SLUB: Avoid page struct cacheline bouncing due to remote frees to cpu slab
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23
24 /*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
100 */
101
102 #define FROZEN (1 << PG_active)
103
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109
110 static inline int SlabFrozen(struct page *page)
111 {
112 return page->flags & FROZEN;
113 }
114
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 page->flags |= FROZEN;
118 }
119
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 page->flags &= ~FROZEN;
123 }
124
125 static inline int SlabDebug(struct page *page)
126 {
127 return page->flags & SLABDEBUG;
128 }
129
130 static inline void SetSlabDebug(struct page *page)
131 {
132 page->flags |= SLABDEBUG;
133 }
134
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 page->flags &= ~SLABDEBUG;
138 }
139
140 /*
141 * Issues still to be resolved:
142 *
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
144 *
145 * - Variable sizing of the per node arrays
146 */
147
148 /* Enable to test recovery from slab corruption on boot */
149 #undef SLUB_RESILIENCY_TEST
150
151 #if PAGE_SHIFT <= 12
152
153 /*
154 * Small page size. Make sure that we do not fragment memory
155 */
156 #define DEFAULT_MAX_ORDER 1
157 #define DEFAULT_MIN_OBJECTS 4
158
159 #else
160
161 /*
162 * Large page machines are customarily able to handle larger
163 * page orders.
164 */
165 #define DEFAULT_MAX_ORDER 2
166 #define DEFAULT_MIN_OBJECTS 8
167
168 #endif
169
170 /*
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
173 */
174 #define MIN_PARTIAL 2
175
176 /*
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
180 */
181 #define MAX_PARTIAL 10
182
183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184 SLAB_POISON | SLAB_STORE_USER)
185
186 /*
187 * Set of flags that will prevent slab merging
188 */
189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
191
192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193 SLAB_CACHE_DMA)
194
195 #ifndef ARCH_KMALLOC_MINALIGN
196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197 #endif
198
199 #ifndef ARCH_SLAB_MINALIGN
200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201 #endif
202
203 /*
204 * The page->inuse field is 16 bit thus we have this limitation
205 */
206 #define MAX_OBJECTS_PER_SLAB 65535
207
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000 /* Poison object */
210 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
211
212 /* Not all arches define cache_line_size */
213 #ifndef cache_line_size
214 #define cache_line_size() L1_CACHE_BYTES
215 #endif
216
217 static int kmem_size = sizeof(struct kmem_cache);
218
219 #ifdef CONFIG_SMP
220 static struct notifier_block slab_notifier;
221 #endif
222
223 static enum {
224 DOWN, /* No slab functionality available */
225 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
226 UP, /* Everything works but does not show up in sysfs */
227 SYSFS /* Sysfs up */
228 } slab_state = DOWN;
229
230 /* A list of all slab caches on the system */
231 static DECLARE_RWSEM(slub_lock);
232 static LIST_HEAD(slab_caches);
233
234 /*
235 * Tracking user of a slab.
236 */
237 struct track {
238 void *addr; /* Called from address */
239 int cpu; /* Was running on cpu */
240 int pid; /* Pid context */
241 unsigned long when; /* When did the operation occur */
242 };
243
244 enum track_item { TRACK_ALLOC, TRACK_FREE };
245
246 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
247 static int sysfs_slab_add(struct kmem_cache *);
248 static int sysfs_slab_alias(struct kmem_cache *, const char *);
249 static void sysfs_slab_remove(struct kmem_cache *);
250 #else
251 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
252 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
253 { return 0; }
254 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
255 #endif
256
257 /********************************************************************
258 * Core slab cache functions
259 *******************************************************************/
260
261 int slab_is_available(void)
262 {
263 return slab_state >= UP;
264 }
265
266 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
267 {
268 #ifdef CONFIG_NUMA
269 return s->node[node];
270 #else
271 return &s->local_node;
272 #endif
273 }
274
275 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
276 {
277 return &s->cpu_slab[cpu];
278 }
279
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
282 {
283 void *base;
284
285 if (!object)
286 return 1;
287
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
292 }
293
294 return 1;
295 }
296
297 /*
298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
305 {
306 return *(void **)(object + s->offset);
307 }
308
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 *(void **)(object + s->offset) = fp;
312 }
313
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
318
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325 {
326 return (p - addr) / s->size;
327 }
328
329 #ifdef CONFIG_SLUB_DEBUG
330 /*
331 * Debug settings:
332 */
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
338
339 static char *slub_debug_slabs;
340
341 /*
342 * Object debugging
343 */
344 static void print_section(char *text, u8 *addr, unsigned int length)
345 {
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
349
350 ascii[16] = 0;
351
352 for (i = 0; i < length; i++) {
353 if (newline) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 newline = 0;
356 }
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
363 }
364 }
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
371 }
372 printk(" %s\n", ascii);
373 }
374 }
375
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
378 {
379 struct track *p;
380
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
385
386 return p + alloc;
387 }
388
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
391 {
392 struct track *p;
393
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
398
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
407 }
408
409 static void init_tracking(struct kmem_cache *s, void *object)
410 {
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
413
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
416 }
417
418 static void print_track(const char *s, struct track *t)
419 {
420 if (!t->addr)
421 return;
422
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426 }
427
428 static void print_tracking(struct kmem_cache *s, void *object)
429 {
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
432
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
435 }
436
437 static void print_page_info(struct page *page)
438 {
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
441
442 }
443
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445 {
446 va_list args;
447 char buf[100];
448
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
457 }
458
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460 {
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468 }
469
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471 {
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
474
475 print_tracking(s, p);
476
477 print_page_info(page);
478
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
481
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
484
485 print_section("Object", p, min(s->objsize, 128));
486
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
490
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
495
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
498
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
502
503 dump_stack();
504 }
505
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
508 {
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
511 }
512
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514 {
515 va_list args;
516 char buf[100];
517
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 slab_bug(s, fmt);
522 print_page_info(page);
523 dump_stack();
524 }
525
526 static void init_object(struct kmem_cache *s, void *object, int active)
527 {
528 u8 *p = object;
529
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
533 }
534
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
539 }
540
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542 {
543 while (bytes) {
544 if (*start != (u8)value)
545 return start;
546 start++;
547 bytes--;
548 }
549 return NULL;
550 }
551
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
554 {
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
557 }
558
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
562 {
563 u8 *fault;
564 u8 *end;
565
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
569
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
573
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
578
579 restore_bytes(s, what, value, fault, end);
580 return 0;
581 }
582
583 /*
584 * Object layout:
585 *
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
590 *
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
598 *
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
603 * Meta data starts here.
604 *
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
610 *
611 * Padding is done using 0x5a (POISON_INUSE)
612 *
613 * object + s->size
614 * Nothing is used beyond s->size.
615 *
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
619 */
620
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 unsigned long off = s->inuse; /* The end of info */
624
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
628
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
632
633 if (s->size == off)
634 return 1;
635
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
638 }
639
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
641 {
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
647
648 if (!(s->flags & SLAB_POISON))
649 return 1;
650
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
655 if (!remainder)
656 return 1;
657
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
663
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
666
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
669 }
670
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
673 {
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
676
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
683 return 0;
684 } else {
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
688 }
689
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
696 return 0;
697 /*
698 * check_pad_bytes cleans up on its own.
699 */
700 check_pad_bytes(s, page, p);
701 }
702
703 if (!s->offset && active)
704 /*
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
707 */
708 return 1;
709
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
713 /*
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
717 */
718 set_freepointer(s, p, NULL);
719 return 0;
720 }
721 return 1;
722 }
723
724 static int check_slab(struct kmem_cache *s, struct page *page)
725 {
726 VM_BUG_ON(!irqs_disabled());
727
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
730 return 0;
731 }
732 if (page->offset * sizeof(void *) != s->offset) {
733 slab_err(s, page, "Corrupted offset %lu",
734 (unsigned long)(page->offset * sizeof(void *)));
735 return 0;
736 }
737 if (page->inuse > s->objects) {
738 slab_err(s, page, "inuse %u > max %u",
739 s->name, page->inuse, s->objects);
740 return 0;
741 }
742 /* Slab_pad_check fixes things up after itself */
743 slab_pad_check(s, page);
744 return 1;
745 }
746
747 /*
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
750 */
751 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752 {
753 int nr = 0;
754 void *fp = page->freelist;
755 void *object = NULL;
756
757 while (fp && nr <= s->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
767 slab_err(s, page, "Freepointer corrupt");
768 page->freelist = NULL;
769 page->inuse = s->objects;
770 slab_fix(s, "Freelist cleared");
771 return 0;
772 }
773 break;
774 }
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
778 }
779
780 if (page->inuse != s->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, s->objects - nr);
783 page->inuse = s->objects - nr;
784 slab_fix(s, "Object count adjusted.");
785 }
786 return search == NULL;
787 }
788
789 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790 {
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803 }
804
805 /*
806 * Tracking of fully allocated slabs for debugging purposes.
807 */
808 static void add_full(struct kmem_cache_node *n, struct page *page)
809 {
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813 }
814
815 static void remove_full(struct kmem_cache *s, struct page *page)
816 {
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827 }
828
829 static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 void *object)
831 {
832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 return;
834
835 init_object(s, object, 0);
836 init_tracking(s, object);
837 }
838
839 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 void *object, void *addr)
841 {
842 if (!check_slab(s, page))
843 goto bad;
844
845 if (object && !on_freelist(s, page, object)) {
846 object_err(s, page, object, "Object already allocated");
847 goto bad;
848 }
849
850 if (!check_valid_pointer(s, page, object)) {
851 object_err(s, page, object, "Freelist Pointer check fails");
852 goto bad;
853 }
854
855 if (object && !check_object(s, page, object, 0))
856 goto bad;
857
858 /* Success perform special debug activities for allocs */
859 if (s->flags & SLAB_STORE_USER)
860 set_track(s, object, TRACK_ALLOC, addr);
861 trace(s, page, object, 1);
862 init_object(s, object, 1);
863 return 1;
864
865 bad:
866 if (PageSlab(page)) {
867 /*
868 * If this is a slab page then lets do the best we can
869 * to avoid issues in the future. Marking all objects
870 * as used avoids touching the remaining objects.
871 */
872 slab_fix(s, "Marking all objects used");
873 page->inuse = s->objects;
874 page->freelist = NULL;
875 /* Fix up fields that may be corrupted */
876 page->offset = s->offset / sizeof(void *);
877 }
878 return 0;
879 }
880
881 static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 void *object, void *addr)
883 {
884 if (!check_slab(s, page))
885 goto fail;
886
887 if (!check_valid_pointer(s, page, object)) {
888 slab_err(s, page, "Invalid object pointer 0x%p", object);
889 goto fail;
890 }
891
892 if (on_freelist(s, page, object)) {
893 object_err(s, page, object, "Object already free");
894 goto fail;
895 }
896
897 if (!check_object(s, page, object, 1))
898 return 0;
899
900 if (unlikely(s != page->slab)) {
901 if (!PageSlab(page))
902 slab_err(s, page, "Attempt to free object(0x%p) "
903 "outside of slab", object);
904 else
905 if (!page->slab) {
906 printk(KERN_ERR
907 "SLUB <none>: no slab for object 0x%p.\n",
908 object);
909 dump_stack();
910 }
911 else
912 object_err(s, page, object,
913 "page slab pointer corrupt.");
914 goto fail;
915 }
916
917 /* Special debug activities for freeing objects */
918 if (!SlabFrozen(page) && !page->freelist)
919 remove_full(s, page);
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_FREE, addr);
922 trace(s, page, object, 0);
923 init_object(s, object, 0);
924 return 1;
925
926 fail:
927 slab_fix(s, "Object at 0x%p not freed", object);
928 return 0;
929 }
930
931 static int __init setup_slub_debug(char *str)
932 {
933 slub_debug = DEBUG_DEFAULT_FLAGS;
934 if (*str++ != '=' || !*str)
935 /*
936 * No options specified. Switch on full debugging.
937 */
938 goto out;
939
940 if (*str == ',')
941 /*
942 * No options but restriction on slabs. This means full
943 * debugging for slabs matching a pattern.
944 */
945 goto check_slabs;
946
947 slub_debug = 0;
948 if (*str == '-')
949 /*
950 * Switch off all debugging measures.
951 */
952 goto out;
953
954 /*
955 * Determine which debug features should be switched on
956 */
957 for ( ;*str && *str != ','; str++) {
958 switch (tolower(*str)) {
959 case 'f':
960 slub_debug |= SLAB_DEBUG_FREE;
961 break;
962 case 'z':
963 slub_debug |= SLAB_RED_ZONE;
964 break;
965 case 'p':
966 slub_debug |= SLAB_POISON;
967 break;
968 case 'u':
969 slub_debug |= SLAB_STORE_USER;
970 break;
971 case 't':
972 slub_debug |= SLAB_TRACE;
973 break;
974 default:
975 printk(KERN_ERR "slub_debug option '%c' "
976 "unknown. skipped\n",*str);
977 }
978 }
979
980 check_slabs:
981 if (*str == ',')
982 slub_debug_slabs = str + 1;
983 out:
984 return 1;
985 }
986
987 __setup("slub_debug", setup_slub_debug);
988
989 static unsigned long kmem_cache_flags(unsigned long objsize,
990 unsigned long flags, const char *name,
991 void (*ctor)(void *, struct kmem_cache *, unsigned long))
992 {
993 /*
994 * The page->offset field is only 16 bit wide. This is an offset
995 * in units of words from the beginning of an object. If the slab
996 * size is bigger then we cannot move the free pointer behind the
997 * object anymore.
998 *
999 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000 * the limit is 512k.
1001 *
1002 * Debugging or ctor may create a need to move the free
1003 * pointer. Fail if this happens.
1004 */
1005 if (objsize >= 65535 * sizeof(void *)) {
1006 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008 BUG_ON(ctor);
1009 } else {
1010 /*
1011 * Enable debugging if selected on the kernel commandline.
1012 */
1013 if (slub_debug && (!slub_debug_slabs ||
1014 strncmp(slub_debug_slabs, name,
1015 strlen(slub_debug_slabs)) == 0))
1016 flags |= slub_debug;
1017 }
1018
1019 return flags;
1020 }
1021 #else
1022 static inline void setup_object_debug(struct kmem_cache *s,
1023 struct page *page, void *object) {}
1024
1025 static inline int alloc_debug_processing(struct kmem_cache *s,
1026 struct page *page, void *object, void *addr) { return 0; }
1027
1028 static inline int free_debug_processing(struct kmem_cache *s,
1029 struct page *page, void *object, void *addr) { return 0; }
1030
1031 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032 { return 1; }
1033 static inline int check_object(struct kmem_cache *s, struct page *page,
1034 void *object, int active) { return 1; }
1035 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037 unsigned long flags, const char *name,
1038 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1039 {
1040 return flags;
1041 }
1042 #define slub_debug 0
1043 #endif
1044 /*
1045 * Slab allocation and freeing
1046 */
1047 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1048 {
1049 struct page * page;
1050 int pages = 1 << s->order;
1051
1052 if (s->order)
1053 flags |= __GFP_COMP;
1054
1055 if (s->flags & SLAB_CACHE_DMA)
1056 flags |= SLUB_DMA;
1057
1058 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1059 flags |= __GFP_RECLAIMABLE;
1060
1061 if (node == -1)
1062 page = alloc_pages(flags, s->order);
1063 else
1064 page = alloc_pages_node(node, flags, s->order);
1065
1066 if (!page)
1067 return NULL;
1068
1069 mod_zone_page_state(page_zone(page),
1070 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1071 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1072 pages);
1073
1074 return page;
1075 }
1076
1077 static void setup_object(struct kmem_cache *s, struct page *page,
1078 void *object)
1079 {
1080 setup_object_debug(s, page, object);
1081 if (unlikely(s->ctor))
1082 s->ctor(object, s, 0);
1083 }
1084
1085 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1086 {
1087 struct page *page;
1088 struct kmem_cache_node *n;
1089 void *start;
1090 void *end;
1091 void *last;
1092 void *p;
1093
1094 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1095
1096 if (flags & __GFP_WAIT)
1097 local_irq_enable();
1098
1099 page = allocate_slab(s,
1100 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1101 if (!page)
1102 goto out;
1103
1104 n = get_node(s, page_to_nid(page));
1105 if (n)
1106 atomic_long_inc(&n->nr_slabs);
1107 page->offset = s->offset / sizeof(void *);
1108 page->slab = s;
1109 page->flags |= 1 << PG_slab;
1110 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1111 SLAB_STORE_USER | SLAB_TRACE))
1112 SetSlabDebug(page);
1113
1114 start = page_address(page);
1115 end = start + s->objects * s->size;
1116
1117 if (unlikely(s->flags & SLAB_POISON))
1118 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1119
1120 last = start;
1121 for_each_object(p, s, start) {
1122 setup_object(s, page, last);
1123 set_freepointer(s, last, p);
1124 last = p;
1125 }
1126 setup_object(s, page, last);
1127 set_freepointer(s, last, NULL);
1128
1129 page->freelist = start;
1130 page->lockless_freelist = NULL;
1131 page->inuse = 0;
1132 out:
1133 if (flags & __GFP_WAIT)
1134 local_irq_disable();
1135 return page;
1136 }
1137
1138 static void __free_slab(struct kmem_cache *s, struct page *page)
1139 {
1140 int pages = 1 << s->order;
1141
1142 if (unlikely(SlabDebug(page))) {
1143 void *p;
1144
1145 slab_pad_check(s, page);
1146 for_each_object(p, s, page_address(page))
1147 check_object(s, page, p, 0);
1148 ClearSlabDebug(page);
1149 }
1150
1151 mod_zone_page_state(page_zone(page),
1152 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1153 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1154 - pages);
1155
1156 page->mapping = NULL;
1157 __free_pages(page, s->order);
1158 }
1159
1160 static void rcu_free_slab(struct rcu_head *h)
1161 {
1162 struct page *page;
1163
1164 page = container_of((struct list_head *)h, struct page, lru);
1165 __free_slab(page->slab, page);
1166 }
1167
1168 static void free_slab(struct kmem_cache *s, struct page *page)
1169 {
1170 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1171 /*
1172 * RCU free overloads the RCU head over the LRU
1173 */
1174 struct rcu_head *head = (void *)&page->lru;
1175
1176 call_rcu(head, rcu_free_slab);
1177 } else
1178 __free_slab(s, page);
1179 }
1180
1181 static void discard_slab(struct kmem_cache *s, struct page *page)
1182 {
1183 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1184
1185 atomic_long_dec(&n->nr_slabs);
1186 reset_page_mapcount(page);
1187 __ClearPageSlab(page);
1188 free_slab(s, page);
1189 }
1190
1191 /*
1192 * Per slab locking using the pagelock
1193 */
1194 static __always_inline void slab_lock(struct page *page)
1195 {
1196 bit_spin_lock(PG_locked, &page->flags);
1197 }
1198
1199 static __always_inline void slab_unlock(struct page *page)
1200 {
1201 bit_spin_unlock(PG_locked, &page->flags);
1202 }
1203
1204 static __always_inline int slab_trylock(struct page *page)
1205 {
1206 int rc = 1;
1207
1208 rc = bit_spin_trylock(PG_locked, &page->flags);
1209 return rc;
1210 }
1211
1212 /*
1213 * Management of partially allocated slabs
1214 */
1215 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1216 {
1217 spin_lock(&n->list_lock);
1218 n->nr_partial++;
1219 list_add_tail(&page->lru, &n->partial);
1220 spin_unlock(&n->list_lock);
1221 }
1222
1223 static void add_partial(struct kmem_cache_node *n, struct page *page)
1224 {
1225 spin_lock(&n->list_lock);
1226 n->nr_partial++;
1227 list_add(&page->lru, &n->partial);
1228 spin_unlock(&n->list_lock);
1229 }
1230
1231 static void remove_partial(struct kmem_cache *s,
1232 struct page *page)
1233 {
1234 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1235
1236 spin_lock(&n->list_lock);
1237 list_del(&page->lru);
1238 n->nr_partial--;
1239 spin_unlock(&n->list_lock);
1240 }
1241
1242 /*
1243 * Lock slab and remove from the partial list.
1244 *
1245 * Must hold list_lock.
1246 */
1247 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1248 {
1249 if (slab_trylock(page)) {
1250 list_del(&page->lru);
1251 n->nr_partial--;
1252 SetSlabFrozen(page);
1253 return 1;
1254 }
1255 return 0;
1256 }
1257
1258 /*
1259 * Try to allocate a partial slab from a specific node.
1260 */
1261 static struct page *get_partial_node(struct kmem_cache_node *n)
1262 {
1263 struct page *page;
1264
1265 /*
1266 * Racy check. If we mistakenly see no partial slabs then we
1267 * just allocate an empty slab. If we mistakenly try to get a
1268 * partial slab and there is none available then get_partials()
1269 * will return NULL.
1270 */
1271 if (!n || !n->nr_partial)
1272 return NULL;
1273
1274 spin_lock(&n->list_lock);
1275 list_for_each_entry(page, &n->partial, lru)
1276 if (lock_and_freeze_slab(n, page))
1277 goto out;
1278 page = NULL;
1279 out:
1280 spin_unlock(&n->list_lock);
1281 return page;
1282 }
1283
1284 /*
1285 * Get a page from somewhere. Search in increasing NUMA distances.
1286 */
1287 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1288 {
1289 #ifdef CONFIG_NUMA
1290 struct zonelist *zonelist;
1291 struct zone **z;
1292 struct page *page;
1293
1294 /*
1295 * The defrag ratio allows a configuration of the tradeoffs between
1296 * inter node defragmentation and node local allocations. A lower
1297 * defrag_ratio increases the tendency to do local allocations
1298 * instead of attempting to obtain partial slabs from other nodes.
1299 *
1300 * If the defrag_ratio is set to 0 then kmalloc() always
1301 * returns node local objects. If the ratio is higher then kmalloc()
1302 * may return off node objects because partial slabs are obtained
1303 * from other nodes and filled up.
1304 *
1305 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1306 * defrag_ratio = 1000) then every (well almost) allocation will
1307 * first attempt to defrag slab caches on other nodes. This means
1308 * scanning over all nodes to look for partial slabs which may be
1309 * expensive if we do it every time we are trying to find a slab
1310 * with available objects.
1311 */
1312 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1313 return NULL;
1314
1315 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1316 ->node_zonelists[gfp_zone(flags)];
1317 for (z = zonelist->zones; *z; z++) {
1318 struct kmem_cache_node *n;
1319
1320 n = get_node(s, zone_to_nid(*z));
1321
1322 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1323 n->nr_partial > MIN_PARTIAL) {
1324 page = get_partial_node(n);
1325 if (page)
1326 return page;
1327 }
1328 }
1329 #endif
1330 return NULL;
1331 }
1332
1333 /*
1334 * Get a partial page, lock it and return it.
1335 */
1336 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1337 {
1338 struct page *page;
1339 int searchnode = (node == -1) ? numa_node_id() : node;
1340
1341 page = get_partial_node(get_node(s, searchnode));
1342 if (page || (flags & __GFP_THISNODE))
1343 return page;
1344
1345 return get_any_partial(s, flags);
1346 }
1347
1348 /*
1349 * Move a page back to the lists.
1350 *
1351 * Must be called with the slab lock held.
1352 *
1353 * On exit the slab lock will have been dropped.
1354 */
1355 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1356 {
1357 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1358
1359 ClearSlabFrozen(page);
1360 if (page->inuse) {
1361
1362 if (page->freelist)
1363 add_partial(n, page);
1364 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1365 add_full(n, page);
1366 slab_unlock(page);
1367
1368 } else {
1369 if (n->nr_partial < MIN_PARTIAL) {
1370 /*
1371 * Adding an empty slab to the partial slabs in order
1372 * to avoid page allocator overhead. This slab needs
1373 * to come after the other slabs with objects in
1374 * order to fill them up. That way the size of the
1375 * partial list stays small. kmem_cache_shrink can
1376 * reclaim empty slabs from the partial list.
1377 */
1378 add_partial_tail(n, page);
1379 slab_unlock(page);
1380 } else {
1381 slab_unlock(page);
1382 discard_slab(s, page);
1383 }
1384 }
1385 }
1386
1387 /*
1388 * Remove the cpu slab
1389 */
1390 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1391 {
1392 struct page *page = c->page;
1393 /*
1394 * Merge cpu freelist into freelist. Typically we get here
1395 * because both freelists are empty. So this is unlikely
1396 * to occur.
1397 */
1398 while (unlikely(c->freelist)) {
1399 void **object;
1400
1401 /* Retrieve object from cpu_freelist */
1402 object = c->freelist;
1403 c->freelist = c->freelist[page->offset];
1404
1405 /* And put onto the regular freelist */
1406 object[page->offset] = page->freelist;
1407 page->freelist = object;
1408 page->inuse--;
1409 }
1410 c->page = NULL;
1411 unfreeze_slab(s, page);
1412 }
1413
1414 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 {
1416 slab_lock(c->page);
1417 deactivate_slab(s, c);
1418 }
1419
1420 /*
1421 * Flush cpu slab.
1422 * Called from IPI handler with interrupts disabled.
1423 */
1424 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1425 {
1426 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1427
1428 if (likely(c && c->page))
1429 flush_slab(s, c);
1430 }
1431
1432 static void flush_cpu_slab(void *d)
1433 {
1434 struct kmem_cache *s = d;
1435
1436 __flush_cpu_slab(s, smp_processor_id());
1437 }
1438
1439 static void flush_all(struct kmem_cache *s)
1440 {
1441 #ifdef CONFIG_SMP
1442 on_each_cpu(flush_cpu_slab, s, 1, 1);
1443 #else
1444 unsigned long flags;
1445
1446 local_irq_save(flags);
1447 flush_cpu_slab(s);
1448 local_irq_restore(flags);
1449 #endif
1450 }
1451
1452 /*
1453 * Check if the objects in a per cpu structure fit numa
1454 * locality expectations.
1455 */
1456 static inline int node_match(struct kmem_cache_cpu *c, int node)
1457 {
1458 #ifdef CONFIG_NUMA
1459 if (node != -1 && c->node != node)
1460 return 0;
1461 #endif
1462 return 1;
1463 }
1464
1465 /*
1466 * Slow path. The lockless freelist is empty or we need to perform
1467 * debugging duties.
1468 *
1469 * Interrupts are disabled.
1470 *
1471 * Processing is still very fast if new objects have been freed to the
1472 * regular freelist. In that case we simply take over the regular freelist
1473 * as the lockless freelist and zap the regular freelist.
1474 *
1475 * If that is not working then we fall back to the partial lists. We take the
1476 * first element of the freelist as the object to allocate now and move the
1477 * rest of the freelist to the lockless freelist.
1478 *
1479 * And if we were unable to get a new slab from the partial slab lists then
1480 * we need to allocate a new slab. This is slowest path since we may sleep.
1481 */
1482 static void *__slab_alloc(struct kmem_cache *s,
1483 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1484 {
1485 void **object;
1486 struct page *new;
1487
1488 if (!c->page)
1489 goto new_slab;
1490
1491 slab_lock(c->page);
1492 if (unlikely(!node_match(c, node)))
1493 goto another_slab;
1494 load_freelist:
1495 object = c->page->freelist;
1496 if (unlikely(!object))
1497 goto another_slab;
1498 if (unlikely(SlabDebug(c->page)))
1499 goto debug;
1500
1501 object = c->page->freelist;
1502 c->freelist = object[c->page->offset];
1503 c->page->inuse = s->objects;
1504 c->page->freelist = NULL;
1505 c->node = page_to_nid(c->page);
1506 slab_unlock(c->page);
1507 return object;
1508
1509 another_slab:
1510 deactivate_slab(s, c);
1511
1512 new_slab:
1513 new = get_partial(s, gfpflags, node);
1514 if (new) {
1515 c->page = new;
1516 goto load_freelist;
1517 }
1518
1519 new = new_slab(s, gfpflags, node);
1520 if (new) {
1521 c = get_cpu_slab(s, smp_processor_id());
1522 if (c->page) {
1523 /*
1524 * Someone else populated the cpu_slab while we
1525 * enabled interrupts, or we have gotten scheduled
1526 * on another cpu. The page may not be on the
1527 * requested node even if __GFP_THISNODE was
1528 * specified. So we need to recheck.
1529 */
1530 if (node_match(c, node)) {
1531 /*
1532 * Current cpuslab is acceptable and we
1533 * want the current one since its cache hot
1534 */
1535 discard_slab(s, new);
1536 slab_lock(c->page);
1537 goto load_freelist;
1538 }
1539 /* New slab does not fit our expectations */
1540 flush_slab(s, c);
1541 }
1542 slab_lock(new);
1543 SetSlabFrozen(new);
1544 c->page = new;
1545 goto load_freelist;
1546 }
1547 return NULL;
1548 debug:
1549 object = c->page->freelist;
1550 if (!alloc_debug_processing(s, c->page, object, addr))
1551 goto another_slab;
1552
1553 c->page->inuse++;
1554 c->page->freelist = object[c->page->offset];
1555 slab_unlock(c->page);
1556 return object;
1557 }
1558
1559 /*
1560 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1561 * have the fastpath folded into their functions. So no function call
1562 * overhead for requests that can be satisfied on the fastpath.
1563 *
1564 * The fastpath works by first checking if the lockless freelist can be used.
1565 * If not then __slab_alloc is called for slow processing.
1566 *
1567 * Otherwise we can simply pick the next object from the lockless free list.
1568 */
1569 static void __always_inline *slab_alloc(struct kmem_cache *s,
1570 gfp_t gfpflags, int node, void *addr)
1571 {
1572 void **object;
1573 unsigned long flags;
1574 struct kmem_cache_cpu *c;
1575
1576 local_irq_save(flags);
1577 c = get_cpu_slab(s, smp_processor_id());
1578 if (unlikely(!c->page || !c->freelist ||
1579 !node_match(c, node)))
1580
1581 object = __slab_alloc(s, gfpflags, node, addr, c);
1582
1583 else {
1584 object = c->freelist;
1585 c->freelist = object[c->page->offset];
1586 }
1587 local_irq_restore(flags);
1588
1589 if (unlikely((gfpflags & __GFP_ZERO) && object))
1590 memset(object, 0, s->objsize);
1591
1592 return object;
1593 }
1594
1595 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1596 {
1597 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1598 }
1599 EXPORT_SYMBOL(kmem_cache_alloc);
1600
1601 #ifdef CONFIG_NUMA
1602 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1603 {
1604 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1605 }
1606 EXPORT_SYMBOL(kmem_cache_alloc_node);
1607 #endif
1608
1609 /*
1610 * Slow patch handling. This may still be called frequently since objects
1611 * have a longer lifetime than the cpu slabs in most processing loads.
1612 *
1613 * So we still attempt to reduce cache line usage. Just take the slab
1614 * lock and free the item. If there is no additional partial page
1615 * handling required then we can return immediately.
1616 */
1617 static void __slab_free(struct kmem_cache *s, struct page *page,
1618 void *x, void *addr)
1619 {
1620 void *prior;
1621 void **object = (void *)x;
1622
1623 slab_lock(page);
1624
1625 if (unlikely(SlabDebug(page)))
1626 goto debug;
1627 checks_ok:
1628 prior = object[page->offset] = page->freelist;
1629 page->freelist = object;
1630 page->inuse--;
1631
1632 if (unlikely(SlabFrozen(page)))
1633 goto out_unlock;
1634
1635 if (unlikely(!page->inuse))
1636 goto slab_empty;
1637
1638 /*
1639 * Objects left in the slab. If it
1640 * was not on the partial list before
1641 * then add it.
1642 */
1643 if (unlikely(!prior))
1644 add_partial(get_node(s, page_to_nid(page)), page);
1645
1646 out_unlock:
1647 slab_unlock(page);
1648 return;
1649
1650 slab_empty:
1651 if (prior)
1652 /*
1653 * Slab still on the partial list.
1654 */
1655 remove_partial(s, page);
1656
1657 slab_unlock(page);
1658 discard_slab(s, page);
1659 return;
1660
1661 debug:
1662 if (!free_debug_processing(s, page, x, addr))
1663 goto out_unlock;
1664 goto checks_ok;
1665 }
1666
1667 /*
1668 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1669 * can perform fastpath freeing without additional function calls.
1670 *
1671 * The fastpath is only possible if we are freeing to the current cpu slab
1672 * of this processor. This typically the case if we have just allocated
1673 * the item before.
1674 *
1675 * If fastpath is not possible then fall back to __slab_free where we deal
1676 * with all sorts of special processing.
1677 */
1678 static void __always_inline slab_free(struct kmem_cache *s,
1679 struct page *page, void *x, void *addr)
1680 {
1681 void **object = (void *)x;
1682 unsigned long flags;
1683 struct kmem_cache_cpu *c;
1684
1685 local_irq_save(flags);
1686 debug_check_no_locks_freed(object, s->objsize);
1687 c = get_cpu_slab(s, smp_processor_id());
1688 if (likely(page == c->page && !SlabDebug(page))) {
1689 object[page->offset] = c->freelist;
1690 c->freelist = object;
1691 } else
1692 __slab_free(s, page, x, addr);
1693
1694 local_irq_restore(flags);
1695 }
1696
1697 void kmem_cache_free(struct kmem_cache *s, void *x)
1698 {
1699 struct page *page;
1700
1701 page = virt_to_head_page(x);
1702
1703 slab_free(s, page, x, __builtin_return_address(0));
1704 }
1705 EXPORT_SYMBOL(kmem_cache_free);
1706
1707 /* Figure out on which slab object the object resides */
1708 static struct page *get_object_page(const void *x)
1709 {
1710 struct page *page = virt_to_head_page(x);
1711
1712 if (!PageSlab(page))
1713 return NULL;
1714
1715 return page;
1716 }
1717
1718 /*
1719 * Object placement in a slab is made very easy because we always start at
1720 * offset 0. If we tune the size of the object to the alignment then we can
1721 * get the required alignment by putting one properly sized object after
1722 * another.
1723 *
1724 * Notice that the allocation order determines the sizes of the per cpu
1725 * caches. Each processor has always one slab available for allocations.
1726 * Increasing the allocation order reduces the number of times that slabs
1727 * must be moved on and off the partial lists and is therefore a factor in
1728 * locking overhead.
1729 */
1730
1731 /*
1732 * Mininum / Maximum order of slab pages. This influences locking overhead
1733 * and slab fragmentation. A higher order reduces the number of partial slabs
1734 * and increases the number of allocations possible without having to
1735 * take the list_lock.
1736 */
1737 static int slub_min_order;
1738 static int slub_max_order = DEFAULT_MAX_ORDER;
1739 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1740
1741 /*
1742 * Merge control. If this is set then no merging of slab caches will occur.
1743 * (Could be removed. This was introduced to pacify the merge skeptics.)
1744 */
1745 static int slub_nomerge;
1746
1747 /*
1748 * Calculate the order of allocation given an slab object size.
1749 *
1750 * The order of allocation has significant impact on performance and other
1751 * system components. Generally order 0 allocations should be preferred since
1752 * order 0 does not cause fragmentation in the page allocator. Larger objects
1753 * be problematic to put into order 0 slabs because there may be too much
1754 * unused space left. We go to a higher order if more than 1/8th of the slab
1755 * would be wasted.
1756 *
1757 * In order to reach satisfactory performance we must ensure that a minimum
1758 * number of objects is in one slab. Otherwise we may generate too much
1759 * activity on the partial lists which requires taking the list_lock. This is
1760 * less a concern for large slabs though which are rarely used.
1761 *
1762 * slub_max_order specifies the order where we begin to stop considering the
1763 * number of objects in a slab as critical. If we reach slub_max_order then
1764 * we try to keep the page order as low as possible. So we accept more waste
1765 * of space in favor of a small page order.
1766 *
1767 * Higher order allocations also allow the placement of more objects in a
1768 * slab and thereby reduce object handling overhead. If the user has
1769 * requested a higher mininum order then we start with that one instead of
1770 * the smallest order which will fit the object.
1771 */
1772 static inline int slab_order(int size, int min_objects,
1773 int max_order, int fract_leftover)
1774 {
1775 int order;
1776 int rem;
1777 int min_order = slub_min_order;
1778
1779 /*
1780 * If we would create too many object per slab then reduce
1781 * the slab order even if it goes below slub_min_order.
1782 */
1783 while (min_order > 0 &&
1784 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1785 min_order--;
1786
1787 for (order = max(min_order,
1788 fls(min_objects * size - 1) - PAGE_SHIFT);
1789 order <= max_order; order++) {
1790
1791 unsigned long slab_size = PAGE_SIZE << order;
1792
1793 if (slab_size < min_objects * size)
1794 continue;
1795
1796 rem = slab_size % size;
1797
1798 if (rem <= slab_size / fract_leftover)
1799 break;
1800
1801 /* If the next size is too high then exit now */
1802 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1803 break;
1804 }
1805
1806 return order;
1807 }
1808
1809 static inline int calculate_order(int size)
1810 {
1811 int order;
1812 int min_objects;
1813 int fraction;
1814
1815 /*
1816 * Attempt to find best configuration for a slab. This
1817 * works by first attempting to generate a layout with
1818 * the best configuration and backing off gradually.
1819 *
1820 * First we reduce the acceptable waste in a slab. Then
1821 * we reduce the minimum objects required in a slab.
1822 */
1823 min_objects = slub_min_objects;
1824 while (min_objects > 1) {
1825 fraction = 8;
1826 while (fraction >= 4) {
1827 order = slab_order(size, min_objects,
1828 slub_max_order, fraction);
1829 if (order <= slub_max_order)
1830 return order;
1831 fraction /= 2;
1832 }
1833 min_objects /= 2;
1834 }
1835
1836 /*
1837 * We were unable to place multiple objects in a slab. Now
1838 * lets see if we can place a single object there.
1839 */
1840 order = slab_order(size, 1, slub_max_order, 1);
1841 if (order <= slub_max_order)
1842 return order;
1843
1844 /*
1845 * Doh this slab cannot be placed using slub_max_order.
1846 */
1847 order = slab_order(size, 1, MAX_ORDER, 1);
1848 if (order <= MAX_ORDER)
1849 return order;
1850 return -ENOSYS;
1851 }
1852
1853 /*
1854 * Figure out what the alignment of the objects will be.
1855 */
1856 static unsigned long calculate_alignment(unsigned long flags,
1857 unsigned long align, unsigned long size)
1858 {
1859 /*
1860 * If the user wants hardware cache aligned objects then
1861 * follow that suggestion if the object is sufficiently
1862 * large.
1863 *
1864 * The hardware cache alignment cannot override the
1865 * specified alignment though. If that is greater
1866 * then use it.
1867 */
1868 if ((flags & SLAB_HWCACHE_ALIGN) &&
1869 size > cache_line_size() / 2)
1870 return max_t(unsigned long, align, cache_line_size());
1871
1872 if (align < ARCH_SLAB_MINALIGN)
1873 return ARCH_SLAB_MINALIGN;
1874
1875 return ALIGN(align, sizeof(void *));
1876 }
1877
1878 static void init_kmem_cache_cpu(struct kmem_cache *s,
1879 struct kmem_cache_cpu *c)
1880 {
1881 c->page = NULL;
1882 c->freelist = NULL;
1883 c->node = 0;
1884 }
1885
1886 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1887 {
1888 int cpu;
1889
1890 for_each_possible_cpu(cpu)
1891 init_kmem_cache_cpu(s, get_cpu_slab(s, cpu));
1892
1893 return 1;
1894 }
1895
1896 static void init_kmem_cache_node(struct kmem_cache_node *n)
1897 {
1898 n->nr_partial = 0;
1899 atomic_long_set(&n->nr_slabs, 0);
1900 spin_lock_init(&n->list_lock);
1901 INIT_LIST_HEAD(&n->partial);
1902 #ifdef CONFIG_SLUB_DEBUG
1903 INIT_LIST_HEAD(&n->full);
1904 #endif
1905 }
1906
1907 #ifdef CONFIG_NUMA
1908 /*
1909 * No kmalloc_node yet so do it by hand. We know that this is the first
1910 * slab on the node for this slabcache. There are no concurrent accesses
1911 * possible.
1912 *
1913 * Note that this function only works on the kmalloc_node_cache
1914 * when allocating for the kmalloc_node_cache.
1915 */
1916 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1917 int node)
1918 {
1919 struct page *page;
1920 struct kmem_cache_node *n;
1921
1922 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1923
1924 page = new_slab(kmalloc_caches, gfpflags, node);
1925
1926 BUG_ON(!page);
1927 if (page_to_nid(page) != node) {
1928 printk(KERN_ERR "SLUB: Unable to allocate memory from "
1929 "node %d\n", node);
1930 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1931 "in order to be able to continue\n");
1932 }
1933
1934 n = page->freelist;
1935 BUG_ON(!n);
1936 page->freelist = get_freepointer(kmalloc_caches, n);
1937 page->inuse++;
1938 kmalloc_caches->node[node] = n;
1939 #ifdef CONFIG_SLUB_DEBUG
1940 init_object(kmalloc_caches, n, 1);
1941 init_tracking(kmalloc_caches, n);
1942 #endif
1943 init_kmem_cache_node(n);
1944 atomic_long_inc(&n->nr_slabs);
1945 add_partial(n, page);
1946
1947 /*
1948 * new_slab() disables interupts. If we do not reenable interrupts here
1949 * then bootup would continue with interrupts disabled.
1950 */
1951 local_irq_enable();
1952 return n;
1953 }
1954
1955 static void free_kmem_cache_nodes(struct kmem_cache *s)
1956 {
1957 int node;
1958
1959 for_each_node_state(node, N_NORMAL_MEMORY) {
1960 struct kmem_cache_node *n = s->node[node];
1961 if (n && n != &s->local_node)
1962 kmem_cache_free(kmalloc_caches, n);
1963 s->node[node] = NULL;
1964 }
1965 }
1966
1967 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1968 {
1969 int node;
1970 int local_node;
1971
1972 if (slab_state >= UP)
1973 local_node = page_to_nid(virt_to_page(s));
1974 else
1975 local_node = 0;
1976
1977 for_each_node_state(node, N_NORMAL_MEMORY) {
1978 struct kmem_cache_node *n;
1979
1980 if (local_node == node)
1981 n = &s->local_node;
1982 else {
1983 if (slab_state == DOWN) {
1984 n = early_kmem_cache_node_alloc(gfpflags,
1985 node);
1986 continue;
1987 }
1988 n = kmem_cache_alloc_node(kmalloc_caches,
1989 gfpflags, node);
1990
1991 if (!n) {
1992 free_kmem_cache_nodes(s);
1993 return 0;
1994 }
1995
1996 }
1997 s->node[node] = n;
1998 init_kmem_cache_node(n);
1999 }
2000 return 1;
2001 }
2002 #else
2003 static void free_kmem_cache_nodes(struct kmem_cache *s)
2004 {
2005 }
2006
2007 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2008 {
2009 init_kmem_cache_node(&s->local_node);
2010 return 1;
2011 }
2012 #endif
2013
2014 /*
2015 * calculate_sizes() determines the order and the distribution of data within
2016 * a slab object.
2017 */
2018 static int calculate_sizes(struct kmem_cache *s)
2019 {
2020 unsigned long flags = s->flags;
2021 unsigned long size = s->objsize;
2022 unsigned long align = s->align;
2023
2024 /*
2025 * Determine if we can poison the object itself. If the user of
2026 * the slab may touch the object after free or before allocation
2027 * then we should never poison the object itself.
2028 */
2029 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2030 !s->ctor)
2031 s->flags |= __OBJECT_POISON;
2032 else
2033 s->flags &= ~__OBJECT_POISON;
2034
2035 /*
2036 * Round up object size to the next word boundary. We can only
2037 * place the free pointer at word boundaries and this determines
2038 * the possible location of the free pointer.
2039 */
2040 size = ALIGN(size, sizeof(void *));
2041
2042 #ifdef CONFIG_SLUB_DEBUG
2043 /*
2044 * If we are Redzoning then check if there is some space between the
2045 * end of the object and the free pointer. If not then add an
2046 * additional word to have some bytes to store Redzone information.
2047 */
2048 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2049 size += sizeof(void *);
2050 #endif
2051
2052 /*
2053 * With that we have determined the number of bytes in actual use
2054 * by the object. This is the potential offset to the free pointer.
2055 */
2056 s->inuse = size;
2057
2058 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2059 s->ctor)) {
2060 /*
2061 * Relocate free pointer after the object if it is not
2062 * permitted to overwrite the first word of the object on
2063 * kmem_cache_free.
2064 *
2065 * This is the case if we do RCU, have a constructor or
2066 * destructor or are poisoning the objects.
2067 */
2068 s->offset = size;
2069 size += sizeof(void *);
2070 }
2071
2072 #ifdef CONFIG_SLUB_DEBUG
2073 if (flags & SLAB_STORE_USER)
2074 /*
2075 * Need to store information about allocs and frees after
2076 * the object.
2077 */
2078 size += 2 * sizeof(struct track);
2079
2080 if (flags & SLAB_RED_ZONE)
2081 /*
2082 * Add some empty padding so that we can catch
2083 * overwrites from earlier objects rather than let
2084 * tracking information or the free pointer be
2085 * corrupted if an user writes before the start
2086 * of the object.
2087 */
2088 size += sizeof(void *);
2089 #endif
2090
2091 /*
2092 * Determine the alignment based on various parameters that the
2093 * user specified and the dynamic determination of cache line size
2094 * on bootup.
2095 */
2096 align = calculate_alignment(flags, align, s->objsize);
2097
2098 /*
2099 * SLUB stores one object immediately after another beginning from
2100 * offset 0. In order to align the objects we have to simply size
2101 * each object to conform to the alignment.
2102 */
2103 size = ALIGN(size, align);
2104 s->size = size;
2105
2106 s->order = calculate_order(size);
2107 if (s->order < 0)
2108 return 0;
2109
2110 /*
2111 * Determine the number of objects per slab
2112 */
2113 s->objects = (PAGE_SIZE << s->order) / size;
2114
2115 /*
2116 * Verify that the number of objects is within permitted limits.
2117 * The page->inuse field is only 16 bit wide! So we cannot have
2118 * more than 64k objects per slab.
2119 */
2120 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2121 return 0;
2122 return 1;
2123
2124 }
2125
2126 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2127 const char *name, size_t size,
2128 size_t align, unsigned long flags,
2129 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2130 {
2131 memset(s, 0, kmem_size);
2132 s->name = name;
2133 s->ctor = ctor;
2134 s->objsize = size;
2135 s->align = align;
2136 s->flags = kmem_cache_flags(size, flags, name, ctor);
2137
2138 if (!calculate_sizes(s))
2139 goto error;
2140
2141 s->refcount = 1;
2142 #ifdef CONFIG_NUMA
2143 s->defrag_ratio = 100;
2144 #endif
2145 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2146 goto error;
2147
2148 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2149 return 1;
2150 error:
2151 if (flags & SLAB_PANIC)
2152 panic("Cannot create slab %s size=%lu realsize=%u "
2153 "order=%u offset=%u flags=%lx\n",
2154 s->name, (unsigned long)size, s->size, s->order,
2155 s->offset, flags);
2156 return 0;
2157 }
2158
2159 /*
2160 * Check if a given pointer is valid
2161 */
2162 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2163 {
2164 struct page * page;
2165
2166 page = get_object_page(object);
2167
2168 if (!page || s != page->slab)
2169 /* No slab or wrong slab */
2170 return 0;
2171
2172 if (!check_valid_pointer(s, page, object))
2173 return 0;
2174
2175 /*
2176 * We could also check if the object is on the slabs freelist.
2177 * But this would be too expensive and it seems that the main
2178 * purpose of kmem_ptr_valid is to check if the object belongs
2179 * to a certain slab.
2180 */
2181 return 1;
2182 }
2183 EXPORT_SYMBOL(kmem_ptr_validate);
2184
2185 /*
2186 * Determine the size of a slab object
2187 */
2188 unsigned int kmem_cache_size(struct kmem_cache *s)
2189 {
2190 return s->objsize;
2191 }
2192 EXPORT_SYMBOL(kmem_cache_size);
2193
2194 const char *kmem_cache_name(struct kmem_cache *s)
2195 {
2196 return s->name;
2197 }
2198 EXPORT_SYMBOL(kmem_cache_name);
2199
2200 /*
2201 * Attempt to free all slabs on a node. Return the number of slabs we
2202 * were unable to free.
2203 */
2204 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2205 struct list_head *list)
2206 {
2207 int slabs_inuse = 0;
2208 unsigned long flags;
2209 struct page *page, *h;
2210
2211 spin_lock_irqsave(&n->list_lock, flags);
2212 list_for_each_entry_safe(page, h, list, lru)
2213 if (!page->inuse) {
2214 list_del(&page->lru);
2215 discard_slab(s, page);
2216 } else
2217 slabs_inuse++;
2218 spin_unlock_irqrestore(&n->list_lock, flags);
2219 return slabs_inuse;
2220 }
2221
2222 /*
2223 * Release all resources used by a slab cache.
2224 */
2225 static inline int kmem_cache_close(struct kmem_cache *s)
2226 {
2227 int node;
2228
2229 flush_all(s);
2230
2231 /* Attempt to free all objects */
2232 for_each_node_state(node, N_NORMAL_MEMORY) {
2233 struct kmem_cache_node *n = get_node(s, node);
2234
2235 n->nr_partial -= free_list(s, n, &n->partial);
2236 if (atomic_long_read(&n->nr_slabs))
2237 return 1;
2238 }
2239 free_kmem_cache_nodes(s);
2240 return 0;
2241 }
2242
2243 /*
2244 * Close a cache and release the kmem_cache structure
2245 * (must be used for caches created using kmem_cache_create)
2246 */
2247 void kmem_cache_destroy(struct kmem_cache *s)
2248 {
2249 down_write(&slub_lock);
2250 s->refcount--;
2251 if (!s->refcount) {
2252 list_del(&s->list);
2253 up_write(&slub_lock);
2254 if (kmem_cache_close(s))
2255 WARN_ON(1);
2256 sysfs_slab_remove(s);
2257 kfree(s);
2258 } else
2259 up_write(&slub_lock);
2260 }
2261 EXPORT_SYMBOL(kmem_cache_destroy);
2262
2263 /********************************************************************
2264 * Kmalloc subsystem
2265 *******************************************************************/
2266
2267 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2268 EXPORT_SYMBOL(kmalloc_caches);
2269
2270 #ifdef CONFIG_ZONE_DMA
2271 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2272 #endif
2273
2274 static int __init setup_slub_min_order(char *str)
2275 {
2276 get_option (&str, &slub_min_order);
2277
2278 return 1;
2279 }
2280
2281 __setup("slub_min_order=", setup_slub_min_order);
2282
2283 static int __init setup_slub_max_order(char *str)
2284 {
2285 get_option (&str, &slub_max_order);
2286
2287 return 1;
2288 }
2289
2290 __setup("slub_max_order=", setup_slub_max_order);
2291
2292 static int __init setup_slub_min_objects(char *str)
2293 {
2294 get_option (&str, &slub_min_objects);
2295
2296 return 1;
2297 }
2298
2299 __setup("slub_min_objects=", setup_slub_min_objects);
2300
2301 static int __init setup_slub_nomerge(char *str)
2302 {
2303 slub_nomerge = 1;
2304 return 1;
2305 }
2306
2307 __setup("slub_nomerge", setup_slub_nomerge);
2308
2309 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2310 const char *name, int size, gfp_t gfp_flags)
2311 {
2312 unsigned int flags = 0;
2313
2314 if (gfp_flags & SLUB_DMA)
2315 flags = SLAB_CACHE_DMA;
2316
2317 down_write(&slub_lock);
2318 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2319 flags, NULL))
2320 goto panic;
2321
2322 list_add(&s->list, &slab_caches);
2323 up_write(&slub_lock);
2324 if (sysfs_slab_add(s))
2325 goto panic;
2326 return s;
2327
2328 panic:
2329 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2330 }
2331
2332 #ifdef CONFIG_ZONE_DMA
2333
2334 static void sysfs_add_func(struct work_struct *w)
2335 {
2336 struct kmem_cache *s;
2337
2338 down_write(&slub_lock);
2339 list_for_each_entry(s, &slab_caches, list) {
2340 if (s->flags & __SYSFS_ADD_DEFERRED) {
2341 s->flags &= ~__SYSFS_ADD_DEFERRED;
2342 sysfs_slab_add(s);
2343 }
2344 }
2345 up_write(&slub_lock);
2346 }
2347
2348 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2349
2350 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2351 {
2352 struct kmem_cache *s;
2353 char *text;
2354 size_t realsize;
2355
2356 s = kmalloc_caches_dma[index];
2357 if (s)
2358 return s;
2359
2360 /* Dynamically create dma cache */
2361 if (flags & __GFP_WAIT)
2362 down_write(&slub_lock);
2363 else {
2364 if (!down_write_trylock(&slub_lock))
2365 goto out;
2366 }
2367
2368 if (kmalloc_caches_dma[index])
2369 goto unlock_out;
2370
2371 realsize = kmalloc_caches[index].objsize;
2372 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2373 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2374
2375 if (!s || !text || !kmem_cache_open(s, flags, text,
2376 realsize, ARCH_KMALLOC_MINALIGN,
2377 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2378 kfree(s);
2379 kfree(text);
2380 goto unlock_out;
2381 }
2382
2383 list_add(&s->list, &slab_caches);
2384 kmalloc_caches_dma[index] = s;
2385
2386 schedule_work(&sysfs_add_work);
2387
2388 unlock_out:
2389 up_write(&slub_lock);
2390 out:
2391 return kmalloc_caches_dma[index];
2392 }
2393 #endif
2394
2395 /*
2396 * Conversion table for small slabs sizes / 8 to the index in the
2397 * kmalloc array. This is necessary for slabs < 192 since we have non power
2398 * of two cache sizes there. The size of larger slabs can be determined using
2399 * fls.
2400 */
2401 static s8 size_index[24] = {
2402 3, /* 8 */
2403 4, /* 16 */
2404 5, /* 24 */
2405 5, /* 32 */
2406 6, /* 40 */
2407 6, /* 48 */
2408 6, /* 56 */
2409 6, /* 64 */
2410 1, /* 72 */
2411 1, /* 80 */
2412 1, /* 88 */
2413 1, /* 96 */
2414 7, /* 104 */
2415 7, /* 112 */
2416 7, /* 120 */
2417 7, /* 128 */
2418 2, /* 136 */
2419 2, /* 144 */
2420 2, /* 152 */
2421 2, /* 160 */
2422 2, /* 168 */
2423 2, /* 176 */
2424 2, /* 184 */
2425 2 /* 192 */
2426 };
2427
2428 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2429 {
2430 int index;
2431
2432 if (size <= 192) {
2433 if (!size)
2434 return ZERO_SIZE_PTR;
2435
2436 index = size_index[(size - 1) / 8];
2437 } else
2438 index = fls(size - 1);
2439
2440 #ifdef CONFIG_ZONE_DMA
2441 if (unlikely((flags & SLUB_DMA)))
2442 return dma_kmalloc_cache(index, flags);
2443
2444 #endif
2445 return &kmalloc_caches[index];
2446 }
2447
2448 void *__kmalloc(size_t size, gfp_t flags)
2449 {
2450 struct kmem_cache *s;
2451
2452 if (unlikely(size > PAGE_SIZE / 2))
2453 return (void *)__get_free_pages(flags | __GFP_COMP,
2454 get_order(size));
2455
2456 s = get_slab(size, flags);
2457
2458 if (unlikely(ZERO_OR_NULL_PTR(s)))
2459 return s;
2460
2461 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2462 }
2463 EXPORT_SYMBOL(__kmalloc);
2464
2465 #ifdef CONFIG_NUMA
2466 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2467 {
2468 struct kmem_cache *s;
2469
2470 if (unlikely(size > PAGE_SIZE / 2))
2471 return (void *)__get_free_pages(flags | __GFP_COMP,
2472 get_order(size));
2473
2474 s = get_slab(size, flags);
2475
2476 if (unlikely(ZERO_OR_NULL_PTR(s)))
2477 return s;
2478
2479 return slab_alloc(s, flags, node, __builtin_return_address(0));
2480 }
2481 EXPORT_SYMBOL(__kmalloc_node);
2482 #endif
2483
2484 size_t ksize(const void *object)
2485 {
2486 struct page *page;
2487 struct kmem_cache *s;
2488
2489 BUG_ON(!object);
2490 if (unlikely(object == ZERO_SIZE_PTR))
2491 return 0;
2492
2493 page = get_object_page(object);
2494 BUG_ON(!page);
2495 s = page->slab;
2496 BUG_ON(!s);
2497
2498 /*
2499 * Debugging requires use of the padding between object
2500 * and whatever may come after it.
2501 */
2502 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2503 return s->objsize;
2504
2505 /*
2506 * If we have the need to store the freelist pointer
2507 * back there or track user information then we can
2508 * only use the space before that information.
2509 */
2510 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2511 return s->inuse;
2512
2513 /*
2514 * Else we can use all the padding etc for the allocation
2515 */
2516 return s->size;
2517 }
2518 EXPORT_SYMBOL(ksize);
2519
2520 void kfree(const void *x)
2521 {
2522 struct page *page;
2523
2524 if (unlikely(ZERO_OR_NULL_PTR(x)))
2525 return;
2526
2527 page = virt_to_head_page(x);
2528 if (unlikely(!PageSlab(page))) {
2529 put_page(page);
2530 return;
2531 }
2532 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2533 }
2534 EXPORT_SYMBOL(kfree);
2535
2536 /*
2537 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2538 * the remaining slabs by the number of items in use. The slabs with the
2539 * most items in use come first. New allocations will then fill those up
2540 * and thus they can be removed from the partial lists.
2541 *
2542 * The slabs with the least items are placed last. This results in them
2543 * being allocated from last increasing the chance that the last objects
2544 * are freed in them.
2545 */
2546 int kmem_cache_shrink(struct kmem_cache *s)
2547 {
2548 int node;
2549 int i;
2550 struct kmem_cache_node *n;
2551 struct page *page;
2552 struct page *t;
2553 struct list_head *slabs_by_inuse =
2554 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2555 unsigned long flags;
2556
2557 if (!slabs_by_inuse)
2558 return -ENOMEM;
2559
2560 flush_all(s);
2561 for_each_node_state(node, N_NORMAL_MEMORY) {
2562 n = get_node(s, node);
2563
2564 if (!n->nr_partial)
2565 continue;
2566
2567 for (i = 0; i < s->objects; i++)
2568 INIT_LIST_HEAD(slabs_by_inuse + i);
2569
2570 spin_lock_irqsave(&n->list_lock, flags);
2571
2572 /*
2573 * Build lists indexed by the items in use in each slab.
2574 *
2575 * Note that concurrent frees may occur while we hold the
2576 * list_lock. page->inuse here is the upper limit.
2577 */
2578 list_for_each_entry_safe(page, t, &n->partial, lru) {
2579 if (!page->inuse && slab_trylock(page)) {
2580 /*
2581 * Must hold slab lock here because slab_free
2582 * may have freed the last object and be
2583 * waiting to release the slab.
2584 */
2585 list_del(&page->lru);
2586 n->nr_partial--;
2587 slab_unlock(page);
2588 discard_slab(s, page);
2589 } else {
2590 list_move(&page->lru,
2591 slabs_by_inuse + page->inuse);
2592 }
2593 }
2594
2595 /*
2596 * Rebuild the partial list with the slabs filled up most
2597 * first and the least used slabs at the end.
2598 */
2599 for (i = s->objects - 1; i >= 0; i--)
2600 list_splice(slabs_by_inuse + i, n->partial.prev);
2601
2602 spin_unlock_irqrestore(&n->list_lock, flags);
2603 }
2604
2605 kfree(slabs_by_inuse);
2606 return 0;
2607 }
2608 EXPORT_SYMBOL(kmem_cache_shrink);
2609
2610 /********************************************************************
2611 * Basic setup of slabs
2612 *******************************************************************/
2613
2614 void __init kmem_cache_init(void)
2615 {
2616 int i;
2617 int caches = 0;
2618
2619 #ifdef CONFIG_NUMA
2620 /*
2621 * Must first have the slab cache available for the allocations of the
2622 * struct kmem_cache_node's. There is special bootstrap code in
2623 * kmem_cache_open for slab_state == DOWN.
2624 */
2625 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2626 sizeof(struct kmem_cache_node), GFP_KERNEL);
2627 kmalloc_caches[0].refcount = -1;
2628 caches++;
2629 #endif
2630
2631 /* Able to allocate the per node structures */
2632 slab_state = PARTIAL;
2633
2634 /* Caches that are not of the two-to-the-power-of size */
2635 if (KMALLOC_MIN_SIZE <= 64) {
2636 create_kmalloc_cache(&kmalloc_caches[1],
2637 "kmalloc-96", 96, GFP_KERNEL);
2638 caches++;
2639 }
2640 if (KMALLOC_MIN_SIZE <= 128) {
2641 create_kmalloc_cache(&kmalloc_caches[2],
2642 "kmalloc-192", 192, GFP_KERNEL);
2643 caches++;
2644 }
2645
2646 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2647 create_kmalloc_cache(&kmalloc_caches[i],
2648 "kmalloc", 1 << i, GFP_KERNEL);
2649 caches++;
2650 }
2651
2652
2653 /*
2654 * Patch up the size_index table if we have strange large alignment
2655 * requirements for the kmalloc array. This is only the case for
2656 * mips it seems. The standard arches will not generate any code here.
2657 *
2658 * Largest permitted alignment is 256 bytes due to the way we
2659 * handle the index determination for the smaller caches.
2660 *
2661 * Make sure that nothing crazy happens if someone starts tinkering
2662 * around with ARCH_KMALLOC_MINALIGN
2663 */
2664 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2665 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2666
2667 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2668 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2669
2670 slab_state = UP;
2671
2672 /* Provide the correct kmalloc names now that the caches are up */
2673 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2674 kmalloc_caches[i]. name =
2675 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2676
2677 #ifdef CONFIG_SMP
2678 register_cpu_notifier(&slab_notifier);
2679 #endif
2680
2681 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2682 nr_cpu_ids * sizeof(struct kmem_cache_cpu);
2683
2684 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2685 " CPUs=%d, Nodes=%d\n",
2686 caches, cache_line_size(),
2687 slub_min_order, slub_max_order, slub_min_objects,
2688 nr_cpu_ids, nr_node_ids);
2689 }
2690
2691 /*
2692 * Find a mergeable slab cache
2693 */
2694 static int slab_unmergeable(struct kmem_cache *s)
2695 {
2696 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2697 return 1;
2698
2699 if (s->ctor)
2700 return 1;
2701
2702 /*
2703 * We may have set a slab to be unmergeable during bootstrap.
2704 */
2705 if (s->refcount < 0)
2706 return 1;
2707
2708 return 0;
2709 }
2710
2711 static struct kmem_cache *find_mergeable(size_t size,
2712 size_t align, unsigned long flags, const char *name,
2713 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2714 {
2715 struct kmem_cache *s;
2716
2717 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2718 return NULL;
2719
2720 if (ctor)
2721 return NULL;
2722
2723 size = ALIGN(size, sizeof(void *));
2724 align = calculate_alignment(flags, align, size);
2725 size = ALIGN(size, align);
2726 flags = kmem_cache_flags(size, flags, name, NULL);
2727
2728 list_for_each_entry(s, &slab_caches, list) {
2729 if (slab_unmergeable(s))
2730 continue;
2731
2732 if (size > s->size)
2733 continue;
2734
2735 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2736 continue;
2737 /*
2738 * Check if alignment is compatible.
2739 * Courtesy of Adrian Drzewiecki
2740 */
2741 if ((s->size & ~(align -1)) != s->size)
2742 continue;
2743
2744 if (s->size - size >= sizeof(void *))
2745 continue;
2746
2747 return s;
2748 }
2749 return NULL;
2750 }
2751
2752 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2753 size_t align, unsigned long flags,
2754 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2755 {
2756 struct kmem_cache *s;
2757
2758 down_write(&slub_lock);
2759 s = find_mergeable(size, align, flags, name, ctor);
2760 if (s) {
2761 s->refcount++;
2762 /*
2763 * Adjust the object sizes so that we clear
2764 * the complete object on kzalloc.
2765 */
2766 s->objsize = max(s->objsize, (int)size);
2767 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2768 up_write(&slub_lock);
2769 if (sysfs_slab_alias(s, name))
2770 goto err;
2771 return s;
2772 }
2773 s = kmalloc(kmem_size, GFP_KERNEL);
2774 if (s) {
2775 if (kmem_cache_open(s, GFP_KERNEL, name,
2776 size, align, flags, ctor)) {
2777 list_add(&s->list, &slab_caches);
2778 up_write(&slub_lock);
2779 if (sysfs_slab_add(s))
2780 goto err;
2781 return s;
2782 }
2783 kfree(s);
2784 }
2785 up_write(&slub_lock);
2786
2787 err:
2788 if (flags & SLAB_PANIC)
2789 panic("Cannot create slabcache %s\n", name);
2790 else
2791 s = NULL;
2792 return s;
2793 }
2794 EXPORT_SYMBOL(kmem_cache_create);
2795
2796 #ifdef CONFIG_SMP
2797 /*
2798 * Use the cpu notifier to insure that the cpu slabs are flushed when
2799 * necessary.
2800 */
2801 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2802 unsigned long action, void *hcpu)
2803 {
2804 long cpu = (long)hcpu;
2805 struct kmem_cache *s;
2806 unsigned long flags;
2807
2808 switch (action) {
2809 case CPU_UP_CANCELED:
2810 case CPU_UP_CANCELED_FROZEN:
2811 case CPU_DEAD:
2812 case CPU_DEAD_FROZEN:
2813 down_read(&slub_lock);
2814 list_for_each_entry(s, &slab_caches, list) {
2815 local_irq_save(flags);
2816 __flush_cpu_slab(s, cpu);
2817 local_irq_restore(flags);
2818 }
2819 up_read(&slub_lock);
2820 break;
2821 default:
2822 break;
2823 }
2824 return NOTIFY_OK;
2825 }
2826
2827 static struct notifier_block __cpuinitdata slab_notifier =
2828 { &slab_cpuup_callback, NULL, 0 };
2829
2830 #endif
2831
2832 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2833 {
2834 struct kmem_cache *s;
2835
2836 if (unlikely(size > PAGE_SIZE / 2))
2837 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2838 get_order(size));
2839 s = get_slab(size, gfpflags);
2840
2841 if (unlikely(ZERO_OR_NULL_PTR(s)))
2842 return s;
2843
2844 return slab_alloc(s, gfpflags, -1, caller);
2845 }
2846
2847 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2848 int node, void *caller)
2849 {
2850 struct kmem_cache *s;
2851
2852 if (unlikely(size > PAGE_SIZE / 2))
2853 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2854 get_order(size));
2855 s = get_slab(size, gfpflags);
2856
2857 if (unlikely(ZERO_OR_NULL_PTR(s)))
2858 return s;
2859
2860 return slab_alloc(s, gfpflags, node, caller);
2861 }
2862
2863 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2864 static int validate_slab(struct kmem_cache *s, struct page *page,
2865 unsigned long *map)
2866 {
2867 void *p;
2868 void *addr = page_address(page);
2869
2870 if (!check_slab(s, page) ||
2871 !on_freelist(s, page, NULL))
2872 return 0;
2873
2874 /* Now we know that a valid freelist exists */
2875 bitmap_zero(map, s->objects);
2876
2877 for_each_free_object(p, s, page->freelist) {
2878 set_bit(slab_index(p, s, addr), map);
2879 if (!check_object(s, page, p, 0))
2880 return 0;
2881 }
2882
2883 for_each_object(p, s, addr)
2884 if (!test_bit(slab_index(p, s, addr), map))
2885 if (!check_object(s, page, p, 1))
2886 return 0;
2887 return 1;
2888 }
2889
2890 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2891 unsigned long *map)
2892 {
2893 if (slab_trylock(page)) {
2894 validate_slab(s, page, map);
2895 slab_unlock(page);
2896 } else
2897 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2898 s->name, page);
2899
2900 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2901 if (!SlabDebug(page))
2902 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2903 "on slab 0x%p\n", s->name, page);
2904 } else {
2905 if (SlabDebug(page))
2906 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2907 "slab 0x%p\n", s->name, page);
2908 }
2909 }
2910
2911 static int validate_slab_node(struct kmem_cache *s,
2912 struct kmem_cache_node *n, unsigned long *map)
2913 {
2914 unsigned long count = 0;
2915 struct page *page;
2916 unsigned long flags;
2917
2918 spin_lock_irqsave(&n->list_lock, flags);
2919
2920 list_for_each_entry(page, &n->partial, lru) {
2921 validate_slab_slab(s, page, map);
2922 count++;
2923 }
2924 if (count != n->nr_partial)
2925 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2926 "counter=%ld\n", s->name, count, n->nr_partial);
2927
2928 if (!(s->flags & SLAB_STORE_USER))
2929 goto out;
2930
2931 list_for_each_entry(page, &n->full, lru) {
2932 validate_slab_slab(s, page, map);
2933 count++;
2934 }
2935 if (count != atomic_long_read(&n->nr_slabs))
2936 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2937 "counter=%ld\n", s->name, count,
2938 atomic_long_read(&n->nr_slabs));
2939
2940 out:
2941 spin_unlock_irqrestore(&n->list_lock, flags);
2942 return count;
2943 }
2944
2945 static long validate_slab_cache(struct kmem_cache *s)
2946 {
2947 int node;
2948 unsigned long count = 0;
2949 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2950 sizeof(unsigned long), GFP_KERNEL);
2951
2952 if (!map)
2953 return -ENOMEM;
2954
2955 flush_all(s);
2956 for_each_node_state(node, N_NORMAL_MEMORY) {
2957 struct kmem_cache_node *n = get_node(s, node);
2958
2959 count += validate_slab_node(s, n, map);
2960 }
2961 kfree(map);
2962 return count;
2963 }
2964
2965 #ifdef SLUB_RESILIENCY_TEST
2966 static void resiliency_test(void)
2967 {
2968 u8 *p;
2969
2970 printk(KERN_ERR "SLUB resiliency testing\n");
2971 printk(KERN_ERR "-----------------------\n");
2972 printk(KERN_ERR "A. Corruption after allocation\n");
2973
2974 p = kzalloc(16, GFP_KERNEL);
2975 p[16] = 0x12;
2976 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2977 " 0x12->0x%p\n\n", p + 16);
2978
2979 validate_slab_cache(kmalloc_caches + 4);
2980
2981 /* Hmmm... The next two are dangerous */
2982 p = kzalloc(32, GFP_KERNEL);
2983 p[32 + sizeof(void *)] = 0x34;
2984 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2985 " 0x34 -> -0x%p\n", p);
2986 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2987
2988 validate_slab_cache(kmalloc_caches + 5);
2989 p = kzalloc(64, GFP_KERNEL);
2990 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2991 *p = 0x56;
2992 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2993 p);
2994 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2995 validate_slab_cache(kmalloc_caches + 6);
2996
2997 printk(KERN_ERR "\nB. Corruption after free\n");
2998 p = kzalloc(128, GFP_KERNEL);
2999 kfree(p);
3000 *p = 0x78;
3001 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3002 validate_slab_cache(kmalloc_caches + 7);
3003
3004 p = kzalloc(256, GFP_KERNEL);
3005 kfree(p);
3006 p[50] = 0x9a;
3007 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3008 validate_slab_cache(kmalloc_caches + 8);
3009
3010 p = kzalloc(512, GFP_KERNEL);
3011 kfree(p);
3012 p[512] = 0xab;
3013 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3014 validate_slab_cache(kmalloc_caches + 9);
3015 }
3016 #else
3017 static void resiliency_test(void) {};
3018 #endif
3019
3020 /*
3021 * Generate lists of code addresses where slabcache objects are allocated
3022 * and freed.
3023 */
3024
3025 struct location {
3026 unsigned long count;
3027 void *addr;
3028 long long sum_time;
3029 long min_time;
3030 long max_time;
3031 long min_pid;
3032 long max_pid;
3033 cpumask_t cpus;
3034 nodemask_t nodes;
3035 };
3036
3037 struct loc_track {
3038 unsigned long max;
3039 unsigned long count;
3040 struct location *loc;
3041 };
3042
3043 static void free_loc_track(struct loc_track *t)
3044 {
3045 if (t->max)
3046 free_pages((unsigned long)t->loc,
3047 get_order(sizeof(struct location) * t->max));
3048 }
3049
3050 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3051 {
3052 struct location *l;
3053 int order;
3054
3055 order = get_order(sizeof(struct location) * max);
3056
3057 l = (void *)__get_free_pages(flags, order);
3058 if (!l)
3059 return 0;
3060
3061 if (t->count) {
3062 memcpy(l, t->loc, sizeof(struct location) * t->count);
3063 free_loc_track(t);
3064 }
3065 t->max = max;
3066 t->loc = l;
3067 return 1;
3068 }
3069
3070 static int add_location(struct loc_track *t, struct kmem_cache *s,
3071 const struct track *track)
3072 {
3073 long start, end, pos;
3074 struct location *l;
3075 void *caddr;
3076 unsigned long age = jiffies - track->when;
3077
3078 start = -1;
3079 end = t->count;
3080
3081 for ( ; ; ) {
3082 pos = start + (end - start + 1) / 2;
3083
3084 /*
3085 * There is nothing at "end". If we end up there
3086 * we need to add something to before end.
3087 */
3088 if (pos == end)
3089 break;
3090
3091 caddr = t->loc[pos].addr;
3092 if (track->addr == caddr) {
3093
3094 l = &t->loc[pos];
3095 l->count++;
3096 if (track->when) {
3097 l->sum_time += age;
3098 if (age < l->min_time)
3099 l->min_time = age;
3100 if (age > l->max_time)
3101 l->max_time = age;
3102
3103 if (track->pid < l->min_pid)
3104 l->min_pid = track->pid;
3105 if (track->pid > l->max_pid)
3106 l->max_pid = track->pid;
3107
3108 cpu_set(track->cpu, l->cpus);
3109 }
3110 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3111 return 1;
3112 }
3113
3114 if (track->addr < caddr)
3115 end = pos;
3116 else
3117 start = pos;
3118 }
3119
3120 /*
3121 * Not found. Insert new tracking element.
3122 */
3123 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3124 return 0;
3125
3126 l = t->loc + pos;
3127 if (pos < t->count)
3128 memmove(l + 1, l,
3129 (t->count - pos) * sizeof(struct location));
3130 t->count++;
3131 l->count = 1;
3132 l->addr = track->addr;
3133 l->sum_time = age;
3134 l->min_time = age;
3135 l->max_time = age;
3136 l->min_pid = track->pid;
3137 l->max_pid = track->pid;
3138 cpus_clear(l->cpus);
3139 cpu_set(track->cpu, l->cpus);
3140 nodes_clear(l->nodes);
3141 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3142 return 1;
3143 }
3144
3145 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3146 struct page *page, enum track_item alloc)
3147 {
3148 void *addr = page_address(page);
3149 DECLARE_BITMAP(map, s->objects);
3150 void *p;
3151
3152 bitmap_zero(map, s->objects);
3153 for_each_free_object(p, s, page->freelist)
3154 set_bit(slab_index(p, s, addr), map);
3155
3156 for_each_object(p, s, addr)
3157 if (!test_bit(slab_index(p, s, addr), map))
3158 add_location(t, s, get_track(s, p, alloc));
3159 }
3160
3161 static int list_locations(struct kmem_cache *s, char *buf,
3162 enum track_item alloc)
3163 {
3164 int n = 0;
3165 unsigned long i;
3166 struct loc_track t = { 0, 0, NULL };
3167 int node;
3168
3169 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3170 GFP_KERNEL))
3171 return sprintf(buf, "Out of memory\n");
3172
3173 /* Push back cpu slabs */
3174 flush_all(s);
3175
3176 for_each_node_state(node, N_NORMAL_MEMORY) {
3177 struct kmem_cache_node *n = get_node(s, node);
3178 unsigned long flags;
3179 struct page *page;
3180
3181 if (!atomic_long_read(&n->nr_slabs))
3182 continue;
3183
3184 spin_lock_irqsave(&n->list_lock, flags);
3185 list_for_each_entry(page, &n->partial, lru)
3186 process_slab(&t, s, page, alloc);
3187 list_for_each_entry(page, &n->full, lru)
3188 process_slab(&t, s, page, alloc);
3189 spin_unlock_irqrestore(&n->list_lock, flags);
3190 }
3191
3192 for (i = 0; i < t.count; i++) {
3193 struct location *l = &t.loc[i];
3194
3195 if (n > PAGE_SIZE - 100)
3196 break;
3197 n += sprintf(buf + n, "%7ld ", l->count);
3198
3199 if (l->addr)
3200 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3201 else
3202 n += sprintf(buf + n, "<not-available>");
3203
3204 if (l->sum_time != l->min_time) {
3205 unsigned long remainder;
3206
3207 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3208 l->min_time,
3209 div_long_long_rem(l->sum_time, l->count, &remainder),
3210 l->max_time);
3211 } else
3212 n += sprintf(buf + n, " age=%ld",
3213 l->min_time);
3214
3215 if (l->min_pid != l->max_pid)
3216 n += sprintf(buf + n, " pid=%ld-%ld",
3217 l->min_pid, l->max_pid);
3218 else
3219 n += sprintf(buf + n, " pid=%ld",
3220 l->min_pid);
3221
3222 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3223 n < PAGE_SIZE - 60) {
3224 n += sprintf(buf + n, " cpus=");
3225 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3226 l->cpus);
3227 }
3228
3229 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3230 n < PAGE_SIZE - 60) {
3231 n += sprintf(buf + n, " nodes=");
3232 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3233 l->nodes);
3234 }
3235
3236 n += sprintf(buf + n, "\n");
3237 }
3238
3239 free_loc_track(&t);
3240 if (!t.count)
3241 n += sprintf(buf, "No data\n");
3242 return n;
3243 }
3244
3245 static unsigned long count_partial(struct kmem_cache_node *n)
3246 {
3247 unsigned long flags;
3248 unsigned long x = 0;
3249 struct page *page;
3250
3251 spin_lock_irqsave(&n->list_lock, flags);
3252 list_for_each_entry(page, &n->partial, lru)
3253 x += page->inuse;
3254 spin_unlock_irqrestore(&n->list_lock, flags);
3255 return x;
3256 }
3257
3258 enum slab_stat_type {
3259 SL_FULL,
3260 SL_PARTIAL,
3261 SL_CPU,
3262 SL_OBJECTS
3263 };
3264
3265 #define SO_FULL (1 << SL_FULL)
3266 #define SO_PARTIAL (1 << SL_PARTIAL)
3267 #define SO_CPU (1 << SL_CPU)
3268 #define SO_OBJECTS (1 << SL_OBJECTS)
3269
3270 static unsigned long slab_objects(struct kmem_cache *s,
3271 char *buf, unsigned long flags)
3272 {
3273 unsigned long total = 0;
3274 int cpu;
3275 int node;
3276 int x;
3277 unsigned long *nodes;
3278 unsigned long *per_cpu;
3279
3280 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3281 per_cpu = nodes + nr_node_ids;
3282
3283 for_each_possible_cpu(cpu) {
3284 struct page *page;
3285 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3286
3287 if (!c)
3288 continue;
3289
3290 page = c->page;
3291 if (page) {
3292 if (flags & SO_CPU) {
3293 int x = 0;
3294
3295 if (flags & SO_OBJECTS)
3296 x = page->inuse;
3297 else
3298 x = 1;
3299 total += x;
3300 nodes[c->node] += x;
3301 }
3302 per_cpu[c->node]++;
3303 }
3304 }
3305
3306 for_each_node_state(node, N_NORMAL_MEMORY) {
3307 struct kmem_cache_node *n = get_node(s, node);
3308
3309 if (flags & SO_PARTIAL) {
3310 if (flags & SO_OBJECTS)
3311 x = count_partial(n);
3312 else
3313 x = n->nr_partial;
3314 total += x;
3315 nodes[node] += x;
3316 }
3317
3318 if (flags & SO_FULL) {
3319 int full_slabs = atomic_long_read(&n->nr_slabs)
3320 - per_cpu[node]
3321 - n->nr_partial;
3322
3323 if (flags & SO_OBJECTS)
3324 x = full_slabs * s->objects;
3325 else
3326 x = full_slabs;
3327 total += x;
3328 nodes[node] += x;
3329 }
3330 }
3331
3332 x = sprintf(buf, "%lu", total);
3333 #ifdef CONFIG_NUMA
3334 for_each_node_state(node, N_NORMAL_MEMORY)
3335 if (nodes[node])
3336 x += sprintf(buf + x, " N%d=%lu",
3337 node, nodes[node]);
3338 #endif
3339 kfree(nodes);
3340 return x + sprintf(buf + x, "\n");
3341 }
3342
3343 static int any_slab_objects(struct kmem_cache *s)
3344 {
3345 int node;
3346 int cpu;
3347
3348 for_each_possible_cpu(cpu) {
3349 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3350
3351 if (c && c->page)
3352 return 1;
3353 }
3354
3355 for_each_online_node(node) {
3356 struct kmem_cache_node *n = get_node(s, node);
3357
3358 if (!n)
3359 continue;
3360
3361 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3362 return 1;
3363 }
3364 return 0;
3365 }
3366
3367 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3368 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3369
3370 struct slab_attribute {
3371 struct attribute attr;
3372 ssize_t (*show)(struct kmem_cache *s, char *buf);
3373 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3374 };
3375
3376 #define SLAB_ATTR_RO(_name) \
3377 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3378
3379 #define SLAB_ATTR(_name) \
3380 static struct slab_attribute _name##_attr = \
3381 __ATTR(_name, 0644, _name##_show, _name##_store)
3382
3383 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3384 {
3385 return sprintf(buf, "%d\n", s->size);
3386 }
3387 SLAB_ATTR_RO(slab_size);
3388
3389 static ssize_t align_show(struct kmem_cache *s, char *buf)
3390 {
3391 return sprintf(buf, "%d\n", s->align);
3392 }
3393 SLAB_ATTR_RO(align);
3394
3395 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3396 {
3397 return sprintf(buf, "%d\n", s->objsize);
3398 }
3399 SLAB_ATTR_RO(object_size);
3400
3401 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3402 {
3403 return sprintf(buf, "%d\n", s->objects);
3404 }
3405 SLAB_ATTR_RO(objs_per_slab);
3406
3407 static ssize_t order_show(struct kmem_cache *s, char *buf)
3408 {
3409 return sprintf(buf, "%d\n", s->order);
3410 }
3411 SLAB_ATTR_RO(order);
3412
3413 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3414 {
3415 if (s->ctor) {
3416 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3417
3418 return n + sprintf(buf + n, "\n");
3419 }
3420 return 0;
3421 }
3422 SLAB_ATTR_RO(ctor);
3423
3424 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3425 {
3426 return sprintf(buf, "%d\n", s->refcount - 1);
3427 }
3428 SLAB_ATTR_RO(aliases);
3429
3430 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3431 {
3432 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3433 }
3434 SLAB_ATTR_RO(slabs);
3435
3436 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3437 {
3438 return slab_objects(s, buf, SO_PARTIAL);
3439 }
3440 SLAB_ATTR_RO(partial);
3441
3442 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3443 {
3444 return slab_objects(s, buf, SO_CPU);
3445 }
3446 SLAB_ATTR_RO(cpu_slabs);
3447
3448 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3449 {
3450 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3451 }
3452 SLAB_ATTR_RO(objects);
3453
3454 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3455 {
3456 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3457 }
3458
3459 static ssize_t sanity_checks_store(struct kmem_cache *s,
3460 const char *buf, size_t length)
3461 {
3462 s->flags &= ~SLAB_DEBUG_FREE;
3463 if (buf[0] == '1')
3464 s->flags |= SLAB_DEBUG_FREE;
3465 return length;
3466 }
3467 SLAB_ATTR(sanity_checks);
3468
3469 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3470 {
3471 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3472 }
3473
3474 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3475 size_t length)
3476 {
3477 s->flags &= ~SLAB_TRACE;
3478 if (buf[0] == '1')
3479 s->flags |= SLAB_TRACE;
3480 return length;
3481 }
3482 SLAB_ATTR(trace);
3483
3484 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3485 {
3486 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3487 }
3488
3489 static ssize_t reclaim_account_store(struct kmem_cache *s,
3490 const char *buf, size_t length)
3491 {
3492 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3493 if (buf[0] == '1')
3494 s->flags |= SLAB_RECLAIM_ACCOUNT;
3495 return length;
3496 }
3497 SLAB_ATTR(reclaim_account);
3498
3499 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3500 {
3501 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3502 }
3503 SLAB_ATTR_RO(hwcache_align);
3504
3505 #ifdef CONFIG_ZONE_DMA
3506 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3507 {
3508 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3509 }
3510 SLAB_ATTR_RO(cache_dma);
3511 #endif
3512
3513 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3514 {
3515 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3516 }
3517 SLAB_ATTR_RO(destroy_by_rcu);
3518
3519 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3520 {
3521 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3522 }
3523
3524 static ssize_t red_zone_store(struct kmem_cache *s,
3525 const char *buf, size_t length)
3526 {
3527 if (any_slab_objects(s))
3528 return -EBUSY;
3529
3530 s->flags &= ~SLAB_RED_ZONE;
3531 if (buf[0] == '1')
3532 s->flags |= SLAB_RED_ZONE;
3533 calculate_sizes(s);
3534 return length;
3535 }
3536 SLAB_ATTR(red_zone);
3537
3538 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3539 {
3540 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3541 }
3542
3543 static ssize_t poison_store(struct kmem_cache *s,
3544 const char *buf, size_t length)
3545 {
3546 if (any_slab_objects(s))
3547 return -EBUSY;
3548
3549 s->flags &= ~SLAB_POISON;
3550 if (buf[0] == '1')
3551 s->flags |= SLAB_POISON;
3552 calculate_sizes(s);
3553 return length;
3554 }
3555 SLAB_ATTR(poison);
3556
3557 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3558 {
3559 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3560 }
3561
3562 static ssize_t store_user_store(struct kmem_cache *s,
3563 const char *buf, size_t length)
3564 {
3565 if (any_slab_objects(s))
3566 return -EBUSY;
3567
3568 s->flags &= ~SLAB_STORE_USER;
3569 if (buf[0] == '1')
3570 s->flags |= SLAB_STORE_USER;
3571 calculate_sizes(s);
3572 return length;
3573 }
3574 SLAB_ATTR(store_user);
3575
3576 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3577 {
3578 return 0;
3579 }
3580
3581 static ssize_t validate_store(struct kmem_cache *s,
3582 const char *buf, size_t length)
3583 {
3584 int ret = -EINVAL;
3585
3586 if (buf[0] == '1') {
3587 ret = validate_slab_cache(s);
3588 if (ret >= 0)
3589 ret = length;
3590 }
3591 return ret;
3592 }
3593 SLAB_ATTR(validate);
3594
3595 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3596 {
3597 return 0;
3598 }
3599
3600 static ssize_t shrink_store(struct kmem_cache *s,
3601 const char *buf, size_t length)
3602 {
3603 if (buf[0] == '1') {
3604 int rc = kmem_cache_shrink(s);
3605
3606 if (rc)
3607 return rc;
3608 } else
3609 return -EINVAL;
3610 return length;
3611 }
3612 SLAB_ATTR(shrink);
3613
3614 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3615 {
3616 if (!(s->flags & SLAB_STORE_USER))
3617 return -ENOSYS;
3618 return list_locations(s, buf, TRACK_ALLOC);
3619 }
3620 SLAB_ATTR_RO(alloc_calls);
3621
3622 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3623 {
3624 if (!(s->flags & SLAB_STORE_USER))
3625 return -ENOSYS;
3626 return list_locations(s, buf, TRACK_FREE);
3627 }
3628 SLAB_ATTR_RO(free_calls);
3629
3630 #ifdef CONFIG_NUMA
3631 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3632 {
3633 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3634 }
3635
3636 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3637 const char *buf, size_t length)
3638 {
3639 int n = simple_strtoul(buf, NULL, 10);
3640
3641 if (n < 100)
3642 s->defrag_ratio = n * 10;
3643 return length;
3644 }
3645 SLAB_ATTR(defrag_ratio);
3646 #endif
3647
3648 static struct attribute * slab_attrs[] = {
3649 &slab_size_attr.attr,
3650 &object_size_attr.attr,
3651 &objs_per_slab_attr.attr,
3652 &order_attr.attr,
3653 &objects_attr.attr,
3654 &slabs_attr.attr,
3655 &partial_attr.attr,
3656 &cpu_slabs_attr.attr,
3657 &ctor_attr.attr,
3658 &aliases_attr.attr,
3659 &align_attr.attr,
3660 &sanity_checks_attr.attr,
3661 &trace_attr.attr,
3662 &hwcache_align_attr.attr,
3663 &reclaim_account_attr.attr,
3664 &destroy_by_rcu_attr.attr,
3665 &red_zone_attr.attr,
3666 &poison_attr.attr,
3667 &store_user_attr.attr,
3668 &validate_attr.attr,
3669 &shrink_attr.attr,
3670 &alloc_calls_attr.attr,
3671 &free_calls_attr.attr,
3672 #ifdef CONFIG_ZONE_DMA
3673 &cache_dma_attr.attr,
3674 #endif
3675 #ifdef CONFIG_NUMA
3676 &defrag_ratio_attr.attr,
3677 #endif
3678 NULL
3679 };
3680
3681 static struct attribute_group slab_attr_group = {
3682 .attrs = slab_attrs,
3683 };
3684
3685 static ssize_t slab_attr_show(struct kobject *kobj,
3686 struct attribute *attr,
3687 char *buf)
3688 {
3689 struct slab_attribute *attribute;
3690 struct kmem_cache *s;
3691 int err;
3692
3693 attribute = to_slab_attr(attr);
3694 s = to_slab(kobj);
3695
3696 if (!attribute->show)
3697 return -EIO;
3698
3699 err = attribute->show(s, buf);
3700
3701 return err;
3702 }
3703
3704 static ssize_t slab_attr_store(struct kobject *kobj,
3705 struct attribute *attr,
3706 const char *buf, size_t len)
3707 {
3708 struct slab_attribute *attribute;
3709 struct kmem_cache *s;
3710 int err;
3711
3712 attribute = to_slab_attr(attr);
3713 s = to_slab(kobj);
3714
3715 if (!attribute->store)
3716 return -EIO;
3717
3718 err = attribute->store(s, buf, len);
3719
3720 return err;
3721 }
3722
3723 static struct sysfs_ops slab_sysfs_ops = {
3724 .show = slab_attr_show,
3725 .store = slab_attr_store,
3726 };
3727
3728 static struct kobj_type slab_ktype = {
3729 .sysfs_ops = &slab_sysfs_ops,
3730 };
3731
3732 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3733 {
3734 struct kobj_type *ktype = get_ktype(kobj);
3735
3736 if (ktype == &slab_ktype)
3737 return 1;
3738 return 0;
3739 }
3740
3741 static struct kset_uevent_ops slab_uevent_ops = {
3742 .filter = uevent_filter,
3743 };
3744
3745 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3746
3747 #define ID_STR_LENGTH 64
3748
3749 /* Create a unique string id for a slab cache:
3750 * format
3751 * :[flags-]size:[memory address of kmemcache]
3752 */
3753 static char *create_unique_id(struct kmem_cache *s)
3754 {
3755 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3756 char *p = name;
3757
3758 BUG_ON(!name);
3759
3760 *p++ = ':';
3761 /*
3762 * First flags affecting slabcache operations. We will only
3763 * get here for aliasable slabs so we do not need to support
3764 * too many flags. The flags here must cover all flags that
3765 * are matched during merging to guarantee that the id is
3766 * unique.
3767 */
3768 if (s->flags & SLAB_CACHE_DMA)
3769 *p++ = 'd';
3770 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3771 *p++ = 'a';
3772 if (s->flags & SLAB_DEBUG_FREE)
3773 *p++ = 'F';
3774 if (p != name + 1)
3775 *p++ = '-';
3776 p += sprintf(p, "%07d", s->size);
3777 BUG_ON(p > name + ID_STR_LENGTH - 1);
3778 return name;
3779 }
3780
3781 static int sysfs_slab_add(struct kmem_cache *s)
3782 {
3783 int err;
3784 const char *name;
3785 int unmergeable;
3786
3787 if (slab_state < SYSFS)
3788 /* Defer until later */
3789 return 0;
3790
3791 unmergeable = slab_unmergeable(s);
3792 if (unmergeable) {
3793 /*
3794 * Slabcache can never be merged so we can use the name proper.
3795 * This is typically the case for debug situations. In that
3796 * case we can catch duplicate names easily.
3797 */
3798 sysfs_remove_link(&slab_subsys.kobj, s->name);
3799 name = s->name;
3800 } else {
3801 /*
3802 * Create a unique name for the slab as a target
3803 * for the symlinks.
3804 */
3805 name = create_unique_id(s);
3806 }
3807
3808 kobj_set_kset_s(s, slab_subsys);
3809 kobject_set_name(&s->kobj, name);
3810 kobject_init(&s->kobj);
3811 err = kobject_add(&s->kobj);
3812 if (err)
3813 return err;
3814
3815 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3816 if (err)
3817 return err;
3818 kobject_uevent(&s->kobj, KOBJ_ADD);
3819 if (!unmergeable) {
3820 /* Setup first alias */
3821 sysfs_slab_alias(s, s->name);
3822 kfree(name);
3823 }
3824 return 0;
3825 }
3826
3827 static void sysfs_slab_remove(struct kmem_cache *s)
3828 {
3829 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3830 kobject_del(&s->kobj);
3831 }
3832
3833 /*
3834 * Need to buffer aliases during bootup until sysfs becomes
3835 * available lest we loose that information.
3836 */
3837 struct saved_alias {
3838 struct kmem_cache *s;
3839 const char *name;
3840 struct saved_alias *next;
3841 };
3842
3843 static struct saved_alias *alias_list;
3844
3845 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3846 {
3847 struct saved_alias *al;
3848
3849 if (slab_state == SYSFS) {
3850 /*
3851 * If we have a leftover link then remove it.
3852 */
3853 sysfs_remove_link(&slab_subsys.kobj, name);
3854 return sysfs_create_link(&slab_subsys.kobj,
3855 &s->kobj, name);
3856 }
3857
3858 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3859 if (!al)
3860 return -ENOMEM;
3861
3862 al->s = s;
3863 al->name = name;
3864 al->next = alias_list;
3865 alias_list = al;
3866 return 0;
3867 }
3868
3869 static int __init slab_sysfs_init(void)
3870 {
3871 struct kmem_cache *s;
3872 int err;
3873
3874 err = subsystem_register(&slab_subsys);
3875 if (err) {
3876 printk(KERN_ERR "Cannot register slab subsystem.\n");
3877 return -ENOSYS;
3878 }
3879
3880 slab_state = SYSFS;
3881
3882 list_for_each_entry(s, &slab_caches, list) {
3883 err = sysfs_slab_add(s);
3884 if (err)
3885 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3886 " to sysfs\n", s->name);
3887 }
3888
3889 while (alias_list) {
3890 struct saved_alias *al = alias_list;
3891
3892 alias_list = alias_list->next;
3893 err = sysfs_slab_alias(al->s, al->name);
3894 if (err)
3895 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3896 " %s to sysfs\n", s->name);
3897 kfree(al);
3898 }
3899
3900 resiliency_test();
3901 return 0;
3902 }
3903
3904 __initcall(slab_sysfs_init);
3905 #endif