sl[au]b: always get the cache from its page in kmem_cache_free()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35
36 #include <trace/events/kmem.h>
37
38 #include "internal.h"
39
40 /*
41 * Lock order:
42 * 1. slab_mutex (Global Mutex)
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
45 *
46 * slab_mutex
47 *
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
114 */
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210
211 #endif
212
213 static inline void stat(const struct kmem_cache *s, enum stat_item si)
214 {
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
217 #endif
218 }
219
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
225 {
226 return s->node[node];
227 }
228
229 /* Verify that a pointer has an address that is valid within a slab page */
230 static inline int check_valid_pointer(struct kmem_cache *s,
231 struct page *page, const void *object)
232 {
233 void *base;
234
235 if (!object)
236 return 1;
237
238 base = page_address(page);
239 if (object < base || object >= base + page->objects * s->size ||
240 (object - base) % s->size) {
241 return 0;
242 }
243
244 return 1;
245 }
246
247 static inline void *get_freepointer(struct kmem_cache *s, void *object)
248 {
249 return *(void **)(object + s->offset);
250 }
251
252 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
253 {
254 prefetch(object + s->offset);
255 }
256
257 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
258 {
259 void *p;
260
261 #ifdef CONFIG_DEBUG_PAGEALLOC
262 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
263 #else
264 p = get_freepointer(s, object);
265 #endif
266 return p;
267 }
268
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 *(void **)(object + s->offset) = fp;
272 }
273
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 __p += (__s)->size)
278
279 /* Determine object index from a given position */
280 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281 {
282 return (p - addr) / s->size;
283 }
284
285 static inline size_t slab_ksize(const struct kmem_cache *s)
286 {
287 #ifdef CONFIG_SLUB_DEBUG
288 /*
289 * Debugging requires use of the padding between object
290 * and whatever may come after it.
291 */
292 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
293 return s->object_size;
294
295 #endif
296 /*
297 * If we have the need to store the freelist pointer
298 * back there or track user information then we can
299 * only use the space before that information.
300 */
301 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
302 return s->inuse;
303 /*
304 * Else we can use all the padding etc for the allocation
305 */
306 return s->size;
307 }
308
309 static inline int order_objects(int order, unsigned long size, int reserved)
310 {
311 return ((PAGE_SIZE << order) - reserved) / size;
312 }
313
314 static inline struct kmem_cache_order_objects oo_make(int order,
315 unsigned long size, int reserved)
316 {
317 struct kmem_cache_order_objects x = {
318 (order << OO_SHIFT) + order_objects(order, size, reserved)
319 };
320
321 return x;
322 }
323
324 static inline int oo_order(struct kmem_cache_order_objects x)
325 {
326 return x.x >> OO_SHIFT;
327 }
328
329 static inline int oo_objects(struct kmem_cache_order_objects x)
330 {
331 return x.x & OO_MASK;
332 }
333
334 /*
335 * Per slab locking using the pagelock
336 */
337 static __always_inline void slab_lock(struct page *page)
338 {
339 bit_spin_lock(PG_locked, &page->flags);
340 }
341
342 static __always_inline void slab_unlock(struct page *page)
343 {
344 __bit_spin_unlock(PG_locked, &page->flags);
345 }
346
347 /* Interrupts must be disabled (for the fallback code to work right) */
348 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
349 void *freelist_old, unsigned long counters_old,
350 void *freelist_new, unsigned long counters_new,
351 const char *n)
352 {
353 VM_BUG_ON(!irqs_disabled());
354 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
355 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
356 if (s->flags & __CMPXCHG_DOUBLE) {
357 if (cmpxchg_double(&page->freelist, &page->counters,
358 freelist_old, counters_old,
359 freelist_new, counters_new))
360 return 1;
361 } else
362 #endif
363 {
364 slab_lock(page);
365 if (page->freelist == freelist_old && page->counters == counters_old) {
366 page->freelist = freelist_new;
367 page->counters = counters_new;
368 slab_unlock(page);
369 return 1;
370 }
371 slab_unlock(page);
372 }
373
374 cpu_relax();
375 stat(s, CMPXCHG_DOUBLE_FAIL);
376
377 #ifdef SLUB_DEBUG_CMPXCHG
378 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
379 #endif
380
381 return 0;
382 }
383
384 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
385 void *freelist_old, unsigned long counters_old,
386 void *freelist_new, unsigned long counters_new,
387 const char *n)
388 {
389 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
390 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
391 if (s->flags & __CMPXCHG_DOUBLE) {
392 if (cmpxchg_double(&page->freelist, &page->counters,
393 freelist_old, counters_old,
394 freelist_new, counters_new))
395 return 1;
396 } else
397 #endif
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 slab_lock(page);
403 if (page->freelist == freelist_old && page->counters == counters_old) {
404 page->freelist = freelist_new;
405 page->counters = counters_new;
406 slab_unlock(page);
407 local_irq_restore(flags);
408 return 1;
409 }
410 slab_unlock(page);
411 local_irq_restore(flags);
412 }
413
414 cpu_relax();
415 stat(s, CMPXCHG_DOUBLE_FAIL);
416
417 #ifdef SLUB_DEBUG_CMPXCHG
418 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
419 #endif
420
421 return 0;
422 }
423
424 #ifdef CONFIG_SLUB_DEBUG
425 /*
426 * Determine a map of object in use on a page.
427 *
428 * Node listlock must be held to guarantee that the page does
429 * not vanish from under us.
430 */
431 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
432 {
433 void *p;
434 void *addr = page_address(page);
435
436 for (p = page->freelist; p; p = get_freepointer(s, p))
437 set_bit(slab_index(p, s, addr), map);
438 }
439
440 /*
441 * Debug settings:
442 */
443 #ifdef CONFIG_SLUB_DEBUG_ON
444 static int slub_debug = DEBUG_DEFAULT_FLAGS;
445 #else
446 static int slub_debug;
447 #endif
448
449 static char *slub_debug_slabs;
450 static int disable_higher_order_debug;
451
452 /*
453 * Object debugging
454 */
455 static void print_section(char *text, u8 *addr, unsigned int length)
456 {
457 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
458 length, 1);
459 }
460
461 static struct track *get_track(struct kmem_cache *s, void *object,
462 enum track_item alloc)
463 {
464 struct track *p;
465
466 if (s->offset)
467 p = object + s->offset + sizeof(void *);
468 else
469 p = object + s->inuse;
470
471 return p + alloc;
472 }
473
474 static void set_track(struct kmem_cache *s, void *object,
475 enum track_item alloc, unsigned long addr)
476 {
477 struct track *p = get_track(s, object, alloc);
478
479 if (addr) {
480 #ifdef CONFIG_STACKTRACE
481 struct stack_trace trace;
482 int i;
483
484 trace.nr_entries = 0;
485 trace.max_entries = TRACK_ADDRS_COUNT;
486 trace.entries = p->addrs;
487 trace.skip = 3;
488 save_stack_trace(&trace);
489
490 /* See rant in lockdep.c */
491 if (trace.nr_entries != 0 &&
492 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
493 trace.nr_entries--;
494
495 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
496 p->addrs[i] = 0;
497 #endif
498 p->addr = addr;
499 p->cpu = smp_processor_id();
500 p->pid = current->pid;
501 p->when = jiffies;
502 } else
503 memset(p, 0, sizeof(struct track));
504 }
505
506 static void init_tracking(struct kmem_cache *s, void *object)
507 {
508 if (!(s->flags & SLAB_STORE_USER))
509 return;
510
511 set_track(s, object, TRACK_FREE, 0UL);
512 set_track(s, object, TRACK_ALLOC, 0UL);
513 }
514
515 static void print_track(const char *s, struct track *t)
516 {
517 if (!t->addr)
518 return;
519
520 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
521 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
522 #ifdef CONFIG_STACKTRACE
523 {
524 int i;
525 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
526 if (t->addrs[i])
527 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
528 else
529 break;
530 }
531 #endif
532 }
533
534 static void print_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
540 print_track("Freed", get_track(s, object, TRACK_FREE));
541 }
542
543 static void print_page_info(struct page *page)
544 {
545 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
546 page, page->objects, page->inuse, page->freelist, page->flags);
547
548 }
549
550 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
551 {
552 va_list args;
553 char buf[100];
554
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 printk(KERN_ERR "========================================"
559 "=====================================\n");
560 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
561 printk(KERN_ERR "----------------------------------------"
562 "-------------------------------------\n\n");
563
564 add_taint(TAINT_BAD_PAGE);
565 }
566
567 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568 {
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576 }
577
578 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
579 {
580 unsigned int off; /* Offset of last byte */
581 u8 *addr = page_address(page);
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
591 print_section("Bytes b4 ", p - 16, 16);
592
593 print_section("Object ", p, min_t(unsigned long, s->object_size,
594 PAGE_SIZE));
595 if (s->flags & SLAB_RED_ZONE)
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
598
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
604 if (s->flags & SLAB_STORE_USER)
605 off += 2 * sizeof(struct track);
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
609 print_section("Padding ", p + off, s->size - off);
610
611 dump_stack();
612 }
613
614 static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616 {
617 slab_bug(s, "%s", reason);
618 print_trailer(s, page, object);
619 }
620
621 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
622 {
623 va_list args;
624 char buf[100];
625
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
628 va_end(args);
629 slab_bug(s, "%s", buf);
630 print_page_info(page);
631 dump_stack();
632 }
633
634 static void init_object(struct kmem_cache *s, void *object, u8 val)
635 {
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
644 memset(p + s->object_size, val, s->inuse - s->object_size);
645 }
646
647 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649 {
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652 }
653
654 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
656 u8 *start, unsigned int value, unsigned int bytes)
657 {
658 u8 *fault;
659 u8 *end;
660
661 fault = memchr_inv(start, value, bytes);
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
676 }
677
678 /*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
685 *
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
689 * object + s->object_size
690 * Padding to reach word boundary. This is also used for Redzoning.
691 * Padding is extended by another word if Redzoning is enabled and
692 * object_size == inuse.
693 *
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
698 * Meta data starts here.
699 *
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
702 * C. Padding to reach required alignment boundary or at mininum
703 * one word if debugging is on to be able to detect writes
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
707 *
708 * object + s->size
709 * Nothing is used beyond s->size.
710 *
711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
712 * ignored. And therefore no slab options that rely on these boundaries
713 * may be used with merged slabcaches.
714 */
715
716 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717 {
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
733 }
734
735 /* Check the pad bytes at the end of a slab page */
736 static int slab_pad_check(struct kmem_cache *s, struct page *page)
737 {
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
747 start = page_address(page);
748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
749 end = start + length;
750 remainder = length % s->size;
751 if (!remainder)
752 return 1;
753
754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
761 print_section("Padding ", end - remainder, remainder);
762
763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
764 return 0;
765 }
766
767 static int check_object(struct kmem_cache *s, struct page *page,
768 void *object, u8 val)
769 {
770 u8 *p = object;
771 u8 *endobject = object + s->object_size;
772
773 if (s->flags & SLAB_RED_ZONE) {
774 if (!check_bytes_and_report(s, page, object, "Redzone",
775 endobject, val, s->inuse - s->object_size))
776 return 0;
777 } else {
778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
779 check_bytes_and_report(s, page, p, "Alignment padding",
780 endobject, POISON_INUSE, s->inuse - s->object_size);
781 }
782 }
783
784 if (s->flags & SLAB_POISON) {
785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
786 (!check_bytes_and_report(s, page, p, "Poison", p,
787 POISON_FREE, s->object_size - 1) ||
788 !check_bytes_and_report(s, page, p, "Poison",
789 p + s->object_size - 1, POISON_END, 1)))
790 return 0;
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
797 if (!s->offset && val == SLUB_RED_ACTIVE)
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
808 * No choice but to zap it and thus lose the remainder
809 * of the free objects in this slab. May cause
810 * another error because the object count is now wrong.
811 */
812 set_freepointer(s, p, NULL);
813 return 0;
814 }
815 return 1;
816 }
817
818 static int check_slab(struct kmem_cache *s, struct page *page)
819 {
820 int maxobj;
821
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
825 slab_err(s, page, "Not a valid slab page");
826 return 0;
827 }
828
829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
836 slab_err(s, page, "inuse %u > max %u",
837 s->name, page->inuse, page->objects);
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843 }
844
845 /*
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
848 */
849 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850 {
851 int nr = 0;
852 void *fp;
853 void *object = NULL;
854 unsigned long max_objects;
855
856 fp = page->freelist;
857 while (fp && nr <= page->objects) {
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
864 set_freepointer(s, object, NULL);
865 break;
866 } else {
867 slab_err(s, page, "Freepointer corrupt");
868 page->freelist = NULL;
869 page->inuse = page->objects;
870 slab_fix(s, "Freelist cleared");
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
890 if (page->inuse != page->objects - nr) {
891 slab_err(s, page, "Wrong object count. Counter is %d but "
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
894 slab_fix(s, "Object count adjusted.");
895 }
896 return search == NULL;
897 }
898
899 static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
901 {
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
910 print_section("Object ", (void *)object, s->object_size);
911
912 dump_stack();
913 }
914 }
915
916 /*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921 {
922 flags &= gfp_allowed_mask;
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
926 return should_failslab(s->object_size, flags, s->flags);
927 }
928
929 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930 {
931 flags &= gfp_allowed_mask;
932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
934 }
935
936 static inline void slab_free_hook(struct kmem_cache *s, void *x)
937 {
938 kmemleak_free_recursive(x, s->flags);
939
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
952 local_irq_restore(flags);
953 }
954 #endif
955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
956 debug_check_no_obj_freed(x, s->object_size);
957 }
958
959 /*
960 * Tracking of fully allocated slabs for debugging purposes.
961 *
962 * list_lock must be held.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 list_add(&page->lru, &n->full);
971 }
972
973 /*
974 * list_lock must be held.
975 */
976 static void remove_full(struct kmem_cache *s, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 list_del(&page->lru);
982 }
983
984 /* Tracking of the number of slabs for debugging purposes */
985 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986 {
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990 }
991
992 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993 {
994 return atomic_long_read(&n->nr_slabs);
995 }
996
997 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
998 {
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
1007 if (n) {
1008 atomic_long_inc(&n->nr_slabs);
1009 atomic_long_add(objects, &n->total_objects);
1010 }
1011 }
1012 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1013 {
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
1017 atomic_long_sub(objects, &n->total_objects);
1018 }
1019
1020 /* Object debug checks for alloc/free paths */
1021 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023 {
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
1027 init_object(s, object, SLUB_RED_INACTIVE);
1028 init_tracking(s, object);
1029 }
1030
1031 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 printk(KERN_ERR
1097 "SLUB <none>: no slab for object 0x%p.\n",
1098 object);
1099 dump_stack();
1100 } else
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
1103 goto fail;
1104 }
1105
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
1109 init_object(s, object, SLUB_RED_INACTIVE);
1110 out:
1111 slab_unlock(page);
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
1117
1118 fail:
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
1121 slab_fix(s, "Object at 0x%p not freed", object);
1122 return NULL;
1123 }
1124
1125 static int __init setup_slub_debug(char *str)
1126 {
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
1160 for (; *str && *str != ','; str++) {
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
1182 "unknown. skipped\n", *str);
1183 }
1184 }
1185
1186 check_slabs:
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
1189 out:
1190 return 1;
1191 }
1192
1193 __setup("slub_debug", setup_slub_debug);
1194
1195 static unsigned long kmem_cache_flags(unsigned long object_size,
1196 unsigned long flags, const char *name,
1197 void (*ctor)(void *))
1198 {
1199 /*
1200 * Enable debugging if selected on the kernel commandline.
1201 */
1202 if (slub_debug && (!slub_debug_slabs ||
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
1205
1206 return flags;
1207 }
1208 #else
1209 static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
1211
1212 static inline int alloc_debug_processing(struct kmem_cache *s,
1213 struct page *page, void *object, unsigned long addr) { return 0; }
1214
1215 static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
1218
1219 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221 static inline int check_object(struct kmem_cache *s, struct page *page,
1222 void *object, u8 val) { return 1; }
1223 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
1225 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1226 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1227 unsigned long flags, const char *name,
1228 void (*ctor)(void *))
1229 {
1230 return flags;
1231 }
1232 #define slub_debug 0
1233
1234 #define disable_higher_order_debug 0
1235
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244
1245 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
1253 #endif /* CONFIG_SLUB_DEBUG */
1254
1255 /*
1256 * Slab allocation and freeing
1257 */
1258 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260 {
1261 int order = oo_order(oo);
1262
1263 flags |= __GFP_NOTRACK;
1264
1265 if (node == NUMA_NO_NODE)
1266 return alloc_pages(flags, order);
1267 else
1268 return alloc_pages_exact_node(node, flags, order);
1269 }
1270
1271 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272 {
1273 struct page *page;
1274 struct kmem_cache_order_objects oo = s->oo;
1275 gfp_t alloc_gfp;
1276
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
1282 flags |= s->allocflags;
1283
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
1298
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
1301 }
1302
1303 if (kmemcheck_enabled && page
1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
1317 }
1318
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
1324 page->objects = oo_objects(oo);
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1328 1 << oo_order(oo));
1329
1330 return page;
1331 }
1332
1333 static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335 {
1336 setup_object_debug(s, page, object);
1337 if (unlikely(s->ctor))
1338 s->ctor(object);
1339 }
1340
1341 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342 {
1343 struct page *page;
1344 void *start;
1345 void *last;
1346 void *p;
1347
1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1349
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1352 if (!page)
1353 goto out;
1354
1355 inc_slabs_node(s, page_to_nid(page), page->objects);
1356 page->slab_cache = s;
1357 __SetPageSlab(page);
1358 if (page->pfmemalloc)
1359 SetPageSlabPfmemalloc(page);
1360
1361 start = page_address(page);
1362
1363 if (unlikely(s->flags & SLAB_POISON))
1364 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1365
1366 last = start;
1367 for_each_object(p, s, start, page->objects) {
1368 setup_object(s, page, last);
1369 set_freepointer(s, last, p);
1370 last = p;
1371 }
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, NULL);
1374
1375 page->freelist = start;
1376 page->inuse = page->objects;
1377 page->frozen = 1;
1378 out:
1379 return page;
1380 }
1381
1382 static void __free_slab(struct kmem_cache *s, struct page *page)
1383 {
1384 int order = compound_order(page);
1385 int pages = 1 << order;
1386
1387 if (kmem_cache_debug(s)) {
1388 void *p;
1389
1390 slab_pad_check(s, page);
1391 for_each_object(p, s, page_address(page),
1392 page->objects)
1393 check_object(s, page, p, SLUB_RED_INACTIVE);
1394 }
1395
1396 kmemcheck_free_shadow(page, compound_order(page));
1397
1398 mod_zone_page_state(page_zone(page),
1399 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1400 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1401 -pages);
1402
1403 __ClearPageSlabPfmemalloc(page);
1404 __ClearPageSlab(page);
1405 reset_page_mapcount(page);
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += pages;
1408 __free_pages(page, order);
1409 }
1410
1411 #define need_reserve_slab_rcu \
1412 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1413
1414 static void rcu_free_slab(struct rcu_head *h)
1415 {
1416 struct page *page;
1417
1418 if (need_reserve_slab_rcu)
1419 page = virt_to_head_page(h);
1420 else
1421 page = container_of((struct list_head *)h, struct page, lru);
1422
1423 __free_slab(page->slab_cache, page);
1424 }
1425
1426 static void free_slab(struct kmem_cache *s, struct page *page)
1427 {
1428 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1429 struct rcu_head *head;
1430
1431 if (need_reserve_slab_rcu) {
1432 int order = compound_order(page);
1433 int offset = (PAGE_SIZE << order) - s->reserved;
1434
1435 VM_BUG_ON(s->reserved != sizeof(*head));
1436 head = page_address(page) + offset;
1437 } else {
1438 /*
1439 * RCU free overloads the RCU head over the LRU
1440 */
1441 head = (void *)&page->lru;
1442 }
1443
1444 call_rcu(head, rcu_free_slab);
1445 } else
1446 __free_slab(s, page);
1447 }
1448
1449 static void discard_slab(struct kmem_cache *s, struct page *page)
1450 {
1451 dec_slabs_node(s, page_to_nid(page), page->objects);
1452 free_slab(s, page);
1453 }
1454
1455 /*
1456 * Management of partially allocated slabs.
1457 *
1458 * list_lock must be held.
1459 */
1460 static inline void add_partial(struct kmem_cache_node *n,
1461 struct page *page, int tail)
1462 {
1463 n->nr_partial++;
1464 if (tail == DEACTIVATE_TO_TAIL)
1465 list_add_tail(&page->lru, &n->partial);
1466 else
1467 list_add(&page->lru, &n->partial);
1468 }
1469
1470 /*
1471 * list_lock must be held.
1472 */
1473 static inline void remove_partial(struct kmem_cache_node *n,
1474 struct page *page)
1475 {
1476 list_del(&page->lru);
1477 n->nr_partial--;
1478 }
1479
1480 /*
1481 * Remove slab from the partial list, freeze it and
1482 * return the pointer to the freelist.
1483 *
1484 * Returns a list of objects or NULL if it fails.
1485 *
1486 * Must hold list_lock since we modify the partial list.
1487 */
1488 static inline void *acquire_slab(struct kmem_cache *s,
1489 struct kmem_cache_node *n, struct page *page,
1490 int mode)
1491 {
1492 void *freelist;
1493 unsigned long counters;
1494 struct page new;
1495
1496 /*
1497 * Zap the freelist and set the frozen bit.
1498 * The old freelist is the list of objects for the
1499 * per cpu allocation list.
1500 */
1501 freelist = page->freelist;
1502 counters = page->counters;
1503 new.counters = counters;
1504 if (mode) {
1505 new.inuse = page->objects;
1506 new.freelist = NULL;
1507 } else {
1508 new.freelist = freelist;
1509 }
1510
1511 VM_BUG_ON(new.frozen);
1512 new.frozen = 1;
1513
1514 if (!__cmpxchg_double_slab(s, page,
1515 freelist, counters,
1516 new.freelist, new.counters,
1517 "acquire_slab"))
1518 return NULL;
1519
1520 remove_partial(n, page);
1521 WARN_ON(!freelist);
1522 return freelist;
1523 }
1524
1525 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1526 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1532 struct kmem_cache_cpu *c, gfp_t flags)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t;
1549 int available;
1550
1551 if (!pfmemalloc_match(page, flags))
1552 continue;
1553
1554 t = acquire_slab(s, n, page, object == NULL);
1555 if (!t)
1556 break;
1557
1558 if (!object) {
1559 c->page = page;
1560 stat(s, ALLOC_FROM_PARTIAL);
1561 object = t;
1562 available = page->objects - page->inuse;
1563 } else {
1564 available = put_cpu_partial(s, page, 0);
1565 stat(s, CPU_PARTIAL_NODE);
1566 }
1567 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1568 break;
1569
1570 }
1571 spin_unlock(&n->list_lock);
1572 return object;
1573 }
1574
1575 /*
1576 * Get a page from somewhere. Search in increasing NUMA distances.
1577 */
1578 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1579 struct kmem_cache_cpu *c)
1580 {
1581 #ifdef CONFIG_NUMA
1582 struct zonelist *zonelist;
1583 struct zoneref *z;
1584 struct zone *zone;
1585 enum zone_type high_zoneidx = gfp_zone(flags);
1586 void *object;
1587 unsigned int cpuset_mems_cookie;
1588
1589 /*
1590 * The defrag ratio allows a configuration of the tradeoffs between
1591 * inter node defragmentation and node local allocations. A lower
1592 * defrag_ratio increases the tendency to do local allocations
1593 * instead of attempting to obtain partial slabs from other nodes.
1594 *
1595 * If the defrag_ratio is set to 0 then kmalloc() always
1596 * returns node local objects. If the ratio is higher then kmalloc()
1597 * may return off node objects because partial slabs are obtained
1598 * from other nodes and filled up.
1599 *
1600 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1601 * defrag_ratio = 1000) then every (well almost) allocation will
1602 * first attempt to defrag slab caches on other nodes. This means
1603 * scanning over all nodes to look for partial slabs which may be
1604 * expensive if we do it every time we are trying to find a slab
1605 * with available objects.
1606 */
1607 if (!s->remote_node_defrag_ratio ||
1608 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1609 return NULL;
1610
1611 do {
1612 cpuset_mems_cookie = get_mems_allowed();
1613 zonelist = node_zonelist(slab_node(), flags);
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1615 struct kmem_cache_node *n;
1616
1617 n = get_node(s, zone_to_nid(zone));
1618
1619 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1620 n->nr_partial > s->min_partial) {
1621 object = get_partial_node(s, n, c, flags);
1622 if (object) {
1623 /*
1624 * Return the object even if
1625 * put_mems_allowed indicated that
1626 * the cpuset mems_allowed was
1627 * updated in parallel. It's a
1628 * harmless race between the alloc
1629 * and the cpuset update.
1630 */
1631 put_mems_allowed(cpuset_mems_cookie);
1632 return object;
1633 }
1634 }
1635 }
1636 } while (!put_mems_allowed(cpuset_mems_cookie));
1637 #endif
1638 return NULL;
1639 }
1640
1641 /*
1642 * Get a partial page, lock it and return it.
1643 */
1644 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1645 struct kmem_cache_cpu *c)
1646 {
1647 void *object;
1648 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1649
1650 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1651 if (object || node != NUMA_NO_NODE)
1652 return object;
1653
1654 return get_any_partial(s, flags, c);
1655 }
1656
1657 #ifdef CONFIG_PREEMPT
1658 /*
1659 * Calculate the next globally unique transaction for disambiguiation
1660 * during cmpxchg. The transactions start with the cpu number and are then
1661 * incremented by CONFIG_NR_CPUS.
1662 */
1663 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1664 #else
1665 /*
1666 * No preemption supported therefore also no need to check for
1667 * different cpus.
1668 */
1669 #define TID_STEP 1
1670 #endif
1671
1672 static inline unsigned long next_tid(unsigned long tid)
1673 {
1674 return tid + TID_STEP;
1675 }
1676
1677 static inline unsigned int tid_to_cpu(unsigned long tid)
1678 {
1679 return tid % TID_STEP;
1680 }
1681
1682 static inline unsigned long tid_to_event(unsigned long tid)
1683 {
1684 return tid / TID_STEP;
1685 }
1686
1687 static inline unsigned int init_tid(int cpu)
1688 {
1689 return cpu;
1690 }
1691
1692 static inline void note_cmpxchg_failure(const char *n,
1693 const struct kmem_cache *s, unsigned long tid)
1694 {
1695 #ifdef SLUB_DEBUG_CMPXCHG
1696 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1697
1698 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1699
1700 #ifdef CONFIG_PREEMPT
1701 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1702 printk("due to cpu change %d -> %d\n",
1703 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1704 else
1705 #endif
1706 if (tid_to_event(tid) != tid_to_event(actual_tid))
1707 printk("due to cpu running other code. Event %ld->%ld\n",
1708 tid_to_event(tid), tid_to_event(actual_tid));
1709 else
1710 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1711 actual_tid, tid, next_tid(tid));
1712 #endif
1713 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1714 }
1715
1716 static void init_kmem_cache_cpus(struct kmem_cache *s)
1717 {
1718 int cpu;
1719
1720 for_each_possible_cpu(cpu)
1721 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1722 }
1723
1724 /*
1725 * Remove the cpu slab
1726 */
1727 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1728 {
1729 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1730 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1731 int lock = 0;
1732 enum slab_modes l = M_NONE, m = M_NONE;
1733 void *nextfree;
1734 int tail = DEACTIVATE_TO_HEAD;
1735 struct page new;
1736 struct page old;
1737
1738 if (page->freelist) {
1739 stat(s, DEACTIVATE_REMOTE_FREES);
1740 tail = DEACTIVATE_TO_TAIL;
1741 }
1742
1743 /*
1744 * Stage one: Free all available per cpu objects back
1745 * to the page freelist while it is still frozen. Leave the
1746 * last one.
1747 *
1748 * There is no need to take the list->lock because the page
1749 * is still frozen.
1750 */
1751 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1752 void *prior;
1753 unsigned long counters;
1754
1755 do {
1756 prior = page->freelist;
1757 counters = page->counters;
1758 set_freepointer(s, freelist, prior);
1759 new.counters = counters;
1760 new.inuse--;
1761 VM_BUG_ON(!new.frozen);
1762
1763 } while (!__cmpxchg_double_slab(s, page,
1764 prior, counters,
1765 freelist, new.counters,
1766 "drain percpu freelist"));
1767
1768 freelist = nextfree;
1769 }
1770
1771 /*
1772 * Stage two: Ensure that the page is unfrozen while the
1773 * list presence reflects the actual number of objects
1774 * during unfreeze.
1775 *
1776 * We setup the list membership and then perform a cmpxchg
1777 * with the count. If there is a mismatch then the page
1778 * is not unfrozen but the page is on the wrong list.
1779 *
1780 * Then we restart the process which may have to remove
1781 * the page from the list that we just put it on again
1782 * because the number of objects in the slab may have
1783 * changed.
1784 */
1785 redo:
1786
1787 old.freelist = page->freelist;
1788 old.counters = page->counters;
1789 VM_BUG_ON(!old.frozen);
1790
1791 /* Determine target state of the slab */
1792 new.counters = old.counters;
1793 if (freelist) {
1794 new.inuse--;
1795 set_freepointer(s, freelist, old.freelist);
1796 new.freelist = freelist;
1797 } else
1798 new.freelist = old.freelist;
1799
1800 new.frozen = 0;
1801
1802 if (!new.inuse && n->nr_partial > s->min_partial)
1803 m = M_FREE;
1804 else if (new.freelist) {
1805 m = M_PARTIAL;
1806 if (!lock) {
1807 lock = 1;
1808 /*
1809 * Taking the spinlock removes the possiblity
1810 * that acquire_slab() will see a slab page that
1811 * is frozen
1812 */
1813 spin_lock(&n->list_lock);
1814 }
1815 } else {
1816 m = M_FULL;
1817 if (kmem_cache_debug(s) && !lock) {
1818 lock = 1;
1819 /*
1820 * This also ensures that the scanning of full
1821 * slabs from diagnostic functions will not see
1822 * any frozen slabs.
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 }
1827
1828 if (l != m) {
1829
1830 if (l == M_PARTIAL)
1831
1832 remove_partial(n, page);
1833
1834 else if (l == M_FULL)
1835
1836 remove_full(s, page);
1837
1838 if (m == M_PARTIAL) {
1839
1840 add_partial(n, page, tail);
1841 stat(s, tail);
1842
1843 } else if (m == M_FULL) {
1844
1845 stat(s, DEACTIVATE_FULL);
1846 add_full(s, n, page);
1847
1848 }
1849 }
1850
1851 l = m;
1852 if (!__cmpxchg_double_slab(s, page,
1853 old.freelist, old.counters,
1854 new.freelist, new.counters,
1855 "unfreezing slab"))
1856 goto redo;
1857
1858 if (lock)
1859 spin_unlock(&n->list_lock);
1860
1861 if (m == M_FREE) {
1862 stat(s, DEACTIVATE_EMPTY);
1863 discard_slab(s, page);
1864 stat(s, FREE_SLAB);
1865 }
1866 }
1867
1868 /*
1869 * Unfreeze all the cpu partial slabs.
1870 *
1871 * This function must be called with interrupts disabled
1872 * for the cpu using c (or some other guarantee must be there
1873 * to guarantee no concurrent accesses).
1874 */
1875 static void unfreeze_partials(struct kmem_cache *s,
1876 struct kmem_cache_cpu *c)
1877 {
1878 struct kmem_cache_node *n = NULL, *n2 = NULL;
1879 struct page *page, *discard_page = NULL;
1880
1881 while ((page = c->partial)) {
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
1886
1887 n2 = get_node(s, page_to_nid(page));
1888 if (n != n2) {
1889 if (n)
1890 spin_unlock(&n->list_lock);
1891
1892 n = n2;
1893 spin_lock(&n->list_lock);
1894 }
1895
1896 do {
1897
1898 old.freelist = page->freelist;
1899 old.counters = page->counters;
1900 VM_BUG_ON(!old.frozen);
1901
1902 new.counters = old.counters;
1903 new.freelist = old.freelist;
1904
1905 new.frozen = 0;
1906
1907 } while (!__cmpxchg_double_slab(s, page,
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"));
1911
1912 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1913 page->next = discard_page;
1914 discard_page = page;
1915 } else {
1916 add_partial(n, page, DEACTIVATE_TO_TAIL);
1917 stat(s, FREE_ADD_PARTIAL);
1918 }
1919 }
1920
1921 if (n)
1922 spin_unlock(&n->list_lock);
1923
1924 while (discard_page) {
1925 page = discard_page;
1926 discard_page = discard_page->next;
1927
1928 stat(s, DEACTIVATE_EMPTY);
1929 discard_slab(s, page);
1930 stat(s, FREE_SLAB);
1931 }
1932 }
1933
1934 /*
1935 * Put a page that was just frozen (in __slab_free) into a partial page
1936 * slot if available. This is done without interrupts disabled and without
1937 * preemption disabled. The cmpxchg is racy and may put the partial page
1938 * onto a random cpus partial slot.
1939 *
1940 * If we did not find a slot then simply move all the partials to the
1941 * per node partial list.
1942 */
1943 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1944 {
1945 struct page *oldpage;
1946 int pages;
1947 int pobjects;
1948
1949 do {
1950 pages = 0;
1951 pobjects = 0;
1952 oldpage = this_cpu_read(s->cpu_slab->partial);
1953
1954 if (oldpage) {
1955 pobjects = oldpage->pobjects;
1956 pages = oldpage->pages;
1957 if (drain && pobjects > s->cpu_partial) {
1958 unsigned long flags;
1959 /*
1960 * partial array is full. Move the existing
1961 * set to the per node partial list.
1962 */
1963 local_irq_save(flags);
1964 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1965 local_irq_restore(flags);
1966 oldpage = NULL;
1967 pobjects = 0;
1968 pages = 0;
1969 stat(s, CPU_PARTIAL_DRAIN);
1970 }
1971 }
1972
1973 pages++;
1974 pobjects += page->objects - page->inuse;
1975
1976 page->pages = pages;
1977 page->pobjects = pobjects;
1978 page->next = oldpage;
1979
1980 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1981 return pobjects;
1982 }
1983
1984 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1985 {
1986 stat(s, CPUSLAB_FLUSH);
1987 deactivate_slab(s, c->page, c->freelist);
1988
1989 c->tid = next_tid(c->tid);
1990 c->page = NULL;
1991 c->freelist = NULL;
1992 }
1993
1994 /*
1995 * Flush cpu slab.
1996 *
1997 * Called from IPI handler with interrupts disabled.
1998 */
1999 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2000 {
2001 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2002
2003 if (likely(c)) {
2004 if (c->page)
2005 flush_slab(s, c);
2006
2007 unfreeze_partials(s, c);
2008 }
2009 }
2010
2011 static void flush_cpu_slab(void *d)
2012 {
2013 struct kmem_cache *s = d;
2014
2015 __flush_cpu_slab(s, smp_processor_id());
2016 }
2017
2018 static bool has_cpu_slab(int cpu, void *info)
2019 {
2020 struct kmem_cache *s = info;
2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022
2023 return c->page || c->partial;
2024 }
2025
2026 static void flush_all(struct kmem_cache *s)
2027 {
2028 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2029 }
2030
2031 /*
2032 * Check if the objects in a per cpu structure fit numa
2033 * locality expectations.
2034 */
2035 static inline int node_match(struct page *page, int node)
2036 {
2037 #ifdef CONFIG_NUMA
2038 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2039 return 0;
2040 #endif
2041 return 1;
2042 }
2043
2044 static int count_free(struct page *page)
2045 {
2046 return page->objects - page->inuse;
2047 }
2048
2049 static unsigned long count_partial(struct kmem_cache_node *n,
2050 int (*get_count)(struct page *))
2051 {
2052 unsigned long flags;
2053 unsigned long x = 0;
2054 struct page *page;
2055
2056 spin_lock_irqsave(&n->list_lock, flags);
2057 list_for_each_entry(page, &n->partial, lru)
2058 x += get_count(page);
2059 spin_unlock_irqrestore(&n->list_lock, flags);
2060 return x;
2061 }
2062
2063 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2064 {
2065 #ifdef CONFIG_SLUB_DEBUG
2066 return atomic_long_read(&n->total_objects);
2067 #else
2068 return 0;
2069 #endif
2070 }
2071
2072 static noinline void
2073 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2074 {
2075 int node;
2076
2077 printk(KERN_WARNING
2078 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2079 nid, gfpflags);
2080 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2081 "default order: %d, min order: %d\n", s->name, s->object_size,
2082 s->size, oo_order(s->oo), oo_order(s->min));
2083
2084 if (oo_order(s->min) > get_order(s->object_size))
2085 printk(KERN_WARNING " %s debugging increased min order, use "
2086 "slub_debug=O to disable.\n", s->name);
2087
2088 for_each_online_node(node) {
2089 struct kmem_cache_node *n = get_node(s, node);
2090 unsigned long nr_slabs;
2091 unsigned long nr_objs;
2092 unsigned long nr_free;
2093
2094 if (!n)
2095 continue;
2096
2097 nr_free = count_partial(n, count_free);
2098 nr_slabs = node_nr_slabs(n);
2099 nr_objs = node_nr_objs(n);
2100
2101 printk(KERN_WARNING
2102 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2103 node, nr_slabs, nr_objs, nr_free);
2104 }
2105 }
2106
2107 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2108 int node, struct kmem_cache_cpu **pc)
2109 {
2110 void *freelist;
2111 struct kmem_cache_cpu *c = *pc;
2112 struct page *page;
2113
2114 freelist = get_partial(s, flags, node, c);
2115
2116 if (freelist)
2117 return freelist;
2118
2119 page = new_slab(s, flags, node);
2120 if (page) {
2121 c = __this_cpu_ptr(s->cpu_slab);
2122 if (c->page)
2123 flush_slab(s, c);
2124
2125 /*
2126 * No other reference to the page yet so we can
2127 * muck around with it freely without cmpxchg
2128 */
2129 freelist = page->freelist;
2130 page->freelist = NULL;
2131
2132 stat(s, ALLOC_SLAB);
2133 c->page = page;
2134 *pc = c;
2135 } else
2136 freelist = NULL;
2137
2138 return freelist;
2139 }
2140
2141 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2142 {
2143 if (unlikely(PageSlabPfmemalloc(page)))
2144 return gfp_pfmemalloc_allowed(gfpflags);
2145
2146 return true;
2147 }
2148
2149 /*
2150 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2151 * or deactivate the page.
2152 *
2153 * The page is still frozen if the return value is not NULL.
2154 *
2155 * If this function returns NULL then the page has been unfrozen.
2156 *
2157 * This function must be called with interrupt disabled.
2158 */
2159 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2160 {
2161 struct page new;
2162 unsigned long counters;
2163 void *freelist;
2164
2165 do {
2166 freelist = page->freelist;
2167 counters = page->counters;
2168
2169 new.counters = counters;
2170 VM_BUG_ON(!new.frozen);
2171
2172 new.inuse = page->objects;
2173 new.frozen = freelist != NULL;
2174
2175 } while (!__cmpxchg_double_slab(s, page,
2176 freelist, counters,
2177 NULL, new.counters,
2178 "get_freelist"));
2179
2180 return freelist;
2181 }
2182
2183 /*
2184 * Slow path. The lockless freelist is empty or we need to perform
2185 * debugging duties.
2186 *
2187 * Processing is still very fast if new objects have been freed to the
2188 * regular freelist. In that case we simply take over the regular freelist
2189 * as the lockless freelist and zap the regular freelist.
2190 *
2191 * If that is not working then we fall back to the partial lists. We take the
2192 * first element of the freelist as the object to allocate now and move the
2193 * rest of the freelist to the lockless freelist.
2194 *
2195 * And if we were unable to get a new slab from the partial slab lists then
2196 * we need to allocate a new slab. This is the slowest path since it involves
2197 * a call to the page allocator and the setup of a new slab.
2198 */
2199 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2200 unsigned long addr, struct kmem_cache_cpu *c)
2201 {
2202 void *freelist;
2203 struct page *page;
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
2207 #ifdef CONFIG_PREEMPT
2208 /*
2209 * We may have been preempted and rescheduled on a different
2210 * cpu before disabling interrupts. Need to reload cpu area
2211 * pointer.
2212 */
2213 c = this_cpu_ptr(s->cpu_slab);
2214 #endif
2215
2216 page = c->page;
2217 if (!page)
2218 goto new_slab;
2219 redo:
2220
2221 if (unlikely(!node_match(page, node))) {
2222 stat(s, ALLOC_NODE_MISMATCH);
2223 deactivate_slab(s, page, c->freelist);
2224 c->page = NULL;
2225 c->freelist = NULL;
2226 goto new_slab;
2227 }
2228
2229 /*
2230 * By rights, we should be searching for a slab page that was
2231 * PFMEMALLOC but right now, we are losing the pfmemalloc
2232 * information when the page leaves the per-cpu allocator
2233 */
2234 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2235 deactivate_slab(s, page, c->freelist);
2236 c->page = NULL;
2237 c->freelist = NULL;
2238 goto new_slab;
2239 }
2240
2241 /* must check again c->freelist in case of cpu migration or IRQ */
2242 freelist = c->freelist;
2243 if (freelist)
2244 goto load_freelist;
2245
2246 stat(s, ALLOC_SLOWPATH);
2247
2248 freelist = get_freelist(s, page);
2249
2250 if (!freelist) {
2251 c->page = NULL;
2252 stat(s, DEACTIVATE_BYPASS);
2253 goto new_slab;
2254 }
2255
2256 stat(s, ALLOC_REFILL);
2257
2258 load_freelist:
2259 /*
2260 * freelist is pointing to the list of objects to be used.
2261 * page is pointing to the page from which the objects are obtained.
2262 * That page must be frozen for per cpu allocations to work.
2263 */
2264 VM_BUG_ON(!c->page->frozen);
2265 c->freelist = get_freepointer(s, freelist);
2266 c->tid = next_tid(c->tid);
2267 local_irq_restore(flags);
2268 return freelist;
2269
2270 new_slab:
2271
2272 if (c->partial) {
2273 page = c->page = c->partial;
2274 c->partial = page->next;
2275 stat(s, CPU_PARTIAL_ALLOC);
2276 c->freelist = NULL;
2277 goto redo;
2278 }
2279
2280 freelist = new_slab_objects(s, gfpflags, node, &c);
2281
2282 if (unlikely(!freelist)) {
2283 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2284 slab_out_of_memory(s, gfpflags, node);
2285
2286 local_irq_restore(flags);
2287 return NULL;
2288 }
2289
2290 page = c->page;
2291 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2292 goto load_freelist;
2293
2294 /* Only entered in the debug case */
2295 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2296 goto new_slab; /* Slab failed checks. Next slab needed */
2297
2298 deactivate_slab(s, page, get_freepointer(s, freelist));
2299 c->page = NULL;
2300 c->freelist = NULL;
2301 local_irq_restore(flags);
2302 return freelist;
2303 }
2304
2305 /*
2306 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2307 * have the fastpath folded into their functions. So no function call
2308 * overhead for requests that can be satisfied on the fastpath.
2309 *
2310 * The fastpath works by first checking if the lockless freelist can be used.
2311 * If not then __slab_alloc is called for slow processing.
2312 *
2313 * Otherwise we can simply pick the next object from the lockless free list.
2314 */
2315 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2316 gfp_t gfpflags, int node, unsigned long addr)
2317 {
2318 void **object;
2319 struct kmem_cache_cpu *c;
2320 struct page *page;
2321 unsigned long tid;
2322
2323 if (slab_pre_alloc_hook(s, gfpflags))
2324 return NULL;
2325
2326 redo:
2327
2328 /*
2329 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2330 * enabled. We may switch back and forth between cpus while
2331 * reading from one cpu area. That does not matter as long
2332 * as we end up on the original cpu again when doing the cmpxchg.
2333 */
2334 c = __this_cpu_ptr(s->cpu_slab);
2335
2336 /*
2337 * The transaction ids are globally unique per cpu and per operation on
2338 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2339 * occurs on the right processor and that there was no operation on the
2340 * linked list in between.
2341 */
2342 tid = c->tid;
2343 barrier();
2344
2345 object = c->freelist;
2346 page = c->page;
2347 if (unlikely(!object || !node_match(page, node)))
2348 object = __slab_alloc(s, gfpflags, node, addr, c);
2349
2350 else {
2351 void *next_object = get_freepointer_safe(s, object);
2352
2353 /*
2354 * The cmpxchg will only match if there was no additional
2355 * operation and if we are on the right processor.
2356 *
2357 * The cmpxchg does the following atomically (without lock semantics!)
2358 * 1. Relocate first pointer to the current per cpu area.
2359 * 2. Verify that tid and freelist have not been changed
2360 * 3. If they were not changed replace tid and freelist
2361 *
2362 * Since this is without lock semantics the protection is only against
2363 * code executing on this cpu *not* from access by other cpus.
2364 */
2365 if (unlikely(!this_cpu_cmpxchg_double(
2366 s->cpu_slab->freelist, s->cpu_slab->tid,
2367 object, tid,
2368 next_object, next_tid(tid)))) {
2369
2370 note_cmpxchg_failure("slab_alloc", s, tid);
2371 goto redo;
2372 }
2373 prefetch_freepointer(s, next_object);
2374 stat(s, ALLOC_FASTPATH);
2375 }
2376
2377 if (unlikely(gfpflags & __GFP_ZERO) && object)
2378 memset(object, 0, s->object_size);
2379
2380 slab_post_alloc_hook(s, gfpflags, object);
2381
2382 return object;
2383 }
2384
2385 static __always_inline void *slab_alloc(struct kmem_cache *s,
2386 gfp_t gfpflags, unsigned long addr)
2387 {
2388 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2389 }
2390
2391 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2392 {
2393 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2394
2395 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2396
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(kmem_cache_alloc);
2400
2401 #ifdef CONFIG_TRACING
2402 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2403 {
2404 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2405 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2406 return ret;
2407 }
2408 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2409
2410 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2411 {
2412 void *ret = kmalloc_order(size, flags, order);
2413 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2414 return ret;
2415 }
2416 EXPORT_SYMBOL(kmalloc_order_trace);
2417 #endif
2418
2419 #ifdef CONFIG_NUMA
2420 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2421 {
2422 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2423
2424 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2425 s->object_size, s->size, gfpflags, node);
2426
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(kmem_cache_alloc_node);
2430
2431 #ifdef CONFIG_TRACING
2432 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2433 gfp_t gfpflags,
2434 int node, size_t size)
2435 {
2436 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2437
2438 trace_kmalloc_node(_RET_IP_, ret,
2439 size, s->size, gfpflags, node);
2440 return ret;
2441 }
2442 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2443 #endif
2444 #endif
2445
2446 /*
2447 * Slow patch handling. This may still be called frequently since objects
2448 * have a longer lifetime than the cpu slabs in most processing loads.
2449 *
2450 * So we still attempt to reduce cache line usage. Just take the slab
2451 * lock and free the item. If there is no additional partial page
2452 * handling required then we can return immediately.
2453 */
2454 static void __slab_free(struct kmem_cache *s, struct page *page,
2455 void *x, unsigned long addr)
2456 {
2457 void *prior;
2458 void **object = (void *)x;
2459 int was_frozen;
2460 struct page new;
2461 unsigned long counters;
2462 struct kmem_cache_node *n = NULL;
2463 unsigned long uninitialized_var(flags);
2464
2465 stat(s, FREE_SLOWPATH);
2466
2467 if (kmem_cache_debug(s) &&
2468 !(n = free_debug_processing(s, page, x, addr, &flags)))
2469 return;
2470
2471 do {
2472 if (unlikely(n)) {
2473 spin_unlock_irqrestore(&n->list_lock, flags);
2474 n = NULL;
2475 }
2476 prior = page->freelist;
2477 counters = page->counters;
2478 set_freepointer(s, object, prior);
2479 new.counters = counters;
2480 was_frozen = new.frozen;
2481 new.inuse--;
2482 if ((!new.inuse || !prior) && !was_frozen) {
2483
2484 if (!kmem_cache_debug(s) && !prior)
2485
2486 /*
2487 * Slab was on no list before and will be partially empty
2488 * We can defer the list move and instead freeze it.
2489 */
2490 new.frozen = 1;
2491
2492 else { /* Needs to be taken off a list */
2493
2494 n = get_node(s, page_to_nid(page));
2495 /*
2496 * Speculatively acquire the list_lock.
2497 * If the cmpxchg does not succeed then we may
2498 * drop the list_lock without any processing.
2499 *
2500 * Otherwise the list_lock will synchronize with
2501 * other processors updating the list of slabs.
2502 */
2503 spin_lock_irqsave(&n->list_lock, flags);
2504
2505 }
2506 }
2507
2508 } while (!cmpxchg_double_slab(s, page,
2509 prior, counters,
2510 object, new.counters,
2511 "__slab_free"));
2512
2513 if (likely(!n)) {
2514
2515 /*
2516 * If we just froze the page then put it onto the
2517 * per cpu partial list.
2518 */
2519 if (new.frozen && !was_frozen) {
2520 put_cpu_partial(s, page, 1);
2521 stat(s, CPU_PARTIAL_FREE);
2522 }
2523 /*
2524 * The list lock was not taken therefore no list
2525 * activity can be necessary.
2526 */
2527 if (was_frozen)
2528 stat(s, FREE_FROZEN);
2529 return;
2530 }
2531
2532 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2533 goto slab_empty;
2534
2535 /*
2536 * Objects left in the slab. If it was not on the partial list before
2537 * then add it.
2538 */
2539 if (kmem_cache_debug(s) && unlikely(!prior)) {
2540 remove_full(s, page);
2541 add_partial(n, page, DEACTIVATE_TO_TAIL);
2542 stat(s, FREE_ADD_PARTIAL);
2543 }
2544 spin_unlock_irqrestore(&n->list_lock, flags);
2545 return;
2546
2547 slab_empty:
2548 if (prior) {
2549 /*
2550 * Slab on the partial list.
2551 */
2552 remove_partial(n, page);
2553 stat(s, FREE_REMOVE_PARTIAL);
2554 } else
2555 /* Slab must be on the full list */
2556 remove_full(s, page);
2557
2558 spin_unlock_irqrestore(&n->list_lock, flags);
2559 stat(s, FREE_SLAB);
2560 discard_slab(s, page);
2561 }
2562
2563 /*
2564 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2565 * can perform fastpath freeing without additional function calls.
2566 *
2567 * The fastpath is only possible if we are freeing to the current cpu slab
2568 * of this processor. This typically the case if we have just allocated
2569 * the item before.
2570 *
2571 * If fastpath is not possible then fall back to __slab_free where we deal
2572 * with all sorts of special processing.
2573 */
2574 static __always_inline void slab_free(struct kmem_cache *s,
2575 struct page *page, void *x, unsigned long addr)
2576 {
2577 void **object = (void *)x;
2578 struct kmem_cache_cpu *c;
2579 unsigned long tid;
2580
2581 slab_free_hook(s, x);
2582
2583 redo:
2584 /*
2585 * Determine the currently cpus per cpu slab.
2586 * The cpu may change afterward. However that does not matter since
2587 * data is retrieved via this pointer. If we are on the same cpu
2588 * during the cmpxchg then the free will succedd.
2589 */
2590 c = __this_cpu_ptr(s->cpu_slab);
2591
2592 tid = c->tid;
2593 barrier();
2594
2595 if (likely(page == c->page)) {
2596 set_freepointer(s, object, c->freelist);
2597
2598 if (unlikely(!this_cpu_cmpxchg_double(
2599 s->cpu_slab->freelist, s->cpu_slab->tid,
2600 c->freelist, tid,
2601 object, next_tid(tid)))) {
2602
2603 note_cmpxchg_failure("slab_free", s, tid);
2604 goto redo;
2605 }
2606 stat(s, FREE_FASTPATH);
2607 } else
2608 __slab_free(s, page, x, addr);
2609
2610 }
2611
2612 void kmem_cache_free(struct kmem_cache *s, void *x)
2613 {
2614 s = cache_from_obj(s, x);
2615 if (!s)
2616 return;
2617 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2618 trace_kmem_cache_free(_RET_IP_, x);
2619 }
2620 EXPORT_SYMBOL(kmem_cache_free);
2621
2622 /*
2623 * Object placement in a slab is made very easy because we always start at
2624 * offset 0. If we tune the size of the object to the alignment then we can
2625 * get the required alignment by putting one properly sized object after
2626 * another.
2627 *
2628 * Notice that the allocation order determines the sizes of the per cpu
2629 * caches. Each processor has always one slab available for allocations.
2630 * Increasing the allocation order reduces the number of times that slabs
2631 * must be moved on and off the partial lists and is therefore a factor in
2632 * locking overhead.
2633 */
2634
2635 /*
2636 * Mininum / Maximum order of slab pages. This influences locking overhead
2637 * and slab fragmentation. A higher order reduces the number of partial slabs
2638 * and increases the number of allocations possible without having to
2639 * take the list_lock.
2640 */
2641 static int slub_min_order;
2642 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2643 static int slub_min_objects;
2644
2645 /*
2646 * Merge control. If this is set then no merging of slab caches will occur.
2647 * (Could be removed. This was introduced to pacify the merge skeptics.)
2648 */
2649 static int slub_nomerge;
2650
2651 /*
2652 * Calculate the order of allocation given an slab object size.
2653 *
2654 * The order of allocation has significant impact on performance and other
2655 * system components. Generally order 0 allocations should be preferred since
2656 * order 0 does not cause fragmentation in the page allocator. Larger objects
2657 * be problematic to put into order 0 slabs because there may be too much
2658 * unused space left. We go to a higher order if more than 1/16th of the slab
2659 * would be wasted.
2660 *
2661 * In order to reach satisfactory performance we must ensure that a minimum
2662 * number of objects is in one slab. Otherwise we may generate too much
2663 * activity on the partial lists which requires taking the list_lock. This is
2664 * less a concern for large slabs though which are rarely used.
2665 *
2666 * slub_max_order specifies the order where we begin to stop considering the
2667 * number of objects in a slab as critical. If we reach slub_max_order then
2668 * we try to keep the page order as low as possible. So we accept more waste
2669 * of space in favor of a small page order.
2670 *
2671 * Higher order allocations also allow the placement of more objects in a
2672 * slab and thereby reduce object handling overhead. If the user has
2673 * requested a higher mininum order then we start with that one instead of
2674 * the smallest order which will fit the object.
2675 */
2676 static inline int slab_order(int size, int min_objects,
2677 int max_order, int fract_leftover, int reserved)
2678 {
2679 int order;
2680 int rem;
2681 int min_order = slub_min_order;
2682
2683 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2684 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2685
2686 for (order = max(min_order,
2687 fls(min_objects * size - 1) - PAGE_SHIFT);
2688 order <= max_order; order++) {
2689
2690 unsigned long slab_size = PAGE_SIZE << order;
2691
2692 if (slab_size < min_objects * size + reserved)
2693 continue;
2694
2695 rem = (slab_size - reserved) % size;
2696
2697 if (rem <= slab_size / fract_leftover)
2698 break;
2699
2700 }
2701
2702 return order;
2703 }
2704
2705 static inline int calculate_order(int size, int reserved)
2706 {
2707 int order;
2708 int min_objects;
2709 int fraction;
2710 int max_objects;
2711
2712 /*
2713 * Attempt to find best configuration for a slab. This
2714 * works by first attempting to generate a layout with
2715 * the best configuration and backing off gradually.
2716 *
2717 * First we reduce the acceptable waste in a slab. Then
2718 * we reduce the minimum objects required in a slab.
2719 */
2720 min_objects = slub_min_objects;
2721 if (!min_objects)
2722 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2723 max_objects = order_objects(slub_max_order, size, reserved);
2724 min_objects = min(min_objects, max_objects);
2725
2726 while (min_objects > 1) {
2727 fraction = 16;
2728 while (fraction >= 4) {
2729 order = slab_order(size, min_objects,
2730 slub_max_order, fraction, reserved);
2731 if (order <= slub_max_order)
2732 return order;
2733 fraction /= 2;
2734 }
2735 min_objects--;
2736 }
2737
2738 /*
2739 * We were unable to place multiple objects in a slab. Now
2740 * lets see if we can place a single object there.
2741 */
2742 order = slab_order(size, 1, slub_max_order, 1, reserved);
2743 if (order <= slub_max_order)
2744 return order;
2745
2746 /*
2747 * Doh this slab cannot be placed using slub_max_order.
2748 */
2749 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2750 if (order < MAX_ORDER)
2751 return order;
2752 return -ENOSYS;
2753 }
2754
2755 static void
2756 init_kmem_cache_node(struct kmem_cache_node *n)
2757 {
2758 n->nr_partial = 0;
2759 spin_lock_init(&n->list_lock);
2760 INIT_LIST_HEAD(&n->partial);
2761 #ifdef CONFIG_SLUB_DEBUG
2762 atomic_long_set(&n->nr_slabs, 0);
2763 atomic_long_set(&n->total_objects, 0);
2764 INIT_LIST_HEAD(&n->full);
2765 #endif
2766 }
2767
2768 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2769 {
2770 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2771 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2772
2773 /*
2774 * Must align to double word boundary for the double cmpxchg
2775 * instructions to work; see __pcpu_double_call_return_bool().
2776 */
2777 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2778 2 * sizeof(void *));
2779
2780 if (!s->cpu_slab)
2781 return 0;
2782
2783 init_kmem_cache_cpus(s);
2784
2785 return 1;
2786 }
2787
2788 static struct kmem_cache *kmem_cache_node;
2789
2790 /*
2791 * No kmalloc_node yet so do it by hand. We know that this is the first
2792 * slab on the node for this slabcache. There are no concurrent accesses
2793 * possible.
2794 *
2795 * Note that this function only works on the kmalloc_node_cache
2796 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2797 * memory on a fresh node that has no slab structures yet.
2798 */
2799 static void early_kmem_cache_node_alloc(int node)
2800 {
2801 struct page *page;
2802 struct kmem_cache_node *n;
2803
2804 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2805
2806 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2807
2808 BUG_ON(!page);
2809 if (page_to_nid(page) != node) {
2810 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2811 "node %d\n", node);
2812 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2813 "in order to be able to continue\n");
2814 }
2815
2816 n = page->freelist;
2817 BUG_ON(!n);
2818 page->freelist = get_freepointer(kmem_cache_node, n);
2819 page->inuse = 1;
2820 page->frozen = 0;
2821 kmem_cache_node->node[node] = n;
2822 #ifdef CONFIG_SLUB_DEBUG
2823 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2824 init_tracking(kmem_cache_node, n);
2825 #endif
2826 init_kmem_cache_node(n);
2827 inc_slabs_node(kmem_cache_node, node, page->objects);
2828
2829 add_partial(n, page, DEACTIVATE_TO_HEAD);
2830 }
2831
2832 static void free_kmem_cache_nodes(struct kmem_cache *s)
2833 {
2834 int node;
2835
2836 for_each_node_state(node, N_NORMAL_MEMORY) {
2837 struct kmem_cache_node *n = s->node[node];
2838
2839 if (n)
2840 kmem_cache_free(kmem_cache_node, n);
2841
2842 s->node[node] = NULL;
2843 }
2844 }
2845
2846 static int init_kmem_cache_nodes(struct kmem_cache *s)
2847 {
2848 int node;
2849
2850 for_each_node_state(node, N_NORMAL_MEMORY) {
2851 struct kmem_cache_node *n;
2852
2853 if (slab_state == DOWN) {
2854 early_kmem_cache_node_alloc(node);
2855 continue;
2856 }
2857 n = kmem_cache_alloc_node(kmem_cache_node,
2858 GFP_KERNEL, node);
2859
2860 if (!n) {
2861 free_kmem_cache_nodes(s);
2862 return 0;
2863 }
2864
2865 s->node[node] = n;
2866 init_kmem_cache_node(n);
2867 }
2868 return 1;
2869 }
2870
2871 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2872 {
2873 if (min < MIN_PARTIAL)
2874 min = MIN_PARTIAL;
2875 else if (min > MAX_PARTIAL)
2876 min = MAX_PARTIAL;
2877 s->min_partial = min;
2878 }
2879
2880 /*
2881 * calculate_sizes() determines the order and the distribution of data within
2882 * a slab object.
2883 */
2884 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2885 {
2886 unsigned long flags = s->flags;
2887 unsigned long size = s->object_size;
2888 int order;
2889
2890 /*
2891 * Round up object size to the next word boundary. We can only
2892 * place the free pointer at word boundaries and this determines
2893 * the possible location of the free pointer.
2894 */
2895 size = ALIGN(size, sizeof(void *));
2896
2897 #ifdef CONFIG_SLUB_DEBUG
2898 /*
2899 * Determine if we can poison the object itself. If the user of
2900 * the slab may touch the object after free or before allocation
2901 * then we should never poison the object itself.
2902 */
2903 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2904 !s->ctor)
2905 s->flags |= __OBJECT_POISON;
2906 else
2907 s->flags &= ~__OBJECT_POISON;
2908
2909
2910 /*
2911 * If we are Redzoning then check if there is some space between the
2912 * end of the object and the free pointer. If not then add an
2913 * additional word to have some bytes to store Redzone information.
2914 */
2915 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2916 size += sizeof(void *);
2917 #endif
2918
2919 /*
2920 * With that we have determined the number of bytes in actual use
2921 * by the object. This is the potential offset to the free pointer.
2922 */
2923 s->inuse = size;
2924
2925 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2926 s->ctor)) {
2927 /*
2928 * Relocate free pointer after the object if it is not
2929 * permitted to overwrite the first word of the object on
2930 * kmem_cache_free.
2931 *
2932 * This is the case if we do RCU, have a constructor or
2933 * destructor or are poisoning the objects.
2934 */
2935 s->offset = size;
2936 size += sizeof(void *);
2937 }
2938
2939 #ifdef CONFIG_SLUB_DEBUG
2940 if (flags & SLAB_STORE_USER)
2941 /*
2942 * Need to store information about allocs and frees after
2943 * the object.
2944 */
2945 size += 2 * sizeof(struct track);
2946
2947 if (flags & SLAB_RED_ZONE)
2948 /*
2949 * Add some empty padding so that we can catch
2950 * overwrites from earlier objects rather than let
2951 * tracking information or the free pointer be
2952 * corrupted if a user writes before the start
2953 * of the object.
2954 */
2955 size += sizeof(void *);
2956 #endif
2957
2958 /*
2959 * SLUB stores one object immediately after another beginning from
2960 * offset 0. In order to align the objects we have to simply size
2961 * each object to conform to the alignment.
2962 */
2963 size = ALIGN(size, s->align);
2964 s->size = size;
2965 if (forced_order >= 0)
2966 order = forced_order;
2967 else
2968 order = calculate_order(size, s->reserved);
2969
2970 if (order < 0)
2971 return 0;
2972
2973 s->allocflags = 0;
2974 if (order)
2975 s->allocflags |= __GFP_COMP;
2976
2977 if (s->flags & SLAB_CACHE_DMA)
2978 s->allocflags |= SLUB_DMA;
2979
2980 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2981 s->allocflags |= __GFP_RECLAIMABLE;
2982
2983 /*
2984 * Determine the number of objects per slab
2985 */
2986 s->oo = oo_make(order, size, s->reserved);
2987 s->min = oo_make(get_order(size), size, s->reserved);
2988 if (oo_objects(s->oo) > oo_objects(s->max))
2989 s->max = s->oo;
2990
2991 return !!oo_objects(s->oo);
2992 }
2993
2994 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
2995 {
2996 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2997 s->reserved = 0;
2998
2999 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3000 s->reserved = sizeof(struct rcu_head);
3001
3002 if (!calculate_sizes(s, -1))
3003 goto error;
3004 if (disable_higher_order_debug) {
3005 /*
3006 * Disable debugging flags that store metadata if the min slab
3007 * order increased.
3008 */
3009 if (get_order(s->size) > get_order(s->object_size)) {
3010 s->flags &= ~DEBUG_METADATA_FLAGS;
3011 s->offset = 0;
3012 if (!calculate_sizes(s, -1))
3013 goto error;
3014 }
3015 }
3016
3017 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3018 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3019 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3020 /* Enable fast mode */
3021 s->flags |= __CMPXCHG_DOUBLE;
3022 #endif
3023
3024 /*
3025 * The larger the object size is, the more pages we want on the partial
3026 * list to avoid pounding the page allocator excessively.
3027 */
3028 set_min_partial(s, ilog2(s->size) / 2);
3029
3030 /*
3031 * cpu_partial determined the maximum number of objects kept in the
3032 * per cpu partial lists of a processor.
3033 *
3034 * Per cpu partial lists mainly contain slabs that just have one
3035 * object freed. If they are used for allocation then they can be
3036 * filled up again with minimal effort. The slab will never hit the
3037 * per node partial lists and therefore no locking will be required.
3038 *
3039 * This setting also determines
3040 *
3041 * A) The number of objects from per cpu partial slabs dumped to the
3042 * per node list when we reach the limit.
3043 * B) The number of objects in cpu partial slabs to extract from the
3044 * per node list when we run out of per cpu objects. We only fetch 50%
3045 * to keep some capacity around for frees.
3046 */
3047 if (kmem_cache_debug(s))
3048 s->cpu_partial = 0;
3049 else if (s->size >= PAGE_SIZE)
3050 s->cpu_partial = 2;
3051 else if (s->size >= 1024)
3052 s->cpu_partial = 6;
3053 else if (s->size >= 256)
3054 s->cpu_partial = 13;
3055 else
3056 s->cpu_partial = 30;
3057
3058 #ifdef CONFIG_NUMA
3059 s->remote_node_defrag_ratio = 1000;
3060 #endif
3061 if (!init_kmem_cache_nodes(s))
3062 goto error;
3063
3064 if (alloc_kmem_cache_cpus(s))
3065 return 0;
3066
3067 free_kmem_cache_nodes(s);
3068 error:
3069 if (flags & SLAB_PANIC)
3070 panic("Cannot create slab %s size=%lu realsize=%u "
3071 "order=%u offset=%u flags=%lx\n",
3072 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3073 s->offset, flags);
3074 return -EINVAL;
3075 }
3076
3077 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3078 const char *text)
3079 {
3080 #ifdef CONFIG_SLUB_DEBUG
3081 void *addr = page_address(page);
3082 void *p;
3083 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3084 sizeof(long), GFP_ATOMIC);
3085 if (!map)
3086 return;
3087 slab_err(s, page, text, s->name);
3088 slab_lock(page);
3089
3090 get_map(s, page, map);
3091 for_each_object(p, s, addr, page->objects) {
3092
3093 if (!test_bit(slab_index(p, s, addr), map)) {
3094 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3095 p, p - addr);
3096 print_tracking(s, p);
3097 }
3098 }
3099 slab_unlock(page);
3100 kfree(map);
3101 #endif
3102 }
3103
3104 /*
3105 * Attempt to free all partial slabs on a node.
3106 * This is called from kmem_cache_close(). We must be the last thread
3107 * using the cache and therefore we do not need to lock anymore.
3108 */
3109 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3110 {
3111 struct page *page, *h;
3112
3113 list_for_each_entry_safe(page, h, &n->partial, lru) {
3114 if (!page->inuse) {
3115 remove_partial(n, page);
3116 discard_slab(s, page);
3117 } else {
3118 list_slab_objects(s, page,
3119 "Objects remaining in %s on kmem_cache_close()");
3120 }
3121 }
3122 }
3123
3124 /*
3125 * Release all resources used by a slab cache.
3126 */
3127 static inline int kmem_cache_close(struct kmem_cache *s)
3128 {
3129 int node;
3130
3131 flush_all(s);
3132 /* Attempt to free all objects */
3133 for_each_node_state(node, N_NORMAL_MEMORY) {
3134 struct kmem_cache_node *n = get_node(s, node);
3135
3136 free_partial(s, n);
3137 if (n->nr_partial || slabs_node(s, node))
3138 return 1;
3139 }
3140 free_percpu(s->cpu_slab);
3141 free_kmem_cache_nodes(s);
3142 return 0;
3143 }
3144
3145 int __kmem_cache_shutdown(struct kmem_cache *s)
3146 {
3147 int rc = kmem_cache_close(s);
3148
3149 if (!rc)
3150 sysfs_slab_remove(s);
3151
3152 return rc;
3153 }
3154
3155 /********************************************************************
3156 * Kmalloc subsystem
3157 *******************************************************************/
3158
3159 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3160 EXPORT_SYMBOL(kmalloc_caches);
3161
3162 #ifdef CONFIG_ZONE_DMA
3163 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3164 #endif
3165
3166 static int __init setup_slub_min_order(char *str)
3167 {
3168 get_option(&str, &slub_min_order);
3169
3170 return 1;
3171 }
3172
3173 __setup("slub_min_order=", setup_slub_min_order);
3174
3175 static int __init setup_slub_max_order(char *str)
3176 {
3177 get_option(&str, &slub_max_order);
3178 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3179
3180 return 1;
3181 }
3182
3183 __setup("slub_max_order=", setup_slub_max_order);
3184
3185 static int __init setup_slub_min_objects(char *str)
3186 {
3187 get_option(&str, &slub_min_objects);
3188
3189 return 1;
3190 }
3191
3192 __setup("slub_min_objects=", setup_slub_min_objects);
3193
3194 static int __init setup_slub_nomerge(char *str)
3195 {
3196 slub_nomerge = 1;
3197 return 1;
3198 }
3199
3200 __setup("slub_nomerge", setup_slub_nomerge);
3201
3202 /*
3203 * Conversion table for small slabs sizes / 8 to the index in the
3204 * kmalloc array. This is necessary for slabs < 192 since we have non power
3205 * of two cache sizes there. The size of larger slabs can be determined using
3206 * fls.
3207 */
3208 static s8 size_index[24] = {
3209 3, /* 8 */
3210 4, /* 16 */
3211 5, /* 24 */
3212 5, /* 32 */
3213 6, /* 40 */
3214 6, /* 48 */
3215 6, /* 56 */
3216 6, /* 64 */
3217 1, /* 72 */
3218 1, /* 80 */
3219 1, /* 88 */
3220 1, /* 96 */
3221 7, /* 104 */
3222 7, /* 112 */
3223 7, /* 120 */
3224 7, /* 128 */
3225 2, /* 136 */
3226 2, /* 144 */
3227 2, /* 152 */
3228 2, /* 160 */
3229 2, /* 168 */
3230 2, /* 176 */
3231 2, /* 184 */
3232 2 /* 192 */
3233 };
3234
3235 static inline int size_index_elem(size_t bytes)
3236 {
3237 return (bytes - 1) / 8;
3238 }
3239
3240 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3241 {
3242 int index;
3243
3244 if (size <= 192) {
3245 if (!size)
3246 return ZERO_SIZE_PTR;
3247
3248 index = size_index[size_index_elem(size)];
3249 } else
3250 index = fls(size - 1);
3251
3252 #ifdef CONFIG_ZONE_DMA
3253 if (unlikely((flags & SLUB_DMA)))
3254 return kmalloc_dma_caches[index];
3255
3256 #endif
3257 return kmalloc_caches[index];
3258 }
3259
3260 void *__kmalloc(size_t size, gfp_t flags)
3261 {
3262 struct kmem_cache *s;
3263 void *ret;
3264
3265 if (unlikely(size > SLUB_MAX_SIZE))
3266 return kmalloc_large(size, flags);
3267
3268 s = get_slab(size, flags);
3269
3270 if (unlikely(ZERO_OR_NULL_PTR(s)))
3271 return s;
3272
3273 ret = slab_alloc(s, flags, _RET_IP_);
3274
3275 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL(__kmalloc);
3280
3281 #ifdef CONFIG_NUMA
3282 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3283 {
3284 struct page *page;
3285 void *ptr = NULL;
3286
3287 flags |= __GFP_COMP | __GFP_NOTRACK;
3288 page = alloc_pages_node(node, flags, get_order(size));
3289 if (page)
3290 ptr = page_address(page);
3291
3292 kmemleak_alloc(ptr, size, 1, flags);
3293 return ptr;
3294 }
3295
3296 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3297 {
3298 struct kmem_cache *s;
3299 void *ret;
3300
3301 if (unlikely(size > SLUB_MAX_SIZE)) {
3302 ret = kmalloc_large_node(size, flags, node);
3303
3304 trace_kmalloc_node(_RET_IP_, ret,
3305 size, PAGE_SIZE << get_order(size),
3306 flags, node);
3307
3308 return ret;
3309 }
3310
3311 s = get_slab(size, flags);
3312
3313 if (unlikely(ZERO_OR_NULL_PTR(s)))
3314 return s;
3315
3316 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3317
3318 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3319
3320 return ret;
3321 }
3322 EXPORT_SYMBOL(__kmalloc_node);
3323 #endif
3324
3325 size_t ksize(const void *object)
3326 {
3327 struct page *page;
3328
3329 if (unlikely(object == ZERO_SIZE_PTR))
3330 return 0;
3331
3332 page = virt_to_head_page(object);
3333
3334 if (unlikely(!PageSlab(page))) {
3335 WARN_ON(!PageCompound(page));
3336 return PAGE_SIZE << compound_order(page);
3337 }
3338
3339 return slab_ksize(page->slab_cache);
3340 }
3341 EXPORT_SYMBOL(ksize);
3342
3343 #ifdef CONFIG_SLUB_DEBUG
3344 bool verify_mem_not_deleted(const void *x)
3345 {
3346 struct page *page;
3347 void *object = (void *)x;
3348 unsigned long flags;
3349 bool rv;
3350
3351 if (unlikely(ZERO_OR_NULL_PTR(x)))
3352 return false;
3353
3354 local_irq_save(flags);
3355
3356 page = virt_to_head_page(x);
3357 if (unlikely(!PageSlab(page))) {
3358 /* maybe it was from stack? */
3359 rv = true;
3360 goto out_unlock;
3361 }
3362
3363 slab_lock(page);
3364 if (on_freelist(page->slab_cache, page, object)) {
3365 object_err(page->slab_cache, page, object, "Object is on free-list");
3366 rv = false;
3367 } else {
3368 rv = true;
3369 }
3370 slab_unlock(page);
3371
3372 out_unlock:
3373 local_irq_restore(flags);
3374 return rv;
3375 }
3376 EXPORT_SYMBOL(verify_mem_not_deleted);
3377 #endif
3378
3379 void kfree(const void *x)
3380 {
3381 struct page *page;
3382 void *object = (void *)x;
3383
3384 trace_kfree(_RET_IP_, x);
3385
3386 if (unlikely(ZERO_OR_NULL_PTR(x)))
3387 return;
3388
3389 page = virt_to_head_page(x);
3390 if (unlikely(!PageSlab(page))) {
3391 BUG_ON(!PageCompound(page));
3392 kmemleak_free(x);
3393 __free_pages(page, compound_order(page));
3394 return;
3395 }
3396 slab_free(page->slab_cache, page, object, _RET_IP_);
3397 }
3398 EXPORT_SYMBOL(kfree);
3399
3400 /*
3401 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3402 * the remaining slabs by the number of items in use. The slabs with the
3403 * most items in use come first. New allocations will then fill those up
3404 * and thus they can be removed from the partial lists.
3405 *
3406 * The slabs with the least items are placed last. This results in them
3407 * being allocated from last increasing the chance that the last objects
3408 * are freed in them.
3409 */
3410 int kmem_cache_shrink(struct kmem_cache *s)
3411 {
3412 int node;
3413 int i;
3414 struct kmem_cache_node *n;
3415 struct page *page;
3416 struct page *t;
3417 int objects = oo_objects(s->max);
3418 struct list_head *slabs_by_inuse =
3419 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3420 unsigned long flags;
3421
3422 if (!slabs_by_inuse)
3423 return -ENOMEM;
3424
3425 flush_all(s);
3426 for_each_node_state(node, N_NORMAL_MEMORY) {
3427 n = get_node(s, node);
3428
3429 if (!n->nr_partial)
3430 continue;
3431
3432 for (i = 0; i < objects; i++)
3433 INIT_LIST_HEAD(slabs_by_inuse + i);
3434
3435 spin_lock_irqsave(&n->list_lock, flags);
3436
3437 /*
3438 * Build lists indexed by the items in use in each slab.
3439 *
3440 * Note that concurrent frees may occur while we hold the
3441 * list_lock. page->inuse here is the upper limit.
3442 */
3443 list_for_each_entry_safe(page, t, &n->partial, lru) {
3444 list_move(&page->lru, slabs_by_inuse + page->inuse);
3445 if (!page->inuse)
3446 n->nr_partial--;
3447 }
3448
3449 /*
3450 * Rebuild the partial list with the slabs filled up most
3451 * first and the least used slabs at the end.
3452 */
3453 for (i = objects - 1; i > 0; i--)
3454 list_splice(slabs_by_inuse + i, n->partial.prev);
3455
3456 spin_unlock_irqrestore(&n->list_lock, flags);
3457
3458 /* Release empty slabs */
3459 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3460 discard_slab(s, page);
3461 }
3462
3463 kfree(slabs_by_inuse);
3464 return 0;
3465 }
3466 EXPORT_SYMBOL(kmem_cache_shrink);
3467
3468 #if defined(CONFIG_MEMORY_HOTPLUG)
3469 static int slab_mem_going_offline_callback(void *arg)
3470 {
3471 struct kmem_cache *s;
3472
3473 mutex_lock(&slab_mutex);
3474 list_for_each_entry(s, &slab_caches, list)
3475 kmem_cache_shrink(s);
3476 mutex_unlock(&slab_mutex);
3477
3478 return 0;
3479 }
3480
3481 static void slab_mem_offline_callback(void *arg)
3482 {
3483 struct kmem_cache_node *n;
3484 struct kmem_cache *s;
3485 struct memory_notify *marg = arg;
3486 int offline_node;
3487
3488 offline_node = marg->status_change_nid_normal;
3489
3490 /*
3491 * If the node still has available memory. we need kmem_cache_node
3492 * for it yet.
3493 */
3494 if (offline_node < 0)
3495 return;
3496
3497 mutex_lock(&slab_mutex);
3498 list_for_each_entry(s, &slab_caches, list) {
3499 n = get_node(s, offline_node);
3500 if (n) {
3501 /*
3502 * if n->nr_slabs > 0, slabs still exist on the node
3503 * that is going down. We were unable to free them,
3504 * and offline_pages() function shouldn't call this
3505 * callback. So, we must fail.
3506 */
3507 BUG_ON(slabs_node(s, offline_node));
3508
3509 s->node[offline_node] = NULL;
3510 kmem_cache_free(kmem_cache_node, n);
3511 }
3512 }
3513 mutex_unlock(&slab_mutex);
3514 }
3515
3516 static int slab_mem_going_online_callback(void *arg)
3517 {
3518 struct kmem_cache_node *n;
3519 struct kmem_cache *s;
3520 struct memory_notify *marg = arg;
3521 int nid = marg->status_change_nid_normal;
3522 int ret = 0;
3523
3524 /*
3525 * If the node's memory is already available, then kmem_cache_node is
3526 * already created. Nothing to do.
3527 */
3528 if (nid < 0)
3529 return 0;
3530
3531 /*
3532 * We are bringing a node online. No memory is available yet. We must
3533 * allocate a kmem_cache_node structure in order to bring the node
3534 * online.
3535 */
3536 mutex_lock(&slab_mutex);
3537 list_for_each_entry(s, &slab_caches, list) {
3538 /*
3539 * XXX: kmem_cache_alloc_node will fallback to other nodes
3540 * since memory is not yet available from the node that
3541 * is brought up.
3542 */
3543 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3544 if (!n) {
3545 ret = -ENOMEM;
3546 goto out;
3547 }
3548 init_kmem_cache_node(n);
3549 s->node[nid] = n;
3550 }
3551 out:
3552 mutex_unlock(&slab_mutex);
3553 return ret;
3554 }
3555
3556 static int slab_memory_callback(struct notifier_block *self,
3557 unsigned long action, void *arg)
3558 {
3559 int ret = 0;
3560
3561 switch (action) {
3562 case MEM_GOING_ONLINE:
3563 ret = slab_mem_going_online_callback(arg);
3564 break;
3565 case MEM_GOING_OFFLINE:
3566 ret = slab_mem_going_offline_callback(arg);
3567 break;
3568 case MEM_OFFLINE:
3569 case MEM_CANCEL_ONLINE:
3570 slab_mem_offline_callback(arg);
3571 break;
3572 case MEM_ONLINE:
3573 case MEM_CANCEL_OFFLINE:
3574 break;
3575 }
3576 if (ret)
3577 ret = notifier_from_errno(ret);
3578 else
3579 ret = NOTIFY_OK;
3580 return ret;
3581 }
3582
3583 #endif /* CONFIG_MEMORY_HOTPLUG */
3584
3585 /********************************************************************
3586 * Basic setup of slabs
3587 *******************************************************************/
3588
3589 /*
3590 * Used for early kmem_cache structures that were allocated using
3591 * the page allocator. Allocate them properly then fix up the pointers
3592 * that may be pointing to the wrong kmem_cache structure.
3593 */
3594
3595 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3596 {
3597 int node;
3598 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3599
3600 memcpy(s, static_cache, kmem_cache->object_size);
3601
3602 for_each_node_state(node, N_NORMAL_MEMORY) {
3603 struct kmem_cache_node *n = get_node(s, node);
3604 struct page *p;
3605
3606 if (n) {
3607 list_for_each_entry(p, &n->partial, lru)
3608 p->slab_cache = s;
3609
3610 #ifdef CONFIG_SLUB_DEBUG
3611 list_for_each_entry(p, &n->full, lru)
3612 p->slab_cache = s;
3613 #endif
3614 }
3615 }
3616 list_add(&s->list, &slab_caches);
3617 return s;
3618 }
3619
3620 void __init kmem_cache_init(void)
3621 {
3622 static __initdata struct kmem_cache boot_kmem_cache,
3623 boot_kmem_cache_node;
3624 int i;
3625 int caches = 2;
3626
3627 if (debug_guardpage_minorder())
3628 slub_max_order = 0;
3629
3630 kmem_cache_node = &boot_kmem_cache_node;
3631 kmem_cache = &boot_kmem_cache;
3632
3633 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3634 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3635
3636 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3637
3638 /* Able to allocate the per node structures */
3639 slab_state = PARTIAL;
3640
3641 create_boot_cache(kmem_cache, "kmem_cache",
3642 offsetof(struct kmem_cache, node) +
3643 nr_node_ids * sizeof(struct kmem_cache_node *),
3644 SLAB_HWCACHE_ALIGN);
3645
3646 kmem_cache = bootstrap(&boot_kmem_cache);
3647
3648 /*
3649 * Allocate kmem_cache_node properly from the kmem_cache slab.
3650 * kmem_cache_node is separately allocated so no need to
3651 * update any list pointers.
3652 */
3653 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3654
3655 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3656
3657 /*
3658 * Patch up the size_index table if we have strange large alignment
3659 * requirements for the kmalloc array. This is only the case for
3660 * MIPS it seems. The standard arches will not generate any code here.
3661 *
3662 * Largest permitted alignment is 256 bytes due to the way we
3663 * handle the index determination for the smaller caches.
3664 *
3665 * Make sure that nothing crazy happens if someone starts tinkering
3666 * around with ARCH_KMALLOC_MINALIGN
3667 */
3668 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3669 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3670
3671 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3672 int elem = size_index_elem(i);
3673 if (elem >= ARRAY_SIZE(size_index))
3674 break;
3675 size_index[elem] = KMALLOC_SHIFT_LOW;
3676 }
3677
3678 if (KMALLOC_MIN_SIZE == 64) {
3679 /*
3680 * The 96 byte size cache is not used if the alignment
3681 * is 64 byte.
3682 */
3683 for (i = 64 + 8; i <= 96; i += 8)
3684 size_index[size_index_elem(i)] = 7;
3685 } else if (KMALLOC_MIN_SIZE == 128) {
3686 /*
3687 * The 192 byte sized cache is not used if the alignment
3688 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3689 * instead.
3690 */
3691 for (i = 128 + 8; i <= 192; i += 8)
3692 size_index[size_index_elem(i)] = 8;
3693 }
3694
3695 /* Caches that are not of the two-to-the-power-of size */
3696 if (KMALLOC_MIN_SIZE <= 32) {
3697 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3698 caches++;
3699 }
3700
3701 if (KMALLOC_MIN_SIZE <= 64) {
3702 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3703 caches++;
3704 }
3705
3706 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3707 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3708 caches++;
3709 }
3710
3711 slab_state = UP;
3712
3713 /* Provide the correct kmalloc names now that the caches are up */
3714 if (KMALLOC_MIN_SIZE <= 32) {
3715 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3716 BUG_ON(!kmalloc_caches[1]->name);
3717 }
3718
3719 if (KMALLOC_MIN_SIZE <= 64) {
3720 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3721 BUG_ON(!kmalloc_caches[2]->name);
3722 }
3723
3724 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3725 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3726
3727 BUG_ON(!s);
3728 kmalloc_caches[i]->name = s;
3729 }
3730
3731 #ifdef CONFIG_SMP
3732 register_cpu_notifier(&slab_notifier);
3733 #endif
3734
3735 #ifdef CONFIG_ZONE_DMA
3736 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3737 struct kmem_cache *s = kmalloc_caches[i];
3738
3739 if (s && s->size) {
3740 char *name = kasprintf(GFP_NOWAIT,
3741 "dma-kmalloc-%d", s->object_size);
3742
3743 BUG_ON(!name);
3744 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3745 s->object_size, SLAB_CACHE_DMA);
3746 }
3747 }
3748 #endif
3749 printk(KERN_INFO
3750 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3751 " CPUs=%d, Nodes=%d\n",
3752 caches, cache_line_size(),
3753 slub_min_order, slub_max_order, slub_min_objects,
3754 nr_cpu_ids, nr_node_ids);
3755 }
3756
3757 void __init kmem_cache_init_late(void)
3758 {
3759 }
3760
3761 /*
3762 * Find a mergeable slab cache
3763 */
3764 static int slab_unmergeable(struct kmem_cache *s)
3765 {
3766 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3767 return 1;
3768
3769 if (s->ctor)
3770 return 1;
3771
3772 /*
3773 * We may have set a slab to be unmergeable during bootstrap.
3774 */
3775 if (s->refcount < 0)
3776 return 1;
3777
3778 return 0;
3779 }
3780
3781 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3782 size_t align, unsigned long flags, const char *name,
3783 void (*ctor)(void *))
3784 {
3785 struct kmem_cache *s;
3786
3787 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3788 return NULL;
3789
3790 if (ctor)
3791 return NULL;
3792
3793 size = ALIGN(size, sizeof(void *));
3794 align = calculate_alignment(flags, align, size);
3795 size = ALIGN(size, align);
3796 flags = kmem_cache_flags(size, flags, name, NULL);
3797
3798 list_for_each_entry(s, &slab_caches, list) {
3799 if (slab_unmergeable(s))
3800 continue;
3801
3802 if (size > s->size)
3803 continue;
3804
3805 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3806 continue;
3807 /*
3808 * Check if alignment is compatible.
3809 * Courtesy of Adrian Drzewiecki
3810 */
3811 if ((s->size & ~(align - 1)) != s->size)
3812 continue;
3813
3814 if (s->size - size >= sizeof(void *))
3815 continue;
3816
3817 if (!cache_match_memcg(s, memcg))
3818 continue;
3819
3820 return s;
3821 }
3822 return NULL;
3823 }
3824
3825 struct kmem_cache *
3826 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3827 size_t align, unsigned long flags, void (*ctor)(void *))
3828 {
3829 struct kmem_cache *s;
3830
3831 s = find_mergeable(memcg, size, align, flags, name, ctor);
3832 if (s) {
3833 s->refcount++;
3834 /*
3835 * Adjust the object sizes so that we clear
3836 * the complete object on kzalloc.
3837 */
3838 s->object_size = max(s->object_size, (int)size);
3839 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3840
3841 if (sysfs_slab_alias(s, name)) {
3842 s->refcount--;
3843 s = NULL;
3844 }
3845 }
3846
3847 return s;
3848 }
3849
3850 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3851 {
3852 int err;
3853
3854 err = kmem_cache_open(s, flags);
3855 if (err)
3856 return err;
3857
3858 /* Mutex is not taken during early boot */
3859 if (slab_state <= UP)
3860 return 0;
3861
3862 mutex_unlock(&slab_mutex);
3863 err = sysfs_slab_add(s);
3864 mutex_lock(&slab_mutex);
3865
3866 if (err)
3867 kmem_cache_close(s);
3868
3869 return err;
3870 }
3871
3872 #ifdef CONFIG_SMP
3873 /*
3874 * Use the cpu notifier to insure that the cpu slabs are flushed when
3875 * necessary.
3876 */
3877 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3878 unsigned long action, void *hcpu)
3879 {
3880 long cpu = (long)hcpu;
3881 struct kmem_cache *s;
3882 unsigned long flags;
3883
3884 switch (action) {
3885 case CPU_UP_CANCELED:
3886 case CPU_UP_CANCELED_FROZEN:
3887 case CPU_DEAD:
3888 case CPU_DEAD_FROZEN:
3889 mutex_lock(&slab_mutex);
3890 list_for_each_entry(s, &slab_caches, list) {
3891 local_irq_save(flags);
3892 __flush_cpu_slab(s, cpu);
3893 local_irq_restore(flags);
3894 }
3895 mutex_unlock(&slab_mutex);
3896 break;
3897 default:
3898 break;
3899 }
3900 return NOTIFY_OK;
3901 }
3902
3903 static struct notifier_block __cpuinitdata slab_notifier = {
3904 .notifier_call = slab_cpuup_callback
3905 };
3906
3907 #endif
3908
3909 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3910 {
3911 struct kmem_cache *s;
3912 void *ret;
3913
3914 if (unlikely(size > SLUB_MAX_SIZE))
3915 return kmalloc_large(size, gfpflags);
3916
3917 s = get_slab(size, gfpflags);
3918
3919 if (unlikely(ZERO_OR_NULL_PTR(s)))
3920 return s;
3921
3922 ret = slab_alloc(s, gfpflags, caller);
3923
3924 /* Honor the call site pointer we received. */
3925 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3926
3927 return ret;
3928 }
3929
3930 #ifdef CONFIG_NUMA
3931 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3932 int node, unsigned long caller)
3933 {
3934 struct kmem_cache *s;
3935 void *ret;
3936
3937 if (unlikely(size > SLUB_MAX_SIZE)) {
3938 ret = kmalloc_large_node(size, gfpflags, node);
3939
3940 trace_kmalloc_node(caller, ret,
3941 size, PAGE_SIZE << get_order(size),
3942 gfpflags, node);
3943
3944 return ret;
3945 }
3946
3947 s = get_slab(size, gfpflags);
3948
3949 if (unlikely(ZERO_OR_NULL_PTR(s)))
3950 return s;
3951
3952 ret = slab_alloc_node(s, gfpflags, node, caller);
3953
3954 /* Honor the call site pointer we received. */
3955 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3956
3957 return ret;
3958 }
3959 #endif
3960
3961 #ifdef CONFIG_SYSFS
3962 static int count_inuse(struct page *page)
3963 {
3964 return page->inuse;
3965 }
3966
3967 static int count_total(struct page *page)
3968 {
3969 return page->objects;
3970 }
3971 #endif
3972
3973 #ifdef CONFIG_SLUB_DEBUG
3974 static int validate_slab(struct kmem_cache *s, struct page *page,
3975 unsigned long *map)
3976 {
3977 void *p;
3978 void *addr = page_address(page);
3979
3980 if (!check_slab(s, page) ||
3981 !on_freelist(s, page, NULL))
3982 return 0;
3983
3984 /* Now we know that a valid freelist exists */
3985 bitmap_zero(map, page->objects);
3986
3987 get_map(s, page, map);
3988 for_each_object(p, s, addr, page->objects) {
3989 if (test_bit(slab_index(p, s, addr), map))
3990 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3991 return 0;
3992 }
3993
3994 for_each_object(p, s, addr, page->objects)
3995 if (!test_bit(slab_index(p, s, addr), map))
3996 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3997 return 0;
3998 return 1;
3999 }
4000
4001 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4002 unsigned long *map)
4003 {
4004 slab_lock(page);
4005 validate_slab(s, page, map);
4006 slab_unlock(page);
4007 }
4008
4009 static int validate_slab_node(struct kmem_cache *s,
4010 struct kmem_cache_node *n, unsigned long *map)
4011 {
4012 unsigned long count = 0;
4013 struct page *page;
4014 unsigned long flags;
4015
4016 spin_lock_irqsave(&n->list_lock, flags);
4017
4018 list_for_each_entry(page, &n->partial, lru) {
4019 validate_slab_slab(s, page, map);
4020 count++;
4021 }
4022 if (count != n->nr_partial)
4023 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4024 "counter=%ld\n", s->name, count, n->nr_partial);
4025
4026 if (!(s->flags & SLAB_STORE_USER))
4027 goto out;
4028
4029 list_for_each_entry(page, &n->full, lru) {
4030 validate_slab_slab(s, page, map);
4031 count++;
4032 }
4033 if (count != atomic_long_read(&n->nr_slabs))
4034 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4035 "counter=%ld\n", s->name, count,
4036 atomic_long_read(&n->nr_slabs));
4037
4038 out:
4039 spin_unlock_irqrestore(&n->list_lock, flags);
4040 return count;
4041 }
4042
4043 static long validate_slab_cache(struct kmem_cache *s)
4044 {
4045 int node;
4046 unsigned long count = 0;
4047 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4048 sizeof(unsigned long), GFP_KERNEL);
4049
4050 if (!map)
4051 return -ENOMEM;
4052
4053 flush_all(s);
4054 for_each_node_state(node, N_NORMAL_MEMORY) {
4055 struct kmem_cache_node *n = get_node(s, node);
4056
4057 count += validate_slab_node(s, n, map);
4058 }
4059 kfree(map);
4060 return count;
4061 }
4062 /*
4063 * Generate lists of code addresses where slabcache objects are allocated
4064 * and freed.
4065 */
4066
4067 struct location {
4068 unsigned long count;
4069 unsigned long addr;
4070 long long sum_time;
4071 long min_time;
4072 long max_time;
4073 long min_pid;
4074 long max_pid;
4075 DECLARE_BITMAP(cpus, NR_CPUS);
4076 nodemask_t nodes;
4077 };
4078
4079 struct loc_track {
4080 unsigned long max;
4081 unsigned long count;
4082 struct location *loc;
4083 };
4084
4085 static void free_loc_track(struct loc_track *t)
4086 {
4087 if (t->max)
4088 free_pages((unsigned long)t->loc,
4089 get_order(sizeof(struct location) * t->max));
4090 }
4091
4092 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4093 {
4094 struct location *l;
4095 int order;
4096
4097 order = get_order(sizeof(struct location) * max);
4098
4099 l = (void *)__get_free_pages(flags, order);
4100 if (!l)
4101 return 0;
4102
4103 if (t->count) {
4104 memcpy(l, t->loc, sizeof(struct location) * t->count);
4105 free_loc_track(t);
4106 }
4107 t->max = max;
4108 t->loc = l;
4109 return 1;
4110 }
4111
4112 static int add_location(struct loc_track *t, struct kmem_cache *s,
4113 const struct track *track)
4114 {
4115 long start, end, pos;
4116 struct location *l;
4117 unsigned long caddr;
4118 unsigned long age = jiffies - track->when;
4119
4120 start = -1;
4121 end = t->count;
4122
4123 for ( ; ; ) {
4124 pos = start + (end - start + 1) / 2;
4125
4126 /*
4127 * There is nothing at "end". If we end up there
4128 * we need to add something to before end.
4129 */
4130 if (pos == end)
4131 break;
4132
4133 caddr = t->loc[pos].addr;
4134 if (track->addr == caddr) {
4135
4136 l = &t->loc[pos];
4137 l->count++;
4138 if (track->when) {
4139 l->sum_time += age;
4140 if (age < l->min_time)
4141 l->min_time = age;
4142 if (age > l->max_time)
4143 l->max_time = age;
4144
4145 if (track->pid < l->min_pid)
4146 l->min_pid = track->pid;
4147 if (track->pid > l->max_pid)
4148 l->max_pid = track->pid;
4149
4150 cpumask_set_cpu(track->cpu,
4151 to_cpumask(l->cpus));
4152 }
4153 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4154 return 1;
4155 }
4156
4157 if (track->addr < caddr)
4158 end = pos;
4159 else
4160 start = pos;
4161 }
4162
4163 /*
4164 * Not found. Insert new tracking element.
4165 */
4166 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4167 return 0;
4168
4169 l = t->loc + pos;
4170 if (pos < t->count)
4171 memmove(l + 1, l,
4172 (t->count - pos) * sizeof(struct location));
4173 t->count++;
4174 l->count = 1;
4175 l->addr = track->addr;
4176 l->sum_time = age;
4177 l->min_time = age;
4178 l->max_time = age;
4179 l->min_pid = track->pid;
4180 l->max_pid = track->pid;
4181 cpumask_clear(to_cpumask(l->cpus));
4182 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4183 nodes_clear(l->nodes);
4184 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4185 return 1;
4186 }
4187
4188 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4189 struct page *page, enum track_item alloc,
4190 unsigned long *map)
4191 {
4192 void *addr = page_address(page);
4193 void *p;
4194
4195 bitmap_zero(map, page->objects);
4196 get_map(s, page, map);
4197
4198 for_each_object(p, s, addr, page->objects)
4199 if (!test_bit(slab_index(p, s, addr), map))
4200 add_location(t, s, get_track(s, p, alloc));
4201 }
4202
4203 static int list_locations(struct kmem_cache *s, char *buf,
4204 enum track_item alloc)
4205 {
4206 int len = 0;
4207 unsigned long i;
4208 struct loc_track t = { 0, 0, NULL };
4209 int node;
4210 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4211 sizeof(unsigned long), GFP_KERNEL);
4212
4213 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4214 GFP_TEMPORARY)) {
4215 kfree(map);
4216 return sprintf(buf, "Out of memory\n");
4217 }
4218 /* Push back cpu slabs */
4219 flush_all(s);
4220
4221 for_each_node_state(node, N_NORMAL_MEMORY) {
4222 struct kmem_cache_node *n = get_node(s, node);
4223 unsigned long flags;
4224 struct page *page;
4225
4226 if (!atomic_long_read(&n->nr_slabs))
4227 continue;
4228
4229 spin_lock_irqsave(&n->list_lock, flags);
4230 list_for_each_entry(page, &n->partial, lru)
4231 process_slab(&t, s, page, alloc, map);
4232 list_for_each_entry(page, &n->full, lru)
4233 process_slab(&t, s, page, alloc, map);
4234 spin_unlock_irqrestore(&n->list_lock, flags);
4235 }
4236
4237 for (i = 0; i < t.count; i++) {
4238 struct location *l = &t.loc[i];
4239
4240 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4241 break;
4242 len += sprintf(buf + len, "%7ld ", l->count);
4243
4244 if (l->addr)
4245 len += sprintf(buf + len, "%pS", (void *)l->addr);
4246 else
4247 len += sprintf(buf + len, "<not-available>");
4248
4249 if (l->sum_time != l->min_time) {
4250 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4251 l->min_time,
4252 (long)div_u64(l->sum_time, l->count),
4253 l->max_time);
4254 } else
4255 len += sprintf(buf + len, " age=%ld",
4256 l->min_time);
4257
4258 if (l->min_pid != l->max_pid)
4259 len += sprintf(buf + len, " pid=%ld-%ld",
4260 l->min_pid, l->max_pid);
4261 else
4262 len += sprintf(buf + len, " pid=%ld",
4263 l->min_pid);
4264
4265 if (num_online_cpus() > 1 &&
4266 !cpumask_empty(to_cpumask(l->cpus)) &&
4267 len < PAGE_SIZE - 60) {
4268 len += sprintf(buf + len, " cpus=");
4269 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4270 to_cpumask(l->cpus));
4271 }
4272
4273 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4274 len < PAGE_SIZE - 60) {
4275 len += sprintf(buf + len, " nodes=");
4276 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4277 l->nodes);
4278 }
4279
4280 len += sprintf(buf + len, "\n");
4281 }
4282
4283 free_loc_track(&t);
4284 kfree(map);
4285 if (!t.count)
4286 len += sprintf(buf, "No data\n");
4287 return len;
4288 }
4289 #endif
4290
4291 #ifdef SLUB_RESILIENCY_TEST
4292 static void resiliency_test(void)
4293 {
4294 u8 *p;
4295
4296 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4297
4298 printk(KERN_ERR "SLUB resiliency testing\n");
4299 printk(KERN_ERR "-----------------------\n");
4300 printk(KERN_ERR "A. Corruption after allocation\n");
4301
4302 p = kzalloc(16, GFP_KERNEL);
4303 p[16] = 0x12;
4304 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4305 " 0x12->0x%p\n\n", p + 16);
4306
4307 validate_slab_cache(kmalloc_caches[4]);
4308
4309 /* Hmmm... The next two are dangerous */
4310 p = kzalloc(32, GFP_KERNEL);
4311 p[32 + sizeof(void *)] = 0x34;
4312 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4313 " 0x34 -> -0x%p\n", p);
4314 printk(KERN_ERR
4315 "If allocated object is overwritten then not detectable\n\n");
4316
4317 validate_slab_cache(kmalloc_caches[5]);
4318 p = kzalloc(64, GFP_KERNEL);
4319 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4320 *p = 0x56;
4321 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4322 p);
4323 printk(KERN_ERR
4324 "If allocated object is overwritten then not detectable\n\n");
4325 validate_slab_cache(kmalloc_caches[6]);
4326
4327 printk(KERN_ERR "\nB. Corruption after free\n");
4328 p = kzalloc(128, GFP_KERNEL);
4329 kfree(p);
4330 *p = 0x78;
4331 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4332 validate_slab_cache(kmalloc_caches[7]);
4333
4334 p = kzalloc(256, GFP_KERNEL);
4335 kfree(p);
4336 p[50] = 0x9a;
4337 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4338 p);
4339 validate_slab_cache(kmalloc_caches[8]);
4340
4341 p = kzalloc(512, GFP_KERNEL);
4342 kfree(p);
4343 p[512] = 0xab;
4344 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4345 validate_slab_cache(kmalloc_caches[9]);
4346 }
4347 #else
4348 #ifdef CONFIG_SYSFS
4349 static void resiliency_test(void) {};
4350 #endif
4351 #endif
4352
4353 #ifdef CONFIG_SYSFS
4354 enum slab_stat_type {
4355 SL_ALL, /* All slabs */
4356 SL_PARTIAL, /* Only partially allocated slabs */
4357 SL_CPU, /* Only slabs used for cpu caches */
4358 SL_OBJECTS, /* Determine allocated objects not slabs */
4359 SL_TOTAL /* Determine object capacity not slabs */
4360 };
4361
4362 #define SO_ALL (1 << SL_ALL)
4363 #define SO_PARTIAL (1 << SL_PARTIAL)
4364 #define SO_CPU (1 << SL_CPU)
4365 #define SO_OBJECTS (1 << SL_OBJECTS)
4366 #define SO_TOTAL (1 << SL_TOTAL)
4367
4368 static ssize_t show_slab_objects(struct kmem_cache *s,
4369 char *buf, unsigned long flags)
4370 {
4371 unsigned long total = 0;
4372 int node;
4373 int x;
4374 unsigned long *nodes;
4375 unsigned long *per_cpu;
4376
4377 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4378 if (!nodes)
4379 return -ENOMEM;
4380 per_cpu = nodes + nr_node_ids;
4381
4382 if (flags & SO_CPU) {
4383 int cpu;
4384
4385 for_each_possible_cpu(cpu) {
4386 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4387 int node;
4388 struct page *page;
4389
4390 page = ACCESS_ONCE(c->page);
4391 if (!page)
4392 continue;
4393
4394 node = page_to_nid(page);
4395 if (flags & SO_TOTAL)
4396 x = page->objects;
4397 else if (flags & SO_OBJECTS)
4398 x = page->inuse;
4399 else
4400 x = 1;
4401
4402 total += x;
4403 nodes[node] += x;
4404
4405 page = ACCESS_ONCE(c->partial);
4406 if (page) {
4407 x = page->pobjects;
4408 total += x;
4409 nodes[node] += x;
4410 }
4411
4412 per_cpu[node]++;
4413 }
4414 }
4415
4416 lock_memory_hotplug();
4417 #ifdef CONFIG_SLUB_DEBUG
4418 if (flags & SO_ALL) {
4419 for_each_node_state(node, N_NORMAL_MEMORY) {
4420 struct kmem_cache_node *n = get_node(s, node);
4421
4422 if (flags & SO_TOTAL)
4423 x = atomic_long_read(&n->total_objects);
4424 else if (flags & SO_OBJECTS)
4425 x = atomic_long_read(&n->total_objects) -
4426 count_partial(n, count_free);
4427
4428 else
4429 x = atomic_long_read(&n->nr_slabs);
4430 total += x;
4431 nodes[node] += x;
4432 }
4433
4434 } else
4435 #endif
4436 if (flags & SO_PARTIAL) {
4437 for_each_node_state(node, N_NORMAL_MEMORY) {
4438 struct kmem_cache_node *n = get_node(s, node);
4439
4440 if (flags & SO_TOTAL)
4441 x = count_partial(n, count_total);
4442 else if (flags & SO_OBJECTS)
4443 x = count_partial(n, count_inuse);
4444 else
4445 x = n->nr_partial;
4446 total += x;
4447 nodes[node] += x;
4448 }
4449 }
4450 x = sprintf(buf, "%lu", total);
4451 #ifdef CONFIG_NUMA
4452 for_each_node_state(node, N_NORMAL_MEMORY)
4453 if (nodes[node])
4454 x += sprintf(buf + x, " N%d=%lu",
4455 node, nodes[node]);
4456 #endif
4457 unlock_memory_hotplug();
4458 kfree(nodes);
4459 return x + sprintf(buf + x, "\n");
4460 }
4461
4462 #ifdef CONFIG_SLUB_DEBUG
4463 static int any_slab_objects(struct kmem_cache *s)
4464 {
4465 int node;
4466
4467 for_each_online_node(node) {
4468 struct kmem_cache_node *n = get_node(s, node);
4469
4470 if (!n)
4471 continue;
4472
4473 if (atomic_long_read(&n->total_objects))
4474 return 1;
4475 }
4476 return 0;
4477 }
4478 #endif
4479
4480 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4481 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4482
4483 struct slab_attribute {
4484 struct attribute attr;
4485 ssize_t (*show)(struct kmem_cache *s, char *buf);
4486 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4487 };
4488
4489 #define SLAB_ATTR_RO(_name) \
4490 static struct slab_attribute _name##_attr = \
4491 __ATTR(_name, 0400, _name##_show, NULL)
4492
4493 #define SLAB_ATTR(_name) \
4494 static struct slab_attribute _name##_attr = \
4495 __ATTR(_name, 0600, _name##_show, _name##_store)
4496
4497 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4498 {
4499 return sprintf(buf, "%d\n", s->size);
4500 }
4501 SLAB_ATTR_RO(slab_size);
4502
4503 static ssize_t align_show(struct kmem_cache *s, char *buf)
4504 {
4505 return sprintf(buf, "%d\n", s->align);
4506 }
4507 SLAB_ATTR_RO(align);
4508
4509 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4510 {
4511 return sprintf(buf, "%d\n", s->object_size);
4512 }
4513 SLAB_ATTR_RO(object_size);
4514
4515 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4516 {
4517 return sprintf(buf, "%d\n", oo_objects(s->oo));
4518 }
4519 SLAB_ATTR_RO(objs_per_slab);
4520
4521 static ssize_t order_store(struct kmem_cache *s,
4522 const char *buf, size_t length)
4523 {
4524 unsigned long order;
4525 int err;
4526
4527 err = strict_strtoul(buf, 10, &order);
4528 if (err)
4529 return err;
4530
4531 if (order > slub_max_order || order < slub_min_order)
4532 return -EINVAL;
4533
4534 calculate_sizes(s, order);
4535 return length;
4536 }
4537
4538 static ssize_t order_show(struct kmem_cache *s, char *buf)
4539 {
4540 return sprintf(buf, "%d\n", oo_order(s->oo));
4541 }
4542 SLAB_ATTR(order);
4543
4544 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4545 {
4546 return sprintf(buf, "%lu\n", s->min_partial);
4547 }
4548
4549 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4550 size_t length)
4551 {
4552 unsigned long min;
4553 int err;
4554
4555 err = strict_strtoul(buf, 10, &min);
4556 if (err)
4557 return err;
4558
4559 set_min_partial(s, min);
4560 return length;
4561 }
4562 SLAB_ATTR(min_partial);
4563
4564 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4565 {
4566 return sprintf(buf, "%u\n", s->cpu_partial);
4567 }
4568
4569 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4570 size_t length)
4571 {
4572 unsigned long objects;
4573 int err;
4574
4575 err = strict_strtoul(buf, 10, &objects);
4576 if (err)
4577 return err;
4578 if (objects && kmem_cache_debug(s))
4579 return -EINVAL;
4580
4581 s->cpu_partial = objects;
4582 flush_all(s);
4583 return length;
4584 }
4585 SLAB_ATTR(cpu_partial);
4586
4587 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4588 {
4589 if (!s->ctor)
4590 return 0;
4591 return sprintf(buf, "%pS\n", s->ctor);
4592 }
4593 SLAB_ATTR_RO(ctor);
4594
4595 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", s->refcount - 1);
4598 }
4599 SLAB_ATTR_RO(aliases);
4600
4601 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4602 {
4603 return show_slab_objects(s, buf, SO_PARTIAL);
4604 }
4605 SLAB_ATTR_RO(partial);
4606
4607 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4608 {
4609 return show_slab_objects(s, buf, SO_CPU);
4610 }
4611 SLAB_ATTR_RO(cpu_slabs);
4612
4613 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4614 {
4615 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4616 }
4617 SLAB_ATTR_RO(objects);
4618
4619 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4620 {
4621 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4622 }
4623 SLAB_ATTR_RO(objects_partial);
4624
4625 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4626 {
4627 int objects = 0;
4628 int pages = 0;
4629 int cpu;
4630 int len;
4631
4632 for_each_online_cpu(cpu) {
4633 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4634
4635 if (page) {
4636 pages += page->pages;
4637 objects += page->pobjects;
4638 }
4639 }
4640
4641 len = sprintf(buf, "%d(%d)", objects, pages);
4642
4643 #ifdef CONFIG_SMP
4644 for_each_online_cpu(cpu) {
4645 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4646
4647 if (page && len < PAGE_SIZE - 20)
4648 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4649 page->pobjects, page->pages);
4650 }
4651 #endif
4652 return len + sprintf(buf + len, "\n");
4653 }
4654 SLAB_ATTR_RO(slabs_cpu_partial);
4655
4656 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4657 {
4658 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4659 }
4660
4661 static ssize_t reclaim_account_store(struct kmem_cache *s,
4662 const char *buf, size_t length)
4663 {
4664 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4665 if (buf[0] == '1')
4666 s->flags |= SLAB_RECLAIM_ACCOUNT;
4667 return length;
4668 }
4669 SLAB_ATTR(reclaim_account);
4670
4671 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4672 {
4673 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4674 }
4675 SLAB_ATTR_RO(hwcache_align);
4676
4677 #ifdef CONFIG_ZONE_DMA
4678 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4681 }
4682 SLAB_ATTR_RO(cache_dma);
4683 #endif
4684
4685 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4686 {
4687 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4688 }
4689 SLAB_ATTR_RO(destroy_by_rcu);
4690
4691 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4692 {
4693 return sprintf(buf, "%d\n", s->reserved);
4694 }
4695 SLAB_ATTR_RO(reserved);
4696
4697 #ifdef CONFIG_SLUB_DEBUG
4698 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4699 {
4700 return show_slab_objects(s, buf, SO_ALL);
4701 }
4702 SLAB_ATTR_RO(slabs);
4703
4704 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4705 {
4706 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4707 }
4708 SLAB_ATTR_RO(total_objects);
4709
4710 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4711 {
4712 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4713 }
4714
4715 static ssize_t sanity_checks_store(struct kmem_cache *s,
4716 const char *buf, size_t length)
4717 {
4718 s->flags &= ~SLAB_DEBUG_FREE;
4719 if (buf[0] == '1') {
4720 s->flags &= ~__CMPXCHG_DOUBLE;
4721 s->flags |= SLAB_DEBUG_FREE;
4722 }
4723 return length;
4724 }
4725 SLAB_ATTR(sanity_checks);
4726
4727 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4728 {
4729 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4730 }
4731
4732 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4733 size_t length)
4734 {
4735 s->flags &= ~SLAB_TRACE;
4736 if (buf[0] == '1') {
4737 s->flags &= ~__CMPXCHG_DOUBLE;
4738 s->flags |= SLAB_TRACE;
4739 }
4740 return length;
4741 }
4742 SLAB_ATTR(trace);
4743
4744 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4745 {
4746 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4747 }
4748
4749 static ssize_t red_zone_store(struct kmem_cache *s,
4750 const char *buf, size_t length)
4751 {
4752 if (any_slab_objects(s))
4753 return -EBUSY;
4754
4755 s->flags &= ~SLAB_RED_ZONE;
4756 if (buf[0] == '1') {
4757 s->flags &= ~__CMPXCHG_DOUBLE;
4758 s->flags |= SLAB_RED_ZONE;
4759 }
4760 calculate_sizes(s, -1);
4761 return length;
4762 }
4763 SLAB_ATTR(red_zone);
4764
4765 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4766 {
4767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4768 }
4769
4770 static ssize_t poison_store(struct kmem_cache *s,
4771 const char *buf, size_t length)
4772 {
4773 if (any_slab_objects(s))
4774 return -EBUSY;
4775
4776 s->flags &= ~SLAB_POISON;
4777 if (buf[0] == '1') {
4778 s->flags &= ~__CMPXCHG_DOUBLE;
4779 s->flags |= SLAB_POISON;
4780 }
4781 calculate_sizes(s, -1);
4782 return length;
4783 }
4784 SLAB_ATTR(poison);
4785
4786 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4787 {
4788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4789 }
4790
4791 static ssize_t store_user_store(struct kmem_cache *s,
4792 const char *buf, size_t length)
4793 {
4794 if (any_slab_objects(s))
4795 return -EBUSY;
4796
4797 s->flags &= ~SLAB_STORE_USER;
4798 if (buf[0] == '1') {
4799 s->flags &= ~__CMPXCHG_DOUBLE;
4800 s->flags |= SLAB_STORE_USER;
4801 }
4802 calculate_sizes(s, -1);
4803 return length;
4804 }
4805 SLAB_ATTR(store_user);
4806
4807 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4808 {
4809 return 0;
4810 }
4811
4812 static ssize_t validate_store(struct kmem_cache *s,
4813 const char *buf, size_t length)
4814 {
4815 int ret = -EINVAL;
4816
4817 if (buf[0] == '1') {
4818 ret = validate_slab_cache(s);
4819 if (ret >= 0)
4820 ret = length;
4821 }
4822 return ret;
4823 }
4824 SLAB_ATTR(validate);
4825
4826 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4827 {
4828 if (!(s->flags & SLAB_STORE_USER))
4829 return -ENOSYS;
4830 return list_locations(s, buf, TRACK_ALLOC);
4831 }
4832 SLAB_ATTR_RO(alloc_calls);
4833
4834 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4835 {
4836 if (!(s->flags & SLAB_STORE_USER))
4837 return -ENOSYS;
4838 return list_locations(s, buf, TRACK_FREE);
4839 }
4840 SLAB_ATTR_RO(free_calls);
4841 #endif /* CONFIG_SLUB_DEBUG */
4842
4843 #ifdef CONFIG_FAILSLAB
4844 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4845 {
4846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4847 }
4848
4849 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4850 size_t length)
4851 {
4852 s->flags &= ~SLAB_FAILSLAB;
4853 if (buf[0] == '1')
4854 s->flags |= SLAB_FAILSLAB;
4855 return length;
4856 }
4857 SLAB_ATTR(failslab);
4858 #endif
4859
4860 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4861 {
4862 return 0;
4863 }
4864
4865 static ssize_t shrink_store(struct kmem_cache *s,
4866 const char *buf, size_t length)
4867 {
4868 if (buf[0] == '1') {
4869 int rc = kmem_cache_shrink(s);
4870
4871 if (rc)
4872 return rc;
4873 } else
4874 return -EINVAL;
4875 return length;
4876 }
4877 SLAB_ATTR(shrink);
4878
4879 #ifdef CONFIG_NUMA
4880 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4881 {
4882 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4883 }
4884
4885 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887 {
4888 unsigned long ratio;
4889 int err;
4890
4891 err = strict_strtoul(buf, 10, &ratio);
4892 if (err)
4893 return err;
4894
4895 if (ratio <= 100)
4896 s->remote_node_defrag_ratio = ratio * 10;
4897
4898 return length;
4899 }
4900 SLAB_ATTR(remote_node_defrag_ratio);
4901 #endif
4902
4903 #ifdef CONFIG_SLUB_STATS
4904 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4905 {
4906 unsigned long sum = 0;
4907 int cpu;
4908 int len;
4909 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4910
4911 if (!data)
4912 return -ENOMEM;
4913
4914 for_each_online_cpu(cpu) {
4915 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4916
4917 data[cpu] = x;
4918 sum += x;
4919 }
4920
4921 len = sprintf(buf, "%lu", sum);
4922
4923 #ifdef CONFIG_SMP
4924 for_each_online_cpu(cpu) {
4925 if (data[cpu] && len < PAGE_SIZE - 20)
4926 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4927 }
4928 #endif
4929 kfree(data);
4930 return len + sprintf(buf + len, "\n");
4931 }
4932
4933 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4934 {
4935 int cpu;
4936
4937 for_each_online_cpu(cpu)
4938 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4939 }
4940
4941 #define STAT_ATTR(si, text) \
4942 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4943 { \
4944 return show_stat(s, buf, si); \
4945 } \
4946 static ssize_t text##_store(struct kmem_cache *s, \
4947 const char *buf, size_t length) \
4948 { \
4949 if (buf[0] != '0') \
4950 return -EINVAL; \
4951 clear_stat(s, si); \
4952 return length; \
4953 } \
4954 SLAB_ATTR(text); \
4955
4956 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4957 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4958 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4959 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4960 STAT_ATTR(FREE_FROZEN, free_frozen);
4961 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4962 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4963 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4964 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4965 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4966 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4967 STAT_ATTR(FREE_SLAB, free_slab);
4968 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4969 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4970 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4971 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4972 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4973 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4974 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4975 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4976 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4977 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4978 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4979 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4980 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4981 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4982 #endif
4983
4984 static struct attribute *slab_attrs[] = {
4985 &slab_size_attr.attr,
4986 &object_size_attr.attr,
4987 &objs_per_slab_attr.attr,
4988 &order_attr.attr,
4989 &min_partial_attr.attr,
4990 &cpu_partial_attr.attr,
4991 &objects_attr.attr,
4992 &objects_partial_attr.attr,
4993 &partial_attr.attr,
4994 &cpu_slabs_attr.attr,
4995 &ctor_attr.attr,
4996 &aliases_attr.attr,
4997 &align_attr.attr,
4998 &hwcache_align_attr.attr,
4999 &reclaim_account_attr.attr,
5000 &destroy_by_rcu_attr.attr,
5001 &shrink_attr.attr,
5002 &reserved_attr.attr,
5003 &slabs_cpu_partial_attr.attr,
5004 #ifdef CONFIG_SLUB_DEBUG
5005 &total_objects_attr.attr,
5006 &slabs_attr.attr,
5007 &sanity_checks_attr.attr,
5008 &trace_attr.attr,
5009 &red_zone_attr.attr,
5010 &poison_attr.attr,
5011 &store_user_attr.attr,
5012 &validate_attr.attr,
5013 &alloc_calls_attr.attr,
5014 &free_calls_attr.attr,
5015 #endif
5016 #ifdef CONFIG_ZONE_DMA
5017 &cache_dma_attr.attr,
5018 #endif
5019 #ifdef CONFIG_NUMA
5020 &remote_node_defrag_ratio_attr.attr,
5021 #endif
5022 #ifdef CONFIG_SLUB_STATS
5023 &alloc_fastpath_attr.attr,
5024 &alloc_slowpath_attr.attr,
5025 &free_fastpath_attr.attr,
5026 &free_slowpath_attr.attr,
5027 &free_frozen_attr.attr,
5028 &free_add_partial_attr.attr,
5029 &free_remove_partial_attr.attr,
5030 &alloc_from_partial_attr.attr,
5031 &alloc_slab_attr.attr,
5032 &alloc_refill_attr.attr,
5033 &alloc_node_mismatch_attr.attr,
5034 &free_slab_attr.attr,
5035 &cpuslab_flush_attr.attr,
5036 &deactivate_full_attr.attr,
5037 &deactivate_empty_attr.attr,
5038 &deactivate_to_head_attr.attr,
5039 &deactivate_to_tail_attr.attr,
5040 &deactivate_remote_frees_attr.attr,
5041 &deactivate_bypass_attr.attr,
5042 &order_fallback_attr.attr,
5043 &cmpxchg_double_fail_attr.attr,
5044 &cmpxchg_double_cpu_fail_attr.attr,
5045 &cpu_partial_alloc_attr.attr,
5046 &cpu_partial_free_attr.attr,
5047 &cpu_partial_node_attr.attr,
5048 &cpu_partial_drain_attr.attr,
5049 #endif
5050 #ifdef CONFIG_FAILSLAB
5051 &failslab_attr.attr,
5052 #endif
5053
5054 NULL
5055 };
5056
5057 static struct attribute_group slab_attr_group = {
5058 .attrs = slab_attrs,
5059 };
5060
5061 static ssize_t slab_attr_show(struct kobject *kobj,
5062 struct attribute *attr,
5063 char *buf)
5064 {
5065 struct slab_attribute *attribute;
5066 struct kmem_cache *s;
5067 int err;
5068
5069 attribute = to_slab_attr(attr);
5070 s = to_slab(kobj);
5071
5072 if (!attribute->show)
5073 return -EIO;
5074
5075 err = attribute->show(s, buf);
5076
5077 return err;
5078 }
5079
5080 static ssize_t slab_attr_store(struct kobject *kobj,
5081 struct attribute *attr,
5082 const char *buf, size_t len)
5083 {
5084 struct slab_attribute *attribute;
5085 struct kmem_cache *s;
5086 int err;
5087
5088 attribute = to_slab_attr(attr);
5089 s = to_slab(kobj);
5090
5091 if (!attribute->store)
5092 return -EIO;
5093
5094 err = attribute->store(s, buf, len);
5095
5096 return err;
5097 }
5098
5099 static const struct sysfs_ops slab_sysfs_ops = {
5100 .show = slab_attr_show,
5101 .store = slab_attr_store,
5102 };
5103
5104 static struct kobj_type slab_ktype = {
5105 .sysfs_ops = &slab_sysfs_ops,
5106 };
5107
5108 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5109 {
5110 struct kobj_type *ktype = get_ktype(kobj);
5111
5112 if (ktype == &slab_ktype)
5113 return 1;
5114 return 0;
5115 }
5116
5117 static const struct kset_uevent_ops slab_uevent_ops = {
5118 .filter = uevent_filter,
5119 };
5120
5121 static struct kset *slab_kset;
5122
5123 #define ID_STR_LENGTH 64
5124
5125 /* Create a unique string id for a slab cache:
5126 *
5127 * Format :[flags-]size
5128 */
5129 static char *create_unique_id(struct kmem_cache *s)
5130 {
5131 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5132 char *p = name;
5133
5134 BUG_ON(!name);
5135
5136 *p++ = ':';
5137 /*
5138 * First flags affecting slabcache operations. We will only
5139 * get here for aliasable slabs so we do not need to support
5140 * too many flags. The flags here must cover all flags that
5141 * are matched during merging to guarantee that the id is
5142 * unique.
5143 */
5144 if (s->flags & SLAB_CACHE_DMA)
5145 *p++ = 'd';
5146 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5147 *p++ = 'a';
5148 if (s->flags & SLAB_DEBUG_FREE)
5149 *p++ = 'F';
5150 if (!(s->flags & SLAB_NOTRACK))
5151 *p++ = 't';
5152 if (p != name + 1)
5153 *p++ = '-';
5154 p += sprintf(p, "%07d", s->size);
5155
5156 #ifdef CONFIG_MEMCG_KMEM
5157 if (!is_root_cache(s))
5158 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5159 #endif
5160
5161 BUG_ON(p > name + ID_STR_LENGTH - 1);
5162 return name;
5163 }
5164
5165 static int sysfs_slab_add(struct kmem_cache *s)
5166 {
5167 int err;
5168 const char *name;
5169 int unmergeable = slab_unmergeable(s);
5170
5171 if (unmergeable) {
5172 /*
5173 * Slabcache can never be merged so we can use the name proper.
5174 * This is typically the case for debug situations. In that
5175 * case we can catch duplicate names easily.
5176 */
5177 sysfs_remove_link(&slab_kset->kobj, s->name);
5178 name = s->name;
5179 } else {
5180 /*
5181 * Create a unique name for the slab as a target
5182 * for the symlinks.
5183 */
5184 name = create_unique_id(s);
5185 }
5186
5187 s->kobj.kset = slab_kset;
5188 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5189 if (err) {
5190 kobject_put(&s->kobj);
5191 return err;
5192 }
5193
5194 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5195 if (err) {
5196 kobject_del(&s->kobj);
5197 kobject_put(&s->kobj);
5198 return err;
5199 }
5200 kobject_uevent(&s->kobj, KOBJ_ADD);
5201 if (!unmergeable) {
5202 /* Setup first alias */
5203 sysfs_slab_alias(s, s->name);
5204 kfree(name);
5205 }
5206 return 0;
5207 }
5208
5209 static void sysfs_slab_remove(struct kmem_cache *s)
5210 {
5211 if (slab_state < FULL)
5212 /*
5213 * Sysfs has not been setup yet so no need to remove the
5214 * cache from sysfs.
5215 */
5216 return;
5217
5218 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5219 kobject_del(&s->kobj);
5220 kobject_put(&s->kobj);
5221 }
5222
5223 /*
5224 * Need to buffer aliases during bootup until sysfs becomes
5225 * available lest we lose that information.
5226 */
5227 struct saved_alias {
5228 struct kmem_cache *s;
5229 const char *name;
5230 struct saved_alias *next;
5231 };
5232
5233 static struct saved_alias *alias_list;
5234
5235 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5236 {
5237 struct saved_alias *al;
5238
5239 if (slab_state == FULL) {
5240 /*
5241 * If we have a leftover link then remove it.
5242 */
5243 sysfs_remove_link(&slab_kset->kobj, name);
5244 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5245 }
5246
5247 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5248 if (!al)
5249 return -ENOMEM;
5250
5251 al->s = s;
5252 al->name = name;
5253 al->next = alias_list;
5254 alias_list = al;
5255 return 0;
5256 }
5257
5258 static int __init slab_sysfs_init(void)
5259 {
5260 struct kmem_cache *s;
5261 int err;
5262
5263 mutex_lock(&slab_mutex);
5264
5265 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5266 if (!slab_kset) {
5267 mutex_unlock(&slab_mutex);
5268 printk(KERN_ERR "Cannot register slab subsystem.\n");
5269 return -ENOSYS;
5270 }
5271
5272 slab_state = FULL;
5273
5274 list_for_each_entry(s, &slab_caches, list) {
5275 err = sysfs_slab_add(s);
5276 if (err)
5277 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5278 " to sysfs\n", s->name);
5279 }
5280
5281 while (alias_list) {
5282 struct saved_alias *al = alias_list;
5283
5284 alias_list = alias_list->next;
5285 err = sysfs_slab_alias(al->s, al->name);
5286 if (err)
5287 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5288 " %s to sysfs\n", al->name);
5289 kfree(al);
5290 }
5291
5292 mutex_unlock(&slab_mutex);
5293 resiliency_test();
5294 return 0;
5295 }
5296
5297 __initcall(slab_sysfs_init);
5298 #endif /* CONFIG_SYSFS */
5299
5300 /*
5301 * The /proc/slabinfo ABI
5302 */
5303 #ifdef CONFIG_SLABINFO
5304 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5305 {
5306 unsigned long nr_partials = 0;
5307 unsigned long nr_slabs = 0;
5308 unsigned long nr_objs = 0;
5309 unsigned long nr_free = 0;
5310 int node;
5311
5312 for_each_online_node(node) {
5313 struct kmem_cache_node *n = get_node(s, node);
5314
5315 if (!n)
5316 continue;
5317
5318 nr_partials += n->nr_partial;
5319 nr_slabs += atomic_long_read(&n->nr_slabs);
5320 nr_objs += atomic_long_read(&n->total_objects);
5321 nr_free += count_partial(n, count_free);
5322 }
5323
5324 sinfo->active_objs = nr_objs - nr_free;
5325 sinfo->num_objs = nr_objs;
5326 sinfo->active_slabs = nr_slabs;
5327 sinfo->num_slabs = nr_slabs;
5328 sinfo->objects_per_slab = oo_objects(s->oo);
5329 sinfo->cache_order = oo_order(s->oo);
5330 }
5331
5332 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5333 {
5334 }
5335
5336 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5337 size_t count, loff_t *ppos)
5338 {
5339 return -EIO;
5340 }
5341 #endif /* CONFIG_SLABINFO */