Merge branch 'sh/nommu' into sh-latest
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32
33 #include <trace/events/kmem.h>
34
35 /*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136
137 /*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141 #define MIN_PARTIAL 5
142
143 /*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148 #define MAX_PARTIAL 10
149
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153 /*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160 /*
161 * Set of flags that will prevent slab merging
162 */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178 static int kmem_size = sizeof(struct kmem_cache);
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
190
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194
195 /*
196 * Tracking user of a slab.
197 */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207 };
208
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 kfree(s->name);
223 kfree(s);
224 }
225
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 int slab_is_available(void)
240 {
241 return slab_state >= UP;
242 }
243
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 return s->node[node];
247 }
248
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252 {
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return *(void **)(object + s->offset);
270 }
271
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 void *p;
275
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 return (p - addr) / s->size;
298 }
299
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310 #endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322 }
323
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 return ((PAGE_SIZE << order) - reserved) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337 }
338
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist, &page->counters,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376 #endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
394
395 return 0;
396 }
397
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402 {
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist, &page->counters,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410 #endif
411 {
412 unsigned long flags;
413
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return 0;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451 }
452
453 /*
454 * Debug settings:
455 */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464
465 /*
466 * Object debugging
467 */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
472 }
473
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476 {
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485 }
486
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
489 {
490 struct track *p = get_track(s, object, alloc);
491
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517 }
518
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527
528 static void print_track(const char *s, struct track *t)
529 {
530 if (!t->addr)
531 return;
532
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544 #endif
545 }
546
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555
556 static void print_page_info(struct page *page)
557 {
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
560
561 }
562
563 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564 {
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
576 }
577
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 unsigned int off; /* Offset of last byte */
592 u8 *addr = page_address(page);
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
602 print_section("Bytes b4 ", p - 16, 16);
603
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
606 if (s->flags & SLAB_RED_ZONE)
607 print_section("Redzone ", p + s->objsize,
608 s->inuse - s->objsize);
609
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
615 if (s->flags & SLAB_STORE_USER)
616 off += 2 * sizeof(struct track);
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
620 print_section("Padding ", p + off, s->size - off);
621
622 dump_stack();
623 }
624
625 static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627 {
628 slab_bug(s, "%s", reason);
629 print_trailer(s, page, object);
630 }
631
632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
633 {
634 va_list args;
635 char buf[100];
636
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
639 va_end(args);
640 slab_bug(s, "%s", buf);
641 print_page_info(page);
642 dump_stack();
643 }
644
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
651 p[s->objsize - 1] = POISON_END;
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
655 memset(p + s->objsize, val, s->inuse - s->objsize);
656 }
657
658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660 {
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663 }
664
665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
667 u8 *start, unsigned int value, unsigned int bytes)
668 {
669 u8 *fault;
670 u8 *end;
671
672 fault = memchr_inv(start, value, bytes);
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
687 }
688
689 /*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
696 *
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
700 * object + s->objsize
701 * Padding to reach word boundary. This is also used for Redzoning.
702 * Padding is extended by another word if Redzoning is enabled and
703 * objsize == inuse.
704 *
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
709 * Meta data starts here.
710 *
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
713 * C. Padding to reach required alignment boundary or at mininum
714 * one word if debugging is on to be able to detect writes
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
718 *
719 * object + s->size
720 * Nothing is used beyond s->size.
721 *
722 * If slabcaches are merged then the objsize and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
724 * may be used with merged slabcaches.
725 */
726
727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
744 }
745
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache *s, struct page *page)
748 {
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
758 start = page_address(page);
759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 end = start + length;
761 remainder = length % s->size;
762 if (!remainder)
763 return 1;
764
765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772 print_section("Padding ", end - remainder, remainder);
773
774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775 return 0;
776 }
777
778 static int check_object(struct kmem_cache *s, struct page *page,
779 void *object, u8 val)
780 {
781 u8 *p = object;
782 u8 *endobject = object + s->objsize;
783
784 if (s->flags & SLAB_RED_ZONE) {
785 if (!check_bytes_and_report(s, page, object, "Redzone",
786 endobject, val, s->inuse - s->objsize))
787 return 0;
788 } else {
789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
790 check_bytes_and_report(s, page, p, "Alignment padding",
791 endobject, POISON_INUSE, s->inuse - s->objsize);
792 }
793 }
794
795 if (s->flags & SLAB_POISON) {
796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 (!check_bytes_and_report(s, page, p, "Poison", p,
798 POISON_FREE, s->objsize - 1) ||
799 !check_bytes_and_report(s, page, p, "Poison",
800 p + s->objsize - 1, POISON_END, 1)))
801 return 0;
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
808 if (!s->offset && val == SLUB_RED_ACTIVE)
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
819 * No choice but to zap it and thus lose the remainder
820 * of the free objects in this slab. May cause
821 * another error because the object count is now wrong.
822 */
823 set_freepointer(s, p, NULL);
824 return 0;
825 }
826 return 1;
827 }
828
829 static int check_slab(struct kmem_cache *s, struct page *page)
830 {
831 int maxobj;
832
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
836 slab_err(s, page, "Not a valid slab page");
837 return 0;
838 }
839
840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
847 slab_err(s, page, "inuse %u > max %u",
848 s->name, page->inuse, page->objects);
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854 }
855
856 /*
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
859 */
860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861 {
862 int nr = 0;
863 void *fp;
864 void *object = NULL;
865 unsigned long max_objects;
866
867 fp = page->freelist;
868 while (fp && nr <= page->objects) {
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
875 set_freepointer(s, object, NULL);
876 break;
877 } else {
878 slab_err(s, page, "Freepointer corrupt");
879 page->freelist = NULL;
880 page->inuse = page->objects;
881 slab_fix(s, "Freelist cleared");
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
901 if (page->inuse != page->objects - nr) {
902 slab_err(s, page, "Wrong object count. Counter is %d but "
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
905 slab_fix(s, "Object count adjusted.");
906 }
907 return search == NULL;
908 }
909
910 static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
912 {
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
921 print_section("Object ", (void *)object, s->objsize);
922
923 dump_stack();
924 }
925 }
926
927 /*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932 {
933 flags &= gfp_allowed_mask;
934 lockdep_trace_alloc(flags);
935 might_sleep_if(flags & __GFP_WAIT);
936
937 return should_failslab(s->objsize, flags, s->flags);
938 }
939
940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941 {
942 flags &= gfp_allowed_mask;
943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
945 }
946
947 static inline void slab_free_hook(struct kmem_cache *s, void *x)
948 {
949 kmemleak_free_recursive(x, s->flags);
950
951 /*
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
955 */
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 {
958 unsigned long flags;
959
960 local_irq_save(flags);
961 kmemcheck_slab_free(s, x, s->objsize);
962 debug_check_no_locks_freed(x, s->objsize);
963 local_irq_restore(flags);
964 }
965 #endif
966 if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 debug_check_no_obj_freed(x, s->objsize);
968 }
969
970 /*
971 * Tracking of fully allocated slabs for debugging purposes.
972 *
973 * list_lock must be held.
974 */
975 static void add_full(struct kmem_cache *s,
976 struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 list_add(&page->lru, &n->full);
982 }
983
984 /*
985 * list_lock must be held.
986 */
987 static void remove_full(struct kmem_cache *s, struct page *page)
988 {
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
991
992 list_del(&page->lru);
993 }
994
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 return atomic_long_read(&n->nr_slabs);
1001 }
1002
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 return atomic_long_read(&n->nr_slabs);
1006 }
1007
1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 /*
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1017 */
1018 if (n) {
1019 atomic_long_inc(&n->nr_slabs);
1020 atomic_long_add(objects, &n->total_objects);
1021 }
1022 }
1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 atomic_long_dec(&n->nr_slabs);
1028 atomic_long_sub(objects, &n->total_objects);
1029 }
1030
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 void *object)
1034 {
1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 return;
1037
1038 init_object(s, object, SLUB_RED_INACTIVE);
1039 init_tracking(s, object);
1040 }
1041
1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043 void *object, unsigned long addr)
1044 {
1045 if (!check_slab(s, page))
1046 goto bad;
1047
1048 if (!check_valid_pointer(s, page, object)) {
1049 object_err(s, page, object, "Freelist Pointer check fails");
1050 goto bad;
1051 }
1052
1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1054 goto bad;
1055
1056 /* Success perform special debug activities for allocs */
1057 if (s->flags & SLAB_STORE_USER)
1058 set_track(s, object, TRACK_ALLOC, addr);
1059 trace(s, page, object, 1);
1060 init_object(s, object, SLUB_RED_ACTIVE);
1061 return 1;
1062
1063 bad:
1064 if (PageSlab(page)) {
1065 /*
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
1068 * as used avoids touching the remaining objects.
1069 */
1070 slab_fix(s, "Marking all objects used");
1071 page->inuse = page->objects;
1072 page->freelist = NULL;
1073 }
1074 return 0;
1075 }
1076
1077 static noinline int free_debug_processing(struct kmem_cache *s,
1078 struct page *page, void *object, unsigned long addr)
1079 {
1080 unsigned long flags;
1081 int rc = 0;
1082
1083 local_irq_save(flags);
1084 slab_lock(page);
1085
1086 if (!check_slab(s, page))
1087 goto fail;
1088
1089 if (!check_valid_pointer(s, page, object)) {
1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
1095 object_err(s, page, object, "Object already free");
1096 goto fail;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 goto out;
1101
1102 if (unlikely(s != page->slab)) {
1103 if (!PageSlab(page)) {
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1106 } else if (!page->slab) {
1107 printk(KERN_ERR
1108 "SLUB <none>: no slab for object 0x%p.\n",
1109 object);
1110 dump_stack();
1111 } else
1112 object_err(s, page, object,
1113 "page slab pointer corrupt.");
1114 goto fail;
1115 }
1116
1117 if (s->flags & SLAB_STORE_USER)
1118 set_track(s, object, TRACK_FREE, addr);
1119 trace(s, page, object, 0);
1120 init_object(s, object, SLUB_RED_INACTIVE);
1121 rc = 1;
1122 out:
1123 slab_unlock(page);
1124 local_irq_restore(flags);
1125 return rc;
1126
1127 fail:
1128 slab_fix(s, "Object at 0x%p not freed", object);
1129 goto out;
1130 }
1131
1132 static int __init setup_slub_debug(char *str)
1133 {
1134 slub_debug = DEBUG_DEFAULT_FLAGS;
1135 if (*str++ != '=' || !*str)
1136 /*
1137 * No options specified. Switch on full debugging.
1138 */
1139 goto out;
1140
1141 if (*str == ',')
1142 /*
1143 * No options but restriction on slabs. This means full
1144 * debugging for slabs matching a pattern.
1145 */
1146 goto check_slabs;
1147
1148 if (tolower(*str) == 'o') {
1149 /*
1150 * Avoid enabling debugging on caches if its minimum order
1151 * would increase as a result.
1152 */
1153 disable_higher_order_debug = 1;
1154 goto out;
1155 }
1156
1157 slub_debug = 0;
1158 if (*str == '-')
1159 /*
1160 * Switch off all debugging measures.
1161 */
1162 goto out;
1163
1164 /*
1165 * Determine which debug features should be switched on
1166 */
1167 for (; *str && *str != ','; str++) {
1168 switch (tolower(*str)) {
1169 case 'f':
1170 slub_debug |= SLAB_DEBUG_FREE;
1171 break;
1172 case 'z':
1173 slub_debug |= SLAB_RED_ZONE;
1174 break;
1175 case 'p':
1176 slub_debug |= SLAB_POISON;
1177 break;
1178 case 'u':
1179 slub_debug |= SLAB_STORE_USER;
1180 break;
1181 case 't':
1182 slub_debug |= SLAB_TRACE;
1183 break;
1184 case 'a':
1185 slub_debug |= SLAB_FAILSLAB;
1186 break;
1187 default:
1188 printk(KERN_ERR "slub_debug option '%c' "
1189 "unknown. skipped\n", *str);
1190 }
1191 }
1192
1193 check_slabs:
1194 if (*str == ',')
1195 slub_debug_slabs = str + 1;
1196 out:
1197 return 1;
1198 }
1199
1200 __setup("slub_debug", setup_slub_debug);
1201
1202 static unsigned long kmem_cache_flags(unsigned long objsize,
1203 unsigned long flags, const char *name,
1204 void (*ctor)(void *))
1205 {
1206 /*
1207 * Enable debugging if selected on the kernel commandline.
1208 */
1209 if (slub_debug && (!slub_debug_slabs ||
1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1211 flags |= slub_debug;
1212
1213 return flags;
1214 }
1215 #else
1216 static inline void setup_object_debug(struct kmem_cache *s,
1217 struct page *page, void *object) {}
1218
1219 static inline int alloc_debug_processing(struct kmem_cache *s,
1220 struct page *page, void *object, unsigned long addr) { return 0; }
1221
1222 static inline int free_debug_processing(struct kmem_cache *s,
1223 struct page *page, void *object, unsigned long addr) { return 0; }
1224
1225 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227 static inline int check_object(struct kmem_cache *s, struct page *page,
1228 void *object, u8 val) { return 1; }
1229 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
1231 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1232 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1233 unsigned long flags, const char *name,
1234 void (*ctor)(void *))
1235 {
1236 return flags;
1237 }
1238 #define slub_debug 0
1239
1240 #define disable_higher_order_debug 0
1241
1242 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
1244 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
1246 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250
1251 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
1259 #endif /* CONFIG_SLUB_DEBUG */
1260
1261 /*
1262 * Slab allocation and freeing
1263 */
1264 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266 {
1267 int order = oo_order(oo);
1268
1269 flags |= __GFP_NOTRACK;
1270
1271 if (node == NUMA_NO_NODE)
1272 return alloc_pages(flags, order);
1273 else
1274 return alloc_pages_exact_node(node, flags, order);
1275 }
1276
1277 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278 {
1279 struct page *page;
1280 struct kmem_cache_order_objects oo = s->oo;
1281 gfp_t alloc_gfp;
1282
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
1288 flags |= s->allocflags;
1289
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
1304
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
1307 }
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_disable();
1311
1312 if (!page)
1313 return NULL;
1314
1315 if (kmemcheck_enabled
1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1317 int pages = 1 << oo_order(oo);
1318
1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1320
1321 /*
1322 * Objects from caches that have a constructor don't get
1323 * cleared when they're allocated, so we need to do it here.
1324 */
1325 if (s->ctor)
1326 kmemcheck_mark_uninitialized_pages(page, pages);
1327 else
1328 kmemcheck_mark_unallocated_pages(page, pages);
1329 }
1330
1331 page->objects = oo_objects(oo);
1332 mod_zone_page_state(page_zone(page),
1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1335 1 << oo_order(oo));
1336
1337 return page;
1338 }
1339
1340 static void setup_object(struct kmem_cache *s, struct page *page,
1341 void *object)
1342 {
1343 setup_object_debug(s, page, object);
1344 if (unlikely(s->ctor))
1345 s->ctor(object);
1346 }
1347
1348 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1349 {
1350 struct page *page;
1351 void *start;
1352 void *last;
1353 void *p;
1354
1355 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1356
1357 page = allocate_slab(s,
1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1359 if (!page)
1360 goto out;
1361
1362 inc_slabs_node(s, page_to_nid(page), page->objects);
1363 page->slab = s;
1364 page->flags |= 1 << PG_slab;
1365
1366 start = page_address(page);
1367
1368 if (unlikely(s->flags & SLAB_POISON))
1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1370
1371 last = start;
1372 for_each_object(p, s, start, page->objects) {
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
1378 set_freepointer(s, last, NULL);
1379
1380 page->freelist = start;
1381 page->inuse = page->objects;
1382 page->frozen = 1;
1383 out:
1384 return page;
1385 }
1386
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1388 {
1389 int order = compound_order(page);
1390 int pages = 1 << order;
1391
1392 if (kmem_cache_debug(s)) {
1393 void *p;
1394
1395 slab_pad_check(s, page);
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
1398 check_object(s, page, p, SLUB_RED_INACTIVE);
1399 }
1400
1401 kmemcheck_free_shadow(page, compound_order(page));
1402
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 -pages);
1407
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1410 if (current->reclaim_state)
1411 current->reclaim_state->reclaimed_slab += pages;
1412 __free_pages(page, order);
1413 }
1414
1415 #define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417
1418 static void rcu_free_slab(struct rcu_head *h)
1419 {
1420 struct page *page;
1421
1422 if (need_reserve_slab_rcu)
1423 page = virt_to_head_page(h);
1424 else
1425 page = container_of((struct list_head *)h, struct page, lru);
1426
1427 __free_slab(page->slab, page);
1428 }
1429
1430 static void free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 struct rcu_head *head;
1434
1435 if (need_reserve_slab_rcu) {
1436 int order = compound_order(page);
1437 int offset = (PAGE_SIZE << order) - s->reserved;
1438
1439 VM_BUG_ON(s->reserved != sizeof(*head));
1440 head = page_address(page) + offset;
1441 } else {
1442 /*
1443 * RCU free overloads the RCU head over the LRU
1444 */
1445 head = (void *)&page->lru;
1446 }
1447
1448 call_rcu(head, rcu_free_slab);
1449 } else
1450 __free_slab(s, page);
1451 }
1452
1453 static void discard_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 dec_slabs_node(s, page_to_nid(page), page->objects);
1456 free_slab(s, page);
1457 }
1458
1459 /*
1460 * Management of partially allocated slabs.
1461 *
1462 * list_lock must be held.
1463 */
1464 static inline void add_partial(struct kmem_cache_node *n,
1465 struct page *page, int tail)
1466 {
1467 n->nr_partial++;
1468 if (tail == DEACTIVATE_TO_TAIL)
1469 list_add_tail(&page->lru, &n->partial);
1470 else
1471 list_add(&page->lru, &n->partial);
1472 }
1473
1474 /*
1475 * list_lock must be held.
1476 */
1477 static inline void remove_partial(struct kmem_cache_node *n,
1478 struct page *page)
1479 {
1480 list_del(&page->lru);
1481 n->nr_partial--;
1482 }
1483
1484 /*
1485 * Lock slab, remove from the partial list and put the object into the
1486 * per cpu freelist.
1487 *
1488 * Returns a list of objects or NULL if it fails.
1489 *
1490 * Must hold list_lock.
1491 */
1492 static inline void *acquire_slab(struct kmem_cache *s,
1493 struct kmem_cache_node *n, struct page *page,
1494 int mode)
1495 {
1496 void *freelist;
1497 unsigned long counters;
1498 struct page new;
1499
1500 /*
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1504 */
1505 do {
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
1509 if (mode)
1510 new.inuse = page->objects;
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 } while (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 NULL, new.counters,
1518 "lock and freeze"));
1519
1520 remove_partial(n, page);
1521 return freelist;
1522 }
1523
1524 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1525
1526 /*
1527 * Try to allocate a partial slab from a specific node.
1528 */
1529 static void *get_partial_node(struct kmem_cache *s,
1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1531 {
1532 struct page *page, *page2;
1533 void *object = NULL;
1534
1535 /*
1536 * Racy check. If we mistakenly see no partial slabs then we
1537 * just allocate an empty slab. If we mistakenly try to get a
1538 * partial slab and there is none available then get_partials()
1539 * will return NULL.
1540 */
1541 if (!n || !n->nr_partial)
1542 return NULL;
1543
1544 spin_lock(&n->list_lock);
1545 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1546 void *t = acquire_slab(s, n, page, object == NULL);
1547 int available;
1548
1549 if (!t)
1550 break;
1551
1552 if (!object) {
1553 c->page = page;
1554 c->node = page_to_nid(page);
1555 stat(s, ALLOC_FROM_PARTIAL);
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
1559 page->freelist = t;
1560 available = put_cpu_partial(s, page, 0);
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
1565 }
1566 spin_unlock(&n->list_lock);
1567 return object;
1568 }
1569
1570 /*
1571 * Get a page from somewhere. Search in increasing NUMA distances.
1572 */
1573 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574 struct kmem_cache_cpu *c)
1575 {
1576 #ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
1578 struct zoneref *z;
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
1581 void *object;
1582
1583 /*
1584 * The defrag ratio allows a configuration of the tradeoffs between
1585 * inter node defragmentation and node local allocations. A lower
1586 * defrag_ratio increases the tendency to do local allocations
1587 * instead of attempting to obtain partial slabs from other nodes.
1588 *
1589 * If the defrag_ratio is set to 0 then kmalloc() always
1590 * returns node local objects. If the ratio is higher then kmalloc()
1591 * may return off node objects because partial slabs are obtained
1592 * from other nodes and filled up.
1593 *
1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1595 * defrag_ratio = 1000) then every (well almost) allocation will
1596 * first attempt to defrag slab caches on other nodes. This means
1597 * scanning over all nodes to look for partial slabs which may be
1598 * expensive if we do it every time we are trying to find a slab
1599 * with available objects.
1600 */
1601 if (!s->remote_node_defrag_ratio ||
1602 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1603 return NULL;
1604
1605 get_mems_allowed();
1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1608 struct kmem_cache_node *n;
1609
1610 n = get_node(s, zone_to_nid(zone));
1611
1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1613 n->nr_partial > s->min_partial) {
1614 object = get_partial_node(s, n, c);
1615 if (object) {
1616 put_mems_allowed();
1617 return object;
1618 }
1619 }
1620 }
1621 put_mems_allowed();
1622 #endif
1623 return NULL;
1624 }
1625
1626 /*
1627 * Get a partial page, lock it and return it.
1628 */
1629 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1630 struct kmem_cache_cpu *c)
1631 {
1632 void *object;
1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1634
1635 object = get_partial_node(s, get_node(s, searchnode), c);
1636 if (object || node != NUMA_NO_NODE)
1637 return object;
1638
1639 return get_any_partial(s, flags, c);
1640 }
1641
1642 #ifdef CONFIG_PREEMPT
1643 /*
1644 * Calculate the next globally unique transaction for disambiguiation
1645 * during cmpxchg. The transactions start with the cpu number and are then
1646 * incremented by CONFIG_NR_CPUS.
1647 */
1648 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1649 #else
1650 /*
1651 * No preemption supported therefore also no need to check for
1652 * different cpus.
1653 */
1654 #define TID_STEP 1
1655 #endif
1656
1657 static inline unsigned long next_tid(unsigned long tid)
1658 {
1659 return tid + TID_STEP;
1660 }
1661
1662 static inline unsigned int tid_to_cpu(unsigned long tid)
1663 {
1664 return tid % TID_STEP;
1665 }
1666
1667 static inline unsigned long tid_to_event(unsigned long tid)
1668 {
1669 return tid / TID_STEP;
1670 }
1671
1672 static inline unsigned int init_tid(int cpu)
1673 {
1674 return cpu;
1675 }
1676
1677 static inline void note_cmpxchg_failure(const char *n,
1678 const struct kmem_cache *s, unsigned long tid)
1679 {
1680 #ifdef SLUB_DEBUG_CMPXCHG
1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1682
1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1684
1685 #ifdef CONFIG_PREEMPT
1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1687 printk("due to cpu change %d -> %d\n",
1688 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1689 else
1690 #endif
1691 if (tid_to_event(tid) != tid_to_event(actual_tid))
1692 printk("due to cpu running other code. Event %ld->%ld\n",
1693 tid_to_event(tid), tid_to_event(actual_tid));
1694 else
1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1696 actual_tid, tid, next_tid(tid));
1697 #endif
1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1699 }
1700
1701 void init_kmem_cache_cpus(struct kmem_cache *s)
1702 {
1703 int cpu;
1704
1705 for_each_possible_cpu(cpu)
1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1707 }
1708
1709 /*
1710 * Remove the cpu slab
1711 */
1712 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1713 {
1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1715 struct page *page = c->page;
1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1717 int lock = 0;
1718 enum slab_modes l = M_NONE, m = M_NONE;
1719 void *freelist;
1720 void *nextfree;
1721 int tail = DEACTIVATE_TO_HEAD;
1722 struct page new;
1723 struct page old;
1724
1725 if (page->freelist) {
1726 stat(s, DEACTIVATE_REMOTE_FREES);
1727 tail = DEACTIVATE_TO_TAIL;
1728 }
1729
1730 c->tid = next_tid(c->tid);
1731 c->page = NULL;
1732 freelist = c->freelist;
1733 c->freelist = NULL;
1734
1735 /*
1736 * Stage one: Free all available per cpu objects back
1737 * to the page freelist while it is still frozen. Leave the
1738 * last one.
1739 *
1740 * There is no need to take the list->lock because the page
1741 * is still frozen.
1742 */
1743 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 void *prior;
1745 unsigned long counters;
1746
1747 do {
1748 prior = page->freelist;
1749 counters = page->counters;
1750 set_freepointer(s, freelist, prior);
1751 new.counters = counters;
1752 new.inuse--;
1753 VM_BUG_ON(!new.frozen);
1754
1755 } while (!__cmpxchg_double_slab(s, page,
1756 prior, counters,
1757 freelist, new.counters,
1758 "drain percpu freelist"));
1759
1760 freelist = nextfree;
1761 }
1762
1763 /*
1764 * Stage two: Ensure that the page is unfrozen while the
1765 * list presence reflects the actual number of objects
1766 * during unfreeze.
1767 *
1768 * We setup the list membership and then perform a cmpxchg
1769 * with the count. If there is a mismatch then the page
1770 * is not unfrozen but the page is on the wrong list.
1771 *
1772 * Then we restart the process which may have to remove
1773 * the page from the list that we just put it on again
1774 * because the number of objects in the slab may have
1775 * changed.
1776 */
1777 redo:
1778
1779 old.freelist = page->freelist;
1780 old.counters = page->counters;
1781 VM_BUG_ON(!old.frozen);
1782
1783 /* Determine target state of the slab */
1784 new.counters = old.counters;
1785 if (freelist) {
1786 new.inuse--;
1787 set_freepointer(s, freelist, old.freelist);
1788 new.freelist = freelist;
1789 } else
1790 new.freelist = old.freelist;
1791
1792 new.frozen = 0;
1793
1794 if (!new.inuse && n->nr_partial > s->min_partial)
1795 m = M_FREE;
1796 else if (new.freelist) {
1797 m = M_PARTIAL;
1798 if (!lock) {
1799 lock = 1;
1800 /*
1801 * Taking the spinlock removes the possiblity
1802 * that acquire_slab() will see a slab page that
1803 * is frozen
1804 */
1805 spin_lock(&n->list_lock);
1806 }
1807 } else {
1808 m = M_FULL;
1809 if (kmem_cache_debug(s) && !lock) {
1810 lock = 1;
1811 /*
1812 * This also ensures that the scanning of full
1813 * slabs from diagnostic functions will not see
1814 * any frozen slabs.
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 }
1819
1820 if (l != m) {
1821
1822 if (l == M_PARTIAL)
1823
1824 remove_partial(n, page);
1825
1826 else if (l == M_FULL)
1827
1828 remove_full(s, page);
1829
1830 if (m == M_PARTIAL) {
1831
1832 add_partial(n, page, tail);
1833 stat(s, tail);
1834
1835 } else if (m == M_FULL) {
1836
1837 stat(s, DEACTIVATE_FULL);
1838 add_full(s, n, page);
1839
1840 }
1841 }
1842
1843 l = m;
1844 if (!__cmpxchg_double_slab(s, page,
1845 old.freelist, old.counters,
1846 new.freelist, new.counters,
1847 "unfreezing slab"))
1848 goto redo;
1849
1850 if (lock)
1851 spin_unlock(&n->list_lock);
1852
1853 if (m == M_FREE) {
1854 stat(s, DEACTIVATE_EMPTY);
1855 discard_slab(s, page);
1856 stat(s, FREE_SLAB);
1857 }
1858 }
1859
1860 /* Unfreeze all the cpu partial slabs */
1861 static void unfreeze_partials(struct kmem_cache *s)
1862 {
1863 struct kmem_cache_node *n = NULL;
1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1865 struct page *page, *discard_page = NULL;
1866
1867 while ((page = c->partial)) {
1868 enum slab_modes { M_PARTIAL, M_FREE };
1869 enum slab_modes l, m;
1870 struct page new;
1871 struct page old;
1872
1873 c->partial = page->next;
1874 l = M_FREE;
1875
1876 do {
1877
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
1880 VM_BUG_ON(!old.frozen);
1881
1882 new.counters = old.counters;
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1888 m = M_FREE;
1889 else {
1890 struct kmem_cache_node *n2 = get_node(s,
1891 page_to_nid(page));
1892
1893 m = M_PARTIAL;
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
1901 }
1902
1903 if (l != m) {
1904 if (l == M_PARTIAL)
1905 remove_partial(n, page);
1906 else
1907 add_partial(n, page,
1908 DEACTIVATE_TO_TAIL);
1909
1910 l = m;
1911 }
1912
1913 } while (!cmpxchg_double_slab(s, page,
1914 old.freelist, old.counters,
1915 new.freelist, new.counters,
1916 "unfreezing slab"));
1917
1918 if (m == M_FREE) {
1919 page->next = discard_page;
1920 discard_page = page;
1921 }
1922 }
1923
1924 if (n)
1925 spin_unlock(&n->list_lock);
1926
1927 while (discard_page) {
1928 page = discard_page;
1929 discard_page = discard_page->next;
1930
1931 stat(s, DEACTIVATE_EMPTY);
1932 discard_slab(s, page);
1933 stat(s, FREE_SLAB);
1934 }
1935 }
1936
1937 /*
1938 * Put a page that was just frozen (in __slab_free) into a partial page
1939 * slot if available. This is done without interrupts disabled and without
1940 * preemption disabled. The cmpxchg is racy and may put the partial page
1941 * onto a random cpus partial slot.
1942 *
1943 * If we did not find a slot then simply move all the partials to the
1944 * per node partial list.
1945 */
1946 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1947 {
1948 struct page *oldpage;
1949 int pages;
1950 int pobjects;
1951
1952 do {
1953 pages = 0;
1954 pobjects = 0;
1955 oldpage = this_cpu_read(s->cpu_slab->partial);
1956
1957 if (oldpage) {
1958 pobjects = oldpage->pobjects;
1959 pages = oldpage->pages;
1960 if (drain && pobjects > s->cpu_partial) {
1961 unsigned long flags;
1962 /*
1963 * partial array is full. Move the existing
1964 * set to the per node partial list.
1965 */
1966 local_irq_save(flags);
1967 unfreeze_partials(s);
1968 local_irq_restore(flags);
1969 pobjects = 0;
1970 pages = 0;
1971 }
1972 }
1973
1974 pages++;
1975 pobjects += page->objects - page->inuse;
1976
1977 page->pages = pages;
1978 page->pobjects = pobjects;
1979 page->next = oldpage;
1980
1981 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1982 stat(s, CPU_PARTIAL_FREE);
1983 return pobjects;
1984 }
1985
1986 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1987 {
1988 stat(s, CPUSLAB_FLUSH);
1989 deactivate_slab(s, c);
1990 }
1991
1992 /*
1993 * Flush cpu slab.
1994 *
1995 * Called from IPI handler with interrupts disabled.
1996 */
1997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1998 {
1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2000
2001 if (likely(c)) {
2002 if (c->page)
2003 flush_slab(s, c);
2004
2005 unfreeze_partials(s);
2006 }
2007 }
2008
2009 static void flush_cpu_slab(void *d)
2010 {
2011 struct kmem_cache *s = d;
2012
2013 __flush_cpu_slab(s, smp_processor_id());
2014 }
2015
2016 static void flush_all(struct kmem_cache *s)
2017 {
2018 on_each_cpu(flush_cpu_slab, s, 1);
2019 }
2020
2021 /*
2022 * Check if the objects in a per cpu structure fit numa
2023 * locality expectations.
2024 */
2025 static inline int node_match(struct kmem_cache_cpu *c, int node)
2026 {
2027 #ifdef CONFIG_NUMA
2028 if (node != NUMA_NO_NODE && c->node != node)
2029 return 0;
2030 #endif
2031 return 1;
2032 }
2033
2034 static int count_free(struct page *page)
2035 {
2036 return page->objects - page->inuse;
2037 }
2038
2039 static unsigned long count_partial(struct kmem_cache_node *n,
2040 int (*get_count)(struct page *))
2041 {
2042 unsigned long flags;
2043 unsigned long x = 0;
2044 struct page *page;
2045
2046 spin_lock_irqsave(&n->list_lock, flags);
2047 list_for_each_entry(page, &n->partial, lru)
2048 x += get_count(page);
2049 spin_unlock_irqrestore(&n->list_lock, flags);
2050 return x;
2051 }
2052
2053 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2054 {
2055 #ifdef CONFIG_SLUB_DEBUG
2056 return atomic_long_read(&n->total_objects);
2057 #else
2058 return 0;
2059 #endif
2060 }
2061
2062 static noinline void
2063 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2064 {
2065 int node;
2066
2067 printk(KERN_WARNING
2068 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2069 nid, gfpflags);
2070 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2071 "default order: %d, min order: %d\n", s->name, s->objsize,
2072 s->size, oo_order(s->oo), oo_order(s->min));
2073
2074 if (oo_order(s->min) > get_order(s->objsize))
2075 printk(KERN_WARNING " %s debugging increased min order, use "
2076 "slub_debug=O to disable.\n", s->name);
2077
2078 for_each_online_node(node) {
2079 struct kmem_cache_node *n = get_node(s, node);
2080 unsigned long nr_slabs;
2081 unsigned long nr_objs;
2082 unsigned long nr_free;
2083
2084 if (!n)
2085 continue;
2086
2087 nr_free = count_partial(n, count_free);
2088 nr_slabs = node_nr_slabs(n);
2089 nr_objs = node_nr_objs(n);
2090
2091 printk(KERN_WARNING
2092 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2093 node, nr_slabs, nr_objs, nr_free);
2094 }
2095 }
2096
2097 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2098 int node, struct kmem_cache_cpu **pc)
2099 {
2100 void *object;
2101 struct kmem_cache_cpu *c;
2102 struct page *page = new_slab(s, flags, node);
2103
2104 if (page) {
2105 c = __this_cpu_ptr(s->cpu_slab);
2106 if (c->page)
2107 flush_slab(s, c);
2108
2109 /*
2110 * No other reference to the page yet so we can
2111 * muck around with it freely without cmpxchg
2112 */
2113 object = page->freelist;
2114 page->freelist = NULL;
2115
2116 stat(s, ALLOC_SLAB);
2117 c->node = page_to_nid(page);
2118 c->page = page;
2119 *pc = c;
2120 } else
2121 object = NULL;
2122
2123 return object;
2124 }
2125
2126 /*
2127 * Slow path. The lockless freelist is empty or we need to perform
2128 * debugging duties.
2129 *
2130 * Processing is still very fast if new objects have been freed to the
2131 * regular freelist. In that case we simply take over the regular freelist
2132 * as the lockless freelist and zap the regular freelist.
2133 *
2134 * If that is not working then we fall back to the partial lists. We take the
2135 * first element of the freelist as the object to allocate now and move the
2136 * rest of the freelist to the lockless freelist.
2137 *
2138 * And if we were unable to get a new slab from the partial slab lists then
2139 * we need to allocate a new slab. This is the slowest path since it involves
2140 * a call to the page allocator and the setup of a new slab.
2141 */
2142 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2143 unsigned long addr, struct kmem_cache_cpu *c)
2144 {
2145 void **object;
2146 unsigned long flags;
2147 struct page new;
2148 unsigned long counters;
2149
2150 local_irq_save(flags);
2151 #ifdef CONFIG_PREEMPT
2152 /*
2153 * We may have been preempted and rescheduled on a different
2154 * cpu before disabling interrupts. Need to reload cpu area
2155 * pointer.
2156 */
2157 c = this_cpu_ptr(s->cpu_slab);
2158 #endif
2159
2160 if (!c->page)
2161 goto new_slab;
2162 redo:
2163 if (unlikely(!node_match(c, node))) {
2164 stat(s, ALLOC_NODE_MISMATCH);
2165 deactivate_slab(s, c);
2166 goto new_slab;
2167 }
2168
2169 stat(s, ALLOC_SLOWPATH);
2170
2171 do {
2172 object = c->page->freelist;
2173 counters = c->page->counters;
2174 new.counters = counters;
2175 VM_BUG_ON(!new.frozen);
2176
2177 /*
2178 * If there is no object left then we use this loop to
2179 * deactivate the slab which is simple since no objects
2180 * are left in the slab and therefore we do not need to
2181 * put the page back onto the partial list.
2182 *
2183 * If there are objects left then we retrieve them
2184 * and use them to refill the per cpu queue.
2185 */
2186
2187 new.inuse = c->page->objects;
2188 new.frozen = object != NULL;
2189
2190 } while (!__cmpxchg_double_slab(s, c->page,
2191 object, counters,
2192 NULL, new.counters,
2193 "__slab_alloc"));
2194
2195 if (!object) {
2196 c->page = NULL;
2197 stat(s, DEACTIVATE_BYPASS);
2198 goto new_slab;
2199 }
2200
2201 stat(s, ALLOC_REFILL);
2202
2203 load_freelist:
2204 c->freelist = get_freepointer(s, object);
2205 c->tid = next_tid(c->tid);
2206 local_irq_restore(flags);
2207 return object;
2208
2209 new_slab:
2210
2211 if (c->partial) {
2212 c->page = c->partial;
2213 c->partial = c->page->next;
2214 c->node = page_to_nid(c->page);
2215 stat(s, CPU_PARTIAL_ALLOC);
2216 c->freelist = NULL;
2217 goto redo;
2218 }
2219
2220 /* Then do expensive stuff like retrieving pages from the partial lists */
2221 object = get_partial(s, gfpflags, node, c);
2222
2223 if (unlikely(!object)) {
2224
2225 object = new_slab_objects(s, gfpflags, node, &c);
2226
2227 if (unlikely(!object)) {
2228 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2229 slab_out_of_memory(s, gfpflags, node);
2230
2231 local_irq_restore(flags);
2232 return NULL;
2233 }
2234 }
2235
2236 if (likely(!kmem_cache_debug(s)))
2237 goto load_freelist;
2238
2239 /* Only entered in the debug case */
2240 if (!alloc_debug_processing(s, c->page, object, addr))
2241 goto new_slab; /* Slab failed checks. Next slab needed */
2242
2243 c->freelist = get_freepointer(s, object);
2244 deactivate_slab(s, c);
2245 c->node = NUMA_NO_NODE;
2246 local_irq_restore(flags);
2247 return object;
2248 }
2249
2250 /*
2251 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2252 * have the fastpath folded into their functions. So no function call
2253 * overhead for requests that can be satisfied on the fastpath.
2254 *
2255 * The fastpath works by first checking if the lockless freelist can be used.
2256 * If not then __slab_alloc is called for slow processing.
2257 *
2258 * Otherwise we can simply pick the next object from the lockless free list.
2259 */
2260 static __always_inline void *slab_alloc(struct kmem_cache *s,
2261 gfp_t gfpflags, int node, unsigned long addr)
2262 {
2263 void **object;
2264 struct kmem_cache_cpu *c;
2265 unsigned long tid;
2266
2267 if (slab_pre_alloc_hook(s, gfpflags))
2268 return NULL;
2269
2270 redo:
2271
2272 /*
2273 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2274 * enabled. We may switch back and forth between cpus while
2275 * reading from one cpu area. That does not matter as long
2276 * as we end up on the original cpu again when doing the cmpxchg.
2277 */
2278 c = __this_cpu_ptr(s->cpu_slab);
2279
2280 /*
2281 * The transaction ids are globally unique per cpu and per operation on
2282 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2283 * occurs on the right processor and that there was no operation on the
2284 * linked list in between.
2285 */
2286 tid = c->tid;
2287 barrier();
2288
2289 object = c->freelist;
2290 if (unlikely(!object || !node_match(c, node)))
2291
2292 object = __slab_alloc(s, gfpflags, node, addr, c);
2293
2294 else {
2295 /*
2296 * The cmpxchg will only match if there was no additional
2297 * operation and if we are on the right processor.
2298 *
2299 * The cmpxchg does the following atomically (without lock semantics!)
2300 * 1. Relocate first pointer to the current per cpu area.
2301 * 2. Verify that tid and freelist have not been changed
2302 * 3. If they were not changed replace tid and freelist
2303 *
2304 * Since this is without lock semantics the protection is only against
2305 * code executing on this cpu *not* from access by other cpus.
2306 */
2307 if (unlikely(!this_cpu_cmpxchg_double(
2308 s->cpu_slab->freelist, s->cpu_slab->tid,
2309 object, tid,
2310 get_freepointer_safe(s, object), next_tid(tid)))) {
2311
2312 note_cmpxchg_failure("slab_alloc", s, tid);
2313 goto redo;
2314 }
2315 stat(s, ALLOC_FASTPATH);
2316 }
2317
2318 if (unlikely(gfpflags & __GFP_ZERO) && object)
2319 memset(object, 0, s->objsize);
2320
2321 slab_post_alloc_hook(s, gfpflags, object);
2322
2323 return object;
2324 }
2325
2326 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2327 {
2328 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2329
2330 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2331
2332 return ret;
2333 }
2334 EXPORT_SYMBOL(kmem_cache_alloc);
2335
2336 #ifdef CONFIG_TRACING
2337 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2338 {
2339 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2340 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2341 return ret;
2342 }
2343 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2344
2345 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2346 {
2347 void *ret = kmalloc_order(size, flags, order);
2348 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2349 return ret;
2350 }
2351 EXPORT_SYMBOL(kmalloc_order_trace);
2352 #endif
2353
2354 #ifdef CONFIG_NUMA
2355 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2356 {
2357 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2358
2359 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2360 s->objsize, s->size, gfpflags, node);
2361
2362 return ret;
2363 }
2364 EXPORT_SYMBOL(kmem_cache_alloc_node);
2365
2366 #ifdef CONFIG_TRACING
2367 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2368 gfp_t gfpflags,
2369 int node, size_t size)
2370 {
2371 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2372
2373 trace_kmalloc_node(_RET_IP_, ret,
2374 size, s->size, gfpflags, node);
2375 return ret;
2376 }
2377 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2378 #endif
2379 #endif
2380
2381 /*
2382 * Slow patch handling. This may still be called frequently since objects
2383 * have a longer lifetime than the cpu slabs in most processing loads.
2384 *
2385 * So we still attempt to reduce cache line usage. Just take the slab
2386 * lock and free the item. If there is no additional partial page
2387 * handling required then we can return immediately.
2388 */
2389 static void __slab_free(struct kmem_cache *s, struct page *page,
2390 void *x, unsigned long addr)
2391 {
2392 void *prior;
2393 void **object = (void *)x;
2394 int was_frozen;
2395 int inuse;
2396 struct page new;
2397 unsigned long counters;
2398 struct kmem_cache_node *n = NULL;
2399 unsigned long uninitialized_var(flags);
2400
2401 stat(s, FREE_SLOWPATH);
2402
2403 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2404 return;
2405
2406 do {
2407 prior = page->freelist;
2408 counters = page->counters;
2409 set_freepointer(s, object, prior);
2410 new.counters = counters;
2411 was_frozen = new.frozen;
2412 new.inuse--;
2413 if ((!new.inuse || !prior) && !was_frozen && !n) {
2414
2415 if (!kmem_cache_debug(s) && !prior)
2416
2417 /*
2418 * Slab was on no list before and will be partially empty
2419 * We can defer the list move and instead freeze it.
2420 */
2421 new.frozen = 1;
2422
2423 else { /* Needs to be taken off a list */
2424
2425 n = get_node(s, page_to_nid(page));
2426 /*
2427 * Speculatively acquire the list_lock.
2428 * If the cmpxchg does not succeed then we may
2429 * drop the list_lock without any processing.
2430 *
2431 * Otherwise the list_lock will synchronize with
2432 * other processors updating the list of slabs.
2433 */
2434 spin_lock_irqsave(&n->list_lock, flags);
2435
2436 }
2437 }
2438 inuse = new.inuse;
2439
2440 } while (!cmpxchg_double_slab(s, page,
2441 prior, counters,
2442 object, new.counters,
2443 "__slab_free"));
2444
2445 if (likely(!n)) {
2446
2447 /*
2448 * If we just froze the page then put it onto the
2449 * per cpu partial list.
2450 */
2451 if (new.frozen && !was_frozen)
2452 put_cpu_partial(s, page, 1);
2453
2454 /*
2455 * The list lock was not taken therefore no list
2456 * activity can be necessary.
2457 */
2458 if (was_frozen)
2459 stat(s, FREE_FROZEN);
2460 return;
2461 }
2462
2463 /*
2464 * was_frozen may have been set after we acquired the list_lock in
2465 * an earlier loop. So we need to check it here again.
2466 */
2467 if (was_frozen)
2468 stat(s, FREE_FROZEN);
2469 else {
2470 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2471 goto slab_empty;
2472
2473 /*
2474 * Objects left in the slab. If it was not on the partial list before
2475 * then add it.
2476 */
2477 if (unlikely(!prior)) {
2478 remove_full(s, page);
2479 add_partial(n, page, DEACTIVATE_TO_TAIL);
2480 stat(s, FREE_ADD_PARTIAL);
2481 }
2482 }
2483 spin_unlock_irqrestore(&n->list_lock, flags);
2484 return;
2485
2486 slab_empty:
2487 if (prior) {
2488 /*
2489 * Slab on the partial list.
2490 */
2491 remove_partial(n, page);
2492 stat(s, FREE_REMOVE_PARTIAL);
2493 } else
2494 /* Slab must be on the full list */
2495 remove_full(s, page);
2496
2497 spin_unlock_irqrestore(&n->list_lock, flags);
2498 stat(s, FREE_SLAB);
2499 discard_slab(s, page);
2500 }
2501
2502 /*
2503 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2504 * can perform fastpath freeing without additional function calls.
2505 *
2506 * The fastpath is only possible if we are freeing to the current cpu slab
2507 * of this processor. This typically the case if we have just allocated
2508 * the item before.
2509 *
2510 * If fastpath is not possible then fall back to __slab_free where we deal
2511 * with all sorts of special processing.
2512 */
2513 static __always_inline void slab_free(struct kmem_cache *s,
2514 struct page *page, void *x, unsigned long addr)
2515 {
2516 void **object = (void *)x;
2517 struct kmem_cache_cpu *c;
2518 unsigned long tid;
2519
2520 slab_free_hook(s, x);
2521
2522 redo:
2523 /*
2524 * Determine the currently cpus per cpu slab.
2525 * The cpu may change afterward. However that does not matter since
2526 * data is retrieved via this pointer. If we are on the same cpu
2527 * during the cmpxchg then the free will succedd.
2528 */
2529 c = __this_cpu_ptr(s->cpu_slab);
2530
2531 tid = c->tid;
2532 barrier();
2533
2534 if (likely(page == c->page)) {
2535 set_freepointer(s, object, c->freelist);
2536
2537 if (unlikely(!this_cpu_cmpxchg_double(
2538 s->cpu_slab->freelist, s->cpu_slab->tid,
2539 c->freelist, tid,
2540 object, next_tid(tid)))) {
2541
2542 note_cmpxchg_failure("slab_free", s, tid);
2543 goto redo;
2544 }
2545 stat(s, FREE_FASTPATH);
2546 } else
2547 __slab_free(s, page, x, addr);
2548
2549 }
2550
2551 void kmem_cache_free(struct kmem_cache *s, void *x)
2552 {
2553 struct page *page;
2554
2555 page = virt_to_head_page(x);
2556
2557 slab_free(s, page, x, _RET_IP_);
2558
2559 trace_kmem_cache_free(_RET_IP_, x);
2560 }
2561 EXPORT_SYMBOL(kmem_cache_free);
2562
2563 /*
2564 * Object placement in a slab is made very easy because we always start at
2565 * offset 0. If we tune the size of the object to the alignment then we can
2566 * get the required alignment by putting one properly sized object after
2567 * another.
2568 *
2569 * Notice that the allocation order determines the sizes of the per cpu
2570 * caches. Each processor has always one slab available for allocations.
2571 * Increasing the allocation order reduces the number of times that slabs
2572 * must be moved on and off the partial lists and is therefore a factor in
2573 * locking overhead.
2574 */
2575
2576 /*
2577 * Mininum / Maximum order of slab pages. This influences locking overhead
2578 * and slab fragmentation. A higher order reduces the number of partial slabs
2579 * and increases the number of allocations possible without having to
2580 * take the list_lock.
2581 */
2582 static int slub_min_order;
2583 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2584 static int slub_min_objects;
2585
2586 /*
2587 * Merge control. If this is set then no merging of slab caches will occur.
2588 * (Could be removed. This was introduced to pacify the merge skeptics.)
2589 */
2590 static int slub_nomerge;
2591
2592 /*
2593 * Calculate the order of allocation given an slab object size.
2594 *
2595 * The order of allocation has significant impact on performance and other
2596 * system components. Generally order 0 allocations should be preferred since
2597 * order 0 does not cause fragmentation in the page allocator. Larger objects
2598 * be problematic to put into order 0 slabs because there may be too much
2599 * unused space left. We go to a higher order if more than 1/16th of the slab
2600 * would be wasted.
2601 *
2602 * In order to reach satisfactory performance we must ensure that a minimum
2603 * number of objects is in one slab. Otherwise we may generate too much
2604 * activity on the partial lists which requires taking the list_lock. This is
2605 * less a concern for large slabs though which are rarely used.
2606 *
2607 * slub_max_order specifies the order where we begin to stop considering the
2608 * number of objects in a slab as critical. If we reach slub_max_order then
2609 * we try to keep the page order as low as possible. So we accept more waste
2610 * of space in favor of a small page order.
2611 *
2612 * Higher order allocations also allow the placement of more objects in a
2613 * slab and thereby reduce object handling overhead. If the user has
2614 * requested a higher mininum order then we start with that one instead of
2615 * the smallest order which will fit the object.
2616 */
2617 static inline int slab_order(int size, int min_objects,
2618 int max_order, int fract_leftover, int reserved)
2619 {
2620 int order;
2621 int rem;
2622 int min_order = slub_min_order;
2623
2624 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2625 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2626
2627 for (order = max(min_order,
2628 fls(min_objects * size - 1) - PAGE_SHIFT);
2629 order <= max_order; order++) {
2630
2631 unsigned long slab_size = PAGE_SIZE << order;
2632
2633 if (slab_size < min_objects * size + reserved)
2634 continue;
2635
2636 rem = (slab_size - reserved) % size;
2637
2638 if (rem <= slab_size / fract_leftover)
2639 break;
2640
2641 }
2642
2643 return order;
2644 }
2645
2646 static inline int calculate_order(int size, int reserved)
2647 {
2648 int order;
2649 int min_objects;
2650 int fraction;
2651 int max_objects;
2652
2653 /*
2654 * Attempt to find best configuration for a slab. This
2655 * works by first attempting to generate a layout with
2656 * the best configuration and backing off gradually.
2657 *
2658 * First we reduce the acceptable waste in a slab. Then
2659 * we reduce the minimum objects required in a slab.
2660 */
2661 min_objects = slub_min_objects;
2662 if (!min_objects)
2663 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2664 max_objects = order_objects(slub_max_order, size, reserved);
2665 min_objects = min(min_objects, max_objects);
2666
2667 while (min_objects > 1) {
2668 fraction = 16;
2669 while (fraction >= 4) {
2670 order = slab_order(size, min_objects,
2671 slub_max_order, fraction, reserved);
2672 if (order <= slub_max_order)
2673 return order;
2674 fraction /= 2;
2675 }
2676 min_objects--;
2677 }
2678
2679 /*
2680 * We were unable to place multiple objects in a slab. Now
2681 * lets see if we can place a single object there.
2682 */
2683 order = slab_order(size, 1, slub_max_order, 1, reserved);
2684 if (order <= slub_max_order)
2685 return order;
2686
2687 /*
2688 * Doh this slab cannot be placed using slub_max_order.
2689 */
2690 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2691 if (order < MAX_ORDER)
2692 return order;
2693 return -ENOSYS;
2694 }
2695
2696 /*
2697 * Figure out what the alignment of the objects will be.
2698 */
2699 static unsigned long calculate_alignment(unsigned long flags,
2700 unsigned long align, unsigned long size)
2701 {
2702 /*
2703 * If the user wants hardware cache aligned objects then follow that
2704 * suggestion if the object is sufficiently large.
2705 *
2706 * The hardware cache alignment cannot override the specified
2707 * alignment though. If that is greater then use it.
2708 */
2709 if (flags & SLAB_HWCACHE_ALIGN) {
2710 unsigned long ralign = cache_line_size();
2711 while (size <= ralign / 2)
2712 ralign /= 2;
2713 align = max(align, ralign);
2714 }
2715
2716 if (align < ARCH_SLAB_MINALIGN)
2717 align = ARCH_SLAB_MINALIGN;
2718
2719 return ALIGN(align, sizeof(void *));
2720 }
2721
2722 static void
2723 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2724 {
2725 n->nr_partial = 0;
2726 spin_lock_init(&n->list_lock);
2727 INIT_LIST_HEAD(&n->partial);
2728 #ifdef CONFIG_SLUB_DEBUG
2729 atomic_long_set(&n->nr_slabs, 0);
2730 atomic_long_set(&n->total_objects, 0);
2731 INIT_LIST_HEAD(&n->full);
2732 #endif
2733 }
2734
2735 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2736 {
2737 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2738 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2739
2740 /*
2741 * Must align to double word boundary for the double cmpxchg
2742 * instructions to work; see __pcpu_double_call_return_bool().
2743 */
2744 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2745 2 * sizeof(void *));
2746
2747 if (!s->cpu_slab)
2748 return 0;
2749
2750 init_kmem_cache_cpus(s);
2751
2752 return 1;
2753 }
2754
2755 static struct kmem_cache *kmem_cache_node;
2756
2757 /*
2758 * No kmalloc_node yet so do it by hand. We know that this is the first
2759 * slab on the node for this slabcache. There are no concurrent accesses
2760 * possible.
2761 *
2762 * Note that this function only works on the kmalloc_node_cache
2763 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2764 * memory on a fresh node that has no slab structures yet.
2765 */
2766 static void early_kmem_cache_node_alloc(int node)
2767 {
2768 struct page *page;
2769 struct kmem_cache_node *n;
2770
2771 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2772
2773 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2774
2775 BUG_ON(!page);
2776 if (page_to_nid(page) != node) {
2777 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2778 "node %d\n", node);
2779 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2780 "in order to be able to continue\n");
2781 }
2782
2783 n = page->freelist;
2784 BUG_ON(!n);
2785 page->freelist = get_freepointer(kmem_cache_node, n);
2786 page->inuse = 1;
2787 page->frozen = 0;
2788 kmem_cache_node->node[node] = n;
2789 #ifdef CONFIG_SLUB_DEBUG
2790 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2791 init_tracking(kmem_cache_node, n);
2792 #endif
2793 init_kmem_cache_node(n, kmem_cache_node);
2794 inc_slabs_node(kmem_cache_node, node, page->objects);
2795
2796 add_partial(n, page, DEACTIVATE_TO_HEAD);
2797 }
2798
2799 static void free_kmem_cache_nodes(struct kmem_cache *s)
2800 {
2801 int node;
2802
2803 for_each_node_state(node, N_NORMAL_MEMORY) {
2804 struct kmem_cache_node *n = s->node[node];
2805
2806 if (n)
2807 kmem_cache_free(kmem_cache_node, n);
2808
2809 s->node[node] = NULL;
2810 }
2811 }
2812
2813 static int init_kmem_cache_nodes(struct kmem_cache *s)
2814 {
2815 int node;
2816
2817 for_each_node_state(node, N_NORMAL_MEMORY) {
2818 struct kmem_cache_node *n;
2819
2820 if (slab_state == DOWN) {
2821 early_kmem_cache_node_alloc(node);
2822 continue;
2823 }
2824 n = kmem_cache_alloc_node(kmem_cache_node,
2825 GFP_KERNEL, node);
2826
2827 if (!n) {
2828 free_kmem_cache_nodes(s);
2829 return 0;
2830 }
2831
2832 s->node[node] = n;
2833 init_kmem_cache_node(n, s);
2834 }
2835 return 1;
2836 }
2837
2838 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2839 {
2840 if (min < MIN_PARTIAL)
2841 min = MIN_PARTIAL;
2842 else if (min > MAX_PARTIAL)
2843 min = MAX_PARTIAL;
2844 s->min_partial = min;
2845 }
2846
2847 /*
2848 * calculate_sizes() determines the order and the distribution of data within
2849 * a slab object.
2850 */
2851 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2852 {
2853 unsigned long flags = s->flags;
2854 unsigned long size = s->objsize;
2855 unsigned long align = s->align;
2856 int order;
2857
2858 /*
2859 * Round up object size to the next word boundary. We can only
2860 * place the free pointer at word boundaries and this determines
2861 * the possible location of the free pointer.
2862 */
2863 size = ALIGN(size, sizeof(void *));
2864
2865 #ifdef CONFIG_SLUB_DEBUG
2866 /*
2867 * Determine if we can poison the object itself. If the user of
2868 * the slab may touch the object after free or before allocation
2869 * then we should never poison the object itself.
2870 */
2871 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2872 !s->ctor)
2873 s->flags |= __OBJECT_POISON;
2874 else
2875 s->flags &= ~__OBJECT_POISON;
2876
2877
2878 /*
2879 * If we are Redzoning then check if there is some space between the
2880 * end of the object and the free pointer. If not then add an
2881 * additional word to have some bytes to store Redzone information.
2882 */
2883 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2884 size += sizeof(void *);
2885 #endif
2886
2887 /*
2888 * With that we have determined the number of bytes in actual use
2889 * by the object. This is the potential offset to the free pointer.
2890 */
2891 s->inuse = size;
2892
2893 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2894 s->ctor)) {
2895 /*
2896 * Relocate free pointer after the object if it is not
2897 * permitted to overwrite the first word of the object on
2898 * kmem_cache_free.
2899 *
2900 * This is the case if we do RCU, have a constructor or
2901 * destructor or are poisoning the objects.
2902 */
2903 s->offset = size;
2904 size += sizeof(void *);
2905 }
2906
2907 #ifdef CONFIG_SLUB_DEBUG
2908 if (flags & SLAB_STORE_USER)
2909 /*
2910 * Need to store information about allocs and frees after
2911 * the object.
2912 */
2913 size += 2 * sizeof(struct track);
2914
2915 if (flags & SLAB_RED_ZONE)
2916 /*
2917 * Add some empty padding so that we can catch
2918 * overwrites from earlier objects rather than let
2919 * tracking information or the free pointer be
2920 * corrupted if a user writes before the start
2921 * of the object.
2922 */
2923 size += sizeof(void *);
2924 #endif
2925
2926 /*
2927 * Determine the alignment based on various parameters that the
2928 * user specified and the dynamic determination of cache line size
2929 * on bootup.
2930 */
2931 align = calculate_alignment(flags, align, s->objsize);
2932 s->align = align;
2933
2934 /*
2935 * SLUB stores one object immediately after another beginning from
2936 * offset 0. In order to align the objects we have to simply size
2937 * each object to conform to the alignment.
2938 */
2939 size = ALIGN(size, align);
2940 s->size = size;
2941 if (forced_order >= 0)
2942 order = forced_order;
2943 else
2944 order = calculate_order(size, s->reserved);
2945
2946 if (order < 0)
2947 return 0;
2948
2949 s->allocflags = 0;
2950 if (order)
2951 s->allocflags |= __GFP_COMP;
2952
2953 if (s->flags & SLAB_CACHE_DMA)
2954 s->allocflags |= SLUB_DMA;
2955
2956 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2957 s->allocflags |= __GFP_RECLAIMABLE;
2958
2959 /*
2960 * Determine the number of objects per slab
2961 */
2962 s->oo = oo_make(order, size, s->reserved);
2963 s->min = oo_make(get_order(size), size, s->reserved);
2964 if (oo_objects(s->oo) > oo_objects(s->max))
2965 s->max = s->oo;
2966
2967 return !!oo_objects(s->oo);
2968
2969 }
2970
2971 static int kmem_cache_open(struct kmem_cache *s,
2972 const char *name, size_t size,
2973 size_t align, unsigned long flags,
2974 void (*ctor)(void *))
2975 {
2976 memset(s, 0, kmem_size);
2977 s->name = name;
2978 s->ctor = ctor;
2979 s->objsize = size;
2980 s->align = align;
2981 s->flags = kmem_cache_flags(size, flags, name, ctor);
2982 s->reserved = 0;
2983
2984 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2985 s->reserved = sizeof(struct rcu_head);
2986
2987 if (!calculate_sizes(s, -1))
2988 goto error;
2989 if (disable_higher_order_debug) {
2990 /*
2991 * Disable debugging flags that store metadata if the min slab
2992 * order increased.
2993 */
2994 if (get_order(s->size) > get_order(s->objsize)) {
2995 s->flags &= ~DEBUG_METADATA_FLAGS;
2996 s->offset = 0;
2997 if (!calculate_sizes(s, -1))
2998 goto error;
2999 }
3000 }
3001
3002 #ifdef CONFIG_CMPXCHG_DOUBLE
3003 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3004 /* Enable fast mode */
3005 s->flags |= __CMPXCHG_DOUBLE;
3006 #endif
3007
3008 /*
3009 * The larger the object size is, the more pages we want on the partial
3010 * list to avoid pounding the page allocator excessively.
3011 */
3012 set_min_partial(s, ilog2(s->size) / 2);
3013
3014 /*
3015 * cpu_partial determined the maximum number of objects kept in the
3016 * per cpu partial lists of a processor.
3017 *
3018 * Per cpu partial lists mainly contain slabs that just have one
3019 * object freed. If they are used for allocation then they can be
3020 * filled up again with minimal effort. The slab will never hit the
3021 * per node partial lists and therefore no locking will be required.
3022 *
3023 * This setting also determines
3024 *
3025 * A) The number of objects from per cpu partial slabs dumped to the
3026 * per node list when we reach the limit.
3027 * B) The number of objects in cpu partial slabs to extract from the
3028 * per node list when we run out of per cpu objects. We only fetch 50%
3029 * to keep some capacity around for frees.
3030 */
3031 if (s->size >= PAGE_SIZE)
3032 s->cpu_partial = 2;
3033 else if (s->size >= 1024)
3034 s->cpu_partial = 6;
3035 else if (s->size >= 256)
3036 s->cpu_partial = 13;
3037 else
3038 s->cpu_partial = 30;
3039
3040 s->refcount = 1;
3041 #ifdef CONFIG_NUMA
3042 s->remote_node_defrag_ratio = 1000;
3043 #endif
3044 if (!init_kmem_cache_nodes(s))
3045 goto error;
3046
3047 if (alloc_kmem_cache_cpus(s))
3048 return 1;
3049
3050 free_kmem_cache_nodes(s);
3051 error:
3052 if (flags & SLAB_PANIC)
3053 panic("Cannot create slab %s size=%lu realsize=%u "
3054 "order=%u offset=%u flags=%lx\n",
3055 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3056 s->offset, flags);
3057 return 0;
3058 }
3059
3060 /*
3061 * Determine the size of a slab object
3062 */
3063 unsigned int kmem_cache_size(struct kmem_cache *s)
3064 {
3065 return s->objsize;
3066 }
3067 EXPORT_SYMBOL(kmem_cache_size);
3068
3069 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3070 const char *text)
3071 {
3072 #ifdef CONFIG_SLUB_DEBUG
3073 void *addr = page_address(page);
3074 void *p;
3075 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3076 sizeof(long), GFP_ATOMIC);
3077 if (!map)
3078 return;
3079 slab_err(s, page, "%s", text);
3080 slab_lock(page);
3081
3082 get_map(s, page, map);
3083 for_each_object(p, s, addr, page->objects) {
3084
3085 if (!test_bit(slab_index(p, s, addr), map)) {
3086 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3087 p, p - addr);
3088 print_tracking(s, p);
3089 }
3090 }
3091 slab_unlock(page);
3092 kfree(map);
3093 #endif
3094 }
3095
3096 /*
3097 * Attempt to free all partial slabs on a node.
3098 * This is called from kmem_cache_close(). We must be the last thread
3099 * using the cache and therefore we do not need to lock anymore.
3100 */
3101 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3102 {
3103 struct page *page, *h;
3104
3105 list_for_each_entry_safe(page, h, &n->partial, lru) {
3106 if (!page->inuse) {
3107 remove_partial(n, page);
3108 discard_slab(s, page);
3109 } else {
3110 list_slab_objects(s, page,
3111 "Objects remaining on kmem_cache_close()");
3112 }
3113 }
3114 }
3115
3116 /*
3117 * Release all resources used by a slab cache.
3118 */
3119 static inline int kmem_cache_close(struct kmem_cache *s)
3120 {
3121 int node;
3122
3123 flush_all(s);
3124 free_percpu(s->cpu_slab);
3125 /* Attempt to free all objects */
3126 for_each_node_state(node, N_NORMAL_MEMORY) {
3127 struct kmem_cache_node *n = get_node(s, node);
3128
3129 free_partial(s, n);
3130 if (n->nr_partial || slabs_node(s, node))
3131 return 1;
3132 }
3133 free_kmem_cache_nodes(s);
3134 return 0;
3135 }
3136
3137 /*
3138 * Close a cache and release the kmem_cache structure
3139 * (must be used for caches created using kmem_cache_create)
3140 */
3141 void kmem_cache_destroy(struct kmem_cache *s)
3142 {
3143 down_write(&slub_lock);
3144 s->refcount--;
3145 if (!s->refcount) {
3146 list_del(&s->list);
3147 up_write(&slub_lock);
3148 if (kmem_cache_close(s)) {
3149 printk(KERN_ERR "SLUB %s: %s called for cache that "
3150 "still has objects.\n", s->name, __func__);
3151 dump_stack();
3152 }
3153 if (s->flags & SLAB_DESTROY_BY_RCU)
3154 rcu_barrier();
3155 sysfs_slab_remove(s);
3156 } else
3157 up_write(&slub_lock);
3158 }
3159 EXPORT_SYMBOL(kmem_cache_destroy);
3160
3161 /********************************************************************
3162 * Kmalloc subsystem
3163 *******************************************************************/
3164
3165 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3166 EXPORT_SYMBOL(kmalloc_caches);
3167
3168 static struct kmem_cache *kmem_cache;
3169
3170 #ifdef CONFIG_ZONE_DMA
3171 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3172 #endif
3173
3174 static int __init setup_slub_min_order(char *str)
3175 {
3176 get_option(&str, &slub_min_order);
3177
3178 return 1;
3179 }
3180
3181 __setup("slub_min_order=", setup_slub_min_order);
3182
3183 static int __init setup_slub_max_order(char *str)
3184 {
3185 get_option(&str, &slub_max_order);
3186 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3187
3188 return 1;
3189 }
3190
3191 __setup("slub_max_order=", setup_slub_max_order);
3192
3193 static int __init setup_slub_min_objects(char *str)
3194 {
3195 get_option(&str, &slub_min_objects);
3196
3197 return 1;
3198 }
3199
3200 __setup("slub_min_objects=", setup_slub_min_objects);
3201
3202 static int __init setup_slub_nomerge(char *str)
3203 {
3204 slub_nomerge = 1;
3205 return 1;
3206 }
3207
3208 __setup("slub_nomerge", setup_slub_nomerge);
3209
3210 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3211 int size, unsigned int flags)
3212 {
3213 struct kmem_cache *s;
3214
3215 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3216
3217 /*
3218 * This function is called with IRQs disabled during early-boot on
3219 * single CPU so there's no need to take slub_lock here.
3220 */
3221 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3222 flags, NULL))
3223 goto panic;
3224
3225 list_add(&s->list, &slab_caches);
3226 return s;
3227
3228 panic:
3229 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3230 return NULL;
3231 }
3232
3233 /*
3234 * Conversion table for small slabs sizes / 8 to the index in the
3235 * kmalloc array. This is necessary for slabs < 192 since we have non power
3236 * of two cache sizes there. The size of larger slabs can be determined using
3237 * fls.
3238 */
3239 static s8 size_index[24] = {
3240 3, /* 8 */
3241 4, /* 16 */
3242 5, /* 24 */
3243 5, /* 32 */
3244 6, /* 40 */
3245 6, /* 48 */
3246 6, /* 56 */
3247 6, /* 64 */
3248 1, /* 72 */
3249 1, /* 80 */
3250 1, /* 88 */
3251 1, /* 96 */
3252 7, /* 104 */
3253 7, /* 112 */
3254 7, /* 120 */
3255 7, /* 128 */
3256 2, /* 136 */
3257 2, /* 144 */
3258 2, /* 152 */
3259 2, /* 160 */
3260 2, /* 168 */
3261 2, /* 176 */
3262 2, /* 184 */
3263 2 /* 192 */
3264 };
3265
3266 static inline int size_index_elem(size_t bytes)
3267 {
3268 return (bytes - 1) / 8;
3269 }
3270
3271 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3272 {
3273 int index;
3274
3275 if (size <= 192) {
3276 if (!size)
3277 return ZERO_SIZE_PTR;
3278
3279 index = size_index[size_index_elem(size)];
3280 } else
3281 index = fls(size - 1);
3282
3283 #ifdef CONFIG_ZONE_DMA
3284 if (unlikely((flags & SLUB_DMA)))
3285 return kmalloc_dma_caches[index];
3286
3287 #endif
3288 return kmalloc_caches[index];
3289 }
3290
3291 void *__kmalloc(size_t size, gfp_t flags)
3292 {
3293 struct kmem_cache *s;
3294 void *ret;
3295
3296 if (unlikely(size > SLUB_MAX_SIZE))
3297 return kmalloc_large(size, flags);
3298
3299 s = get_slab(size, flags);
3300
3301 if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 return s;
3303
3304 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3305
3306 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3307
3308 return ret;
3309 }
3310 EXPORT_SYMBOL(__kmalloc);
3311
3312 #ifdef CONFIG_NUMA
3313 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3314 {
3315 struct page *page;
3316 void *ptr = NULL;
3317
3318 flags |= __GFP_COMP | __GFP_NOTRACK;
3319 page = alloc_pages_node(node, flags, get_order(size));
3320 if (page)
3321 ptr = page_address(page);
3322
3323 kmemleak_alloc(ptr, size, 1, flags);
3324 return ptr;
3325 }
3326
3327 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3328 {
3329 struct kmem_cache *s;
3330 void *ret;
3331
3332 if (unlikely(size > SLUB_MAX_SIZE)) {
3333 ret = kmalloc_large_node(size, flags, node);
3334
3335 trace_kmalloc_node(_RET_IP_, ret,
3336 size, PAGE_SIZE << get_order(size),
3337 flags, node);
3338
3339 return ret;
3340 }
3341
3342 s = get_slab(size, flags);
3343
3344 if (unlikely(ZERO_OR_NULL_PTR(s)))
3345 return s;
3346
3347 ret = slab_alloc(s, flags, node, _RET_IP_);
3348
3349 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3350
3351 return ret;
3352 }
3353 EXPORT_SYMBOL(__kmalloc_node);
3354 #endif
3355
3356 size_t ksize(const void *object)
3357 {
3358 struct page *page;
3359
3360 if (unlikely(object == ZERO_SIZE_PTR))
3361 return 0;
3362
3363 page = virt_to_head_page(object);
3364
3365 if (unlikely(!PageSlab(page))) {
3366 WARN_ON(!PageCompound(page));
3367 return PAGE_SIZE << compound_order(page);
3368 }
3369
3370 return slab_ksize(page->slab);
3371 }
3372 EXPORT_SYMBOL(ksize);
3373
3374 #ifdef CONFIG_SLUB_DEBUG
3375 bool verify_mem_not_deleted(const void *x)
3376 {
3377 struct page *page;
3378 void *object = (void *)x;
3379 unsigned long flags;
3380 bool rv;
3381
3382 if (unlikely(ZERO_OR_NULL_PTR(x)))
3383 return false;
3384
3385 local_irq_save(flags);
3386
3387 page = virt_to_head_page(x);
3388 if (unlikely(!PageSlab(page))) {
3389 /* maybe it was from stack? */
3390 rv = true;
3391 goto out_unlock;
3392 }
3393
3394 slab_lock(page);
3395 if (on_freelist(page->slab, page, object)) {
3396 object_err(page->slab, page, object, "Object is on free-list");
3397 rv = false;
3398 } else {
3399 rv = true;
3400 }
3401 slab_unlock(page);
3402
3403 out_unlock:
3404 local_irq_restore(flags);
3405 return rv;
3406 }
3407 EXPORT_SYMBOL(verify_mem_not_deleted);
3408 #endif
3409
3410 void kfree(const void *x)
3411 {
3412 struct page *page;
3413 void *object = (void *)x;
3414
3415 trace_kfree(_RET_IP_, x);
3416
3417 if (unlikely(ZERO_OR_NULL_PTR(x)))
3418 return;
3419
3420 page = virt_to_head_page(x);
3421 if (unlikely(!PageSlab(page))) {
3422 BUG_ON(!PageCompound(page));
3423 kmemleak_free(x);
3424 put_page(page);
3425 return;
3426 }
3427 slab_free(page->slab, page, object, _RET_IP_);
3428 }
3429 EXPORT_SYMBOL(kfree);
3430
3431 /*
3432 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3433 * the remaining slabs by the number of items in use. The slabs with the
3434 * most items in use come first. New allocations will then fill those up
3435 * and thus they can be removed from the partial lists.
3436 *
3437 * The slabs with the least items are placed last. This results in them
3438 * being allocated from last increasing the chance that the last objects
3439 * are freed in them.
3440 */
3441 int kmem_cache_shrink(struct kmem_cache *s)
3442 {
3443 int node;
3444 int i;
3445 struct kmem_cache_node *n;
3446 struct page *page;
3447 struct page *t;
3448 int objects = oo_objects(s->max);
3449 struct list_head *slabs_by_inuse =
3450 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3451 unsigned long flags;
3452
3453 if (!slabs_by_inuse)
3454 return -ENOMEM;
3455
3456 flush_all(s);
3457 for_each_node_state(node, N_NORMAL_MEMORY) {
3458 n = get_node(s, node);
3459
3460 if (!n->nr_partial)
3461 continue;
3462
3463 for (i = 0; i < objects; i++)
3464 INIT_LIST_HEAD(slabs_by_inuse + i);
3465
3466 spin_lock_irqsave(&n->list_lock, flags);
3467
3468 /*
3469 * Build lists indexed by the items in use in each slab.
3470 *
3471 * Note that concurrent frees may occur while we hold the
3472 * list_lock. page->inuse here is the upper limit.
3473 */
3474 list_for_each_entry_safe(page, t, &n->partial, lru) {
3475 list_move(&page->lru, slabs_by_inuse + page->inuse);
3476 if (!page->inuse)
3477 n->nr_partial--;
3478 }
3479
3480 /*
3481 * Rebuild the partial list with the slabs filled up most
3482 * first and the least used slabs at the end.
3483 */
3484 for (i = objects - 1; i > 0; i--)
3485 list_splice(slabs_by_inuse + i, n->partial.prev);
3486
3487 spin_unlock_irqrestore(&n->list_lock, flags);
3488
3489 /* Release empty slabs */
3490 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3491 discard_slab(s, page);
3492 }
3493
3494 kfree(slabs_by_inuse);
3495 return 0;
3496 }
3497 EXPORT_SYMBOL(kmem_cache_shrink);
3498
3499 #if defined(CONFIG_MEMORY_HOTPLUG)
3500 static int slab_mem_going_offline_callback(void *arg)
3501 {
3502 struct kmem_cache *s;
3503
3504 down_read(&slub_lock);
3505 list_for_each_entry(s, &slab_caches, list)
3506 kmem_cache_shrink(s);
3507 up_read(&slub_lock);
3508
3509 return 0;
3510 }
3511
3512 static void slab_mem_offline_callback(void *arg)
3513 {
3514 struct kmem_cache_node *n;
3515 struct kmem_cache *s;
3516 struct memory_notify *marg = arg;
3517 int offline_node;
3518
3519 offline_node = marg->status_change_nid;
3520
3521 /*
3522 * If the node still has available memory. we need kmem_cache_node
3523 * for it yet.
3524 */
3525 if (offline_node < 0)
3526 return;
3527
3528 down_read(&slub_lock);
3529 list_for_each_entry(s, &slab_caches, list) {
3530 n = get_node(s, offline_node);
3531 if (n) {
3532 /*
3533 * if n->nr_slabs > 0, slabs still exist on the node
3534 * that is going down. We were unable to free them,
3535 * and offline_pages() function shouldn't call this
3536 * callback. So, we must fail.
3537 */
3538 BUG_ON(slabs_node(s, offline_node));
3539
3540 s->node[offline_node] = NULL;
3541 kmem_cache_free(kmem_cache_node, n);
3542 }
3543 }
3544 up_read(&slub_lock);
3545 }
3546
3547 static int slab_mem_going_online_callback(void *arg)
3548 {
3549 struct kmem_cache_node *n;
3550 struct kmem_cache *s;
3551 struct memory_notify *marg = arg;
3552 int nid = marg->status_change_nid;
3553 int ret = 0;
3554
3555 /*
3556 * If the node's memory is already available, then kmem_cache_node is
3557 * already created. Nothing to do.
3558 */
3559 if (nid < 0)
3560 return 0;
3561
3562 /*
3563 * We are bringing a node online. No memory is available yet. We must
3564 * allocate a kmem_cache_node structure in order to bring the node
3565 * online.
3566 */
3567 down_read(&slub_lock);
3568 list_for_each_entry(s, &slab_caches, list) {
3569 /*
3570 * XXX: kmem_cache_alloc_node will fallback to other nodes
3571 * since memory is not yet available from the node that
3572 * is brought up.
3573 */
3574 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3575 if (!n) {
3576 ret = -ENOMEM;
3577 goto out;
3578 }
3579 init_kmem_cache_node(n, s);
3580 s->node[nid] = n;
3581 }
3582 out:
3583 up_read(&slub_lock);
3584 return ret;
3585 }
3586
3587 static int slab_memory_callback(struct notifier_block *self,
3588 unsigned long action, void *arg)
3589 {
3590 int ret = 0;
3591
3592 switch (action) {
3593 case MEM_GOING_ONLINE:
3594 ret = slab_mem_going_online_callback(arg);
3595 break;
3596 case MEM_GOING_OFFLINE:
3597 ret = slab_mem_going_offline_callback(arg);
3598 break;
3599 case MEM_OFFLINE:
3600 case MEM_CANCEL_ONLINE:
3601 slab_mem_offline_callback(arg);
3602 break;
3603 case MEM_ONLINE:
3604 case MEM_CANCEL_OFFLINE:
3605 break;
3606 }
3607 if (ret)
3608 ret = notifier_from_errno(ret);
3609 else
3610 ret = NOTIFY_OK;
3611 return ret;
3612 }
3613
3614 #endif /* CONFIG_MEMORY_HOTPLUG */
3615
3616 /********************************************************************
3617 * Basic setup of slabs
3618 *******************************************************************/
3619
3620 /*
3621 * Used for early kmem_cache structures that were allocated using
3622 * the page allocator
3623 */
3624
3625 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3626 {
3627 int node;
3628
3629 list_add(&s->list, &slab_caches);
3630 s->refcount = -1;
3631
3632 for_each_node_state(node, N_NORMAL_MEMORY) {
3633 struct kmem_cache_node *n = get_node(s, node);
3634 struct page *p;
3635
3636 if (n) {
3637 list_for_each_entry(p, &n->partial, lru)
3638 p->slab = s;
3639
3640 #ifdef CONFIG_SLUB_DEBUG
3641 list_for_each_entry(p, &n->full, lru)
3642 p->slab = s;
3643 #endif
3644 }
3645 }
3646 }
3647
3648 void __init kmem_cache_init(void)
3649 {
3650 int i;
3651 int caches = 0;
3652 struct kmem_cache *temp_kmem_cache;
3653 int order;
3654 struct kmem_cache *temp_kmem_cache_node;
3655 unsigned long kmalloc_size;
3656
3657 if (debug_guardpage_minorder())
3658 slub_max_order = 0;
3659
3660 kmem_size = offsetof(struct kmem_cache, node) +
3661 nr_node_ids * sizeof(struct kmem_cache_node *);
3662
3663 /* Allocate two kmem_caches from the page allocator */
3664 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3665 order = get_order(2 * kmalloc_size);
3666 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3667
3668 /*
3669 * Must first have the slab cache available for the allocations of the
3670 * struct kmem_cache_node's. There is special bootstrap code in
3671 * kmem_cache_open for slab_state == DOWN.
3672 */
3673 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3674
3675 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3676 sizeof(struct kmem_cache_node),
3677 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3678
3679 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3680
3681 /* Able to allocate the per node structures */
3682 slab_state = PARTIAL;
3683
3684 temp_kmem_cache = kmem_cache;
3685 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3686 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3687 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3688 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3689
3690 /*
3691 * Allocate kmem_cache_node properly from the kmem_cache slab.
3692 * kmem_cache_node is separately allocated so no need to
3693 * update any list pointers.
3694 */
3695 temp_kmem_cache_node = kmem_cache_node;
3696
3697 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3698 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3699
3700 kmem_cache_bootstrap_fixup(kmem_cache_node);
3701
3702 caches++;
3703 kmem_cache_bootstrap_fixup(kmem_cache);
3704 caches++;
3705 /* Free temporary boot structure */
3706 free_pages((unsigned long)temp_kmem_cache, order);
3707
3708 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3709
3710 /*
3711 * Patch up the size_index table if we have strange large alignment
3712 * requirements for the kmalloc array. This is only the case for
3713 * MIPS it seems. The standard arches will not generate any code here.
3714 *
3715 * Largest permitted alignment is 256 bytes due to the way we
3716 * handle the index determination for the smaller caches.
3717 *
3718 * Make sure that nothing crazy happens if someone starts tinkering
3719 * around with ARCH_KMALLOC_MINALIGN
3720 */
3721 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3722 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3723
3724 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3725 int elem = size_index_elem(i);
3726 if (elem >= ARRAY_SIZE(size_index))
3727 break;
3728 size_index[elem] = KMALLOC_SHIFT_LOW;
3729 }
3730
3731 if (KMALLOC_MIN_SIZE == 64) {
3732 /*
3733 * The 96 byte size cache is not used if the alignment
3734 * is 64 byte.
3735 */
3736 for (i = 64 + 8; i <= 96; i += 8)
3737 size_index[size_index_elem(i)] = 7;
3738 } else if (KMALLOC_MIN_SIZE == 128) {
3739 /*
3740 * The 192 byte sized cache is not used if the alignment
3741 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3742 * instead.
3743 */
3744 for (i = 128 + 8; i <= 192; i += 8)
3745 size_index[size_index_elem(i)] = 8;
3746 }
3747
3748 /* Caches that are not of the two-to-the-power-of size */
3749 if (KMALLOC_MIN_SIZE <= 32) {
3750 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3751 caches++;
3752 }
3753
3754 if (KMALLOC_MIN_SIZE <= 64) {
3755 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3756 caches++;
3757 }
3758
3759 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3760 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3761 caches++;
3762 }
3763
3764 slab_state = UP;
3765
3766 /* Provide the correct kmalloc names now that the caches are up */
3767 if (KMALLOC_MIN_SIZE <= 32) {
3768 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3769 BUG_ON(!kmalloc_caches[1]->name);
3770 }
3771
3772 if (KMALLOC_MIN_SIZE <= 64) {
3773 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3774 BUG_ON(!kmalloc_caches[2]->name);
3775 }
3776
3777 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3778 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3779
3780 BUG_ON(!s);
3781 kmalloc_caches[i]->name = s;
3782 }
3783
3784 #ifdef CONFIG_SMP
3785 register_cpu_notifier(&slab_notifier);
3786 #endif
3787
3788 #ifdef CONFIG_ZONE_DMA
3789 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3790 struct kmem_cache *s = kmalloc_caches[i];
3791
3792 if (s && s->size) {
3793 char *name = kasprintf(GFP_NOWAIT,
3794 "dma-kmalloc-%d", s->objsize);
3795
3796 BUG_ON(!name);
3797 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3798 s->objsize, SLAB_CACHE_DMA);
3799 }
3800 }
3801 #endif
3802 printk(KERN_INFO
3803 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3804 " CPUs=%d, Nodes=%d\n",
3805 caches, cache_line_size(),
3806 slub_min_order, slub_max_order, slub_min_objects,
3807 nr_cpu_ids, nr_node_ids);
3808 }
3809
3810 void __init kmem_cache_init_late(void)
3811 {
3812 }
3813
3814 /*
3815 * Find a mergeable slab cache
3816 */
3817 static int slab_unmergeable(struct kmem_cache *s)
3818 {
3819 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3820 return 1;
3821
3822 if (s->ctor)
3823 return 1;
3824
3825 /*
3826 * We may have set a slab to be unmergeable during bootstrap.
3827 */
3828 if (s->refcount < 0)
3829 return 1;
3830
3831 return 0;
3832 }
3833
3834 static struct kmem_cache *find_mergeable(size_t size,
3835 size_t align, unsigned long flags, const char *name,
3836 void (*ctor)(void *))
3837 {
3838 struct kmem_cache *s;
3839
3840 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3841 return NULL;
3842
3843 if (ctor)
3844 return NULL;
3845
3846 size = ALIGN(size, sizeof(void *));
3847 align = calculate_alignment(flags, align, size);
3848 size = ALIGN(size, align);
3849 flags = kmem_cache_flags(size, flags, name, NULL);
3850
3851 list_for_each_entry(s, &slab_caches, list) {
3852 if (slab_unmergeable(s))
3853 continue;
3854
3855 if (size > s->size)
3856 continue;
3857
3858 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3859 continue;
3860 /*
3861 * Check if alignment is compatible.
3862 * Courtesy of Adrian Drzewiecki
3863 */
3864 if ((s->size & ~(align - 1)) != s->size)
3865 continue;
3866
3867 if (s->size - size >= sizeof(void *))
3868 continue;
3869
3870 return s;
3871 }
3872 return NULL;
3873 }
3874
3875 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3876 size_t align, unsigned long flags, void (*ctor)(void *))
3877 {
3878 struct kmem_cache *s;
3879 char *n;
3880
3881 if (WARN_ON(!name))
3882 return NULL;
3883
3884 down_write(&slub_lock);
3885 s = find_mergeable(size, align, flags, name, ctor);
3886 if (s) {
3887 s->refcount++;
3888 /*
3889 * Adjust the object sizes so that we clear
3890 * the complete object on kzalloc.
3891 */
3892 s->objsize = max(s->objsize, (int)size);
3893 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3894
3895 if (sysfs_slab_alias(s, name)) {
3896 s->refcount--;
3897 goto err;
3898 }
3899 up_write(&slub_lock);
3900 return s;
3901 }
3902
3903 n = kstrdup(name, GFP_KERNEL);
3904 if (!n)
3905 goto err;
3906
3907 s = kmalloc(kmem_size, GFP_KERNEL);
3908 if (s) {
3909 if (kmem_cache_open(s, n,
3910 size, align, flags, ctor)) {
3911 list_add(&s->list, &slab_caches);
3912 if (sysfs_slab_add(s)) {
3913 list_del(&s->list);
3914 kfree(n);
3915 kfree(s);
3916 goto err;
3917 }
3918 up_write(&slub_lock);
3919 return s;
3920 }
3921 kfree(n);
3922 kfree(s);
3923 }
3924 err:
3925 up_write(&slub_lock);
3926
3927 if (flags & SLAB_PANIC)
3928 panic("Cannot create slabcache %s\n", name);
3929 else
3930 s = NULL;
3931 return s;
3932 }
3933 EXPORT_SYMBOL(kmem_cache_create);
3934
3935 #ifdef CONFIG_SMP
3936 /*
3937 * Use the cpu notifier to insure that the cpu slabs are flushed when
3938 * necessary.
3939 */
3940 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3941 unsigned long action, void *hcpu)
3942 {
3943 long cpu = (long)hcpu;
3944 struct kmem_cache *s;
3945 unsigned long flags;
3946
3947 switch (action) {
3948 case CPU_UP_CANCELED:
3949 case CPU_UP_CANCELED_FROZEN:
3950 case CPU_DEAD:
3951 case CPU_DEAD_FROZEN:
3952 down_read(&slub_lock);
3953 list_for_each_entry(s, &slab_caches, list) {
3954 local_irq_save(flags);
3955 __flush_cpu_slab(s, cpu);
3956 local_irq_restore(flags);
3957 }
3958 up_read(&slub_lock);
3959 break;
3960 default:
3961 break;
3962 }
3963 return NOTIFY_OK;
3964 }
3965
3966 static struct notifier_block __cpuinitdata slab_notifier = {
3967 .notifier_call = slab_cpuup_callback
3968 };
3969
3970 #endif
3971
3972 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3973 {
3974 struct kmem_cache *s;
3975 void *ret;
3976
3977 if (unlikely(size > SLUB_MAX_SIZE))
3978 return kmalloc_large(size, gfpflags);
3979
3980 s = get_slab(size, gfpflags);
3981
3982 if (unlikely(ZERO_OR_NULL_PTR(s)))
3983 return s;
3984
3985 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3986
3987 /* Honor the call site pointer we received. */
3988 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3989
3990 return ret;
3991 }
3992
3993 #ifdef CONFIG_NUMA
3994 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3995 int node, unsigned long caller)
3996 {
3997 struct kmem_cache *s;
3998 void *ret;
3999
4000 if (unlikely(size > SLUB_MAX_SIZE)) {
4001 ret = kmalloc_large_node(size, gfpflags, node);
4002
4003 trace_kmalloc_node(caller, ret,
4004 size, PAGE_SIZE << get_order(size),
4005 gfpflags, node);
4006
4007 return ret;
4008 }
4009
4010 s = get_slab(size, gfpflags);
4011
4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
4013 return s;
4014
4015 ret = slab_alloc(s, gfpflags, node, caller);
4016
4017 /* Honor the call site pointer we received. */
4018 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4019
4020 return ret;
4021 }
4022 #endif
4023
4024 #ifdef CONFIG_SYSFS
4025 static int count_inuse(struct page *page)
4026 {
4027 return page->inuse;
4028 }
4029
4030 static int count_total(struct page *page)
4031 {
4032 return page->objects;
4033 }
4034 #endif
4035
4036 #ifdef CONFIG_SLUB_DEBUG
4037 static int validate_slab(struct kmem_cache *s, struct page *page,
4038 unsigned long *map)
4039 {
4040 void *p;
4041 void *addr = page_address(page);
4042
4043 if (!check_slab(s, page) ||
4044 !on_freelist(s, page, NULL))
4045 return 0;
4046
4047 /* Now we know that a valid freelist exists */
4048 bitmap_zero(map, page->objects);
4049
4050 get_map(s, page, map);
4051 for_each_object(p, s, addr, page->objects) {
4052 if (test_bit(slab_index(p, s, addr), map))
4053 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4054 return 0;
4055 }
4056
4057 for_each_object(p, s, addr, page->objects)
4058 if (!test_bit(slab_index(p, s, addr), map))
4059 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4060 return 0;
4061 return 1;
4062 }
4063
4064 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4065 unsigned long *map)
4066 {
4067 slab_lock(page);
4068 validate_slab(s, page, map);
4069 slab_unlock(page);
4070 }
4071
4072 static int validate_slab_node(struct kmem_cache *s,
4073 struct kmem_cache_node *n, unsigned long *map)
4074 {
4075 unsigned long count = 0;
4076 struct page *page;
4077 unsigned long flags;
4078
4079 spin_lock_irqsave(&n->list_lock, flags);
4080
4081 list_for_each_entry(page, &n->partial, lru) {
4082 validate_slab_slab(s, page, map);
4083 count++;
4084 }
4085 if (count != n->nr_partial)
4086 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4087 "counter=%ld\n", s->name, count, n->nr_partial);
4088
4089 if (!(s->flags & SLAB_STORE_USER))
4090 goto out;
4091
4092 list_for_each_entry(page, &n->full, lru) {
4093 validate_slab_slab(s, page, map);
4094 count++;
4095 }
4096 if (count != atomic_long_read(&n->nr_slabs))
4097 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4098 "counter=%ld\n", s->name, count,
4099 atomic_long_read(&n->nr_slabs));
4100
4101 out:
4102 spin_unlock_irqrestore(&n->list_lock, flags);
4103 return count;
4104 }
4105
4106 static long validate_slab_cache(struct kmem_cache *s)
4107 {
4108 int node;
4109 unsigned long count = 0;
4110 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4111 sizeof(unsigned long), GFP_KERNEL);
4112
4113 if (!map)
4114 return -ENOMEM;
4115
4116 flush_all(s);
4117 for_each_node_state(node, N_NORMAL_MEMORY) {
4118 struct kmem_cache_node *n = get_node(s, node);
4119
4120 count += validate_slab_node(s, n, map);
4121 }
4122 kfree(map);
4123 return count;
4124 }
4125 /*
4126 * Generate lists of code addresses where slabcache objects are allocated
4127 * and freed.
4128 */
4129
4130 struct location {
4131 unsigned long count;
4132 unsigned long addr;
4133 long long sum_time;
4134 long min_time;
4135 long max_time;
4136 long min_pid;
4137 long max_pid;
4138 DECLARE_BITMAP(cpus, NR_CPUS);
4139 nodemask_t nodes;
4140 };
4141
4142 struct loc_track {
4143 unsigned long max;
4144 unsigned long count;
4145 struct location *loc;
4146 };
4147
4148 static void free_loc_track(struct loc_track *t)
4149 {
4150 if (t->max)
4151 free_pages((unsigned long)t->loc,
4152 get_order(sizeof(struct location) * t->max));
4153 }
4154
4155 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4156 {
4157 struct location *l;
4158 int order;
4159
4160 order = get_order(sizeof(struct location) * max);
4161
4162 l = (void *)__get_free_pages(flags, order);
4163 if (!l)
4164 return 0;
4165
4166 if (t->count) {
4167 memcpy(l, t->loc, sizeof(struct location) * t->count);
4168 free_loc_track(t);
4169 }
4170 t->max = max;
4171 t->loc = l;
4172 return 1;
4173 }
4174
4175 static int add_location(struct loc_track *t, struct kmem_cache *s,
4176 const struct track *track)
4177 {
4178 long start, end, pos;
4179 struct location *l;
4180 unsigned long caddr;
4181 unsigned long age = jiffies - track->when;
4182
4183 start = -1;
4184 end = t->count;
4185
4186 for ( ; ; ) {
4187 pos = start + (end - start + 1) / 2;
4188
4189 /*
4190 * There is nothing at "end". If we end up there
4191 * we need to add something to before end.
4192 */
4193 if (pos == end)
4194 break;
4195
4196 caddr = t->loc[pos].addr;
4197 if (track->addr == caddr) {
4198
4199 l = &t->loc[pos];
4200 l->count++;
4201 if (track->when) {
4202 l->sum_time += age;
4203 if (age < l->min_time)
4204 l->min_time = age;
4205 if (age > l->max_time)
4206 l->max_time = age;
4207
4208 if (track->pid < l->min_pid)
4209 l->min_pid = track->pid;
4210 if (track->pid > l->max_pid)
4211 l->max_pid = track->pid;
4212
4213 cpumask_set_cpu(track->cpu,
4214 to_cpumask(l->cpus));
4215 }
4216 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4217 return 1;
4218 }
4219
4220 if (track->addr < caddr)
4221 end = pos;
4222 else
4223 start = pos;
4224 }
4225
4226 /*
4227 * Not found. Insert new tracking element.
4228 */
4229 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4230 return 0;
4231
4232 l = t->loc + pos;
4233 if (pos < t->count)
4234 memmove(l + 1, l,
4235 (t->count - pos) * sizeof(struct location));
4236 t->count++;
4237 l->count = 1;
4238 l->addr = track->addr;
4239 l->sum_time = age;
4240 l->min_time = age;
4241 l->max_time = age;
4242 l->min_pid = track->pid;
4243 l->max_pid = track->pid;
4244 cpumask_clear(to_cpumask(l->cpus));
4245 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4246 nodes_clear(l->nodes);
4247 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4248 return 1;
4249 }
4250
4251 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4252 struct page *page, enum track_item alloc,
4253 unsigned long *map)
4254 {
4255 void *addr = page_address(page);
4256 void *p;
4257
4258 bitmap_zero(map, page->objects);
4259 get_map(s, page, map);
4260
4261 for_each_object(p, s, addr, page->objects)
4262 if (!test_bit(slab_index(p, s, addr), map))
4263 add_location(t, s, get_track(s, p, alloc));
4264 }
4265
4266 static int list_locations(struct kmem_cache *s, char *buf,
4267 enum track_item alloc)
4268 {
4269 int len = 0;
4270 unsigned long i;
4271 struct loc_track t = { 0, 0, NULL };
4272 int node;
4273 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4274 sizeof(unsigned long), GFP_KERNEL);
4275
4276 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4277 GFP_TEMPORARY)) {
4278 kfree(map);
4279 return sprintf(buf, "Out of memory\n");
4280 }
4281 /* Push back cpu slabs */
4282 flush_all(s);
4283
4284 for_each_node_state(node, N_NORMAL_MEMORY) {
4285 struct kmem_cache_node *n = get_node(s, node);
4286 unsigned long flags;
4287 struct page *page;
4288
4289 if (!atomic_long_read(&n->nr_slabs))
4290 continue;
4291
4292 spin_lock_irqsave(&n->list_lock, flags);
4293 list_for_each_entry(page, &n->partial, lru)
4294 process_slab(&t, s, page, alloc, map);
4295 list_for_each_entry(page, &n->full, lru)
4296 process_slab(&t, s, page, alloc, map);
4297 spin_unlock_irqrestore(&n->list_lock, flags);
4298 }
4299
4300 for (i = 0; i < t.count; i++) {
4301 struct location *l = &t.loc[i];
4302
4303 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4304 break;
4305 len += sprintf(buf + len, "%7ld ", l->count);
4306
4307 if (l->addr)
4308 len += sprintf(buf + len, "%pS", (void *)l->addr);
4309 else
4310 len += sprintf(buf + len, "<not-available>");
4311
4312 if (l->sum_time != l->min_time) {
4313 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4314 l->min_time,
4315 (long)div_u64(l->sum_time, l->count),
4316 l->max_time);
4317 } else
4318 len += sprintf(buf + len, " age=%ld",
4319 l->min_time);
4320
4321 if (l->min_pid != l->max_pid)
4322 len += sprintf(buf + len, " pid=%ld-%ld",
4323 l->min_pid, l->max_pid);
4324 else
4325 len += sprintf(buf + len, " pid=%ld",
4326 l->min_pid);
4327
4328 if (num_online_cpus() > 1 &&
4329 !cpumask_empty(to_cpumask(l->cpus)) &&
4330 len < PAGE_SIZE - 60) {
4331 len += sprintf(buf + len, " cpus=");
4332 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4333 to_cpumask(l->cpus));
4334 }
4335
4336 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4337 len < PAGE_SIZE - 60) {
4338 len += sprintf(buf + len, " nodes=");
4339 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4340 l->nodes);
4341 }
4342
4343 len += sprintf(buf + len, "\n");
4344 }
4345
4346 free_loc_track(&t);
4347 kfree(map);
4348 if (!t.count)
4349 len += sprintf(buf, "No data\n");
4350 return len;
4351 }
4352 #endif
4353
4354 #ifdef SLUB_RESILIENCY_TEST
4355 static void resiliency_test(void)
4356 {
4357 u8 *p;
4358
4359 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4360
4361 printk(KERN_ERR "SLUB resiliency testing\n");
4362 printk(KERN_ERR "-----------------------\n");
4363 printk(KERN_ERR "A. Corruption after allocation\n");
4364
4365 p = kzalloc(16, GFP_KERNEL);
4366 p[16] = 0x12;
4367 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4368 " 0x12->0x%p\n\n", p + 16);
4369
4370 validate_slab_cache(kmalloc_caches[4]);
4371
4372 /* Hmmm... The next two are dangerous */
4373 p = kzalloc(32, GFP_KERNEL);
4374 p[32 + sizeof(void *)] = 0x34;
4375 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4376 " 0x34 -> -0x%p\n", p);
4377 printk(KERN_ERR
4378 "If allocated object is overwritten then not detectable\n\n");
4379
4380 validate_slab_cache(kmalloc_caches[5]);
4381 p = kzalloc(64, GFP_KERNEL);
4382 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4383 *p = 0x56;
4384 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4385 p);
4386 printk(KERN_ERR
4387 "If allocated object is overwritten then not detectable\n\n");
4388 validate_slab_cache(kmalloc_caches[6]);
4389
4390 printk(KERN_ERR "\nB. Corruption after free\n");
4391 p = kzalloc(128, GFP_KERNEL);
4392 kfree(p);
4393 *p = 0x78;
4394 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4395 validate_slab_cache(kmalloc_caches[7]);
4396
4397 p = kzalloc(256, GFP_KERNEL);
4398 kfree(p);
4399 p[50] = 0x9a;
4400 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4401 p);
4402 validate_slab_cache(kmalloc_caches[8]);
4403
4404 p = kzalloc(512, GFP_KERNEL);
4405 kfree(p);
4406 p[512] = 0xab;
4407 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4408 validate_slab_cache(kmalloc_caches[9]);
4409 }
4410 #else
4411 #ifdef CONFIG_SYSFS
4412 static void resiliency_test(void) {};
4413 #endif
4414 #endif
4415
4416 #ifdef CONFIG_SYSFS
4417 enum slab_stat_type {
4418 SL_ALL, /* All slabs */
4419 SL_PARTIAL, /* Only partially allocated slabs */
4420 SL_CPU, /* Only slabs used for cpu caches */
4421 SL_OBJECTS, /* Determine allocated objects not slabs */
4422 SL_TOTAL /* Determine object capacity not slabs */
4423 };
4424
4425 #define SO_ALL (1 << SL_ALL)
4426 #define SO_PARTIAL (1 << SL_PARTIAL)
4427 #define SO_CPU (1 << SL_CPU)
4428 #define SO_OBJECTS (1 << SL_OBJECTS)
4429 #define SO_TOTAL (1 << SL_TOTAL)
4430
4431 static ssize_t show_slab_objects(struct kmem_cache *s,
4432 char *buf, unsigned long flags)
4433 {
4434 unsigned long total = 0;
4435 int node;
4436 int x;
4437 unsigned long *nodes;
4438 unsigned long *per_cpu;
4439
4440 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4441 if (!nodes)
4442 return -ENOMEM;
4443 per_cpu = nodes + nr_node_ids;
4444
4445 if (flags & SO_CPU) {
4446 int cpu;
4447
4448 for_each_possible_cpu(cpu) {
4449 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4450 int node = ACCESS_ONCE(c->node);
4451 struct page *page;
4452
4453 if (node < 0)
4454 continue;
4455 page = ACCESS_ONCE(c->page);
4456 if (page) {
4457 if (flags & SO_TOTAL)
4458 x = page->objects;
4459 else if (flags & SO_OBJECTS)
4460 x = page->inuse;
4461 else
4462 x = 1;
4463
4464 total += x;
4465 nodes[node] += x;
4466 }
4467 page = c->partial;
4468
4469 if (page) {
4470 x = page->pobjects;
4471 total += x;
4472 nodes[node] += x;
4473 }
4474 per_cpu[node]++;
4475 }
4476 }
4477
4478 lock_memory_hotplug();
4479 #ifdef CONFIG_SLUB_DEBUG
4480 if (flags & SO_ALL) {
4481 for_each_node_state(node, N_NORMAL_MEMORY) {
4482 struct kmem_cache_node *n = get_node(s, node);
4483
4484 if (flags & SO_TOTAL)
4485 x = atomic_long_read(&n->total_objects);
4486 else if (flags & SO_OBJECTS)
4487 x = atomic_long_read(&n->total_objects) -
4488 count_partial(n, count_free);
4489
4490 else
4491 x = atomic_long_read(&n->nr_slabs);
4492 total += x;
4493 nodes[node] += x;
4494 }
4495
4496 } else
4497 #endif
4498 if (flags & SO_PARTIAL) {
4499 for_each_node_state(node, N_NORMAL_MEMORY) {
4500 struct kmem_cache_node *n = get_node(s, node);
4501
4502 if (flags & SO_TOTAL)
4503 x = count_partial(n, count_total);
4504 else if (flags & SO_OBJECTS)
4505 x = count_partial(n, count_inuse);
4506 else
4507 x = n->nr_partial;
4508 total += x;
4509 nodes[node] += x;
4510 }
4511 }
4512 x = sprintf(buf, "%lu", total);
4513 #ifdef CONFIG_NUMA
4514 for_each_node_state(node, N_NORMAL_MEMORY)
4515 if (nodes[node])
4516 x += sprintf(buf + x, " N%d=%lu",
4517 node, nodes[node]);
4518 #endif
4519 unlock_memory_hotplug();
4520 kfree(nodes);
4521 return x + sprintf(buf + x, "\n");
4522 }
4523
4524 #ifdef CONFIG_SLUB_DEBUG
4525 static int any_slab_objects(struct kmem_cache *s)
4526 {
4527 int node;
4528
4529 for_each_online_node(node) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (!n)
4533 continue;
4534
4535 if (atomic_long_read(&n->total_objects))
4536 return 1;
4537 }
4538 return 0;
4539 }
4540 #endif
4541
4542 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4543 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4544
4545 struct slab_attribute {
4546 struct attribute attr;
4547 ssize_t (*show)(struct kmem_cache *s, char *buf);
4548 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4549 };
4550
4551 #define SLAB_ATTR_RO(_name) \
4552 static struct slab_attribute _name##_attr = \
4553 __ATTR(_name, 0400, _name##_show, NULL)
4554
4555 #define SLAB_ATTR(_name) \
4556 static struct slab_attribute _name##_attr = \
4557 __ATTR(_name, 0600, _name##_show, _name##_store)
4558
4559 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4560 {
4561 return sprintf(buf, "%d\n", s->size);
4562 }
4563 SLAB_ATTR_RO(slab_size);
4564
4565 static ssize_t align_show(struct kmem_cache *s, char *buf)
4566 {
4567 return sprintf(buf, "%d\n", s->align);
4568 }
4569 SLAB_ATTR_RO(align);
4570
4571 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4572 {
4573 return sprintf(buf, "%d\n", s->objsize);
4574 }
4575 SLAB_ATTR_RO(object_size);
4576
4577 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4578 {
4579 return sprintf(buf, "%d\n", oo_objects(s->oo));
4580 }
4581 SLAB_ATTR_RO(objs_per_slab);
4582
4583 static ssize_t order_store(struct kmem_cache *s,
4584 const char *buf, size_t length)
4585 {
4586 unsigned long order;
4587 int err;
4588
4589 err = strict_strtoul(buf, 10, &order);
4590 if (err)
4591 return err;
4592
4593 if (order > slub_max_order || order < slub_min_order)
4594 return -EINVAL;
4595
4596 calculate_sizes(s, order);
4597 return length;
4598 }
4599
4600 static ssize_t order_show(struct kmem_cache *s, char *buf)
4601 {
4602 return sprintf(buf, "%d\n", oo_order(s->oo));
4603 }
4604 SLAB_ATTR(order);
4605
4606 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4607 {
4608 return sprintf(buf, "%lu\n", s->min_partial);
4609 }
4610
4611 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4612 size_t length)
4613 {
4614 unsigned long min;
4615 int err;
4616
4617 err = strict_strtoul(buf, 10, &min);
4618 if (err)
4619 return err;
4620
4621 set_min_partial(s, min);
4622 return length;
4623 }
4624 SLAB_ATTR(min_partial);
4625
4626 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4627 {
4628 return sprintf(buf, "%u\n", s->cpu_partial);
4629 }
4630
4631 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4632 size_t length)
4633 {
4634 unsigned long objects;
4635 int err;
4636
4637 err = strict_strtoul(buf, 10, &objects);
4638 if (err)
4639 return err;
4640
4641 s->cpu_partial = objects;
4642 flush_all(s);
4643 return length;
4644 }
4645 SLAB_ATTR(cpu_partial);
4646
4647 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4648 {
4649 if (!s->ctor)
4650 return 0;
4651 return sprintf(buf, "%pS\n", s->ctor);
4652 }
4653 SLAB_ATTR_RO(ctor);
4654
4655 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4656 {
4657 return sprintf(buf, "%d\n", s->refcount - 1);
4658 }
4659 SLAB_ATTR_RO(aliases);
4660
4661 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4662 {
4663 return show_slab_objects(s, buf, SO_PARTIAL);
4664 }
4665 SLAB_ATTR_RO(partial);
4666
4667 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4668 {
4669 return show_slab_objects(s, buf, SO_CPU);
4670 }
4671 SLAB_ATTR_RO(cpu_slabs);
4672
4673 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4674 {
4675 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4676 }
4677 SLAB_ATTR_RO(objects);
4678
4679 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4680 {
4681 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4682 }
4683 SLAB_ATTR_RO(objects_partial);
4684
4685 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4686 {
4687 int objects = 0;
4688 int pages = 0;
4689 int cpu;
4690 int len;
4691
4692 for_each_online_cpu(cpu) {
4693 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4694
4695 if (page) {
4696 pages += page->pages;
4697 objects += page->pobjects;
4698 }
4699 }
4700
4701 len = sprintf(buf, "%d(%d)", objects, pages);
4702
4703 #ifdef CONFIG_SMP
4704 for_each_online_cpu(cpu) {
4705 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4706
4707 if (page && len < PAGE_SIZE - 20)
4708 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4709 page->pobjects, page->pages);
4710 }
4711 #endif
4712 return len + sprintf(buf + len, "\n");
4713 }
4714 SLAB_ATTR_RO(slabs_cpu_partial);
4715
4716 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4717 {
4718 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4719 }
4720
4721 static ssize_t reclaim_account_store(struct kmem_cache *s,
4722 const char *buf, size_t length)
4723 {
4724 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4725 if (buf[0] == '1')
4726 s->flags |= SLAB_RECLAIM_ACCOUNT;
4727 return length;
4728 }
4729 SLAB_ATTR(reclaim_account);
4730
4731 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4732 {
4733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4734 }
4735 SLAB_ATTR_RO(hwcache_align);
4736
4737 #ifdef CONFIG_ZONE_DMA
4738 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4739 {
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4741 }
4742 SLAB_ATTR_RO(cache_dma);
4743 #endif
4744
4745 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4746 {
4747 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4748 }
4749 SLAB_ATTR_RO(destroy_by_rcu);
4750
4751 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4752 {
4753 return sprintf(buf, "%d\n", s->reserved);
4754 }
4755 SLAB_ATTR_RO(reserved);
4756
4757 #ifdef CONFIG_SLUB_DEBUG
4758 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4759 {
4760 return show_slab_objects(s, buf, SO_ALL);
4761 }
4762 SLAB_ATTR_RO(slabs);
4763
4764 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4765 {
4766 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4767 }
4768 SLAB_ATTR_RO(total_objects);
4769
4770 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4771 {
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4773 }
4774
4775 static ssize_t sanity_checks_store(struct kmem_cache *s,
4776 const char *buf, size_t length)
4777 {
4778 s->flags &= ~SLAB_DEBUG_FREE;
4779 if (buf[0] == '1') {
4780 s->flags &= ~__CMPXCHG_DOUBLE;
4781 s->flags |= SLAB_DEBUG_FREE;
4782 }
4783 return length;
4784 }
4785 SLAB_ATTR(sanity_checks);
4786
4787 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4788 {
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4790 }
4791
4792 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4793 size_t length)
4794 {
4795 s->flags &= ~SLAB_TRACE;
4796 if (buf[0] == '1') {
4797 s->flags &= ~__CMPXCHG_DOUBLE;
4798 s->flags |= SLAB_TRACE;
4799 }
4800 return length;
4801 }
4802 SLAB_ATTR(trace);
4803
4804 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4805 {
4806 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4807 }
4808
4809 static ssize_t red_zone_store(struct kmem_cache *s,
4810 const char *buf, size_t length)
4811 {
4812 if (any_slab_objects(s))
4813 return -EBUSY;
4814
4815 s->flags &= ~SLAB_RED_ZONE;
4816 if (buf[0] == '1') {
4817 s->flags &= ~__CMPXCHG_DOUBLE;
4818 s->flags |= SLAB_RED_ZONE;
4819 }
4820 calculate_sizes(s, -1);
4821 return length;
4822 }
4823 SLAB_ATTR(red_zone);
4824
4825 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4826 {
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4828 }
4829
4830 static ssize_t poison_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832 {
4833 if (any_slab_objects(s))
4834 return -EBUSY;
4835
4836 s->flags &= ~SLAB_POISON;
4837 if (buf[0] == '1') {
4838 s->flags &= ~__CMPXCHG_DOUBLE;
4839 s->flags |= SLAB_POISON;
4840 }
4841 calculate_sizes(s, -1);
4842 return length;
4843 }
4844 SLAB_ATTR(poison);
4845
4846 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4847 {
4848 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4849 }
4850
4851 static ssize_t store_user_store(struct kmem_cache *s,
4852 const char *buf, size_t length)
4853 {
4854 if (any_slab_objects(s))
4855 return -EBUSY;
4856
4857 s->flags &= ~SLAB_STORE_USER;
4858 if (buf[0] == '1') {
4859 s->flags &= ~__CMPXCHG_DOUBLE;
4860 s->flags |= SLAB_STORE_USER;
4861 }
4862 calculate_sizes(s, -1);
4863 return length;
4864 }
4865 SLAB_ATTR(store_user);
4866
4867 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4868 {
4869 return 0;
4870 }
4871
4872 static ssize_t validate_store(struct kmem_cache *s,
4873 const char *buf, size_t length)
4874 {
4875 int ret = -EINVAL;
4876
4877 if (buf[0] == '1') {
4878 ret = validate_slab_cache(s);
4879 if (ret >= 0)
4880 ret = length;
4881 }
4882 return ret;
4883 }
4884 SLAB_ATTR(validate);
4885
4886 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4887 {
4888 if (!(s->flags & SLAB_STORE_USER))
4889 return -ENOSYS;
4890 return list_locations(s, buf, TRACK_ALLOC);
4891 }
4892 SLAB_ATTR_RO(alloc_calls);
4893
4894 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4895 {
4896 if (!(s->flags & SLAB_STORE_USER))
4897 return -ENOSYS;
4898 return list_locations(s, buf, TRACK_FREE);
4899 }
4900 SLAB_ATTR_RO(free_calls);
4901 #endif /* CONFIG_SLUB_DEBUG */
4902
4903 #ifdef CONFIG_FAILSLAB
4904 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4905 {
4906 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4907 }
4908
4909 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4910 size_t length)
4911 {
4912 s->flags &= ~SLAB_FAILSLAB;
4913 if (buf[0] == '1')
4914 s->flags |= SLAB_FAILSLAB;
4915 return length;
4916 }
4917 SLAB_ATTR(failslab);
4918 #endif
4919
4920 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4921 {
4922 return 0;
4923 }
4924
4925 static ssize_t shrink_store(struct kmem_cache *s,
4926 const char *buf, size_t length)
4927 {
4928 if (buf[0] == '1') {
4929 int rc = kmem_cache_shrink(s);
4930
4931 if (rc)
4932 return rc;
4933 } else
4934 return -EINVAL;
4935 return length;
4936 }
4937 SLAB_ATTR(shrink);
4938
4939 #ifdef CONFIG_NUMA
4940 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4941 {
4942 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4943 }
4944
4945 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4946 const char *buf, size_t length)
4947 {
4948 unsigned long ratio;
4949 int err;
4950
4951 err = strict_strtoul(buf, 10, &ratio);
4952 if (err)
4953 return err;
4954
4955 if (ratio <= 100)
4956 s->remote_node_defrag_ratio = ratio * 10;
4957
4958 return length;
4959 }
4960 SLAB_ATTR(remote_node_defrag_ratio);
4961 #endif
4962
4963 #ifdef CONFIG_SLUB_STATS
4964 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4965 {
4966 unsigned long sum = 0;
4967 int cpu;
4968 int len;
4969 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4970
4971 if (!data)
4972 return -ENOMEM;
4973
4974 for_each_online_cpu(cpu) {
4975 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4976
4977 data[cpu] = x;
4978 sum += x;
4979 }
4980
4981 len = sprintf(buf, "%lu", sum);
4982
4983 #ifdef CONFIG_SMP
4984 for_each_online_cpu(cpu) {
4985 if (data[cpu] && len < PAGE_SIZE - 20)
4986 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4987 }
4988 #endif
4989 kfree(data);
4990 return len + sprintf(buf + len, "\n");
4991 }
4992
4993 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4994 {
4995 int cpu;
4996
4997 for_each_online_cpu(cpu)
4998 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4999 }
5000
5001 #define STAT_ATTR(si, text) \
5002 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5003 { \
5004 return show_stat(s, buf, si); \
5005 } \
5006 static ssize_t text##_store(struct kmem_cache *s, \
5007 const char *buf, size_t length) \
5008 { \
5009 if (buf[0] != '0') \
5010 return -EINVAL; \
5011 clear_stat(s, si); \
5012 return length; \
5013 } \
5014 SLAB_ATTR(text); \
5015
5016 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5017 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5018 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5019 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5020 STAT_ATTR(FREE_FROZEN, free_frozen);
5021 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5022 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5023 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5024 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5025 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5026 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5027 STAT_ATTR(FREE_SLAB, free_slab);
5028 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5029 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5030 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5031 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5032 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5033 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5034 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5035 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5036 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5037 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5038 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5039 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5040 #endif
5041
5042 static struct attribute *slab_attrs[] = {
5043 &slab_size_attr.attr,
5044 &object_size_attr.attr,
5045 &objs_per_slab_attr.attr,
5046 &order_attr.attr,
5047 &min_partial_attr.attr,
5048 &cpu_partial_attr.attr,
5049 &objects_attr.attr,
5050 &objects_partial_attr.attr,
5051 &partial_attr.attr,
5052 &cpu_slabs_attr.attr,
5053 &ctor_attr.attr,
5054 &aliases_attr.attr,
5055 &align_attr.attr,
5056 &hwcache_align_attr.attr,
5057 &reclaim_account_attr.attr,
5058 &destroy_by_rcu_attr.attr,
5059 &shrink_attr.attr,
5060 &reserved_attr.attr,
5061 &slabs_cpu_partial_attr.attr,
5062 #ifdef CONFIG_SLUB_DEBUG
5063 &total_objects_attr.attr,
5064 &slabs_attr.attr,
5065 &sanity_checks_attr.attr,
5066 &trace_attr.attr,
5067 &red_zone_attr.attr,
5068 &poison_attr.attr,
5069 &store_user_attr.attr,
5070 &validate_attr.attr,
5071 &alloc_calls_attr.attr,
5072 &free_calls_attr.attr,
5073 #endif
5074 #ifdef CONFIG_ZONE_DMA
5075 &cache_dma_attr.attr,
5076 #endif
5077 #ifdef CONFIG_NUMA
5078 &remote_node_defrag_ratio_attr.attr,
5079 #endif
5080 #ifdef CONFIG_SLUB_STATS
5081 &alloc_fastpath_attr.attr,
5082 &alloc_slowpath_attr.attr,
5083 &free_fastpath_attr.attr,
5084 &free_slowpath_attr.attr,
5085 &free_frozen_attr.attr,
5086 &free_add_partial_attr.attr,
5087 &free_remove_partial_attr.attr,
5088 &alloc_from_partial_attr.attr,
5089 &alloc_slab_attr.attr,
5090 &alloc_refill_attr.attr,
5091 &alloc_node_mismatch_attr.attr,
5092 &free_slab_attr.attr,
5093 &cpuslab_flush_attr.attr,
5094 &deactivate_full_attr.attr,
5095 &deactivate_empty_attr.attr,
5096 &deactivate_to_head_attr.attr,
5097 &deactivate_to_tail_attr.attr,
5098 &deactivate_remote_frees_attr.attr,
5099 &deactivate_bypass_attr.attr,
5100 &order_fallback_attr.attr,
5101 &cmpxchg_double_fail_attr.attr,
5102 &cmpxchg_double_cpu_fail_attr.attr,
5103 &cpu_partial_alloc_attr.attr,
5104 &cpu_partial_free_attr.attr,
5105 #endif
5106 #ifdef CONFIG_FAILSLAB
5107 &failslab_attr.attr,
5108 #endif
5109
5110 NULL
5111 };
5112
5113 static struct attribute_group slab_attr_group = {
5114 .attrs = slab_attrs,
5115 };
5116
5117 static ssize_t slab_attr_show(struct kobject *kobj,
5118 struct attribute *attr,
5119 char *buf)
5120 {
5121 struct slab_attribute *attribute;
5122 struct kmem_cache *s;
5123 int err;
5124
5125 attribute = to_slab_attr(attr);
5126 s = to_slab(kobj);
5127
5128 if (!attribute->show)
5129 return -EIO;
5130
5131 err = attribute->show(s, buf);
5132
5133 return err;
5134 }
5135
5136 static ssize_t slab_attr_store(struct kobject *kobj,
5137 struct attribute *attr,
5138 const char *buf, size_t len)
5139 {
5140 struct slab_attribute *attribute;
5141 struct kmem_cache *s;
5142 int err;
5143
5144 attribute = to_slab_attr(attr);
5145 s = to_slab(kobj);
5146
5147 if (!attribute->store)
5148 return -EIO;
5149
5150 err = attribute->store(s, buf, len);
5151
5152 return err;
5153 }
5154
5155 static void kmem_cache_release(struct kobject *kobj)
5156 {
5157 struct kmem_cache *s = to_slab(kobj);
5158
5159 kfree(s->name);
5160 kfree(s);
5161 }
5162
5163 static const struct sysfs_ops slab_sysfs_ops = {
5164 .show = slab_attr_show,
5165 .store = slab_attr_store,
5166 };
5167
5168 static struct kobj_type slab_ktype = {
5169 .sysfs_ops = &slab_sysfs_ops,
5170 .release = kmem_cache_release
5171 };
5172
5173 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5174 {
5175 struct kobj_type *ktype = get_ktype(kobj);
5176
5177 if (ktype == &slab_ktype)
5178 return 1;
5179 return 0;
5180 }
5181
5182 static const struct kset_uevent_ops slab_uevent_ops = {
5183 .filter = uevent_filter,
5184 };
5185
5186 static struct kset *slab_kset;
5187
5188 #define ID_STR_LENGTH 64
5189
5190 /* Create a unique string id for a slab cache:
5191 *
5192 * Format :[flags-]size
5193 */
5194 static char *create_unique_id(struct kmem_cache *s)
5195 {
5196 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5197 char *p = name;
5198
5199 BUG_ON(!name);
5200
5201 *p++ = ':';
5202 /*
5203 * First flags affecting slabcache operations. We will only
5204 * get here for aliasable slabs so we do not need to support
5205 * too many flags. The flags here must cover all flags that
5206 * are matched during merging to guarantee that the id is
5207 * unique.
5208 */
5209 if (s->flags & SLAB_CACHE_DMA)
5210 *p++ = 'd';
5211 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5212 *p++ = 'a';
5213 if (s->flags & SLAB_DEBUG_FREE)
5214 *p++ = 'F';
5215 if (!(s->flags & SLAB_NOTRACK))
5216 *p++ = 't';
5217 if (p != name + 1)
5218 *p++ = '-';
5219 p += sprintf(p, "%07d", s->size);
5220 BUG_ON(p > name + ID_STR_LENGTH - 1);
5221 return name;
5222 }
5223
5224 static int sysfs_slab_add(struct kmem_cache *s)
5225 {
5226 int err;
5227 const char *name;
5228 int unmergeable;
5229
5230 if (slab_state < SYSFS)
5231 /* Defer until later */
5232 return 0;
5233
5234 unmergeable = slab_unmergeable(s);
5235 if (unmergeable) {
5236 /*
5237 * Slabcache can never be merged so we can use the name proper.
5238 * This is typically the case for debug situations. In that
5239 * case we can catch duplicate names easily.
5240 */
5241 sysfs_remove_link(&slab_kset->kobj, s->name);
5242 name = s->name;
5243 } else {
5244 /*
5245 * Create a unique name for the slab as a target
5246 * for the symlinks.
5247 */
5248 name = create_unique_id(s);
5249 }
5250
5251 s->kobj.kset = slab_kset;
5252 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5253 if (err) {
5254 kobject_put(&s->kobj);
5255 return err;
5256 }
5257
5258 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5259 if (err) {
5260 kobject_del(&s->kobj);
5261 kobject_put(&s->kobj);
5262 return err;
5263 }
5264 kobject_uevent(&s->kobj, KOBJ_ADD);
5265 if (!unmergeable) {
5266 /* Setup first alias */
5267 sysfs_slab_alias(s, s->name);
5268 kfree(name);
5269 }
5270 return 0;
5271 }
5272
5273 static void sysfs_slab_remove(struct kmem_cache *s)
5274 {
5275 if (slab_state < SYSFS)
5276 /*
5277 * Sysfs has not been setup yet so no need to remove the
5278 * cache from sysfs.
5279 */
5280 return;
5281
5282 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5283 kobject_del(&s->kobj);
5284 kobject_put(&s->kobj);
5285 }
5286
5287 /*
5288 * Need to buffer aliases during bootup until sysfs becomes
5289 * available lest we lose that information.
5290 */
5291 struct saved_alias {
5292 struct kmem_cache *s;
5293 const char *name;
5294 struct saved_alias *next;
5295 };
5296
5297 static struct saved_alias *alias_list;
5298
5299 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5300 {
5301 struct saved_alias *al;
5302
5303 if (slab_state == SYSFS) {
5304 /*
5305 * If we have a leftover link then remove it.
5306 */
5307 sysfs_remove_link(&slab_kset->kobj, name);
5308 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5309 }
5310
5311 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5312 if (!al)
5313 return -ENOMEM;
5314
5315 al->s = s;
5316 al->name = name;
5317 al->next = alias_list;
5318 alias_list = al;
5319 return 0;
5320 }
5321
5322 static int __init slab_sysfs_init(void)
5323 {
5324 struct kmem_cache *s;
5325 int err;
5326
5327 down_write(&slub_lock);
5328
5329 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5330 if (!slab_kset) {
5331 up_write(&slub_lock);
5332 printk(KERN_ERR "Cannot register slab subsystem.\n");
5333 return -ENOSYS;
5334 }
5335
5336 slab_state = SYSFS;
5337
5338 list_for_each_entry(s, &slab_caches, list) {
5339 err = sysfs_slab_add(s);
5340 if (err)
5341 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5342 " to sysfs\n", s->name);
5343 }
5344
5345 while (alias_list) {
5346 struct saved_alias *al = alias_list;
5347
5348 alias_list = alias_list->next;
5349 err = sysfs_slab_alias(al->s, al->name);
5350 if (err)
5351 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5352 " %s to sysfs\n", s->name);
5353 kfree(al);
5354 }
5355
5356 up_write(&slub_lock);
5357 resiliency_test();
5358 return 0;
5359 }
5360
5361 __initcall(slab_sysfs_init);
5362 #endif /* CONFIG_SYSFS */
5363
5364 /*
5365 * The /proc/slabinfo ABI
5366 */
5367 #ifdef CONFIG_SLABINFO
5368 static void print_slabinfo_header(struct seq_file *m)
5369 {
5370 seq_puts(m, "slabinfo - version: 2.1\n");
5371 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5372 "<objperslab> <pagesperslab>");
5373 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5374 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5375 seq_putc(m, '\n');
5376 }
5377
5378 static void *s_start(struct seq_file *m, loff_t *pos)
5379 {
5380 loff_t n = *pos;
5381
5382 down_read(&slub_lock);
5383 if (!n)
5384 print_slabinfo_header(m);
5385
5386 return seq_list_start(&slab_caches, *pos);
5387 }
5388
5389 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5390 {
5391 return seq_list_next(p, &slab_caches, pos);
5392 }
5393
5394 static void s_stop(struct seq_file *m, void *p)
5395 {
5396 up_read(&slub_lock);
5397 }
5398
5399 static int s_show(struct seq_file *m, void *p)
5400 {
5401 unsigned long nr_partials = 0;
5402 unsigned long nr_slabs = 0;
5403 unsigned long nr_inuse = 0;
5404 unsigned long nr_objs = 0;
5405 unsigned long nr_free = 0;
5406 struct kmem_cache *s;
5407 int node;
5408
5409 s = list_entry(p, struct kmem_cache, list);
5410
5411 for_each_online_node(node) {
5412 struct kmem_cache_node *n = get_node(s, node);
5413
5414 if (!n)
5415 continue;
5416
5417 nr_partials += n->nr_partial;
5418 nr_slabs += atomic_long_read(&n->nr_slabs);
5419 nr_objs += atomic_long_read(&n->total_objects);
5420 nr_free += count_partial(n, count_free);
5421 }
5422
5423 nr_inuse = nr_objs - nr_free;
5424
5425 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5426 nr_objs, s->size, oo_objects(s->oo),
5427 (1 << oo_order(s->oo)));
5428 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5429 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5430 0UL);
5431 seq_putc(m, '\n');
5432 return 0;
5433 }
5434
5435 static const struct seq_operations slabinfo_op = {
5436 .start = s_start,
5437 .next = s_next,
5438 .stop = s_stop,
5439 .show = s_show,
5440 };
5441
5442 static int slabinfo_open(struct inode *inode, struct file *file)
5443 {
5444 return seq_open(file, &slabinfo_op);
5445 }
5446
5447 static const struct file_operations proc_slabinfo_operations = {
5448 .open = slabinfo_open,
5449 .read = seq_read,
5450 .llseek = seq_lseek,
5451 .release = seq_release,
5452 };
5453
5454 static int __init slab_proc_init(void)
5455 {
5456 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5457 return 0;
5458 }
5459 module_init(slab_proc_init);
5460 #endif /* CONFIG_SLABINFO */