mm: vmscan: clarify how swappiness, highest priority, memcg interact
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157 * Add a shrinker callback to be called from the vm
158 */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169 * Remove one
170 */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182 {
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210 {
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330 {
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338 }
339
340 /*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354 {
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379 {
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446 }
447
448 /*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514 }
515
516 /*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534 }
535
536 /**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545 void putback_lru_page(struct page *page)
546 {
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 enum ttu_flags ttu_flags,
678 unsigned long *ret_nr_dirty,
679 unsigned long *ret_nr_writeback,
680 bool force_reclaim)
681 {
682 LIST_HEAD(ret_pages);
683 LIST_HEAD(free_pages);
684 int pgactivate = 0;
685 unsigned long nr_dirty = 0;
686 unsigned long nr_congested = 0;
687 unsigned long nr_reclaimed = 0;
688 unsigned long nr_writeback = 0;
689
690 cond_resched();
691
692 mem_cgroup_uncharge_start();
693 while (!list_empty(page_list)) {
694 struct address_space *mapping;
695 struct page *page;
696 int may_enter_fs;
697 enum page_references references = PAGEREF_RECLAIM_CLEAN;
698
699 cond_resched();
700
701 page = lru_to_page(page_list);
702 list_del(&page->lru);
703
704 if (!trylock_page(page))
705 goto keep;
706
707 VM_BUG_ON(PageActive(page));
708 VM_BUG_ON(page_zone(page) != zone);
709
710 sc->nr_scanned++;
711
712 if (unlikely(!page_evictable(page)))
713 goto cull_mlocked;
714
715 if (!sc->may_unmap && page_mapped(page))
716 goto keep_locked;
717
718 /* Double the slab pressure for mapped and swapcache pages */
719 if (page_mapped(page) || PageSwapCache(page))
720 sc->nr_scanned++;
721
722 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724
725 if (PageWriteback(page)) {
726 /*
727 * memcg doesn't have any dirty pages throttling so we
728 * could easily OOM just because too many pages are in
729 * writeback and there is nothing else to reclaim.
730 *
731 * Check __GFP_IO, certainly because a loop driver
732 * thread might enter reclaim, and deadlock if it waits
733 * on a page for which it is needed to do the write
734 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 * but more thought would probably show more reasons.
736 *
737 * Don't require __GFP_FS, since we're not going into
738 * the FS, just waiting on its writeback completion.
739 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 * testing may_enter_fs here is liable to OOM on them.
742 */
743 if (global_reclaim(sc) ||
744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 /*
746 * This is slightly racy - end_page_writeback()
747 * might have just cleared PageReclaim, then
748 * setting PageReclaim here end up interpreted
749 * as PageReadahead - but that does not matter
750 * enough to care. What we do want is for this
751 * page to have PageReclaim set next time memcg
752 * reclaim reaches the tests above, so it will
753 * then wait_on_page_writeback() to avoid OOM;
754 * and it's also appropriate in global reclaim.
755 */
756 SetPageReclaim(page);
757 nr_writeback++;
758 goto keep_locked;
759 }
760 wait_on_page_writeback(page);
761 }
762
763 if (!force_reclaim)
764 references = page_check_references(page, sc);
765
766 switch (references) {
767 case PAGEREF_ACTIVATE:
768 goto activate_locked;
769 case PAGEREF_KEEP:
770 goto keep_locked;
771 case PAGEREF_RECLAIM:
772 case PAGEREF_RECLAIM_CLEAN:
773 ; /* try to reclaim the page below */
774 }
775
776 /*
777 * Anonymous process memory has backing store?
778 * Try to allocate it some swap space here.
779 */
780 if (PageAnon(page) && !PageSwapCache(page)) {
781 if (!(sc->gfp_mask & __GFP_IO))
782 goto keep_locked;
783 if (!add_to_swap(page))
784 goto activate_locked;
785 may_enter_fs = 1;
786 }
787
788 mapping = page_mapping(page);
789
790 /*
791 * The page is mapped into the page tables of one or more
792 * processes. Try to unmap it here.
793 */
794 if (page_mapped(page) && mapping) {
795 switch (try_to_unmap(page, ttu_flags)) {
796 case SWAP_FAIL:
797 goto activate_locked;
798 case SWAP_AGAIN:
799 goto keep_locked;
800 case SWAP_MLOCK:
801 goto cull_mlocked;
802 case SWAP_SUCCESS:
803 ; /* try to free the page below */
804 }
805 }
806
807 if (PageDirty(page)) {
808 nr_dirty++;
809
810 /*
811 * Only kswapd can writeback filesystem pages to
812 * avoid risk of stack overflow but do not writeback
813 * unless under significant pressure.
814 */
815 if (page_is_file_cache(page) &&
816 (!current_is_kswapd() ||
817 sc->priority >= DEF_PRIORITY - 2)) {
818 /*
819 * Immediately reclaim when written back.
820 * Similar in principal to deactivate_page()
821 * except we already have the page isolated
822 * and know it's dirty
823 */
824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 SetPageReclaim(page);
826
827 goto keep_locked;
828 }
829
830 if (references == PAGEREF_RECLAIM_CLEAN)
831 goto keep_locked;
832 if (!may_enter_fs)
833 goto keep_locked;
834 if (!sc->may_writepage)
835 goto keep_locked;
836
837 /* Page is dirty, try to write it out here */
838 switch (pageout(page, mapping, sc)) {
839 case PAGE_KEEP:
840 nr_congested++;
841 goto keep_locked;
842 case PAGE_ACTIVATE:
843 goto activate_locked;
844 case PAGE_SUCCESS:
845 if (PageWriteback(page))
846 goto keep;
847 if (PageDirty(page))
848 goto keep;
849
850 /*
851 * A synchronous write - probably a ramdisk. Go
852 * ahead and try to reclaim the page.
853 */
854 if (!trylock_page(page))
855 goto keep;
856 if (PageDirty(page) || PageWriteback(page))
857 goto keep_locked;
858 mapping = page_mapping(page);
859 case PAGE_CLEAN:
860 ; /* try to free the page below */
861 }
862 }
863
864 /*
865 * If the page has buffers, try to free the buffer mappings
866 * associated with this page. If we succeed we try to free
867 * the page as well.
868 *
869 * We do this even if the page is PageDirty().
870 * try_to_release_page() does not perform I/O, but it is
871 * possible for a page to have PageDirty set, but it is actually
872 * clean (all its buffers are clean). This happens if the
873 * buffers were written out directly, with submit_bh(). ext3
874 * will do this, as well as the blockdev mapping.
875 * try_to_release_page() will discover that cleanness and will
876 * drop the buffers and mark the page clean - it can be freed.
877 *
878 * Rarely, pages can have buffers and no ->mapping. These are
879 * the pages which were not successfully invalidated in
880 * truncate_complete_page(). We try to drop those buffers here
881 * and if that worked, and the page is no longer mapped into
882 * process address space (page_count == 1) it can be freed.
883 * Otherwise, leave the page on the LRU so it is swappable.
884 */
885 if (page_has_private(page)) {
886 if (!try_to_release_page(page, sc->gfp_mask))
887 goto activate_locked;
888 if (!mapping && page_count(page) == 1) {
889 unlock_page(page);
890 if (put_page_testzero(page))
891 goto free_it;
892 else {
893 /*
894 * rare race with speculative reference.
895 * the speculative reference will free
896 * this page shortly, so we may
897 * increment nr_reclaimed here (and
898 * leave it off the LRU).
899 */
900 nr_reclaimed++;
901 continue;
902 }
903 }
904 }
905
906 if (!mapping || !__remove_mapping(mapping, page))
907 goto keep_locked;
908
909 /*
910 * At this point, we have no other references and there is
911 * no way to pick any more up (removed from LRU, removed
912 * from pagecache). Can use non-atomic bitops now (and
913 * we obviously don't have to worry about waking up a process
914 * waiting on the page lock, because there are no references.
915 */
916 __clear_page_locked(page);
917 free_it:
918 nr_reclaimed++;
919
920 /*
921 * Is there need to periodically free_page_list? It would
922 * appear not as the counts should be low
923 */
924 list_add(&page->lru, &free_pages);
925 continue;
926
927 cull_mlocked:
928 if (PageSwapCache(page))
929 try_to_free_swap(page);
930 unlock_page(page);
931 putback_lru_page(page);
932 continue;
933
934 activate_locked:
935 /* Not a candidate for swapping, so reclaim swap space. */
936 if (PageSwapCache(page) && vm_swap_full())
937 try_to_free_swap(page);
938 VM_BUG_ON(PageActive(page));
939 SetPageActive(page);
940 pgactivate++;
941 keep_locked:
942 unlock_page(page);
943 keep:
944 list_add(&page->lru, &ret_pages);
945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 }
947
948 /*
949 * Tag a zone as congested if all the dirty pages encountered were
950 * backed by a congested BDI. In this case, reclaimers should just
951 * back off and wait for congestion to clear because further reclaim
952 * will encounter the same problem
953 */
954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 zone_set_flag(zone, ZONE_CONGESTED);
956
957 free_hot_cold_page_list(&free_pages, 1);
958
959 list_splice(&ret_pages, page_list);
960 count_vm_events(PGACTIVATE, pgactivate);
961 mem_cgroup_uncharge_end();
962 *ret_nr_dirty += nr_dirty;
963 *ret_nr_writeback += nr_writeback;
964 return nr_reclaimed;
965 }
966
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 struct list_head *page_list)
969 {
970 struct scan_control sc = {
971 .gfp_mask = GFP_KERNEL,
972 .priority = DEF_PRIORITY,
973 .may_unmap = 1,
974 };
975 unsigned long ret, dummy1, dummy2;
976 struct page *page, *next;
977 LIST_HEAD(clean_pages);
978
979 list_for_each_entry_safe(page, next, page_list, lru) {
980 if (page_is_file_cache(page) && !PageDirty(page)) {
981 ClearPageActive(page);
982 list_move(&page->lru, &clean_pages);
983 }
984 }
985
986 ret = shrink_page_list(&clean_pages, zone, &sc,
987 TTU_UNMAP|TTU_IGNORE_ACCESS,
988 &dummy1, &dummy2, true);
989 list_splice(&clean_pages, page_list);
990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 return ret;
992 }
993
994 /*
995 * Attempt to remove the specified page from its LRU. Only take this page
996 * if it is of the appropriate PageActive status. Pages which are being
997 * freed elsewhere are also ignored.
998 *
999 * page: page to consider
1000 * mode: one of the LRU isolation modes defined above
1001 *
1002 * returns 0 on success, -ve errno on failure.
1003 */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 int ret = -EINVAL;
1007
1008 /* Only take pages on the LRU. */
1009 if (!PageLRU(page))
1010 return ret;
1011
1012 /* Compaction should not handle unevictable pages but CMA can do so */
1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 return ret;
1015
1016 ret = -EBUSY;
1017
1018 /*
1019 * To minimise LRU disruption, the caller can indicate that it only
1020 * wants to isolate pages it will be able to operate on without
1021 * blocking - clean pages for the most part.
1022 *
1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 * is used by reclaim when it is cannot write to backing storage
1025 *
1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 * that it is possible to migrate without blocking
1028 */
1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 /* All the caller can do on PageWriteback is block */
1031 if (PageWriteback(page))
1032 return ret;
1033
1034 if (PageDirty(page)) {
1035 struct address_space *mapping;
1036
1037 /* ISOLATE_CLEAN means only clean pages */
1038 if (mode & ISOLATE_CLEAN)
1039 return ret;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking
1045 */
1046 mapping = page_mapping(page);
1047 if (mapping && !mapping->a_ops->migratepage)
1048 return ret;
1049 }
1050 }
1051
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1054
1055 if (likely(get_page_unless_zero(page))) {
1056 /*
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1060 */
1061 ClearPageLRU(page);
1062 ret = 0;
1063 }
1064
1065 return ret;
1066 }
1067
1068 /*
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1072 *
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1075 *
1076 * Appropriate locks must be held before calling this function.
1077 *
1078 * @nr_to_scan: The number of pages to look through on the list.
1079 * @lruvec: The LRU vector to pull pages from.
1080 * @dst: The temp list to put pages on to.
1081 * @nr_scanned: The number of pages that were scanned.
1082 * @sc: The scan_control struct for this reclaim session
1083 * @mode: One of the LRU isolation modes
1084 * @lru: LRU list id for isolating
1085 *
1086 * returns how many pages were moved onto *@dst.
1087 */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 struct lruvec *lruvec, struct list_head *dst,
1090 unsigned long *nr_scanned, struct scan_control *sc,
1091 isolate_mode_t mode, enum lru_list lru)
1092 {
1093 struct list_head *src = &lruvec->lists[lru];
1094 unsigned long nr_taken = 0;
1095 unsigned long scan;
1096
1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 struct page *page;
1099 int nr_pages;
1100
1101 page = lru_to_page(src);
1102 prefetchw_prev_lru_page(page, src, flags);
1103
1104 VM_BUG_ON(!PageLRU(page));
1105
1106 switch (__isolate_lru_page(page, mode)) {
1107 case 0:
1108 nr_pages = hpage_nr_pages(page);
1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 list_move(&page->lru, dst);
1111 nr_taken += nr_pages;
1112 break;
1113
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 continue;
1118
1119 default:
1120 BUG();
1121 }
1122 }
1123
1124 *nr_scanned = scan;
1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 nr_taken, mode, is_file_lru(lru));
1127 return nr_taken;
1128 }
1129
1130 /**
1131 * isolate_lru_page - tries to isolate a page from its LRU list
1132 * @page: page to isolate from its LRU list
1133 *
1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135 * vmstat statistic corresponding to whatever LRU list the page was on.
1136 *
1137 * Returns 0 if the page was removed from an LRU list.
1138 * Returns -EBUSY if the page was not on an LRU list.
1139 *
1140 * The returned page will have PageLRU() cleared. If it was found on
1141 * the active list, it will have PageActive set. If it was found on
1142 * the unevictable list, it will have the PageUnevictable bit set. That flag
1143 * may need to be cleared by the caller before letting the page go.
1144 *
1145 * The vmstat statistic corresponding to the list on which the page was
1146 * found will be decremented.
1147 *
1148 * Restrictions:
1149 * (1) Must be called with an elevated refcount on the page. This is a
1150 * fundamentnal difference from isolate_lru_pages (which is called
1151 * without a stable reference).
1152 * (2) the lru_lock must not be held.
1153 * (3) interrupts must be enabled.
1154 */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 int ret = -EBUSY;
1158
1159 VM_BUG_ON(!page_count(page));
1160
1161 if (PageLRU(page)) {
1162 struct zone *zone = page_zone(page);
1163 struct lruvec *lruvec;
1164
1165 spin_lock_irq(&zone->lru_lock);
1166 lruvec = mem_cgroup_page_lruvec(page, zone);
1167 if (PageLRU(page)) {
1168 int lru = page_lru(page);
1169 get_page(page);
1170 ClearPageLRU(page);
1171 del_page_from_lru_list(page, lruvec, lru);
1172 ret = 0;
1173 }
1174 spin_unlock_irq(&zone->lru_lock);
1175 }
1176 return ret;
1177 }
1178
1179 /*
1180 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1181 * then get resheduled. When there are massive number of tasks doing page
1182 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1183 * the LRU list will go small and be scanned faster than necessary, leading to
1184 * unnecessary swapping, thrashing and OOM.
1185 */
1186 static int too_many_isolated(struct zone *zone, int file,
1187 struct scan_control *sc)
1188 {
1189 unsigned long inactive, isolated;
1190
1191 if (current_is_kswapd())
1192 return 0;
1193
1194 if (!global_reclaim(sc))
1195 return 0;
1196
1197 if (file) {
1198 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1199 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1200 } else {
1201 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1202 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1203 }
1204
1205 /*
1206 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1207 * won't get blocked by normal direct-reclaimers, forming a circular
1208 * deadlock.
1209 */
1210 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1211 inactive >>= 3;
1212
1213 return isolated > inactive;
1214 }
1215
1216 static noinline_for_stack void
1217 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1218 {
1219 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1220 struct zone *zone = lruvec_zone(lruvec);
1221 LIST_HEAD(pages_to_free);
1222
1223 /*
1224 * Put back any unfreeable pages.
1225 */
1226 while (!list_empty(page_list)) {
1227 struct page *page = lru_to_page(page_list);
1228 int lru;
1229
1230 VM_BUG_ON(PageLRU(page));
1231 list_del(&page->lru);
1232 if (unlikely(!page_evictable(page))) {
1233 spin_unlock_irq(&zone->lru_lock);
1234 putback_lru_page(page);
1235 spin_lock_irq(&zone->lru_lock);
1236 continue;
1237 }
1238
1239 lruvec = mem_cgroup_page_lruvec(page, zone);
1240
1241 SetPageLRU(page);
1242 lru = page_lru(page);
1243 add_page_to_lru_list(page, lruvec, lru);
1244
1245 if (is_active_lru(lru)) {
1246 int file = is_file_lru(lru);
1247 int numpages = hpage_nr_pages(page);
1248 reclaim_stat->recent_rotated[file] += numpages;
1249 }
1250 if (put_page_testzero(page)) {
1251 __ClearPageLRU(page);
1252 __ClearPageActive(page);
1253 del_page_from_lru_list(page, lruvec, lru);
1254
1255 if (unlikely(PageCompound(page))) {
1256 spin_unlock_irq(&zone->lru_lock);
1257 (*get_compound_page_dtor(page))(page);
1258 spin_lock_irq(&zone->lru_lock);
1259 } else
1260 list_add(&page->lru, &pages_to_free);
1261 }
1262 }
1263
1264 /*
1265 * To save our caller's stack, now use input list for pages to free.
1266 */
1267 list_splice(&pages_to_free, page_list);
1268 }
1269
1270 /*
1271 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1272 * of reclaimed pages
1273 */
1274 static noinline_for_stack unsigned long
1275 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1276 struct scan_control *sc, enum lru_list lru)
1277 {
1278 LIST_HEAD(page_list);
1279 unsigned long nr_scanned;
1280 unsigned long nr_reclaimed = 0;
1281 unsigned long nr_taken;
1282 unsigned long nr_dirty = 0;
1283 unsigned long nr_writeback = 0;
1284 isolate_mode_t isolate_mode = 0;
1285 int file = is_file_lru(lru);
1286 struct zone *zone = lruvec_zone(lruvec);
1287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288
1289 while (unlikely(too_many_isolated(zone, file, sc))) {
1290 congestion_wait(BLK_RW_ASYNC, HZ/10);
1291
1292 /* We are about to die and free our memory. Return now. */
1293 if (fatal_signal_pending(current))
1294 return SWAP_CLUSTER_MAX;
1295 }
1296
1297 lru_add_drain();
1298
1299 if (!sc->may_unmap)
1300 isolate_mode |= ISOLATE_UNMAPPED;
1301 if (!sc->may_writepage)
1302 isolate_mode |= ISOLATE_CLEAN;
1303
1304 spin_lock_irq(&zone->lru_lock);
1305
1306 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1307 &nr_scanned, sc, isolate_mode, lru);
1308
1309 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1310 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1311
1312 if (global_reclaim(sc)) {
1313 zone->pages_scanned += nr_scanned;
1314 if (current_is_kswapd())
1315 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1316 else
1317 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1318 }
1319 spin_unlock_irq(&zone->lru_lock);
1320
1321 if (nr_taken == 0)
1322 return 0;
1323
1324 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1325 &nr_dirty, &nr_writeback, false);
1326
1327 spin_lock_irq(&zone->lru_lock);
1328
1329 reclaim_stat->recent_scanned[file] += nr_taken;
1330
1331 if (global_reclaim(sc)) {
1332 if (current_is_kswapd())
1333 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1334 nr_reclaimed);
1335 else
1336 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1337 nr_reclaimed);
1338 }
1339
1340 putback_inactive_pages(lruvec, &page_list);
1341
1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1343
1344 spin_unlock_irq(&zone->lru_lock);
1345
1346 free_hot_cold_page_list(&page_list, 1);
1347
1348 /*
1349 * If reclaim is isolating dirty pages under writeback, it implies
1350 * that the long-lived page allocation rate is exceeding the page
1351 * laundering rate. Either the global limits are not being effective
1352 * at throttling processes due to the page distribution throughout
1353 * zones or there is heavy usage of a slow backing device. The
1354 * only option is to throttle from reclaim context which is not ideal
1355 * as there is no guarantee the dirtying process is throttled in the
1356 * same way balance_dirty_pages() manages.
1357 *
1358 * This scales the number of dirty pages that must be under writeback
1359 * before throttling depending on priority. It is a simple backoff
1360 * function that has the most effect in the range DEF_PRIORITY to
1361 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1362 * in trouble and reclaim is considered to be in trouble.
1363 *
1364 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1365 * DEF_PRIORITY-1 50% must be PageWriteback
1366 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1367 * ...
1368 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1369 * isolated page is PageWriteback
1370 */
1371 if (nr_writeback && nr_writeback >=
1372 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1373 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1374
1375 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1376 zone_idx(zone),
1377 nr_scanned, nr_reclaimed,
1378 sc->priority,
1379 trace_shrink_flags(file));
1380 return nr_reclaimed;
1381 }
1382
1383 /*
1384 * This moves pages from the active list to the inactive list.
1385 *
1386 * We move them the other way if the page is referenced by one or more
1387 * processes, from rmap.
1388 *
1389 * If the pages are mostly unmapped, the processing is fast and it is
1390 * appropriate to hold zone->lru_lock across the whole operation. But if
1391 * the pages are mapped, the processing is slow (page_referenced()) so we
1392 * should drop zone->lru_lock around each page. It's impossible to balance
1393 * this, so instead we remove the pages from the LRU while processing them.
1394 * It is safe to rely on PG_active against the non-LRU pages in here because
1395 * nobody will play with that bit on a non-LRU page.
1396 *
1397 * The downside is that we have to touch page->_count against each page.
1398 * But we had to alter page->flags anyway.
1399 */
1400
1401 static void move_active_pages_to_lru(struct lruvec *lruvec,
1402 struct list_head *list,
1403 struct list_head *pages_to_free,
1404 enum lru_list lru)
1405 {
1406 struct zone *zone = lruvec_zone(lruvec);
1407 unsigned long pgmoved = 0;
1408 struct page *page;
1409 int nr_pages;
1410
1411 while (!list_empty(list)) {
1412 page = lru_to_page(list);
1413 lruvec = mem_cgroup_page_lruvec(page, zone);
1414
1415 VM_BUG_ON(PageLRU(page));
1416 SetPageLRU(page);
1417
1418 nr_pages = hpage_nr_pages(page);
1419 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1420 list_move(&page->lru, &lruvec->lists[lru]);
1421 pgmoved += nr_pages;
1422
1423 if (put_page_testzero(page)) {
1424 __ClearPageLRU(page);
1425 __ClearPageActive(page);
1426 del_page_from_lru_list(page, lruvec, lru);
1427
1428 if (unlikely(PageCompound(page))) {
1429 spin_unlock_irq(&zone->lru_lock);
1430 (*get_compound_page_dtor(page))(page);
1431 spin_lock_irq(&zone->lru_lock);
1432 } else
1433 list_add(&page->lru, pages_to_free);
1434 }
1435 }
1436 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 if (!is_active_lru(lru))
1438 __count_vm_events(PGDEACTIVATE, pgmoved);
1439 }
1440
1441 static void shrink_active_list(unsigned long nr_to_scan,
1442 struct lruvec *lruvec,
1443 struct scan_control *sc,
1444 enum lru_list lru)
1445 {
1446 unsigned long nr_taken;
1447 unsigned long nr_scanned;
1448 unsigned long vm_flags;
1449 LIST_HEAD(l_hold); /* The pages which were snipped off */
1450 LIST_HEAD(l_active);
1451 LIST_HEAD(l_inactive);
1452 struct page *page;
1453 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1454 unsigned long nr_rotated = 0;
1455 isolate_mode_t isolate_mode = 0;
1456 int file = is_file_lru(lru);
1457 struct zone *zone = lruvec_zone(lruvec);
1458
1459 lru_add_drain();
1460
1461 if (!sc->may_unmap)
1462 isolate_mode |= ISOLATE_UNMAPPED;
1463 if (!sc->may_writepage)
1464 isolate_mode |= ISOLATE_CLEAN;
1465
1466 spin_lock_irq(&zone->lru_lock);
1467
1468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1469 &nr_scanned, sc, isolate_mode, lru);
1470 if (global_reclaim(sc))
1471 zone->pages_scanned += nr_scanned;
1472
1473 reclaim_stat->recent_scanned[file] += nr_taken;
1474
1475 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1476 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1477 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1478 spin_unlock_irq(&zone->lru_lock);
1479
1480 while (!list_empty(&l_hold)) {
1481 cond_resched();
1482 page = lru_to_page(&l_hold);
1483 list_del(&page->lru);
1484
1485 if (unlikely(!page_evictable(page))) {
1486 putback_lru_page(page);
1487 continue;
1488 }
1489
1490 if (unlikely(buffer_heads_over_limit)) {
1491 if (page_has_private(page) && trylock_page(page)) {
1492 if (page_has_private(page))
1493 try_to_release_page(page, 0);
1494 unlock_page(page);
1495 }
1496 }
1497
1498 if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 &vm_flags)) {
1500 nr_rotated += hpage_nr_pages(page);
1501 /*
1502 * Identify referenced, file-backed active pages and
1503 * give them one more trip around the active list. So
1504 * that executable code get better chances to stay in
1505 * memory under moderate memory pressure. Anon pages
1506 * are not likely to be evicted by use-once streaming
1507 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 * so we ignore them here.
1509 */
1510 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1511 list_add(&page->lru, &l_active);
1512 continue;
1513 }
1514 }
1515
1516 ClearPageActive(page); /* we are de-activating */
1517 list_add(&page->lru, &l_inactive);
1518 }
1519
1520 /*
1521 * Move pages back to the lru list.
1522 */
1523 spin_lock_irq(&zone->lru_lock);
1524 /*
1525 * Count referenced pages from currently used mappings as rotated,
1526 * even though only some of them are actually re-activated. This
1527 * helps balance scan pressure between file and anonymous pages in
1528 * get_scan_ratio.
1529 */
1530 reclaim_stat->recent_rotated[file] += nr_rotated;
1531
1532 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1533 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1535 spin_unlock_irq(&zone->lru_lock);
1536
1537 free_hot_cold_page_list(&l_hold, 1);
1538 }
1539
1540 #ifdef CONFIG_SWAP
1541 static int inactive_anon_is_low_global(struct zone *zone)
1542 {
1543 unsigned long active, inactive;
1544
1545 active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1547
1548 if (inactive * zone->inactive_ratio < active)
1549 return 1;
1550
1551 return 0;
1552 }
1553
1554 /**
1555 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556 * @lruvec: LRU vector to check
1557 *
1558 * Returns true if the zone does not have enough inactive anon pages,
1559 * meaning some active anon pages need to be deactivated.
1560 */
1561 static int inactive_anon_is_low(struct lruvec *lruvec)
1562 {
1563 /*
1564 * If we don't have swap space, anonymous page deactivation
1565 * is pointless.
1566 */
1567 if (!total_swap_pages)
1568 return 0;
1569
1570 if (!mem_cgroup_disabled())
1571 return mem_cgroup_inactive_anon_is_low(lruvec);
1572
1573 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1574 }
1575 #else
1576 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1577 {
1578 return 0;
1579 }
1580 #endif
1581
1582 static int inactive_file_is_low_global(struct zone *zone)
1583 {
1584 unsigned long active, inactive;
1585
1586 active = zone_page_state(zone, NR_ACTIVE_FILE);
1587 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1588
1589 return (active > inactive);
1590 }
1591
1592 /**
1593 * inactive_file_is_low - check if file pages need to be deactivated
1594 * @lruvec: LRU vector to check
1595 *
1596 * When the system is doing streaming IO, memory pressure here
1597 * ensures that active file pages get deactivated, until more
1598 * than half of the file pages are on the inactive list.
1599 *
1600 * Once we get to that situation, protect the system's working
1601 * set from being evicted by disabling active file page aging.
1602 *
1603 * This uses a different ratio than the anonymous pages, because
1604 * the page cache uses a use-once replacement algorithm.
1605 */
1606 static int inactive_file_is_low(struct lruvec *lruvec)
1607 {
1608 if (!mem_cgroup_disabled())
1609 return mem_cgroup_inactive_file_is_low(lruvec);
1610
1611 return inactive_file_is_low_global(lruvec_zone(lruvec));
1612 }
1613
1614 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1615 {
1616 if (is_file_lru(lru))
1617 return inactive_file_is_low(lruvec);
1618 else
1619 return inactive_anon_is_low(lruvec);
1620 }
1621
1622 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1623 struct lruvec *lruvec, struct scan_control *sc)
1624 {
1625 if (is_active_lru(lru)) {
1626 if (inactive_list_is_low(lruvec, lru))
1627 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1628 return 0;
1629 }
1630
1631 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1632 }
1633
1634 static int vmscan_swappiness(struct scan_control *sc)
1635 {
1636 if (global_reclaim(sc))
1637 return vm_swappiness;
1638 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1639 }
1640
1641 /*
1642 * Determine how aggressively the anon and file LRU lists should be
1643 * scanned. The relative value of each set of LRU lists is determined
1644 * by looking at the fraction of the pages scanned we did rotate back
1645 * onto the active list instead of evict.
1646 *
1647 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1648 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1649 */
1650 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1651 unsigned long *nr)
1652 {
1653 unsigned long anon, file, free;
1654 unsigned long anon_prio, file_prio;
1655 unsigned long ap, fp;
1656 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1657 u64 fraction[2], denominator;
1658 enum lru_list lru;
1659 bool force_scan = false;
1660 struct zone *zone = lruvec_zone(lruvec);
1661
1662 /*
1663 * If the zone or memcg is small, nr[l] can be 0. This
1664 * results in no scanning on this priority and a potential
1665 * priority drop. Global direct reclaim can go to the next
1666 * zone and tends to have no problems. Global kswapd is for
1667 * zone balancing and it needs to scan a minimum amount. When
1668 * reclaiming for a memcg, a priority drop can cause high
1669 * latencies, so it's better to scan a minimum amount there as
1670 * well.
1671 */
1672 if (current_is_kswapd() && zone->all_unreclaimable)
1673 force_scan = true;
1674 if (!global_reclaim(sc))
1675 force_scan = true;
1676
1677 /* If we have no swap space, do not bother scanning anon pages. */
1678 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1679 fraction[0] = 0;
1680 fraction[1] = 1;
1681 denominator = 1;
1682 goto out;
1683 }
1684
1685 /*
1686 * Global reclaim will swap to prevent OOM even with no
1687 * swappiness, but memcg users want to use this knob to
1688 * disable swapping for individual groups completely when
1689 * using the memory controller's swap limit feature would be
1690 * too expensive.
1691 */
1692 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1693 fraction[0] = 0;
1694 fraction[1] = 1;
1695 denominator = 1;
1696 goto out;
1697 }
1698
1699 /*
1700 * Do not apply any pressure balancing cleverness when the
1701 * system is close to OOM, scan both anon and file equally
1702 * (unless the swappiness setting disagrees with swapping).
1703 */
1704 if (!sc->priority && vmscan_swappiness(sc)) {
1705 fraction[0] = 1;
1706 fraction[1] = 1;
1707 denominator = 1;
1708 goto out;
1709 }
1710
1711 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1712 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1713 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1714 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1715
1716 if (global_reclaim(sc)) {
1717 free = zone_page_state(zone, NR_FREE_PAGES);
1718 if (unlikely(file + free <= high_wmark_pages(zone))) {
1719 /*
1720 * If we have very few page cache pages, force-scan
1721 * anon pages.
1722 */
1723 fraction[0] = 1;
1724 fraction[1] = 0;
1725 denominator = 1;
1726 goto out;
1727 }
1728 }
1729
1730 /*
1731 * There is enough inactive page cache, do not reclaim
1732 * anything from the anonymous working set right now.
1733 */
1734 if (!inactive_file_is_low(lruvec)) {
1735 fraction[0] = 0;
1736 fraction[1] = 1;
1737 denominator = 1;
1738 goto out;
1739 }
1740
1741 /*
1742 * With swappiness at 100, anonymous and file have the same priority.
1743 * This scanning priority is essentially the inverse of IO cost.
1744 */
1745 anon_prio = vmscan_swappiness(sc);
1746 file_prio = 200 - anon_prio;
1747
1748 /*
1749 * OK, so we have swap space and a fair amount of page cache
1750 * pages. We use the recently rotated / recently scanned
1751 * ratios to determine how valuable each cache is.
1752 *
1753 * Because workloads change over time (and to avoid overflow)
1754 * we keep these statistics as a floating average, which ends
1755 * up weighing recent references more than old ones.
1756 *
1757 * anon in [0], file in [1]
1758 */
1759 spin_lock_irq(&zone->lru_lock);
1760 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1761 reclaim_stat->recent_scanned[0] /= 2;
1762 reclaim_stat->recent_rotated[0] /= 2;
1763 }
1764
1765 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1766 reclaim_stat->recent_scanned[1] /= 2;
1767 reclaim_stat->recent_rotated[1] /= 2;
1768 }
1769
1770 /*
1771 * The amount of pressure on anon vs file pages is inversely
1772 * proportional to the fraction of recently scanned pages on
1773 * each list that were recently referenced and in active use.
1774 */
1775 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1776 ap /= reclaim_stat->recent_rotated[0] + 1;
1777
1778 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1779 fp /= reclaim_stat->recent_rotated[1] + 1;
1780 spin_unlock_irq(&zone->lru_lock);
1781
1782 fraction[0] = ap;
1783 fraction[1] = fp;
1784 denominator = ap + fp + 1;
1785 out:
1786 for_each_evictable_lru(lru) {
1787 int file = is_file_lru(lru);
1788 unsigned long size;
1789 unsigned long scan;
1790
1791 size = get_lru_size(lruvec, lru);
1792 scan = size >> sc->priority;
1793 if (!scan && force_scan)
1794 scan = min(size, SWAP_CLUSTER_MAX);
1795 scan = div64_u64(scan * fraction[file], denominator);
1796 nr[lru] = scan;
1797 }
1798 }
1799
1800 /* Use reclaim/compaction for costly allocs or under memory pressure */
1801 static bool in_reclaim_compaction(struct scan_control *sc)
1802 {
1803 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1804 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1805 sc->priority < DEF_PRIORITY - 2))
1806 return true;
1807
1808 return false;
1809 }
1810
1811 /*
1812 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1813 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1814 * true if more pages should be reclaimed such that when the page allocator
1815 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1816 * It will give up earlier than that if there is difficulty reclaiming pages.
1817 */
1818 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1819 unsigned long nr_reclaimed,
1820 unsigned long nr_scanned,
1821 struct scan_control *sc)
1822 {
1823 unsigned long pages_for_compaction;
1824 unsigned long inactive_lru_pages;
1825
1826 /* If not in reclaim/compaction mode, stop */
1827 if (!in_reclaim_compaction(sc))
1828 return false;
1829
1830 /* Consider stopping depending on scan and reclaim activity */
1831 if (sc->gfp_mask & __GFP_REPEAT) {
1832 /*
1833 * For __GFP_REPEAT allocations, stop reclaiming if the
1834 * full LRU list has been scanned and we are still failing
1835 * to reclaim pages. This full LRU scan is potentially
1836 * expensive but a __GFP_REPEAT caller really wants to succeed
1837 */
1838 if (!nr_reclaimed && !nr_scanned)
1839 return false;
1840 } else {
1841 /*
1842 * For non-__GFP_REPEAT allocations which can presumably
1843 * fail without consequence, stop if we failed to reclaim
1844 * any pages from the last SWAP_CLUSTER_MAX number of
1845 * pages that were scanned. This will return to the
1846 * caller faster at the risk reclaim/compaction and
1847 * the resulting allocation attempt fails
1848 */
1849 if (!nr_reclaimed)
1850 return false;
1851 }
1852
1853 /*
1854 * If we have not reclaimed enough pages for compaction and the
1855 * inactive lists are large enough, continue reclaiming
1856 */
1857 pages_for_compaction = (2UL << sc->order);
1858 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1859 if (nr_swap_pages > 0)
1860 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1861 if (sc->nr_reclaimed < pages_for_compaction &&
1862 inactive_lru_pages > pages_for_compaction)
1863 return true;
1864
1865 /* If compaction would go ahead or the allocation would succeed, stop */
1866 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1867 case COMPACT_PARTIAL:
1868 case COMPACT_CONTINUE:
1869 return false;
1870 default:
1871 return true;
1872 }
1873 }
1874
1875 /*
1876 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1877 */
1878 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1879 {
1880 unsigned long nr[NR_LRU_LISTS];
1881 unsigned long nr_to_scan;
1882 enum lru_list lru;
1883 unsigned long nr_reclaimed, nr_scanned;
1884 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1885 struct blk_plug plug;
1886
1887 restart:
1888 nr_reclaimed = 0;
1889 nr_scanned = sc->nr_scanned;
1890 get_scan_count(lruvec, sc, nr);
1891
1892 blk_start_plug(&plug);
1893 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1894 nr[LRU_INACTIVE_FILE]) {
1895 for_each_evictable_lru(lru) {
1896 if (nr[lru]) {
1897 nr_to_scan = min_t(unsigned long,
1898 nr[lru], SWAP_CLUSTER_MAX);
1899 nr[lru] -= nr_to_scan;
1900
1901 nr_reclaimed += shrink_list(lru, nr_to_scan,
1902 lruvec, sc);
1903 }
1904 }
1905 /*
1906 * On large memory systems, scan >> priority can become
1907 * really large. This is fine for the starting priority;
1908 * we want to put equal scanning pressure on each zone.
1909 * However, if the VM has a harder time of freeing pages,
1910 * with multiple processes reclaiming pages, the total
1911 * freeing target can get unreasonably large.
1912 */
1913 if (nr_reclaimed >= nr_to_reclaim &&
1914 sc->priority < DEF_PRIORITY)
1915 break;
1916 }
1917 blk_finish_plug(&plug);
1918 sc->nr_reclaimed += nr_reclaimed;
1919
1920 /*
1921 * Even if we did not try to evict anon pages at all, we want to
1922 * rebalance the anon lru active/inactive ratio.
1923 */
1924 if (inactive_anon_is_low(lruvec))
1925 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1926 sc, LRU_ACTIVE_ANON);
1927
1928 /* reclaim/compaction might need reclaim to continue */
1929 if (should_continue_reclaim(lruvec, nr_reclaimed,
1930 sc->nr_scanned - nr_scanned, sc))
1931 goto restart;
1932
1933 throttle_vm_writeout(sc->gfp_mask);
1934 }
1935
1936 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1937 {
1938 struct mem_cgroup *root = sc->target_mem_cgroup;
1939 struct mem_cgroup_reclaim_cookie reclaim = {
1940 .zone = zone,
1941 .priority = sc->priority,
1942 };
1943 struct mem_cgroup *memcg;
1944
1945 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1946 do {
1947 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1948
1949 shrink_lruvec(lruvec, sc);
1950
1951 /*
1952 * Limit reclaim has historically picked one memcg and
1953 * scanned it with decreasing priority levels until
1954 * nr_to_reclaim had been reclaimed. This priority
1955 * cycle is thus over after a single memcg.
1956 *
1957 * Direct reclaim and kswapd, on the other hand, have
1958 * to scan all memory cgroups to fulfill the overall
1959 * scan target for the zone.
1960 */
1961 if (!global_reclaim(sc)) {
1962 mem_cgroup_iter_break(root, memcg);
1963 break;
1964 }
1965 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1966 } while (memcg);
1967 }
1968
1969 /* Returns true if compaction should go ahead for a high-order request */
1970 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1971 {
1972 unsigned long balance_gap, watermark;
1973 bool watermark_ok;
1974
1975 /* Do not consider compaction for orders reclaim is meant to satisfy */
1976 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1977 return false;
1978
1979 /*
1980 * Compaction takes time to run and there are potentially other
1981 * callers using the pages just freed. Continue reclaiming until
1982 * there is a buffer of free pages available to give compaction
1983 * a reasonable chance of completing and allocating the page
1984 */
1985 balance_gap = min(low_wmark_pages(zone),
1986 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1987 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1988 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1989 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1990
1991 /*
1992 * If compaction is deferred, reclaim up to a point where
1993 * compaction will have a chance of success when re-enabled
1994 */
1995 if (compaction_deferred(zone, sc->order))
1996 return watermark_ok;
1997
1998 /* If compaction is not ready to start, keep reclaiming */
1999 if (!compaction_suitable(zone, sc->order))
2000 return false;
2001
2002 return watermark_ok;
2003 }
2004
2005 /*
2006 * This is the direct reclaim path, for page-allocating processes. We only
2007 * try to reclaim pages from zones which will satisfy the caller's allocation
2008 * request.
2009 *
2010 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2011 * Because:
2012 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2013 * allocation or
2014 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2015 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2016 * zone defense algorithm.
2017 *
2018 * If a zone is deemed to be full of pinned pages then just give it a light
2019 * scan then give up on it.
2020 *
2021 * This function returns true if a zone is being reclaimed for a costly
2022 * high-order allocation and compaction is ready to begin. This indicates to
2023 * the caller that it should consider retrying the allocation instead of
2024 * further reclaim.
2025 */
2026 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2027 {
2028 struct zoneref *z;
2029 struct zone *zone;
2030 unsigned long nr_soft_reclaimed;
2031 unsigned long nr_soft_scanned;
2032 bool aborted_reclaim = false;
2033
2034 /*
2035 * If the number of buffer_heads in the machine exceeds the maximum
2036 * allowed level, force direct reclaim to scan the highmem zone as
2037 * highmem pages could be pinning lowmem pages storing buffer_heads
2038 */
2039 if (buffer_heads_over_limit)
2040 sc->gfp_mask |= __GFP_HIGHMEM;
2041
2042 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2043 gfp_zone(sc->gfp_mask), sc->nodemask) {
2044 if (!populated_zone(zone))
2045 continue;
2046 /*
2047 * Take care memory controller reclaiming has small influence
2048 * to global LRU.
2049 */
2050 if (global_reclaim(sc)) {
2051 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2052 continue;
2053 if (zone->all_unreclaimable &&
2054 sc->priority != DEF_PRIORITY)
2055 continue; /* Let kswapd poll it */
2056 if (IS_ENABLED(CONFIG_COMPACTION)) {
2057 /*
2058 * If we already have plenty of memory free for
2059 * compaction in this zone, don't free any more.
2060 * Even though compaction is invoked for any
2061 * non-zero order, only frequent costly order
2062 * reclamation is disruptive enough to become a
2063 * noticeable problem, like transparent huge
2064 * page allocations.
2065 */
2066 if (compaction_ready(zone, sc)) {
2067 aborted_reclaim = true;
2068 continue;
2069 }
2070 }
2071 /*
2072 * This steals pages from memory cgroups over softlimit
2073 * and returns the number of reclaimed pages and
2074 * scanned pages. This works for global memory pressure
2075 * and balancing, not for a memcg's limit.
2076 */
2077 nr_soft_scanned = 0;
2078 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2079 sc->order, sc->gfp_mask,
2080 &nr_soft_scanned);
2081 sc->nr_reclaimed += nr_soft_reclaimed;
2082 sc->nr_scanned += nr_soft_scanned;
2083 /* need some check for avoid more shrink_zone() */
2084 }
2085
2086 shrink_zone(zone, sc);
2087 }
2088
2089 return aborted_reclaim;
2090 }
2091
2092 static bool zone_reclaimable(struct zone *zone)
2093 {
2094 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2095 }
2096
2097 /* All zones in zonelist are unreclaimable? */
2098 static bool all_unreclaimable(struct zonelist *zonelist,
2099 struct scan_control *sc)
2100 {
2101 struct zoneref *z;
2102 struct zone *zone;
2103
2104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2105 gfp_zone(sc->gfp_mask), sc->nodemask) {
2106 if (!populated_zone(zone))
2107 continue;
2108 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2109 continue;
2110 if (!zone->all_unreclaimable)
2111 return false;
2112 }
2113
2114 return true;
2115 }
2116
2117 /*
2118 * This is the main entry point to direct page reclaim.
2119 *
2120 * If a full scan of the inactive list fails to free enough memory then we
2121 * are "out of memory" and something needs to be killed.
2122 *
2123 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2124 * high - the zone may be full of dirty or under-writeback pages, which this
2125 * caller can't do much about. We kick the writeback threads and take explicit
2126 * naps in the hope that some of these pages can be written. But if the
2127 * allocating task holds filesystem locks which prevent writeout this might not
2128 * work, and the allocation attempt will fail.
2129 *
2130 * returns: 0, if no pages reclaimed
2131 * else, the number of pages reclaimed
2132 */
2133 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2134 struct scan_control *sc,
2135 struct shrink_control *shrink)
2136 {
2137 unsigned long total_scanned = 0;
2138 struct reclaim_state *reclaim_state = current->reclaim_state;
2139 struct zoneref *z;
2140 struct zone *zone;
2141 unsigned long writeback_threshold;
2142 bool aborted_reclaim;
2143
2144 delayacct_freepages_start();
2145
2146 if (global_reclaim(sc))
2147 count_vm_event(ALLOCSTALL);
2148
2149 do {
2150 sc->nr_scanned = 0;
2151 aborted_reclaim = shrink_zones(zonelist, sc);
2152
2153 /*
2154 * Don't shrink slabs when reclaiming memory from
2155 * over limit cgroups
2156 */
2157 if (global_reclaim(sc)) {
2158 unsigned long lru_pages = 0;
2159 for_each_zone_zonelist(zone, z, zonelist,
2160 gfp_zone(sc->gfp_mask)) {
2161 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2162 continue;
2163
2164 lru_pages += zone_reclaimable_pages(zone);
2165 }
2166
2167 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2168 if (reclaim_state) {
2169 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2170 reclaim_state->reclaimed_slab = 0;
2171 }
2172 }
2173 total_scanned += sc->nr_scanned;
2174 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2175 goto out;
2176
2177 /*
2178 * Try to write back as many pages as we just scanned. This
2179 * tends to cause slow streaming writers to write data to the
2180 * disk smoothly, at the dirtying rate, which is nice. But
2181 * that's undesirable in laptop mode, where we *want* lumpy
2182 * writeout. So in laptop mode, write out the whole world.
2183 */
2184 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2185 if (total_scanned > writeback_threshold) {
2186 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2187 WB_REASON_TRY_TO_FREE_PAGES);
2188 sc->may_writepage = 1;
2189 }
2190
2191 /* Take a nap, wait for some writeback to complete */
2192 if (!sc->hibernation_mode && sc->nr_scanned &&
2193 sc->priority < DEF_PRIORITY - 2) {
2194 struct zone *preferred_zone;
2195
2196 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2197 &cpuset_current_mems_allowed,
2198 &preferred_zone);
2199 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2200 }
2201 } while (--sc->priority >= 0);
2202
2203 out:
2204 delayacct_freepages_end();
2205
2206 if (sc->nr_reclaimed)
2207 return sc->nr_reclaimed;
2208
2209 /*
2210 * As hibernation is going on, kswapd is freezed so that it can't mark
2211 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2212 * check.
2213 */
2214 if (oom_killer_disabled)
2215 return 0;
2216
2217 /* Aborted reclaim to try compaction? don't OOM, then */
2218 if (aborted_reclaim)
2219 return 1;
2220
2221 /* top priority shrink_zones still had more to do? don't OOM, then */
2222 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2223 return 1;
2224
2225 return 0;
2226 }
2227
2228 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2229 {
2230 struct zone *zone;
2231 unsigned long pfmemalloc_reserve = 0;
2232 unsigned long free_pages = 0;
2233 int i;
2234 bool wmark_ok;
2235
2236 for (i = 0; i <= ZONE_NORMAL; i++) {
2237 zone = &pgdat->node_zones[i];
2238 pfmemalloc_reserve += min_wmark_pages(zone);
2239 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2240 }
2241
2242 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2243
2244 /* kswapd must be awake if processes are being throttled */
2245 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2246 pgdat->classzone_idx = min(pgdat->classzone_idx,
2247 (enum zone_type)ZONE_NORMAL);
2248 wake_up_interruptible(&pgdat->kswapd_wait);
2249 }
2250
2251 return wmark_ok;
2252 }
2253
2254 /*
2255 * Throttle direct reclaimers if backing storage is backed by the network
2256 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2257 * depleted. kswapd will continue to make progress and wake the processes
2258 * when the low watermark is reached.
2259 *
2260 * Returns true if a fatal signal was delivered during throttling. If this
2261 * happens, the page allocator should not consider triggering the OOM killer.
2262 */
2263 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2264 nodemask_t *nodemask)
2265 {
2266 struct zone *zone;
2267 int high_zoneidx = gfp_zone(gfp_mask);
2268 pg_data_t *pgdat;
2269
2270 /*
2271 * Kernel threads should not be throttled as they may be indirectly
2272 * responsible for cleaning pages necessary for reclaim to make forward
2273 * progress. kjournald for example may enter direct reclaim while
2274 * committing a transaction where throttling it could forcing other
2275 * processes to block on log_wait_commit().
2276 */
2277 if (current->flags & PF_KTHREAD)
2278 goto out;
2279
2280 /*
2281 * If a fatal signal is pending, this process should not throttle.
2282 * It should return quickly so it can exit and free its memory
2283 */
2284 if (fatal_signal_pending(current))
2285 goto out;
2286
2287 /* Check if the pfmemalloc reserves are ok */
2288 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2289 pgdat = zone->zone_pgdat;
2290 if (pfmemalloc_watermark_ok(pgdat))
2291 goto out;
2292
2293 /* Account for the throttling */
2294 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2295
2296 /*
2297 * If the caller cannot enter the filesystem, it's possible that it
2298 * is due to the caller holding an FS lock or performing a journal
2299 * transaction in the case of a filesystem like ext[3|4]. In this case,
2300 * it is not safe to block on pfmemalloc_wait as kswapd could be
2301 * blocked waiting on the same lock. Instead, throttle for up to a
2302 * second before continuing.
2303 */
2304 if (!(gfp_mask & __GFP_FS)) {
2305 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2306 pfmemalloc_watermark_ok(pgdat), HZ);
2307
2308 goto check_pending;
2309 }
2310
2311 /* Throttle until kswapd wakes the process */
2312 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2313 pfmemalloc_watermark_ok(pgdat));
2314
2315 check_pending:
2316 if (fatal_signal_pending(current))
2317 return true;
2318
2319 out:
2320 return false;
2321 }
2322
2323 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2324 gfp_t gfp_mask, nodemask_t *nodemask)
2325 {
2326 unsigned long nr_reclaimed;
2327 struct scan_control sc = {
2328 .gfp_mask = gfp_mask,
2329 .may_writepage = !laptop_mode,
2330 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2331 .may_unmap = 1,
2332 .may_swap = 1,
2333 .order = order,
2334 .priority = DEF_PRIORITY,
2335 .target_mem_cgroup = NULL,
2336 .nodemask = nodemask,
2337 };
2338 struct shrink_control shrink = {
2339 .gfp_mask = sc.gfp_mask,
2340 };
2341
2342 /*
2343 * Do not enter reclaim if fatal signal was delivered while throttled.
2344 * 1 is returned so that the page allocator does not OOM kill at this
2345 * point.
2346 */
2347 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2348 return 1;
2349
2350 trace_mm_vmscan_direct_reclaim_begin(order,
2351 sc.may_writepage,
2352 gfp_mask);
2353
2354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2355
2356 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2357
2358 return nr_reclaimed;
2359 }
2360
2361 #ifdef CONFIG_MEMCG
2362
2363 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2364 gfp_t gfp_mask, bool noswap,
2365 struct zone *zone,
2366 unsigned long *nr_scanned)
2367 {
2368 struct scan_control sc = {
2369 .nr_scanned = 0,
2370 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2371 .may_writepage = !laptop_mode,
2372 .may_unmap = 1,
2373 .may_swap = !noswap,
2374 .order = 0,
2375 .priority = 0,
2376 .target_mem_cgroup = memcg,
2377 };
2378 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2379
2380 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2381 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2382
2383 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2384 sc.may_writepage,
2385 sc.gfp_mask);
2386
2387 /*
2388 * NOTE: Although we can get the priority field, using it
2389 * here is not a good idea, since it limits the pages we can scan.
2390 * if we don't reclaim here, the shrink_zone from balance_pgdat
2391 * will pick up pages from other mem cgroup's as well. We hack
2392 * the priority and make it zero.
2393 */
2394 shrink_lruvec(lruvec, &sc);
2395
2396 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2397
2398 *nr_scanned = sc.nr_scanned;
2399 return sc.nr_reclaimed;
2400 }
2401
2402 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2403 gfp_t gfp_mask,
2404 bool noswap)
2405 {
2406 struct zonelist *zonelist;
2407 unsigned long nr_reclaimed;
2408 int nid;
2409 struct scan_control sc = {
2410 .may_writepage = !laptop_mode,
2411 .may_unmap = 1,
2412 .may_swap = !noswap,
2413 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2414 .order = 0,
2415 .priority = DEF_PRIORITY,
2416 .target_mem_cgroup = memcg,
2417 .nodemask = NULL, /* we don't care the placement */
2418 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2419 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2420 };
2421 struct shrink_control shrink = {
2422 .gfp_mask = sc.gfp_mask,
2423 };
2424
2425 /*
2426 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2427 * take care of from where we get pages. So the node where we start the
2428 * scan does not need to be the current node.
2429 */
2430 nid = mem_cgroup_select_victim_node(memcg);
2431
2432 zonelist = NODE_DATA(nid)->node_zonelists;
2433
2434 trace_mm_vmscan_memcg_reclaim_begin(0,
2435 sc.may_writepage,
2436 sc.gfp_mask);
2437
2438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2439
2440 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2441
2442 return nr_reclaimed;
2443 }
2444 #endif
2445
2446 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2447 {
2448 struct mem_cgroup *memcg;
2449
2450 if (!total_swap_pages)
2451 return;
2452
2453 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2454 do {
2455 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2456
2457 if (inactive_anon_is_low(lruvec))
2458 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2459 sc, LRU_ACTIVE_ANON);
2460
2461 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2462 } while (memcg);
2463 }
2464
2465 static bool zone_balanced(struct zone *zone, int order,
2466 unsigned long balance_gap, int classzone_idx)
2467 {
2468 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2469 balance_gap, classzone_idx, 0))
2470 return false;
2471
2472 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2473 !compaction_suitable(zone, order))
2474 return false;
2475
2476 return true;
2477 }
2478
2479 /*
2480 * pgdat_balanced() is used when checking if a node is balanced.
2481 *
2482 * For order-0, all zones must be balanced!
2483 *
2484 * For high-order allocations only zones that meet watermarks and are in a
2485 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2486 * total of balanced pages must be at least 25% of the zones allowed by
2487 * classzone_idx for the node to be considered balanced. Forcing all zones to
2488 * be balanced for high orders can cause excessive reclaim when there are
2489 * imbalanced zones.
2490 * The choice of 25% is due to
2491 * o a 16M DMA zone that is balanced will not balance a zone on any
2492 * reasonable sized machine
2493 * o On all other machines, the top zone must be at least a reasonable
2494 * percentage of the middle zones. For example, on 32-bit x86, highmem
2495 * would need to be at least 256M for it to be balance a whole node.
2496 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2497 * to balance a node on its own. These seemed like reasonable ratios.
2498 */
2499 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2500 {
2501 unsigned long present_pages = 0;
2502 unsigned long balanced_pages = 0;
2503 int i;
2504
2505 /* Check the watermark levels */
2506 for (i = 0; i <= classzone_idx; i++) {
2507 struct zone *zone = pgdat->node_zones + i;
2508
2509 if (!populated_zone(zone))
2510 continue;
2511
2512 present_pages += zone->present_pages;
2513
2514 /*
2515 * A special case here:
2516 *
2517 * balance_pgdat() skips over all_unreclaimable after
2518 * DEF_PRIORITY. Effectively, it considers them balanced so
2519 * they must be considered balanced here as well!
2520 */
2521 if (zone->all_unreclaimable) {
2522 balanced_pages += zone->present_pages;
2523 continue;
2524 }
2525
2526 if (zone_balanced(zone, order, 0, i))
2527 balanced_pages += zone->present_pages;
2528 else if (!order)
2529 return false;
2530 }
2531
2532 if (order)
2533 return balanced_pages >= (present_pages >> 2);
2534 else
2535 return true;
2536 }
2537
2538 /*
2539 * Prepare kswapd for sleeping. This verifies that there are no processes
2540 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2541 *
2542 * Returns true if kswapd is ready to sleep
2543 */
2544 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2545 int classzone_idx)
2546 {
2547 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2548 if (remaining)
2549 return false;
2550
2551 /*
2552 * There is a potential race between when kswapd checks its watermarks
2553 * and a process gets throttled. There is also a potential race if
2554 * processes get throttled, kswapd wakes, a large process exits therby
2555 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2556 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2557 * so wake them now if necessary. If necessary, processes will wake
2558 * kswapd and get throttled again
2559 */
2560 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2561 wake_up(&pgdat->pfmemalloc_wait);
2562 return false;
2563 }
2564
2565 return pgdat_balanced(pgdat, order, classzone_idx);
2566 }
2567
2568 /*
2569 * For kswapd, balance_pgdat() will work across all this node's zones until
2570 * they are all at high_wmark_pages(zone).
2571 *
2572 * Returns the final order kswapd was reclaiming at
2573 *
2574 * There is special handling here for zones which are full of pinned pages.
2575 * This can happen if the pages are all mlocked, or if they are all used by
2576 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2577 * What we do is to detect the case where all pages in the zone have been
2578 * scanned twice and there has been zero successful reclaim. Mark the zone as
2579 * dead and from now on, only perform a short scan. Basically we're polling
2580 * the zone for when the problem goes away.
2581 *
2582 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2583 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2584 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2585 * lower zones regardless of the number of free pages in the lower zones. This
2586 * interoperates with the page allocator fallback scheme to ensure that aging
2587 * of pages is balanced across the zones.
2588 */
2589 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2590 int *classzone_idx)
2591 {
2592 struct zone *unbalanced_zone;
2593 int i;
2594 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2595 unsigned long total_scanned;
2596 struct reclaim_state *reclaim_state = current->reclaim_state;
2597 unsigned long nr_soft_reclaimed;
2598 unsigned long nr_soft_scanned;
2599 struct scan_control sc = {
2600 .gfp_mask = GFP_KERNEL,
2601 .may_unmap = 1,
2602 .may_swap = 1,
2603 /*
2604 * kswapd doesn't want to be bailed out while reclaim. because
2605 * we want to put equal scanning pressure on each zone.
2606 */
2607 .nr_to_reclaim = ULONG_MAX,
2608 .order = order,
2609 .target_mem_cgroup = NULL,
2610 };
2611 struct shrink_control shrink = {
2612 .gfp_mask = sc.gfp_mask,
2613 };
2614 loop_again:
2615 total_scanned = 0;
2616 sc.priority = DEF_PRIORITY;
2617 sc.nr_reclaimed = 0;
2618 sc.may_writepage = !laptop_mode;
2619 count_vm_event(PAGEOUTRUN);
2620
2621 do {
2622 unsigned long lru_pages = 0;
2623 int has_under_min_watermark_zone = 0;
2624
2625 unbalanced_zone = NULL;
2626
2627 /*
2628 * Scan in the highmem->dma direction for the highest
2629 * zone which needs scanning
2630 */
2631 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2632 struct zone *zone = pgdat->node_zones + i;
2633
2634 if (!populated_zone(zone))
2635 continue;
2636
2637 if (zone->all_unreclaimable &&
2638 sc.priority != DEF_PRIORITY)
2639 continue;
2640
2641 /*
2642 * Do some background aging of the anon list, to give
2643 * pages a chance to be referenced before reclaiming.
2644 */
2645 age_active_anon(zone, &sc);
2646
2647 /*
2648 * If the number of buffer_heads in the machine
2649 * exceeds the maximum allowed level and this node
2650 * has a highmem zone, force kswapd to reclaim from
2651 * it to relieve lowmem pressure.
2652 */
2653 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2654 end_zone = i;
2655 break;
2656 }
2657
2658 if (!zone_balanced(zone, order, 0, 0)) {
2659 end_zone = i;
2660 break;
2661 } else {
2662 /* If balanced, clear the congested flag */
2663 zone_clear_flag(zone, ZONE_CONGESTED);
2664 }
2665 }
2666 if (i < 0)
2667 goto out;
2668
2669 for (i = 0; i <= end_zone; i++) {
2670 struct zone *zone = pgdat->node_zones + i;
2671
2672 lru_pages += zone_reclaimable_pages(zone);
2673 }
2674
2675 /*
2676 * Now scan the zone in the dma->highmem direction, stopping
2677 * at the last zone which needs scanning.
2678 *
2679 * We do this because the page allocator works in the opposite
2680 * direction. This prevents the page allocator from allocating
2681 * pages behind kswapd's direction of progress, which would
2682 * cause too much scanning of the lower zones.
2683 */
2684 for (i = 0; i <= end_zone; i++) {
2685 struct zone *zone = pgdat->node_zones + i;
2686 int nr_slab, testorder;
2687 unsigned long balance_gap;
2688
2689 if (!populated_zone(zone))
2690 continue;
2691
2692 if (zone->all_unreclaimable &&
2693 sc.priority != DEF_PRIORITY)
2694 continue;
2695
2696 sc.nr_scanned = 0;
2697
2698 nr_soft_scanned = 0;
2699 /*
2700 * Call soft limit reclaim before calling shrink_zone.
2701 */
2702 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2703 order, sc.gfp_mask,
2704 &nr_soft_scanned);
2705 sc.nr_reclaimed += nr_soft_reclaimed;
2706 total_scanned += nr_soft_scanned;
2707
2708 /*
2709 * We put equal pressure on every zone, unless
2710 * one zone has way too many pages free
2711 * already. The "too many pages" is defined
2712 * as the high wmark plus a "gap" where the
2713 * gap is either the low watermark or 1%
2714 * of the zone, whichever is smaller.
2715 */
2716 balance_gap = min(low_wmark_pages(zone),
2717 (zone->present_pages +
2718 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2719 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2720 /*
2721 * Kswapd reclaims only single pages with compaction
2722 * enabled. Trying too hard to reclaim until contiguous
2723 * free pages have become available can hurt performance
2724 * by evicting too much useful data from memory.
2725 * Do not reclaim more than needed for compaction.
2726 */
2727 testorder = order;
2728 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2729 compaction_suitable(zone, order) !=
2730 COMPACT_SKIPPED)
2731 testorder = 0;
2732
2733 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2734 !zone_balanced(zone, testorder,
2735 balance_gap, end_zone)) {
2736 shrink_zone(zone, &sc);
2737
2738 reclaim_state->reclaimed_slab = 0;
2739 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2740 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2741 total_scanned += sc.nr_scanned;
2742
2743 if (nr_slab == 0 && !zone_reclaimable(zone))
2744 zone->all_unreclaimable = 1;
2745 }
2746
2747 /*
2748 * If we've done a decent amount of scanning and
2749 * the reclaim ratio is low, start doing writepage
2750 * even in laptop mode
2751 */
2752 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2753 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2754 sc.may_writepage = 1;
2755
2756 if (zone->all_unreclaimable) {
2757 if (end_zone && end_zone == i)
2758 end_zone--;
2759 continue;
2760 }
2761
2762 if (!zone_balanced(zone, testorder, 0, end_zone)) {
2763 unbalanced_zone = zone;
2764 /*
2765 * We are still under min water mark. This
2766 * means that we have a GFP_ATOMIC allocation
2767 * failure risk. Hurry up!
2768 */
2769 if (!zone_watermark_ok_safe(zone, order,
2770 min_wmark_pages(zone), end_zone, 0))
2771 has_under_min_watermark_zone = 1;
2772 } else {
2773 /*
2774 * If a zone reaches its high watermark,
2775 * consider it to be no longer congested. It's
2776 * possible there are dirty pages backed by
2777 * congested BDIs but as pressure is relieved,
2778 * speculatively avoid congestion waits
2779 */
2780 zone_clear_flag(zone, ZONE_CONGESTED);
2781 }
2782
2783 }
2784
2785 /*
2786 * If the low watermark is met there is no need for processes
2787 * to be throttled on pfmemalloc_wait as they should not be
2788 * able to safely make forward progress. Wake them
2789 */
2790 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2791 pfmemalloc_watermark_ok(pgdat))
2792 wake_up(&pgdat->pfmemalloc_wait);
2793
2794 if (pgdat_balanced(pgdat, order, *classzone_idx))
2795 break; /* kswapd: all done */
2796 /*
2797 * OK, kswapd is getting into trouble. Take a nap, then take
2798 * another pass across the zones.
2799 */
2800 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2801 if (has_under_min_watermark_zone)
2802 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2803 else if (unbalanced_zone)
2804 wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
2805 }
2806
2807 /*
2808 * We do this so kswapd doesn't build up large priorities for
2809 * example when it is freeing in parallel with allocators. It
2810 * matches the direct reclaim path behaviour in terms of impact
2811 * on zone->*_priority.
2812 */
2813 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2814 break;
2815 } while (--sc.priority >= 0);
2816 out:
2817
2818 if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
2819 cond_resched();
2820
2821 try_to_freeze();
2822
2823 /*
2824 * Fragmentation may mean that the system cannot be
2825 * rebalanced for high-order allocations in all zones.
2826 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2827 * it means the zones have been fully scanned and are still
2828 * not balanced. For high-order allocations, there is
2829 * little point trying all over again as kswapd may
2830 * infinite loop.
2831 *
2832 * Instead, recheck all watermarks at order-0 as they
2833 * are the most important. If watermarks are ok, kswapd will go
2834 * back to sleep. High-order users can still perform direct
2835 * reclaim if they wish.
2836 */
2837 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2838 order = sc.order = 0;
2839
2840 goto loop_again;
2841 }
2842
2843 /*
2844 * If kswapd was reclaiming at a higher order, it has the option of
2845 * sleeping without all zones being balanced. Before it does, it must
2846 * ensure that the watermarks for order-0 on *all* zones are met and
2847 * that the congestion flags are cleared. The congestion flag must
2848 * be cleared as kswapd is the only mechanism that clears the flag
2849 * and it is potentially going to sleep here.
2850 */
2851 if (order) {
2852 int zones_need_compaction = 1;
2853
2854 for (i = 0; i <= end_zone; i++) {
2855 struct zone *zone = pgdat->node_zones + i;
2856
2857 if (!populated_zone(zone))
2858 continue;
2859
2860 /* Check if the memory needs to be defragmented. */
2861 if (zone_watermark_ok(zone, order,
2862 low_wmark_pages(zone), *classzone_idx, 0))
2863 zones_need_compaction = 0;
2864 }
2865
2866 if (zones_need_compaction)
2867 compact_pgdat(pgdat, order);
2868 }
2869
2870 /*
2871 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2872 * makes a decision on the order we were last reclaiming at. However,
2873 * if another caller entered the allocator slow path while kswapd
2874 * was awake, order will remain at the higher level
2875 */
2876 *classzone_idx = end_zone;
2877 return order;
2878 }
2879
2880 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2881 {
2882 long remaining = 0;
2883 DEFINE_WAIT(wait);
2884
2885 if (freezing(current) || kthread_should_stop())
2886 return;
2887
2888 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2889
2890 /* Try to sleep for a short interval */
2891 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2892 remaining = schedule_timeout(HZ/10);
2893 finish_wait(&pgdat->kswapd_wait, &wait);
2894 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2895 }
2896
2897 /*
2898 * After a short sleep, check if it was a premature sleep. If not, then
2899 * go fully to sleep until explicitly woken up.
2900 */
2901 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2902 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2903
2904 /*
2905 * vmstat counters are not perfectly accurate and the estimated
2906 * value for counters such as NR_FREE_PAGES can deviate from the
2907 * true value by nr_online_cpus * threshold. To avoid the zone
2908 * watermarks being breached while under pressure, we reduce the
2909 * per-cpu vmstat threshold while kswapd is awake and restore
2910 * them before going back to sleep.
2911 */
2912 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2913
2914 /*
2915 * Compaction records what page blocks it recently failed to
2916 * isolate pages from and skips them in the future scanning.
2917 * When kswapd is going to sleep, it is reasonable to assume
2918 * that pages and compaction may succeed so reset the cache.
2919 */
2920 reset_isolation_suitable(pgdat);
2921
2922 if (!kthread_should_stop())
2923 schedule();
2924
2925 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2926 } else {
2927 if (remaining)
2928 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2929 else
2930 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2931 }
2932 finish_wait(&pgdat->kswapd_wait, &wait);
2933 }
2934
2935 /*
2936 * The background pageout daemon, started as a kernel thread
2937 * from the init process.
2938 *
2939 * This basically trickles out pages so that we have _some_
2940 * free memory available even if there is no other activity
2941 * that frees anything up. This is needed for things like routing
2942 * etc, where we otherwise might have all activity going on in
2943 * asynchronous contexts that cannot page things out.
2944 *
2945 * If there are applications that are active memory-allocators
2946 * (most normal use), this basically shouldn't matter.
2947 */
2948 static int kswapd(void *p)
2949 {
2950 unsigned long order, new_order;
2951 unsigned balanced_order;
2952 int classzone_idx, new_classzone_idx;
2953 int balanced_classzone_idx;
2954 pg_data_t *pgdat = (pg_data_t*)p;
2955 struct task_struct *tsk = current;
2956
2957 struct reclaim_state reclaim_state = {
2958 .reclaimed_slab = 0,
2959 };
2960 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2961
2962 lockdep_set_current_reclaim_state(GFP_KERNEL);
2963
2964 if (!cpumask_empty(cpumask))
2965 set_cpus_allowed_ptr(tsk, cpumask);
2966 current->reclaim_state = &reclaim_state;
2967
2968 /*
2969 * Tell the memory management that we're a "memory allocator",
2970 * and that if we need more memory we should get access to it
2971 * regardless (see "__alloc_pages()"). "kswapd" should
2972 * never get caught in the normal page freeing logic.
2973 *
2974 * (Kswapd normally doesn't need memory anyway, but sometimes
2975 * you need a small amount of memory in order to be able to
2976 * page out something else, and this flag essentially protects
2977 * us from recursively trying to free more memory as we're
2978 * trying to free the first piece of memory in the first place).
2979 */
2980 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2981 set_freezable();
2982
2983 order = new_order = 0;
2984 balanced_order = 0;
2985 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2986 balanced_classzone_idx = classzone_idx;
2987 for ( ; ; ) {
2988 bool ret;
2989
2990 /*
2991 * If the last balance_pgdat was unsuccessful it's unlikely a
2992 * new request of a similar or harder type will succeed soon
2993 * so consider going to sleep on the basis we reclaimed at
2994 */
2995 if (balanced_classzone_idx >= new_classzone_idx &&
2996 balanced_order == new_order) {
2997 new_order = pgdat->kswapd_max_order;
2998 new_classzone_idx = pgdat->classzone_idx;
2999 pgdat->kswapd_max_order = 0;
3000 pgdat->classzone_idx = pgdat->nr_zones - 1;
3001 }
3002
3003 if (order < new_order || classzone_idx > new_classzone_idx) {
3004 /*
3005 * Don't sleep if someone wants a larger 'order'
3006 * allocation or has tigher zone constraints
3007 */
3008 order = new_order;
3009 classzone_idx = new_classzone_idx;
3010 } else {
3011 kswapd_try_to_sleep(pgdat, balanced_order,
3012 balanced_classzone_idx);
3013 order = pgdat->kswapd_max_order;
3014 classzone_idx = pgdat->classzone_idx;
3015 new_order = order;
3016 new_classzone_idx = classzone_idx;
3017 pgdat->kswapd_max_order = 0;
3018 pgdat->classzone_idx = pgdat->nr_zones - 1;
3019 }
3020
3021 ret = try_to_freeze();
3022 if (kthread_should_stop())
3023 break;
3024
3025 /*
3026 * We can speed up thawing tasks if we don't call balance_pgdat
3027 * after returning from the refrigerator
3028 */
3029 if (!ret) {
3030 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3031 balanced_classzone_idx = classzone_idx;
3032 balanced_order = balance_pgdat(pgdat, order,
3033 &balanced_classzone_idx);
3034 }
3035 }
3036
3037 current->reclaim_state = NULL;
3038 return 0;
3039 }
3040
3041 /*
3042 * A zone is low on free memory, so wake its kswapd task to service it.
3043 */
3044 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3045 {
3046 pg_data_t *pgdat;
3047
3048 if (!populated_zone(zone))
3049 return;
3050
3051 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3052 return;
3053 pgdat = zone->zone_pgdat;
3054 if (pgdat->kswapd_max_order < order) {
3055 pgdat->kswapd_max_order = order;
3056 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3057 }
3058 if (!waitqueue_active(&pgdat->kswapd_wait))
3059 return;
3060 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3061 return;
3062
3063 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3064 wake_up_interruptible(&pgdat->kswapd_wait);
3065 }
3066
3067 /*
3068 * The reclaimable count would be mostly accurate.
3069 * The less reclaimable pages may be
3070 * - mlocked pages, which will be moved to unevictable list when encountered
3071 * - mapped pages, which may require several travels to be reclaimed
3072 * - dirty pages, which is not "instantly" reclaimable
3073 */
3074 unsigned long global_reclaimable_pages(void)
3075 {
3076 int nr;
3077
3078 nr = global_page_state(NR_ACTIVE_FILE) +
3079 global_page_state(NR_INACTIVE_FILE);
3080
3081 if (nr_swap_pages > 0)
3082 nr += global_page_state(NR_ACTIVE_ANON) +
3083 global_page_state(NR_INACTIVE_ANON);
3084
3085 return nr;
3086 }
3087
3088 unsigned long zone_reclaimable_pages(struct zone *zone)
3089 {
3090 int nr;
3091
3092 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3093 zone_page_state(zone, NR_INACTIVE_FILE);
3094
3095 if (nr_swap_pages > 0)
3096 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3097 zone_page_state(zone, NR_INACTIVE_ANON);
3098
3099 return nr;
3100 }
3101
3102 #ifdef CONFIG_HIBERNATION
3103 /*
3104 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3105 * freed pages.
3106 *
3107 * Rather than trying to age LRUs the aim is to preserve the overall
3108 * LRU order by reclaiming preferentially
3109 * inactive > active > active referenced > active mapped
3110 */
3111 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3112 {
3113 struct reclaim_state reclaim_state;
3114 struct scan_control sc = {
3115 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3116 .may_swap = 1,
3117 .may_unmap = 1,
3118 .may_writepage = 1,
3119 .nr_to_reclaim = nr_to_reclaim,
3120 .hibernation_mode = 1,
3121 .order = 0,
3122 .priority = DEF_PRIORITY,
3123 };
3124 struct shrink_control shrink = {
3125 .gfp_mask = sc.gfp_mask,
3126 };
3127 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3128 struct task_struct *p = current;
3129 unsigned long nr_reclaimed;
3130
3131 p->flags |= PF_MEMALLOC;
3132 lockdep_set_current_reclaim_state(sc.gfp_mask);
3133 reclaim_state.reclaimed_slab = 0;
3134 p->reclaim_state = &reclaim_state;
3135
3136 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3137
3138 p->reclaim_state = NULL;
3139 lockdep_clear_current_reclaim_state();
3140 p->flags &= ~PF_MEMALLOC;
3141
3142 return nr_reclaimed;
3143 }
3144 #endif /* CONFIG_HIBERNATION */
3145
3146 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3147 not required for correctness. So if the last cpu in a node goes
3148 away, we get changed to run anywhere: as the first one comes back,
3149 restore their cpu bindings. */
3150 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3151 void *hcpu)
3152 {
3153 int nid;
3154
3155 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3156 for_each_node_state(nid, N_MEMORY) {
3157 pg_data_t *pgdat = NODE_DATA(nid);
3158 const struct cpumask *mask;
3159
3160 mask = cpumask_of_node(pgdat->node_id);
3161
3162 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3163 /* One of our CPUs online: restore mask */
3164 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3165 }
3166 }
3167 return NOTIFY_OK;
3168 }
3169
3170 /*
3171 * This kswapd start function will be called by init and node-hot-add.
3172 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3173 */
3174 int kswapd_run(int nid)
3175 {
3176 pg_data_t *pgdat = NODE_DATA(nid);
3177 int ret = 0;
3178
3179 if (pgdat->kswapd)
3180 return 0;
3181
3182 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3183 if (IS_ERR(pgdat->kswapd)) {
3184 /* failure at boot is fatal */
3185 BUG_ON(system_state == SYSTEM_BOOTING);
3186 pgdat->kswapd = NULL;
3187 pr_err("Failed to start kswapd on node %d\n", nid);
3188 ret = PTR_ERR(pgdat->kswapd);
3189 }
3190 return ret;
3191 }
3192
3193 /*
3194 * Called by memory hotplug when all memory in a node is offlined. Caller must
3195 * hold lock_memory_hotplug().
3196 */
3197 void kswapd_stop(int nid)
3198 {
3199 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3200
3201 if (kswapd) {
3202 kthread_stop(kswapd);
3203 NODE_DATA(nid)->kswapd = NULL;
3204 }
3205 }
3206
3207 static int __init kswapd_init(void)
3208 {
3209 int nid;
3210
3211 swap_setup();
3212 for_each_node_state(nid, N_MEMORY)
3213 kswapd_run(nid);
3214 hotcpu_notifier(cpu_callback, 0);
3215 return 0;
3216 }
3217
3218 module_init(kswapd_init)
3219
3220 #ifdef CONFIG_NUMA
3221 /*
3222 * Zone reclaim mode
3223 *
3224 * If non-zero call zone_reclaim when the number of free pages falls below
3225 * the watermarks.
3226 */
3227 int zone_reclaim_mode __read_mostly;
3228
3229 #define RECLAIM_OFF 0
3230 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3231 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3232 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3233
3234 /*
3235 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3236 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3237 * a zone.
3238 */
3239 #define ZONE_RECLAIM_PRIORITY 4
3240
3241 /*
3242 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3243 * occur.
3244 */
3245 int sysctl_min_unmapped_ratio = 1;
3246
3247 /*
3248 * If the number of slab pages in a zone grows beyond this percentage then
3249 * slab reclaim needs to occur.
3250 */
3251 int sysctl_min_slab_ratio = 5;
3252
3253 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3254 {
3255 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3256 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3257 zone_page_state(zone, NR_ACTIVE_FILE);
3258
3259 /*
3260 * It's possible for there to be more file mapped pages than
3261 * accounted for by the pages on the file LRU lists because
3262 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3263 */
3264 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3265 }
3266
3267 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3268 static long zone_pagecache_reclaimable(struct zone *zone)
3269 {
3270 long nr_pagecache_reclaimable;
3271 long delta = 0;
3272
3273 /*
3274 * If RECLAIM_SWAP is set, then all file pages are considered
3275 * potentially reclaimable. Otherwise, we have to worry about
3276 * pages like swapcache and zone_unmapped_file_pages() provides
3277 * a better estimate
3278 */
3279 if (zone_reclaim_mode & RECLAIM_SWAP)
3280 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3281 else
3282 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3283
3284 /* If we can't clean pages, remove dirty pages from consideration */
3285 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3286 delta += zone_page_state(zone, NR_FILE_DIRTY);
3287
3288 /* Watch for any possible underflows due to delta */
3289 if (unlikely(delta > nr_pagecache_reclaimable))
3290 delta = nr_pagecache_reclaimable;
3291
3292 return nr_pagecache_reclaimable - delta;
3293 }
3294
3295 /*
3296 * Try to free up some pages from this zone through reclaim.
3297 */
3298 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3299 {
3300 /* Minimum pages needed in order to stay on node */
3301 const unsigned long nr_pages = 1 << order;
3302 struct task_struct *p = current;
3303 struct reclaim_state reclaim_state;
3304 struct scan_control sc = {
3305 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3306 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3307 .may_swap = 1,
3308 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3309 SWAP_CLUSTER_MAX),
3310 .gfp_mask = gfp_mask,
3311 .order = order,
3312 .priority = ZONE_RECLAIM_PRIORITY,
3313 };
3314 struct shrink_control shrink = {
3315 .gfp_mask = sc.gfp_mask,
3316 };
3317 unsigned long nr_slab_pages0, nr_slab_pages1;
3318
3319 cond_resched();
3320 /*
3321 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3322 * and we also need to be able to write out pages for RECLAIM_WRITE
3323 * and RECLAIM_SWAP.
3324 */
3325 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3326 lockdep_set_current_reclaim_state(gfp_mask);
3327 reclaim_state.reclaimed_slab = 0;
3328 p->reclaim_state = &reclaim_state;
3329
3330 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3331 /*
3332 * Free memory by calling shrink zone with increasing
3333 * priorities until we have enough memory freed.
3334 */
3335 do {
3336 shrink_zone(zone, &sc);
3337 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3338 }
3339
3340 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3341 if (nr_slab_pages0 > zone->min_slab_pages) {
3342 /*
3343 * shrink_slab() does not currently allow us to determine how
3344 * many pages were freed in this zone. So we take the current
3345 * number of slab pages and shake the slab until it is reduced
3346 * by the same nr_pages that we used for reclaiming unmapped
3347 * pages.
3348 *
3349 * Note that shrink_slab will free memory on all zones and may
3350 * take a long time.
3351 */
3352 for (;;) {
3353 unsigned long lru_pages = zone_reclaimable_pages(zone);
3354
3355 /* No reclaimable slab or very low memory pressure */
3356 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3357 break;
3358
3359 /* Freed enough memory */
3360 nr_slab_pages1 = zone_page_state(zone,
3361 NR_SLAB_RECLAIMABLE);
3362 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3363 break;
3364 }
3365
3366 /*
3367 * Update nr_reclaimed by the number of slab pages we
3368 * reclaimed from this zone.
3369 */
3370 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3371 if (nr_slab_pages1 < nr_slab_pages0)
3372 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3373 }
3374
3375 p->reclaim_state = NULL;
3376 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3377 lockdep_clear_current_reclaim_state();
3378 return sc.nr_reclaimed >= nr_pages;
3379 }
3380
3381 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3382 {
3383 int node_id;
3384 int ret;
3385
3386 /*
3387 * Zone reclaim reclaims unmapped file backed pages and
3388 * slab pages if we are over the defined limits.
3389 *
3390 * A small portion of unmapped file backed pages is needed for
3391 * file I/O otherwise pages read by file I/O will be immediately
3392 * thrown out if the zone is overallocated. So we do not reclaim
3393 * if less than a specified percentage of the zone is used by
3394 * unmapped file backed pages.
3395 */
3396 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3397 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3398 return ZONE_RECLAIM_FULL;
3399
3400 if (zone->all_unreclaimable)
3401 return ZONE_RECLAIM_FULL;
3402
3403 /*
3404 * Do not scan if the allocation should not be delayed.
3405 */
3406 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3407 return ZONE_RECLAIM_NOSCAN;
3408
3409 /*
3410 * Only run zone reclaim on the local zone or on zones that do not
3411 * have associated processors. This will favor the local processor
3412 * over remote processors and spread off node memory allocations
3413 * as wide as possible.
3414 */
3415 node_id = zone_to_nid(zone);
3416 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3417 return ZONE_RECLAIM_NOSCAN;
3418
3419 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3420 return ZONE_RECLAIM_NOSCAN;
3421
3422 ret = __zone_reclaim(zone, gfp_mask, order);
3423 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3424
3425 if (!ret)
3426 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3427
3428 return ret;
3429 }
3430 #endif
3431
3432 /*
3433 * page_evictable - test whether a page is evictable
3434 * @page: the page to test
3435 *
3436 * Test whether page is evictable--i.e., should be placed on active/inactive
3437 * lists vs unevictable list.
3438 *
3439 * Reasons page might not be evictable:
3440 * (1) page's mapping marked unevictable
3441 * (2) page is part of an mlocked VMA
3442 *
3443 */
3444 int page_evictable(struct page *page)
3445 {
3446 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3447 }
3448
3449 #ifdef CONFIG_SHMEM
3450 /**
3451 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3452 * @pages: array of pages to check
3453 * @nr_pages: number of pages to check
3454 *
3455 * Checks pages for evictability and moves them to the appropriate lru list.
3456 *
3457 * This function is only used for SysV IPC SHM_UNLOCK.
3458 */
3459 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3460 {
3461 struct lruvec *lruvec;
3462 struct zone *zone = NULL;
3463 int pgscanned = 0;
3464 int pgrescued = 0;
3465 int i;
3466
3467 for (i = 0; i < nr_pages; i++) {
3468 struct page *page = pages[i];
3469 struct zone *pagezone;
3470
3471 pgscanned++;
3472 pagezone = page_zone(page);
3473 if (pagezone != zone) {
3474 if (zone)
3475 spin_unlock_irq(&zone->lru_lock);
3476 zone = pagezone;
3477 spin_lock_irq(&zone->lru_lock);
3478 }
3479 lruvec = mem_cgroup_page_lruvec(page, zone);
3480
3481 if (!PageLRU(page) || !PageUnevictable(page))
3482 continue;
3483
3484 if (page_evictable(page)) {
3485 enum lru_list lru = page_lru_base_type(page);
3486
3487 VM_BUG_ON(PageActive(page));
3488 ClearPageUnevictable(page);
3489 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3490 add_page_to_lru_list(page, lruvec, lru);
3491 pgrescued++;
3492 }
3493 }
3494
3495 if (zone) {
3496 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3497 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3498 spin_unlock_irq(&zone->lru_lock);
3499 }
3500 }
3501 #endif /* CONFIG_SHMEM */
3502
3503 static void warn_scan_unevictable_pages(void)
3504 {
3505 printk_once(KERN_WARNING
3506 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3507 "disabled for lack of a legitimate use case. If you have "
3508 "one, please send an email to linux-mm@kvack.org.\n",
3509 current->comm);
3510 }
3511
3512 /*
3513 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3514 * all nodes' unevictable lists for evictable pages
3515 */
3516 unsigned long scan_unevictable_pages;
3517
3518 int scan_unevictable_handler(struct ctl_table *table, int write,
3519 void __user *buffer,
3520 size_t *length, loff_t *ppos)
3521 {
3522 warn_scan_unevictable_pages();
3523 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3524 scan_unevictable_pages = 0;
3525 return 0;
3526 }
3527
3528 #ifdef CONFIG_NUMA
3529 /*
3530 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3531 * a specified node's per zone unevictable lists for evictable pages.
3532 */
3533
3534 static ssize_t read_scan_unevictable_node(struct device *dev,
3535 struct device_attribute *attr,
3536 char *buf)
3537 {
3538 warn_scan_unevictable_pages();
3539 return sprintf(buf, "0\n"); /* always zero; should fit... */
3540 }
3541
3542 static ssize_t write_scan_unevictable_node(struct device *dev,
3543 struct device_attribute *attr,
3544 const char *buf, size_t count)
3545 {
3546 warn_scan_unevictable_pages();
3547 return 1;
3548 }
3549
3550
3551 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3552 read_scan_unevictable_node,
3553 write_scan_unevictable_node);
3554
3555 int scan_unevictable_register_node(struct node *node)
3556 {
3557 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3558 }
3559
3560 void scan_unevictable_unregister_node(struct node *node)
3561 {
3562 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3563 }
3564 #endif