
2740 return 0;
2741 }
2742
2743 /*
2744 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2745 * a specified node's per zone unevictable lists for evictable pages.
2746 */
2747
2748 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2749 struct sysdev_attribute *attr,
2750 char *buf)
2751 {
2752 return sprintf(buf, "0\n"); /* always zero; should fit... */
2753 }
2754
2755 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2756 struct sysdev_attribute *attr,
2757 const char *buf, size_t count)
2758 {
2759 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2760 struct zone *zone;
2761 unsigned long res;
2762 unsigned long req = strict_strtoul(buf, 10, &res);
2763
2764 if (!req)
2765 return 1; /* zero is no-op */
2766
2767 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2768 if (!populated_zone(zone))
2769 continue;
2770 scan_zone_unevictable_pages(zone);
2771 }
2772 return 1;
2773 }
2774
2775
2776 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2777 read_scan_unevictable_node,
2778 write_scan_unevictable_node);
2779
2780 int scan_unevictable_register_node(struct node *node)
2781 {
2782 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2783 }
2784
2785 void scan_unevictable_unregister_node(struct node *node)
2786 {
2787 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2788 }
2789