Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24
25
26 /**
27 * do_invalidatepage - invalidate part or all of a page
28 * @page: the page which is affected
29 * @offset: the index of the truncation point
30 *
31 * do_invalidatepage() is called when all or part of the page has become
32 * invalidated by a truncate operation.
33 *
34 * do_invalidatepage() does not have to release all buffers, but it must
35 * ensure that no dirty buffer is left outside @offset and that no I/O
36 * is underway against any of the blocks which are outside the truncation
37 * point. Because the caller is about to free (and possibly reuse) those
38 * blocks on-disk.
39 */
40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42 void (*invalidatepage)(struct page *, unsigned long);
43 invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45 if (!invalidatepage)
46 invalidatepage = block_invalidatepage;
47 #endif
48 if (invalidatepage)
49 (*invalidatepage)(page, offset);
50 }
51
52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55 cleancache_flush_page(page->mapping, page);
56 if (page_has_private(page))
57 do_invalidatepage(page, partial);
58 }
59
60 /*
61 * This cancels just the dirty bit on the kernel page itself, it
62 * does NOT actually remove dirty bits on any mmap's that may be
63 * around. It also leaves the page tagged dirty, so any sync
64 * activity will still find it on the dirty lists, and in particular,
65 * clear_page_dirty_for_io() will still look at the dirty bits in
66 * the VM.
67 *
68 * Doing this should *normally* only ever be done when a page
69 * is truncated, and is not actually mapped anywhere at all. However,
70 * fs/buffer.c does this when it notices that somebody has cleaned
71 * out all the buffers on a page without actually doing it through
72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73 */
74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76 if (TestClearPageDirty(page)) {
77 struct address_space *mapping = page->mapping;
78 if (mapping && mapping_cap_account_dirty(mapping)) {
79 dec_zone_page_state(page, NR_FILE_DIRTY);
80 dec_bdi_stat(mapping->backing_dev_info,
81 BDI_RECLAIMABLE);
82 if (account_size)
83 task_io_account_cancelled_write(account_size);
84 }
85 }
86 }
87 EXPORT_SYMBOL(cancel_dirty_page);
88
89 /*
90 * If truncate cannot remove the fs-private metadata from the page, the page
91 * becomes orphaned. It will be left on the LRU and may even be mapped into
92 * user pagetables if we're racing with filemap_fault().
93 *
94 * We need to bale out if page->mapping is no longer equal to the original
95 * mapping. This happens a) when the VM reclaimed the page while we waited on
96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98 */
99 static int
100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102 if (page->mapping != mapping)
103 return -EIO;
104
105 if (page_has_private(page))
106 do_invalidatepage(page, 0);
107
108 cancel_dirty_page(page, PAGE_CACHE_SIZE);
109
110 clear_page_mlock(page);
111 ClearPageMappedToDisk(page);
112 delete_from_page_cache(page);
113 return 0;
114 }
115
116 /*
117 * This is for invalidate_mapping_pages(). That function can be called at
118 * any time, and is not supposed to throw away dirty pages. But pages can
119 * be marked dirty at any time too, so use remove_mapping which safely
120 * discards clean, unused pages.
121 *
122 * Returns non-zero if the page was successfully invalidated.
123 */
124 static int
125 invalidate_complete_page(struct address_space *mapping, struct page *page)
126 {
127 int ret;
128
129 if (page->mapping != mapping)
130 return 0;
131
132 if (page_has_private(page) && !try_to_release_page(page, 0))
133 return 0;
134
135 clear_page_mlock(page);
136 ret = remove_mapping(mapping, page);
137
138 return ret;
139 }
140
141 int truncate_inode_page(struct address_space *mapping, struct page *page)
142 {
143 if (page_mapped(page)) {
144 unmap_mapping_range(mapping,
145 (loff_t)page->index << PAGE_CACHE_SHIFT,
146 PAGE_CACHE_SIZE, 0);
147 }
148 return truncate_complete_page(mapping, page);
149 }
150
151 /*
152 * Used to get rid of pages on hardware memory corruption.
153 */
154 int generic_error_remove_page(struct address_space *mapping, struct page *page)
155 {
156 if (!mapping)
157 return -EINVAL;
158 /*
159 * Only punch for normal data pages for now.
160 * Handling other types like directories would need more auditing.
161 */
162 if (!S_ISREG(mapping->host->i_mode))
163 return -EIO;
164 return truncate_inode_page(mapping, page);
165 }
166 EXPORT_SYMBOL(generic_error_remove_page);
167
168 /*
169 * Safely invalidate one page from its pagecache mapping.
170 * It only drops clean, unused pages. The page must be locked.
171 *
172 * Returns 1 if the page is successfully invalidated, otherwise 0.
173 */
174 int invalidate_inode_page(struct page *page)
175 {
176 struct address_space *mapping = page_mapping(page);
177 if (!mapping)
178 return 0;
179 if (PageDirty(page) || PageWriteback(page))
180 return 0;
181 if (page_mapped(page))
182 return 0;
183 return invalidate_complete_page(mapping, page);
184 }
185
186 /**
187 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
188 * @mapping: mapping to truncate
189 * @lstart: offset from which to truncate
190 * @lend: offset to which to truncate
191 *
192 * Truncate the page cache, removing the pages that are between
193 * specified offsets (and zeroing out partial page
194 * (if lstart is not page aligned)).
195 *
196 * Truncate takes two passes - the first pass is nonblocking. It will not
197 * block on page locks and it will not block on writeback. The second pass
198 * will wait. This is to prevent as much IO as possible in the affected region.
199 * The first pass will remove most pages, so the search cost of the second pass
200 * is low.
201 *
202 * When looking at page->index outside the page lock we need to be careful to
203 * copy it into a local to avoid races (it could change at any time).
204 *
205 * We pass down the cache-hot hint to the page freeing code. Even if the
206 * mapping is large, it is probably the case that the final pages are the most
207 * recently touched, and freeing happens in ascending file offset order.
208 */
209 void truncate_inode_pages_range(struct address_space *mapping,
210 loff_t lstart, loff_t lend)
211 {
212 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
213 pgoff_t end;
214 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
215 struct pagevec pvec;
216 pgoff_t next;
217 int i;
218
219 cleancache_flush_inode(mapping);
220 if (mapping->nrpages == 0)
221 return;
222
223 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
224 end = (lend >> PAGE_CACHE_SHIFT);
225
226 pagevec_init(&pvec, 0);
227 next = start;
228 while (next <= end &&
229 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
230 mem_cgroup_uncharge_start();
231 for (i = 0; i < pagevec_count(&pvec); i++) {
232 struct page *page = pvec.pages[i];
233 pgoff_t page_index = page->index;
234
235 if (page_index > end) {
236 next = page_index;
237 break;
238 }
239
240 if (page_index > next)
241 next = page_index;
242 next++;
243 if (!trylock_page(page))
244 continue;
245 if (PageWriteback(page)) {
246 unlock_page(page);
247 continue;
248 }
249 truncate_inode_page(mapping, page);
250 unlock_page(page);
251 }
252 pagevec_release(&pvec);
253 mem_cgroup_uncharge_end();
254 cond_resched();
255 }
256
257 if (partial) {
258 struct page *page = find_lock_page(mapping, start - 1);
259 if (page) {
260 wait_on_page_writeback(page);
261 truncate_partial_page(page, partial);
262 unlock_page(page);
263 page_cache_release(page);
264 }
265 }
266
267 next = start;
268 for ( ; ; ) {
269 cond_resched();
270 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
271 if (next == start)
272 break;
273 next = start;
274 continue;
275 }
276 if (pvec.pages[0]->index > end) {
277 pagevec_release(&pvec);
278 break;
279 }
280 mem_cgroup_uncharge_start();
281 for (i = 0; i < pagevec_count(&pvec); i++) {
282 struct page *page = pvec.pages[i];
283
284 if (page->index > end)
285 break;
286 lock_page(page);
287 wait_on_page_writeback(page);
288 truncate_inode_page(mapping, page);
289 if (page->index > next)
290 next = page->index;
291 next++;
292 unlock_page(page);
293 }
294 pagevec_release(&pvec);
295 mem_cgroup_uncharge_end();
296 }
297 cleancache_flush_inode(mapping);
298 }
299 EXPORT_SYMBOL(truncate_inode_pages_range);
300
301 /**
302 * truncate_inode_pages - truncate *all* the pages from an offset
303 * @mapping: mapping to truncate
304 * @lstart: offset from which to truncate
305 *
306 * Called under (and serialised by) inode->i_mutex.
307 *
308 * Note: When this function returns, there can be a page in the process of
309 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
310 * mapping->nrpages can be non-zero when this function returns even after
311 * truncation of the whole mapping.
312 */
313 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
314 {
315 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
316 }
317 EXPORT_SYMBOL(truncate_inode_pages);
318
319 /**
320 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
321 * @mapping: the address_space which holds the pages to invalidate
322 * @start: the offset 'from' which to invalidate
323 * @end: the offset 'to' which to invalidate (inclusive)
324 *
325 * This function only removes the unlocked pages, if you want to
326 * remove all the pages of one inode, you must call truncate_inode_pages.
327 *
328 * invalidate_mapping_pages() will not block on IO activity. It will not
329 * invalidate pages which are dirty, locked, under writeback or mapped into
330 * pagetables.
331 */
332 unsigned long invalidate_mapping_pages(struct address_space *mapping,
333 pgoff_t start, pgoff_t end)
334 {
335 struct pagevec pvec;
336 pgoff_t next = start;
337 unsigned long ret;
338 unsigned long count = 0;
339 int i;
340
341 pagevec_init(&pvec, 0);
342 while (next <= end &&
343 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
344 mem_cgroup_uncharge_start();
345 for (i = 0; i < pagevec_count(&pvec); i++) {
346 struct page *page = pvec.pages[i];
347 pgoff_t index;
348 int lock_failed;
349
350 lock_failed = !trylock_page(page);
351
352 /*
353 * We really shouldn't be looking at the ->index of an
354 * unlocked page. But we're not allowed to lock these
355 * pages. So we rely upon nobody altering the ->index
356 * of this (pinned-by-us) page.
357 */
358 index = page->index;
359 if (index > next)
360 next = index;
361 next++;
362 if (lock_failed)
363 continue;
364
365 ret = invalidate_inode_page(page);
366 unlock_page(page);
367 /*
368 * Invalidation is a hint that the page is no longer
369 * of interest and try to speed up its reclaim.
370 */
371 if (!ret)
372 deactivate_page(page);
373 count += ret;
374 if (next > end)
375 break;
376 }
377 pagevec_release(&pvec);
378 mem_cgroup_uncharge_end();
379 cond_resched();
380 }
381 return count;
382 }
383 EXPORT_SYMBOL(invalidate_mapping_pages);
384
385 /*
386 * This is like invalidate_complete_page(), except it ignores the page's
387 * refcount. We do this because invalidate_inode_pages2() needs stronger
388 * invalidation guarantees, and cannot afford to leave pages behind because
389 * shrink_page_list() has a temp ref on them, or because they're transiently
390 * sitting in the lru_cache_add() pagevecs.
391 */
392 static int
393 invalidate_complete_page2(struct address_space *mapping, struct page *page)
394 {
395 if (page->mapping != mapping)
396 return 0;
397
398 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
399 return 0;
400
401 spin_lock_irq(&mapping->tree_lock);
402 if (PageDirty(page))
403 goto failed;
404
405 clear_page_mlock(page);
406 BUG_ON(page_has_private(page));
407 __delete_from_page_cache(page);
408 spin_unlock_irq(&mapping->tree_lock);
409 mem_cgroup_uncharge_cache_page(page);
410
411 if (mapping->a_ops->freepage)
412 mapping->a_ops->freepage(page);
413
414 page_cache_release(page); /* pagecache ref */
415 return 1;
416 failed:
417 spin_unlock_irq(&mapping->tree_lock);
418 return 0;
419 }
420
421 static int do_launder_page(struct address_space *mapping, struct page *page)
422 {
423 if (!PageDirty(page))
424 return 0;
425 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
426 return 0;
427 return mapping->a_ops->launder_page(page);
428 }
429
430 /**
431 * invalidate_inode_pages2_range - remove range of pages from an address_space
432 * @mapping: the address_space
433 * @start: the page offset 'from' which to invalidate
434 * @end: the page offset 'to' which to invalidate (inclusive)
435 *
436 * Any pages which are found to be mapped into pagetables are unmapped prior to
437 * invalidation.
438 *
439 * Returns -EBUSY if any pages could not be invalidated.
440 */
441 int invalidate_inode_pages2_range(struct address_space *mapping,
442 pgoff_t start, pgoff_t end)
443 {
444 struct pagevec pvec;
445 pgoff_t next;
446 int i;
447 int ret = 0;
448 int ret2 = 0;
449 int did_range_unmap = 0;
450 int wrapped = 0;
451
452 cleancache_flush_inode(mapping);
453 pagevec_init(&pvec, 0);
454 next = start;
455 while (next <= end && !wrapped &&
456 pagevec_lookup(&pvec, mapping, next,
457 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
458 mem_cgroup_uncharge_start();
459 for (i = 0; i < pagevec_count(&pvec); i++) {
460 struct page *page = pvec.pages[i];
461 pgoff_t page_index;
462
463 lock_page(page);
464 if (page->mapping != mapping) {
465 unlock_page(page);
466 continue;
467 }
468 page_index = page->index;
469 next = page_index + 1;
470 if (next == 0)
471 wrapped = 1;
472 if (page_index > end) {
473 unlock_page(page);
474 break;
475 }
476 wait_on_page_writeback(page);
477 if (page_mapped(page)) {
478 if (!did_range_unmap) {
479 /*
480 * Zap the rest of the file in one hit.
481 */
482 unmap_mapping_range(mapping,
483 (loff_t)page_index<<PAGE_CACHE_SHIFT,
484 (loff_t)(end - page_index + 1)
485 << PAGE_CACHE_SHIFT,
486 0);
487 did_range_unmap = 1;
488 } else {
489 /*
490 * Just zap this page
491 */
492 unmap_mapping_range(mapping,
493 (loff_t)page_index<<PAGE_CACHE_SHIFT,
494 PAGE_CACHE_SIZE, 0);
495 }
496 }
497 BUG_ON(page_mapped(page));
498 ret2 = do_launder_page(mapping, page);
499 if (ret2 == 0) {
500 if (!invalidate_complete_page2(mapping, page))
501 ret2 = -EBUSY;
502 }
503 if (ret2 < 0)
504 ret = ret2;
505 unlock_page(page);
506 }
507 pagevec_release(&pvec);
508 mem_cgroup_uncharge_end();
509 cond_resched();
510 }
511 cleancache_flush_inode(mapping);
512 return ret;
513 }
514 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
515
516 /**
517 * invalidate_inode_pages2 - remove all pages from an address_space
518 * @mapping: the address_space
519 *
520 * Any pages which are found to be mapped into pagetables are unmapped prior to
521 * invalidation.
522 *
523 * Returns -EBUSY if any pages could not be invalidated.
524 */
525 int invalidate_inode_pages2(struct address_space *mapping)
526 {
527 return invalidate_inode_pages2_range(mapping, 0, -1);
528 }
529 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
530
531 /**
532 * truncate_pagecache - unmap and remove pagecache that has been truncated
533 * @inode: inode
534 * @old: old file offset
535 * @new: new file offset
536 *
537 * inode's new i_size must already be written before truncate_pagecache
538 * is called.
539 *
540 * This function should typically be called before the filesystem
541 * releases resources associated with the freed range (eg. deallocates
542 * blocks). This way, pagecache will always stay logically coherent
543 * with on-disk format, and the filesystem would not have to deal with
544 * situations such as writepage being called for a page that has already
545 * had its underlying blocks deallocated.
546 */
547 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
548 {
549 struct address_space *mapping = inode->i_mapping;
550
551 /*
552 * unmap_mapping_range is called twice, first simply for
553 * efficiency so that truncate_inode_pages does fewer
554 * single-page unmaps. However after this first call, and
555 * before truncate_inode_pages finishes, it is possible for
556 * private pages to be COWed, which remain after
557 * truncate_inode_pages finishes, hence the second
558 * unmap_mapping_range call must be made for correctness.
559 */
560 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
561 truncate_inode_pages(mapping, new);
562 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
563 }
564 EXPORT_SYMBOL(truncate_pagecache);
565
566 /**
567 * truncate_setsize - update inode and pagecache for a new file size
568 * @inode: inode
569 * @newsize: new file size
570 *
571 * truncate_setsize updates i_size and performs pagecache truncation (if
572 * necessary) to @newsize. It will be typically be called from the filesystem's
573 * setattr function when ATTR_SIZE is passed in.
574 *
575 * Must be called with inode_mutex held and before all filesystem specific
576 * block truncation has been performed.
577 */
578 void truncate_setsize(struct inode *inode, loff_t newsize)
579 {
580 loff_t oldsize;
581
582 oldsize = inode->i_size;
583 i_size_write(inode, newsize);
584
585 truncate_pagecache(inode, oldsize, newsize);
586 }
587 EXPORT_SYMBOL(truncate_setsize);
588
589 /**
590 * vmtruncate - unmap mappings "freed" by truncate() syscall
591 * @inode: inode of the file used
592 * @offset: file offset to start truncating
593 *
594 * This function is deprecated and truncate_setsize or truncate_pagecache
595 * should be used instead, together with filesystem specific block truncation.
596 */
597 int vmtruncate(struct inode *inode, loff_t offset)
598 {
599 int error;
600
601 error = inode_newsize_ok(inode, offset);
602 if (error)
603 return error;
604
605 truncate_setsize(inode, offset);
606 if (inode->i_op->truncate)
607 inode->i_op->truncate(inode);
608 return 0;
609 }
610 EXPORT_SYMBOL(vmtruncate);
611
612 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
613 {
614 struct address_space *mapping = inode->i_mapping;
615
616 /*
617 * If the underlying filesystem is not going to provide
618 * a way to truncate a range of blocks (punch a hole) -
619 * we should return failure right now.
620 */
621 if (!inode->i_op->truncate_range)
622 return -ENOSYS;
623
624 mutex_lock(&inode->i_mutex);
625 down_write(&inode->i_alloc_sem);
626 unmap_mapping_range(mapping, offset, (end - offset), 1);
627 inode->i_op->truncate_range(inode, offset, end);
628 /* unmap again to remove racily COWed private pages */
629 unmap_mapping_range(mapping, offset, (end - offset), 1);
630 up_write(&inode->i_alloc_sem);
631 mutex_unlock(&inode->i_mutex);
632
633 return 0;
634 }