Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371 }
372
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378 {
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388 #endif
389 {
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404 #ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407
408 return 0;
409 }
410
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424 #endif
425 {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return 1;
437 }
438 slab_unlock(page);
439 local_irq_restore(flags);
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445 #ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448
449 return 0;
450 }
451
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454 * Determine a map of object in use on a page.
455 *
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
458 */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466 }
467
468 /*
469 * Debug settings:
470 */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479
480 /*
481 * Object debugging
482 */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
487 }
488
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491 {
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500 }
501
502 static void set_track(struct kmem_cache *s, void *object,
503 enum track_item alloc, unsigned long addr)
504 {
505 struct track *p = get_track(s, object, alloc);
506
507 if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525 #endif
526 p->addr = addr;
527 p->cpu = smp_processor_id();
528 p->pid = current->pid;
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532 }
533
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542
543 static void print_track(const char *s, struct track *t)
544 {
545 if (!t->addr)
546 return;
547
548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559 #endif
560 }
561
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570
571 static void print_page_info(struct page *page)
572 {
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
592
593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004 static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
1006 {
1007 lockdep_assert_held(&n->list_lock);
1008
1009 if (!(s->flags & SLAB_STORE_USER))
1010 return;
1011
1012 list_add(&page->lru, &n->full);
1013 }
1014
1015 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016 {
1017 lockdep_assert_held(&n->list_lock);
1018
1019 if (!(s->flags & SLAB_STORE_USER))
1020 return;
1021
1022 list_del(&page->lru);
1023 }
1024
1025 /* Tracking of the number of slabs for debugging purposes */
1026 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1027 {
1028 struct kmem_cache_node *n = get_node(s, node);
1029
1030 return atomic_long_read(&n->nr_slabs);
1031 }
1032
1033 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1034 {
1035 return atomic_long_read(&n->nr_slabs);
1036 }
1037
1038 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 /*
1043 * May be called early in order to allocate a slab for the
1044 * kmem_cache_node structure. Solve the chicken-egg
1045 * dilemma by deferring the increment of the count during
1046 * bootstrap (see early_kmem_cache_node_alloc).
1047 */
1048 if (likely(n)) {
1049 atomic_long_inc(&n->nr_slabs);
1050 atomic_long_add(objects, &n->total_objects);
1051 }
1052 }
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1054 {
1055 struct kmem_cache_node *n = get_node(s, node);
1056
1057 atomic_long_dec(&n->nr_slabs);
1058 atomic_long_sub(objects, &n->total_objects);
1059 }
1060
1061 /* Object debug checks for alloc/free paths */
1062 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1063 void *object)
1064 {
1065 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1066 return;
1067
1068 init_object(s, object, SLUB_RED_INACTIVE);
1069 init_tracking(s, object);
1070 }
1071
1072 static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 struct page *page,
1074 void *object, unsigned long addr)
1075 {
1076 if (!check_slab(s, page))
1077 goto bad;
1078
1079 if (!check_valid_pointer(s, page, object)) {
1080 object_err(s, page, object, "Freelist Pointer check fails");
1081 goto bad;
1082 }
1083
1084 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1085 goto bad;
1086
1087 /* Success perform special debug activities for allocs */
1088 if (s->flags & SLAB_STORE_USER)
1089 set_track(s, object, TRACK_ALLOC, addr);
1090 trace(s, page, object, 1);
1091 init_object(s, object, SLUB_RED_ACTIVE);
1092 return 1;
1093
1094 bad:
1095 if (PageSlab(page)) {
1096 /*
1097 * If this is a slab page then lets do the best we can
1098 * to avoid issues in the future. Marking all objects
1099 * as used avoids touching the remaining objects.
1100 */
1101 slab_fix(s, "Marking all objects used");
1102 page->inuse = page->objects;
1103 page->freelist = NULL;
1104 }
1105 return 0;
1106 }
1107
1108 static noinline struct kmem_cache_node *free_debug_processing(
1109 struct kmem_cache *s, struct page *page, void *object,
1110 unsigned long addr, unsigned long *flags)
1111 {
1112 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1113
1114 spin_lock_irqsave(&n->list_lock, *flags);
1115 slab_lock(page);
1116
1117 if (!check_slab(s, page))
1118 goto fail;
1119
1120 if (!check_valid_pointer(s, page, object)) {
1121 slab_err(s, page, "Invalid object pointer 0x%p", object);
1122 goto fail;
1123 }
1124
1125 if (on_freelist(s, page, object)) {
1126 object_err(s, page, object, "Object already free");
1127 goto fail;
1128 }
1129
1130 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1131 goto out;
1132
1133 if (unlikely(s != page->slab_cache)) {
1134 if (!PageSlab(page)) {
1135 slab_err(s, page, "Attempt to free object(0x%p) "
1136 "outside of slab", object);
1137 } else if (!page->slab_cache) {
1138 printk(KERN_ERR
1139 "SLUB <none>: no slab for object 0x%p.\n",
1140 object);
1141 dump_stack();
1142 } else
1143 object_err(s, page, object,
1144 "page slab pointer corrupt.");
1145 goto fail;
1146 }
1147
1148 if (s->flags & SLAB_STORE_USER)
1149 set_track(s, object, TRACK_FREE, addr);
1150 trace(s, page, object, 0);
1151 init_object(s, object, SLUB_RED_INACTIVE);
1152 out:
1153 slab_unlock(page);
1154 /*
1155 * Keep node_lock to preserve integrity
1156 * until the object is actually freed
1157 */
1158 return n;
1159
1160 fail:
1161 slab_unlock(page);
1162 spin_unlock_irqrestore(&n->list_lock, *flags);
1163 slab_fix(s, "Object at 0x%p not freed", object);
1164 return NULL;
1165 }
1166
1167 static int __init setup_slub_debug(char *str)
1168 {
1169 slub_debug = DEBUG_DEFAULT_FLAGS;
1170 if (*str++ != '=' || !*str)
1171 /*
1172 * No options specified. Switch on full debugging.
1173 */
1174 goto out;
1175
1176 if (*str == ',')
1177 /*
1178 * No options but restriction on slabs. This means full
1179 * debugging for slabs matching a pattern.
1180 */
1181 goto check_slabs;
1182
1183 if (tolower(*str) == 'o') {
1184 /*
1185 * Avoid enabling debugging on caches if its minimum order
1186 * would increase as a result.
1187 */
1188 disable_higher_order_debug = 1;
1189 goto out;
1190 }
1191
1192 slub_debug = 0;
1193 if (*str == '-')
1194 /*
1195 * Switch off all debugging measures.
1196 */
1197 goto out;
1198
1199 /*
1200 * Determine which debug features should be switched on
1201 */
1202 for (; *str && *str != ','; str++) {
1203 switch (tolower(*str)) {
1204 case 'f':
1205 slub_debug |= SLAB_DEBUG_FREE;
1206 break;
1207 case 'z':
1208 slub_debug |= SLAB_RED_ZONE;
1209 break;
1210 case 'p':
1211 slub_debug |= SLAB_POISON;
1212 break;
1213 case 'u':
1214 slub_debug |= SLAB_STORE_USER;
1215 break;
1216 case 't':
1217 slub_debug |= SLAB_TRACE;
1218 break;
1219 case 'a':
1220 slub_debug |= SLAB_FAILSLAB;
1221 break;
1222 default:
1223 printk(KERN_ERR "slub_debug option '%c' "
1224 "unknown. skipped\n", *str);
1225 }
1226 }
1227
1228 check_slabs:
1229 if (*str == ',')
1230 slub_debug_slabs = str + 1;
1231 out:
1232 return 1;
1233 }
1234
1235 __setup("slub_debug", setup_slub_debug);
1236
1237 static unsigned long kmem_cache_flags(unsigned long object_size,
1238 unsigned long flags, const char *name,
1239 void (*ctor)(void *))
1240 {
1241 /*
1242 * Enable debugging if selected on the kernel commandline.
1243 */
1244 if (slub_debug && (!slub_debug_slabs || (name &&
1245 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1246 flags |= slub_debug;
1247
1248 return flags;
1249 }
1250 #else
1251 static inline void setup_object_debug(struct kmem_cache *s,
1252 struct page *page, void *object) {}
1253
1254 static inline int alloc_debug_processing(struct kmem_cache *s,
1255 struct page *page, void *object, unsigned long addr) { return 0; }
1256
1257 static inline struct kmem_cache_node *free_debug_processing(
1258 struct kmem_cache *s, struct page *page, void *object,
1259 unsigned long addr, unsigned long *flags) { return NULL; }
1260
1261 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1262 { return 1; }
1263 static inline int check_object(struct kmem_cache *s, struct page *page,
1264 void *object, u8 val) { return 1; }
1265 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
1267 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1268 struct page *page) {}
1269 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1270 unsigned long flags, const char *name,
1271 void (*ctor)(void *))
1272 {
1273 return flags;
1274 }
1275 #define slub_debug 0
1276
1277 #define disable_higher_order_debug 0
1278
1279 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1280 { return 0; }
1281 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1282 { return 0; }
1283 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
1285 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1286 int objects) {}
1287
1288 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1289 {
1290 kmemleak_alloc(ptr, size, 1, flags);
1291 }
1292
1293 static inline void kfree_hook(const void *x)
1294 {
1295 kmemleak_free(x);
1296 }
1297
1298 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1299 { return 0; }
1300
1301 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1302 void *object)
1303 {
1304 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1305 flags & gfp_allowed_mask);
1306 }
1307
1308 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1309 {
1310 kmemleak_free_recursive(x, s->flags);
1311 }
1312
1313 #endif /* CONFIG_SLUB_DEBUG */
1314
1315 /*
1316 * Slab allocation and freeing
1317 */
1318 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1319 struct kmem_cache_order_objects oo)
1320 {
1321 int order = oo_order(oo);
1322
1323 flags |= __GFP_NOTRACK;
1324
1325 if (node == NUMA_NO_NODE)
1326 return alloc_pages(flags, order);
1327 else
1328 return alloc_pages_exact_node(node, flags, order);
1329 }
1330
1331 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1332 {
1333 struct page *page;
1334 struct kmem_cache_order_objects oo = s->oo;
1335 gfp_t alloc_gfp;
1336
1337 flags &= gfp_allowed_mask;
1338
1339 if (flags & __GFP_WAIT)
1340 local_irq_enable();
1341
1342 flags |= s->allocflags;
1343
1344 /*
1345 * Let the initial higher-order allocation fail under memory pressure
1346 * so we fall-back to the minimum order allocation.
1347 */
1348 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1349
1350 page = alloc_slab_page(alloc_gfp, node, oo);
1351 if (unlikely(!page)) {
1352 oo = s->min;
1353 /*
1354 * Allocation may have failed due to fragmentation.
1355 * Try a lower order alloc if possible
1356 */
1357 page = alloc_slab_page(flags, node, oo);
1358
1359 if (page)
1360 stat(s, ORDER_FALLBACK);
1361 }
1362
1363 if (kmemcheck_enabled && page
1364 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 int pages = 1 << oo_order(oo);
1366
1367 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1368
1369 /*
1370 * Objects from caches that have a constructor don't get
1371 * cleared when they're allocated, so we need to do it here.
1372 */
1373 if (s->ctor)
1374 kmemcheck_mark_uninitialized_pages(page, pages);
1375 else
1376 kmemcheck_mark_unallocated_pages(page, pages);
1377 }
1378
1379 if (flags & __GFP_WAIT)
1380 local_irq_disable();
1381 if (!page)
1382 return NULL;
1383
1384 page->objects = oo_objects(oo);
1385 mod_zone_page_state(page_zone(page),
1386 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388 1 << oo_order(oo));
1389
1390 return page;
1391 }
1392
1393 static void setup_object(struct kmem_cache *s, struct page *page,
1394 void *object)
1395 {
1396 setup_object_debug(s, page, object);
1397 if (unlikely(s->ctor))
1398 s->ctor(object);
1399 }
1400
1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402 {
1403 struct page *page;
1404 void *start;
1405 void *last;
1406 void *p;
1407 int order;
1408
1409 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410
1411 page = allocate_slab(s,
1412 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413 if (!page)
1414 goto out;
1415
1416 order = compound_order(page);
1417 inc_slabs_node(s, page_to_nid(page), page->objects);
1418 memcg_bind_pages(s, order);
1419 page->slab_cache = s;
1420 __SetPageSlab(page);
1421 if (page->pfmemalloc)
1422 SetPageSlabPfmemalloc(page);
1423
1424 start = page_address(page);
1425
1426 if (unlikely(s->flags & SLAB_POISON))
1427 memset(start, POISON_INUSE, PAGE_SIZE << order);
1428
1429 last = start;
1430 for_each_object(p, s, start, page->objects) {
1431 setup_object(s, page, last);
1432 set_freepointer(s, last, p);
1433 last = p;
1434 }
1435 setup_object(s, page, last);
1436 set_freepointer(s, last, NULL);
1437
1438 page->freelist = start;
1439 page->inuse = page->objects;
1440 page->frozen = 1;
1441 out:
1442 return page;
1443 }
1444
1445 static void __free_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 int order = compound_order(page);
1448 int pages = 1 << order;
1449
1450 if (kmem_cache_debug(s)) {
1451 void *p;
1452
1453 slab_pad_check(s, page);
1454 for_each_object(p, s, page_address(page),
1455 page->objects)
1456 check_object(s, page, p, SLUB_RED_INACTIVE);
1457 }
1458
1459 kmemcheck_free_shadow(page, compound_order(page));
1460
1461 mod_zone_page_state(page_zone(page),
1462 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464 -pages);
1465
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468
1469 memcg_release_pages(s, order);
1470 page_mapcount_reset(page);
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += pages;
1473 __free_memcg_kmem_pages(page, order);
1474 }
1475
1476 #define need_reserve_slab_rcu \
1477 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478
1479 static void rcu_free_slab(struct rcu_head *h)
1480 {
1481 struct page *page;
1482
1483 if (need_reserve_slab_rcu)
1484 page = virt_to_head_page(h);
1485 else
1486 page = container_of((struct list_head *)h, struct page, lru);
1487
1488 __free_slab(page->slab_cache, page);
1489 }
1490
1491 static void free_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 struct rcu_head *head;
1495
1496 if (need_reserve_slab_rcu) {
1497 int order = compound_order(page);
1498 int offset = (PAGE_SIZE << order) - s->reserved;
1499
1500 VM_BUG_ON(s->reserved != sizeof(*head));
1501 head = page_address(page) + offset;
1502 } else {
1503 /*
1504 * RCU free overloads the RCU head over the LRU
1505 */
1506 head = (void *)&page->lru;
1507 }
1508
1509 call_rcu(head, rcu_free_slab);
1510 } else
1511 __free_slab(s, page);
1512 }
1513
1514 static void discard_slab(struct kmem_cache *s, struct page *page)
1515 {
1516 dec_slabs_node(s, page_to_nid(page), page->objects);
1517 free_slab(s, page);
1518 }
1519
1520 /*
1521 * Management of partially allocated slabs.
1522 */
1523 static inline void add_partial(struct kmem_cache_node *n,
1524 struct page *page, int tail)
1525 {
1526 lockdep_assert_held(&n->list_lock);
1527
1528 n->nr_partial++;
1529 if (tail == DEACTIVATE_TO_TAIL)
1530 list_add_tail(&page->lru, &n->partial);
1531 else
1532 list_add(&page->lru, &n->partial);
1533 }
1534
1535 static inline void remove_partial(struct kmem_cache_node *n,
1536 struct page *page)
1537 {
1538 lockdep_assert_held(&n->list_lock);
1539
1540 list_del(&page->lru);
1541 n->nr_partial--;
1542 }
1543
1544 /*
1545 * Remove slab from the partial list, freeze it and
1546 * return the pointer to the freelist.
1547 *
1548 * Returns a list of objects or NULL if it fails.
1549 */
1550 static inline void *acquire_slab(struct kmem_cache *s,
1551 struct kmem_cache_node *n, struct page *page,
1552 int mode, int *objects)
1553 {
1554 void *freelist;
1555 unsigned long counters;
1556 struct page new;
1557
1558 lockdep_assert_held(&n->list_lock);
1559
1560 /*
1561 * Zap the freelist and set the frozen bit.
1562 * The old freelist is the list of objects for the
1563 * per cpu allocation list.
1564 */
1565 freelist = page->freelist;
1566 counters = page->counters;
1567 new.counters = counters;
1568 *objects = new.objects - new.inuse;
1569 if (mode) {
1570 new.inuse = page->objects;
1571 new.freelist = NULL;
1572 } else {
1573 new.freelist = freelist;
1574 }
1575
1576 VM_BUG_ON(new.frozen);
1577 new.frozen = 1;
1578
1579 if (!__cmpxchg_double_slab(s, page,
1580 freelist, counters,
1581 new.freelist, new.counters,
1582 "acquire_slab"))
1583 return NULL;
1584
1585 remove_partial(n, page);
1586 WARN_ON(!freelist);
1587 return freelist;
1588 }
1589
1590 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1591 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1592
1593 /*
1594 * Try to allocate a partial slab from a specific node.
1595 */
1596 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1597 struct kmem_cache_cpu *c, gfp_t flags)
1598 {
1599 struct page *page, *page2;
1600 void *object = NULL;
1601 int available = 0;
1602 int objects;
1603
1604 /*
1605 * Racy check. If we mistakenly see no partial slabs then we
1606 * just allocate an empty slab. If we mistakenly try to get a
1607 * partial slab and there is none available then get_partials()
1608 * will return NULL.
1609 */
1610 if (!n || !n->nr_partial)
1611 return NULL;
1612
1613 spin_lock(&n->list_lock);
1614 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1615 void *t;
1616
1617 if (!pfmemalloc_match(page, flags))
1618 continue;
1619
1620 t = acquire_slab(s, n, page, object == NULL, &objects);
1621 if (!t)
1622 break;
1623
1624 available += objects;
1625 if (!object) {
1626 c->page = page;
1627 stat(s, ALLOC_FROM_PARTIAL);
1628 object = t;
1629 } else {
1630 put_cpu_partial(s, page, 0);
1631 stat(s, CPU_PARTIAL_NODE);
1632 }
1633 if (!kmem_cache_has_cpu_partial(s)
1634 || available > s->cpu_partial / 2)
1635 break;
1636
1637 }
1638 spin_unlock(&n->list_lock);
1639 return object;
1640 }
1641
1642 /*
1643 * Get a page from somewhere. Search in increasing NUMA distances.
1644 */
1645 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1646 struct kmem_cache_cpu *c)
1647 {
1648 #ifdef CONFIG_NUMA
1649 struct zonelist *zonelist;
1650 struct zoneref *z;
1651 struct zone *zone;
1652 enum zone_type high_zoneidx = gfp_zone(flags);
1653 void *object;
1654 unsigned int cpuset_mems_cookie;
1655
1656 /*
1657 * The defrag ratio allows a configuration of the tradeoffs between
1658 * inter node defragmentation and node local allocations. A lower
1659 * defrag_ratio increases the tendency to do local allocations
1660 * instead of attempting to obtain partial slabs from other nodes.
1661 *
1662 * If the defrag_ratio is set to 0 then kmalloc() always
1663 * returns node local objects. If the ratio is higher then kmalloc()
1664 * may return off node objects because partial slabs are obtained
1665 * from other nodes and filled up.
1666 *
1667 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1668 * defrag_ratio = 1000) then every (well almost) allocation will
1669 * first attempt to defrag slab caches on other nodes. This means
1670 * scanning over all nodes to look for partial slabs which may be
1671 * expensive if we do it every time we are trying to find a slab
1672 * with available objects.
1673 */
1674 if (!s->remote_node_defrag_ratio ||
1675 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1676 return NULL;
1677
1678 do {
1679 cpuset_mems_cookie = get_mems_allowed();
1680 zonelist = node_zonelist(slab_node(), flags);
1681 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1682 struct kmem_cache_node *n;
1683
1684 n = get_node(s, zone_to_nid(zone));
1685
1686 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1687 n->nr_partial > s->min_partial) {
1688 object = get_partial_node(s, n, c, flags);
1689 if (object) {
1690 /*
1691 * Return the object even if
1692 * put_mems_allowed indicated that
1693 * the cpuset mems_allowed was
1694 * updated in parallel. It's a
1695 * harmless race between the alloc
1696 * and the cpuset update.
1697 */
1698 put_mems_allowed(cpuset_mems_cookie);
1699 return object;
1700 }
1701 }
1702 }
1703 } while (!put_mems_allowed(cpuset_mems_cookie));
1704 #endif
1705 return NULL;
1706 }
1707
1708 /*
1709 * Get a partial page, lock it and return it.
1710 */
1711 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1712 struct kmem_cache_cpu *c)
1713 {
1714 void *object;
1715 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1716
1717 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1718 if (object || node != NUMA_NO_NODE)
1719 return object;
1720
1721 return get_any_partial(s, flags, c);
1722 }
1723
1724 #ifdef CONFIG_PREEMPT
1725 /*
1726 * Calculate the next globally unique transaction for disambiguiation
1727 * during cmpxchg. The transactions start with the cpu number and are then
1728 * incremented by CONFIG_NR_CPUS.
1729 */
1730 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1731 #else
1732 /*
1733 * No preemption supported therefore also no need to check for
1734 * different cpus.
1735 */
1736 #define TID_STEP 1
1737 #endif
1738
1739 static inline unsigned long next_tid(unsigned long tid)
1740 {
1741 return tid + TID_STEP;
1742 }
1743
1744 static inline unsigned int tid_to_cpu(unsigned long tid)
1745 {
1746 return tid % TID_STEP;
1747 }
1748
1749 static inline unsigned long tid_to_event(unsigned long tid)
1750 {
1751 return tid / TID_STEP;
1752 }
1753
1754 static inline unsigned int init_tid(int cpu)
1755 {
1756 return cpu;
1757 }
1758
1759 static inline void note_cmpxchg_failure(const char *n,
1760 const struct kmem_cache *s, unsigned long tid)
1761 {
1762 #ifdef SLUB_DEBUG_CMPXCHG
1763 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1764
1765 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1766
1767 #ifdef CONFIG_PREEMPT
1768 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1769 printk("due to cpu change %d -> %d\n",
1770 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1771 else
1772 #endif
1773 if (tid_to_event(tid) != tid_to_event(actual_tid))
1774 printk("due to cpu running other code. Event %ld->%ld\n",
1775 tid_to_event(tid), tid_to_event(actual_tid));
1776 else
1777 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1778 actual_tid, tid, next_tid(tid));
1779 #endif
1780 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1781 }
1782
1783 static void init_kmem_cache_cpus(struct kmem_cache *s)
1784 {
1785 int cpu;
1786
1787 for_each_possible_cpu(cpu)
1788 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1789 }
1790
1791 /*
1792 * Remove the cpu slab
1793 */
1794 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1795 void *freelist)
1796 {
1797 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1798 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1799 int lock = 0;
1800 enum slab_modes l = M_NONE, m = M_NONE;
1801 void *nextfree;
1802 int tail = DEACTIVATE_TO_HEAD;
1803 struct page new;
1804 struct page old;
1805
1806 if (page->freelist) {
1807 stat(s, DEACTIVATE_REMOTE_FREES);
1808 tail = DEACTIVATE_TO_TAIL;
1809 }
1810
1811 /*
1812 * Stage one: Free all available per cpu objects back
1813 * to the page freelist while it is still frozen. Leave the
1814 * last one.
1815 *
1816 * There is no need to take the list->lock because the page
1817 * is still frozen.
1818 */
1819 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1820 void *prior;
1821 unsigned long counters;
1822
1823 do {
1824 prior = page->freelist;
1825 counters = page->counters;
1826 set_freepointer(s, freelist, prior);
1827 new.counters = counters;
1828 new.inuse--;
1829 VM_BUG_ON(!new.frozen);
1830
1831 } while (!__cmpxchg_double_slab(s, page,
1832 prior, counters,
1833 freelist, new.counters,
1834 "drain percpu freelist"));
1835
1836 freelist = nextfree;
1837 }
1838
1839 /*
1840 * Stage two: Ensure that the page is unfrozen while the
1841 * list presence reflects the actual number of objects
1842 * during unfreeze.
1843 *
1844 * We setup the list membership and then perform a cmpxchg
1845 * with the count. If there is a mismatch then the page
1846 * is not unfrozen but the page is on the wrong list.
1847 *
1848 * Then we restart the process which may have to remove
1849 * the page from the list that we just put it on again
1850 * because the number of objects in the slab may have
1851 * changed.
1852 */
1853 redo:
1854
1855 old.freelist = page->freelist;
1856 old.counters = page->counters;
1857 VM_BUG_ON(!old.frozen);
1858
1859 /* Determine target state of the slab */
1860 new.counters = old.counters;
1861 if (freelist) {
1862 new.inuse--;
1863 set_freepointer(s, freelist, old.freelist);
1864 new.freelist = freelist;
1865 } else
1866 new.freelist = old.freelist;
1867
1868 new.frozen = 0;
1869
1870 if (!new.inuse && n->nr_partial > s->min_partial)
1871 m = M_FREE;
1872 else if (new.freelist) {
1873 m = M_PARTIAL;
1874 if (!lock) {
1875 lock = 1;
1876 /*
1877 * Taking the spinlock removes the possiblity
1878 * that acquire_slab() will see a slab page that
1879 * is frozen
1880 */
1881 spin_lock(&n->list_lock);
1882 }
1883 } else {
1884 m = M_FULL;
1885 if (kmem_cache_debug(s) && !lock) {
1886 lock = 1;
1887 /*
1888 * This also ensures that the scanning of full
1889 * slabs from diagnostic functions will not see
1890 * any frozen slabs.
1891 */
1892 spin_lock(&n->list_lock);
1893 }
1894 }
1895
1896 if (l != m) {
1897
1898 if (l == M_PARTIAL)
1899
1900 remove_partial(n, page);
1901
1902 else if (l == M_FULL)
1903
1904 remove_full(s, n, page);
1905
1906 if (m == M_PARTIAL) {
1907
1908 add_partial(n, page, tail);
1909 stat(s, tail);
1910
1911 } else if (m == M_FULL) {
1912
1913 stat(s, DEACTIVATE_FULL);
1914 add_full(s, n, page);
1915
1916 }
1917 }
1918
1919 l = m;
1920 if (!__cmpxchg_double_slab(s, page,
1921 old.freelist, old.counters,
1922 new.freelist, new.counters,
1923 "unfreezing slab"))
1924 goto redo;
1925
1926 if (lock)
1927 spin_unlock(&n->list_lock);
1928
1929 if (m == M_FREE) {
1930 stat(s, DEACTIVATE_EMPTY);
1931 discard_slab(s, page);
1932 stat(s, FREE_SLAB);
1933 }
1934 }
1935
1936 /*
1937 * Unfreeze all the cpu partial slabs.
1938 *
1939 * This function must be called with interrupts disabled
1940 * for the cpu using c (or some other guarantee must be there
1941 * to guarantee no concurrent accesses).
1942 */
1943 static void unfreeze_partials(struct kmem_cache *s,
1944 struct kmem_cache_cpu *c)
1945 {
1946 #ifdef CONFIG_SLUB_CPU_PARTIAL
1947 struct kmem_cache_node *n = NULL, *n2 = NULL;
1948 struct page *page, *discard_page = NULL;
1949
1950 while ((page = c->partial)) {
1951 struct page new;
1952 struct page old;
1953
1954 c->partial = page->next;
1955
1956 n2 = get_node(s, page_to_nid(page));
1957 if (n != n2) {
1958 if (n)
1959 spin_unlock(&n->list_lock);
1960
1961 n = n2;
1962 spin_lock(&n->list_lock);
1963 }
1964
1965 do {
1966
1967 old.freelist = page->freelist;
1968 old.counters = page->counters;
1969 VM_BUG_ON(!old.frozen);
1970
1971 new.counters = old.counters;
1972 new.freelist = old.freelist;
1973
1974 new.frozen = 0;
1975
1976 } while (!__cmpxchg_double_slab(s, page,
1977 old.freelist, old.counters,
1978 new.freelist, new.counters,
1979 "unfreezing slab"));
1980
1981 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1982 page->next = discard_page;
1983 discard_page = page;
1984 } else {
1985 add_partial(n, page, DEACTIVATE_TO_TAIL);
1986 stat(s, FREE_ADD_PARTIAL);
1987 }
1988 }
1989
1990 if (n)
1991 spin_unlock(&n->list_lock);
1992
1993 while (discard_page) {
1994 page = discard_page;
1995 discard_page = discard_page->next;
1996
1997 stat(s, DEACTIVATE_EMPTY);
1998 discard_slab(s, page);
1999 stat(s, FREE_SLAB);
2000 }
2001 #endif
2002 }
2003
2004 /*
2005 * Put a page that was just frozen (in __slab_free) into a partial page
2006 * slot if available. This is done without interrupts disabled and without
2007 * preemption disabled. The cmpxchg is racy and may put the partial page
2008 * onto a random cpus partial slot.
2009 *
2010 * If we did not find a slot then simply move all the partials to the
2011 * per node partial list.
2012 */
2013 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2014 {
2015 #ifdef CONFIG_SLUB_CPU_PARTIAL
2016 struct page *oldpage;
2017 int pages;
2018 int pobjects;
2019
2020 do {
2021 pages = 0;
2022 pobjects = 0;
2023 oldpage = this_cpu_read(s->cpu_slab->partial);
2024
2025 if (oldpage) {
2026 pobjects = oldpage->pobjects;
2027 pages = oldpage->pages;
2028 if (drain && pobjects > s->cpu_partial) {
2029 unsigned long flags;
2030 /*
2031 * partial array is full. Move the existing
2032 * set to the per node partial list.
2033 */
2034 local_irq_save(flags);
2035 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2036 local_irq_restore(flags);
2037 oldpage = NULL;
2038 pobjects = 0;
2039 pages = 0;
2040 stat(s, CPU_PARTIAL_DRAIN);
2041 }
2042 }
2043
2044 pages++;
2045 pobjects += page->objects - page->inuse;
2046
2047 page->pages = pages;
2048 page->pobjects = pobjects;
2049 page->next = oldpage;
2050
2051 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2052 != oldpage);
2053 #endif
2054 }
2055
2056 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2057 {
2058 stat(s, CPUSLAB_FLUSH);
2059 deactivate_slab(s, c->page, c->freelist);
2060
2061 c->tid = next_tid(c->tid);
2062 c->page = NULL;
2063 c->freelist = NULL;
2064 }
2065
2066 /*
2067 * Flush cpu slab.
2068 *
2069 * Called from IPI handler with interrupts disabled.
2070 */
2071 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2072 {
2073 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2074
2075 if (likely(c)) {
2076 if (c->page)
2077 flush_slab(s, c);
2078
2079 unfreeze_partials(s, c);
2080 }
2081 }
2082
2083 static void flush_cpu_slab(void *d)
2084 {
2085 struct kmem_cache *s = d;
2086
2087 __flush_cpu_slab(s, smp_processor_id());
2088 }
2089
2090 static bool has_cpu_slab(int cpu, void *info)
2091 {
2092 struct kmem_cache *s = info;
2093 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2094
2095 return c->page || c->partial;
2096 }
2097
2098 static void flush_all(struct kmem_cache *s)
2099 {
2100 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2101 }
2102
2103 /*
2104 * Check if the objects in a per cpu structure fit numa
2105 * locality expectations.
2106 */
2107 static inline int node_match(struct page *page, int node)
2108 {
2109 #ifdef CONFIG_NUMA
2110 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2111 return 0;
2112 #endif
2113 return 1;
2114 }
2115
2116 static int count_free(struct page *page)
2117 {
2118 return page->objects - page->inuse;
2119 }
2120
2121 static unsigned long count_partial(struct kmem_cache_node *n,
2122 int (*get_count)(struct page *))
2123 {
2124 unsigned long flags;
2125 unsigned long x = 0;
2126 struct page *page;
2127
2128 spin_lock_irqsave(&n->list_lock, flags);
2129 list_for_each_entry(page, &n->partial, lru)
2130 x += get_count(page);
2131 spin_unlock_irqrestore(&n->list_lock, flags);
2132 return x;
2133 }
2134
2135 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2136 {
2137 #ifdef CONFIG_SLUB_DEBUG
2138 return atomic_long_read(&n->total_objects);
2139 #else
2140 return 0;
2141 #endif
2142 }
2143
2144 static noinline void
2145 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2146 {
2147 int node;
2148
2149 printk(KERN_WARNING
2150 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2151 nid, gfpflags);
2152 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2153 "default order: %d, min order: %d\n", s->name, s->object_size,
2154 s->size, oo_order(s->oo), oo_order(s->min));
2155
2156 if (oo_order(s->min) > get_order(s->object_size))
2157 printk(KERN_WARNING " %s debugging increased min order, use "
2158 "slub_debug=O to disable.\n", s->name);
2159
2160 for_each_online_node(node) {
2161 struct kmem_cache_node *n = get_node(s, node);
2162 unsigned long nr_slabs;
2163 unsigned long nr_objs;
2164 unsigned long nr_free;
2165
2166 if (!n)
2167 continue;
2168
2169 nr_free = count_partial(n, count_free);
2170 nr_slabs = node_nr_slabs(n);
2171 nr_objs = node_nr_objs(n);
2172
2173 printk(KERN_WARNING
2174 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2175 node, nr_slabs, nr_objs, nr_free);
2176 }
2177 }
2178
2179 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2180 int node, struct kmem_cache_cpu **pc)
2181 {
2182 void *freelist;
2183 struct kmem_cache_cpu *c = *pc;
2184 struct page *page;
2185
2186 freelist = get_partial(s, flags, node, c);
2187
2188 if (freelist)
2189 return freelist;
2190
2191 page = new_slab(s, flags, node);
2192 if (page) {
2193 c = __this_cpu_ptr(s->cpu_slab);
2194 if (c->page)
2195 flush_slab(s, c);
2196
2197 /*
2198 * No other reference to the page yet so we can
2199 * muck around with it freely without cmpxchg
2200 */
2201 freelist = page->freelist;
2202 page->freelist = NULL;
2203
2204 stat(s, ALLOC_SLAB);
2205 c->page = page;
2206 *pc = c;
2207 } else
2208 freelist = NULL;
2209
2210 return freelist;
2211 }
2212
2213 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2214 {
2215 if (unlikely(PageSlabPfmemalloc(page)))
2216 return gfp_pfmemalloc_allowed(gfpflags);
2217
2218 return true;
2219 }
2220
2221 /*
2222 * Check the page->freelist of a page and either transfer the freelist to the
2223 * per cpu freelist or deactivate the page.
2224 *
2225 * The page is still frozen if the return value is not NULL.
2226 *
2227 * If this function returns NULL then the page has been unfrozen.
2228 *
2229 * This function must be called with interrupt disabled.
2230 */
2231 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2232 {
2233 struct page new;
2234 unsigned long counters;
2235 void *freelist;
2236
2237 do {
2238 freelist = page->freelist;
2239 counters = page->counters;
2240
2241 new.counters = counters;
2242 VM_BUG_ON(!new.frozen);
2243
2244 new.inuse = page->objects;
2245 new.frozen = freelist != NULL;
2246
2247 } while (!__cmpxchg_double_slab(s, page,
2248 freelist, counters,
2249 NULL, new.counters,
2250 "get_freelist"));
2251
2252 return freelist;
2253 }
2254
2255 /*
2256 * Slow path. The lockless freelist is empty or we need to perform
2257 * debugging duties.
2258 *
2259 * Processing is still very fast if new objects have been freed to the
2260 * regular freelist. In that case we simply take over the regular freelist
2261 * as the lockless freelist and zap the regular freelist.
2262 *
2263 * If that is not working then we fall back to the partial lists. We take the
2264 * first element of the freelist as the object to allocate now and move the
2265 * rest of the freelist to the lockless freelist.
2266 *
2267 * And if we were unable to get a new slab from the partial slab lists then
2268 * we need to allocate a new slab. This is the slowest path since it involves
2269 * a call to the page allocator and the setup of a new slab.
2270 */
2271 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2272 unsigned long addr, struct kmem_cache_cpu *c)
2273 {
2274 void *freelist;
2275 struct page *page;
2276 unsigned long flags;
2277
2278 local_irq_save(flags);
2279 #ifdef CONFIG_PREEMPT
2280 /*
2281 * We may have been preempted and rescheduled on a different
2282 * cpu before disabling interrupts. Need to reload cpu area
2283 * pointer.
2284 */
2285 c = this_cpu_ptr(s->cpu_slab);
2286 #endif
2287
2288 page = c->page;
2289 if (!page)
2290 goto new_slab;
2291 redo:
2292
2293 if (unlikely(!node_match(page, node))) {
2294 stat(s, ALLOC_NODE_MISMATCH);
2295 deactivate_slab(s, page, c->freelist);
2296 c->page = NULL;
2297 c->freelist = NULL;
2298 goto new_slab;
2299 }
2300
2301 /*
2302 * By rights, we should be searching for a slab page that was
2303 * PFMEMALLOC but right now, we are losing the pfmemalloc
2304 * information when the page leaves the per-cpu allocator
2305 */
2306 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2307 deactivate_slab(s, page, c->freelist);
2308 c->page = NULL;
2309 c->freelist = NULL;
2310 goto new_slab;
2311 }
2312
2313 /* must check again c->freelist in case of cpu migration or IRQ */
2314 freelist = c->freelist;
2315 if (freelist)
2316 goto load_freelist;
2317
2318 stat(s, ALLOC_SLOWPATH);
2319
2320 freelist = get_freelist(s, page);
2321
2322 if (!freelist) {
2323 c->page = NULL;
2324 stat(s, DEACTIVATE_BYPASS);
2325 goto new_slab;
2326 }
2327
2328 stat(s, ALLOC_REFILL);
2329
2330 load_freelist:
2331 /*
2332 * freelist is pointing to the list of objects to be used.
2333 * page is pointing to the page from which the objects are obtained.
2334 * That page must be frozen for per cpu allocations to work.
2335 */
2336 VM_BUG_ON(!c->page->frozen);
2337 c->freelist = get_freepointer(s, freelist);
2338 c->tid = next_tid(c->tid);
2339 local_irq_restore(flags);
2340 return freelist;
2341
2342 new_slab:
2343
2344 if (c->partial) {
2345 page = c->page = c->partial;
2346 c->partial = page->next;
2347 stat(s, CPU_PARTIAL_ALLOC);
2348 c->freelist = NULL;
2349 goto redo;
2350 }
2351
2352 freelist = new_slab_objects(s, gfpflags, node, &c);
2353
2354 if (unlikely(!freelist)) {
2355 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2356 slab_out_of_memory(s, gfpflags, node);
2357
2358 local_irq_restore(flags);
2359 return NULL;
2360 }
2361
2362 page = c->page;
2363 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2364 goto load_freelist;
2365
2366 /* Only entered in the debug case */
2367 if (kmem_cache_debug(s) &&
2368 !alloc_debug_processing(s, page, freelist, addr))
2369 goto new_slab; /* Slab failed checks. Next slab needed */
2370
2371 deactivate_slab(s, page, get_freepointer(s, freelist));
2372 c->page = NULL;
2373 c->freelist = NULL;
2374 local_irq_restore(flags);
2375 return freelist;
2376 }
2377
2378 /*
2379 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2380 * have the fastpath folded into their functions. So no function call
2381 * overhead for requests that can be satisfied on the fastpath.
2382 *
2383 * The fastpath works by first checking if the lockless freelist can be used.
2384 * If not then __slab_alloc is called for slow processing.
2385 *
2386 * Otherwise we can simply pick the next object from the lockless free list.
2387 */
2388 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2389 gfp_t gfpflags, int node, unsigned long addr)
2390 {
2391 void **object;
2392 struct kmem_cache_cpu *c;
2393 struct page *page;
2394 unsigned long tid;
2395
2396 if (slab_pre_alloc_hook(s, gfpflags))
2397 return NULL;
2398
2399 s = memcg_kmem_get_cache(s, gfpflags);
2400 redo:
2401 /*
2402 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2403 * enabled. We may switch back and forth between cpus while
2404 * reading from one cpu area. That does not matter as long
2405 * as we end up on the original cpu again when doing the cmpxchg.
2406 *
2407 * Preemption is disabled for the retrieval of the tid because that
2408 * must occur from the current processor. We cannot allow rescheduling
2409 * on a different processor between the determination of the pointer
2410 * and the retrieval of the tid.
2411 */
2412 preempt_disable();
2413 c = __this_cpu_ptr(s->cpu_slab);
2414
2415 /*
2416 * The transaction ids are globally unique per cpu and per operation on
2417 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2418 * occurs on the right processor and that there was no operation on the
2419 * linked list in between.
2420 */
2421 tid = c->tid;
2422 preempt_enable();
2423
2424 object = c->freelist;
2425 page = c->page;
2426 if (unlikely(!object || !node_match(page, node)))
2427 object = __slab_alloc(s, gfpflags, node, addr, c);
2428
2429 else {
2430 void *next_object = get_freepointer_safe(s, object);
2431
2432 /*
2433 * The cmpxchg will only match if there was no additional
2434 * operation and if we are on the right processor.
2435 *
2436 * The cmpxchg does the following atomically (without lock
2437 * semantics!)
2438 * 1. Relocate first pointer to the current per cpu area.
2439 * 2. Verify that tid and freelist have not been changed
2440 * 3. If they were not changed replace tid and freelist
2441 *
2442 * Since this is without lock semantics the protection is only
2443 * against code executing on this cpu *not* from access by
2444 * other cpus.
2445 */
2446 if (unlikely(!this_cpu_cmpxchg_double(
2447 s->cpu_slab->freelist, s->cpu_slab->tid,
2448 object, tid,
2449 next_object, next_tid(tid)))) {
2450
2451 note_cmpxchg_failure("slab_alloc", s, tid);
2452 goto redo;
2453 }
2454 prefetch_freepointer(s, next_object);
2455 stat(s, ALLOC_FASTPATH);
2456 }
2457
2458 if (unlikely(gfpflags & __GFP_ZERO) && object)
2459 memset(object, 0, s->object_size);
2460
2461 slab_post_alloc_hook(s, gfpflags, object);
2462
2463 return object;
2464 }
2465
2466 static __always_inline void *slab_alloc(struct kmem_cache *s,
2467 gfp_t gfpflags, unsigned long addr)
2468 {
2469 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2470 }
2471
2472 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2473 {
2474 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2475
2476 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2477 s->size, gfpflags);
2478
2479 return ret;
2480 }
2481 EXPORT_SYMBOL(kmem_cache_alloc);
2482
2483 #ifdef CONFIG_TRACING
2484 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2485 {
2486 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2487 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2488 return ret;
2489 }
2490 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2491 #endif
2492
2493 #ifdef CONFIG_NUMA
2494 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2495 {
2496 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2497
2498 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2499 s->object_size, s->size, gfpflags, node);
2500
2501 return ret;
2502 }
2503 EXPORT_SYMBOL(kmem_cache_alloc_node);
2504
2505 #ifdef CONFIG_TRACING
2506 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2507 gfp_t gfpflags,
2508 int node, size_t size)
2509 {
2510 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2511
2512 trace_kmalloc_node(_RET_IP_, ret,
2513 size, s->size, gfpflags, node);
2514 return ret;
2515 }
2516 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2517 #endif
2518 #endif
2519
2520 /*
2521 * Slow patch handling. This may still be called frequently since objects
2522 * have a longer lifetime than the cpu slabs in most processing loads.
2523 *
2524 * So we still attempt to reduce cache line usage. Just take the slab
2525 * lock and free the item. If there is no additional partial page
2526 * handling required then we can return immediately.
2527 */
2528 static void __slab_free(struct kmem_cache *s, struct page *page,
2529 void *x, unsigned long addr)
2530 {
2531 void *prior;
2532 void **object = (void *)x;
2533 int was_frozen;
2534 struct page new;
2535 unsigned long counters;
2536 struct kmem_cache_node *n = NULL;
2537 unsigned long uninitialized_var(flags);
2538
2539 stat(s, FREE_SLOWPATH);
2540
2541 if (kmem_cache_debug(s) &&
2542 !(n = free_debug_processing(s, page, x, addr, &flags)))
2543 return;
2544
2545 do {
2546 if (unlikely(n)) {
2547 spin_unlock_irqrestore(&n->list_lock, flags);
2548 n = NULL;
2549 }
2550 prior = page->freelist;
2551 counters = page->counters;
2552 set_freepointer(s, object, prior);
2553 new.counters = counters;
2554 was_frozen = new.frozen;
2555 new.inuse--;
2556 if ((!new.inuse || !prior) && !was_frozen) {
2557
2558 if (kmem_cache_has_cpu_partial(s) && !prior) {
2559
2560 /*
2561 * Slab was on no list before and will be
2562 * partially empty
2563 * We can defer the list move and instead
2564 * freeze it.
2565 */
2566 new.frozen = 1;
2567
2568 } else { /* Needs to be taken off a list */
2569
2570 n = get_node(s, page_to_nid(page));
2571 /*
2572 * Speculatively acquire the list_lock.
2573 * If the cmpxchg does not succeed then we may
2574 * drop the list_lock without any processing.
2575 *
2576 * Otherwise the list_lock will synchronize with
2577 * other processors updating the list of slabs.
2578 */
2579 spin_lock_irqsave(&n->list_lock, flags);
2580
2581 }
2582 }
2583
2584 } while (!cmpxchg_double_slab(s, page,
2585 prior, counters,
2586 object, new.counters,
2587 "__slab_free"));
2588
2589 if (likely(!n)) {
2590
2591 /*
2592 * If we just froze the page then put it onto the
2593 * per cpu partial list.
2594 */
2595 if (new.frozen && !was_frozen) {
2596 put_cpu_partial(s, page, 1);
2597 stat(s, CPU_PARTIAL_FREE);
2598 }
2599 /*
2600 * The list lock was not taken therefore no list
2601 * activity can be necessary.
2602 */
2603 if (was_frozen)
2604 stat(s, FREE_FROZEN);
2605 return;
2606 }
2607
2608 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2609 goto slab_empty;
2610
2611 /*
2612 * Objects left in the slab. If it was not on the partial list before
2613 * then add it.
2614 */
2615 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2616 if (kmem_cache_debug(s))
2617 remove_full(s, n, page);
2618 add_partial(n, page, DEACTIVATE_TO_TAIL);
2619 stat(s, FREE_ADD_PARTIAL);
2620 }
2621 spin_unlock_irqrestore(&n->list_lock, flags);
2622 return;
2623
2624 slab_empty:
2625 if (prior) {
2626 /*
2627 * Slab on the partial list.
2628 */
2629 remove_partial(n, page);
2630 stat(s, FREE_REMOVE_PARTIAL);
2631 } else {
2632 /* Slab must be on the full list */
2633 remove_full(s, n, page);
2634 }
2635
2636 spin_unlock_irqrestore(&n->list_lock, flags);
2637 stat(s, FREE_SLAB);
2638 discard_slab(s, page);
2639 }
2640
2641 /*
2642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2643 * can perform fastpath freeing without additional function calls.
2644 *
2645 * The fastpath is only possible if we are freeing to the current cpu slab
2646 * of this processor. This typically the case if we have just allocated
2647 * the item before.
2648 *
2649 * If fastpath is not possible then fall back to __slab_free where we deal
2650 * with all sorts of special processing.
2651 */
2652 static __always_inline void slab_free(struct kmem_cache *s,
2653 struct page *page, void *x, unsigned long addr)
2654 {
2655 void **object = (void *)x;
2656 struct kmem_cache_cpu *c;
2657 unsigned long tid;
2658
2659 slab_free_hook(s, x);
2660
2661 redo:
2662 /*
2663 * Determine the currently cpus per cpu slab.
2664 * The cpu may change afterward. However that does not matter since
2665 * data is retrieved via this pointer. If we are on the same cpu
2666 * during the cmpxchg then the free will succedd.
2667 */
2668 preempt_disable();
2669 c = __this_cpu_ptr(s->cpu_slab);
2670
2671 tid = c->tid;
2672 preempt_enable();
2673
2674 if (likely(page == c->page)) {
2675 set_freepointer(s, object, c->freelist);
2676
2677 if (unlikely(!this_cpu_cmpxchg_double(
2678 s->cpu_slab->freelist, s->cpu_slab->tid,
2679 c->freelist, tid,
2680 object, next_tid(tid)))) {
2681
2682 note_cmpxchg_failure("slab_free", s, tid);
2683 goto redo;
2684 }
2685 stat(s, FREE_FASTPATH);
2686 } else
2687 __slab_free(s, page, x, addr);
2688
2689 }
2690
2691 void kmem_cache_free(struct kmem_cache *s, void *x)
2692 {
2693 s = cache_from_obj(s, x);
2694 if (!s)
2695 return;
2696 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2697 trace_kmem_cache_free(_RET_IP_, x);
2698 }
2699 EXPORT_SYMBOL(kmem_cache_free);
2700
2701 /*
2702 * Object placement in a slab is made very easy because we always start at
2703 * offset 0. If we tune the size of the object to the alignment then we can
2704 * get the required alignment by putting one properly sized object after
2705 * another.
2706 *
2707 * Notice that the allocation order determines the sizes of the per cpu
2708 * caches. Each processor has always one slab available for allocations.
2709 * Increasing the allocation order reduces the number of times that slabs
2710 * must be moved on and off the partial lists and is therefore a factor in
2711 * locking overhead.
2712 */
2713
2714 /*
2715 * Mininum / Maximum order of slab pages. This influences locking overhead
2716 * and slab fragmentation. A higher order reduces the number of partial slabs
2717 * and increases the number of allocations possible without having to
2718 * take the list_lock.
2719 */
2720 static int slub_min_order;
2721 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2722 static int slub_min_objects;
2723
2724 /*
2725 * Merge control. If this is set then no merging of slab caches will occur.
2726 * (Could be removed. This was introduced to pacify the merge skeptics.)
2727 */
2728 static int slub_nomerge;
2729
2730 /*
2731 * Calculate the order of allocation given an slab object size.
2732 *
2733 * The order of allocation has significant impact on performance and other
2734 * system components. Generally order 0 allocations should be preferred since
2735 * order 0 does not cause fragmentation in the page allocator. Larger objects
2736 * be problematic to put into order 0 slabs because there may be too much
2737 * unused space left. We go to a higher order if more than 1/16th of the slab
2738 * would be wasted.
2739 *
2740 * In order to reach satisfactory performance we must ensure that a minimum
2741 * number of objects is in one slab. Otherwise we may generate too much
2742 * activity on the partial lists which requires taking the list_lock. This is
2743 * less a concern for large slabs though which are rarely used.
2744 *
2745 * slub_max_order specifies the order where we begin to stop considering the
2746 * number of objects in a slab as critical. If we reach slub_max_order then
2747 * we try to keep the page order as low as possible. So we accept more waste
2748 * of space in favor of a small page order.
2749 *
2750 * Higher order allocations also allow the placement of more objects in a
2751 * slab and thereby reduce object handling overhead. If the user has
2752 * requested a higher mininum order then we start with that one instead of
2753 * the smallest order which will fit the object.
2754 */
2755 static inline int slab_order(int size, int min_objects,
2756 int max_order, int fract_leftover, int reserved)
2757 {
2758 int order;
2759 int rem;
2760 int min_order = slub_min_order;
2761
2762 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2763 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2764
2765 for (order = max(min_order,
2766 fls(min_objects * size - 1) - PAGE_SHIFT);
2767 order <= max_order; order++) {
2768
2769 unsigned long slab_size = PAGE_SIZE << order;
2770
2771 if (slab_size < min_objects * size + reserved)
2772 continue;
2773
2774 rem = (slab_size - reserved) % size;
2775
2776 if (rem <= slab_size / fract_leftover)
2777 break;
2778
2779 }
2780
2781 return order;
2782 }
2783
2784 static inline int calculate_order(int size, int reserved)
2785 {
2786 int order;
2787 int min_objects;
2788 int fraction;
2789 int max_objects;
2790
2791 /*
2792 * Attempt to find best configuration for a slab. This
2793 * works by first attempting to generate a layout with
2794 * the best configuration and backing off gradually.
2795 *
2796 * First we reduce the acceptable waste in a slab. Then
2797 * we reduce the minimum objects required in a slab.
2798 */
2799 min_objects = slub_min_objects;
2800 if (!min_objects)
2801 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2802 max_objects = order_objects(slub_max_order, size, reserved);
2803 min_objects = min(min_objects, max_objects);
2804
2805 while (min_objects > 1) {
2806 fraction = 16;
2807 while (fraction >= 4) {
2808 order = slab_order(size, min_objects,
2809 slub_max_order, fraction, reserved);
2810 if (order <= slub_max_order)
2811 return order;
2812 fraction /= 2;
2813 }
2814 min_objects--;
2815 }
2816
2817 /*
2818 * We were unable to place multiple objects in a slab. Now
2819 * lets see if we can place a single object there.
2820 */
2821 order = slab_order(size, 1, slub_max_order, 1, reserved);
2822 if (order <= slub_max_order)
2823 return order;
2824
2825 /*
2826 * Doh this slab cannot be placed using slub_max_order.
2827 */
2828 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2829 if (order < MAX_ORDER)
2830 return order;
2831 return -ENOSYS;
2832 }
2833
2834 static void
2835 init_kmem_cache_node(struct kmem_cache_node *n)
2836 {
2837 n->nr_partial = 0;
2838 spin_lock_init(&n->list_lock);
2839 INIT_LIST_HEAD(&n->partial);
2840 #ifdef CONFIG_SLUB_DEBUG
2841 atomic_long_set(&n->nr_slabs, 0);
2842 atomic_long_set(&n->total_objects, 0);
2843 INIT_LIST_HEAD(&n->full);
2844 #endif
2845 }
2846
2847 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2848 {
2849 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2850 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2851
2852 /*
2853 * Must align to double word boundary for the double cmpxchg
2854 * instructions to work; see __pcpu_double_call_return_bool().
2855 */
2856 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2857 2 * sizeof(void *));
2858
2859 if (!s->cpu_slab)
2860 return 0;
2861
2862 init_kmem_cache_cpus(s);
2863
2864 return 1;
2865 }
2866
2867 static struct kmem_cache *kmem_cache_node;
2868
2869 /*
2870 * No kmalloc_node yet so do it by hand. We know that this is the first
2871 * slab on the node for this slabcache. There are no concurrent accesses
2872 * possible.
2873 *
2874 * Note that this function only works on the kmem_cache_node
2875 * when allocating for the kmem_cache_node. This is used for bootstrapping
2876 * memory on a fresh node that has no slab structures yet.
2877 */
2878 static void early_kmem_cache_node_alloc(int node)
2879 {
2880 struct page *page;
2881 struct kmem_cache_node *n;
2882
2883 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2884
2885 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2886
2887 BUG_ON(!page);
2888 if (page_to_nid(page) != node) {
2889 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2890 "node %d\n", node);
2891 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2892 "in order to be able to continue\n");
2893 }
2894
2895 n = page->freelist;
2896 BUG_ON(!n);
2897 page->freelist = get_freepointer(kmem_cache_node, n);
2898 page->inuse = 1;
2899 page->frozen = 0;
2900 kmem_cache_node->node[node] = n;
2901 #ifdef CONFIG_SLUB_DEBUG
2902 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2903 init_tracking(kmem_cache_node, n);
2904 #endif
2905 init_kmem_cache_node(n);
2906 inc_slabs_node(kmem_cache_node, node, page->objects);
2907
2908 /*
2909 * the lock is for lockdep's sake, not for any actual
2910 * race protection
2911 */
2912 spin_lock(&n->list_lock);
2913 add_partial(n, page, DEACTIVATE_TO_HEAD);
2914 spin_unlock(&n->list_lock);
2915 }
2916
2917 static void free_kmem_cache_nodes(struct kmem_cache *s)
2918 {
2919 int node;
2920
2921 for_each_node_state(node, N_NORMAL_MEMORY) {
2922 struct kmem_cache_node *n = s->node[node];
2923
2924 if (n)
2925 kmem_cache_free(kmem_cache_node, n);
2926
2927 s->node[node] = NULL;
2928 }
2929 }
2930
2931 static int init_kmem_cache_nodes(struct kmem_cache *s)
2932 {
2933 int node;
2934
2935 for_each_node_state(node, N_NORMAL_MEMORY) {
2936 struct kmem_cache_node *n;
2937
2938 if (slab_state == DOWN) {
2939 early_kmem_cache_node_alloc(node);
2940 continue;
2941 }
2942 n = kmem_cache_alloc_node(kmem_cache_node,
2943 GFP_KERNEL, node);
2944
2945 if (!n) {
2946 free_kmem_cache_nodes(s);
2947 return 0;
2948 }
2949
2950 s->node[node] = n;
2951 init_kmem_cache_node(n);
2952 }
2953 return 1;
2954 }
2955
2956 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2957 {
2958 if (min < MIN_PARTIAL)
2959 min = MIN_PARTIAL;
2960 else if (min > MAX_PARTIAL)
2961 min = MAX_PARTIAL;
2962 s->min_partial = min;
2963 }
2964
2965 /*
2966 * calculate_sizes() determines the order and the distribution of data within
2967 * a slab object.
2968 */
2969 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2970 {
2971 unsigned long flags = s->flags;
2972 unsigned long size = s->object_size;
2973 int order;
2974
2975 /*
2976 * Round up object size to the next word boundary. We can only
2977 * place the free pointer at word boundaries and this determines
2978 * the possible location of the free pointer.
2979 */
2980 size = ALIGN(size, sizeof(void *));
2981
2982 #ifdef CONFIG_SLUB_DEBUG
2983 /*
2984 * Determine if we can poison the object itself. If the user of
2985 * the slab may touch the object after free or before allocation
2986 * then we should never poison the object itself.
2987 */
2988 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2989 !s->ctor)
2990 s->flags |= __OBJECT_POISON;
2991 else
2992 s->flags &= ~__OBJECT_POISON;
2993
2994
2995 /*
2996 * If we are Redzoning then check if there is some space between the
2997 * end of the object and the free pointer. If not then add an
2998 * additional word to have some bytes to store Redzone information.
2999 */
3000 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3001 size += sizeof(void *);
3002 #endif
3003
3004 /*
3005 * With that we have determined the number of bytes in actual use
3006 * by the object. This is the potential offset to the free pointer.
3007 */
3008 s->inuse = size;
3009
3010 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3011 s->ctor)) {
3012 /*
3013 * Relocate free pointer after the object if it is not
3014 * permitted to overwrite the first word of the object on
3015 * kmem_cache_free.
3016 *
3017 * This is the case if we do RCU, have a constructor or
3018 * destructor or are poisoning the objects.
3019 */
3020 s->offset = size;
3021 size += sizeof(void *);
3022 }
3023
3024 #ifdef CONFIG_SLUB_DEBUG
3025 if (flags & SLAB_STORE_USER)
3026 /*
3027 * Need to store information about allocs and frees after
3028 * the object.
3029 */
3030 size += 2 * sizeof(struct track);
3031
3032 if (flags & SLAB_RED_ZONE)
3033 /*
3034 * Add some empty padding so that we can catch
3035 * overwrites from earlier objects rather than let
3036 * tracking information or the free pointer be
3037 * corrupted if a user writes before the start
3038 * of the object.
3039 */
3040 size += sizeof(void *);
3041 #endif
3042
3043 /*
3044 * SLUB stores one object immediately after another beginning from
3045 * offset 0. In order to align the objects we have to simply size
3046 * each object to conform to the alignment.
3047 */
3048 size = ALIGN(size, s->align);
3049 s->size = size;
3050 if (forced_order >= 0)
3051 order = forced_order;
3052 else
3053 order = calculate_order(size, s->reserved);
3054
3055 if (order < 0)
3056 return 0;
3057
3058 s->allocflags = 0;
3059 if (order)
3060 s->allocflags |= __GFP_COMP;
3061
3062 if (s->flags & SLAB_CACHE_DMA)
3063 s->allocflags |= GFP_DMA;
3064
3065 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3066 s->allocflags |= __GFP_RECLAIMABLE;
3067
3068 /*
3069 * Determine the number of objects per slab
3070 */
3071 s->oo = oo_make(order, size, s->reserved);
3072 s->min = oo_make(get_order(size), size, s->reserved);
3073 if (oo_objects(s->oo) > oo_objects(s->max))
3074 s->max = s->oo;
3075
3076 return !!oo_objects(s->oo);
3077 }
3078
3079 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3080 {
3081 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3082 s->reserved = 0;
3083
3084 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3085 s->reserved = sizeof(struct rcu_head);
3086
3087 if (!calculate_sizes(s, -1))
3088 goto error;
3089 if (disable_higher_order_debug) {
3090 /*
3091 * Disable debugging flags that store metadata if the min slab
3092 * order increased.
3093 */
3094 if (get_order(s->size) > get_order(s->object_size)) {
3095 s->flags &= ~DEBUG_METADATA_FLAGS;
3096 s->offset = 0;
3097 if (!calculate_sizes(s, -1))
3098 goto error;
3099 }
3100 }
3101
3102 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3103 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3104 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3105 /* Enable fast mode */
3106 s->flags |= __CMPXCHG_DOUBLE;
3107 #endif
3108
3109 /*
3110 * The larger the object size is, the more pages we want on the partial
3111 * list to avoid pounding the page allocator excessively.
3112 */
3113 set_min_partial(s, ilog2(s->size) / 2);
3114
3115 /*
3116 * cpu_partial determined the maximum number of objects kept in the
3117 * per cpu partial lists of a processor.
3118 *
3119 * Per cpu partial lists mainly contain slabs that just have one
3120 * object freed. If they are used for allocation then they can be
3121 * filled up again with minimal effort. The slab will never hit the
3122 * per node partial lists and therefore no locking will be required.
3123 *
3124 * This setting also determines
3125 *
3126 * A) The number of objects from per cpu partial slabs dumped to the
3127 * per node list when we reach the limit.
3128 * B) The number of objects in cpu partial slabs to extract from the
3129 * per node list when we run out of per cpu objects. We only fetch
3130 * 50% to keep some capacity around for frees.
3131 */
3132 if (!kmem_cache_has_cpu_partial(s))
3133 s->cpu_partial = 0;
3134 else if (s->size >= PAGE_SIZE)
3135 s->cpu_partial = 2;
3136 else if (s->size >= 1024)
3137 s->cpu_partial = 6;
3138 else if (s->size >= 256)
3139 s->cpu_partial = 13;
3140 else
3141 s->cpu_partial = 30;
3142
3143 #ifdef CONFIG_NUMA
3144 s->remote_node_defrag_ratio = 1000;
3145 #endif
3146 if (!init_kmem_cache_nodes(s))
3147 goto error;
3148
3149 if (alloc_kmem_cache_cpus(s))
3150 return 0;
3151
3152 free_kmem_cache_nodes(s);
3153 error:
3154 if (flags & SLAB_PANIC)
3155 panic("Cannot create slab %s size=%lu realsize=%u "
3156 "order=%u offset=%u flags=%lx\n",
3157 s->name, (unsigned long)s->size, s->size,
3158 oo_order(s->oo), s->offset, flags);
3159 return -EINVAL;
3160 }
3161
3162 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3163 const char *text)
3164 {
3165 #ifdef CONFIG_SLUB_DEBUG
3166 void *addr = page_address(page);
3167 void *p;
3168 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3169 sizeof(long), GFP_ATOMIC);
3170 if (!map)
3171 return;
3172 slab_err(s, page, text, s->name);
3173 slab_lock(page);
3174
3175 get_map(s, page, map);
3176 for_each_object(p, s, addr, page->objects) {
3177
3178 if (!test_bit(slab_index(p, s, addr), map)) {
3179 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3180 p, p - addr);
3181 print_tracking(s, p);
3182 }
3183 }
3184 slab_unlock(page);
3185 kfree(map);
3186 #endif
3187 }
3188
3189 /*
3190 * Attempt to free all partial slabs on a node.
3191 * This is called from kmem_cache_close(). We must be the last thread
3192 * using the cache and therefore we do not need to lock anymore.
3193 */
3194 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3195 {
3196 struct page *page, *h;
3197
3198 list_for_each_entry_safe(page, h, &n->partial, lru) {
3199 if (!page->inuse) {
3200 remove_partial(n, page);
3201 discard_slab(s, page);
3202 } else {
3203 list_slab_objects(s, page,
3204 "Objects remaining in %s on kmem_cache_close()");
3205 }
3206 }
3207 }
3208
3209 /*
3210 * Release all resources used by a slab cache.
3211 */
3212 static inline int kmem_cache_close(struct kmem_cache *s)
3213 {
3214 int node;
3215
3216 flush_all(s);
3217 /* Attempt to free all objects */
3218 for_each_node_state(node, N_NORMAL_MEMORY) {
3219 struct kmem_cache_node *n = get_node(s, node);
3220
3221 free_partial(s, n);
3222 if (n->nr_partial || slabs_node(s, node))
3223 return 1;
3224 }
3225 free_percpu(s->cpu_slab);
3226 free_kmem_cache_nodes(s);
3227 return 0;
3228 }
3229
3230 int __kmem_cache_shutdown(struct kmem_cache *s)
3231 {
3232 int rc = kmem_cache_close(s);
3233
3234 if (!rc) {
3235 /*
3236 * We do the same lock strategy around sysfs_slab_add, see
3237 * __kmem_cache_create. Because this is pretty much the last
3238 * operation we do and the lock will be released shortly after
3239 * that in slab_common.c, we could just move sysfs_slab_remove
3240 * to a later point in common code. We should do that when we
3241 * have a common sysfs framework for all allocators.
3242 */
3243 mutex_unlock(&slab_mutex);
3244 sysfs_slab_remove(s);
3245 mutex_lock(&slab_mutex);
3246 }
3247
3248 return rc;
3249 }
3250
3251 /********************************************************************
3252 * Kmalloc subsystem
3253 *******************************************************************/
3254
3255 static int __init setup_slub_min_order(char *str)
3256 {
3257 get_option(&str, &slub_min_order);
3258
3259 return 1;
3260 }
3261
3262 __setup("slub_min_order=", setup_slub_min_order);
3263
3264 static int __init setup_slub_max_order(char *str)
3265 {
3266 get_option(&str, &slub_max_order);
3267 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3268
3269 return 1;
3270 }
3271
3272 __setup("slub_max_order=", setup_slub_max_order);
3273
3274 static int __init setup_slub_min_objects(char *str)
3275 {
3276 get_option(&str, &slub_min_objects);
3277
3278 return 1;
3279 }
3280
3281 __setup("slub_min_objects=", setup_slub_min_objects);
3282
3283 static int __init setup_slub_nomerge(char *str)
3284 {
3285 slub_nomerge = 1;
3286 return 1;
3287 }
3288
3289 __setup("slub_nomerge", setup_slub_nomerge);
3290
3291 void *__kmalloc(size_t size, gfp_t flags)
3292 {
3293 struct kmem_cache *s;
3294 void *ret;
3295
3296 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3297 return kmalloc_large(size, flags);
3298
3299 s = kmalloc_slab(size, flags);
3300
3301 if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 return s;
3303
3304 ret = slab_alloc(s, flags, _RET_IP_);
3305
3306 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3307
3308 return ret;
3309 }
3310 EXPORT_SYMBOL(__kmalloc);
3311
3312 #ifdef CONFIG_NUMA
3313 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3314 {
3315 struct page *page;
3316 void *ptr = NULL;
3317
3318 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3319 page = alloc_pages_node(node, flags, get_order(size));
3320 if (page)
3321 ptr = page_address(page);
3322
3323 kmalloc_large_node_hook(ptr, size, flags);
3324 return ptr;
3325 }
3326
3327 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3328 {
3329 struct kmem_cache *s;
3330 void *ret;
3331
3332 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3333 ret = kmalloc_large_node(size, flags, node);
3334
3335 trace_kmalloc_node(_RET_IP_, ret,
3336 size, PAGE_SIZE << get_order(size),
3337 flags, node);
3338
3339 return ret;
3340 }
3341
3342 s = kmalloc_slab(size, flags);
3343
3344 if (unlikely(ZERO_OR_NULL_PTR(s)))
3345 return s;
3346
3347 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3348
3349 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3350
3351 return ret;
3352 }
3353 EXPORT_SYMBOL(__kmalloc_node);
3354 #endif
3355
3356 size_t ksize(const void *object)
3357 {
3358 struct page *page;
3359
3360 if (unlikely(object == ZERO_SIZE_PTR))
3361 return 0;
3362
3363 page = virt_to_head_page(object);
3364
3365 if (unlikely(!PageSlab(page))) {
3366 WARN_ON(!PageCompound(page));
3367 return PAGE_SIZE << compound_order(page);
3368 }
3369
3370 return slab_ksize(page->slab_cache);
3371 }
3372 EXPORT_SYMBOL(ksize);
3373
3374 void kfree(const void *x)
3375 {
3376 struct page *page;
3377 void *object = (void *)x;
3378
3379 trace_kfree(_RET_IP_, x);
3380
3381 if (unlikely(ZERO_OR_NULL_PTR(x)))
3382 return;
3383
3384 page = virt_to_head_page(x);
3385 if (unlikely(!PageSlab(page))) {
3386 BUG_ON(!PageCompound(page));
3387 kfree_hook(x);
3388 __free_memcg_kmem_pages(page, compound_order(page));
3389 return;
3390 }
3391 slab_free(page->slab_cache, page, object, _RET_IP_);
3392 }
3393 EXPORT_SYMBOL(kfree);
3394
3395 /*
3396 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3397 * the remaining slabs by the number of items in use. The slabs with the
3398 * most items in use come first. New allocations will then fill those up
3399 * and thus they can be removed from the partial lists.
3400 *
3401 * The slabs with the least items are placed last. This results in them
3402 * being allocated from last increasing the chance that the last objects
3403 * are freed in them.
3404 */
3405 int kmem_cache_shrink(struct kmem_cache *s)
3406 {
3407 int node;
3408 int i;
3409 struct kmem_cache_node *n;
3410 struct page *page;
3411 struct page *t;
3412 int objects = oo_objects(s->max);
3413 struct list_head *slabs_by_inuse =
3414 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3415 unsigned long flags;
3416
3417 if (!slabs_by_inuse)
3418 return -ENOMEM;
3419
3420 flush_all(s);
3421 for_each_node_state(node, N_NORMAL_MEMORY) {
3422 n = get_node(s, node);
3423
3424 if (!n->nr_partial)
3425 continue;
3426
3427 for (i = 0; i < objects; i++)
3428 INIT_LIST_HEAD(slabs_by_inuse + i);
3429
3430 spin_lock_irqsave(&n->list_lock, flags);
3431
3432 /*
3433 * Build lists indexed by the items in use in each slab.
3434 *
3435 * Note that concurrent frees may occur while we hold the
3436 * list_lock. page->inuse here is the upper limit.
3437 */
3438 list_for_each_entry_safe(page, t, &n->partial, lru) {
3439 list_move(&page->lru, slabs_by_inuse + page->inuse);
3440 if (!page->inuse)
3441 n->nr_partial--;
3442 }
3443
3444 /*
3445 * Rebuild the partial list with the slabs filled up most
3446 * first and the least used slabs at the end.
3447 */
3448 for (i = objects - 1; i > 0; i--)
3449 list_splice(slabs_by_inuse + i, n->partial.prev);
3450
3451 spin_unlock_irqrestore(&n->list_lock, flags);
3452
3453 /* Release empty slabs */
3454 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3455 discard_slab(s, page);
3456 }
3457
3458 kfree(slabs_by_inuse);
3459 return 0;
3460 }
3461 EXPORT_SYMBOL(kmem_cache_shrink);
3462
3463 static int slab_mem_going_offline_callback(void *arg)
3464 {
3465 struct kmem_cache *s;
3466
3467 mutex_lock(&slab_mutex);
3468 list_for_each_entry(s, &slab_caches, list)
3469 kmem_cache_shrink(s);
3470 mutex_unlock(&slab_mutex);
3471
3472 return 0;
3473 }
3474
3475 static void slab_mem_offline_callback(void *arg)
3476 {
3477 struct kmem_cache_node *n;
3478 struct kmem_cache *s;
3479 struct memory_notify *marg = arg;
3480 int offline_node;
3481
3482 offline_node = marg->status_change_nid_normal;
3483
3484 /*
3485 * If the node still has available memory. we need kmem_cache_node
3486 * for it yet.
3487 */
3488 if (offline_node < 0)
3489 return;
3490
3491 mutex_lock(&slab_mutex);
3492 list_for_each_entry(s, &slab_caches, list) {
3493 n = get_node(s, offline_node);
3494 if (n) {
3495 /*
3496 * if n->nr_slabs > 0, slabs still exist on the node
3497 * that is going down. We were unable to free them,
3498 * and offline_pages() function shouldn't call this
3499 * callback. So, we must fail.
3500 */
3501 BUG_ON(slabs_node(s, offline_node));
3502
3503 s->node[offline_node] = NULL;
3504 kmem_cache_free(kmem_cache_node, n);
3505 }
3506 }
3507 mutex_unlock(&slab_mutex);
3508 }
3509
3510 static int slab_mem_going_online_callback(void *arg)
3511 {
3512 struct kmem_cache_node *n;
3513 struct kmem_cache *s;
3514 struct memory_notify *marg = arg;
3515 int nid = marg->status_change_nid_normal;
3516 int ret = 0;
3517
3518 /*
3519 * If the node's memory is already available, then kmem_cache_node is
3520 * already created. Nothing to do.
3521 */
3522 if (nid < 0)
3523 return 0;
3524
3525 /*
3526 * We are bringing a node online. No memory is available yet. We must
3527 * allocate a kmem_cache_node structure in order to bring the node
3528 * online.
3529 */
3530 mutex_lock(&slab_mutex);
3531 list_for_each_entry(s, &slab_caches, list) {
3532 /*
3533 * XXX: kmem_cache_alloc_node will fallback to other nodes
3534 * since memory is not yet available from the node that
3535 * is brought up.
3536 */
3537 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3538 if (!n) {
3539 ret = -ENOMEM;
3540 goto out;
3541 }
3542 init_kmem_cache_node(n);
3543 s->node[nid] = n;
3544 }
3545 out:
3546 mutex_unlock(&slab_mutex);
3547 return ret;
3548 }
3549
3550 static int slab_memory_callback(struct notifier_block *self,
3551 unsigned long action, void *arg)
3552 {
3553 int ret = 0;
3554
3555 switch (action) {
3556 case MEM_GOING_ONLINE:
3557 ret = slab_mem_going_online_callback(arg);
3558 break;
3559 case MEM_GOING_OFFLINE:
3560 ret = slab_mem_going_offline_callback(arg);
3561 break;
3562 case MEM_OFFLINE:
3563 case MEM_CANCEL_ONLINE:
3564 slab_mem_offline_callback(arg);
3565 break;
3566 case MEM_ONLINE:
3567 case MEM_CANCEL_OFFLINE:
3568 break;
3569 }
3570 if (ret)
3571 ret = notifier_from_errno(ret);
3572 else
3573 ret = NOTIFY_OK;
3574 return ret;
3575 }
3576
3577 static struct notifier_block slab_memory_callback_nb = {
3578 .notifier_call = slab_memory_callback,
3579 .priority = SLAB_CALLBACK_PRI,
3580 };
3581
3582 /********************************************************************
3583 * Basic setup of slabs
3584 *******************************************************************/
3585
3586 /*
3587 * Used for early kmem_cache structures that were allocated using
3588 * the page allocator. Allocate them properly then fix up the pointers
3589 * that may be pointing to the wrong kmem_cache structure.
3590 */
3591
3592 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3593 {
3594 int node;
3595 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3596
3597 memcpy(s, static_cache, kmem_cache->object_size);
3598
3599 /*
3600 * This runs very early, and only the boot processor is supposed to be
3601 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3602 * IPIs around.
3603 */
3604 __flush_cpu_slab(s, smp_processor_id());
3605 for_each_node_state(node, N_NORMAL_MEMORY) {
3606 struct kmem_cache_node *n = get_node(s, node);
3607 struct page *p;
3608
3609 if (n) {
3610 list_for_each_entry(p, &n->partial, lru)
3611 p->slab_cache = s;
3612
3613 #ifdef CONFIG_SLUB_DEBUG
3614 list_for_each_entry(p, &n->full, lru)
3615 p->slab_cache = s;
3616 #endif
3617 }
3618 }
3619 list_add(&s->list, &slab_caches);
3620 return s;
3621 }
3622
3623 void __init kmem_cache_init(void)
3624 {
3625 static __initdata struct kmem_cache boot_kmem_cache,
3626 boot_kmem_cache_node;
3627
3628 if (debug_guardpage_minorder())
3629 slub_max_order = 0;
3630
3631 kmem_cache_node = &boot_kmem_cache_node;
3632 kmem_cache = &boot_kmem_cache;
3633
3634 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3635 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3636
3637 register_hotmemory_notifier(&slab_memory_callback_nb);
3638
3639 /* Able to allocate the per node structures */
3640 slab_state = PARTIAL;
3641
3642 create_boot_cache(kmem_cache, "kmem_cache",
3643 offsetof(struct kmem_cache, node) +
3644 nr_node_ids * sizeof(struct kmem_cache_node *),
3645 SLAB_HWCACHE_ALIGN);
3646
3647 kmem_cache = bootstrap(&boot_kmem_cache);
3648
3649 /*
3650 * Allocate kmem_cache_node properly from the kmem_cache slab.
3651 * kmem_cache_node is separately allocated so no need to
3652 * update any list pointers.
3653 */
3654 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3655
3656 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3657 create_kmalloc_caches(0);
3658
3659 #ifdef CONFIG_SMP
3660 register_cpu_notifier(&slab_notifier);
3661 #endif
3662
3663 printk(KERN_INFO
3664 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3665 " CPUs=%d, Nodes=%d\n",
3666 cache_line_size(),
3667 slub_min_order, slub_max_order, slub_min_objects,
3668 nr_cpu_ids, nr_node_ids);
3669 }
3670
3671 void __init kmem_cache_init_late(void)
3672 {
3673 }
3674
3675 /*
3676 * Find a mergeable slab cache
3677 */
3678 static int slab_unmergeable(struct kmem_cache *s)
3679 {
3680 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3681 return 1;
3682
3683 if (s->ctor)
3684 return 1;
3685
3686 /*
3687 * We may have set a slab to be unmergeable during bootstrap.
3688 */
3689 if (s->refcount < 0)
3690 return 1;
3691
3692 return 0;
3693 }
3694
3695 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3696 size_t align, unsigned long flags, const char *name,
3697 void (*ctor)(void *))
3698 {
3699 struct kmem_cache *s;
3700
3701 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3702 return NULL;
3703
3704 if (ctor)
3705 return NULL;
3706
3707 size = ALIGN(size, sizeof(void *));
3708 align = calculate_alignment(flags, align, size);
3709 size = ALIGN(size, align);
3710 flags = kmem_cache_flags(size, flags, name, NULL);
3711
3712 list_for_each_entry(s, &slab_caches, list) {
3713 if (slab_unmergeable(s))
3714 continue;
3715
3716 if (size > s->size)
3717 continue;
3718
3719 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3720 continue;
3721 /*
3722 * Check if alignment is compatible.
3723 * Courtesy of Adrian Drzewiecki
3724 */
3725 if ((s->size & ~(align - 1)) != s->size)
3726 continue;
3727
3728 if (s->size - size >= sizeof(void *))
3729 continue;
3730
3731 if (!cache_match_memcg(s, memcg))
3732 continue;
3733
3734 return s;
3735 }
3736 return NULL;
3737 }
3738
3739 struct kmem_cache *
3740 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3741 size_t align, unsigned long flags, void (*ctor)(void *))
3742 {
3743 struct kmem_cache *s;
3744
3745 s = find_mergeable(memcg, size, align, flags, name, ctor);
3746 if (s) {
3747 s->refcount++;
3748 /*
3749 * Adjust the object sizes so that we clear
3750 * the complete object on kzalloc.
3751 */
3752 s->object_size = max(s->object_size, (int)size);
3753 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3754
3755 if (sysfs_slab_alias(s, name)) {
3756 s->refcount--;
3757 s = NULL;
3758 }
3759 }
3760
3761 return s;
3762 }
3763
3764 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3765 {
3766 int err;
3767
3768 err = kmem_cache_open(s, flags);
3769 if (err)
3770 return err;
3771
3772 /* Mutex is not taken during early boot */
3773 if (slab_state <= UP)
3774 return 0;
3775
3776 memcg_propagate_slab_attrs(s);
3777 mutex_unlock(&slab_mutex);
3778 err = sysfs_slab_add(s);
3779 mutex_lock(&slab_mutex);
3780
3781 if (err)
3782 kmem_cache_close(s);
3783
3784 return err;
3785 }
3786
3787 #ifdef CONFIG_SMP
3788 /*
3789 * Use the cpu notifier to insure that the cpu slabs are flushed when
3790 * necessary.
3791 */
3792 static int slab_cpuup_callback(struct notifier_block *nfb,
3793 unsigned long action, void *hcpu)
3794 {
3795 long cpu = (long)hcpu;
3796 struct kmem_cache *s;
3797 unsigned long flags;
3798
3799 switch (action) {
3800 case CPU_UP_CANCELED:
3801 case CPU_UP_CANCELED_FROZEN:
3802 case CPU_DEAD:
3803 case CPU_DEAD_FROZEN:
3804 mutex_lock(&slab_mutex);
3805 list_for_each_entry(s, &slab_caches, list) {
3806 local_irq_save(flags);
3807 __flush_cpu_slab(s, cpu);
3808 local_irq_restore(flags);
3809 }
3810 mutex_unlock(&slab_mutex);
3811 break;
3812 default:
3813 break;
3814 }
3815 return NOTIFY_OK;
3816 }
3817
3818 static struct notifier_block slab_notifier = {
3819 .notifier_call = slab_cpuup_callback
3820 };
3821
3822 #endif
3823
3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825 {
3826 struct kmem_cache *s;
3827 void *ret;
3828
3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 return kmalloc_large(size, gfpflags);
3831
3832 s = kmalloc_slab(size, gfpflags);
3833
3834 if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 return s;
3836
3837 ret = slab_alloc(s, gfpflags, caller);
3838
3839 /* Honor the call site pointer we received. */
3840 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841
3842 return ret;
3843 }
3844
3845 #ifdef CONFIG_NUMA
3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847 int node, unsigned long caller)
3848 {
3849 struct kmem_cache *s;
3850 void *ret;
3851
3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 ret = kmalloc_large_node(size, gfpflags, node);
3854
3855 trace_kmalloc_node(caller, ret,
3856 size, PAGE_SIZE << get_order(size),
3857 gfpflags, node);
3858
3859 return ret;
3860 }
3861
3862 s = kmalloc_slab(size, gfpflags);
3863
3864 if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 return s;
3866
3867 ret = slab_alloc_node(s, gfpflags, node, caller);
3868
3869 /* Honor the call site pointer we received. */
3870 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871
3872 return ret;
3873 }
3874 #endif
3875
3876 #ifdef CONFIG_SYSFS
3877 static int count_inuse(struct page *page)
3878 {
3879 return page->inuse;
3880 }
3881
3882 static int count_total(struct page *page)
3883 {
3884 return page->objects;
3885 }
3886 #endif
3887
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache *s, struct page *page,
3890 unsigned long *map)
3891 {
3892 void *p;
3893 void *addr = page_address(page);
3894
3895 if (!check_slab(s, page) ||
3896 !on_freelist(s, page, NULL))
3897 return 0;
3898
3899 /* Now we know that a valid freelist exists */
3900 bitmap_zero(map, page->objects);
3901
3902 get_map(s, page, map);
3903 for_each_object(p, s, addr, page->objects) {
3904 if (test_bit(slab_index(p, s, addr), map))
3905 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906 return 0;
3907 }
3908
3909 for_each_object(p, s, addr, page->objects)
3910 if (!test_bit(slab_index(p, s, addr), map))
3911 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 return 0;
3913 return 1;
3914 }
3915
3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917 unsigned long *map)
3918 {
3919 slab_lock(page);
3920 validate_slab(s, page, map);
3921 slab_unlock(page);
3922 }
3923
3924 static int validate_slab_node(struct kmem_cache *s,
3925 struct kmem_cache_node *n, unsigned long *map)
3926 {
3927 unsigned long count = 0;
3928 struct page *page;
3929 unsigned long flags;
3930
3931 spin_lock_irqsave(&n->list_lock, flags);
3932
3933 list_for_each_entry(page, &n->partial, lru) {
3934 validate_slab_slab(s, page, map);
3935 count++;
3936 }
3937 if (count != n->nr_partial)
3938 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3939 "counter=%ld\n", s->name, count, n->nr_partial);
3940
3941 if (!(s->flags & SLAB_STORE_USER))
3942 goto out;
3943
3944 list_for_each_entry(page, &n->full, lru) {
3945 validate_slab_slab(s, page, map);
3946 count++;
3947 }
3948 if (count != atomic_long_read(&n->nr_slabs))
3949 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3950 "counter=%ld\n", s->name, count,
3951 atomic_long_read(&n->nr_slabs));
3952
3953 out:
3954 spin_unlock_irqrestore(&n->list_lock, flags);
3955 return count;
3956 }
3957
3958 static long validate_slab_cache(struct kmem_cache *s)
3959 {
3960 int node;
3961 unsigned long count = 0;
3962 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3963 sizeof(unsigned long), GFP_KERNEL);
3964
3965 if (!map)
3966 return -ENOMEM;
3967
3968 flush_all(s);
3969 for_each_node_state(node, N_NORMAL_MEMORY) {
3970 struct kmem_cache_node *n = get_node(s, node);
3971
3972 count += validate_slab_node(s, n, map);
3973 }
3974 kfree(map);
3975 return count;
3976 }
3977 /*
3978 * Generate lists of code addresses where slabcache objects are allocated
3979 * and freed.
3980 */
3981
3982 struct location {
3983 unsigned long count;
3984 unsigned long addr;
3985 long long sum_time;
3986 long min_time;
3987 long max_time;
3988 long min_pid;
3989 long max_pid;
3990 DECLARE_BITMAP(cpus, NR_CPUS);
3991 nodemask_t nodes;
3992 };
3993
3994 struct loc_track {
3995 unsigned long max;
3996 unsigned long count;
3997 struct location *loc;
3998 };
3999
4000 static void free_loc_track(struct loc_track *t)
4001 {
4002 if (t->max)
4003 free_pages((unsigned long)t->loc,
4004 get_order(sizeof(struct location) * t->max));
4005 }
4006
4007 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4008 {
4009 struct location *l;
4010 int order;
4011
4012 order = get_order(sizeof(struct location) * max);
4013
4014 l = (void *)__get_free_pages(flags, order);
4015 if (!l)
4016 return 0;
4017
4018 if (t->count) {
4019 memcpy(l, t->loc, sizeof(struct location) * t->count);
4020 free_loc_track(t);
4021 }
4022 t->max = max;
4023 t->loc = l;
4024 return 1;
4025 }
4026
4027 static int add_location(struct loc_track *t, struct kmem_cache *s,
4028 const struct track *track)
4029 {
4030 long start, end, pos;
4031 struct location *l;
4032 unsigned long caddr;
4033 unsigned long age = jiffies - track->when;
4034
4035 start = -1;
4036 end = t->count;
4037
4038 for ( ; ; ) {
4039 pos = start + (end - start + 1) / 2;
4040
4041 /*
4042 * There is nothing at "end". If we end up there
4043 * we need to add something to before end.
4044 */
4045 if (pos == end)
4046 break;
4047
4048 caddr = t->loc[pos].addr;
4049 if (track->addr == caddr) {
4050
4051 l = &t->loc[pos];
4052 l->count++;
4053 if (track->when) {
4054 l->sum_time += age;
4055 if (age < l->min_time)
4056 l->min_time = age;
4057 if (age > l->max_time)
4058 l->max_time = age;
4059
4060 if (track->pid < l->min_pid)
4061 l->min_pid = track->pid;
4062 if (track->pid > l->max_pid)
4063 l->max_pid = track->pid;
4064
4065 cpumask_set_cpu(track->cpu,
4066 to_cpumask(l->cpus));
4067 }
4068 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4069 return 1;
4070 }
4071
4072 if (track->addr < caddr)
4073 end = pos;
4074 else
4075 start = pos;
4076 }
4077
4078 /*
4079 * Not found. Insert new tracking element.
4080 */
4081 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4082 return 0;
4083
4084 l = t->loc + pos;
4085 if (pos < t->count)
4086 memmove(l + 1, l,
4087 (t->count - pos) * sizeof(struct location));
4088 t->count++;
4089 l->count = 1;
4090 l->addr = track->addr;
4091 l->sum_time = age;
4092 l->min_time = age;
4093 l->max_time = age;
4094 l->min_pid = track->pid;
4095 l->max_pid = track->pid;
4096 cpumask_clear(to_cpumask(l->cpus));
4097 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4098 nodes_clear(l->nodes);
4099 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4100 return 1;
4101 }
4102
4103 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4104 struct page *page, enum track_item alloc,
4105 unsigned long *map)
4106 {
4107 void *addr = page_address(page);
4108 void *p;
4109
4110 bitmap_zero(map, page->objects);
4111 get_map(s, page, map);
4112
4113 for_each_object(p, s, addr, page->objects)
4114 if (!test_bit(slab_index(p, s, addr), map))
4115 add_location(t, s, get_track(s, p, alloc));
4116 }
4117
4118 static int list_locations(struct kmem_cache *s, char *buf,
4119 enum track_item alloc)
4120 {
4121 int len = 0;
4122 unsigned long i;
4123 struct loc_track t = { 0, 0, NULL };
4124 int node;
4125 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4126 sizeof(unsigned long), GFP_KERNEL);
4127
4128 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4129 GFP_TEMPORARY)) {
4130 kfree(map);
4131 return sprintf(buf, "Out of memory\n");
4132 }
4133 /* Push back cpu slabs */
4134 flush_all(s);
4135
4136 for_each_node_state(node, N_NORMAL_MEMORY) {
4137 struct kmem_cache_node *n = get_node(s, node);
4138 unsigned long flags;
4139 struct page *page;
4140
4141 if (!atomic_long_read(&n->nr_slabs))
4142 continue;
4143
4144 spin_lock_irqsave(&n->list_lock, flags);
4145 list_for_each_entry(page, &n->partial, lru)
4146 process_slab(&t, s, page, alloc, map);
4147 list_for_each_entry(page, &n->full, lru)
4148 process_slab(&t, s, page, alloc, map);
4149 spin_unlock_irqrestore(&n->list_lock, flags);
4150 }
4151
4152 for (i = 0; i < t.count; i++) {
4153 struct location *l = &t.loc[i];
4154
4155 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4156 break;
4157 len += sprintf(buf + len, "%7ld ", l->count);
4158
4159 if (l->addr)
4160 len += sprintf(buf + len, "%pS", (void *)l->addr);
4161 else
4162 len += sprintf(buf + len, "<not-available>");
4163
4164 if (l->sum_time != l->min_time) {
4165 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4166 l->min_time,
4167 (long)div_u64(l->sum_time, l->count),
4168 l->max_time);
4169 } else
4170 len += sprintf(buf + len, " age=%ld",
4171 l->min_time);
4172
4173 if (l->min_pid != l->max_pid)
4174 len += sprintf(buf + len, " pid=%ld-%ld",
4175 l->min_pid, l->max_pid);
4176 else
4177 len += sprintf(buf + len, " pid=%ld",
4178 l->min_pid);
4179
4180 if (num_online_cpus() > 1 &&
4181 !cpumask_empty(to_cpumask(l->cpus)) &&
4182 len < PAGE_SIZE - 60) {
4183 len += sprintf(buf + len, " cpus=");
4184 len += cpulist_scnprintf(buf + len,
4185 PAGE_SIZE - len - 50,
4186 to_cpumask(l->cpus));
4187 }
4188
4189 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4190 len < PAGE_SIZE - 60) {
4191 len += sprintf(buf + len, " nodes=");
4192 len += nodelist_scnprintf(buf + len,
4193 PAGE_SIZE - len - 50,
4194 l->nodes);
4195 }
4196
4197 len += sprintf(buf + len, "\n");
4198 }
4199
4200 free_loc_track(&t);
4201 kfree(map);
4202 if (!t.count)
4203 len += sprintf(buf, "No data\n");
4204 return len;
4205 }
4206 #endif
4207
4208 #ifdef SLUB_RESILIENCY_TEST
4209 static void resiliency_test(void)
4210 {
4211 u8 *p;
4212
4213 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4214
4215 printk(KERN_ERR "SLUB resiliency testing\n");
4216 printk(KERN_ERR "-----------------------\n");
4217 printk(KERN_ERR "A. Corruption after allocation\n");
4218
4219 p = kzalloc(16, GFP_KERNEL);
4220 p[16] = 0x12;
4221 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4222 " 0x12->0x%p\n\n", p + 16);
4223
4224 validate_slab_cache(kmalloc_caches[4]);
4225
4226 /* Hmmm... The next two are dangerous */
4227 p = kzalloc(32, GFP_KERNEL);
4228 p[32 + sizeof(void *)] = 0x34;
4229 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4230 " 0x34 -> -0x%p\n", p);
4231 printk(KERN_ERR
4232 "If allocated object is overwritten then not detectable\n\n");
4233
4234 validate_slab_cache(kmalloc_caches[5]);
4235 p = kzalloc(64, GFP_KERNEL);
4236 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4237 *p = 0x56;
4238 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4239 p);
4240 printk(KERN_ERR
4241 "If allocated object is overwritten then not detectable\n\n");
4242 validate_slab_cache(kmalloc_caches[6]);
4243
4244 printk(KERN_ERR "\nB. Corruption after free\n");
4245 p = kzalloc(128, GFP_KERNEL);
4246 kfree(p);
4247 *p = 0x78;
4248 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4249 validate_slab_cache(kmalloc_caches[7]);
4250
4251 p = kzalloc(256, GFP_KERNEL);
4252 kfree(p);
4253 p[50] = 0x9a;
4254 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4255 p);
4256 validate_slab_cache(kmalloc_caches[8]);
4257
4258 p = kzalloc(512, GFP_KERNEL);
4259 kfree(p);
4260 p[512] = 0xab;
4261 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4262 validate_slab_cache(kmalloc_caches[9]);
4263 }
4264 #else
4265 #ifdef CONFIG_SYSFS
4266 static void resiliency_test(void) {};
4267 #endif
4268 #endif
4269
4270 #ifdef CONFIG_SYSFS
4271 enum slab_stat_type {
4272 SL_ALL, /* All slabs */
4273 SL_PARTIAL, /* Only partially allocated slabs */
4274 SL_CPU, /* Only slabs used for cpu caches */
4275 SL_OBJECTS, /* Determine allocated objects not slabs */
4276 SL_TOTAL /* Determine object capacity not slabs */
4277 };
4278
4279 #define SO_ALL (1 << SL_ALL)
4280 #define SO_PARTIAL (1 << SL_PARTIAL)
4281 #define SO_CPU (1 << SL_CPU)
4282 #define SO_OBJECTS (1 << SL_OBJECTS)
4283 #define SO_TOTAL (1 << SL_TOTAL)
4284
4285 static ssize_t show_slab_objects(struct kmem_cache *s,
4286 char *buf, unsigned long flags)
4287 {
4288 unsigned long total = 0;
4289 int node;
4290 int x;
4291 unsigned long *nodes;
4292
4293 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4294 if (!nodes)
4295 return -ENOMEM;
4296
4297 if (flags & SO_CPU) {
4298 int cpu;
4299
4300 for_each_possible_cpu(cpu) {
4301 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4302 cpu);
4303 int node;
4304 struct page *page;
4305
4306 page = ACCESS_ONCE(c->page);
4307 if (!page)
4308 continue;
4309
4310 node = page_to_nid(page);
4311 if (flags & SO_TOTAL)
4312 x = page->objects;
4313 else if (flags & SO_OBJECTS)
4314 x = page->inuse;
4315 else
4316 x = 1;
4317
4318 total += x;
4319 nodes[node] += x;
4320
4321 page = ACCESS_ONCE(c->partial);
4322 if (page) {
4323 node = page_to_nid(page);
4324 if (flags & SO_TOTAL)
4325 WARN_ON_ONCE(1);
4326 else if (flags & SO_OBJECTS)
4327 WARN_ON_ONCE(1);
4328 else
4329 x = page->pages;
4330 total += x;
4331 nodes[node] += x;
4332 }
4333 }
4334 }
4335
4336 lock_memory_hotplug();
4337 #ifdef CONFIG_SLUB_DEBUG
4338 if (flags & SO_ALL) {
4339 for_each_node_state(node, N_NORMAL_MEMORY) {
4340 struct kmem_cache_node *n = get_node(s, node);
4341
4342 if (flags & SO_TOTAL)
4343 x = atomic_long_read(&n->total_objects);
4344 else if (flags & SO_OBJECTS)
4345 x = atomic_long_read(&n->total_objects) -
4346 count_partial(n, count_free);
4347 else
4348 x = atomic_long_read(&n->nr_slabs);
4349 total += x;
4350 nodes[node] += x;
4351 }
4352
4353 } else
4354 #endif
4355 if (flags & SO_PARTIAL) {
4356 for_each_node_state(node, N_NORMAL_MEMORY) {
4357 struct kmem_cache_node *n = get_node(s, node);
4358
4359 if (flags & SO_TOTAL)
4360 x = count_partial(n, count_total);
4361 else if (flags & SO_OBJECTS)
4362 x = count_partial(n, count_inuse);
4363 else
4364 x = n->nr_partial;
4365 total += x;
4366 nodes[node] += x;
4367 }
4368 }
4369 x = sprintf(buf, "%lu", total);
4370 #ifdef CONFIG_NUMA
4371 for_each_node_state(node, N_NORMAL_MEMORY)
4372 if (nodes[node])
4373 x += sprintf(buf + x, " N%d=%lu",
4374 node, nodes[node]);
4375 #endif
4376 unlock_memory_hotplug();
4377 kfree(nodes);
4378 return x + sprintf(buf + x, "\n");
4379 }
4380
4381 #ifdef CONFIG_SLUB_DEBUG
4382 static int any_slab_objects(struct kmem_cache *s)
4383 {
4384 int node;
4385
4386 for_each_online_node(node) {
4387 struct kmem_cache_node *n = get_node(s, node);
4388
4389 if (!n)
4390 continue;
4391
4392 if (atomic_long_read(&n->total_objects))
4393 return 1;
4394 }
4395 return 0;
4396 }
4397 #endif
4398
4399 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4400 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4401
4402 struct slab_attribute {
4403 struct attribute attr;
4404 ssize_t (*show)(struct kmem_cache *s, char *buf);
4405 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4406 };
4407
4408 #define SLAB_ATTR_RO(_name) \
4409 static struct slab_attribute _name##_attr = \
4410 __ATTR(_name, 0400, _name##_show, NULL)
4411
4412 #define SLAB_ATTR(_name) \
4413 static struct slab_attribute _name##_attr = \
4414 __ATTR(_name, 0600, _name##_show, _name##_store)
4415
4416 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4417 {
4418 return sprintf(buf, "%d\n", s->size);
4419 }
4420 SLAB_ATTR_RO(slab_size);
4421
4422 static ssize_t align_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%d\n", s->align);
4425 }
4426 SLAB_ATTR_RO(align);
4427
4428 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4429 {
4430 return sprintf(buf, "%d\n", s->object_size);
4431 }
4432 SLAB_ATTR_RO(object_size);
4433
4434 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4435 {
4436 return sprintf(buf, "%d\n", oo_objects(s->oo));
4437 }
4438 SLAB_ATTR_RO(objs_per_slab);
4439
4440 static ssize_t order_store(struct kmem_cache *s,
4441 const char *buf, size_t length)
4442 {
4443 unsigned long order;
4444 int err;
4445
4446 err = kstrtoul(buf, 10, &order);
4447 if (err)
4448 return err;
4449
4450 if (order > slub_max_order || order < slub_min_order)
4451 return -EINVAL;
4452
4453 calculate_sizes(s, order);
4454 return length;
4455 }
4456
4457 static ssize_t order_show(struct kmem_cache *s, char *buf)
4458 {
4459 return sprintf(buf, "%d\n", oo_order(s->oo));
4460 }
4461 SLAB_ATTR(order);
4462
4463 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4464 {
4465 return sprintf(buf, "%lu\n", s->min_partial);
4466 }
4467
4468 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4469 size_t length)
4470 {
4471 unsigned long min;
4472 int err;
4473
4474 err = kstrtoul(buf, 10, &min);
4475 if (err)
4476 return err;
4477
4478 set_min_partial(s, min);
4479 return length;
4480 }
4481 SLAB_ATTR(min_partial);
4482
4483 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4484 {
4485 return sprintf(buf, "%u\n", s->cpu_partial);
4486 }
4487
4488 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4489 size_t length)
4490 {
4491 unsigned long objects;
4492 int err;
4493
4494 err = kstrtoul(buf, 10, &objects);
4495 if (err)
4496 return err;
4497 if (objects && !kmem_cache_has_cpu_partial(s))
4498 return -EINVAL;
4499
4500 s->cpu_partial = objects;
4501 flush_all(s);
4502 return length;
4503 }
4504 SLAB_ATTR(cpu_partial);
4505
4506 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4507 {
4508 if (!s->ctor)
4509 return 0;
4510 return sprintf(buf, "%pS\n", s->ctor);
4511 }
4512 SLAB_ATTR_RO(ctor);
4513
4514 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4515 {
4516 return sprintf(buf, "%d\n", s->refcount - 1);
4517 }
4518 SLAB_ATTR_RO(aliases);
4519
4520 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4521 {
4522 return show_slab_objects(s, buf, SO_PARTIAL);
4523 }
4524 SLAB_ATTR_RO(partial);
4525
4526 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4527 {
4528 return show_slab_objects(s, buf, SO_CPU);
4529 }
4530 SLAB_ATTR_RO(cpu_slabs);
4531
4532 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4533 {
4534 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4535 }
4536 SLAB_ATTR_RO(objects);
4537
4538 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4539 {
4540 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4541 }
4542 SLAB_ATTR_RO(objects_partial);
4543
4544 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4545 {
4546 int objects = 0;
4547 int pages = 0;
4548 int cpu;
4549 int len;
4550
4551 for_each_online_cpu(cpu) {
4552 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4553
4554 if (page) {
4555 pages += page->pages;
4556 objects += page->pobjects;
4557 }
4558 }
4559
4560 len = sprintf(buf, "%d(%d)", objects, pages);
4561
4562 #ifdef CONFIG_SMP
4563 for_each_online_cpu(cpu) {
4564 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4565
4566 if (page && len < PAGE_SIZE - 20)
4567 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4568 page->pobjects, page->pages);
4569 }
4570 #endif
4571 return len + sprintf(buf + len, "\n");
4572 }
4573 SLAB_ATTR_RO(slabs_cpu_partial);
4574
4575 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4576 {
4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4578 }
4579
4580 static ssize_t reclaim_account_store(struct kmem_cache *s,
4581 const char *buf, size_t length)
4582 {
4583 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4584 if (buf[0] == '1')
4585 s->flags |= SLAB_RECLAIM_ACCOUNT;
4586 return length;
4587 }
4588 SLAB_ATTR(reclaim_account);
4589
4590 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4591 {
4592 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4593 }
4594 SLAB_ATTR_RO(hwcache_align);
4595
4596 #ifdef CONFIG_ZONE_DMA
4597 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4598 {
4599 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4600 }
4601 SLAB_ATTR_RO(cache_dma);
4602 #endif
4603
4604 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4605 {
4606 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4607 }
4608 SLAB_ATTR_RO(destroy_by_rcu);
4609
4610 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4611 {
4612 return sprintf(buf, "%d\n", s->reserved);
4613 }
4614 SLAB_ATTR_RO(reserved);
4615
4616 #ifdef CONFIG_SLUB_DEBUG
4617 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4618 {
4619 return show_slab_objects(s, buf, SO_ALL);
4620 }
4621 SLAB_ATTR_RO(slabs);
4622
4623 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4624 {
4625 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4626 }
4627 SLAB_ATTR_RO(total_objects);
4628
4629 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4630 {
4631 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4632 }
4633
4634 static ssize_t sanity_checks_store(struct kmem_cache *s,
4635 const char *buf, size_t length)
4636 {
4637 s->flags &= ~SLAB_DEBUG_FREE;
4638 if (buf[0] == '1') {
4639 s->flags &= ~__CMPXCHG_DOUBLE;
4640 s->flags |= SLAB_DEBUG_FREE;
4641 }
4642 return length;
4643 }
4644 SLAB_ATTR(sanity_checks);
4645
4646 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4647 {
4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4649 }
4650
4651 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4652 size_t length)
4653 {
4654 s->flags &= ~SLAB_TRACE;
4655 if (buf[0] == '1') {
4656 s->flags &= ~__CMPXCHG_DOUBLE;
4657 s->flags |= SLAB_TRACE;
4658 }
4659 return length;
4660 }
4661 SLAB_ATTR(trace);
4662
4663 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4664 {
4665 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4666 }
4667
4668 static ssize_t red_zone_store(struct kmem_cache *s,
4669 const char *buf, size_t length)
4670 {
4671 if (any_slab_objects(s))
4672 return -EBUSY;
4673
4674 s->flags &= ~SLAB_RED_ZONE;
4675 if (buf[0] == '1') {
4676 s->flags &= ~__CMPXCHG_DOUBLE;
4677 s->flags |= SLAB_RED_ZONE;
4678 }
4679 calculate_sizes(s, -1);
4680 return length;
4681 }
4682 SLAB_ATTR(red_zone);
4683
4684 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4685 {
4686 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4687 }
4688
4689 static ssize_t poison_store(struct kmem_cache *s,
4690 const char *buf, size_t length)
4691 {
4692 if (any_slab_objects(s))
4693 return -EBUSY;
4694
4695 s->flags &= ~SLAB_POISON;
4696 if (buf[0] == '1') {
4697 s->flags &= ~__CMPXCHG_DOUBLE;
4698 s->flags |= SLAB_POISON;
4699 }
4700 calculate_sizes(s, -1);
4701 return length;
4702 }
4703 SLAB_ATTR(poison);
4704
4705 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4706 {
4707 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4708 }
4709
4710 static ssize_t store_user_store(struct kmem_cache *s,
4711 const char *buf, size_t length)
4712 {
4713 if (any_slab_objects(s))
4714 return -EBUSY;
4715
4716 s->flags &= ~SLAB_STORE_USER;
4717 if (buf[0] == '1') {
4718 s->flags &= ~__CMPXCHG_DOUBLE;
4719 s->flags |= SLAB_STORE_USER;
4720 }
4721 calculate_sizes(s, -1);
4722 return length;
4723 }
4724 SLAB_ATTR(store_user);
4725
4726 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4727 {
4728 return 0;
4729 }
4730
4731 static ssize_t validate_store(struct kmem_cache *s,
4732 const char *buf, size_t length)
4733 {
4734 int ret = -EINVAL;
4735
4736 if (buf[0] == '1') {
4737 ret = validate_slab_cache(s);
4738 if (ret >= 0)
4739 ret = length;
4740 }
4741 return ret;
4742 }
4743 SLAB_ATTR(validate);
4744
4745 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4746 {
4747 if (!(s->flags & SLAB_STORE_USER))
4748 return -ENOSYS;
4749 return list_locations(s, buf, TRACK_ALLOC);
4750 }
4751 SLAB_ATTR_RO(alloc_calls);
4752
4753 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4754 {
4755 if (!(s->flags & SLAB_STORE_USER))
4756 return -ENOSYS;
4757 return list_locations(s, buf, TRACK_FREE);
4758 }
4759 SLAB_ATTR_RO(free_calls);
4760 #endif /* CONFIG_SLUB_DEBUG */
4761
4762 #ifdef CONFIG_FAILSLAB
4763 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4766 }
4767
4768 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4769 size_t length)
4770 {
4771 s->flags &= ~SLAB_FAILSLAB;
4772 if (buf[0] == '1')
4773 s->flags |= SLAB_FAILSLAB;
4774 return length;
4775 }
4776 SLAB_ATTR(failslab);
4777 #endif
4778
4779 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4780 {
4781 return 0;
4782 }
4783
4784 static ssize_t shrink_store(struct kmem_cache *s,
4785 const char *buf, size_t length)
4786 {
4787 if (buf[0] == '1') {
4788 int rc = kmem_cache_shrink(s);
4789
4790 if (rc)
4791 return rc;
4792 } else
4793 return -EINVAL;
4794 return length;
4795 }
4796 SLAB_ATTR(shrink);
4797
4798 #ifdef CONFIG_NUMA
4799 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4800 {
4801 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4802 }
4803
4804 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4805 const char *buf, size_t length)
4806 {
4807 unsigned long ratio;
4808 int err;
4809
4810 err = kstrtoul(buf, 10, &ratio);
4811 if (err)
4812 return err;
4813
4814 if (ratio <= 100)
4815 s->remote_node_defrag_ratio = ratio * 10;
4816
4817 return length;
4818 }
4819 SLAB_ATTR(remote_node_defrag_ratio);
4820 #endif
4821
4822 #ifdef CONFIG_SLUB_STATS
4823 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4824 {
4825 unsigned long sum = 0;
4826 int cpu;
4827 int len;
4828 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4829
4830 if (!data)
4831 return -ENOMEM;
4832
4833 for_each_online_cpu(cpu) {
4834 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4835
4836 data[cpu] = x;
4837 sum += x;
4838 }
4839
4840 len = sprintf(buf, "%lu", sum);
4841
4842 #ifdef CONFIG_SMP
4843 for_each_online_cpu(cpu) {
4844 if (data[cpu] && len < PAGE_SIZE - 20)
4845 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4846 }
4847 #endif
4848 kfree(data);
4849 return len + sprintf(buf + len, "\n");
4850 }
4851
4852 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4853 {
4854 int cpu;
4855
4856 for_each_online_cpu(cpu)
4857 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4858 }
4859
4860 #define STAT_ATTR(si, text) \
4861 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4862 { \
4863 return show_stat(s, buf, si); \
4864 } \
4865 static ssize_t text##_store(struct kmem_cache *s, \
4866 const char *buf, size_t length) \
4867 { \
4868 if (buf[0] != '0') \
4869 return -EINVAL; \
4870 clear_stat(s, si); \
4871 return length; \
4872 } \
4873 SLAB_ATTR(text); \
4874
4875 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4876 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4877 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4878 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4879 STAT_ATTR(FREE_FROZEN, free_frozen);
4880 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4881 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4882 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4883 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4884 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4885 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4886 STAT_ATTR(FREE_SLAB, free_slab);
4887 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4888 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4889 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4890 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4891 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4892 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4893 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4894 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4895 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4896 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4897 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4898 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4899 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4900 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4901 #endif
4902
4903 static struct attribute *slab_attrs[] = {
4904 &slab_size_attr.attr,
4905 &object_size_attr.attr,
4906 &objs_per_slab_attr.attr,
4907 &order_attr.attr,
4908 &min_partial_attr.attr,
4909 &cpu_partial_attr.attr,
4910 &objects_attr.attr,
4911 &objects_partial_attr.attr,
4912 &partial_attr.attr,
4913 &cpu_slabs_attr.attr,
4914 &ctor_attr.attr,
4915 &aliases_attr.attr,
4916 &align_attr.attr,
4917 &hwcache_align_attr.attr,
4918 &reclaim_account_attr.attr,
4919 &destroy_by_rcu_attr.attr,
4920 &shrink_attr.attr,
4921 &reserved_attr.attr,
4922 &slabs_cpu_partial_attr.attr,
4923 #ifdef CONFIG_SLUB_DEBUG
4924 &total_objects_attr.attr,
4925 &slabs_attr.attr,
4926 &sanity_checks_attr.attr,
4927 &trace_attr.attr,
4928 &red_zone_attr.attr,
4929 &poison_attr.attr,
4930 &store_user_attr.attr,
4931 &validate_attr.attr,
4932 &alloc_calls_attr.attr,
4933 &free_calls_attr.attr,
4934 #endif
4935 #ifdef CONFIG_ZONE_DMA
4936 &cache_dma_attr.attr,
4937 #endif
4938 #ifdef CONFIG_NUMA
4939 &remote_node_defrag_ratio_attr.attr,
4940 #endif
4941 #ifdef CONFIG_SLUB_STATS
4942 &alloc_fastpath_attr.attr,
4943 &alloc_slowpath_attr.attr,
4944 &free_fastpath_attr.attr,
4945 &free_slowpath_attr.attr,
4946 &free_frozen_attr.attr,
4947 &free_add_partial_attr.attr,
4948 &free_remove_partial_attr.attr,
4949 &alloc_from_partial_attr.attr,
4950 &alloc_slab_attr.attr,
4951 &alloc_refill_attr.attr,
4952 &alloc_node_mismatch_attr.attr,
4953 &free_slab_attr.attr,
4954 &cpuslab_flush_attr.attr,
4955 &deactivate_full_attr.attr,
4956 &deactivate_empty_attr.attr,
4957 &deactivate_to_head_attr.attr,
4958 &deactivate_to_tail_attr.attr,
4959 &deactivate_remote_frees_attr.attr,
4960 &deactivate_bypass_attr.attr,
4961 &order_fallback_attr.attr,
4962 &cmpxchg_double_fail_attr.attr,
4963 &cmpxchg_double_cpu_fail_attr.attr,
4964 &cpu_partial_alloc_attr.attr,
4965 &cpu_partial_free_attr.attr,
4966 &cpu_partial_node_attr.attr,
4967 &cpu_partial_drain_attr.attr,
4968 #endif
4969 #ifdef CONFIG_FAILSLAB
4970 &failslab_attr.attr,
4971 #endif
4972
4973 NULL
4974 };
4975
4976 static struct attribute_group slab_attr_group = {
4977 .attrs = slab_attrs,
4978 };
4979
4980 static ssize_t slab_attr_show(struct kobject *kobj,
4981 struct attribute *attr,
4982 char *buf)
4983 {
4984 struct slab_attribute *attribute;
4985 struct kmem_cache *s;
4986 int err;
4987
4988 attribute = to_slab_attr(attr);
4989 s = to_slab(kobj);
4990
4991 if (!attribute->show)
4992 return -EIO;
4993
4994 err = attribute->show(s, buf);
4995
4996 return err;
4997 }
4998
4999 static ssize_t slab_attr_store(struct kobject *kobj,
5000 struct attribute *attr,
5001 const char *buf, size_t len)
5002 {
5003 struct slab_attribute *attribute;
5004 struct kmem_cache *s;
5005 int err;
5006
5007 attribute = to_slab_attr(attr);
5008 s = to_slab(kobj);
5009
5010 if (!attribute->store)
5011 return -EIO;
5012
5013 err = attribute->store(s, buf, len);
5014 #ifdef CONFIG_MEMCG_KMEM
5015 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5016 int i;
5017
5018 mutex_lock(&slab_mutex);
5019 if (s->max_attr_size < len)
5020 s->max_attr_size = len;
5021
5022 /*
5023 * This is a best effort propagation, so this function's return
5024 * value will be determined by the parent cache only. This is
5025 * basically because not all attributes will have a well
5026 * defined semantics for rollbacks - most of the actions will
5027 * have permanent effects.
5028 *
5029 * Returning the error value of any of the children that fail
5030 * is not 100 % defined, in the sense that users seeing the
5031 * error code won't be able to know anything about the state of
5032 * the cache.
5033 *
5034 * Only returning the error code for the parent cache at least
5035 * has well defined semantics. The cache being written to
5036 * directly either failed or succeeded, in which case we loop
5037 * through the descendants with best-effort propagation.
5038 */
5039 for_each_memcg_cache_index(i) {
5040 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5041 if (c)
5042 attribute->store(c, buf, len);
5043 }
5044 mutex_unlock(&slab_mutex);
5045 }
5046 #endif
5047 return err;
5048 }
5049
5050 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5051 {
5052 #ifdef CONFIG_MEMCG_KMEM
5053 int i;
5054 char *buffer = NULL;
5055
5056 if (!is_root_cache(s))
5057 return;
5058
5059 /*
5060 * This mean this cache had no attribute written. Therefore, no point
5061 * in copying default values around
5062 */
5063 if (!s->max_attr_size)
5064 return;
5065
5066 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5067 char mbuf[64];
5068 char *buf;
5069 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5070
5071 if (!attr || !attr->store || !attr->show)
5072 continue;
5073
5074 /*
5075 * It is really bad that we have to allocate here, so we will
5076 * do it only as a fallback. If we actually allocate, though,
5077 * we can just use the allocated buffer until the end.
5078 *
5079 * Most of the slub attributes will tend to be very small in
5080 * size, but sysfs allows buffers up to a page, so they can
5081 * theoretically happen.
5082 */
5083 if (buffer)
5084 buf = buffer;
5085 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5086 buf = mbuf;
5087 else {
5088 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5089 if (WARN_ON(!buffer))
5090 continue;
5091 buf = buffer;
5092 }
5093
5094 attr->show(s->memcg_params->root_cache, buf);
5095 attr->store(s, buf, strlen(buf));
5096 }
5097
5098 if (buffer)
5099 free_page((unsigned long)buffer);
5100 #endif
5101 }
5102
5103 static const struct sysfs_ops slab_sysfs_ops = {
5104 .show = slab_attr_show,
5105 .store = slab_attr_store,
5106 };
5107
5108 static struct kobj_type slab_ktype = {
5109 .sysfs_ops = &slab_sysfs_ops,
5110 };
5111
5112 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5113 {
5114 struct kobj_type *ktype = get_ktype(kobj);
5115
5116 if (ktype == &slab_ktype)
5117 return 1;
5118 return 0;
5119 }
5120
5121 static const struct kset_uevent_ops slab_uevent_ops = {
5122 .filter = uevent_filter,
5123 };
5124
5125 static struct kset *slab_kset;
5126
5127 #define ID_STR_LENGTH 64
5128
5129 /* Create a unique string id for a slab cache:
5130 *
5131 * Format :[flags-]size
5132 */
5133 static char *create_unique_id(struct kmem_cache *s)
5134 {
5135 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5136 char *p = name;
5137
5138 BUG_ON(!name);
5139
5140 *p++ = ':';
5141 /*
5142 * First flags affecting slabcache operations. We will only
5143 * get here for aliasable slabs so we do not need to support
5144 * too many flags. The flags here must cover all flags that
5145 * are matched during merging to guarantee that the id is
5146 * unique.
5147 */
5148 if (s->flags & SLAB_CACHE_DMA)
5149 *p++ = 'd';
5150 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5151 *p++ = 'a';
5152 if (s->flags & SLAB_DEBUG_FREE)
5153 *p++ = 'F';
5154 if (!(s->flags & SLAB_NOTRACK))
5155 *p++ = 't';
5156 if (p != name + 1)
5157 *p++ = '-';
5158 p += sprintf(p, "%07d", s->size);
5159
5160 #ifdef CONFIG_MEMCG_KMEM
5161 if (!is_root_cache(s))
5162 p += sprintf(p, "-%08d",
5163 memcg_cache_id(s->memcg_params->memcg));
5164 #endif
5165
5166 BUG_ON(p > name + ID_STR_LENGTH - 1);
5167 return name;
5168 }
5169
5170 static int sysfs_slab_add(struct kmem_cache *s)
5171 {
5172 int err;
5173 const char *name;
5174 int unmergeable = slab_unmergeable(s);
5175
5176 if (unmergeable) {
5177 /*
5178 * Slabcache can never be merged so we can use the name proper.
5179 * This is typically the case for debug situations. In that
5180 * case we can catch duplicate names easily.
5181 */
5182 sysfs_remove_link(&slab_kset->kobj, s->name);
5183 name = s->name;
5184 } else {
5185 /*
5186 * Create a unique name for the slab as a target
5187 * for the symlinks.
5188 */
5189 name = create_unique_id(s);
5190 }
5191
5192 s->kobj.kset = slab_kset;
5193 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5194 if (err) {
5195 kobject_put(&s->kobj);
5196 return err;
5197 }
5198
5199 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5200 if (err) {
5201 kobject_del(&s->kobj);
5202 kobject_put(&s->kobj);
5203 return err;
5204 }
5205 kobject_uevent(&s->kobj, KOBJ_ADD);
5206 if (!unmergeable) {
5207 /* Setup first alias */
5208 sysfs_slab_alias(s, s->name);
5209 kfree(name);
5210 }
5211 return 0;
5212 }
5213
5214 static void sysfs_slab_remove(struct kmem_cache *s)
5215 {
5216 if (slab_state < FULL)
5217 /*
5218 * Sysfs has not been setup yet so no need to remove the
5219 * cache from sysfs.
5220 */
5221 return;
5222
5223 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5224 kobject_del(&s->kobj);
5225 kobject_put(&s->kobj);
5226 }
5227
5228 /*
5229 * Need to buffer aliases during bootup until sysfs becomes
5230 * available lest we lose that information.
5231 */
5232 struct saved_alias {
5233 struct kmem_cache *s;
5234 const char *name;
5235 struct saved_alias *next;
5236 };
5237
5238 static struct saved_alias *alias_list;
5239
5240 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5241 {
5242 struct saved_alias *al;
5243
5244 if (slab_state == FULL) {
5245 /*
5246 * If we have a leftover link then remove it.
5247 */
5248 sysfs_remove_link(&slab_kset->kobj, name);
5249 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5250 }
5251
5252 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5253 if (!al)
5254 return -ENOMEM;
5255
5256 al->s = s;
5257 al->name = name;
5258 al->next = alias_list;
5259 alias_list = al;
5260 return 0;
5261 }
5262
5263 static int __init slab_sysfs_init(void)
5264 {
5265 struct kmem_cache *s;
5266 int err;
5267
5268 mutex_lock(&slab_mutex);
5269
5270 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5271 if (!slab_kset) {
5272 mutex_unlock(&slab_mutex);
5273 printk(KERN_ERR "Cannot register slab subsystem.\n");
5274 return -ENOSYS;
5275 }
5276
5277 slab_state = FULL;
5278
5279 list_for_each_entry(s, &slab_caches, list) {
5280 err = sysfs_slab_add(s);
5281 if (err)
5282 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5283 " to sysfs\n", s->name);
5284 }
5285
5286 while (alias_list) {
5287 struct saved_alias *al = alias_list;
5288
5289 alias_list = alias_list->next;
5290 err = sysfs_slab_alias(al->s, al->name);
5291 if (err)
5292 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5293 " %s to sysfs\n", al->name);
5294 kfree(al);
5295 }
5296
5297 mutex_unlock(&slab_mutex);
5298 resiliency_test();
5299 return 0;
5300 }
5301
5302 __initcall(slab_sysfs_init);
5303 #endif /* CONFIG_SYSFS */
5304
5305 /*
5306 * The /proc/slabinfo ABI
5307 */
5308 #ifdef CONFIG_SLABINFO
5309 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5310 {
5311 unsigned long nr_slabs = 0;
5312 unsigned long nr_objs = 0;
5313 unsigned long nr_free = 0;
5314 int node;
5315
5316 for_each_online_node(node) {
5317 struct kmem_cache_node *n = get_node(s, node);
5318
5319 if (!n)
5320 continue;
5321
5322 nr_slabs += node_nr_slabs(n);
5323 nr_objs += node_nr_objs(n);
5324 nr_free += count_partial(n, count_free);
5325 }
5326
5327 sinfo->active_objs = nr_objs - nr_free;
5328 sinfo->num_objs = nr_objs;
5329 sinfo->active_slabs = nr_slabs;
5330 sinfo->num_slabs = nr_slabs;
5331 sinfo->objects_per_slab = oo_objects(s->oo);
5332 sinfo->cache_order = oo_order(s->oo);
5333 }
5334
5335 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5336 {
5337 }
5338
5339 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 size_t count, loff_t *ppos)
5341 {
5342 return -EIO;
5343 }
5344 #endif /* CONFIG_SLABINFO */