UPSTREAM: kasan: improve double-free reports
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / util.c
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17
18 #include "internal.h"
19
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 return addr >= (unsigned long)__start_rodata &&
23 addr < (unsigned long)__end_rodata;
24 }
25
26 /**
27 * kfree_const - conditionally free memory
28 * @x: pointer to the memory
29 *
30 * Function calls kfree only if @x is not in .rodata section.
31 */
32 void kfree_const(const void *x)
33 {
34 if (!is_kernel_rodata((unsigned long)x))
35 kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38
39 /**
40 * kstrdup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43 */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 size_t len;
47 char *buf;
48
49 if (!s)
50 return NULL;
51
52 len = strlen(s) + 1;
53 buf = kmalloc_track_caller(len, gfp);
54 if (buf)
55 memcpy(buf, s, len);
56 return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59
60 /**
61 * kstrdup_const - conditionally duplicate an existing const string
62 * @s: the string to duplicate
63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64 *
65 * Function returns source string if it is in .rodata section otherwise it
66 * fallbacks to kstrdup.
67 * Strings allocated by kstrdup_const should be freed by kfree_const.
68 */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
73
74 return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77
78 /**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83 */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 size_t len;
87 char *buf;
88
89 if (!s)
90 return NULL;
91
92 len = strnlen(s, max);
93 buf = kmalloc_track_caller(len+1, gfp);
94 if (buf) {
95 memcpy(buf, s, len);
96 buf[len] = '\0';
97 }
98 return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101
102 /**
103 * kmemdup - duplicate region of memory
104 *
105 * @src: memory region to duplicate
106 * @len: memory region length
107 * @gfp: GFP mask to use
108 */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 void *p;
112
113 p = kmalloc_track_caller(len, gfp);
114 if (p)
115 memcpy(p, src, len);
116 return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119
120 /**
121 * memdup_user - duplicate memory region from user space
122 *
123 * @src: source address in user space
124 * @len: number of bytes to copy
125 *
126 * Returns an ERR_PTR() on failure.
127 */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 void *p;
131
132 /*
133 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 * cause pagefault, which makes it pointless to use GFP_NOFS
135 * or GFP_ATOMIC.
136 */
137 p = kmalloc_track_caller(len, GFP_KERNEL);
138 if (!p)
139 return ERR_PTR(-ENOMEM);
140
141 if (copy_from_user(p, src, len)) {
142 kfree(p);
143 return ERR_PTR(-EFAULT);
144 }
145
146 return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149
150 /*
151 * strndup_user - duplicate an existing string from user space
152 * @s: The string to duplicate
153 * @n: Maximum number of bytes to copy, including the trailing NUL.
154 */
155 char *strndup_user(const char __user *s, long n)
156 {
157 char *p;
158 long length;
159
160 length = strnlen_user(s, n);
161
162 if (!length)
163 return ERR_PTR(-EFAULT);
164
165 if (length > n)
166 return ERR_PTR(-EINVAL);
167
168 p = memdup_user(s, length);
169
170 if (IS_ERR(p))
171 return p;
172
173 p[length - 1] = '\0';
174
175 return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178
179 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
180 struct vm_area_struct *prev, struct rb_node *rb_parent)
181 {
182 struct vm_area_struct *next;
183
184 vma->vm_prev = prev;
185 if (prev) {
186 next = prev->vm_next;
187 prev->vm_next = vma;
188 } else {
189 mm->mmap = vma;
190 if (rb_parent)
191 next = rb_entry(rb_parent,
192 struct vm_area_struct, vm_rb);
193 else
194 next = NULL;
195 }
196 vma->vm_next = next;
197 if (next)
198 next->vm_prev = vma;
199 }
200
201 /* Check if the vma is being used as a stack by this task */
202 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
203 {
204 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
205 }
206
207 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
208 void arch_pick_mmap_layout(struct mm_struct *mm)
209 {
210 mm->mmap_base = TASK_UNMAPPED_BASE;
211 mm->get_unmapped_area = arch_get_unmapped_area;
212 }
213 #endif
214
215 /*
216 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
217 * back to the regular GUP.
218 * If the architecture not support this function, simply return with no
219 * page pinned
220 */
221 int __weak __get_user_pages_fast(unsigned long start,
222 int nr_pages, int write, struct page **pages)
223 {
224 return 0;
225 }
226 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
227
228 /**
229 * get_user_pages_fast() - pin user pages in memory
230 * @start: starting user address
231 * @nr_pages: number of pages from start to pin
232 * @write: whether pages will be written to
233 * @pages: array that receives pointers to the pages pinned.
234 * Should be at least nr_pages long.
235 *
236 * Returns number of pages pinned. This may be fewer than the number
237 * requested. If nr_pages is 0 or negative, returns 0. If no pages
238 * were pinned, returns -errno.
239 *
240 * get_user_pages_fast provides equivalent functionality to get_user_pages,
241 * operating on current and current->mm, with force=0 and vma=NULL. However
242 * unlike get_user_pages, it must be called without mmap_sem held.
243 *
244 * get_user_pages_fast may take mmap_sem and page table locks, so no
245 * assumptions can be made about lack of locking. get_user_pages_fast is to be
246 * implemented in a way that is advantageous (vs get_user_pages()) when the
247 * user memory area is already faulted in and present in ptes. However if the
248 * pages have to be faulted in, it may turn out to be slightly slower so
249 * callers need to carefully consider what to use. On many architectures,
250 * get_user_pages_fast simply falls back to get_user_pages.
251 */
252 int __weak get_user_pages_fast(unsigned long start,
253 int nr_pages, int write, struct page **pages)
254 {
255 struct mm_struct *mm = current->mm;
256 return get_user_pages_unlocked(current, mm, start, nr_pages,
257 write, 0, pages);
258 }
259 EXPORT_SYMBOL_GPL(get_user_pages_fast);
260
261 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
262 unsigned long len, unsigned long prot,
263 unsigned long flag, unsigned long pgoff)
264 {
265 unsigned long ret;
266 struct mm_struct *mm = current->mm;
267 unsigned long populate;
268
269 ret = security_mmap_file(file, prot, flag);
270 if (!ret) {
271 down_write(&mm->mmap_sem);
272 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
273 &populate);
274 up_write(&mm->mmap_sem);
275 if (populate)
276 mm_populate(ret, populate);
277 }
278 return ret;
279 }
280
281 unsigned long vm_mmap(struct file *file, unsigned long addr,
282 unsigned long len, unsigned long prot,
283 unsigned long flag, unsigned long offset)
284 {
285 if (unlikely(offset + PAGE_ALIGN(len) < offset))
286 return -EINVAL;
287 if (unlikely(offset_in_page(offset)))
288 return -EINVAL;
289
290 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
291 }
292 EXPORT_SYMBOL(vm_mmap);
293
294 void kvfree(const void *addr)
295 {
296 if (is_vmalloc_addr(addr))
297 vfree(addr);
298 else
299 kfree(addr);
300 }
301 EXPORT_SYMBOL(kvfree);
302
303 static inline void *__page_rmapping(struct page *page)
304 {
305 unsigned long mapping;
306
307 mapping = (unsigned long)page->mapping;
308 mapping &= ~PAGE_MAPPING_FLAGS;
309
310 return (void *)mapping;
311 }
312
313 /* Neutral page->mapping pointer to address_space or anon_vma or other */
314 void *page_rmapping(struct page *page)
315 {
316 page = compound_head(page);
317 return __page_rmapping(page);
318 }
319
320 struct anon_vma *page_anon_vma(struct page *page)
321 {
322 unsigned long mapping;
323
324 page = compound_head(page);
325 mapping = (unsigned long)page->mapping;
326 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
327 return NULL;
328 return __page_rmapping(page);
329 }
330
331 struct address_space *page_mapping(struct page *page)
332 {
333 unsigned long mapping;
334
335 /* This happens if someone calls flush_dcache_page on slab page */
336 if (unlikely(PageSlab(page)))
337 return NULL;
338
339 if (unlikely(PageSwapCache(page))) {
340 swp_entry_t entry;
341
342 entry.val = page_private(page);
343 return swap_address_space(entry);
344 }
345
346 mapping = (unsigned long)page->mapping;
347 if (mapping & PAGE_MAPPING_FLAGS)
348 return NULL;
349 return page->mapping;
350 }
351 EXPORT_SYMBOL(page_mapping);
352
353 int overcommit_ratio_handler(struct ctl_table *table, int write,
354 void __user *buffer, size_t *lenp,
355 loff_t *ppos)
356 {
357 int ret;
358
359 ret = proc_dointvec(table, write, buffer, lenp, ppos);
360 if (ret == 0 && write)
361 sysctl_overcommit_kbytes = 0;
362 return ret;
363 }
364
365 int overcommit_kbytes_handler(struct ctl_table *table, int write,
366 void __user *buffer, size_t *lenp,
367 loff_t *ppos)
368 {
369 int ret;
370
371 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
372 if (ret == 0 && write)
373 sysctl_overcommit_ratio = 0;
374 return ret;
375 }
376
377 /*
378 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
379 */
380 unsigned long vm_commit_limit(void)
381 {
382 unsigned long allowed;
383
384 if (sysctl_overcommit_kbytes)
385 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
386 else
387 allowed = ((totalram_pages - hugetlb_total_pages())
388 * sysctl_overcommit_ratio / 100);
389 allowed += total_swap_pages;
390
391 return allowed;
392 }
393
394 /**
395 * get_cmdline() - copy the cmdline value to a buffer.
396 * @task: the task whose cmdline value to copy.
397 * @buffer: the buffer to copy to.
398 * @buflen: the length of the buffer. Larger cmdline values are truncated
399 * to this length.
400 * Returns the size of the cmdline field copied. Note that the copy does
401 * not guarantee an ending NULL byte.
402 */
403 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
404 {
405 int res = 0;
406 unsigned int len;
407 struct mm_struct *mm = get_task_mm(task);
408 if (!mm)
409 goto out;
410 if (!mm->arg_end)
411 goto out_mm; /* Shh! No looking before we're done */
412
413 len = mm->arg_end - mm->arg_start;
414
415 if (len > buflen)
416 len = buflen;
417
418 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
419
420 /*
421 * If the nul at the end of args has been overwritten, then
422 * assume application is using setproctitle(3).
423 */
424 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
425 len = strnlen(buffer, res);
426 if (len < res) {
427 res = len;
428 } else {
429 len = mm->env_end - mm->env_start;
430 if (len > buflen - res)
431 len = buflen - res;
432 res += access_process_vm(task, mm->env_start,
433 buffer+res, len, 0);
434 res = strnlen(buffer, res);
435 }
436 }
437 out_mm:
438 mmput(mm);
439 out:
440 return res;
441 }