pwm: Remove pwm-twl6030 driver
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157 * Add a shrinker callback to be called from the vm
158 */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169 * Remove one
170 */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182 {
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210 {
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330 {
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338 }
339
340 /*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354 {
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379 {
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446 }
447
448 /*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514 }
515
516 /*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534 }
535
536 /**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545 void putback_lru_page(struct page *page)
546 {
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 enum ttu_flags ttu_flags,
678 unsigned long *ret_nr_dirty,
679 unsigned long *ret_nr_writeback,
680 bool force_reclaim)
681 {
682 LIST_HEAD(ret_pages);
683 LIST_HEAD(free_pages);
684 int pgactivate = 0;
685 unsigned long nr_dirty = 0;
686 unsigned long nr_congested = 0;
687 unsigned long nr_reclaimed = 0;
688 unsigned long nr_writeback = 0;
689
690 cond_resched();
691
692 mem_cgroup_uncharge_start();
693 while (!list_empty(page_list)) {
694 struct address_space *mapping;
695 struct page *page;
696 int may_enter_fs;
697 enum page_references references = PAGEREF_RECLAIM_CLEAN;
698
699 cond_resched();
700
701 page = lru_to_page(page_list);
702 list_del(&page->lru);
703
704 if (!trylock_page(page))
705 goto keep;
706
707 VM_BUG_ON(PageActive(page));
708 VM_BUG_ON(page_zone(page) != zone);
709
710 sc->nr_scanned++;
711
712 if (unlikely(!page_evictable(page)))
713 goto cull_mlocked;
714
715 if (!sc->may_unmap && page_mapped(page))
716 goto keep_locked;
717
718 /* Double the slab pressure for mapped and swapcache pages */
719 if (page_mapped(page) || PageSwapCache(page))
720 sc->nr_scanned++;
721
722 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724
725 if (PageWriteback(page)) {
726 /*
727 * memcg doesn't have any dirty pages throttling so we
728 * could easily OOM just because too many pages are in
729 * writeback and there is nothing else to reclaim.
730 *
731 * Check __GFP_IO, certainly because a loop driver
732 * thread might enter reclaim, and deadlock if it waits
733 * on a page for which it is needed to do the write
734 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 * but more thought would probably show more reasons.
736 *
737 * Don't require __GFP_FS, since we're not going into
738 * the FS, just waiting on its writeback completion.
739 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 * testing may_enter_fs here is liable to OOM on them.
742 */
743 if (global_reclaim(sc) ||
744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 /*
746 * This is slightly racy - end_page_writeback()
747 * might have just cleared PageReclaim, then
748 * setting PageReclaim here end up interpreted
749 * as PageReadahead - but that does not matter
750 * enough to care. What we do want is for this
751 * page to have PageReclaim set next time memcg
752 * reclaim reaches the tests above, so it will
753 * then wait_on_page_writeback() to avoid OOM;
754 * and it's also appropriate in global reclaim.
755 */
756 SetPageReclaim(page);
757 nr_writeback++;
758 goto keep_locked;
759 }
760 wait_on_page_writeback(page);
761 }
762
763 if (!force_reclaim)
764 references = page_check_references(page, sc);
765
766 switch (references) {
767 case PAGEREF_ACTIVATE:
768 goto activate_locked;
769 case PAGEREF_KEEP:
770 goto keep_locked;
771 case PAGEREF_RECLAIM:
772 case PAGEREF_RECLAIM_CLEAN:
773 ; /* try to reclaim the page below */
774 }
775
776 /*
777 * Anonymous process memory has backing store?
778 * Try to allocate it some swap space here.
779 */
780 if (PageAnon(page) && !PageSwapCache(page)) {
781 if (!(sc->gfp_mask & __GFP_IO))
782 goto keep_locked;
783 if (!add_to_swap(page))
784 goto activate_locked;
785 may_enter_fs = 1;
786 }
787
788 mapping = page_mapping(page);
789
790 /*
791 * The page is mapped into the page tables of one or more
792 * processes. Try to unmap it here.
793 */
794 if (page_mapped(page) && mapping) {
795 switch (try_to_unmap(page, ttu_flags)) {
796 case SWAP_FAIL:
797 goto activate_locked;
798 case SWAP_AGAIN:
799 goto keep_locked;
800 case SWAP_MLOCK:
801 goto cull_mlocked;
802 case SWAP_SUCCESS:
803 ; /* try to free the page below */
804 }
805 }
806
807 if (PageDirty(page)) {
808 nr_dirty++;
809
810 /*
811 * Only kswapd can writeback filesystem pages to
812 * avoid risk of stack overflow but do not writeback
813 * unless under significant pressure.
814 */
815 if (page_is_file_cache(page) &&
816 (!current_is_kswapd() ||
817 sc->priority >= DEF_PRIORITY - 2)) {
818 /*
819 * Immediately reclaim when written back.
820 * Similar in principal to deactivate_page()
821 * except we already have the page isolated
822 * and know it's dirty
823 */
824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 SetPageReclaim(page);
826
827 goto keep_locked;
828 }
829
830 if (references == PAGEREF_RECLAIM_CLEAN)
831 goto keep_locked;
832 if (!may_enter_fs)
833 goto keep_locked;
834 if (!sc->may_writepage)
835 goto keep_locked;
836
837 /* Page is dirty, try to write it out here */
838 switch (pageout(page, mapping, sc)) {
839 case PAGE_KEEP:
840 nr_congested++;
841 goto keep_locked;
842 case PAGE_ACTIVATE:
843 goto activate_locked;
844 case PAGE_SUCCESS:
845 if (PageWriteback(page))
846 goto keep;
847 if (PageDirty(page))
848 goto keep;
849
850 /*
851 * A synchronous write - probably a ramdisk. Go
852 * ahead and try to reclaim the page.
853 */
854 if (!trylock_page(page))
855 goto keep;
856 if (PageDirty(page) || PageWriteback(page))
857 goto keep_locked;
858 mapping = page_mapping(page);
859 case PAGE_CLEAN:
860 ; /* try to free the page below */
861 }
862 }
863
864 /*
865 * If the page has buffers, try to free the buffer mappings
866 * associated with this page. If we succeed we try to free
867 * the page as well.
868 *
869 * We do this even if the page is PageDirty().
870 * try_to_release_page() does not perform I/O, but it is
871 * possible for a page to have PageDirty set, but it is actually
872 * clean (all its buffers are clean). This happens if the
873 * buffers were written out directly, with submit_bh(). ext3
874 * will do this, as well as the blockdev mapping.
875 * try_to_release_page() will discover that cleanness and will
876 * drop the buffers and mark the page clean - it can be freed.
877 *
878 * Rarely, pages can have buffers and no ->mapping. These are
879 * the pages which were not successfully invalidated in
880 * truncate_complete_page(). We try to drop those buffers here
881 * and if that worked, and the page is no longer mapped into
882 * process address space (page_count == 1) it can be freed.
883 * Otherwise, leave the page on the LRU so it is swappable.
884 */
885 if (page_has_private(page)) {
886 if (!try_to_release_page(page, sc->gfp_mask))
887 goto activate_locked;
888 if (!mapping && page_count(page) == 1) {
889 unlock_page(page);
890 if (put_page_testzero(page))
891 goto free_it;
892 else {
893 /*
894 * rare race with speculative reference.
895 * the speculative reference will free
896 * this page shortly, so we may
897 * increment nr_reclaimed here (and
898 * leave it off the LRU).
899 */
900 nr_reclaimed++;
901 continue;
902 }
903 }
904 }
905
906 if (!mapping || !__remove_mapping(mapping, page))
907 goto keep_locked;
908
909 /*
910 * At this point, we have no other references and there is
911 * no way to pick any more up (removed from LRU, removed
912 * from pagecache). Can use non-atomic bitops now (and
913 * we obviously don't have to worry about waking up a process
914 * waiting on the page lock, because there are no references.
915 */
916 __clear_page_locked(page);
917 free_it:
918 nr_reclaimed++;
919
920 /*
921 * Is there need to periodically free_page_list? It would
922 * appear not as the counts should be low
923 */
924 list_add(&page->lru, &free_pages);
925 continue;
926
927 cull_mlocked:
928 if (PageSwapCache(page))
929 try_to_free_swap(page);
930 unlock_page(page);
931 putback_lru_page(page);
932 continue;
933
934 activate_locked:
935 /* Not a candidate for swapping, so reclaim swap space. */
936 if (PageSwapCache(page) && vm_swap_full())
937 try_to_free_swap(page);
938 VM_BUG_ON(PageActive(page));
939 SetPageActive(page);
940 pgactivate++;
941 keep_locked:
942 unlock_page(page);
943 keep:
944 list_add(&page->lru, &ret_pages);
945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
946 }
947
948 /*
949 * Tag a zone as congested if all the dirty pages encountered were
950 * backed by a congested BDI. In this case, reclaimers should just
951 * back off and wait for congestion to clear because further reclaim
952 * will encounter the same problem
953 */
954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955 zone_set_flag(zone, ZONE_CONGESTED);
956
957 free_hot_cold_page_list(&free_pages, 1);
958
959 list_splice(&ret_pages, page_list);
960 count_vm_events(PGACTIVATE, pgactivate);
961 mem_cgroup_uncharge_end();
962 *ret_nr_dirty += nr_dirty;
963 *ret_nr_writeback += nr_writeback;
964 return nr_reclaimed;
965 }
966
967 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 struct list_head *page_list)
969 {
970 struct scan_control sc = {
971 .gfp_mask = GFP_KERNEL,
972 .priority = DEF_PRIORITY,
973 .may_unmap = 1,
974 };
975 unsigned long ret, dummy1, dummy2;
976 struct page *page, *next;
977 LIST_HEAD(clean_pages);
978
979 list_for_each_entry_safe(page, next, page_list, lru) {
980 if (page_is_file_cache(page) && !PageDirty(page)) {
981 ClearPageActive(page);
982 list_move(&page->lru, &clean_pages);
983 }
984 }
985
986 ret = shrink_page_list(&clean_pages, zone, &sc,
987 TTU_UNMAP|TTU_IGNORE_ACCESS,
988 &dummy1, &dummy2, true);
989 list_splice(&clean_pages, page_list);
990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 return ret;
992 }
993
994 /*
995 * Attempt to remove the specified page from its LRU. Only take this page
996 * if it is of the appropriate PageActive status. Pages which are being
997 * freed elsewhere are also ignored.
998 *
999 * page: page to consider
1000 * mode: one of the LRU isolation modes defined above
1001 *
1002 * returns 0 on success, -ve errno on failure.
1003 */
1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1005 {
1006 int ret = -EINVAL;
1007
1008 /* Only take pages on the LRU. */
1009 if (!PageLRU(page))
1010 return ret;
1011
1012 /* Compaction should not handle unevictable pages but CMA can do so */
1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1014 return ret;
1015
1016 ret = -EBUSY;
1017
1018 /*
1019 * To minimise LRU disruption, the caller can indicate that it only
1020 * wants to isolate pages it will be able to operate on without
1021 * blocking - clean pages for the most part.
1022 *
1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 * is used by reclaim when it is cannot write to backing storage
1025 *
1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 * that it is possible to migrate without blocking
1028 */
1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 /* All the caller can do on PageWriteback is block */
1031 if (PageWriteback(page))
1032 return ret;
1033
1034 if (PageDirty(page)) {
1035 struct address_space *mapping;
1036
1037 /* ISOLATE_CLEAN means only clean pages */
1038 if (mode & ISOLATE_CLEAN)
1039 return ret;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking
1045 */
1046 mapping = page_mapping(page);
1047 if (mapping && !mapping->a_ops->migratepage)
1048 return ret;
1049 }
1050 }
1051
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1054
1055 if (likely(get_page_unless_zero(page))) {
1056 /*
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1060 */
1061 ClearPageLRU(page);
1062 ret = 0;
1063 }
1064
1065 return ret;
1066 }
1067
1068 /*
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1072 *
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1075 *
1076 * Appropriate locks must be held before calling this function.
1077 *
1078 * @nr_to_scan: The number of pages to look through on the list.
1079 * @lruvec: The LRU vector to pull pages from.
1080 * @dst: The temp list to put pages on to.
1081 * @nr_scanned: The number of pages that were scanned.
1082 * @sc: The scan_control struct for this reclaim session
1083 * @mode: One of the LRU isolation modes
1084 * @lru: LRU list id for isolating
1085 *
1086 * returns how many pages were moved onto *@dst.
1087 */
1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 struct lruvec *lruvec, struct list_head *dst,
1090 unsigned long *nr_scanned, struct scan_control *sc,
1091 isolate_mode_t mode, enum lru_list lru)
1092 {
1093 struct list_head *src = &lruvec->lists[lru];
1094 unsigned long nr_taken = 0;
1095 unsigned long scan;
1096
1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1098 struct page *page;
1099 int nr_pages;
1100
1101 page = lru_to_page(src);
1102 prefetchw_prev_lru_page(page, src, flags);
1103
1104 VM_BUG_ON(!PageLRU(page));
1105
1106 switch (__isolate_lru_page(page, mode)) {
1107 case 0:
1108 nr_pages = hpage_nr_pages(page);
1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1110 list_move(&page->lru, dst);
1111 nr_taken += nr_pages;
1112 break;
1113
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 continue;
1118
1119 default:
1120 BUG();
1121 }
1122 }
1123
1124 *nr_scanned = scan;
1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 nr_taken, mode, is_file_lru(lru));
1127 return nr_taken;
1128 }
1129
1130 /**
1131 * isolate_lru_page - tries to isolate a page from its LRU list
1132 * @page: page to isolate from its LRU list
1133 *
1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135 * vmstat statistic corresponding to whatever LRU list the page was on.
1136 *
1137 * Returns 0 if the page was removed from an LRU list.
1138 * Returns -EBUSY if the page was not on an LRU list.
1139 *
1140 * The returned page will have PageLRU() cleared. If it was found on
1141 * the active list, it will have PageActive set. If it was found on
1142 * the unevictable list, it will have the PageUnevictable bit set. That flag
1143 * may need to be cleared by the caller before letting the page go.
1144 *
1145 * The vmstat statistic corresponding to the list on which the page was
1146 * found will be decremented.
1147 *
1148 * Restrictions:
1149 * (1) Must be called with an elevated refcount on the page. This is a
1150 * fundamentnal difference from isolate_lru_pages (which is called
1151 * without a stable reference).
1152 * (2) the lru_lock must not be held.
1153 * (3) interrupts must be enabled.
1154 */
1155 int isolate_lru_page(struct page *page)
1156 {
1157 int ret = -EBUSY;
1158
1159 VM_BUG_ON(!page_count(page));
1160
1161 if (PageLRU(page)) {
1162 struct zone *zone = page_zone(page);
1163 struct lruvec *lruvec;
1164
1165 spin_lock_irq(&zone->lru_lock);
1166 lruvec = mem_cgroup_page_lruvec(page, zone);
1167 if (PageLRU(page)) {
1168 int lru = page_lru(page);
1169 get_page(page);
1170 ClearPageLRU(page);
1171 del_page_from_lru_list(page, lruvec, lru);
1172 ret = 0;
1173 }
1174 spin_unlock_irq(&zone->lru_lock);
1175 }
1176 return ret;
1177 }
1178
1179 /*
1180 * Are there way too many processes in the direct reclaim path already?
1181 */
1182 static int too_many_isolated(struct zone *zone, int file,
1183 struct scan_control *sc)
1184 {
1185 unsigned long inactive, isolated;
1186
1187 if (current_is_kswapd())
1188 return 0;
1189
1190 if (!global_reclaim(sc))
1191 return 0;
1192
1193 if (file) {
1194 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1195 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1196 } else {
1197 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1198 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1199 }
1200
1201 return isolated > inactive;
1202 }
1203
1204 static noinline_for_stack void
1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1206 {
1207 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1208 struct zone *zone = lruvec_zone(lruvec);
1209 LIST_HEAD(pages_to_free);
1210
1211 /*
1212 * Put back any unfreeable pages.
1213 */
1214 while (!list_empty(page_list)) {
1215 struct page *page = lru_to_page(page_list);
1216 int lru;
1217
1218 VM_BUG_ON(PageLRU(page));
1219 list_del(&page->lru);
1220 if (unlikely(!page_evictable(page))) {
1221 spin_unlock_irq(&zone->lru_lock);
1222 putback_lru_page(page);
1223 spin_lock_irq(&zone->lru_lock);
1224 continue;
1225 }
1226
1227 lruvec = mem_cgroup_page_lruvec(page, zone);
1228
1229 SetPageLRU(page);
1230 lru = page_lru(page);
1231 add_page_to_lru_list(page, lruvec, lru);
1232
1233 if (is_active_lru(lru)) {
1234 int file = is_file_lru(lru);
1235 int numpages = hpage_nr_pages(page);
1236 reclaim_stat->recent_rotated[file] += numpages;
1237 }
1238 if (put_page_testzero(page)) {
1239 __ClearPageLRU(page);
1240 __ClearPageActive(page);
1241 del_page_from_lru_list(page, lruvec, lru);
1242
1243 if (unlikely(PageCompound(page))) {
1244 spin_unlock_irq(&zone->lru_lock);
1245 (*get_compound_page_dtor(page))(page);
1246 spin_lock_irq(&zone->lru_lock);
1247 } else
1248 list_add(&page->lru, &pages_to_free);
1249 }
1250 }
1251
1252 /*
1253 * To save our caller's stack, now use input list for pages to free.
1254 */
1255 list_splice(&pages_to_free, page_list);
1256 }
1257
1258 /*
1259 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1260 * of reclaimed pages
1261 */
1262 static noinline_for_stack unsigned long
1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1264 struct scan_control *sc, enum lru_list lru)
1265 {
1266 LIST_HEAD(page_list);
1267 unsigned long nr_scanned;
1268 unsigned long nr_reclaimed = 0;
1269 unsigned long nr_taken;
1270 unsigned long nr_dirty = 0;
1271 unsigned long nr_writeback = 0;
1272 isolate_mode_t isolate_mode = 0;
1273 int file = is_file_lru(lru);
1274 struct zone *zone = lruvec_zone(lruvec);
1275 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1276
1277 while (unlikely(too_many_isolated(zone, file, sc))) {
1278 congestion_wait(BLK_RW_ASYNC, HZ/10);
1279
1280 /* We are about to die and free our memory. Return now. */
1281 if (fatal_signal_pending(current))
1282 return SWAP_CLUSTER_MAX;
1283 }
1284
1285 lru_add_drain();
1286
1287 if (!sc->may_unmap)
1288 isolate_mode |= ISOLATE_UNMAPPED;
1289 if (!sc->may_writepage)
1290 isolate_mode |= ISOLATE_CLEAN;
1291
1292 spin_lock_irq(&zone->lru_lock);
1293
1294 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1295 &nr_scanned, sc, isolate_mode, lru);
1296
1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1298 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1299
1300 if (global_reclaim(sc)) {
1301 zone->pages_scanned += nr_scanned;
1302 if (current_is_kswapd())
1303 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1304 else
1305 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1306 }
1307 spin_unlock_irq(&zone->lru_lock);
1308
1309 if (nr_taken == 0)
1310 return 0;
1311
1312 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1313 &nr_dirty, &nr_writeback, false);
1314
1315 spin_lock_irq(&zone->lru_lock);
1316
1317 reclaim_stat->recent_scanned[file] += nr_taken;
1318
1319 if (global_reclaim(sc)) {
1320 if (current_is_kswapd())
1321 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322 nr_reclaimed);
1323 else
1324 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325 nr_reclaimed);
1326 }
1327
1328 putback_inactive_pages(lruvec, &page_list);
1329
1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1331
1332 spin_unlock_irq(&zone->lru_lock);
1333
1334 free_hot_cold_page_list(&page_list, 1);
1335
1336 /*
1337 * If reclaim is isolating dirty pages under writeback, it implies
1338 * that the long-lived page allocation rate is exceeding the page
1339 * laundering rate. Either the global limits are not being effective
1340 * at throttling processes due to the page distribution throughout
1341 * zones or there is heavy usage of a slow backing device. The
1342 * only option is to throttle from reclaim context which is not ideal
1343 * as there is no guarantee the dirtying process is throttled in the
1344 * same way balance_dirty_pages() manages.
1345 *
1346 * This scales the number of dirty pages that must be under writeback
1347 * before throttling depending on priority. It is a simple backoff
1348 * function that has the most effect in the range DEF_PRIORITY to
1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 * in trouble and reclaim is considered to be in trouble.
1351 *
1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1353 * DEF_PRIORITY-1 50% must be PageWriteback
1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1355 * ...
1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 * isolated page is PageWriteback
1358 */
1359 if (nr_writeback && nr_writeback >=
1360 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1361 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1362
1363 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1364 zone_idx(zone),
1365 nr_scanned, nr_reclaimed,
1366 sc->priority,
1367 trace_shrink_flags(file));
1368 return nr_reclaimed;
1369 }
1370
1371 /*
1372 * This moves pages from the active list to the inactive list.
1373 *
1374 * We move them the other way if the page is referenced by one or more
1375 * processes, from rmap.
1376 *
1377 * If the pages are mostly unmapped, the processing is fast and it is
1378 * appropriate to hold zone->lru_lock across the whole operation. But if
1379 * the pages are mapped, the processing is slow (page_referenced()) so we
1380 * should drop zone->lru_lock around each page. It's impossible to balance
1381 * this, so instead we remove the pages from the LRU while processing them.
1382 * It is safe to rely on PG_active against the non-LRU pages in here because
1383 * nobody will play with that bit on a non-LRU page.
1384 *
1385 * The downside is that we have to touch page->_count against each page.
1386 * But we had to alter page->flags anyway.
1387 */
1388
1389 static void move_active_pages_to_lru(struct lruvec *lruvec,
1390 struct list_head *list,
1391 struct list_head *pages_to_free,
1392 enum lru_list lru)
1393 {
1394 struct zone *zone = lruvec_zone(lruvec);
1395 unsigned long pgmoved = 0;
1396 struct page *page;
1397 int nr_pages;
1398
1399 while (!list_empty(list)) {
1400 page = lru_to_page(list);
1401 lruvec = mem_cgroup_page_lruvec(page, zone);
1402
1403 VM_BUG_ON(PageLRU(page));
1404 SetPageLRU(page);
1405
1406 nr_pages = hpage_nr_pages(page);
1407 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1408 list_move(&page->lru, &lruvec->lists[lru]);
1409 pgmoved += nr_pages;
1410
1411 if (put_page_testzero(page)) {
1412 __ClearPageLRU(page);
1413 __ClearPageActive(page);
1414 del_page_from_lru_list(page, lruvec, lru);
1415
1416 if (unlikely(PageCompound(page))) {
1417 spin_unlock_irq(&zone->lru_lock);
1418 (*get_compound_page_dtor(page))(page);
1419 spin_lock_irq(&zone->lru_lock);
1420 } else
1421 list_add(&page->lru, pages_to_free);
1422 }
1423 }
1424 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1425 if (!is_active_lru(lru))
1426 __count_vm_events(PGDEACTIVATE, pgmoved);
1427 }
1428
1429 static void shrink_active_list(unsigned long nr_to_scan,
1430 struct lruvec *lruvec,
1431 struct scan_control *sc,
1432 enum lru_list lru)
1433 {
1434 unsigned long nr_taken;
1435 unsigned long nr_scanned;
1436 unsigned long vm_flags;
1437 LIST_HEAD(l_hold); /* The pages which were snipped off */
1438 LIST_HEAD(l_active);
1439 LIST_HEAD(l_inactive);
1440 struct page *page;
1441 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1442 unsigned long nr_rotated = 0;
1443 isolate_mode_t isolate_mode = 0;
1444 int file = is_file_lru(lru);
1445 struct zone *zone = lruvec_zone(lruvec);
1446
1447 lru_add_drain();
1448
1449 if (!sc->may_unmap)
1450 isolate_mode |= ISOLATE_UNMAPPED;
1451 if (!sc->may_writepage)
1452 isolate_mode |= ISOLATE_CLEAN;
1453
1454 spin_lock_irq(&zone->lru_lock);
1455
1456 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457 &nr_scanned, sc, isolate_mode, lru);
1458 if (global_reclaim(sc))
1459 zone->pages_scanned += nr_scanned;
1460
1461 reclaim_stat->recent_scanned[file] += nr_taken;
1462
1463 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1464 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1465 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1466 spin_unlock_irq(&zone->lru_lock);
1467
1468 while (!list_empty(&l_hold)) {
1469 cond_resched();
1470 page = lru_to_page(&l_hold);
1471 list_del(&page->lru);
1472
1473 if (unlikely(!page_evictable(page))) {
1474 putback_lru_page(page);
1475 continue;
1476 }
1477
1478 if (unlikely(buffer_heads_over_limit)) {
1479 if (page_has_private(page) && trylock_page(page)) {
1480 if (page_has_private(page))
1481 try_to_release_page(page, 0);
1482 unlock_page(page);
1483 }
1484 }
1485
1486 if (page_referenced(page, 0, sc->target_mem_cgroup,
1487 &vm_flags)) {
1488 nr_rotated += hpage_nr_pages(page);
1489 /*
1490 * Identify referenced, file-backed active pages and
1491 * give them one more trip around the active list. So
1492 * that executable code get better chances to stay in
1493 * memory under moderate memory pressure. Anon pages
1494 * are not likely to be evicted by use-once streaming
1495 * IO, plus JVM can create lots of anon VM_EXEC pages,
1496 * so we ignore them here.
1497 */
1498 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1499 list_add(&page->lru, &l_active);
1500 continue;
1501 }
1502 }
1503
1504 ClearPageActive(page); /* we are de-activating */
1505 list_add(&page->lru, &l_inactive);
1506 }
1507
1508 /*
1509 * Move pages back to the lru list.
1510 */
1511 spin_lock_irq(&zone->lru_lock);
1512 /*
1513 * Count referenced pages from currently used mappings as rotated,
1514 * even though only some of them are actually re-activated. This
1515 * helps balance scan pressure between file and anonymous pages in
1516 * get_scan_ratio.
1517 */
1518 reclaim_stat->recent_rotated[file] += nr_rotated;
1519
1520 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1521 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1522 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1523 spin_unlock_irq(&zone->lru_lock);
1524
1525 free_hot_cold_page_list(&l_hold, 1);
1526 }
1527
1528 #ifdef CONFIG_SWAP
1529 static int inactive_anon_is_low_global(struct zone *zone)
1530 {
1531 unsigned long active, inactive;
1532
1533 active = zone_page_state(zone, NR_ACTIVE_ANON);
1534 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535
1536 if (inactive * zone->inactive_ratio < active)
1537 return 1;
1538
1539 return 0;
1540 }
1541
1542 /**
1543 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1544 * @lruvec: LRU vector to check
1545 *
1546 * Returns true if the zone does not have enough inactive anon pages,
1547 * meaning some active anon pages need to be deactivated.
1548 */
1549 static int inactive_anon_is_low(struct lruvec *lruvec)
1550 {
1551 /*
1552 * If we don't have swap space, anonymous page deactivation
1553 * is pointless.
1554 */
1555 if (!total_swap_pages)
1556 return 0;
1557
1558 if (!mem_cgroup_disabled())
1559 return mem_cgroup_inactive_anon_is_low(lruvec);
1560
1561 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1562 }
1563 #else
1564 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1565 {
1566 return 0;
1567 }
1568 #endif
1569
1570 static int inactive_file_is_low_global(struct zone *zone)
1571 {
1572 unsigned long active, inactive;
1573
1574 active = zone_page_state(zone, NR_ACTIVE_FILE);
1575 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1576
1577 return (active > inactive);
1578 }
1579
1580 /**
1581 * inactive_file_is_low - check if file pages need to be deactivated
1582 * @lruvec: LRU vector to check
1583 *
1584 * When the system is doing streaming IO, memory pressure here
1585 * ensures that active file pages get deactivated, until more
1586 * than half of the file pages are on the inactive list.
1587 *
1588 * Once we get to that situation, protect the system's working
1589 * set from being evicted by disabling active file page aging.
1590 *
1591 * This uses a different ratio than the anonymous pages, because
1592 * the page cache uses a use-once replacement algorithm.
1593 */
1594 static int inactive_file_is_low(struct lruvec *lruvec)
1595 {
1596 if (!mem_cgroup_disabled())
1597 return mem_cgroup_inactive_file_is_low(lruvec);
1598
1599 return inactive_file_is_low_global(lruvec_zone(lruvec));
1600 }
1601
1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1603 {
1604 if (is_file_lru(lru))
1605 return inactive_file_is_low(lruvec);
1606 else
1607 return inactive_anon_is_low(lruvec);
1608 }
1609
1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611 struct lruvec *lruvec, struct scan_control *sc)
1612 {
1613 if (is_active_lru(lru)) {
1614 if (inactive_list_is_low(lruvec, lru))
1615 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1616 return 0;
1617 }
1618
1619 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1620 }
1621
1622 static int vmscan_swappiness(struct scan_control *sc)
1623 {
1624 if (global_reclaim(sc))
1625 return vm_swappiness;
1626 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1627 }
1628
1629 /*
1630 * Determine how aggressively the anon and file LRU lists should be
1631 * scanned. The relative value of each set of LRU lists is determined
1632 * by looking at the fraction of the pages scanned we did rotate back
1633 * onto the active list instead of evict.
1634 *
1635 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1636 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1637 */
1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1639 unsigned long *nr)
1640 {
1641 unsigned long anon, file, free;
1642 unsigned long anon_prio, file_prio;
1643 unsigned long ap, fp;
1644 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1645 u64 fraction[2], denominator;
1646 enum lru_list lru;
1647 int noswap = 0;
1648 bool force_scan = false;
1649 struct zone *zone = lruvec_zone(lruvec);
1650
1651 /*
1652 * If the zone or memcg is small, nr[l] can be 0. This
1653 * results in no scanning on this priority and a potential
1654 * priority drop. Global direct reclaim can go to the next
1655 * zone and tends to have no problems. Global kswapd is for
1656 * zone balancing and it needs to scan a minimum amount. When
1657 * reclaiming for a memcg, a priority drop can cause high
1658 * latencies, so it's better to scan a minimum amount there as
1659 * well.
1660 */
1661 if (current_is_kswapd() && zone->all_unreclaimable)
1662 force_scan = true;
1663 if (!global_reclaim(sc))
1664 force_scan = true;
1665
1666 /* If we have no swap space, do not bother scanning anon pages. */
1667 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1668 noswap = 1;
1669 fraction[0] = 0;
1670 fraction[1] = 1;
1671 denominator = 1;
1672 goto out;
1673 }
1674
1675 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1676 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1677 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1678 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1679
1680 if (global_reclaim(sc)) {
1681 free = zone_page_state(zone, NR_FREE_PAGES);
1682 /* If we have very few page cache pages,
1683 force-scan anon pages. */
1684 if (unlikely(file + free <= high_wmark_pages(zone))) {
1685 fraction[0] = 1;
1686 fraction[1] = 0;
1687 denominator = 1;
1688 goto out;
1689 }
1690 }
1691
1692 /*
1693 * With swappiness at 100, anonymous and file have the same priority.
1694 * This scanning priority is essentially the inverse of IO cost.
1695 */
1696 anon_prio = vmscan_swappiness(sc);
1697 file_prio = 200 - anon_prio;
1698
1699 /*
1700 * OK, so we have swap space and a fair amount of page cache
1701 * pages. We use the recently rotated / recently scanned
1702 * ratios to determine how valuable each cache is.
1703 *
1704 * Because workloads change over time (and to avoid overflow)
1705 * we keep these statistics as a floating average, which ends
1706 * up weighing recent references more than old ones.
1707 *
1708 * anon in [0], file in [1]
1709 */
1710 spin_lock_irq(&zone->lru_lock);
1711 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1712 reclaim_stat->recent_scanned[0] /= 2;
1713 reclaim_stat->recent_rotated[0] /= 2;
1714 }
1715
1716 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1717 reclaim_stat->recent_scanned[1] /= 2;
1718 reclaim_stat->recent_rotated[1] /= 2;
1719 }
1720
1721 /*
1722 * The amount of pressure on anon vs file pages is inversely
1723 * proportional to the fraction of recently scanned pages on
1724 * each list that were recently referenced and in active use.
1725 */
1726 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1727 ap /= reclaim_stat->recent_rotated[0] + 1;
1728
1729 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1730 fp /= reclaim_stat->recent_rotated[1] + 1;
1731 spin_unlock_irq(&zone->lru_lock);
1732
1733 fraction[0] = ap;
1734 fraction[1] = fp;
1735 denominator = ap + fp + 1;
1736 out:
1737 for_each_evictable_lru(lru) {
1738 int file = is_file_lru(lru);
1739 unsigned long scan;
1740
1741 scan = get_lru_size(lruvec, lru);
1742 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1743 scan >>= sc->priority;
1744 if (!scan && force_scan)
1745 scan = SWAP_CLUSTER_MAX;
1746 scan = div64_u64(scan * fraction[file], denominator);
1747 }
1748 nr[lru] = scan;
1749 }
1750 }
1751
1752 /* Use reclaim/compaction for costly allocs or under memory pressure */
1753 static bool in_reclaim_compaction(struct scan_control *sc)
1754 {
1755 if (COMPACTION_BUILD && sc->order &&
1756 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1757 sc->priority < DEF_PRIORITY - 2))
1758 return true;
1759
1760 return false;
1761 }
1762
1763 #ifdef CONFIG_COMPACTION
1764 /*
1765 * If compaction is deferred for sc->order then scale the number of pages
1766 * reclaimed based on the number of consecutive allocation failures
1767 */
1768 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1769 struct lruvec *lruvec, struct scan_control *sc)
1770 {
1771 struct zone *zone = lruvec_zone(lruvec);
1772
1773 if (zone->compact_order_failed <= sc->order)
1774 pages_for_compaction <<= zone->compact_defer_shift;
1775 return pages_for_compaction;
1776 }
1777 #else
1778 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1779 struct lruvec *lruvec, struct scan_control *sc)
1780 {
1781 return pages_for_compaction;
1782 }
1783 #endif
1784
1785 /*
1786 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1787 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1788 * true if more pages should be reclaimed such that when the page allocator
1789 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1790 * It will give up earlier than that if there is difficulty reclaiming pages.
1791 */
1792 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1793 unsigned long nr_reclaimed,
1794 unsigned long nr_scanned,
1795 struct scan_control *sc)
1796 {
1797 unsigned long pages_for_compaction;
1798 unsigned long inactive_lru_pages;
1799
1800 /* If not in reclaim/compaction mode, stop */
1801 if (!in_reclaim_compaction(sc))
1802 return false;
1803
1804 /* Consider stopping depending on scan and reclaim activity */
1805 if (sc->gfp_mask & __GFP_REPEAT) {
1806 /*
1807 * For __GFP_REPEAT allocations, stop reclaiming if the
1808 * full LRU list has been scanned and we are still failing
1809 * to reclaim pages. This full LRU scan is potentially
1810 * expensive but a __GFP_REPEAT caller really wants to succeed
1811 */
1812 if (!nr_reclaimed && !nr_scanned)
1813 return false;
1814 } else {
1815 /*
1816 * For non-__GFP_REPEAT allocations which can presumably
1817 * fail without consequence, stop if we failed to reclaim
1818 * any pages from the last SWAP_CLUSTER_MAX number of
1819 * pages that were scanned. This will return to the
1820 * caller faster at the risk reclaim/compaction and
1821 * the resulting allocation attempt fails
1822 */
1823 if (!nr_reclaimed)
1824 return false;
1825 }
1826
1827 /*
1828 * If we have not reclaimed enough pages for compaction and the
1829 * inactive lists are large enough, continue reclaiming
1830 */
1831 pages_for_compaction = (2UL << sc->order);
1832
1833 pages_for_compaction = scale_for_compaction(pages_for_compaction,
1834 lruvec, sc);
1835 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1836 if (nr_swap_pages > 0)
1837 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1838 if (sc->nr_reclaimed < pages_for_compaction &&
1839 inactive_lru_pages > pages_for_compaction)
1840 return true;
1841
1842 /* If compaction would go ahead or the allocation would succeed, stop */
1843 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1844 case COMPACT_PARTIAL:
1845 case COMPACT_CONTINUE:
1846 return false;
1847 default:
1848 return true;
1849 }
1850 }
1851
1852 /*
1853 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1854 */
1855 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1856 {
1857 unsigned long nr[NR_LRU_LISTS];
1858 unsigned long nr_to_scan;
1859 enum lru_list lru;
1860 unsigned long nr_reclaimed, nr_scanned;
1861 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1862 struct blk_plug plug;
1863
1864 restart:
1865 nr_reclaimed = 0;
1866 nr_scanned = sc->nr_scanned;
1867 get_scan_count(lruvec, sc, nr);
1868
1869 blk_start_plug(&plug);
1870 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1871 nr[LRU_INACTIVE_FILE]) {
1872 for_each_evictable_lru(lru) {
1873 if (nr[lru]) {
1874 nr_to_scan = min_t(unsigned long,
1875 nr[lru], SWAP_CLUSTER_MAX);
1876 nr[lru] -= nr_to_scan;
1877
1878 nr_reclaimed += shrink_list(lru, nr_to_scan,
1879 lruvec, sc);
1880 }
1881 }
1882 /*
1883 * On large memory systems, scan >> priority can become
1884 * really large. This is fine for the starting priority;
1885 * we want to put equal scanning pressure on each zone.
1886 * However, if the VM has a harder time of freeing pages,
1887 * with multiple processes reclaiming pages, the total
1888 * freeing target can get unreasonably large.
1889 */
1890 if (nr_reclaimed >= nr_to_reclaim &&
1891 sc->priority < DEF_PRIORITY)
1892 break;
1893 }
1894 blk_finish_plug(&plug);
1895 sc->nr_reclaimed += nr_reclaimed;
1896
1897 /*
1898 * Even if we did not try to evict anon pages at all, we want to
1899 * rebalance the anon lru active/inactive ratio.
1900 */
1901 if (inactive_anon_is_low(lruvec))
1902 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1903 sc, LRU_ACTIVE_ANON);
1904
1905 /* reclaim/compaction might need reclaim to continue */
1906 if (should_continue_reclaim(lruvec, nr_reclaimed,
1907 sc->nr_scanned - nr_scanned, sc))
1908 goto restart;
1909
1910 throttle_vm_writeout(sc->gfp_mask);
1911 }
1912
1913 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1914 {
1915 struct mem_cgroup *root = sc->target_mem_cgroup;
1916 struct mem_cgroup_reclaim_cookie reclaim = {
1917 .zone = zone,
1918 .priority = sc->priority,
1919 };
1920 struct mem_cgroup *memcg;
1921
1922 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1923 do {
1924 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1925
1926 shrink_lruvec(lruvec, sc);
1927
1928 /*
1929 * Limit reclaim has historically picked one memcg and
1930 * scanned it with decreasing priority levels until
1931 * nr_to_reclaim had been reclaimed. This priority
1932 * cycle is thus over after a single memcg.
1933 *
1934 * Direct reclaim and kswapd, on the other hand, have
1935 * to scan all memory cgroups to fulfill the overall
1936 * scan target for the zone.
1937 */
1938 if (!global_reclaim(sc)) {
1939 mem_cgroup_iter_break(root, memcg);
1940 break;
1941 }
1942 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1943 } while (memcg);
1944 }
1945
1946 /* Returns true if compaction should go ahead for a high-order request */
1947 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1948 {
1949 unsigned long balance_gap, watermark;
1950 bool watermark_ok;
1951
1952 /* Do not consider compaction for orders reclaim is meant to satisfy */
1953 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1954 return false;
1955
1956 /*
1957 * Compaction takes time to run and there are potentially other
1958 * callers using the pages just freed. Continue reclaiming until
1959 * there is a buffer of free pages available to give compaction
1960 * a reasonable chance of completing and allocating the page
1961 */
1962 balance_gap = min(low_wmark_pages(zone),
1963 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1964 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1965 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1966 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1967
1968 /*
1969 * If compaction is deferred, reclaim up to a point where
1970 * compaction will have a chance of success when re-enabled
1971 */
1972 if (compaction_deferred(zone, sc->order))
1973 return watermark_ok;
1974
1975 /* If compaction is not ready to start, keep reclaiming */
1976 if (!compaction_suitable(zone, sc->order))
1977 return false;
1978
1979 return watermark_ok;
1980 }
1981
1982 /*
1983 * This is the direct reclaim path, for page-allocating processes. We only
1984 * try to reclaim pages from zones which will satisfy the caller's allocation
1985 * request.
1986 *
1987 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1988 * Because:
1989 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1990 * allocation or
1991 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1992 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1993 * zone defense algorithm.
1994 *
1995 * If a zone is deemed to be full of pinned pages then just give it a light
1996 * scan then give up on it.
1997 *
1998 * This function returns true if a zone is being reclaimed for a costly
1999 * high-order allocation and compaction is ready to begin. This indicates to
2000 * the caller that it should consider retrying the allocation instead of
2001 * further reclaim.
2002 */
2003 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2004 {
2005 struct zoneref *z;
2006 struct zone *zone;
2007 unsigned long nr_soft_reclaimed;
2008 unsigned long nr_soft_scanned;
2009 bool aborted_reclaim = false;
2010
2011 /*
2012 * If the number of buffer_heads in the machine exceeds the maximum
2013 * allowed level, force direct reclaim to scan the highmem zone as
2014 * highmem pages could be pinning lowmem pages storing buffer_heads
2015 */
2016 if (buffer_heads_over_limit)
2017 sc->gfp_mask |= __GFP_HIGHMEM;
2018
2019 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2020 gfp_zone(sc->gfp_mask), sc->nodemask) {
2021 if (!populated_zone(zone))
2022 continue;
2023 /*
2024 * Take care memory controller reclaiming has small influence
2025 * to global LRU.
2026 */
2027 if (global_reclaim(sc)) {
2028 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2029 continue;
2030 if (zone->all_unreclaimable &&
2031 sc->priority != DEF_PRIORITY)
2032 continue; /* Let kswapd poll it */
2033 if (COMPACTION_BUILD) {
2034 /*
2035 * If we already have plenty of memory free for
2036 * compaction in this zone, don't free any more.
2037 * Even though compaction is invoked for any
2038 * non-zero order, only frequent costly order
2039 * reclamation is disruptive enough to become a
2040 * noticeable problem, like transparent huge
2041 * page allocations.
2042 */
2043 if (compaction_ready(zone, sc)) {
2044 aborted_reclaim = true;
2045 continue;
2046 }
2047 }
2048 /*
2049 * This steals pages from memory cgroups over softlimit
2050 * and returns the number of reclaimed pages and
2051 * scanned pages. This works for global memory pressure
2052 * and balancing, not for a memcg's limit.
2053 */
2054 nr_soft_scanned = 0;
2055 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2056 sc->order, sc->gfp_mask,
2057 &nr_soft_scanned);
2058 sc->nr_reclaimed += nr_soft_reclaimed;
2059 sc->nr_scanned += nr_soft_scanned;
2060 /* need some check for avoid more shrink_zone() */
2061 }
2062
2063 shrink_zone(zone, sc);
2064 }
2065
2066 return aborted_reclaim;
2067 }
2068
2069 static bool zone_reclaimable(struct zone *zone)
2070 {
2071 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2072 }
2073
2074 /* All zones in zonelist are unreclaimable? */
2075 static bool all_unreclaimable(struct zonelist *zonelist,
2076 struct scan_control *sc)
2077 {
2078 struct zoneref *z;
2079 struct zone *zone;
2080
2081 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2082 gfp_zone(sc->gfp_mask), sc->nodemask) {
2083 if (!populated_zone(zone))
2084 continue;
2085 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2086 continue;
2087 if (!zone->all_unreclaimable)
2088 return false;
2089 }
2090
2091 return true;
2092 }
2093
2094 /*
2095 * This is the main entry point to direct page reclaim.
2096 *
2097 * If a full scan of the inactive list fails to free enough memory then we
2098 * are "out of memory" and something needs to be killed.
2099 *
2100 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2101 * high - the zone may be full of dirty or under-writeback pages, which this
2102 * caller can't do much about. We kick the writeback threads and take explicit
2103 * naps in the hope that some of these pages can be written. But if the
2104 * allocating task holds filesystem locks which prevent writeout this might not
2105 * work, and the allocation attempt will fail.
2106 *
2107 * returns: 0, if no pages reclaimed
2108 * else, the number of pages reclaimed
2109 */
2110 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2111 struct scan_control *sc,
2112 struct shrink_control *shrink)
2113 {
2114 unsigned long total_scanned = 0;
2115 struct reclaim_state *reclaim_state = current->reclaim_state;
2116 struct zoneref *z;
2117 struct zone *zone;
2118 unsigned long writeback_threshold;
2119 bool aborted_reclaim;
2120
2121 delayacct_freepages_start();
2122
2123 if (global_reclaim(sc))
2124 count_vm_event(ALLOCSTALL);
2125
2126 do {
2127 sc->nr_scanned = 0;
2128 aborted_reclaim = shrink_zones(zonelist, sc);
2129
2130 /*
2131 * Don't shrink slabs when reclaiming memory from
2132 * over limit cgroups
2133 */
2134 if (global_reclaim(sc)) {
2135 unsigned long lru_pages = 0;
2136 for_each_zone_zonelist(zone, z, zonelist,
2137 gfp_zone(sc->gfp_mask)) {
2138 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2139 continue;
2140
2141 lru_pages += zone_reclaimable_pages(zone);
2142 }
2143
2144 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2145 if (reclaim_state) {
2146 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2147 reclaim_state->reclaimed_slab = 0;
2148 }
2149 }
2150 total_scanned += sc->nr_scanned;
2151 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2152 goto out;
2153
2154 /*
2155 * Try to write back as many pages as we just scanned. This
2156 * tends to cause slow streaming writers to write data to the
2157 * disk smoothly, at the dirtying rate, which is nice. But
2158 * that's undesirable in laptop mode, where we *want* lumpy
2159 * writeout. So in laptop mode, write out the whole world.
2160 */
2161 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2162 if (total_scanned > writeback_threshold) {
2163 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2164 WB_REASON_TRY_TO_FREE_PAGES);
2165 sc->may_writepage = 1;
2166 }
2167
2168 /* Take a nap, wait for some writeback to complete */
2169 if (!sc->hibernation_mode && sc->nr_scanned &&
2170 sc->priority < DEF_PRIORITY - 2) {
2171 struct zone *preferred_zone;
2172
2173 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2174 &cpuset_current_mems_allowed,
2175 &preferred_zone);
2176 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2177 }
2178 } while (--sc->priority >= 0);
2179
2180 out:
2181 delayacct_freepages_end();
2182
2183 if (sc->nr_reclaimed)
2184 return sc->nr_reclaimed;
2185
2186 /*
2187 * As hibernation is going on, kswapd is freezed so that it can't mark
2188 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2189 * check.
2190 */
2191 if (oom_killer_disabled)
2192 return 0;
2193
2194 /* Aborted reclaim to try compaction? don't OOM, then */
2195 if (aborted_reclaim)
2196 return 1;
2197
2198 /* top priority shrink_zones still had more to do? don't OOM, then */
2199 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2200 return 1;
2201
2202 return 0;
2203 }
2204
2205 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2206 {
2207 struct zone *zone;
2208 unsigned long pfmemalloc_reserve = 0;
2209 unsigned long free_pages = 0;
2210 int i;
2211 bool wmark_ok;
2212
2213 for (i = 0; i <= ZONE_NORMAL; i++) {
2214 zone = &pgdat->node_zones[i];
2215 pfmemalloc_reserve += min_wmark_pages(zone);
2216 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2217 }
2218
2219 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2220
2221 /* kswapd must be awake if processes are being throttled */
2222 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2223 pgdat->classzone_idx = min(pgdat->classzone_idx,
2224 (enum zone_type)ZONE_NORMAL);
2225 wake_up_interruptible(&pgdat->kswapd_wait);
2226 }
2227
2228 return wmark_ok;
2229 }
2230
2231 /*
2232 * Throttle direct reclaimers if backing storage is backed by the network
2233 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2234 * depleted. kswapd will continue to make progress and wake the processes
2235 * when the low watermark is reached
2236 */
2237 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2238 nodemask_t *nodemask)
2239 {
2240 struct zone *zone;
2241 int high_zoneidx = gfp_zone(gfp_mask);
2242 pg_data_t *pgdat;
2243
2244 /*
2245 * Kernel threads should not be throttled as they may be indirectly
2246 * responsible for cleaning pages necessary for reclaim to make forward
2247 * progress. kjournald for example may enter direct reclaim while
2248 * committing a transaction where throttling it could forcing other
2249 * processes to block on log_wait_commit().
2250 */
2251 if (current->flags & PF_KTHREAD)
2252 return;
2253
2254 /* Check if the pfmemalloc reserves are ok */
2255 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2256 pgdat = zone->zone_pgdat;
2257 if (pfmemalloc_watermark_ok(pgdat))
2258 return;
2259
2260 /* Account for the throttling */
2261 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2262
2263 /*
2264 * If the caller cannot enter the filesystem, it's possible that it
2265 * is due to the caller holding an FS lock or performing a journal
2266 * transaction in the case of a filesystem like ext[3|4]. In this case,
2267 * it is not safe to block on pfmemalloc_wait as kswapd could be
2268 * blocked waiting on the same lock. Instead, throttle for up to a
2269 * second before continuing.
2270 */
2271 if (!(gfp_mask & __GFP_FS)) {
2272 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2273 pfmemalloc_watermark_ok(pgdat), HZ);
2274 return;
2275 }
2276
2277 /* Throttle until kswapd wakes the process */
2278 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2279 pfmemalloc_watermark_ok(pgdat));
2280 }
2281
2282 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2283 gfp_t gfp_mask, nodemask_t *nodemask)
2284 {
2285 unsigned long nr_reclaimed;
2286 struct scan_control sc = {
2287 .gfp_mask = gfp_mask,
2288 .may_writepage = !laptop_mode,
2289 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2290 .may_unmap = 1,
2291 .may_swap = 1,
2292 .order = order,
2293 .priority = DEF_PRIORITY,
2294 .target_mem_cgroup = NULL,
2295 .nodemask = nodemask,
2296 };
2297 struct shrink_control shrink = {
2298 .gfp_mask = sc.gfp_mask,
2299 };
2300
2301 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2302
2303 /*
2304 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2305 * that the page allocator does not consider triggering OOM
2306 */
2307 if (fatal_signal_pending(current))
2308 return 1;
2309
2310 trace_mm_vmscan_direct_reclaim_begin(order,
2311 sc.may_writepage,
2312 gfp_mask);
2313
2314 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2315
2316 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2317
2318 return nr_reclaimed;
2319 }
2320
2321 #ifdef CONFIG_MEMCG
2322
2323 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2324 gfp_t gfp_mask, bool noswap,
2325 struct zone *zone,
2326 unsigned long *nr_scanned)
2327 {
2328 struct scan_control sc = {
2329 .nr_scanned = 0,
2330 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2331 .may_writepage = !laptop_mode,
2332 .may_unmap = 1,
2333 .may_swap = !noswap,
2334 .order = 0,
2335 .priority = 0,
2336 .target_mem_cgroup = memcg,
2337 };
2338 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2339
2340 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2341 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2342
2343 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2344 sc.may_writepage,
2345 sc.gfp_mask);
2346
2347 /*
2348 * NOTE: Although we can get the priority field, using it
2349 * here is not a good idea, since it limits the pages we can scan.
2350 * if we don't reclaim here, the shrink_zone from balance_pgdat
2351 * will pick up pages from other mem cgroup's as well. We hack
2352 * the priority and make it zero.
2353 */
2354 shrink_lruvec(lruvec, &sc);
2355
2356 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2357
2358 *nr_scanned = sc.nr_scanned;
2359 return sc.nr_reclaimed;
2360 }
2361
2362 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2363 gfp_t gfp_mask,
2364 bool noswap)
2365 {
2366 struct zonelist *zonelist;
2367 unsigned long nr_reclaimed;
2368 int nid;
2369 struct scan_control sc = {
2370 .may_writepage = !laptop_mode,
2371 .may_unmap = 1,
2372 .may_swap = !noswap,
2373 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2374 .order = 0,
2375 .priority = DEF_PRIORITY,
2376 .target_mem_cgroup = memcg,
2377 .nodemask = NULL, /* we don't care the placement */
2378 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2379 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2380 };
2381 struct shrink_control shrink = {
2382 .gfp_mask = sc.gfp_mask,
2383 };
2384
2385 /*
2386 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2387 * take care of from where we get pages. So the node where we start the
2388 * scan does not need to be the current node.
2389 */
2390 nid = mem_cgroup_select_victim_node(memcg);
2391
2392 zonelist = NODE_DATA(nid)->node_zonelists;
2393
2394 trace_mm_vmscan_memcg_reclaim_begin(0,
2395 sc.may_writepage,
2396 sc.gfp_mask);
2397
2398 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2399
2400 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2401
2402 return nr_reclaimed;
2403 }
2404 #endif
2405
2406 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2407 {
2408 struct mem_cgroup *memcg;
2409
2410 if (!total_swap_pages)
2411 return;
2412
2413 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2414 do {
2415 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2416
2417 if (inactive_anon_is_low(lruvec))
2418 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2419 sc, LRU_ACTIVE_ANON);
2420
2421 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2422 } while (memcg);
2423 }
2424
2425 /*
2426 * pgdat_balanced is used when checking if a node is balanced for high-order
2427 * allocations. Only zones that meet watermarks and are in a zone allowed
2428 * by the callers classzone_idx are added to balanced_pages. The total of
2429 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2430 * for the node to be considered balanced. Forcing all zones to be balanced
2431 * for high orders can cause excessive reclaim when there are imbalanced zones.
2432 * The choice of 25% is due to
2433 * o a 16M DMA zone that is balanced will not balance a zone on any
2434 * reasonable sized machine
2435 * o On all other machines, the top zone must be at least a reasonable
2436 * percentage of the middle zones. For example, on 32-bit x86, highmem
2437 * would need to be at least 256M for it to be balance a whole node.
2438 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2439 * to balance a node on its own. These seemed like reasonable ratios.
2440 */
2441 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2442 int classzone_idx)
2443 {
2444 unsigned long present_pages = 0;
2445 int i;
2446
2447 for (i = 0; i <= classzone_idx; i++)
2448 present_pages += pgdat->node_zones[i].present_pages;
2449
2450 /* A special case here: if zone has no page, we think it's balanced */
2451 return balanced_pages >= (present_pages >> 2);
2452 }
2453
2454 /*
2455 * Prepare kswapd for sleeping. This verifies that there are no processes
2456 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2457 *
2458 * Returns true if kswapd is ready to sleep
2459 */
2460 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2461 int classzone_idx)
2462 {
2463 int i;
2464 unsigned long balanced = 0;
2465 bool all_zones_ok = true;
2466
2467 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2468 if (remaining)
2469 return false;
2470
2471 /*
2472 * There is a potential race between when kswapd checks its watermarks
2473 * and a process gets throttled. There is also a potential race if
2474 * processes get throttled, kswapd wakes, a large process exits therby
2475 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2476 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2477 * so wake them now if necessary. If necessary, processes will wake
2478 * kswapd and get throttled again
2479 */
2480 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2481 wake_up(&pgdat->pfmemalloc_wait);
2482 return false;
2483 }
2484
2485 /* Check the watermark levels */
2486 for (i = 0; i <= classzone_idx; i++) {
2487 struct zone *zone = pgdat->node_zones + i;
2488
2489 if (!populated_zone(zone))
2490 continue;
2491
2492 /*
2493 * balance_pgdat() skips over all_unreclaimable after
2494 * DEF_PRIORITY. Effectively, it considers them balanced so
2495 * they must be considered balanced here as well if kswapd
2496 * is to sleep
2497 */
2498 if (zone->all_unreclaimable) {
2499 balanced += zone->present_pages;
2500 continue;
2501 }
2502
2503 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2504 i, 0))
2505 all_zones_ok = false;
2506 else
2507 balanced += zone->present_pages;
2508 }
2509
2510 /*
2511 * For high-order requests, the balanced zones must contain at least
2512 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2513 * must be balanced
2514 */
2515 if (order)
2516 return pgdat_balanced(pgdat, balanced, classzone_idx);
2517 else
2518 return all_zones_ok;
2519 }
2520
2521 /*
2522 * For kswapd, balance_pgdat() will work across all this node's zones until
2523 * they are all at high_wmark_pages(zone).
2524 *
2525 * Returns the final order kswapd was reclaiming at
2526 *
2527 * There is special handling here for zones which are full of pinned pages.
2528 * This can happen if the pages are all mlocked, or if they are all used by
2529 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2530 * What we do is to detect the case where all pages in the zone have been
2531 * scanned twice and there has been zero successful reclaim. Mark the zone as
2532 * dead and from now on, only perform a short scan. Basically we're polling
2533 * the zone for when the problem goes away.
2534 *
2535 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2536 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2537 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2538 * lower zones regardless of the number of free pages in the lower zones. This
2539 * interoperates with the page allocator fallback scheme to ensure that aging
2540 * of pages is balanced across the zones.
2541 */
2542 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2543 int *classzone_idx)
2544 {
2545 int all_zones_ok;
2546 unsigned long balanced;
2547 int i;
2548 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2549 unsigned long total_scanned;
2550 struct reclaim_state *reclaim_state = current->reclaim_state;
2551 unsigned long nr_soft_reclaimed;
2552 unsigned long nr_soft_scanned;
2553 struct scan_control sc = {
2554 .gfp_mask = GFP_KERNEL,
2555 .may_unmap = 1,
2556 .may_swap = 1,
2557 /*
2558 * kswapd doesn't want to be bailed out while reclaim. because
2559 * we want to put equal scanning pressure on each zone.
2560 */
2561 .nr_to_reclaim = ULONG_MAX,
2562 .order = order,
2563 .target_mem_cgroup = NULL,
2564 };
2565 struct shrink_control shrink = {
2566 .gfp_mask = sc.gfp_mask,
2567 };
2568 loop_again:
2569 total_scanned = 0;
2570 sc.priority = DEF_PRIORITY;
2571 sc.nr_reclaimed = 0;
2572 sc.may_writepage = !laptop_mode;
2573 count_vm_event(PAGEOUTRUN);
2574
2575 do {
2576 unsigned long lru_pages = 0;
2577 int has_under_min_watermark_zone = 0;
2578
2579 all_zones_ok = 1;
2580 balanced = 0;
2581
2582 /*
2583 * Scan in the highmem->dma direction for the highest
2584 * zone which needs scanning
2585 */
2586 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2587 struct zone *zone = pgdat->node_zones + i;
2588
2589 if (!populated_zone(zone))
2590 continue;
2591
2592 if (zone->all_unreclaimable &&
2593 sc.priority != DEF_PRIORITY)
2594 continue;
2595
2596 /*
2597 * Do some background aging of the anon list, to give
2598 * pages a chance to be referenced before reclaiming.
2599 */
2600 age_active_anon(zone, &sc);
2601
2602 /*
2603 * If the number of buffer_heads in the machine
2604 * exceeds the maximum allowed level and this node
2605 * has a highmem zone, force kswapd to reclaim from
2606 * it to relieve lowmem pressure.
2607 */
2608 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2609 end_zone = i;
2610 break;
2611 }
2612
2613 if (!zone_watermark_ok_safe(zone, order,
2614 high_wmark_pages(zone), 0, 0)) {
2615 end_zone = i;
2616 break;
2617 } else {
2618 /* If balanced, clear the congested flag */
2619 zone_clear_flag(zone, ZONE_CONGESTED);
2620 }
2621 }
2622 if (i < 0)
2623 goto out;
2624
2625 for (i = 0; i <= end_zone; i++) {
2626 struct zone *zone = pgdat->node_zones + i;
2627
2628 lru_pages += zone_reclaimable_pages(zone);
2629 }
2630
2631 /*
2632 * Now scan the zone in the dma->highmem direction, stopping
2633 * at the last zone which needs scanning.
2634 *
2635 * We do this because the page allocator works in the opposite
2636 * direction. This prevents the page allocator from allocating
2637 * pages behind kswapd's direction of progress, which would
2638 * cause too much scanning of the lower zones.
2639 */
2640 for (i = 0; i <= end_zone; i++) {
2641 struct zone *zone = pgdat->node_zones + i;
2642 int nr_slab, testorder;
2643 unsigned long balance_gap;
2644
2645 if (!populated_zone(zone))
2646 continue;
2647
2648 if (zone->all_unreclaimable &&
2649 sc.priority != DEF_PRIORITY)
2650 continue;
2651
2652 sc.nr_scanned = 0;
2653
2654 nr_soft_scanned = 0;
2655 /*
2656 * Call soft limit reclaim before calling shrink_zone.
2657 */
2658 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2659 order, sc.gfp_mask,
2660 &nr_soft_scanned);
2661 sc.nr_reclaimed += nr_soft_reclaimed;
2662 total_scanned += nr_soft_scanned;
2663
2664 /*
2665 * We put equal pressure on every zone, unless
2666 * one zone has way too many pages free
2667 * already. The "too many pages" is defined
2668 * as the high wmark plus a "gap" where the
2669 * gap is either the low watermark or 1%
2670 * of the zone, whichever is smaller.
2671 */
2672 balance_gap = min(low_wmark_pages(zone),
2673 (zone->present_pages +
2674 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2675 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2676 /*
2677 * Kswapd reclaims only single pages with compaction
2678 * enabled. Trying too hard to reclaim until contiguous
2679 * free pages have become available can hurt performance
2680 * by evicting too much useful data from memory.
2681 * Do not reclaim more than needed for compaction.
2682 */
2683 testorder = order;
2684 if (COMPACTION_BUILD && order &&
2685 compaction_suitable(zone, order) !=
2686 COMPACT_SKIPPED)
2687 testorder = 0;
2688
2689 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2690 !zone_watermark_ok_safe(zone, testorder,
2691 high_wmark_pages(zone) + balance_gap,
2692 end_zone, 0)) {
2693 shrink_zone(zone, &sc);
2694
2695 reclaim_state->reclaimed_slab = 0;
2696 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2697 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2698 total_scanned += sc.nr_scanned;
2699
2700 if (nr_slab == 0 && !zone_reclaimable(zone))
2701 zone->all_unreclaimable = 1;
2702 }
2703
2704 /*
2705 * If we've done a decent amount of scanning and
2706 * the reclaim ratio is low, start doing writepage
2707 * even in laptop mode
2708 */
2709 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2710 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2711 sc.may_writepage = 1;
2712
2713 if (zone->all_unreclaimable) {
2714 if (end_zone && end_zone == i)
2715 end_zone--;
2716 continue;
2717 }
2718
2719 if (!zone_watermark_ok_safe(zone, testorder,
2720 high_wmark_pages(zone), end_zone, 0)) {
2721 all_zones_ok = 0;
2722 /*
2723 * We are still under min water mark. This
2724 * means that we have a GFP_ATOMIC allocation
2725 * failure risk. Hurry up!
2726 */
2727 if (!zone_watermark_ok_safe(zone, order,
2728 min_wmark_pages(zone), end_zone, 0))
2729 has_under_min_watermark_zone = 1;
2730 } else {
2731 /*
2732 * If a zone reaches its high watermark,
2733 * consider it to be no longer congested. It's
2734 * possible there are dirty pages backed by
2735 * congested BDIs but as pressure is relieved,
2736 * speculatively avoid congestion waits
2737 */
2738 zone_clear_flag(zone, ZONE_CONGESTED);
2739 if (i <= *classzone_idx)
2740 balanced += zone->present_pages;
2741 }
2742
2743 }
2744
2745 /*
2746 * If the low watermark is met there is no need for processes
2747 * to be throttled on pfmemalloc_wait as they should not be
2748 * able to safely make forward progress. Wake them
2749 */
2750 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2751 pfmemalloc_watermark_ok(pgdat))
2752 wake_up(&pgdat->pfmemalloc_wait);
2753
2754 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2755 break; /* kswapd: all done */
2756 /*
2757 * OK, kswapd is getting into trouble. Take a nap, then take
2758 * another pass across the zones.
2759 */
2760 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2761 if (has_under_min_watermark_zone)
2762 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2763 else
2764 congestion_wait(BLK_RW_ASYNC, HZ/10);
2765 }
2766
2767 /*
2768 * We do this so kswapd doesn't build up large priorities for
2769 * example when it is freeing in parallel with allocators. It
2770 * matches the direct reclaim path behaviour in terms of impact
2771 * on zone->*_priority.
2772 */
2773 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2774 break;
2775 } while (--sc.priority >= 0);
2776 out:
2777
2778 /*
2779 * order-0: All zones must meet high watermark for a balanced node
2780 * high-order: Balanced zones must make up at least 25% of the node
2781 * for the node to be balanced
2782 */
2783 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2784 cond_resched();
2785
2786 try_to_freeze();
2787
2788 /*
2789 * Fragmentation may mean that the system cannot be
2790 * rebalanced for high-order allocations in all zones.
2791 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2792 * it means the zones have been fully scanned and are still
2793 * not balanced. For high-order allocations, there is
2794 * little point trying all over again as kswapd may
2795 * infinite loop.
2796 *
2797 * Instead, recheck all watermarks at order-0 as they
2798 * are the most important. If watermarks are ok, kswapd will go
2799 * back to sleep. High-order users can still perform direct
2800 * reclaim if they wish.
2801 */
2802 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2803 order = sc.order = 0;
2804
2805 goto loop_again;
2806 }
2807
2808 /*
2809 * If kswapd was reclaiming at a higher order, it has the option of
2810 * sleeping without all zones being balanced. Before it does, it must
2811 * ensure that the watermarks for order-0 on *all* zones are met and
2812 * that the congestion flags are cleared. The congestion flag must
2813 * be cleared as kswapd is the only mechanism that clears the flag
2814 * and it is potentially going to sleep here.
2815 */
2816 if (order) {
2817 int zones_need_compaction = 1;
2818
2819 for (i = 0; i <= end_zone; i++) {
2820 struct zone *zone = pgdat->node_zones + i;
2821
2822 if (!populated_zone(zone))
2823 continue;
2824
2825 if (zone->all_unreclaimable &&
2826 sc.priority != DEF_PRIORITY)
2827 continue;
2828
2829 /* Would compaction fail due to lack of free memory? */
2830 if (COMPACTION_BUILD &&
2831 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2832 goto loop_again;
2833
2834 /* Confirm the zone is balanced for order-0 */
2835 if (!zone_watermark_ok(zone, 0,
2836 high_wmark_pages(zone), 0, 0)) {
2837 order = sc.order = 0;
2838 goto loop_again;
2839 }
2840
2841 /* Check if the memory needs to be defragmented. */
2842 if (zone_watermark_ok(zone, order,
2843 low_wmark_pages(zone), *classzone_idx, 0))
2844 zones_need_compaction = 0;
2845
2846 /* If balanced, clear the congested flag */
2847 zone_clear_flag(zone, ZONE_CONGESTED);
2848 }
2849
2850 if (zones_need_compaction)
2851 compact_pgdat(pgdat, order);
2852 }
2853
2854 /*
2855 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2856 * makes a decision on the order we were last reclaiming at. However,
2857 * if another caller entered the allocator slow path while kswapd
2858 * was awake, order will remain at the higher level
2859 */
2860 *classzone_idx = end_zone;
2861 return order;
2862 }
2863
2864 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2865 {
2866 long remaining = 0;
2867 DEFINE_WAIT(wait);
2868
2869 if (freezing(current) || kthread_should_stop())
2870 return;
2871
2872 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2873
2874 /* Try to sleep for a short interval */
2875 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2876 remaining = schedule_timeout(HZ/10);
2877 finish_wait(&pgdat->kswapd_wait, &wait);
2878 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2879 }
2880
2881 /*
2882 * After a short sleep, check if it was a premature sleep. If not, then
2883 * go fully to sleep until explicitly woken up.
2884 */
2885 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2886 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2887
2888 /*
2889 * vmstat counters are not perfectly accurate and the estimated
2890 * value for counters such as NR_FREE_PAGES can deviate from the
2891 * true value by nr_online_cpus * threshold. To avoid the zone
2892 * watermarks being breached while under pressure, we reduce the
2893 * per-cpu vmstat threshold while kswapd is awake and restore
2894 * them before going back to sleep.
2895 */
2896 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2897
2898 /*
2899 * Compaction records what page blocks it recently failed to
2900 * isolate pages from and skips them in the future scanning.
2901 * When kswapd is going to sleep, it is reasonable to assume
2902 * that pages and compaction may succeed so reset the cache.
2903 */
2904 reset_isolation_suitable(pgdat);
2905
2906 if (!kthread_should_stop())
2907 schedule();
2908
2909 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2910 } else {
2911 if (remaining)
2912 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2913 else
2914 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2915 }
2916 finish_wait(&pgdat->kswapd_wait, &wait);
2917 }
2918
2919 /*
2920 * The background pageout daemon, started as a kernel thread
2921 * from the init process.
2922 *
2923 * This basically trickles out pages so that we have _some_
2924 * free memory available even if there is no other activity
2925 * that frees anything up. This is needed for things like routing
2926 * etc, where we otherwise might have all activity going on in
2927 * asynchronous contexts that cannot page things out.
2928 *
2929 * If there are applications that are active memory-allocators
2930 * (most normal use), this basically shouldn't matter.
2931 */
2932 static int kswapd(void *p)
2933 {
2934 unsigned long order, new_order;
2935 unsigned balanced_order;
2936 int classzone_idx, new_classzone_idx;
2937 int balanced_classzone_idx;
2938 pg_data_t *pgdat = (pg_data_t*)p;
2939 struct task_struct *tsk = current;
2940
2941 struct reclaim_state reclaim_state = {
2942 .reclaimed_slab = 0,
2943 };
2944 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2945
2946 lockdep_set_current_reclaim_state(GFP_KERNEL);
2947
2948 if (!cpumask_empty(cpumask))
2949 set_cpus_allowed_ptr(tsk, cpumask);
2950 current->reclaim_state = &reclaim_state;
2951
2952 /*
2953 * Tell the memory management that we're a "memory allocator",
2954 * and that if we need more memory we should get access to it
2955 * regardless (see "__alloc_pages()"). "kswapd" should
2956 * never get caught in the normal page freeing logic.
2957 *
2958 * (Kswapd normally doesn't need memory anyway, but sometimes
2959 * you need a small amount of memory in order to be able to
2960 * page out something else, and this flag essentially protects
2961 * us from recursively trying to free more memory as we're
2962 * trying to free the first piece of memory in the first place).
2963 */
2964 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2965 set_freezable();
2966
2967 order = new_order = 0;
2968 balanced_order = 0;
2969 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2970 balanced_classzone_idx = classzone_idx;
2971 for ( ; ; ) {
2972 int ret;
2973
2974 /*
2975 * If the last balance_pgdat was unsuccessful it's unlikely a
2976 * new request of a similar or harder type will succeed soon
2977 * so consider going to sleep on the basis we reclaimed at
2978 */
2979 if (balanced_classzone_idx >= new_classzone_idx &&
2980 balanced_order == new_order) {
2981 new_order = pgdat->kswapd_max_order;
2982 new_classzone_idx = pgdat->classzone_idx;
2983 pgdat->kswapd_max_order = 0;
2984 pgdat->classzone_idx = pgdat->nr_zones - 1;
2985 }
2986
2987 if (order < new_order || classzone_idx > new_classzone_idx) {
2988 /*
2989 * Don't sleep if someone wants a larger 'order'
2990 * allocation or has tigher zone constraints
2991 */
2992 order = new_order;
2993 classzone_idx = new_classzone_idx;
2994 } else {
2995 kswapd_try_to_sleep(pgdat, balanced_order,
2996 balanced_classzone_idx);
2997 order = pgdat->kswapd_max_order;
2998 classzone_idx = pgdat->classzone_idx;
2999 new_order = order;
3000 new_classzone_idx = classzone_idx;
3001 pgdat->kswapd_max_order = 0;
3002 pgdat->classzone_idx = pgdat->nr_zones - 1;
3003 }
3004
3005 ret = try_to_freeze();
3006 if (kthread_should_stop())
3007 break;
3008
3009 /*
3010 * We can speed up thawing tasks if we don't call balance_pgdat
3011 * after returning from the refrigerator
3012 */
3013 if (!ret) {
3014 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3015 balanced_classzone_idx = classzone_idx;
3016 balanced_order = balance_pgdat(pgdat, order,
3017 &balanced_classzone_idx);
3018 }
3019 }
3020 return 0;
3021 }
3022
3023 /*
3024 * A zone is low on free memory, so wake its kswapd task to service it.
3025 */
3026 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3027 {
3028 pg_data_t *pgdat;
3029
3030 if (!populated_zone(zone))
3031 return;
3032
3033 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3034 return;
3035 pgdat = zone->zone_pgdat;
3036 if (pgdat->kswapd_max_order < order) {
3037 pgdat->kswapd_max_order = order;
3038 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3039 }
3040 if (!waitqueue_active(&pgdat->kswapd_wait))
3041 return;
3042 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3043 return;
3044
3045 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3046 wake_up_interruptible(&pgdat->kswapd_wait);
3047 }
3048
3049 /*
3050 * The reclaimable count would be mostly accurate.
3051 * The less reclaimable pages may be
3052 * - mlocked pages, which will be moved to unevictable list when encountered
3053 * - mapped pages, which may require several travels to be reclaimed
3054 * - dirty pages, which is not "instantly" reclaimable
3055 */
3056 unsigned long global_reclaimable_pages(void)
3057 {
3058 int nr;
3059
3060 nr = global_page_state(NR_ACTIVE_FILE) +
3061 global_page_state(NR_INACTIVE_FILE);
3062
3063 if (nr_swap_pages > 0)
3064 nr += global_page_state(NR_ACTIVE_ANON) +
3065 global_page_state(NR_INACTIVE_ANON);
3066
3067 return nr;
3068 }
3069
3070 unsigned long zone_reclaimable_pages(struct zone *zone)
3071 {
3072 int nr;
3073
3074 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3075 zone_page_state(zone, NR_INACTIVE_FILE);
3076
3077 if (nr_swap_pages > 0)
3078 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3079 zone_page_state(zone, NR_INACTIVE_ANON);
3080
3081 return nr;
3082 }
3083
3084 #ifdef CONFIG_HIBERNATION
3085 /*
3086 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3087 * freed pages.
3088 *
3089 * Rather than trying to age LRUs the aim is to preserve the overall
3090 * LRU order by reclaiming preferentially
3091 * inactive > active > active referenced > active mapped
3092 */
3093 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3094 {
3095 struct reclaim_state reclaim_state;
3096 struct scan_control sc = {
3097 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3098 .may_swap = 1,
3099 .may_unmap = 1,
3100 .may_writepage = 1,
3101 .nr_to_reclaim = nr_to_reclaim,
3102 .hibernation_mode = 1,
3103 .order = 0,
3104 .priority = DEF_PRIORITY,
3105 };
3106 struct shrink_control shrink = {
3107 .gfp_mask = sc.gfp_mask,
3108 };
3109 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3110 struct task_struct *p = current;
3111 unsigned long nr_reclaimed;
3112
3113 p->flags |= PF_MEMALLOC;
3114 lockdep_set_current_reclaim_state(sc.gfp_mask);
3115 reclaim_state.reclaimed_slab = 0;
3116 p->reclaim_state = &reclaim_state;
3117
3118 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3119
3120 p->reclaim_state = NULL;
3121 lockdep_clear_current_reclaim_state();
3122 p->flags &= ~PF_MEMALLOC;
3123
3124 return nr_reclaimed;
3125 }
3126 #endif /* CONFIG_HIBERNATION */
3127
3128 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3129 not required for correctness. So if the last cpu in a node goes
3130 away, we get changed to run anywhere: as the first one comes back,
3131 restore their cpu bindings. */
3132 static int __devinit cpu_callback(struct notifier_block *nfb,
3133 unsigned long action, void *hcpu)
3134 {
3135 int nid;
3136
3137 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3138 for_each_node_state(nid, N_HIGH_MEMORY) {
3139 pg_data_t *pgdat = NODE_DATA(nid);
3140 const struct cpumask *mask;
3141
3142 mask = cpumask_of_node(pgdat->node_id);
3143
3144 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3145 /* One of our CPUs online: restore mask */
3146 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3147 }
3148 }
3149 return NOTIFY_OK;
3150 }
3151
3152 /*
3153 * This kswapd start function will be called by init and node-hot-add.
3154 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3155 */
3156 int kswapd_run(int nid)
3157 {
3158 pg_data_t *pgdat = NODE_DATA(nid);
3159 int ret = 0;
3160
3161 if (pgdat->kswapd)
3162 return 0;
3163
3164 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3165 if (IS_ERR(pgdat->kswapd)) {
3166 /* failure at boot is fatal */
3167 BUG_ON(system_state == SYSTEM_BOOTING);
3168 pgdat->kswapd = NULL;
3169 pr_err("Failed to start kswapd on node %d\n", nid);
3170 ret = PTR_ERR(pgdat->kswapd);
3171 }
3172 return ret;
3173 }
3174
3175 /*
3176 * Called by memory hotplug when all memory in a node is offlined. Caller must
3177 * hold lock_memory_hotplug().
3178 */
3179 void kswapd_stop(int nid)
3180 {
3181 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3182
3183 if (kswapd) {
3184 kthread_stop(kswapd);
3185 NODE_DATA(nid)->kswapd = NULL;
3186 }
3187 }
3188
3189 static int __init kswapd_init(void)
3190 {
3191 int nid;
3192
3193 swap_setup();
3194 for_each_node_state(nid, N_HIGH_MEMORY)
3195 kswapd_run(nid);
3196 hotcpu_notifier(cpu_callback, 0);
3197 return 0;
3198 }
3199
3200 module_init(kswapd_init)
3201
3202 #ifdef CONFIG_NUMA
3203 /*
3204 * Zone reclaim mode
3205 *
3206 * If non-zero call zone_reclaim when the number of free pages falls below
3207 * the watermarks.
3208 */
3209 int zone_reclaim_mode __read_mostly;
3210
3211 #define RECLAIM_OFF 0
3212 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3213 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3214 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3215
3216 /*
3217 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3218 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3219 * a zone.
3220 */
3221 #define ZONE_RECLAIM_PRIORITY 4
3222
3223 /*
3224 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3225 * occur.
3226 */
3227 int sysctl_min_unmapped_ratio = 1;
3228
3229 /*
3230 * If the number of slab pages in a zone grows beyond this percentage then
3231 * slab reclaim needs to occur.
3232 */
3233 int sysctl_min_slab_ratio = 5;
3234
3235 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3236 {
3237 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3238 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3239 zone_page_state(zone, NR_ACTIVE_FILE);
3240
3241 /*
3242 * It's possible for there to be more file mapped pages than
3243 * accounted for by the pages on the file LRU lists because
3244 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3245 */
3246 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3247 }
3248
3249 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3250 static long zone_pagecache_reclaimable(struct zone *zone)
3251 {
3252 long nr_pagecache_reclaimable;
3253 long delta = 0;
3254
3255 /*
3256 * If RECLAIM_SWAP is set, then all file pages are considered
3257 * potentially reclaimable. Otherwise, we have to worry about
3258 * pages like swapcache and zone_unmapped_file_pages() provides
3259 * a better estimate
3260 */
3261 if (zone_reclaim_mode & RECLAIM_SWAP)
3262 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3263 else
3264 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3265
3266 /* If we can't clean pages, remove dirty pages from consideration */
3267 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3268 delta += zone_page_state(zone, NR_FILE_DIRTY);
3269
3270 /* Watch for any possible underflows due to delta */
3271 if (unlikely(delta > nr_pagecache_reclaimable))
3272 delta = nr_pagecache_reclaimable;
3273
3274 return nr_pagecache_reclaimable - delta;
3275 }
3276
3277 /*
3278 * Try to free up some pages from this zone through reclaim.
3279 */
3280 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3281 {
3282 /* Minimum pages needed in order to stay on node */
3283 const unsigned long nr_pages = 1 << order;
3284 struct task_struct *p = current;
3285 struct reclaim_state reclaim_state;
3286 struct scan_control sc = {
3287 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3288 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3289 .may_swap = 1,
3290 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3291 SWAP_CLUSTER_MAX),
3292 .gfp_mask = gfp_mask,
3293 .order = order,
3294 .priority = ZONE_RECLAIM_PRIORITY,
3295 };
3296 struct shrink_control shrink = {
3297 .gfp_mask = sc.gfp_mask,
3298 };
3299 unsigned long nr_slab_pages0, nr_slab_pages1;
3300
3301 cond_resched();
3302 /*
3303 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3304 * and we also need to be able to write out pages for RECLAIM_WRITE
3305 * and RECLAIM_SWAP.
3306 */
3307 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3308 lockdep_set_current_reclaim_state(gfp_mask);
3309 reclaim_state.reclaimed_slab = 0;
3310 p->reclaim_state = &reclaim_state;
3311
3312 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3313 /*
3314 * Free memory by calling shrink zone with increasing
3315 * priorities until we have enough memory freed.
3316 */
3317 do {
3318 shrink_zone(zone, &sc);
3319 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3320 }
3321
3322 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3323 if (nr_slab_pages0 > zone->min_slab_pages) {
3324 /*
3325 * shrink_slab() does not currently allow us to determine how
3326 * many pages were freed in this zone. So we take the current
3327 * number of slab pages and shake the slab until it is reduced
3328 * by the same nr_pages that we used for reclaiming unmapped
3329 * pages.
3330 *
3331 * Note that shrink_slab will free memory on all zones and may
3332 * take a long time.
3333 */
3334 for (;;) {
3335 unsigned long lru_pages = zone_reclaimable_pages(zone);
3336
3337 /* No reclaimable slab or very low memory pressure */
3338 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3339 break;
3340
3341 /* Freed enough memory */
3342 nr_slab_pages1 = zone_page_state(zone,
3343 NR_SLAB_RECLAIMABLE);
3344 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3345 break;
3346 }
3347
3348 /*
3349 * Update nr_reclaimed by the number of slab pages we
3350 * reclaimed from this zone.
3351 */
3352 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3353 if (nr_slab_pages1 < nr_slab_pages0)
3354 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3355 }
3356
3357 p->reclaim_state = NULL;
3358 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3359 lockdep_clear_current_reclaim_state();
3360 return sc.nr_reclaimed >= nr_pages;
3361 }
3362
3363 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3364 {
3365 int node_id;
3366 int ret;
3367
3368 /*
3369 * Zone reclaim reclaims unmapped file backed pages and
3370 * slab pages if we are over the defined limits.
3371 *
3372 * A small portion of unmapped file backed pages is needed for
3373 * file I/O otherwise pages read by file I/O will be immediately
3374 * thrown out if the zone is overallocated. So we do not reclaim
3375 * if less than a specified percentage of the zone is used by
3376 * unmapped file backed pages.
3377 */
3378 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3379 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3380 return ZONE_RECLAIM_FULL;
3381
3382 if (zone->all_unreclaimable)
3383 return ZONE_RECLAIM_FULL;
3384
3385 /*
3386 * Do not scan if the allocation should not be delayed.
3387 */
3388 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3389 return ZONE_RECLAIM_NOSCAN;
3390
3391 /*
3392 * Only run zone reclaim on the local zone or on zones that do not
3393 * have associated processors. This will favor the local processor
3394 * over remote processors and spread off node memory allocations
3395 * as wide as possible.
3396 */
3397 node_id = zone_to_nid(zone);
3398 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3399 return ZONE_RECLAIM_NOSCAN;
3400
3401 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3402 return ZONE_RECLAIM_NOSCAN;
3403
3404 ret = __zone_reclaim(zone, gfp_mask, order);
3405 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3406
3407 if (!ret)
3408 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3409
3410 return ret;
3411 }
3412 #endif
3413
3414 /*
3415 * page_evictable - test whether a page is evictable
3416 * @page: the page to test
3417 *
3418 * Test whether page is evictable--i.e., should be placed on active/inactive
3419 * lists vs unevictable list.
3420 *
3421 * Reasons page might not be evictable:
3422 * (1) page's mapping marked unevictable
3423 * (2) page is part of an mlocked VMA
3424 *
3425 */
3426 int page_evictable(struct page *page)
3427 {
3428 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3429 }
3430
3431 #ifdef CONFIG_SHMEM
3432 /**
3433 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3434 * @pages: array of pages to check
3435 * @nr_pages: number of pages to check
3436 *
3437 * Checks pages for evictability and moves them to the appropriate lru list.
3438 *
3439 * This function is only used for SysV IPC SHM_UNLOCK.
3440 */
3441 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3442 {
3443 struct lruvec *lruvec;
3444 struct zone *zone = NULL;
3445 int pgscanned = 0;
3446 int pgrescued = 0;
3447 int i;
3448
3449 for (i = 0; i < nr_pages; i++) {
3450 struct page *page = pages[i];
3451 struct zone *pagezone;
3452
3453 pgscanned++;
3454 pagezone = page_zone(page);
3455 if (pagezone != zone) {
3456 if (zone)
3457 spin_unlock_irq(&zone->lru_lock);
3458 zone = pagezone;
3459 spin_lock_irq(&zone->lru_lock);
3460 }
3461 lruvec = mem_cgroup_page_lruvec(page, zone);
3462
3463 if (!PageLRU(page) || !PageUnevictable(page))
3464 continue;
3465
3466 if (page_evictable(page)) {
3467 enum lru_list lru = page_lru_base_type(page);
3468
3469 VM_BUG_ON(PageActive(page));
3470 ClearPageUnevictable(page);
3471 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3472 add_page_to_lru_list(page, lruvec, lru);
3473 pgrescued++;
3474 }
3475 }
3476
3477 if (zone) {
3478 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3479 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3480 spin_unlock_irq(&zone->lru_lock);
3481 }
3482 }
3483 #endif /* CONFIG_SHMEM */
3484
3485 static void warn_scan_unevictable_pages(void)
3486 {
3487 printk_once(KERN_WARNING
3488 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3489 "disabled for lack of a legitimate use case. If you have "
3490 "one, please send an email to linux-mm@kvack.org.\n",
3491 current->comm);
3492 }
3493
3494 /*
3495 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3496 * all nodes' unevictable lists for evictable pages
3497 */
3498 unsigned long scan_unevictable_pages;
3499
3500 int scan_unevictable_handler(struct ctl_table *table, int write,
3501 void __user *buffer,
3502 size_t *length, loff_t *ppos)
3503 {
3504 warn_scan_unevictable_pages();
3505 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3506 scan_unevictable_pages = 0;
3507 return 0;
3508 }
3509
3510 #ifdef CONFIG_NUMA
3511 /*
3512 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3513 * a specified node's per zone unevictable lists for evictable pages.
3514 */
3515
3516 static ssize_t read_scan_unevictable_node(struct device *dev,
3517 struct device_attribute *attr,
3518 char *buf)
3519 {
3520 warn_scan_unevictable_pages();
3521 return sprintf(buf, "0\n"); /* always zero; should fit... */
3522 }
3523
3524 static ssize_t write_scan_unevictable_node(struct device *dev,
3525 struct device_attribute *attr,
3526 const char *buf, size_t count)
3527 {
3528 warn_scan_unevictable_pages();
3529 return 1;
3530 }
3531
3532
3533 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3534 read_scan_unevictable_node,
3535 write_scan_unevictable_node);
3536
3537 int scan_unevictable_register_node(struct node *node)
3538 {
3539 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3540 }
3541
3542 void scan_unevictable_unregister_node(struct node *node)
3543 {
3544 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3545 }
3546 #endif