Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42
43 /*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47 static void __page_cache_release(struct page *page)
48 {
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
52
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru(zone, page);
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
58 }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63 __page_cache_release(page);
64 free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69 compound_page_dtor *dtor;
70
71 __page_cache_release(page);
72 dtor = get_compound_page_dtor(page);
73 (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78 if (unlikely(PageTail(page))) {
79 /* __split_huge_page_refcount can run under us */
80 struct page *page_head = page->first_page;
81 smp_rmb();
82 /*
83 * If PageTail is still set after smp_rmb() we can be sure
84 * that the page->first_page we read wasn't a dangling pointer.
85 * See __split_huge_page_refcount() smp_wmb().
86 */
87 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88 unsigned long flags;
89 /*
90 * Verify that our page_head wasn't converted
91 * to a a regular page before we got a
92 * reference on it.
93 */
94 if (unlikely(!PageHead(page_head))) {
95 /* PageHead is cleared after PageTail */
96 smp_rmb();
97 VM_BUG_ON(PageTail(page));
98 goto out_put_head;
99 }
100 /*
101 * Only run compound_lock on a valid PageHead,
102 * after having it pinned with
103 * get_page_unless_zero() above.
104 */
105 smp_mb();
106 /* page_head wasn't a dangling pointer */
107 flags = compound_lock_irqsave(page_head);
108 if (unlikely(!PageTail(page))) {
109 /* __split_huge_page_refcount run before us */
110 compound_unlock_irqrestore(page_head, flags);
111 VM_BUG_ON(PageHead(page_head));
112 out_put_head:
113 if (put_page_testzero(page_head))
114 __put_single_page(page_head);
115 out_put_single:
116 if (put_page_testzero(page))
117 __put_single_page(page);
118 return;
119 }
120 VM_BUG_ON(page_head != page->first_page);
121 /*
122 * We can release the refcount taken by
123 * get_page_unless_zero now that
124 * split_huge_page_refcount is blocked on the
125 * compound_lock.
126 */
127 if (put_page_testzero(page_head))
128 VM_BUG_ON(1);
129 /* __split_huge_page_refcount will wait now */
130 VM_BUG_ON(atomic_read(&page->_count) <= 0);
131 atomic_dec(&page->_count);
132 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133 compound_unlock_irqrestore(page_head, flags);
134 if (put_page_testzero(page_head)) {
135 if (PageHead(page_head))
136 __put_compound_page(page_head);
137 else
138 __put_single_page(page_head);
139 }
140 } else {
141 /* page_head is a dangling pointer */
142 VM_BUG_ON(PageTail(page));
143 goto out_put_single;
144 }
145 } else if (put_page_testzero(page)) {
146 if (PageHead(page))
147 __put_compound_page(page);
148 else
149 __put_single_page(page);
150 }
151 }
152
153 void put_page(struct page *page)
154 {
155 if (unlikely(PageCompound(page)))
156 put_compound_page(page);
157 else if (put_page_testzero(page))
158 __put_single_page(page);
159 }
160 EXPORT_SYMBOL(put_page);
161
162 /**
163 * put_pages_list() - release a list of pages
164 * @pages: list of pages threaded on page->lru
165 *
166 * Release a list of pages which are strung together on page.lru. Currently
167 * used by read_cache_pages() and related error recovery code.
168 */
169 void put_pages_list(struct list_head *pages)
170 {
171 while (!list_empty(pages)) {
172 struct page *victim;
173
174 victim = list_entry(pages->prev, struct page, lru);
175 list_del(&victim->lru);
176 page_cache_release(victim);
177 }
178 }
179 EXPORT_SYMBOL(put_pages_list);
180
181 static void pagevec_lru_move_fn(struct pagevec *pvec,
182 void (*move_fn)(struct page *page, void *arg),
183 void *arg)
184 {
185 int i;
186 struct zone *zone = NULL;
187 unsigned long flags = 0;
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
191 struct zone *pagezone = page_zone(page);
192
193 if (pagezone != zone) {
194 if (zone)
195 spin_unlock_irqrestore(&zone->lru_lock, flags);
196 zone = pagezone;
197 spin_lock_irqsave(&zone->lru_lock, flags);
198 }
199
200 (*move_fn)(page, arg);
201 }
202 if (zone)
203 spin_unlock_irqrestore(&zone->lru_lock, flags);
204 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
205 pagevec_reinit(pvec);
206 }
207
208 static void pagevec_move_tail_fn(struct page *page, void *arg)
209 {
210 int *pgmoved = arg;
211 struct zone *zone = page_zone(page);
212
213 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
214 int lru = page_lru_base_type(page);
215 list_move_tail(&page->lru, &zone->lru[lru].list);
216 (*pgmoved)++;
217 }
218 }
219
220 /*
221 * pagevec_move_tail() must be called with IRQ disabled.
222 * Otherwise this may cause nasty races.
223 */
224 static void pagevec_move_tail(struct pagevec *pvec)
225 {
226 int pgmoved = 0;
227
228 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
229 __count_vm_events(PGROTATED, pgmoved);
230 }
231
232 /*
233 * Writeback is about to end against a page which has been marked for immediate
234 * reclaim. If it still appears to be reclaimable, move it to the tail of the
235 * inactive list.
236 */
237 void rotate_reclaimable_page(struct page *page)
238 {
239 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
240 !PageUnevictable(page) && PageLRU(page)) {
241 struct pagevec *pvec;
242 unsigned long flags;
243
244 page_cache_get(page);
245 local_irq_save(flags);
246 pvec = &__get_cpu_var(lru_rotate_pvecs);
247 if (!pagevec_add(pvec, page))
248 pagevec_move_tail(pvec);
249 local_irq_restore(flags);
250 }
251 }
252
253 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
254 int file, int rotated)
255 {
256 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
257 struct zone_reclaim_stat *memcg_reclaim_stat;
258
259 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
260
261 reclaim_stat->recent_scanned[file]++;
262 if (rotated)
263 reclaim_stat->recent_rotated[file]++;
264
265 if (!memcg_reclaim_stat)
266 return;
267
268 memcg_reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 memcg_reclaim_stat->recent_rotated[file]++;
271 }
272
273 /*
274 * A page will go to active list either by activate_page or putback_lru_page.
275 * In the activate_page case, the page hasn't active bit set. The page might
276 * not in LRU list because it's isolated before it gets a chance to be moved to
277 * active list. The window is small because pagevec just stores several pages.
278 * For such case, we do nothing for such page.
279 * In the putback_lru_page case, the page isn't in lru list but has active
280 * bit set
281 */
282 static void __activate_page(struct page *page, void *arg)
283 {
284 struct zone *zone = page_zone(page);
285 int file = page_is_file_cache(page);
286 int lru = page_lru_base_type(page);
287 bool putback = !PageLRU(page);
288
289 /* The page is isolated before it's moved to active list */
290 if (!PageLRU(page) && !PageActive(page))
291 return;
292 if ((PageLRU(page) && PageActive(page)) || PageUnevictable(page))
293 return;
294
295 if (!putback)
296 del_page_from_lru_list(zone, page, lru);
297 else
298 SetPageLRU(page);
299
300 SetPageActive(page);
301 lru += LRU_ACTIVE;
302 add_page_to_lru_list(zone, page, lru);
303
304 if (putback)
305 return;
306 __count_vm_event(PGACTIVATE);
307 update_page_reclaim_stat(zone, page, file, 1);
308 }
309
310 #ifdef CONFIG_SMP
311 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
312
313 static void activate_page_drain(int cpu)
314 {
315 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
316
317 if (pagevec_count(pvec))
318 pagevec_lru_move_fn(pvec, __activate_page, NULL);
319 }
320
321 void activate_page(struct page *page)
322 {
323 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
324 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
325
326 page_cache_get(page);
327 if (!pagevec_add(pvec, page))
328 pagevec_lru_move_fn(pvec, __activate_page, NULL);
329 put_cpu_var(activate_page_pvecs);
330 }
331 }
332
333 /* Caller should hold zone->lru_lock */
334 int putback_active_lru_page(struct zone *zone, struct page *page)
335 {
336 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
337
338 if (!pagevec_add(pvec, page)) {
339 spin_unlock_irq(&zone->lru_lock);
340 pagevec_lru_move_fn(pvec, __activate_page, NULL);
341 spin_lock_irq(&zone->lru_lock);
342 }
343 put_cpu_var(activate_page_pvecs);
344 return 1;
345 }
346
347 #else
348 static inline void activate_page_drain(int cpu)
349 {
350 }
351
352 void activate_page(struct page *page)
353 {
354 struct zone *zone = page_zone(page);
355
356 spin_lock_irq(&zone->lru_lock);
357 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page))
358 __activate_page(page, NULL);
359 spin_unlock_irq(&zone->lru_lock);
360 }
361 #endif
362
363 /*
364 * Mark a page as having seen activity.
365 *
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
369 */
370 void mark_page_accessed(struct page *page)
371 {
372 if (!PageActive(page) && !PageUnevictable(page) &&
373 PageReferenced(page) && PageLRU(page)) {
374 activate_page(page);
375 ClearPageReferenced(page);
376 } else if (!PageReferenced(page)) {
377 SetPageReferenced(page);
378 }
379 }
380
381 EXPORT_SYMBOL(mark_page_accessed);
382
383 void __lru_cache_add(struct page *page, enum lru_list lru)
384 {
385 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
386
387 page_cache_get(page);
388 if (!pagevec_add(pvec, page))
389 ____pagevec_lru_add(pvec, lru);
390 put_cpu_var(lru_add_pvecs);
391 }
392 EXPORT_SYMBOL(__lru_cache_add);
393
394 /**
395 * lru_cache_add_lru - add a page to a page list
396 * @page: the page to be added to the LRU.
397 * @lru: the LRU list to which the page is added.
398 */
399 void lru_cache_add_lru(struct page *page, enum lru_list lru)
400 {
401 if (PageActive(page)) {
402 VM_BUG_ON(PageUnevictable(page));
403 ClearPageActive(page);
404 } else if (PageUnevictable(page)) {
405 VM_BUG_ON(PageActive(page));
406 ClearPageUnevictable(page);
407 }
408
409 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
410 __lru_cache_add(page, lru);
411 }
412
413 /**
414 * add_page_to_unevictable_list - add a page to the unevictable list
415 * @page: the page to be added to the unevictable list
416 *
417 * Add page directly to its zone's unevictable list. To avoid races with
418 * tasks that might be making the page evictable, through eg. munlock,
419 * munmap or exit, while it's not on the lru, we want to add the page
420 * while it's locked or otherwise "invisible" to other tasks. This is
421 * difficult to do when using the pagevec cache, so bypass that.
422 */
423 void add_page_to_unevictable_list(struct page *page)
424 {
425 struct zone *zone = page_zone(page);
426
427 spin_lock_irq(&zone->lru_lock);
428 SetPageUnevictable(page);
429 SetPageLRU(page);
430 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
431 spin_unlock_irq(&zone->lru_lock);
432 }
433
434 /*
435 * Drain pages out of the cpu's pagevecs.
436 * Either "cpu" is the current CPU, and preemption has already been
437 * disabled; or "cpu" is being hot-unplugged, and is already dead.
438 */
439 static void drain_cpu_pagevecs(int cpu)
440 {
441 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
442 struct pagevec *pvec;
443 int lru;
444
445 for_each_lru(lru) {
446 pvec = &pvecs[lru - LRU_BASE];
447 if (pagevec_count(pvec))
448 ____pagevec_lru_add(pvec, lru);
449 }
450
451 pvec = &per_cpu(lru_rotate_pvecs, cpu);
452 if (pagevec_count(pvec)) {
453 unsigned long flags;
454
455 /* No harm done if a racing interrupt already did this */
456 local_irq_save(flags);
457 pagevec_move_tail(pvec);
458 local_irq_restore(flags);
459 }
460 activate_page_drain(cpu);
461 }
462
463 void lru_add_drain(void)
464 {
465 drain_cpu_pagevecs(get_cpu());
466 put_cpu();
467 }
468
469 static void lru_add_drain_per_cpu(struct work_struct *dummy)
470 {
471 lru_add_drain();
472 }
473
474 /*
475 * Returns 0 for success
476 */
477 int lru_add_drain_all(void)
478 {
479 return schedule_on_each_cpu(lru_add_drain_per_cpu);
480 }
481
482 /*
483 * Batched page_cache_release(). Decrement the reference count on all the
484 * passed pages. If it fell to zero then remove the page from the LRU and
485 * free it.
486 *
487 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
488 * for the remainder of the operation.
489 *
490 * The locking in this function is against shrink_inactive_list(): we recheck
491 * the page count inside the lock to see whether shrink_inactive_list()
492 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
493 * will free it.
494 */
495 void release_pages(struct page **pages, int nr, int cold)
496 {
497 int i;
498 struct pagevec pages_to_free;
499 struct zone *zone = NULL;
500 unsigned long uninitialized_var(flags);
501
502 pagevec_init(&pages_to_free, cold);
503 for (i = 0; i < nr; i++) {
504 struct page *page = pages[i];
505
506 if (unlikely(PageCompound(page))) {
507 if (zone) {
508 spin_unlock_irqrestore(&zone->lru_lock, flags);
509 zone = NULL;
510 }
511 put_compound_page(page);
512 continue;
513 }
514
515 if (!put_page_testzero(page))
516 continue;
517
518 if (PageLRU(page)) {
519 struct zone *pagezone = page_zone(page);
520
521 if (pagezone != zone) {
522 if (zone)
523 spin_unlock_irqrestore(&zone->lru_lock,
524 flags);
525 zone = pagezone;
526 spin_lock_irqsave(&zone->lru_lock, flags);
527 }
528 VM_BUG_ON(!PageLRU(page));
529 __ClearPageLRU(page);
530 del_page_from_lru(zone, page);
531 }
532
533 if (!pagevec_add(&pages_to_free, page)) {
534 if (zone) {
535 spin_unlock_irqrestore(&zone->lru_lock, flags);
536 zone = NULL;
537 }
538 __pagevec_free(&pages_to_free);
539 pagevec_reinit(&pages_to_free);
540 }
541 }
542 if (zone)
543 spin_unlock_irqrestore(&zone->lru_lock, flags);
544
545 pagevec_free(&pages_to_free);
546 }
547 EXPORT_SYMBOL(release_pages);
548
549 /*
550 * The pages which we're about to release may be in the deferred lru-addition
551 * queues. That would prevent them from really being freed right now. That's
552 * OK from a correctness point of view but is inefficient - those pages may be
553 * cache-warm and we want to give them back to the page allocator ASAP.
554 *
555 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
556 * and __pagevec_lru_add_active() call release_pages() directly to avoid
557 * mutual recursion.
558 */
559 void __pagevec_release(struct pagevec *pvec)
560 {
561 lru_add_drain();
562 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
563 pagevec_reinit(pvec);
564 }
565
566 EXPORT_SYMBOL(__pagevec_release);
567
568 /* used by __split_huge_page_refcount() */
569 void lru_add_page_tail(struct zone* zone,
570 struct page *page, struct page *page_tail)
571 {
572 int active;
573 enum lru_list lru;
574 const int file = 0;
575 struct list_head *head;
576
577 VM_BUG_ON(!PageHead(page));
578 VM_BUG_ON(PageCompound(page_tail));
579 VM_BUG_ON(PageLRU(page_tail));
580 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
581
582 SetPageLRU(page_tail);
583
584 if (page_evictable(page_tail, NULL)) {
585 if (PageActive(page)) {
586 SetPageActive(page_tail);
587 active = 1;
588 lru = LRU_ACTIVE_ANON;
589 } else {
590 active = 0;
591 lru = LRU_INACTIVE_ANON;
592 }
593 update_page_reclaim_stat(zone, page_tail, file, active);
594 if (likely(PageLRU(page)))
595 head = page->lru.prev;
596 else
597 head = &zone->lru[lru].list;
598 __add_page_to_lru_list(zone, page_tail, lru, head);
599 } else {
600 SetPageUnevictable(page_tail);
601 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
602 }
603 }
604
605 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
606 {
607 enum lru_list lru = (enum lru_list)arg;
608 struct zone *zone = page_zone(page);
609 int file = is_file_lru(lru);
610 int active = is_active_lru(lru);
611
612 VM_BUG_ON(PageActive(page));
613 VM_BUG_ON(PageUnevictable(page));
614 VM_BUG_ON(PageLRU(page));
615
616 SetPageLRU(page);
617 if (active)
618 SetPageActive(page);
619 update_page_reclaim_stat(zone, page, file, active);
620 add_page_to_lru_list(zone, page, lru);
621 }
622
623 /*
624 * Add the passed pages to the LRU, then drop the caller's refcount
625 * on them. Reinitialises the caller's pagevec.
626 */
627 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
628 {
629 VM_BUG_ON(is_unevictable_lru(lru));
630
631 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
632 }
633
634 EXPORT_SYMBOL(____pagevec_lru_add);
635
636 /*
637 * Try to drop buffers from the pages in a pagevec
638 */
639 void pagevec_strip(struct pagevec *pvec)
640 {
641 int i;
642
643 for (i = 0; i < pagevec_count(pvec); i++) {
644 struct page *page = pvec->pages[i];
645
646 if (page_has_private(page) && trylock_page(page)) {
647 if (page_has_private(page))
648 try_to_release_page(page, 0);
649 unlock_page(page);
650 }
651 }
652 }
653
654 /**
655 * pagevec_lookup - gang pagecache lookup
656 * @pvec: Where the resulting pages are placed
657 * @mapping: The address_space to search
658 * @start: The starting page index
659 * @nr_pages: The maximum number of pages
660 *
661 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
662 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
663 * reference against the pages in @pvec.
664 *
665 * The search returns a group of mapping-contiguous pages with ascending
666 * indexes. There may be holes in the indices due to not-present pages.
667 *
668 * pagevec_lookup() returns the number of pages which were found.
669 */
670 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
671 pgoff_t start, unsigned nr_pages)
672 {
673 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
674 return pagevec_count(pvec);
675 }
676
677 EXPORT_SYMBOL(pagevec_lookup);
678
679 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
680 pgoff_t *index, int tag, unsigned nr_pages)
681 {
682 pvec->nr = find_get_pages_tag(mapping, index, tag,
683 nr_pages, pvec->pages);
684 return pagevec_count(pvec);
685 }
686
687 EXPORT_SYMBOL(pagevec_lookup_tag);
688
689 /*
690 * Perform any setup for the swap system
691 */
692 void __init swap_setup(void)
693 {
694 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
695
696 #ifdef CONFIG_SWAP
697 bdi_init(swapper_space.backing_dev_info);
698 #endif
699
700 /* Use a smaller cluster for small-memory machines */
701 if (megs < 16)
702 page_cluster = 2;
703 else
704 page_cluster = 3;
705 /*
706 * Right now other parts of the system means that we
707 * _really_ don't want to cluster much more
708 */
709 }