locking: Remove atomicy checks from {READ,WRITE}_ONCE
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / sparse-vmemmap.c
1 /*
2 * Virtual Memory Map support
3 *
4 * (C) 2007 sgi. Christoph Lameter.
5 *
6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7 * virt_to_page, page_address() to be implemented as a base offset
8 * calculation without memory access.
9 *
10 * However, virtual mappings need a page table and TLBs. Many Linux
11 * architectures already map their physical space using 1-1 mappings
12 * via TLBs. For those arches the virtual memory map is essentially
13 * for free if we use the same page size as the 1-1 mappings. In that
14 * case the overhead consists of a few additional pages that are
15 * allocated to create a view of memory for vmemmap.
16 *
17 * The architecture is expected to provide a vmemmap_populate() function
18 * to instantiate the mapping.
19 */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sched.h>
28 #include <asm/dma.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31
32 /*
33 * Allocate a block of memory to be used to back the virtual memory map
34 * or to back the page tables that are used to create the mapping.
35 * Uses the main allocators if they are available, else bootmem.
36 */
37
38 static void * __init_refok __earlyonly_bootmem_alloc(int node,
39 unsigned long size,
40 unsigned long align,
41 unsigned long goal)
42 {
43 return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
44 }
45
46 static void *vmemmap_buf;
47 static void *vmemmap_buf_end;
48
49 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50 {
51 /* If the main allocator is up use that, fallback to bootmem. */
52 if (slab_is_available()) {
53 struct page *page;
54
55 if (node_state(node, N_HIGH_MEMORY))
56 page = alloc_pages_node(
57 node, GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
58 get_order(size));
59 else
60 page = alloc_pages(
61 GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
62 get_order(size));
63 if (page)
64 return page_address(page);
65 return NULL;
66 } else
67 return __earlyonly_bootmem_alloc(node, size, size,
68 __pa(MAX_DMA_ADDRESS));
69 }
70
71 /* need to make sure size is all the same during early stage */
72 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
73 {
74 void *ptr;
75
76 if (!vmemmap_buf)
77 return vmemmap_alloc_block(size, node);
78
79 /* take the from buf */
80 ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
81 if (ptr + size > vmemmap_buf_end)
82 return vmemmap_alloc_block(size, node);
83
84 vmemmap_buf = ptr + size;
85
86 return ptr;
87 }
88
89 void __meminit vmemmap_verify(pte_t *pte, int node,
90 unsigned long start, unsigned long end)
91 {
92 unsigned long pfn = pte_pfn(*pte);
93 int actual_node = early_pfn_to_nid(pfn);
94
95 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
96 printk(KERN_WARNING "[%lx-%lx] potential offnode "
97 "page_structs\n", start, end - 1);
98 }
99
100 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
101 {
102 pte_t *pte = pte_offset_kernel(pmd, addr);
103 if (pte_none(*pte)) {
104 pte_t entry;
105 void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
106 if (!p)
107 return NULL;
108 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
109 set_pte_at(&init_mm, addr, pte, entry);
110 }
111 return pte;
112 }
113
114 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
115 {
116 pmd_t *pmd = pmd_offset(pud, addr);
117 if (pmd_none(*pmd)) {
118 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
119 if (!p)
120 return NULL;
121 pmd_populate_kernel(&init_mm, pmd, p);
122 }
123 return pmd;
124 }
125
126 pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
127 {
128 #ifdef CONFIG_TIMA_RKP
129 int rkp_do = 0;
130 #endif
131 void *p = NULL ;
132 pud_t *pud = pud_offset(pgd, addr);
133 if (pud_none(*pud)) {
134 #ifdef CONFIG_TIMA_RKP
135 #ifdef CONFIG_KNOX_KAP
136 if (boot_mode_security) rkp_do = 1;
137 #endif
138 if( rkp_do ){
139 p = rkp_ro_alloc();
140 }else{
141 p = vmemmap_alloc_block(PAGE_SIZE, node);
142 }
143 #else /* !CONFIG_TIMA_RKP */
144 p = vmemmap_alloc_block(PAGE_SIZE, node);
145 #endif
146 if (!p)
147 return NULL;
148 pud_populate(&init_mm, pud, p);
149 }
150 return pud;
151 }
152
153 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
154 {
155 pgd_t *pgd = pgd_offset_k(addr);
156 if (pgd_none(*pgd)) {
157 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
158 if (!p)
159 return NULL;
160 pgd_populate(&init_mm, pgd, p);
161 }
162 return pgd;
163 }
164
165 int __meminit vmemmap_populate_basepages(unsigned long start,
166 unsigned long end, int node)
167 {
168 unsigned long addr = start;
169 pgd_t *pgd;
170 pud_t *pud;
171 pmd_t *pmd;
172 pte_t *pte;
173
174 for (; addr < end; addr += PAGE_SIZE) {
175 pgd = vmemmap_pgd_populate(addr, node);
176 if (!pgd)
177 return -ENOMEM;
178 pud = vmemmap_pud_populate(pgd, addr, node);
179 if (!pud)
180 return -ENOMEM;
181 pmd = vmemmap_pmd_populate(pud, addr, node);
182 if (!pmd)
183 return -ENOMEM;
184 pte = vmemmap_pte_populate(pmd, addr, node);
185 if (!pte)
186 return -ENOMEM;
187 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
188 }
189
190 return 0;
191 }
192
193 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
194 {
195 unsigned long start;
196 unsigned long end;
197 struct page *map;
198
199 map = pfn_to_page(pnum * PAGES_PER_SECTION);
200 start = (unsigned long)map;
201 end = (unsigned long)(map + PAGES_PER_SECTION);
202
203 if (vmemmap_populate(start, end, nid))
204 return NULL;
205
206 return map;
207 }
208
209 void __init sparse_mem_maps_populate_node(struct page **map_map,
210 unsigned long pnum_begin,
211 unsigned long pnum_end,
212 unsigned long map_count, int nodeid)
213 {
214 unsigned long pnum;
215 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
216 void *vmemmap_buf_start;
217
218 size = ALIGN(size, PMD_SIZE);
219 vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
220 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
221
222 if (vmemmap_buf_start) {
223 vmemmap_buf = vmemmap_buf_start;
224 vmemmap_buf_end = vmemmap_buf_start + size * map_count;
225 }
226
227 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
228 struct mem_section *ms;
229
230 if (!present_section_nr(pnum))
231 continue;
232
233 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
234 if (map_map[pnum])
235 continue;
236 ms = __nr_to_section(pnum);
237 printk(KERN_ERR "%s: sparsemem memory map backing failed "
238 "some memory will not be available.\n", __func__);
239 ms->section_mem_map = 0;
240 }
241
242 if (vmemmap_buf_start) {
243 /* need to free left buf */
244 free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
245 vmemmap_buf = NULL;
246 vmemmap_buf_end = NULL;
247 }
248 }