slab/slub: consider a memcg parameter in kmem_create_cache
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35
36 #include <trace/events/kmem.h>
37
38 #include "internal.h"
39
40 /*
41 * Lock order:
42 * 1. slab_mutex (Global Mutex)
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
45 *
46 * slab_mutex
47 *
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
114 */
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210
211 #endif
212
213 static inline void stat(const struct kmem_cache *s, enum stat_item si)
214 {
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
217 #endif
218 }
219
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
225 {
226 return s->node[node];
227 }
228
229 /* Verify that a pointer has an address that is valid within a slab page */
230 static inline int check_valid_pointer(struct kmem_cache *s,
231 struct page *page, const void *object)
232 {
233 void *base;
234
235 if (!object)
236 return 1;
237
238 base = page_address(page);
239 if (object < base || object >= base + page->objects * s->size ||
240 (object - base) % s->size) {
241 return 0;
242 }
243
244 return 1;
245 }
246
247 static inline void *get_freepointer(struct kmem_cache *s, void *object)
248 {
249 return *(void **)(object + s->offset);
250 }
251
252 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
253 {
254 prefetch(object + s->offset);
255 }
256
257 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
258 {
259 void *p;
260
261 #ifdef CONFIG_DEBUG_PAGEALLOC
262 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
263 #else
264 p = get_freepointer(s, object);
265 #endif
266 return p;
267 }
268
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 *(void **)(object + s->offset) = fp;
272 }
273
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 __p += (__s)->size)
278
279 /* Determine object index from a given position */
280 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281 {
282 return (p - addr) / s->size;
283 }
284
285 static inline size_t slab_ksize(const struct kmem_cache *s)
286 {
287 #ifdef CONFIG_SLUB_DEBUG
288 /*
289 * Debugging requires use of the padding between object
290 * and whatever may come after it.
291 */
292 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
293 return s->object_size;
294
295 #endif
296 /*
297 * If we have the need to store the freelist pointer
298 * back there or track user information then we can
299 * only use the space before that information.
300 */
301 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
302 return s->inuse;
303 /*
304 * Else we can use all the padding etc for the allocation
305 */
306 return s->size;
307 }
308
309 static inline int order_objects(int order, unsigned long size, int reserved)
310 {
311 return ((PAGE_SIZE << order) - reserved) / size;
312 }
313
314 static inline struct kmem_cache_order_objects oo_make(int order,
315 unsigned long size, int reserved)
316 {
317 struct kmem_cache_order_objects x = {
318 (order << OO_SHIFT) + order_objects(order, size, reserved)
319 };
320
321 return x;
322 }
323
324 static inline int oo_order(struct kmem_cache_order_objects x)
325 {
326 return x.x >> OO_SHIFT;
327 }
328
329 static inline int oo_objects(struct kmem_cache_order_objects x)
330 {
331 return x.x & OO_MASK;
332 }
333
334 /*
335 * Per slab locking using the pagelock
336 */
337 static __always_inline void slab_lock(struct page *page)
338 {
339 bit_spin_lock(PG_locked, &page->flags);
340 }
341
342 static __always_inline void slab_unlock(struct page *page)
343 {
344 __bit_spin_unlock(PG_locked, &page->flags);
345 }
346
347 /* Interrupts must be disabled (for the fallback code to work right) */
348 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
349 void *freelist_old, unsigned long counters_old,
350 void *freelist_new, unsigned long counters_new,
351 const char *n)
352 {
353 VM_BUG_ON(!irqs_disabled());
354 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
355 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
356 if (s->flags & __CMPXCHG_DOUBLE) {
357 if (cmpxchg_double(&page->freelist, &page->counters,
358 freelist_old, counters_old,
359 freelist_new, counters_new))
360 return 1;
361 } else
362 #endif
363 {
364 slab_lock(page);
365 if (page->freelist == freelist_old && page->counters == counters_old) {
366 page->freelist = freelist_new;
367 page->counters = counters_new;
368 slab_unlock(page);
369 return 1;
370 }
371 slab_unlock(page);
372 }
373
374 cpu_relax();
375 stat(s, CMPXCHG_DOUBLE_FAIL);
376
377 #ifdef SLUB_DEBUG_CMPXCHG
378 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
379 #endif
380
381 return 0;
382 }
383
384 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
385 void *freelist_old, unsigned long counters_old,
386 void *freelist_new, unsigned long counters_new,
387 const char *n)
388 {
389 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
390 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
391 if (s->flags & __CMPXCHG_DOUBLE) {
392 if (cmpxchg_double(&page->freelist, &page->counters,
393 freelist_old, counters_old,
394 freelist_new, counters_new))
395 return 1;
396 } else
397 #endif
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 slab_lock(page);
403 if (page->freelist == freelist_old && page->counters == counters_old) {
404 page->freelist = freelist_new;
405 page->counters = counters_new;
406 slab_unlock(page);
407 local_irq_restore(flags);
408 return 1;
409 }
410 slab_unlock(page);
411 local_irq_restore(flags);
412 }
413
414 cpu_relax();
415 stat(s, CMPXCHG_DOUBLE_FAIL);
416
417 #ifdef SLUB_DEBUG_CMPXCHG
418 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
419 #endif
420
421 return 0;
422 }
423
424 #ifdef CONFIG_SLUB_DEBUG
425 /*
426 * Determine a map of object in use on a page.
427 *
428 * Node listlock must be held to guarantee that the page does
429 * not vanish from under us.
430 */
431 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
432 {
433 void *p;
434 void *addr = page_address(page);
435
436 for (p = page->freelist; p; p = get_freepointer(s, p))
437 set_bit(slab_index(p, s, addr), map);
438 }
439
440 /*
441 * Debug settings:
442 */
443 #ifdef CONFIG_SLUB_DEBUG_ON
444 static int slub_debug = DEBUG_DEFAULT_FLAGS;
445 #else
446 static int slub_debug;
447 #endif
448
449 static char *slub_debug_slabs;
450 static int disable_higher_order_debug;
451
452 /*
453 * Object debugging
454 */
455 static void print_section(char *text, u8 *addr, unsigned int length)
456 {
457 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
458 length, 1);
459 }
460
461 static struct track *get_track(struct kmem_cache *s, void *object,
462 enum track_item alloc)
463 {
464 struct track *p;
465
466 if (s->offset)
467 p = object + s->offset + sizeof(void *);
468 else
469 p = object + s->inuse;
470
471 return p + alloc;
472 }
473
474 static void set_track(struct kmem_cache *s, void *object,
475 enum track_item alloc, unsigned long addr)
476 {
477 struct track *p = get_track(s, object, alloc);
478
479 if (addr) {
480 #ifdef CONFIG_STACKTRACE
481 struct stack_trace trace;
482 int i;
483
484 trace.nr_entries = 0;
485 trace.max_entries = TRACK_ADDRS_COUNT;
486 trace.entries = p->addrs;
487 trace.skip = 3;
488 save_stack_trace(&trace);
489
490 /* See rant in lockdep.c */
491 if (trace.nr_entries != 0 &&
492 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
493 trace.nr_entries--;
494
495 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
496 p->addrs[i] = 0;
497 #endif
498 p->addr = addr;
499 p->cpu = smp_processor_id();
500 p->pid = current->pid;
501 p->when = jiffies;
502 } else
503 memset(p, 0, sizeof(struct track));
504 }
505
506 static void init_tracking(struct kmem_cache *s, void *object)
507 {
508 if (!(s->flags & SLAB_STORE_USER))
509 return;
510
511 set_track(s, object, TRACK_FREE, 0UL);
512 set_track(s, object, TRACK_ALLOC, 0UL);
513 }
514
515 static void print_track(const char *s, struct track *t)
516 {
517 if (!t->addr)
518 return;
519
520 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
521 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
522 #ifdef CONFIG_STACKTRACE
523 {
524 int i;
525 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
526 if (t->addrs[i])
527 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
528 else
529 break;
530 }
531 #endif
532 }
533
534 static void print_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
540 print_track("Freed", get_track(s, object, TRACK_FREE));
541 }
542
543 static void print_page_info(struct page *page)
544 {
545 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
546 page, page->objects, page->inuse, page->freelist, page->flags);
547
548 }
549
550 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
551 {
552 va_list args;
553 char buf[100];
554
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 printk(KERN_ERR "========================================"
559 "=====================================\n");
560 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
561 printk(KERN_ERR "----------------------------------------"
562 "-------------------------------------\n\n");
563
564 add_taint(TAINT_BAD_PAGE);
565 }
566
567 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568 {
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576 }
577
578 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
579 {
580 unsigned int off; /* Offset of last byte */
581 u8 *addr = page_address(page);
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
591 print_section("Bytes b4 ", p - 16, 16);
592
593 print_section("Object ", p, min_t(unsigned long, s->object_size,
594 PAGE_SIZE));
595 if (s->flags & SLAB_RED_ZONE)
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
598
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
604 if (s->flags & SLAB_STORE_USER)
605 off += 2 * sizeof(struct track);
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
609 print_section("Padding ", p + off, s->size - off);
610
611 dump_stack();
612 }
613
614 static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616 {
617 slab_bug(s, "%s", reason);
618 print_trailer(s, page, object);
619 }
620
621 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
622 {
623 va_list args;
624 char buf[100];
625
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
628 va_end(args);
629 slab_bug(s, "%s", buf);
630 print_page_info(page);
631 dump_stack();
632 }
633
634 static void init_object(struct kmem_cache *s, void *object, u8 val)
635 {
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
644 memset(p + s->object_size, val, s->inuse - s->object_size);
645 }
646
647 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649 {
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652 }
653
654 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
656 u8 *start, unsigned int value, unsigned int bytes)
657 {
658 u8 *fault;
659 u8 *end;
660
661 fault = memchr_inv(start, value, bytes);
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
676 }
677
678 /*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
685 *
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
689 * object + s->object_size
690 * Padding to reach word boundary. This is also used for Redzoning.
691 * Padding is extended by another word if Redzoning is enabled and
692 * object_size == inuse.
693 *
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
698 * Meta data starts here.
699 *
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
702 * C. Padding to reach required alignment boundary or at mininum
703 * one word if debugging is on to be able to detect writes
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
707 *
708 * object + s->size
709 * Nothing is used beyond s->size.
710 *
711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
712 * ignored. And therefore no slab options that rely on these boundaries
713 * may be used with merged slabcaches.
714 */
715
716 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717 {
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
733 }
734
735 /* Check the pad bytes at the end of a slab page */
736 static int slab_pad_check(struct kmem_cache *s, struct page *page)
737 {
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
747 start = page_address(page);
748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
749 end = start + length;
750 remainder = length % s->size;
751 if (!remainder)
752 return 1;
753
754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
761 print_section("Padding ", end - remainder, remainder);
762
763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
764 return 0;
765 }
766
767 static int check_object(struct kmem_cache *s, struct page *page,
768 void *object, u8 val)
769 {
770 u8 *p = object;
771 u8 *endobject = object + s->object_size;
772
773 if (s->flags & SLAB_RED_ZONE) {
774 if (!check_bytes_and_report(s, page, object, "Redzone",
775 endobject, val, s->inuse - s->object_size))
776 return 0;
777 } else {
778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
779 check_bytes_and_report(s, page, p, "Alignment padding",
780 endobject, POISON_INUSE, s->inuse - s->object_size);
781 }
782 }
783
784 if (s->flags & SLAB_POISON) {
785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
786 (!check_bytes_and_report(s, page, p, "Poison", p,
787 POISON_FREE, s->object_size - 1) ||
788 !check_bytes_and_report(s, page, p, "Poison",
789 p + s->object_size - 1, POISON_END, 1)))
790 return 0;
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
797 if (!s->offset && val == SLUB_RED_ACTIVE)
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
808 * No choice but to zap it and thus lose the remainder
809 * of the free objects in this slab. May cause
810 * another error because the object count is now wrong.
811 */
812 set_freepointer(s, p, NULL);
813 return 0;
814 }
815 return 1;
816 }
817
818 static int check_slab(struct kmem_cache *s, struct page *page)
819 {
820 int maxobj;
821
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
825 slab_err(s, page, "Not a valid slab page");
826 return 0;
827 }
828
829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
836 slab_err(s, page, "inuse %u > max %u",
837 s->name, page->inuse, page->objects);
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843 }
844
845 /*
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
848 */
849 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850 {
851 int nr = 0;
852 void *fp;
853 void *object = NULL;
854 unsigned long max_objects;
855
856 fp = page->freelist;
857 while (fp && nr <= page->objects) {
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
864 set_freepointer(s, object, NULL);
865 break;
866 } else {
867 slab_err(s, page, "Freepointer corrupt");
868 page->freelist = NULL;
869 page->inuse = page->objects;
870 slab_fix(s, "Freelist cleared");
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
890 if (page->inuse != page->objects - nr) {
891 slab_err(s, page, "Wrong object count. Counter is %d but "
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
894 slab_fix(s, "Object count adjusted.");
895 }
896 return search == NULL;
897 }
898
899 static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
901 {
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
910 print_section("Object ", (void *)object, s->object_size);
911
912 dump_stack();
913 }
914 }
915
916 /*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921 {
922 flags &= gfp_allowed_mask;
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
926 return should_failslab(s->object_size, flags, s->flags);
927 }
928
929 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930 {
931 flags &= gfp_allowed_mask;
932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
934 }
935
936 static inline void slab_free_hook(struct kmem_cache *s, void *x)
937 {
938 kmemleak_free_recursive(x, s->flags);
939
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
952 local_irq_restore(flags);
953 }
954 #endif
955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
956 debug_check_no_obj_freed(x, s->object_size);
957 }
958
959 /*
960 * Tracking of fully allocated slabs for debugging purposes.
961 *
962 * list_lock must be held.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 list_add(&page->lru, &n->full);
971 }
972
973 /*
974 * list_lock must be held.
975 */
976 static void remove_full(struct kmem_cache *s, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 list_del(&page->lru);
982 }
983
984 /* Tracking of the number of slabs for debugging purposes */
985 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986 {
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990 }
991
992 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993 {
994 return atomic_long_read(&n->nr_slabs);
995 }
996
997 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
998 {
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
1007 if (n) {
1008 atomic_long_inc(&n->nr_slabs);
1009 atomic_long_add(objects, &n->total_objects);
1010 }
1011 }
1012 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1013 {
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
1017 atomic_long_sub(objects, &n->total_objects);
1018 }
1019
1020 /* Object debug checks for alloc/free paths */
1021 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023 {
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
1027 init_object(s, object, SLUB_RED_INACTIVE);
1028 init_tracking(s, object);
1029 }
1030
1031 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 printk(KERN_ERR
1097 "SLUB <none>: no slab for object 0x%p.\n",
1098 object);
1099 dump_stack();
1100 } else
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
1103 goto fail;
1104 }
1105
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
1109 init_object(s, object, SLUB_RED_INACTIVE);
1110 out:
1111 slab_unlock(page);
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
1117
1118 fail:
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
1121 slab_fix(s, "Object at 0x%p not freed", object);
1122 return NULL;
1123 }
1124
1125 static int __init setup_slub_debug(char *str)
1126 {
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
1160 for (; *str && *str != ','; str++) {
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
1182 "unknown. skipped\n", *str);
1183 }
1184 }
1185
1186 check_slabs:
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
1189 out:
1190 return 1;
1191 }
1192
1193 __setup("slub_debug", setup_slub_debug);
1194
1195 static unsigned long kmem_cache_flags(unsigned long object_size,
1196 unsigned long flags, const char *name,
1197 void (*ctor)(void *))
1198 {
1199 /*
1200 * Enable debugging if selected on the kernel commandline.
1201 */
1202 if (slub_debug && (!slub_debug_slabs ||
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
1205
1206 return flags;
1207 }
1208 #else
1209 static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
1211
1212 static inline int alloc_debug_processing(struct kmem_cache *s,
1213 struct page *page, void *object, unsigned long addr) { return 0; }
1214
1215 static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
1218
1219 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221 static inline int check_object(struct kmem_cache *s, struct page *page,
1222 void *object, u8 val) { return 1; }
1223 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
1225 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1226 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1227 unsigned long flags, const char *name,
1228 void (*ctor)(void *))
1229 {
1230 return flags;
1231 }
1232 #define slub_debug 0
1233
1234 #define disable_higher_order_debug 0
1235
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244
1245 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
1253 #endif /* CONFIG_SLUB_DEBUG */
1254
1255 /*
1256 * Slab allocation and freeing
1257 */
1258 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260 {
1261 int order = oo_order(oo);
1262
1263 flags |= __GFP_NOTRACK;
1264
1265 if (node == NUMA_NO_NODE)
1266 return alloc_pages(flags, order);
1267 else
1268 return alloc_pages_exact_node(node, flags, order);
1269 }
1270
1271 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272 {
1273 struct page *page;
1274 struct kmem_cache_order_objects oo = s->oo;
1275 gfp_t alloc_gfp;
1276
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
1282 flags |= s->allocflags;
1283
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
1298
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
1301 }
1302
1303 if (kmemcheck_enabled && page
1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
1317 }
1318
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
1324 page->objects = oo_objects(oo);
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1328 1 << oo_order(oo));
1329
1330 return page;
1331 }
1332
1333 static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335 {
1336 setup_object_debug(s, page, object);
1337 if (unlikely(s->ctor))
1338 s->ctor(object);
1339 }
1340
1341 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342 {
1343 struct page *page;
1344 void *start;
1345 void *last;
1346 void *p;
1347
1348 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1349
1350 page = allocate_slab(s,
1351 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1352 if (!page)
1353 goto out;
1354
1355 inc_slabs_node(s, page_to_nid(page), page->objects);
1356 page->slab_cache = s;
1357 __SetPageSlab(page);
1358 if (page->pfmemalloc)
1359 SetPageSlabPfmemalloc(page);
1360
1361 start = page_address(page);
1362
1363 if (unlikely(s->flags & SLAB_POISON))
1364 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1365
1366 last = start;
1367 for_each_object(p, s, start, page->objects) {
1368 setup_object(s, page, last);
1369 set_freepointer(s, last, p);
1370 last = p;
1371 }
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, NULL);
1374
1375 page->freelist = start;
1376 page->inuse = page->objects;
1377 page->frozen = 1;
1378 out:
1379 return page;
1380 }
1381
1382 static void __free_slab(struct kmem_cache *s, struct page *page)
1383 {
1384 int order = compound_order(page);
1385 int pages = 1 << order;
1386
1387 if (kmem_cache_debug(s)) {
1388 void *p;
1389
1390 slab_pad_check(s, page);
1391 for_each_object(p, s, page_address(page),
1392 page->objects)
1393 check_object(s, page, p, SLUB_RED_INACTIVE);
1394 }
1395
1396 kmemcheck_free_shadow(page, compound_order(page));
1397
1398 mod_zone_page_state(page_zone(page),
1399 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1400 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1401 -pages);
1402
1403 __ClearPageSlabPfmemalloc(page);
1404 __ClearPageSlab(page);
1405 reset_page_mapcount(page);
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += pages;
1408 __free_pages(page, order);
1409 }
1410
1411 #define need_reserve_slab_rcu \
1412 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1413
1414 static void rcu_free_slab(struct rcu_head *h)
1415 {
1416 struct page *page;
1417
1418 if (need_reserve_slab_rcu)
1419 page = virt_to_head_page(h);
1420 else
1421 page = container_of((struct list_head *)h, struct page, lru);
1422
1423 __free_slab(page->slab_cache, page);
1424 }
1425
1426 static void free_slab(struct kmem_cache *s, struct page *page)
1427 {
1428 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1429 struct rcu_head *head;
1430
1431 if (need_reserve_slab_rcu) {
1432 int order = compound_order(page);
1433 int offset = (PAGE_SIZE << order) - s->reserved;
1434
1435 VM_BUG_ON(s->reserved != sizeof(*head));
1436 head = page_address(page) + offset;
1437 } else {
1438 /*
1439 * RCU free overloads the RCU head over the LRU
1440 */
1441 head = (void *)&page->lru;
1442 }
1443
1444 call_rcu(head, rcu_free_slab);
1445 } else
1446 __free_slab(s, page);
1447 }
1448
1449 static void discard_slab(struct kmem_cache *s, struct page *page)
1450 {
1451 dec_slabs_node(s, page_to_nid(page), page->objects);
1452 free_slab(s, page);
1453 }
1454
1455 /*
1456 * Management of partially allocated slabs.
1457 *
1458 * list_lock must be held.
1459 */
1460 static inline void add_partial(struct kmem_cache_node *n,
1461 struct page *page, int tail)
1462 {
1463 n->nr_partial++;
1464 if (tail == DEACTIVATE_TO_TAIL)
1465 list_add_tail(&page->lru, &n->partial);
1466 else
1467 list_add(&page->lru, &n->partial);
1468 }
1469
1470 /*
1471 * list_lock must be held.
1472 */
1473 static inline void remove_partial(struct kmem_cache_node *n,
1474 struct page *page)
1475 {
1476 list_del(&page->lru);
1477 n->nr_partial--;
1478 }
1479
1480 /*
1481 * Remove slab from the partial list, freeze it and
1482 * return the pointer to the freelist.
1483 *
1484 * Returns a list of objects or NULL if it fails.
1485 *
1486 * Must hold list_lock since we modify the partial list.
1487 */
1488 static inline void *acquire_slab(struct kmem_cache *s,
1489 struct kmem_cache_node *n, struct page *page,
1490 int mode)
1491 {
1492 void *freelist;
1493 unsigned long counters;
1494 struct page new;
1495
1496 /*
1497 * Zap the freelist and set the frozen bit.
1498 * The old freelist is the list of objects for the
1499 * per cpu allocation list.
1500 */
1501 freelist = page->freelist;
1502 counters = page->counters;
1503 new.counters = counters;
1504 if (mode) {
1505 new.inuse = page->objects;
1506 new.freelist = NULL;
1507 } else {
1508 new.freelist = freelist;
1509 }
1510
1511 VM_BUG_ON(new.frozen);
1512 new.frozen = 1;
1513
1514 if (!__cmpxchg_double_slab(s, page,
1515 freelist, counters,
1516 new.freelist, new.counters,
1517 "acquire_slab"))
1518 return NULL;
1519
1520 remove_partial(n, page);
1521 WARN_ON(!freelist);
1522 return freelist;
1523 }
1524
1525 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1526 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1532 struct kmem_cache_cpu *c, gfp_t flags)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t;
1549 int available;
1550
1551 if (!pfmemalloc_match(page, flags))
1552 continue;
1553
1554 t = acquire_slab(s, n, page, object == NULL);
1555 if (!t)
1556 break;
1557
1558 if (!object) {
1559 c->page = page;
1560 stat(s, ALLOC_FROM_PARTIAL);
1561 object = t;
1562 available = page->objects - page->inuse;
1563 } else {
1564 available = put_cpu_partial(s, page, 0);
1565 stat(s, CPU_PARTIAL_NODE);
1566 }
1567 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1568 break;
1569
1570 }
1571 spin_unlock(&n->list_lock);
1572 return object;
1573 }
1574
1575 /*
1576 * Get a page from somewhere. Search in increasing NUMA distances.
1577 */
1578 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1579 struct kmem_cache_cpu *c)
1580 {
1581 #ifdef CONFIG_NUMA
1582 struct zonelist *zonelist;
1583 struct zoneref *z;
1584 struct zone *zone;
1585 enum zone_type high_zoneidx = gfp_zone(flags);
1586 void *object;
1587 unsigned int cpuset_mems_cookie;
1588
1589 /*
1590 * The defrag ratio allows a configuration of the tradeoffs between
1591 * inter node defragmentation and node local allocations. A lower
1592 * defrag_ratio increases the tendency to do local allocations
1593 * instead of attempting to obtain partial slabs from other nodes.
1594 *
1595 * If the defrag_ratio is set to 0 then kmalloc() always
1596 * returns node local objects. If the ratio is higher then kmalloc()
1597 * may return off node objects because partial slabs are obtained
1598 * from other nodes and filled up.
1599 *
1600 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1601 * defrag_ratio = 1000) then every (well almost) allocation will
1602 * first attempt to defrag slab caches on other nodes. This means
1603 * scanning over all nodes to look for partial slabs which may be
1604 * expensive if we do it every time we are trying to find a slab
1605 * with available objects.
1606 */
1607 if (!s->remote_node_defrag_ratio ||
1608 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1609 return NULL;
1610
1611 do {
1612 cpuset_mems_cookie = get_mems_allowed();
1613 zonelist = node_zonelist(slab_node(), flags);
1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1615 struct kmem_cache_node *n;
1616
1617 n = get_node(s, zone_to_nid(zone));
1618
1619 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1620 n->nr_partial > s->min_partial) {
1621 object = get_partial_node(s, n, c, flags);
1622 if (object) {
1623 /*
1624 * Return the object even if
1625 * put_mems_allowed indicated that
1626 * the cpuset mems_allowed was
1627 * updated in parallel. It's a
1628 * harmless race between the alloc
1629 * and the cpuset update.
1630 */
1631 put_mems_allowed(cpuset_mems_cookie);
1632 return object;
1633 }
1634 }
1635 }
1636 } while (!put_mems_allowed(cpuset_mems_cookie));
1637 #endif
1638 return NULL;
1639 }
1640
1641 /*
1642 * Get a partial page, lock it and return it.
1643 */
1644 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1645 struct kmem_cache_cpu *c)
1646 {
1647 void *object;
1648 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1649
1650 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1651 if (object || node != NUMA_NO_NODE)
1652 return object;
1653
1654 return get_any_partial(s, flags, c);
1655 }
1656
1657 #ifdef CONFIG_PREEMPT
1658 /*
1659 * Calculate the next globally unique transaction for disambiguiation
1660 * during cmpxchg. The transactions start with the cpu number and are then
1661 * incremented by CONFIG_NR_CPUS.
1662 */
1663 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1664 #else
1665 /*
1666 * No preemption supported therefore also no need to check for
1667 * different cpus.
1668 */
1669 #define TID_STEP 1
1670 #endif
1671
1672 static inline unsigned long next_tid(unsigned long tid)
1673 {
1674 return tid + TID_STEP;
1675 }
1676
1677 static inline unsigned int tid_to_cpu(unsigned long tid)
1678 {
1679 return tid % TID_STEP;
1680 }
1681
1682 static inline unsigned long tid_to_event(unsigned long tid)
1683 {
1684 return tid / TID_STEP;
1685 }
1686
1687 static inline unsigned int init_tid(int cpu)
1688 {
1689 return cpu;
1690 }
1691
1692 static inline void note_cmpxchg_failure(const char *n,
1693 const struct kmem_cache *s, unsigned long tid)
1694 {
1695 #ifdef SLUB_DEBUG_CMPXCHG
1696 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1697
1698 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1699
1700 #ifdef CONFIG_PREEMPT
1701 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1702 printk("due to cpu change %d -> %d\n",
1703 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1704 else
1705 #endif
1706 if (tid_to_event(tid) != tid_to_event(actual_tid))
1707 printk("due to cpu running other code. Event %ld->%ld\n",
1708 tid_to_event(tid), tid_to_event(actual_tid));
1709 else
1710 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1711 actual_tid, tid, next_tid(tid));
1712 #endif
1713 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1714 }
1715
1716 static void init_kmem_cache_cpus(struct kmem_cache *s)
1717 {
1718 int cpu;
1719
1720 for_each_possible_cpu(cpu)
1721 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1722 }
1723
1724 /*
1725 * Remove the cpu slab
1726 */
1727 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1728 {
1729 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1730 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1731 int lock = 0;
1732 enum slab_modes l = M_NONE, m = M_NONE;
1733 void *nextfree;
1734 int tail = DEACTIVATE_TO_HEAD;
1735 struct page new;
1736 struct page old;
1737
1738 if (page->freelist) {
1739 stat(s, DEACTIVATE_REMOTE_FREES);
1740 tail = DEACTIVATE_TO_TAIL;
1741 }
1742
1743 /*
1744 * Stage one: Free all available per cpu objects back
1745 * to the page freelist while it is still frozen. Leave the
1746 * last one.
1747 *
1748 * There is no need to take the list->lock because the page
1749 * is still frozen.
1750 */
1751 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1752 void *prior;
1753 unsigned long counters;
1754
1755 do {
1756 prior = page->freelist;
1757 counters = page->counters;
1758 set_freepointer(s, freelist, prior);
1759 new.counters = counters;
1760 new.inuse--;
1761 VM_BUG_ON(!new.frozen);
1762
1763 } while (!__cmpxchg_double_slab(s, page,
1764 prior, counters,
1765 freelist, new.counters,
1766 "drain percpu freelist"));
1767
1768 freelist = nextfree;
1769 }
1770
1771 /*
1772 * Stage two: Ensure that the page is unfrozen while the
1773 * list presence reflects the actual number of objects
1774 * during unfreeze.
1775 *
1776 * We setup the list membership and then perform a cmpxchg
1777 * with the count. If there is a mismatch then the page
1778 * is not unfrozen but the page is on the wrong list.
1779 *
1780 * Then we restart the process which may have to remove
1781 * the page from the list that we just put it on again
1782 * because the number of objects in the slab may have
1783 * changed.
1784 */
1785 redo:
1786
1787 old.freelist = page->freelist;
1788 old.counters = page->counters;
1789 VM_BUG_ON(!old.frozen);
1790
1791 /* Determine target state of the slab */
1792 new.counters = old.counters;
1793 if (freelist) {
1794 new.inuse--;
1795 set_freepointer(s, freelist, old.freelist);
1796 new.freelist = freelist;
1797 } else
1798 new.freelist = old.freelist;
1799
1800 new.frozen = 0;
1801
1802 if (!new.inuse && n->nr_partial > s->min_partial)
1803 m = M_FREE;
1804 else if (new.freelist) {
1805 m = M_PARTIAL;
1806 if (!lock) {
1807 lock = 1;
1808 /*
1809 * Taking the spinlock removes the possiblity
1810 * that acquire_slab() will see a slab page that
1811 * is frozen
1812 */
1813 spin_lock(&n->list_lock);
1814 }
1815 } else {
1816 m = M_FULL;
1817 if (kmem_cache_debug(s) && !lock) {
1818 lock = 1;
1819 /*
1820 * This also ensures that the scanning of full
1821 * slabs from diagnostic functions will not see
1822 * any frozen slabs.
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 }
1827
1828 if (l != m) {
1829
1830 if (l == M_PARTIAL)
1831
1832 remove_partial(n, page);
1833
1834 else if (l == M_FULL)
1835
1836 remove_full(s, page);
1837
1838 if (m == M_PARTIAL) {
1839
1840 add_partial(n, page, tail);
1841 stat(s, tail);
1842
1843 } else if (m == M_FULL) {
1844
1845 stat(s, DEACTIVATE_FULL);
1846 add_full(s, n, page);
1847
1848 }
1849 }
1850
1851 l = m;
1852 if (!__cmpxchg_double_slab(s, page,
1853 old.freelist, old.counters,
1854 new.freelist, new.counters,
1855 "unfreezing slab"))
1856 goto redo;
1857
1858 if (lock)
1859 spin_unlock(&n->list_lock);
1860
1861 if (m == M_FREE) {
1862 stat(s, DEACTIVATE_EMPTY);
1863 discard_slab(s, page);
1864 stat(s, FREE_SLAB);
1865 }
1866 }
1867
1868 /*
1869 * Unfreeze all the cpu partial slabs.
1870 *
1871 * This function must be called with interrupts disabled
1872 * for the cpu using c (or some other guarantee must be there
1873 * to guarantee no concurrent accesses).
1874 */
1875 static void unfreeze_partials(struct kmem_cache *s,
1876 struct kmem_cache_cpu *c)
1877 {
1878 struct kmem_cache_node *n = NULL, *n2 = NULL;
1879 struct page *page, *discard_page = NULL;
1880
1881 while ((page = c->partial)) {
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
1886
1887 n2 = get_node(s, page_to_nid(page));
1888 if (n != n2) {
1889 if (n)
1890 spin_unlock(&n->list_lock);
1891
1892 n = n2;
1893 spin_lock(&n->list_lock);
1894 }
1895
1896 do {
1897
1898 old.freelist = page->freelist;
1899 old.counters = page->counters;
1900 VM_BUG_ON(!old.frozen);
1901
1902 new.counters = old.counters;
1903 new.freelist = old.freelist;
1904
1905 new.frozen = 0;
1906
1907 } while (!__cmpxchg_double_slab(s, page,
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"));
1911
1912 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1913 page->next = discard_page;
1914 discard_page = page;
1915 } else {
1916 add_partial(n, page, DEACTIVATE_TO_TAIL);
1917 stat(s, FREE_ADD_PARTIAL);
1918 }
1919 }
1920
1921 if (n)
1922 spin_unlock(&n->list_lock);
1923
1924 while (discard_page) {
1925 page = discard_page;
1926 discard_page = discard_page->next;
1927
1928 stat(s, DEACTIVATE_EMPTY);
1929 discard_slab(s, page);
1930 stat(s, FREE_SLAB);
1931 }
1932 }
1933
1934 /*
1935 * Put a page that was just frozen (in __slab_free) into a partial page
1936 * slot if available. This is done without interrupts disabled and without
1937 * preemption disabled. The cmpxchg is racy and may put the partial page
1938 * onto a random cpus partial slot.
1939 *
1940 * If we did not find a slot then simply move all the partials to the
1941 * per node partial list.
1942 */
1943 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1944 {
1945 struct page *oldpage;
1946 int pages;
1947 int pobjects;
1948
1949 do {
1950 pages = 0;
1951 pobjects = 0;
1952 oldpage = this_cpu_read(s->cpu_slab->partial);
1953
1954 if (oldpage) {
1955 pobjects = oldpage->pobjects;
1956 pages = oldpage->pages;
1957 if (drain && pobjects > s->cpu_partial) {
1958 unsigned long flags;
1959 /*
1960 * partial array is full. Move the existing
1961 * set to the per node partial list.
1962 */
1963 local_irq_save(flags);
1964 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1965 local_irq_restore(flags);
1966 oldpage = NULL;
1967 pobjects = 0;
1968 pages = 0;
1969 stat(s, CPU_PARTIAL_DRAIN);
1970 }
1971 }
1972
1973 pages++;
1974 pobjects += page->objects - page->inuse;
1975
1976 page->pages = pages;
1977 page->pobjects = pobjects;
1978 page->next = oldpage;
1979
1980 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1981 return pobjects;
1982 }
1983
1984 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1985 {
1986 stat(s, CPUSLAB_FLUSH);
1987 deactivate_slab(s, c->page, c->freelist);
1988
1989 c->tid = next_tid(c->tid);
1990 c->page = NULL;
1991 c->freelist = NULL;
1992 }
1993
1994 /*
1995 * Flush cpu slab.
1996 *
1997 * Called from IPI handler with interrupts disabled.
1998 */
1999 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2000 {
2001 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2002
2003 if (likely(c)) {
2004 if (c->page)
2005 flush_slab(s, c);
2006
2007 unfreeze_partials(s, c);
2008 }
2009 }
2010
2011 static void flush_cpu_slab(void *d)
2012 {
2013 struct kmem_cache *s = d;
2014
2015 __flush_cpu_slab(s, smp_processor_id());
2016 }
2017
2018 static bool has_cpu_slab(int cpu, void *info)
2019 {
2020 struct kmem_cache *s = info;
2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022
2023 return c->page || c->partial;
2024 }
2025
2026 static void flush_all(struct kmem_cache *s)
2027 {
2028 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2029 }
2030
2031 /*
2032 * Check if the objects in a per cpu structure fit numa
2033 * locality expectations.
2034 */
2035 static inline int node_match(struct page *page, int node)
2036 {
2037 #ifdef CONFIG_NUMA
2038 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2039 return 0;
2040 #endif
2041 return 1;
2042 }
2043
2044 static int count_free(struct page *page)
2045 {
2046 return page->objects - page->inuse;
2047 }
2048
2049 static unsigned long count_partial(struct kmem_cache_node *n,
2050 int (*get_count)(struct page *))
2051 {
2052 unsigned long flags;
2053 unsigned long x = 0;
2054 struct page *page;
2055
2056 spin_lock_irqsave(&n->list_lock, flags);
2057 list_for_each_entry(page, &n->partial, lru)
2058 x += get_count(page);
2059 spin_unlock_irqrestore(&n->list_lock, flags);
2060 return x;
2061 }
2062
2063 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2064 {
2065 #ifdef CONFIG_SLUB_DEBUG
2066 return atomic_long_read(&n->total_objects);
2067 #else
2068 return 0;
2069 #endif
2070 }
2071
2072 static noinline void
2073 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2074 {
2075 int node;
2076
2077 printk(KERN_WARNING
2078 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2079 nid, gfpflags);
2080 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2081 "default order: %d, min order: %d\n", s->name, s->object_size,
2082 s->size, oo_order(s->oo), oo_order(s->min));
2083
2084 if (oo_order(s->min) > get_order(s->object_size))
2085 printk(KERN_WARNING " %s debugging increased min order, use "
2086 "slub_debug=O to disable.\n", s->name);
2087
2088 for_each_online_node(node) {
2089 struct kmem_cache_node *n = get_node(s, node);
2090 unsigned long nr_slabs;
2091 unsigned long nr_objs;
2092 unsigned long nr_free;
2093
2094 if (!n)
2095 continue;
2096
2097 nr_free = count_partial(n, count_free);
2098 nr_slabs = node_nr_slabs(n);
2099 nr_objs = node_nr_objs(n);
2100
2101 printk(KERN_WARNING
2102 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2103 node, nr_slabs, nr_objs, nr_free);
2104 }
2105 }
2106
2107 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2108 int node, struct kmem_cache_cpu **pc)
2109 {
2110 void *freelist;
2111 struct kmem_cache_cpu *c = *pc;
2112 struct page *page;
2113
2114 freelist = get_partial(s, flags, node, c);
2115
2116 if (freelist)
2117 return freelist;
2118
2119 page = new_slab(s, flags, node);
2120 if (page) {
2121 c = __this_cpu_ptr(s->cpu_slab);
2122 if (c->page)
2123 flush_slab(s, c);
2124
2125 /*
2126 * No other reference to the page yet so we can
2127 * muck around with it freely without cmpxchg
2128 */
2129 freelist = page->freelist;
2130 page->freelist = NULL;
2131
2132 stat(s, ALLOC_SLAB);
2133 c->page = page;
2134 *pc = c;
2135 } else
2136 freelist = NULL;
2137
2138 return freelist;
2139 }
2140
2141 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2142 {
2143 if (unlikely(PageSlabPfmemalloc(page)))
2144 return gfp_pfmemalloc_allowed(gfpflags);
2145
2146 return true;
2147 }
2148
2149 /*
2150 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2151 * or deactivate the page.
2152 *
2153 * The page is still frozen if the return value is not NULL.
2154 *
2155 * If this function returns NULL then the page has been unfrozen.
2156 *
2157 * This function must be called with interrupt disabled.
2158 */
2159 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2160 {
2161 struct page new;
2162 unsigned long counters;
2163 void *freelist;
2164
2165 do {
2166 freelist = page->freelist;
2167 counters = page->counters;
2168
2169 new.counters = counters;
2170 VM_BUG_ON(!new.frozen);
2171
2172 new.inuse = page->objects;
2173 new.frozen = freelist != NULL;
2174
2175 } while (!__cmpxchg_double_slab(s, page,
2176 freelist, counters,
2177 NULL, new.counters,
2178 "get_freelist"));
2179
2180 return freelist;
2181 }
2182
2183 /*
2184 * Slow path. The lockless freelist is empty or we need to perform
2185 * debugging duties.
2186 *
2187 * Processing is still very fast if new objects have been freed to the
2188 * regular freelist. In that case we simply take over the regular freelist
2189 * as the lockless freelist and zap the regular freelist.
2190 *
2191 * If that is not working then we fall back to the partial lists. We take the
2192 * first element of the freelist as the object to allocate now and move the
2193 * rest of the freelist to the lockless freelist.
2194 *
2195 * And if we were unable to get a new slab from the partial slab lists then
2196 * we need to allocate a new slab. This is the slowest path since it involves
2197 * a call to the page allocator and the setup of a new slab.
2198 */
2199 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2200 unsigned long addr, struct kmem_cache_cpu *c)
2201 {
2202 void *freelist;
2203 struct page *page;
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
2207 #ifdef CONFIG_PREEMPT
2208 /*
2209 * We may have been preempted and rescheduled on a different
2210 * cpu before disabling interrupts. Need to reload cpu area
2211 * pointer.
2212 */
2213 c = this_cpu_ptr(s->cpu_slab);
2214 #endif
2215
2216 page = c->page;
2217 if (!page)
2218 goto new_slab;
2219 redo:
2220
2221 if (unlikely(!node_match(page, node))) {
2222 stat(s, ALLOC_NODE_MISMATCH);
2223 deactivate_slab(s, page, c->freelist);
2224 c->page = NULL;
2225 c->freelist = NULL;
2226 goto new_slab;
2227 }
2228
2229 /*
2230 * By rights, we should be searching for a slab page that was
2231 * PFMEMALLOC but right now, we are losing the pfmemalloc
2232 * information when the page leaves the per-cpu allocator
2233 */
2234 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2235 deactivate_slab(s, page, c->freelist);
2236 c->page = NULL;
2237 c->freelist = NULL;
2238 goto new_slab;
2239 }
2240
2241 /* must check again c->freelist in case of cpu migration or IRQ */
2242 freelist = c->freelist;
2243 if (freelist)
2244 goto load_freelist;
2245
2246 stat(s, ALLOC_SLOWPATH);
2247
2248 freelist = get_freelist(s, page);
2249
2250 if (!freelist) {
2251 c->page = NULL;
2252 stat(s, DEACTIVATE_BYPASS);
2253 goto new_slab;
2254 }
2255
2256 stat(s, ALLOC_REFILL);
2257
2258 load_freelist:
2259 /*
2260 * freelist is pointing to the list of objects to be used.
2261 * page is pointing to the page from which the objects are obtained.
2262 * That page must be frozen for per cpu allocations to work.
2263 */
2264 VM_BUG_ON(!c->page->frozen);
2265 c->freelist = get_freepointer(s, freelist);
2266 c->tid = next_tid(c->tid);
2267 local_irq_restore(flags);
2268 return freelist;
2269
2270 new_slab:
2271
2272 if (c->partial) {
2273 page = c->page = c->partial;
2274 c->partial = page->next;
2275 stat(s, CPU_PARTIAL_ALLOC);
2276 c->freelist = NULL;
2277 goto redo;
2278 }
2279
2280 freelist = new_slab_objects(s, gfpflags, node, &c);
2281
2282 if (unlikely(!freelist)) {
2283 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2284 slab_out_of_memory(s, gfpflags, node);
2285
2286 local_irq_restore(flags);
2287 return NULL;
2288 }
2289
2290 page = c->page;
2291 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2292 goto load_freelist;
2293
2294 /* Only entered in the debug case */
2295 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2296 goto new_slab; /* Slab failed checks. Next slab needed */
2297
2298 deactivate_slab(s, page, get_freepointer(s, freelist));
2299 c->page = NULL;
2300 c->freelist = NULL;
2301 local_irq_restore(flags);
2302 return freelist;
2303 }
2304
2305 /*
2306 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2307 * have the fastpath folded into their functions. So no function call
2308 * overhead for requests that can be satisfied on the fastpath.
2309 *
2310 * The fastpath works by first checking if the lockless freelist can be used.
2311 * If not then __slab_alloc is called for slow processing.
2312 *
2313 * Otherwise we can simply pick the next object from the lockless free list.
2314 */
2315 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2316 gfp_t gfpflags, int node, unsigned long addr)
2317 {
2318 void **object;
2319 struct kmem_cache_cpu *c;
2320 struct page *page;
2321 unsigned long tid;
2322
2323 if (slab_pre_alloc_hook(s, gfpflags))
2324 return NULL;
2325
2326 redo:
2327
2328 /*
2329 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2330 * enabled. We may switch back and forth between cpus while
2331 * reading from one cpu area. That does not matter as long
2332 * as we end up on the original cpu again when doing the cmpxchg.
2333 */
2334 c = __this_cpu_ptr(s->cpu_slab);
2335
2336 /*
2337 * The transaction ids are globally unique per cpu and per operation on
2338 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2339 * occurs on the right processor and that there was no operation on the
2340 * linked list in between.
2341 */
2342 tid = c->tid;
2343 barrier();
2344
2345 object = c->freelist;
2346 page = c->page;
2347 if (unlikely(!object || !node_match(page, node)))
2348 object = __slab_alloc(s, gfpflags, node, addr, c);
2349
2350 else {
2351 void *next_object = get_freepointer_safe(s, object);
2352
2353 /*
2354 * The cmpxchg will only match if there was no additional
2355 * operation and if we are on the right processor.
2356 *
2357 * The cmpxchg does the following atomically (without lock semantics!)
2358 * 1. Relocate first pointer to the current per cpu area.
2359 * 2. Verify that tid and freelist have not been changed
2360 * 3. If they were not changed replace tid and freelist
2361 *
2362 * Since this is without lock semantics the protection is only against
2363 * code executing on this cpu *not* from access by other cpus.
2364 */
2365 if (unlikely(!this_cpu_cmpxchg_double(
2366 s->cpu_slab->freelist, s->cpu_slab->tid,
2367 object, tid,
2368 next_object, next_tid(tid)))) {
2369
2370 note_cmpxchg_failure("slab_alloc", s, tid);
2371 goto redo;
2372 }
2373 prefetch_freepointer(s, next_object);
2374 stat(s, ALLOC_FASTPATH);
2375 }
2376
2377 if (unlikely(gfpflags & __GFP_ZERO) && object)
2378 memset(object, 0, s->object_size);
2379
2380 slab_post_alloc_hook(s, gfpflags, object);
2381
2382 return object;
2383 }
2384
2385 static __always_inline void *slab_alloc(struct kmem_cache *s,
2386 gfp_t gfpflags, unsigned long addr)
2387 {
2388 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2389 }
2390
2391 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2392 {
2393 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2394
2395 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2396
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(kmem_cache_alloc);
2400
2401 #ifdef CONFIG_TRACING
2402 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2403 {
2404 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2405 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2406 return ret;
2407 }
2408 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2409
2410 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2411 {
2412 void *ret = kmalloc_order(size, flags, order);
2413 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2414 return ret;
2415 }
2416 EXPORT_SYMBOL(kmalloc_order_trace);
2417 #endif
2418
2419 #ifdef CONFIG_NUMA
2420 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2421 {
2422 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2423
2424 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2425 s->object_size, s->size, gfpflags, node);
2426
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(kmem_cache_alloc_node);
2430
2431 #ifdef CONFIG_TRACING
2432 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2433 gfp_t gfpflags,
2434 int node, size_t size)
2435 {
2436 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2437
2438 trace_kmalloc_node(_RET_IP_, ret,
2439 size, s->size, gfpflags, node);
2440 return ret;
2441 }
2442 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2443 #endif
2444 #endif
2445
2446 /*
2447 * Slow patch handling. This may still be called frequently since objects
2448 * have a longer lifetime than the cpu slabs in most processing loads.
2449 *
2450 * So we still attempt to reduce cache line usage. Just take the slab
2451 * lock and free the item. If there is no additional partial page
2452 * handling required then we can return immediately.
2453 */
2454 static void __slab_free(struct kmem_cache *s, struct page *page,
2455 void *x, unsigned long addr)
2456 {
2457 void *prior;
2458 void **object = (void *)x;
2459 int was_frozen;
2460 struct page new;
2461 unsigned long counters;
2462 struct kmem_cache_node *n = NULL;
2463 unsigned long uninitialized_var(flags);
2464
2465 stat(s, FREE_SLOWPATH);
2466
2467 if (kmem_cache_debug(s) &&
2468 !(n = free_debug_processing(s, page, x, addr, &flags)))
2469 return;
2470
2471 do {
2472 if (unlikely(n)) {
2473 spin_unlock_irqrestore(&n->list_lock, flags);
2474 n = NULL;
2475 }
2476 prior = page->freelist;
2477 counters = page->counters;
2478 set_freepointer(s, object, prior);
2479 new.counters = counters;
2480 was_frozen = new.frozen;
2481 new.inuse--;
2482 if ((!new.inuse || !prior) && !was_frozen) {
2483
2484 if (!kmem_cache_debug(s) && !prior)
2485
2486 /*
2487 * Slab was on no list before and will be partially empty
2488 * We can defer the list move and instead freeze it.
2489 */
2490 new.frozen = 1;
2491
2492 else { /* Needs to be taken off a list */
2493
2494 n = get_node(s, page_to_nid(page));
2495 /*
2496 * Speculatively acquire the list_lock.
2497 * If the cmpxchg does not succeed then we may
2498 * drop the list_lock without any processing.
2499 *
2500 * Otherwise the list_lock will synchronize with
2501 * other processors updating the list of slabs.
2502 */
2503 spin_lock_irqsave(&n->list_lock, flags);
2504
2505 }
2506 }
2507
2508 } while (!cmpxchg_double_slab(s, page,
2509 prior, counters,
2510 object, new.counters,
2511 "__slab_free"));
2512
2513 if (likely(!n)) {
2514
2515 /*
2516 * If we just froze the page then put it onto the
2517 * per cpu partial list.
2518 */
2519 if (new.frozen && !was_frozen) {
2520 put_cpu_partial(s, page, 1);
2521 stat(s, CPU_PARTIAL_FREE);
2522 }
2523 /*
2524 * The list lock was not taken therefore no list
2525 * activity can be necessary.
2526 */
2527 if (was_frozen)
2528 stat(s, FREE_FROZEN);
2529 return;
2530 }
2531
2532 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2533 goto slab_empty;
2534
2535 /*
2536 * Objects left in the slab. If it was not on the partial list before
2537 * then add it.
2538 */
2539 if (kmem_cache_debug(s) && unlikely(!prior)) {
2540 remove_full(s, page);
2541 add_partial(n, page, DEACTIVATE_TO_TAIL);
2542 stat(s, FREE_ADD_PARTIAL);
2543 }
2544 spin_unlock_irqrestore(&n->list_lock, flags);
2545 return;
2546
2547 slab_empty:
2548 if (prior) {
2549 /*
2550 * Slab on the partial list.
2551 */
2552 remove_partial(n, page);
2553 stat(s, FREE_REMOVE_PARTIAL);
2554 } else
2555 /* Slab must be on the full list */
2556 remove_full(s, page);
2557
2558 spin_unlock_irqrestore(&n->list_lock, flags);
2559 stat(s, FREE_SLAB);
2560 discard_slab(s, page);
2561 }
2562
2563 /*
2564 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2565 * can perform fastpath freeing without additional function calls.
2566 *
2567 * The fastpath is only possible if we are freeing to the current cpu slab
2568 * of this processor. This typically the case if we have just allocated
2569 * the item before.
2570 *
2571 * If fastpath is not possible then fall back to __slab_free where we deal
2572 * with all sorts of special processing.
2573 */
2574 static __always_inline void slab_free(struct kmem_cache *s,
2575 struct page *page, void *x, unsigned long addr)
2576 {
2577 void **object = (void *)x;
2578 struct kmem_cache_cpu *c;
2579 unsigned long tid;
2580
2581 slab_free_hook(s, x);
2582
2583 redo:
2584 /*
2585 * Determine the currently cpus per cpu slab.
2586 * The cpu may change afterward. However that does not matter since
2587 * data is retrieved via this pointer. If we are on the same cpu
2588 * during the cmpxchg then the free will succedd.
2589 */
2590 c = __this_cpu_ptr(s->cpu_slab);
2591
2592 tid = c->tid;
2593 barrier();
2594
2595 if (likely(page == c->page)) {
2596 set_freepointer(s, object, c->freelist);
2597
2598 if (unlikely(!this_cpu_cmpxchg_double(
2599 s->cpu_slab->freelist, s->cpu_slab->tid,
2600 c->freelist, tid,
2601 object, next_tid(tid)))) {
2602
2603 note_cmpxchg_failure("slab_free", s, tid);
2604 goto redo;
2605 }
2606 stat(s, FREE_FASTPATH);
2607 } else
2608 __slab_free(s, page, x, addr);
2609
2610 }
2611
2612 void kmem_cache_free(struct kmem_cache *s, void *x)
2613 {
2614 struct page *page;
2615
2616 page = virt_to_head_page(x);
2617
2618 if (kmem_cache_debug(s) && page->slab_cache != s) {
2619 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2620 " is from %s\n", page->slab_cache->name, s->name);
2621 WARN_ON_ONCE(1);
2622 return;
2623 }
2624
2625 slab_free(s, page, x, _RET_IP_);
2626
2627 trace_kmem_cache_free(_RET_IP_, x);
2628 }
2629 EXPORT_SYMBOL(kmem_cache_free);
2630
2631 /*
2632 * Object placement in a slab is made very easy because we always start at
2633 * offset 0. If we tune the size of the object to the alignment then we can
2634 * get the required alignment by putting one properly sized object after
2635 * another.
2636 *
2637 * Notice that the allocation order determines the sizes of the per cpu
2638 * caches. Each processor has always one slab available for allocations.
2639 * Increasing the allocation order reduces the number of times that slabs
2640 * must be moved on and off the partial lists and is therefore a factor in
2641 * locking overhead.
2642 */
2643
2644 /*
2645 * Mininum / Maximum order of slab pages. This influences locking overhead
2646 * and slab fragmentation. A higher order reduces the number of partial slabs
2647 * and increases the number of allocations possible without having to
2648 * take the list_lock.
2649 */
2650 static int slub_min_order;
2651 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2652 static int slub_min_objects;
2653
2654 /*
2655 * Merge control. If this is set then no merging of slab caches will occur.
2656 * (Could be removed. This was introduced to pacify the merge skeptics.)
2657 */
2658 static int slub_nomerge;
2659
2660 /*
2661 * Calculate the order of allocation given an slab object size.
2662 *
2663 * The order of allocation has significant impact on performance and other
2664 * system components. Generally order 0 allocations should be preferred since
2665 * order 0 does not cause fragmentation in the page allocator. Larger objects
2666 * be problematic to put into order 0 slabs because there may be too much
2667 * unused space left. We go to a higher order if more than 1/16th of the slab
2668 * would be wasted.
2669 *
2670 * In order to reach satisfactory performance we must ensure that a minimum
2671 * number of objects is in one slab. Otherwise we may generate too much
2672 * activity on the partial lists which requires taking the list_lock. This is
2673 * less a concern for large slabs though which are rarely used.
2674 *
2675 * slub_max_order specifies the order where we begin to stop considering the
2676 * number of objects in a slab as critical. If we reach slub_max_order then
2677 * we try to keep the page order as low as possible. So we accept more waste
2678 * of space in favor of a small page order.
2679 *
2680 * Higher order allocations also allow the placement of more objects in a
2681 * slab and thereby reduce object handling overhead. If the user has
2682 * requested a higher mininum order then we start with that one instead of
2683 * the smallest order which will fit the object.
2684 */
2685 static inline int slab_order(int size, int min_objects,
2686 int max_order, int fract_leftover, int reserved)
2687 {
2688 int order;
2689 int rem;
2690 int min_order = slub_min_order;
2691
2692 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2693 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2694
2695 for (order = max(min_order,
2696 fls(min_objects * size - 1) - PAGE_SHIFT);
2697 order <= max_order; order++) {
2698
2699 unsigned long slab_size = PAGE_SIZE << order;
2700
2701 if (slab_size < min_objects * size + reserved)
2702 continue;
2703
2704 rem = (slab_size - reserved) % size;
2705
2706 if (rem <= slab_size / fract_leftover)
2707 break;
2708
2709 }
2710
2711 return order;
2712 }
2713
2714 static inline int calculate_order(int size, int reserved)
2715 {
2716 int order;
2717 int min_objects;
2718 int fraction;
2719 int max_objects;
2720
2721 /*
2722 * Attempt to find best configuration for a slab. This
2723 * works by first attempting to generate a layout with
2724 * the best configuration and backing off gradually.
2725 *
2726 * First we reduce the acceptable waste in a slab. Then
2727 * we reduce the minimum objects required in a slab.
2728 */
2729 min_objects = slub_min_objects;
2730 if (!min_objects)
2731 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2732 max_objects = order_objects(slub_max_order, size, reserved);
2733 min_objects = min(min_objects, max_objects);
2734
2735 while (min_objects > 1) {
2736 fraction = 16;
2737 while (fraction >= 4) {
2738 order = slab_order(size, min_objects,
2739 slub_max_order, fraction, reserved);
2740 if (order <= slub_max_order)
2741 return order;
2742 fraction /= 2;
2743 }
2744 min_objects--;
2745 }
2746
2747 /*
2748 * We were unable to place multiple objects in a slab. Now
2749 * lets see if we can place a single object there.
2750 */
2751 order = slab_order(size, 1, slub_max_order, 1, reserved);
2752 if (order <= slub_max_order)
2753 return order;
2754
2755 /*
2756 * Doh this slab cannot be placed using slub_max_order.
2757 */
2758 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2759 if (order < MAX_ORDER)
2760 return order;
2761 return -ENOSYS;
2762 }
2763
2764 static void
2765 init_kmem_cache_node(struct kmem_cache_node *n)
2766 {
2767 n->nr_partial = 0;
2768 spin_lock_init(&n->list_lock);
2769 INIT_LIST_HEAD(&n->partial);
2770 #ifdef CONFIG_SLUB_DEBUG
2771 atomic_long_set(&n->nr_slabs, 0);
2772 atomic_long_set(&n->total_objects, 0);
2773 INIT_LIST_HEAD(&n->full);
2774 #endif
2775 }
2776
2777 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2778 {
2779 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2780 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2781
2782 /*
2783 * Must align to double word boundary for the double cmpxchg
2784 * instructions to work; see __pcpu_double_call_return_bool().
2785 */
2786 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2787 2 * sizeof(void *));
2788
2789 if (!s->cpu_slab)
2790 return 0;
2791
2792 init_kmem_cache_cpus(s);
2793
2794 return 1;
2795 }
2796
2797 static struct kmem_cache *kmem_cache_node;
2798
2799 /*
2800 * No kmalloc_node yet so do it by hand. We know that this is the first
2801 * slab on the node for this slabcache. There are no concurrent accesses
2802 * possible.
2803 *
2804 * Note that this function only works on the kmalloc_node_cache
2805 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2806 * memory on a fresh node that has no slab structures yet.
2807 */
2808 static void early_kmem_cache_node_alloc(int node)
2809 {
2810 struct page *page;
2811 struct kmem_cache_node *n;
2812
2813 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2814
2815 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2816
2817 BUG_ON(!page);
2818 if (page_to_nid(page) != node) {
2819 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2820 "node %d\n", node);
2821 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2822 "in order to be able to continue\n");
2823 }
2824
2825 n = page->freelist;
2826 BUG_ON(!n);
2827 page->freelist = get_freepointer(kmem_cache_node, n);
2828 page->inuse = 1;
2829 page->frozen = 0;
2830 kmem_cache_node->node[node] = n;
2831 #ifdef CONFIG_SLUB_DEBUG
2832 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2833 init_tracking(kmem_cache_node, n);
2834 #endif
2835 init_kmem_cache_node(n);
2836 inc_slabs_node(kmem_cache_node, node, page->objects);
2837
2838 add_partial(n, page, DEACTIVATE_TO_HEAD);
2839 }
2840
2841 static void free_kmem_cache_nodes(struct kmem_cache *s)
2842 {
2843 int node;
2844
2845 for_each_node_state(node, N_NORMAL_MEMORY) {
2846 struct kmem_cache_node *n = s->node[node];
2847
2848 if (n)
2849 kmem_cache_free(kmem_cache_node, n);
2850
2851 s->node[node] = NULL;
2852 }
2853 }
2854
2855 static int init_kmem_cache_nodes(struct kmem_cache *s)
2856 {
2857 int node;
2858
2859 for_each_node_state(node, N_NORMAL_MEMORY) {
2860 struct kmem_cache_node *n;
2861
2862 if (slab_state == DOWN) {
2863 early_kmem_cache_node_alloc(node);
2864 continue;
2865 }
2866 n = kmem_cache_alloc_node(kmem_cache_node,
2867 GFP_KERNEL, node);
2868
2869 if (!n) {
2870 free_kmem_cache_nodes(s);
2871 return 0;
2872 }
2873
2874 s->node[node] = n;
2875 init_kmem_cache_node(n);
2876 }
2877 return 1;
2878 }
2879
2880 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2881 {
2882 if (min < MIN_PARTIAL)
2883 min = MIN_PARTIAL;
2884 else if (min > MAX_PARTIAL)
2885 min = MAX_PARTIAL;
2886 s->min_partial = min;
2887 }
2888
2889 /*
2890 * calculate_sizes() determines the order and the distribution of data within
2891 * a slab object.
2892 */
2893 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2894 {
2895 unsigned long flags = s->flags;
2896 unsigned long size = s->object_size;
2897 int order;
2898
2899 /*
2900 * Round up object size to the next word boundary. We can only
2901 * place the free pointer at word boundaries and this determines
2902 * the possible location of the free pointer.
2903 */
2904 size = ALIGN(size, sizeof(void *));
2905
2906 #ifdef CONFIG_SLUB_DEBUG
2907 /*
2908 * Determine if we can poison the object itself. If the user of
2909 * the slab may touch the object after free or before allocation
2910 * then we should never poison the object itself.
2911 */
2912 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2913 !s->ctor)
2914 s->flags |= __OBJECT_POISON;
2915 else
2916 s->flags &= ~__OBJECT_POISON;
2917
2918
2919 /*
2920 * If we are Redzoning then check if there is some space between the
2921 * end of the object and the free pointer. If not then add an
2922 * additional word to have some bytes to store Redzone information.
2923 */
2924 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2925 size += sizeof(void *);
2926 #endif
2927
2928 /*
2929 * With that we have determined the number of bytes in actual use
2930 * by the object. This is the potential offset to the free pointer.
2931 */
2932 s->inuse = size;
2933
2934 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2935 s->ctor)) {
2936 /*
2937 * Relocate free pointer after the object if it is not
2938 * permitted to overwrite the first word of the object on
2939 * kmem_cache_free.
2940 *
2941 * This is the case if we do RCU, have a constructor or
2942 * destructor or are poisoning the objects.
2943 */
2944 s->offset = size;
2945 size += sizeof(void *);
2946 }
2947
2948 #ifdef CONFIG_SLUB_DEBUG
2949 if (flags & SLAB_STORE_USER)
2950 /*
2951 * Need to store information about allocs and frees after
2952 * the object.
2953 */
2954 size += 2 * sizeof(struct track);
2955
2956 if (flags & SLAB_RED_ZONE)
2957 /*
2958 * Add some empty padding so that we can catch
2959 * overwrites from earlier objects rather than let
2960 * tracking information or the free pointer be
2961 * corrupted if a user writes before the start
2962 * of the object.
2963 */
2964 size += sizeof(void *);
2965 #endif
2966
2967 /*
2968 * SLUB stores one object immediately after another beginning from
2969 * offset 0. In order to align the objects we have to simply size
2970 * each object to conform to the alignment.
2971 */
2972 size = ALIGN(size, s->align);
2973 s->size = size;
2974 if (forced_order >= 0)
2975 order = forced_order;
2976 else
2977 order = calculate_order(size, s->reserved);
2978
2979 if (order < 0)
2980 return 0;
2981
2982 s->allocflags = 0;
2983 if (order)
2984 s->allocflags |= __GFP_COMP;
2985
2986 if (s->flags & SLAB_CACHE_DMA)
2987 s->allocflags |= SLUB_DMA;
2988
2989 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2990 s->allocflags |= __GFP_RECLAIMABLE;
2991
2992 /*
2993 * Determine the number of objects per slab
2994 */
2995 s->oo = oo_make(order, size, s->reserved);
2996 s->min = oo_make(get_order(size), size, s->reserved);
2997 if (oo_objects(s->oo) > oo_objects(s->max))
2998 s->max = s->oo;
2999
3000 return !!oo_objects(s->oo);
3001 }
3002
3003 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3004 {
3005 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3006 s->reserved = 0;
3007
3008 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3009 s->reserved = sizeof(struct rcu_head);
3010
3011 if (!calculate_sizes(s, -1))
3012 goto error;
3013 if (disable_higher_order_debug) {
3014 /*
3015 * Disable debugging flags that store metadata if the min slab
3016 * order increased.
3017 */
3018 if (get_order(s->size) > get_order(s->object_size)) {
3019 s->flags &= ~DEBUG_METADATA_FLAGS;
3020 s->offset = 0;
3021 if (!calculate_sizes(s, -1))
3022 goto error;
3023 }
3024 }
3025
3026 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3027 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3028 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3029 /* Enable fast mode */
3030 s->flags |= __CMPXCHG_DOUBLE;
3031 #endif
3032
3033 /*
3034 * The larger the object size is, the more pages we want on the partial
3035 * list to avoid pounding the page allocator excessively.
3036 */
3037 set_min_partial(s, ilog2(s->size) / 2);
3038
3039 /*
3040 * cpu_partial determined the maximum number of objects kept in the
3041 * per cpu partial lists of a processor.
3042 *
3043 * Per cpu partial lists mainly contain slabs that just have one
3044 * object freed. If they are used for allocation then they can be
3045 * filled up again with minimal effort. The slab will never hit the
3046 * per node partial lists and therefore no locking will be required.
3047 *
3048 * This setting also determines
3049 *
3050 * A) The number of objects from per cpu partial slabs dumped to the
3051 * per node list when we reach the limit.
3052 * B) The number of objects in cpu partial slabs to extract from the
3053 * per node list when we run out of per cpu objects. We only fetch 50%
3054 * to keep some capacity around for frees.
3055 */
3056 if (kmem_cache_debug(s))
3057 s->cpu_partial = 0;
3058 else if (s->size >= PAGE_SIZE)
3059 s->cpu_partial = 2;
3060 else if (s->size >= 1024)
3061 s->cpu_partial = 6;
3062 else if (s->size >= 256)
3063 s->cpu_partial = 13;
3064 else
3065 s->cpu_partial = 30;
3066
3067 #ifdef CONFIG_NUMA
3068 s->remote_node_defrag_ratio = 1000;
3069 #endif
3070 if (!init_kmem_cache_nodes(s))
3071 goto error;
3072
3073 if (alloc_kmem_cache_cpus(s))
3074 return 0;
3075
3076 free_kmem_cache_nodes(s);
3077 error:
3078 if (flags & SLAB_PANIC)
3079 panic("Cannot create slab %s size=%lu realsize=%u "
3080 "order=%u offset=%u flags=%lx\n",
3081 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3082 s->offset, flags);
3083 return -EINVAL;
3084 }
3085
3086 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3087 const char *text)
3088 {
3089 #ifdef CONFIG_SLUB_DEBUG
3090 void *addr = page_address(page);
3091 void *p;
3092 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3093 sizeof(long), GFP_ATOMIC);
3094 if (!map)
3095 return;
3096 slab_err(s, page, text, s->name);
3097 slab_lock(page);
3098
3099 get_map(s, page, map);
3100 for_each_object(p, s, addr, page->objects) {
3101
3102 if (!test_bit(slab_index(p, s, addr), map)) {
3103 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3104 p, p - addr);
3105 print_tracking(s, p);
3106 }
3107 }
3108 slab_unlock(page);
3109 kfree(map);
3110 #endif
3111 }
3112
3113 /*
3114 * Attempt to free all partial slabs on a node.
3115 * This is called from kmem_cache_close(). We must be the last thread
3116 * using the cache and therefore we do not need to lock anymore.
3117 */
3118 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3119 {
3120 struct page *page, *h;
3121
3122 list_for_each_entry_safe(page, h, &n->partial, lru) {
3123 if (!page->inuse) {
3124 remove_partial(n, page);
3125 discard_slab(s, page);
3126 } else {
3127 list_slab_objects(s, page,
3128 "Objects remaining in %s on kmem_cache_close()");
3129 }
3130 }
3131 }
3132
3133 /*
3134 * Release all resources used by a slab cache.
3135 */
3136 static inline int kmem_cache_close(struct kmem_cache *s)
3137 {
3138 int node;
3139
3140 flush_all(s);
3141 /* Attempt to free all objects */
3142 for_each_node_state(node, N_NORMAL_MEMORY) {
3143 struct kmem_cache_node *n = get_node(s, node);
3144
3145 free_partial(s, n);
3146 if (n->nr_partial || slabs_node(s, node))
3147 return 1;
3148 }
3149 free_percpu(s->cpu_slab);
3150 free_kmem_cache_nodes(s);
3151 return 0;
3152 }
3153
3154 int __kmem_cache_shutdown(struct kmem_cache *s)
3155 {
3156 int rc = kmem_cache_close(s);
3157
3158 if (!rc)
3159 sysfs_slab_remove(s);
3160
3161 return rc;
3162 }
3163
3164 /********************************************************************
3165 * Kmalloc subsystem
3166 *******************************************************************/
3167
3168 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3169 EXPORT_SYMBOL(kmalloc_caches);
3170
3171 #ifdef CONFIG_ZONE_DMA
3172 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3173 #endif
3174
3175 static int __init setup_slub_min_order(char *str)
3176 {
3177 get_option(&str, &slub_min_order);
3178
3179 return 1;
3180 }
3181
3182 __setup("slub_min_order=", setup_slub_min_order);
3183
3184 static int __init setup_slub_max_order(char *str)
3185 {
3186 get_option(&str, &slub_max_order);
3187 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3188
3189 return 1;
3190 }
3191
3192 __setup("slub_max_order=", setup_slub_max_order);
3193
3194 static int __init setup_slub_min_objects(char *str)
3195 {
3196 get_option(&str, &slub_min_objects);
3197
3198 return 1;
3199 }
3200
3201 __setup("slub_min_objects=", setup_slub_min_objects);
3202
3203 static int __init setup_slub_nomerge(char *str)
3204 {
3205 slub_nomerge = 1;
3206 return 1;
3207 }
3208
3209 __setup("slub_nomerge", setup_slub_nomerge);
3210
3211 /*
3212 * Conversion table for small slabs sizes / 8 to the index in the
3213 * kmalloc array. This is necessary for slabs < 192 since we have non power
3214 * of two cache sizes there. The size of larger slabs can be determined using
3215 * fls.
3216 */
3217 static s8 size_index[24] = {
3218 3, /* 8 */
3219 4, /* 16 */
3220 5, /* 24 */
3221 5, /* 32 */
3222 6, /* 40 */
3223 6, /* 48 */
3224 6, /* 56 */
3225 6, /* 64 */
3226 1, /* 72 */
3227 1, /* 80 */
3228 1, /* 88 */
3229 1, /* 96 */
3230 7, /* 104 */
3231 7, /* 112 */
3232 7, /* 120 */
3233 7, /* 128 */
3234 2, /* 136 */
3235 2, /* 144 */
3236 2, /* 152 */
3237 2, /* 160 */
3238 2, /* 168 */
3239 2, /* 176 */
3240 2, /* 184 */
3241 2 /* 192 */
3242 };
3243
3244 static inline int size_index_elem(size_t bytes)
3245 {
3246 return (bytes - 1) / 8;
3247 }
3248
3249 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3250 {
3251 int index;
3252
3253 if (size <= 192) {
3254 if (!size)
3255 return ZERO_SIZE_PTR;
3256
3257 index = size_index[size_index_elem(size)];
3258 } else
3259 index = fls(size - 1);
3260
3261 #ifdef CONFIG_ZONE_DMA
3262 if (unlikely((flags & SLUB_DMA)))
3263 return kmalloc_dma_caches[index];
3264
3265 #endif
3266 return kmalloc_caches[index];
3267 }
3268
3269 void *__kmalloc(size_t size, gfp_t flags)
3270 {
3271 struct kmem_cache *s;
3272 void *ret;
3273
3274 if (unlikely(size > SLUB_MAX_SIZE))
3275 return kmalloc_large(size, flags);
3276
3277 s = get_slab(size, flags);
3278
3279 if (unlikely(ZERO_OR_NULL_PTR(s)))
3280 return s;
3281
3282 ret = slab_alloc(s, flags, _RET_IP_);
3283
3284 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3285
3286 return ret;
3287 }
3288 EXPORT_SYMBOL(__kmalloc);
3289
3290 #ifdef CONFIG_NUMA
3291 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3292 {
3293 struct page *page;
3294 void *ptr = NULL;
3295
3296 flags |= __GFP_COMP | __GFP_NOTRACK;
3297 page = alloc_pages_node(node, flags, get_order(size));
3298 if (page)
3299 ptr = page_address(page);
3300
3301 kmemleak_alloc(ptr, size, 1, flags);
3302 return ptr;
3303 }
3304
3305 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3306 {
3307 struct kmem_cache *s;
3308 void *ret;
3309
3310 if (unlikely(size > SLUB_MAX_SIZE)) {
3311 ret = kmalloc_large_node(size, flags, node);
3312
3313 trace_kmalloc_node(_RET_IP_, ret,
3314 size, PAGE_SIZE << get_order(size),
3315 flags, node);
3316
3317 return ret;
3318 }
3319
3320 s = get_slab(size, flags);
3321
3322 if (unlikely(ZERO_OR_NULL_PTR(s)))
3323 return s;
3324
3325 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3326
3327 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3328
3329 return ret;
3330 }
3331 EXPORT_SYMBOL(__kmalloc_node);
3332 #endif
3333
3334 size_t ksize(const void *object)
3335 {
3336 struct page *page;
3337
3338 if (unlikely(object == ZERO_SIZE_PTR))
3339 return 0;
3340
3341 page = virt_to_head_page(object);
3342
3343 if (unlikely(!PageSlab(page))) {
3344 WARN_ON(!PageCompound(page));
3345 return PAGE_SIZE << compound_order(page);
3346 }
3347
3348 return slab_ksize(page->slab_cache);
3349 }
3350 EXPORT_SYMBOL(ksize);
3351
3352 #ifdef CONFIG_SLUB_DEBUG
3353 bool verify_mem_not_deleted(const void *x)
3354 {
3355 struct page *page;
3356 void *object = (void *)x;
3357 unsigned long flags;
3358 bool rv;
3359
3360 if (unlikely(ZERO_OR_NULL_PTR(x)))
3361 return false;
3362
3363 local_irq_save(flags);
3364
3365 page = virt_to_head_page(x);
3366 if (unlikely(!PageSlab(page))) {
3367 /* maybe it was from stack? */
3368 rv = true;
3369 goto out_unlock;
3370 }
3371
3372 slab_lock(page);
3373 if (on_freelist(page->slab_cache, page, object)) {
3374 object_err(page->slab_cache, page, object, "Object is on free-list");
3375 rv = false;
3376 } else {
3377 rv = true;
3378 }
3379 slab_unlock(page);
3380
3381 out_unlock:
3382 local_irq_restore(flags);
3383 return rv;
3384 }
3385 EXPORT_SYMBOL(verify_mem_not_deleted);
3386 #endif
3387
3388 void kfree(const void *x)
3389 {
3390 struct page *page;
3391 void *object = (void *)x;
3392
3393 trace_kfree(_RET_IP_, x);
3394
3395 if (unlikely(ZERO_OR_NULL_PTR(x)))
3396 return;
3397
3398 page = virt_to_head_page(x);
3399 if (unlikely(!PageSlab(page))) {
3400 BUG_ON(!PageCompound(page));
3401 kmemleak_free(x);
3402 __free_pages(page, compound_order(page));
3403 return;
3404 }
3405 slab_free(page->slab_cache, page, object, _RET_IP_);
3406 }
3407 EXPORT_SYMBOL(kfree);
3408
3409 /*
3410 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3411 * the remaining slabs by the number of items in use. The slabs with the
3412 * most items in use come first. New allocations will then fill those up
3413 * and thus they can be removed from the partial lists.
3414 *
3415 * The slabs with the least items are placed last. This results in them
3416 * being allocated from last increasing the chance that the last objects
3417 * are freed in them.
3418 */
3419 int kmem_cache_shrink(struct kmem_cache *s)
3420 {
3421 int node;
3422 int i;
3423 struct kmem_cache_node *n;
3424 struct page *page;
3425 struct page *t;
3426 int objects = oo_objects(s->max);
3427 struct list_head *slabs_by_inuse =
3428 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3429 unsigned long flags;
3430
3431 if (!slabs_by_inuse)
3432 return -ENOMEM;
3433
3434 flush_all(s);
3435 for_each_node_state(node, N_NORMAL_MEMORY) {
3436 n = get_node(s, node);
3437
3438 if (!n->nr_partial)
3439 continue;
3440
3441 for (i = 0; i < objects; i++)
3442 INIT_LIST_HEAD(slabs_by_inuse + i);
3443
3444 spin_lock_irqsave(&n->list_lock, flags);
3445
3446 /*
3447 * Build lists indexed by the items in use in each slab.
3448 *
3449 * Note that concurrent frees may occur while we hold the
3450 * list_lock. page->inuse here is the upper limit.
3451 */
3452 list_for_each_entry_safe(page, t, &n->partial, lru) {
3453 list_move(&page->lru, slabs_by_inuse + page->inuse);
3454 if (!page->inuse)
3455 n->nr_partial--;
3456 }
3457
3458 /*
3459 * Rebuild the partial list with the slabs filled up most
3460 * first and the least used slabs at the end.
3461 */
3462 for (i = objects - 1; i > 0; i--)
3463 list_splice(slabs_by_inuse + i, n->partial.prev);
3464
3465 spin_unlock_irqrestore(&n->list_lock, flags);
3466
3467 /* Release empty slabs */
3468 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3469 discard_slab(s, page);
3470 }
3471
3472 kfree(slabs_by_inuse);
3473 return 0;
3474 }
3475 EXPORT_SYMBOL(kmem_cache_shrink);
3476
3477 #if defined(CONFIG_MEMORY_HOTPLUG)
3478 static int slab_mem_going_offline_callback(void *arg)
3479 {
3480 struct kmem_cache *s;
3481
3482 mutex_lock(&slab_mutex);
3483 list_for_each_entry(s, &slab_caches, list)
3484 kmem_cache_shrink(s);
3485 mutex_unlock(&slab_mutex);
3486
3487 return 0;
3488 }
3489
3490 static void slab_mem_offline_callback(void *arg)
3491 {
3492 struct kmem_cache_node *n;
3493 struct kmem_cache *s;
3494 struct memory_notify *marg = arg;
3495 int offline_node;
3496
3497 offline_node = marg->status_change_nid_normal;
3498
3499 /*
3500 * If the node still has available memory. we need kmem_cache_node
3501 * for it yet.
3502 */
3503 if (offline_node < 0)
3504 return;
3505
3506 mutex_lock(&slab_mutex);
3507 list_for_each_entry(s, &slab_caches, list) {
3508 n = get_node(s, offline_node);
3509 if (n) {
3510 /*
3511 * if n->nr_slabs > 0, slabs still exist on the node
3512 * that is going down. We were unable to free them,
3513 * and offline_pages() function shouldn't call this
3514 * callback. So, we must fail.
3515 */
3516 BUG_ON(slabs_node(s, offline_node));
3517
3518 s->node[offline_node] = NULL;
3519 kmem_cache_free(kmem_cache_node, n);
3520 }
3521 }
3522 mutex_unlock(&slab_mutex);
3523 }
3524
3525 static int slab_mem_going_online_callback(void *arg)
3526 {
3527 struct kmem_cache_node *n;
3528 struct kmem_cache *s;
3529 struct memory_notify *marg = arg;
3530 int nid = marg->status_change_nid_normal;
3531 int ret = 0;
3532
3533 /*
3534 * If the node's memory is already available, then kmem_cache_node is
3535 * already created. Nothing to do.
3536 */
3537 if (nid < 0)
3538 return 0;
3539
3540 /*
3541 * We are bringing a node online. No memory is available yet. We must
3542 * allocate a kmem_cache_node structure in order to bring the node
3543 * online.
3544 */
3545 mutex_lock(&slab_mutex);
3546 list_for_each_entry(s, &slab_caches, list) {
3547 /*
3548 * XXX: kmem_cache_alloc_node will fallback to other nodes
3549 * since memory is not yet available from the node that
3550 * is brought up.
3551 */
3552 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3553 if (!n) {
3554 ret = -ENOMEM;
3555 goto out;
3556 }
3557 init_kmem_cache_node(n);
3558 s->node[nid] = n;
3559 }
3560 out:
3561 mutex_unlock(&slab_mutex);
3562 return ret;
3563 }
3564
3565 static int slab_memory_callback(struct notifier_block *self,
3566 unsigned long action, void *arg)
3567 {
3568 int ret = 0;
3569
3570 switch (action) {
3571 case MEM_GOING_ONLINE:
3572 ret = slab_mem_going_online_callback(arg);
3573 break;
3574 case MEM_GOING_OFFLINE:
3575 ret = slab_mem_going_offline_callback(arg);
3576 break;
3577 case MEM_OFFLINE:
3578 case MEM_CANCEL_ONLINE:
3579 slab_mem_offline_callback(arg);
3580 break;
3581 case MEM_ONLINE:
3582 case MEM_CANCEL_OFFLINE:
3583 break;
3584 }
3585 if (ret)
3586 ret = notifier_from_errno(ret);
3587 else
3588 ret = NOTIFY_OK;
3589 return ret;
3590 }
3591
3592 #endif /* CONFIG_MEMORY_HOTPLUG */
3593
3594 /********************************************************************
3595 * Basic setup of slabs
3596 *******************************************************************/
3597
3598 /*
3599 * Used for early kmem_cache structures that were allocated using
3600 * the page allocator. Allocate them properly then fix up the pointers
3601 * that may be pointing to the wrong kmem_cache structure.
3602 */
3603
3604 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3605 {
3606 int node;
3607 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3608
3609 memcpy(s, static_cache, kmem_cache->object_size);
3610
3611 for_each_node_state(node, N_NORMAL_MEMORY) {
3612 struct kmem_cache_node *n = get_node(s, node);
3613 struct page *p;
3614
3615 if (n) {
3616 list_for_each_entry(p, &n->partial, lru)
3617 p->slab_cache = s;
3618
3619 #ifdef CONFIG_SLUB_DEBUG
3620 list_for_each_entry(p, &n->full, lru)
3621 p->slab_cache = s;
3622 #endif
3623 }
3624 }
3625 list_add(&s->list, &slab_caches);
3626 return s;
3627 }
3628
3629 void __init kmem_cache_init(void)
3630 {
3631 static __initdata struct kmem_cache boot_kmem_cache,
3632 boot_kmem_cache_node;
3633 int i;
3634 int caches = 2;
3635
3636 if (debug_guardpage_minorder())
3637 slub_max_order = 0;
3638
3639 kmem_cache_node = &boot_kmem_cache_node;
3640 kmem_cache = &boot_kmem_cache;
3641
3642 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3643 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3644
3645 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3646
3647 /* Able to allocate the per node structures */
3648 slab_state = PARTIAL;
3649
3650 create_boot_cache(kmem_cache, "kmem_cache",
3651 offsetof(struct kmem_cache, node) +
3652 nr_node_ids * sizeof(struct kmem_cache_node *),
3653 SLAB_HWCACHE_ALIGN);
3654
3655 kmem_cache = bootstrap(&boot_kmem_cache);
3656
3657 /*
3658 * Allocate kmem_cache_node properly from the kmem_cache slab.
3659 * kmem_cache_node is separately allocated so no need to
3660 * update any list pointers.
3661 */
3662 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3663
3664 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3665
3666 /*
3667 * Patch up the size_index table if we have strange large alignment
3668 * requirements for the kmalloc array. This is only the case for
3669 * MIPS it seems. The standard arches will not generate any code here.
3670 *
3671 * Largest permitted alignment is 256 bytes due to the way we
3672 * handle the index determination for the smaller caches.
3673 *
3674 * Make sure that nothing crazy happens if someone starts tinkering
3675 * around with ARCH_KMALLOC_MINALIGN
3676 */
3677 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3678 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3679
3680 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3681 int elem = size_index_elem(i);
3682 if (elem >= ARRAY_SIZE(size_index))
3683 break;
3684 size_index[elem] = KMALLOC_SHIFT_LOW;
3685 }
3686
3687 if (KMALLOC_MIN_SIZE == 64) {
3688 /*
3689 * The 96 byte size cache is not used if the alignment
3690 * is 64 byte.
3691 */
3692 for (i = 64 + 8; i <= 96; i += 8)
3693 size_index[size_index_elem(i)] = 7;
3694 } else if (KMALLOC_MIN_SIZE == 128) {
3695 /*
3696 * The 192 byte sized cache is not used if the alignment
3697 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3698 * instead.
3699 */
3700 for (i = 128 + 8; i <= 192; i += 8)
3701 size_index[size_index_elem(i)] = 8;
3702 }
3703
3704 /* Caches that are not of the two-to-the-power-of size */
3705 if (KMALLOC_MIN_SIZE <= 32) {
3706 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3707 caches++;
3708 }
3709
3710 if (KMALLOC_MIN_SIZE <= 64) {
3711 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3712 caches++;
3713 }
3714
3715 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3716 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3717 caches++;
3718 }
3719
3720 slab_state = UP;
3721
3722 /* Provide the correct kmalloc names now that the caches are up */
3723 if (KMALLOC_MIN_SIZE <= 32) {
3724 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3725 BUG_ON(!kmalloc_caches[1]->name);
3726 }
3727
3728 if (KMALLOC_MIN_SIZE <= 64) {
3729 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3730 BUG_ON(!kmalloc_caches[2]->name);
3731 }
3732
3733 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3734 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3735
3736 BUG_ON(!s);
3737 kmalloc_caches[i]->name = s;
3738 }
3739
3740 #ifdef CONFIG_SMP
3741 register_cpu_notifier(&slab_notifier);
3742 #endif
3743
3744 #ifdef CONFIG_ZONE_DMA
3745 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3746 struct kmem_cache *s = kmalloc_caches[i];
3747
3748 if (s && s->size) {
3749 char *name = kasprintf(GFP_NOWAIT,
3750 "dma-kmalloc-%d", s->object_size);
3751
3752 BUG_ON(!name);
3753 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3754 s->object_size, SLAB_CACHE_DMA);
3755 }
3756 }
3757 #endif
3758 printk(KERN_INFO
3759 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3760 " CPUs=%d, Nodes=%d\n",
3761 caches, cache_line_size(),
3762 slub_min_order, slub_max_order, slub_min_objects,
3763 nr_cpu_ids, nr_node_ids);
3764 }
3765
3766 void __init kmem_cache_init_late(void)
3767 {
3768 }
3769
3770 /*
3771 * Find a mergeable slab cache
3772 */
3773 static int slab_unmergeable(struct kmem_cache *s)
3774 {
3775 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3776 return 1;
3777
3778 if (s->ctor)
3779 return 1;
3780
3781 /*
3782 * We may have set a slab to be unmergeable during bootstrap.
3783 */
3784 if (s->refcount < 0)
3785 return 1;
3786
3787 return 0;
3788 }
3789
3790 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3791 size_t align, unsigned long flags, const char *name,
3792 void (*ctor)(void *))
3793 {
3794 struct kmem_cache *s;
3795
3796 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3797 return NULL;
3798
3799 if (ctor)
3800 return NULL;
3801
3802 size = ALIGN(size, sizeof(void *));
3803 align = calculate_alignment(flags, align, size);
3804 size = ALIGN(size, align);
3805 flags = kmem_cache_flags(size, flags, name, NULL);
3806
3807 list_for_each_entry(s, &slab_caches, list) {
3808 if (slab_unmergeable(s))
3809 continue;
3810
3811 if (size > s->size)
3812 continue;
3813
3814 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3815 continue;
3816 /*
3817 * Check if alignment is compatible.
3818 * Courtesy of Adrian Drzewiecki
3819 */
3820 if ((s->size & ~(align - 1)) != s->size)
3821 continue;
3822
3823 if (s->size - size >= sizeof(void *))
3824 continue;
3825
3826 if (!cache_match_memcg(s, memcg))
3827 continue;
3828
3829 return s;
3830 }
3831 return NULL;
3832 }
3833
3834 struct kmem_cache *
3835 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3836 size_t align, unsigned long flags, void (*ctor)(void *))
3837 {
3838 struct kmem_cache *s;
3839
3840 s = find_mergeable(memcg, size, align, flags, name, ctor);
3841 if (s) {
3842 s->refcount++;
3843 /*
3844 * Adjust the object sizes so that we clear
3845 * the complete object on kzalloc.
3846 */
3847 s->object_size = max(s->object_size, (int)size);
3848 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3849
3850 if (sysfs_slab_alias(s, name)) {
3851 s->refcount--;
3852 s = NULL;
3853 }
3854 }
3855
3856 return s;
3857 }
3858
3859 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3860 {
3861 int err;
3862
3863 err = kmem_cache_open(s, flags);
3864 if (err)
3865 return err;
3866
3867 /* Mutex is not taken during early boot */
3868 if (slab_state <= UP)
3869 return 0;
3870
3871 mutex_unlock(&slab_mutex);
3872 err = sysfs_slab_add(s);
3873 mutex_lock(&slab_mutex);
3874
3875 if (err)
3876 kmem_cache_close(s);
3877
3878 return err;
3879 }
3880
3881 #ifdef CONFIG_SMP
3882 /*
3883 * Use the cpu notifier to insure that the cpu slabs are flushed when
3884 * necessary.
3885 */
3886 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3887 unsigned long action, void *hcpu)
3888 {
3889 long cpu = (long)hcpu;
3890 struct kmem_cache *s;
3891 unsigned long flags;
3892
3893 switch (action) {
3894 case CPU_UP_CANCELED:
3895 case CPU_UP_CANCELED_FROZEN:
3896 case CPU_DEAD:
3897 case CPU_DEAD_FROZEN:
3898 mutex_lock(&slab_mutex);
3899 list_for_each_entry(s, &slab_caches, list) {
3900 local_irq_save(flags);
3901 __flush_cpu_slab(s, cpu);
3902 local_irq_restore(flags);
3903 }
3904 mutex_unlock(&slab_mutex);
3905 break;
3906 default:
3907 break;
3908 }
3909 return NOTIFY_OK;
3910 }
3911
3912 static struct notifier_block __cpuinitdata slab_notifier = {
3913 .notifier_call = slab_cpuup_callback
3914 };
3915
3916 #endif
3917
3918 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3919 {
3920 struct kmem_cache *s;
3921 void *ret;
3922
3923 if (unlikely(size > SLUB_MAX_SIZE))
3924 return kmalloc_large(size, gfpflags);
3925
3926 s = get_slab(size, gfpflags);
3927
3928 if (unlikely(ZERO_OR_NULL_PTR(s)))
3929 return s;
3930
3931 ret = slab_alloc(s, gfpflags, caller);
3932
3933 /* Honor the call site pointer we received. */
3934 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3935
3936 return ret;
3937 }
3938
3939 #ifdef CONFIG_NUMA
3940 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3941 int node, unsigned long caller)
3942 {
3943 struct kmem_cache *s;
3944 void *ret;
3945
3946 if (unlikely(size > SLUB_MAX_SIZE)) {
3947 ret = kmalloc_large_node(size, gfpflags, node);
3948
3949 trace_kmalloc_node(caller, ret,
3950 size, PAGE_SIZE << get_order(size),
3951 gfpflags, node);
3952
3953 return ret;
3954 }
3955
3956 s = get_slab(size, gfpflags);
3957
3958 if (unlikely(ZERO_OR_NULL_PTR(s)))
3959 return s;
3960
3961 ret = slab_alloc_node(s, gfpflags, node, caller);
3962
3963 /* Honor the call site pointer we received. */
3964 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3965
3966 return ret;
3967 }
3968 #endif
3969
3970 #ifdef CONFIG_SYSFS
3971 static int count_inuse(struct page *page)
3972 {
3973 return page->inuse;
3974 }
3975
3976 static int count_total(struct page *page)
3977 {
3978 return page->objects;
3979 }
3980 #endif
3981
3982 #ifdef CONFIG_SLUB_DEBUG
3983 static int validate_slab(struct kmem_cache *s, struct page *page,
3984 unsigned long *map)
3985 {
3986 void *p;
3987 void *addr = page_address(page);
3988
3989 if (!check_slab(s, page) ||
3990 !on_freelist(s, page, NULL))
3991 return 0;
3992
3993 /* Now we know that a valid freelist exists */
3994 bitmap_zero(map, page->objects);
3995
3996 get_map(s, page, map);
3997 for_each_object(p, s, addr, page->objects) {
3998 if (test_bit(slab_index(p, s, addr), map))
3999 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4000 return 0;
4001 }
4002
4003 for_each_object(p, s, addr, page->objects)
4004 if (!test_bit(slab_index(p, s, addr), map))
4005 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4006 return 0;
4007 return 1;
4008 }
4009
4010 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4011 unsigned long *map)
4012 {
4013 slab_lock(page);
4014 validate_slab(s, page, map);
4015 slab_unlock(page);
4016 }
4017
4018 static int validate_slab_node(struct kmem_cache *s,
4019 struct kmem_cache_node *n, unsigned long *map)
4020 {
4021 unsigned long count = 0;
4022 struct page *page;
4023 unsigned long flags;
4024
4025 spin_lock_irqsave(&n->list_lock, flags);
4026
4027 list_for_each_entry(page, &n->partial, lru) {
4028 validate_slab_slab(s, page, map);
4029 count++;
4030 }
4031 if (count != n->nr_partial)
4032 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4033 "counter=%ld\n", s->name, count, n->nr_partial);
4034
4035 if (!(s->flags & SLAB_STORE_USER))
4036 goto out;
4037
4038 list_for_each_entry(page, &n->full, lru) {
4039 validate_slab_slab(s, page, map);
4040 count++;
4041 }
4042 if (count != atomic_long_read(&n->nr_slabs))
4043 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4044 "counter=%ld\n", s->name, count,
4045 atomic_long_read(&n->nr_slabs));
4046
4047 out:
4048 spin_unlock_irqrestore(&n->list_lock, flags);
4049 return count;
4050 }
4051
4052 static long validate_slab_cache(struct kmem_cache *s)
4053 {
4054 int node;
4055 unsigned long count = 0;
4056 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4057 sizeof(unsigned long), GFP_KERNEL);
4058
4059 if (!map)
4060 return -ENOMEM;
4061
4062 flush_all(s);
4063 for_each_node_state(node, N_NORMAL_MEMORY) {
4064 struct kmem_cache_node *n = get_node(s, node);
4065
4066 count += validate_slab_node(s, n, map);
4067 }
4068 kfree(map);
4069 return count;
4070 }
4071 /*
4072 * Generate lists of code addresses where slabcache objects are allocated
4073 * and freed.
4074 */
4075
4076 struct location {
4077 unsigned long count;
4078 unsigned long addr;
4079 long long sum_time;
4080 long min_time;
4081 long max_time;
4082 long min_pid;
4083 long max_pid;
4084 DECLARE_BITMAP(cpus, NR_CPUS);
4085 nodemask_t nodes;
4086 };
4087
4088 struct loc_track {
4089 unsigned long max;
4090 unsigned long count;
4091 struct location *loc;
4092 };
4093
4094 static void free_loc_track(struct loc_track *t)
4095 {
4096 if (t->max)
4097 free_pages((unsigned long)t->loc,
4098 get_order(sizeof(struct location) * t->max));
4099 }
4100
4101 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4102 {
4103 struct location *l;
4104 int order;
4105
4106 order = get_order(sizeof(struct location) * max);
4107
4108 l = (void *)__get_free_pages(flags, order);
4109 if (!l)
4110 return 0;
4111
4112 if (t->count) {
4113 memcpy(l, t->loc, sizeof(struct location) * t->count);
4114 free_loc_track(t);
4115 }
4116 t->max = max;
4117 t->loc = l;
4118 return 1;
4119 }
4120
4121 static int add_location(struct loc_track *t, struct kmem_cache *s,
4122 const struct track *track)
4123 {
4124 long start, end, pos;
4125 struct location *l;
4126 unsigned long caddr;
4127 unsigned long age = jiffies - track->when;
4128
4129 start = -1;
4130 end = t->count;
4131
4132 for ( ; ; ) {
4133 pos = start + (end - start + 1) / 2;
4134
4135 /*
4136 * There is nothing at "end". If we end up there
4137 * we need to add something to before end.
4138 */
4139 if (pos == end)
4140 break;
4141
4142 caddr = t->loc[pos].addr;
4143 if (track->addr == caddr) {
4144
4145 l = &t->loc[pos];
4146 l->count++;
4147 if (track->when) {
4148 l->sum_time += age;
4149 if (age < l->min_time)
4150 l->min_time = age;
4151 if (age > l->max_time)
4152 l->max_time = age;
4153
4154 if (track->pid < l->min_pid)
4155 l->min_pid = track->pid;
4156 if (track->pid > l->max_pid)
4157 l->max_pid = track->pid;
4158
4159 cpumask_set_cpu(track->cpu,
4160 to_cpumask(l->cpus));
4161 }
4162 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4163 return 1;
4164 }
4165
4166 if (track->addr < caddr)
4167 end = pos;
4168 else
4169 start = pos;
4170 }
4171
4172 /*
4173 * Not found. Insert new tracking element.
4174 */
4175 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4176 return 0;
4177
4178 l = t->loc + pos;
4179 if (pos < t->count)
4180 memmove(l + 1, l,
4181 (t->count - pos) * sizeof(struct location));
4182 t->count++;
4183 l->count = 1;
4184 l->addr = track->addr;
4185 l->sum_time = age;
4186 l->min_time = age;
4187 l->max_time = age;
4188 l->min_pid = track->pid;
4189 l->max_pid = track->pid;
4190 cpumask_clear(to_cpumask(l->cpus));
4191 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4192 nodes_clear(l->nodes);
4193 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4194 return 1;
4195 }
4196
4197 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4198 struct page *page, enum track_item alloc,
4199 unsigned long *map)
4200 {
4201 void *addr = page_address(page);
4202 void *p;
4203
4204 bitmap_zero(map, page->objects);
4205 get_map(s, page, map);
4206
4207 for_each_object(p, s, addr, page->objects)
4208 if (!test_bit(slab_index(p, s, addr), map))
4209 add_location(t, s, get_track(s, p, alloc));
4210 }
4211
4212 static int list_locations(struct kmem_cache *s, char *buf,
4213 enum track_item alloc)
4214 {
4215 int len = 0;
4216 unsigned long i;
4217 struct loc_track t = { 0, 0, NULL };
4218 int node;
4219 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4220 sizeof(unsigned long), GFP_KERNEL);
4221
4222 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4223 GFP_TEMPORARY)) {
4224 kfree(map);
4225 return sprintf(buf, "Out of memory\n");
4226 }
4227 /* Push back cpu slabs */
4228 flush_all(s);
4229
4230 for_each_node_state(node, N_NORMAL_MEMORY) {
4231 struct kmem_cache_node *n = get_node(s, node);
4232 unsigned long flags;
4233 struct page *page;
4234
4235 if (!atomic_long_read(&n->nr_slabs))
4236 continue;
4237
4238 spin_lock_irqsave(&n->list_lock, flags);
4239 list_for_each_entry(page, &n->partial, lru)
4240 process_slab(&t, s, page, alloc, map);
4241 list_for_each_entry(page, &n->full, lru)
4242 process_slab(&t, s, page, alloc, map);
4243 spin_unlock_irqrestore(&n->list_lock, flags);
4244 }
4245
4246 for (i = 0; i < t.count; i++) {
4247 struct location *l = &t.loc[i];
4248
4249 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4250 break;
4251 len += sprintf(buf + len, "%7ld ", l->count);
4252
4253 if (l->addr)
4254 len += sprintf(buf + len, "%pS", (void *)l->addr);
4255 else
4256 len += sprintf(buf + len, "<not-available>");
4257
4258 if (l->sum_time != l->min_time) {
4259 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4260 l->min_time,
4261 (long)div_u64(l->sum_time, l->count),
4262 l->max_time);
4263 } else
4264 len += sprintf(buf + len, " age=%ld",
4265 l->min_time);
4266
4267 if (l->min_pid != l->max_pid)
4268 len += sprintf(buf + len, " pid=%ld-%ld",
4269 l->min_pid, l->max_pid);
4270 else
4271 len += sprintf(buf + len, " pid=%ld",
4272 l->min_pid);
4273
4274 if (num_online_cpus() > 1 &&
4275 !cpumask_empty(to_cpumask(l->cpus)) &&
4276 len < PAGE_SIZE - 60) {
4277 len += sprintf(buf + len, " cpus=");
4278 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4279 to_cpumask(l->cpus));
4280 }
4281
4282 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4283 len < PAGE_SIZE - 60) {
4284 len += sprintf(buf + len, " nodes=");
4285 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4286 l->nodes);
4287 }
4288
4289 len += sprintf(buf + len, "\n");
4290 }
4291
4292 free_loc_track(&t);
4293 kfree(map);
4294 if (!t.count)
4295 len += sprintf(buf, "No data\n");
4296 return len;
4297 }
4298 #endif
4299
4300 #ifdef SLUB_RESILIENCY_TEST
4301 static void resiliency_test(void)
4302 {
4303 u8 *p;
4304
4305 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4306
4307 printk(KERN_ERR "SLUB resiliency testing\n");
4308 printk(KERN_ERR "-----------------------\n");
4309 printk(KERN_ERR "A. Corruption after allocation\n");
4310
4311 p = kzalloc(16, GFP_KERNEL);
4312 p[16] = 0x12;
4313 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4314 " 0x12->0x%p\n\n", p + 16);
4315
4316 validate_slab_cache(kmalloc_caches[4]);
4317
4318 /* Hmmm... The next two are dangerous */
4319 p = kzalloc(32, GFP_KERNEL);
4320 p[32 + sizeof(void *)] = 0x34;
4321 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4322 " 0x34 -> -0x%p\n", p);
4323 printk(KERN_ERR
4324 "If allocated object is overwritten then not detectable\n\n");
4325
4326 validate_slab_cache(kmalloc_caches[5]);
4327 p = kzalloc(64, GFP_KERNEL);
4328 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4329 *p = 0x56;
4330 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4331 p);
4332 printk(KERN_ERR
4333 "If allocated object is overwritten then not detectable\n\n");
4334 validate_slab_cache(kmalloc_caches[6]);
4335
4336 printk(KERN_ERR "\nB. Corruption after free\n");
4337 p = kzalloc(128, GFP_KERNEL);
4338 kfree(p);
4339 *p = 0x78;
4340 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4341 validate_slab_cache(kmalloc_caches[7]);
4342
4343 p = kzalloc(256, GFP_KERNEL);
4344 kfree(p);
4345 p[50] = 0x9a;
4346 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4347 p);
4348 validate_slab_cache(kmalloc_caches[8]);
4349
4350 p = kzalloc(512, GFP_KERNEL);
4351 kfree(p);
4352 p[512] = 0xab;
4353 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4354 validate_slab_cache(kmalloc_caches[9]);
4355 }
4356 #else
4357 #ifdef CONFIG_SYSFS
4358 static void resiliency_test(void) {};
4359 #endif
4360 #endif
4361
4362 #ifdef CONFIG_SYSFS
4363 enum slab_stat_type {
4364 SL_ALL, /* All slabs */
4365 SL_PARTIAL, /* Only partially allocated slabs */
4366 SL_CPU, /* Only slabs used for cpu caches */
4367 SL_OBJECTS, /* Determine allocated objects not slabs */
4368 SL_TOTAL /* Determine object capacity not slabs */
4369 };
4370
4371 #define SO_ALL (1 << SL_ALL)
4372 #define SO_PARTIAL (1 << SL_PARTIAL)
4373 #define SO_CPU (1 << SL_CPU)
4374 #define SO_OBJECTS (1 << SL_OBJECTS)
4375 #define SO_TOTAL (1 << SL_TOTAL)
4376
4377 static ssize_t show_slab_objects(struct kmem_cache *s,
4378 char *buf, unsigned long flags)
4379 {
4380 unsigned long total = 0;
4381 int node;
4382 int x;
4383 unsigned long *nodes;
4384 unsigned long *per_cpu;
4385
4386 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4387 if (!nodes)
4388 return -ENOMEM;
4389 per_cpu = nodes + nr_node_ids;
4390
4391 if (flags & SO_CPU) {
4392 int cpu;
4393
4394 for_each_possible_cpu(cpu) {
4395 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4396 int node;
4397 struct page *page;
4398
4399 page = ACCESS_ONCE(c->page);
4400 if (!page)
4401 continue;
4402
4403 node = page_to_nid(page);
4404 if (flags & SO_TOTAL)
4405 x = page->objects;
4406 else if (flags & SO_OBJECTS)
4407 x = page->inuse;
4408 else
4409 x = 1;
4410
4411 total += x;
4412 nodes[node] += x;
4413
4414 page = ACCESS_ONCE(c->partial);
4415 if (page) {
4416 x = page->pobjects;
4417 total += x;
4418 nodes[node] += x;
4419 }
4420
4421 per_cpu[node]++;
4422 }
4423 }
4424
4425 lock_memory_hotplug();
4426 #ifdef CONFIG_SLUB_DEBUG
4427 if (flags & SO_ALL) {
4428 for_each_node_state(node, N_NORMAL_MEMORY) {
4429 struct kmem_cache_node *n = get_node(s, node);
4430
4431 if (flags & SO_TOTAL)
4432 x = atomic_long_read(&n->total_objects);
4433 else if (flags & SO_OBJECTS)
4434 x = atomic_long_read(&n->total_objects) -
4435 count_partial(n, count_free);
4436
4437 else
4438 x = atomic_long_read(&n->nr_slabs);
4439 total += x;
4440 nodes[node] += x;
4441 }
4442
4443 } else
4444 #endif
4445 if (flags & SO_PARTIAL) {
4446 for_each_node_state(node, N_NORMAL_MEMORY) {
4447 struct kmem_cache_node *n = get_node(s, node);
4448
4449 if (flags & SO_TOTAL)
4450 x = count_partial(n, count_total);
4451 else if (flags & SO_OBJECTS)
4452 x = count_partial(n, count_inuse);
4453 else
4454 x = n->nr_partial;
4455 total += x;
4456 nodes[node] += x;
4457 }
4458 }
4459 x = sprintf(buf, "%lu", total);
4460 #ifdef CONFIG_NUMA
4461 for_each_node_state(node, N_NORMAL_MEMORY)
4462 if (nodes[node])
4463 x += sprintf(buf + x, " N%d=%lu",
4464 node, nodes[node]);
4465 #endif
4466 unlock_memory_hotplug();
4467 kfree(nodes);
4468 return x + sprintf(buf + x, "\n");
4469 }
4470
4471 #ifdef CONFIG_SLUB_DEBUG
4472 static int any_slab_objects(struct kmem_cache *s)
4473 {
4474 int node;
4475
4476 for_each_online_node(node) {
4477 struct kmem_cache_node *n = get_node(s, node);
4478
4479 if (!n)
4480 continue;
4481
4482 if (atomic_long_read(&n->total_objects))
4483 return 1;
4484 }
4485 return 0;
4486 }
4487 #endif
4488
4489 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4490 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4491
4492 struct slab_attribute {
4493 struct attribute attr;
4494 ssize_t (*show)(struct kmem_cache *s, char *buf);
4495 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4496 };
4497
4498 #define SLAB_ATTR_RO(_name) \
4499 static struct slab_attribute _name##_attr = \
4500 __ATTR(_name, 0400, _name##_show, NULL)
4501
4502 #define SLAB_ATTR(_name) \
4503 static struct slab_attribute _name##_attr = \
4504 __ATTR(_name, 0600, _name##_show, _name##_store)
4505
4506 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4507 {
4508 return sprintf(buf, "%d\n", s->size);
4509 }
4510 SLAB_ATTR_RO(slab_size);
4511
4512 static ssize_t align_show(struct kmem_cache *s, char *buf)
4513 {
4514 return sprintf(buf, "%d\n", s->align);
4515 }
4516 SLAB_ATTR_RO(align);
4517
4518 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4519 {
4520 return sprintf(buf, "%d\n", s->object_size);
4521 }
4522 SLAB_ATTR_RO(object_size);
4523
4524 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4525 {
4526 return sprintf(buf, "%d\n", oo_objects(s->oo));
4527 }
4528 SLAB_ATTR_RO(objs_per_slab);
4529
4530 static ssize_t order_store(struct kmem_cache *s,
4531 const char *buf, size_t length)
4532 {
4533 unsigned long order;
4534 int err;
4535
4536 err = strict_strtoul(buf, 10, &order);
4537 if (err)
4538 return err;
4539
4540 if (order > slub_max_order || order < slub_min_order)
4541 return -EINVAL;
4542
4543 calculate_sizes(s, order);
4544 return length;
4545 }
4546
4547 static ssize_t order_show(struct kmem_cache *s, char *buf)
4548 {
4549 return sprintf(buf, "%d\n", oo_order(s->oo));
4550 }
4551 SLAB_ATTR(order);
4552
4553 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4554 {
4555 return sprintf(buf, "%lu\n", s->min_partial);
4556 }
4557
4558 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4559 size_t length)
4560 {
4561 unsigned long min;
4562 int err;
4563
4564 err = strict_strtoul(buf, 10, &min);
4565 if (err)
4566 return err;
4567
4568 set_min_partial(s, min);
4569 return length;
4570 }
4571 SLAB_ATTR(min_partial);
4572
4573 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4574 {
4575 return sprintf(buf, "%u\n", s->cpu_partial);
4576 }
4577
4578 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4579 size_t length)
4580 {
4581 unsigned long objects;
4582 int err;
4583
4584 err = strict_strtoul(buf, 10, &objects);
4585 if (err)
4586 return err;
4587 if (objects && kmem_cache_debug(s))
4588 return -EINVAL;
4589
4590 s->cpu_partial = objects;
4591 flush_all(s);
4592 return length;
4593 }
4594 SLAB_ATTR(cpu_partial);
4595
4596 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4597 {
4598 if (!s->ctor)
4599 return 0;
4600 return sprintf(buf, "%pS\n", s->ctor);
4601 }
4602 SLAB_ATTR_RO(ctor);
4603
4604 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4605 {
4606 return sprintf(buf, "%d\n", s->refcount - 1);
4607 }
4608 SLAB_ATTR_RO(aliases);
4609
4610 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4611 {
4612 return show_slab_objects(s, buf, SO_PARTIAL);
4613 }
4614 SLAB_ATTR_RO(partial);
4615
4616 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4617 {
4618 return show_slab_objects(s, buf, SO_CPU);
4619 }
4620 SLAB_ATTR_RO(cpu_slabs);
4621
4622 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4623 {
4624 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4625 }
4626 SLAB_ATTR_RO(objects);
4627
4628 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4629 {
4630 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4631 }
4632 SLAB_ATTR_RO(objects_partial);
4633
4634 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4635 {
4636 int objects = 0;
4637 int pages = 0;
4638 int cpu;
4639 int len;
4640
4641 for_each_online_cpu(cpu) {
4642 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4643
4644 if (page) {
4645 pages += page->pages;
4646 objects += page->pobjects;
4647 }
4648 }
4649
4650 len = sprintf(buf, "%d(%d)", objects, pages);
4651
4652 #ifdef CONFIG_SMP
4653 for_each_online_cpu(cpu) {
4654 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4655
4656 if (page && len < PAGE_SIZE - 20)
4657 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4658 page->pobjects, page->pages);
4659 }
4660 #endif
4661 return len + sprintf(buf + len, "\n");
4662 }
4663 SLAB_ATTR_RO(slabs_cpu_partial);
4664
4665 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4666 {
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4668 }
4669
4670 static ssize_t reclaim_account_store(struct kmem_cache *s,
4671 const char *buf, size_t length)
4672 {
4673 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4674 if (buf[0] == '1')
4675 s->flags |= SLAB_RECLAIM_ACCOUNT;
4676 return length;
4677 }
4678 SLAB_ATTR(reclaim_account);
4679
4680 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4681 {
4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4683 }
4684 SLAB_ATTR_RO(hwcache_align);
4685
4686 #ifdef CONFIG_ZONE_DMA
4687 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4688 {
4689 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4690 }
4691 SLAB_ATTR_RO(cache_dma);
4692 #endif
4693
4694 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4695 {
4696 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4697 }
4698 SLAB_ATTR_RO(destroy_by_rcu);
4699
4700 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4701 {
4702 return sprintf(buf, "%d\n", s->reserved);
4703 }
4704 SLAB_ATTR_RO(reserved);
4705
4706 #ifdef CONFIG_SLUB_DEBUG
4707 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4708 {
4709 return show_slab_objects(s, buf, SO_ALL);
4710 }
4711 SLAB_ATTR_RO(slabs);
4712
4713 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4714 {
4715 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4716 }
4717 SLAB_ATTR_RO(total_objects);
4718
4719 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4720 {
4721 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4722 }
4723
4724 static ssize_t sanity_checks_store(struct kmem_cache *s,
4725 const char *buf, size_t length)
4726 {
4727 s->flags &= ~SLAB_DEBUG_FREE;
4728 if (buf[0] == '1') {
4729 s->flags &= ~__CMPXCHG_DOUBLE;
4730 s->flags |= SLAB_DEBUG_FREE;
4731 }
4732 return length;
4733 }
4734 SLAB_ATTR(sanity_checks);
4735
4736 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4737 {
4738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4739 }
4740
4741 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4742 size_t length)
4743 {
4744 s->flags &= ~SLAB_TRACE;
4745 if (buf[0] == '1') {
4746 s->flags &= ~__CMPXCHG_DOUBLE;
4747 s->flags |= SLAB_TRACE;
4748 }
4749 return length;
4750 }
4751 SLAB_ATTR(trace);
4752
4753 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4754 {
4755 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4756 }
4757
4758 static ssize_t red_zone_store(struct kmem_cache *s,
4759 const char *buf, size_t length)
4760 {
4761 if (any_slab_objects(s))
4762 return -EBUSY;
4763
4764 s->flags &= ~SLAB_RED_ZONE;
4765 if (buf[0] == '1') {
4766 s->flags &= ~__CMPXCHG_DOUBLE;
4767 s->flags |= SLAB_RED_ZONE;
4768 }
4769 calculate_sizes(s, -1);
4770 return length;
4771 }
4772 SLAB_ATTR(red_zone);
4773
4774 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4775 {
4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4777 }
4778
4779 static ssize_t poison_store(struct kmem_cache *s,
4780 const char *buf, size_t length)
4781 {
4782 if (any_slab_objects(s))
4783 return -EBUSY;
4784
4785 s->flags &= ~SLAB_POISON;
4786 if (buf[0] == '1') {
4787 s->flags &= ~__CMPXCHG_DOUBLE;
4788 s->flags |= SLAB_POISON;
4789 }
4790 calculate_sizes(s, -1);
4791 return length;
4792 }
4793 SLAB_ATTR(poison);
4794
4795 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4796 {
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4798 }
4799
4800 static ssize_t store_user_store(struct kmem_cache *s,
4801 const char *buf, size_t length)
4802 {
4803 if (any_slab_objects(s))
4804 return -EBUSY;
4805
4806 s->flags &= ~SLAB_STORE_USER;
4807 if (buf[0] == '1') {
4808 s->flags &= ~__CMPXCHG_DOUBLE;
4809 s->flags |= SLAB_STORE_USER;
4810 }
4811 calculate_sizes(s, -1);
4812 return length;
4813 }
4814 SLAB_ATTR(store_user);
4815
4816 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4817 {
4818 return 0;
4819 }
4820
4821 static ssize_t validate_store(struct kmem_cache *s,
4822 const char *buf, size_t length)
4823 {
4824 int ret = -EINVAL;
4825
4826 if (buf[0] == '1') {
4827 ret = validate_slab_cache(s);
4828 if (ret >= 0)
4829 ret = length;
4830 }
4831 return ret;
4832 }
4833 SLAB_ATTR(validate);
4834
4835 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4836 {
4837 if (!(s->flags & SLAB_STORE_USER))
4838 return -ENOSYS;
4839 return list_locations(s, buf, TRACK_ALLOC);
4840 }
4841 SLAB_ATTR_RO(alloc_calls);
4842
4843 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4844 {
4845 if (!(s->flags & SLAB_STORE_USER))
4846 return -ENOSYS;
4847 return list_locations(s, buf, TRACK_FREE);
4848 }
4849 SLAB_ATTR_RO(free_calls);
4850 #endif /* CONFIG_SLUB_DEBUG */
4851
4852 #ifdef CONFIG_FAILSLAB
4853 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4854 {
4855 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4856 }
4857
4858 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4859 size_t length)
4860 {
4861 s->flags &= ~SLAB_FAILSLAB;
4862 if (buf[0] == '1')
4863 s->flags |= SLAB_FAILSLAB;
4864 return length;
4865 }
4866 SLAB_ATTR(failslab);
4867 #endif
4868
4869 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4870 {
4871 return 0;
4872 }
4873
4874 static ssize_t shrink_store(struct kmem_cache *s,
4875 const char *buf, size_t length)
4876 {
4877 if (buf[0] == '1') {
4878 int rc = kmem_cache_shrink(s);
4879
4880 if (rc)
4881 return rc;
4882 } else
4883 return -EINVAL;
4884 return length;
4885 }
4886 SLAB_ATTR(shrink);
4887
4888 #ifdef CONFIG_NUMA
4889 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4890 {
4891 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4892 }
4893
4894 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896 {
4897 unsigned long ratio;
4898 int err;
4899
4900 err = strict_strtoul(buf, 10, &ratio);
4901 if (err)
4902 return err;
4903
4904 if (ratio <= 100)
4905 s->remote_node_defrag_ratio = ratio * 10;
4906
4907 return length;
4908 }
4909 SLAB_ATTR(remote_node_defrag_ratio);
4910 #endif
4911
4912 #ifdef CONFIG_SLUB_STATS
4913 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4914 {
4915 unsigned long sum = 0;
4916 int cpu;
4917 int len;
4918 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4919
4920 if (!data)
4921 return -ENOMEM;
4922
4923 for_each_online_cpu(cpu) {
4924 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4925
4926 data[cpu] = x;
4927 sum += x;
4928 }
4929
4930 len = sprintf(buf, "%lu", sum);
4931
4932 #ifdef CONFIG_SMP
4933 for_each_online_cpu(cpu) {
4934 if (data[cpu] && len < PAGE_SIZE - 20)
4935 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4936 }
4937 #endif
4938 kfree(data);
4939 return len + sprintf(buf + len, "\n");
4940 }
4941
4942 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4943 {
4944 int cpu;
4945
4946 for_each_online_cpu(cpu)
4947 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4948 }
4949
4950 #define STAT_ATTR(si, text) \
4951 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4952 { \
4953 return show_stat(s, buf, si); \
4954 } \
4955 static ssize_t text##_store(struct kmem_cache *s, \
4956 const char *buf, size_t length) \
4957 { \
4958 if (buf[0] != '0') \
4959 return -EINVAL; \
4960 clear_stat(s, si); \
4961 return length; \
4962 } \
4963 SLAB_ATTR(text); \
4964
4965 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4966 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4967 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4968 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4969 STAT_ATTR(FREE_FROZEN, free_frozen);
4970 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4971 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4972 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4973 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4974 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4975 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4976 STAT_ATTR(FREE_SLAB, free_slab);
4977 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4978 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4979 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4980 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4981 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4982 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4983 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4984 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4985 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4986 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4987 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4988 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4989 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4990 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4991 #endif
4992
4993 static struct attribute *slab_attrs[] = {
4994 &slab_size_attr.attr,
4995 &object_size_attr.attr,
4996 &objs_per_slab_attr.attr,
4997 &order_attr.attr,
4998 &min_partial_attr.attr,
4999 &cpu_partial_attr.attr,
5000 &objects_attr.attr,
5001 &objects_partial_attr.attr,
5002 &partial_attr.attr,
5003 &cpu_slabs_attr.attr,
5004 &ctor_attr.attr,
5005 &aliases_attr.attr,
5006 &align_attr.attr,
5007 &hwcache_align_attr.attr,
5008 &reclaim_account_attr.attr,
5009 &destroy_by_rcu_attr.attr,
5010 &shrink_attr.attr,
5011 &reserved_attr.attr,
5012 &slabs_cpu_partial_attr.attr,
5013 #ifdef CONFIG_SLUB_DEBUG
5014 &total_objects_attr.attr,
5015 &slabs_attr.attr,
5016 &sanity_checks_attr.attr,
5017 &trace_attr.attr,
5018 &red_zone_attr.attr,
5019 &poison_attr.attr,
5020 &store_user_attr.attr,
5021 &validate_attr.attr,
5022 &alloc_calls_attr.attr,
5023 &free_calls_attr.attr,
5024 #endif
5025 #ifdef CONFIG_ZONE_DMA
5026 &cache_dma_attr.attr,
5027 #endif
5028 #ifdef CONFIG_NUMA
5029 &remote_node_defrag_ratio_attr.attr,
5030 #endif
5031 #ifdef CONFIG_SLUB_STATS
5032 &alloc_fastpath_attr.attr,
5033 &alloc_slowpath_attr.attr,
5034 &free_fastpath_attr.attr,
5035 &free_slowpath_attr.attr,
5036 &free_frozen_attr.attr,
5037 &free_add_partial_attr.attr,
5038 &free_remove_partial_attr.attr,
5039 &alloc_from_partial_attr.attr,
5040 &alloc_slab_attr.attr,
5041 &alloc_refill_attr.attr,
5042 &alloc_node_mismatch_attr.attr,
5043 &free_slab_attr.attr,
5044 &cpuslab_flush_attr.attr,
5045 &deactivate_full_attr.attr,
5046 &deactivate_empty_attr.attr,
5047 &deactivate_to_head_attr.attr,
5048 &deactivate_to_tail_attr.attr,
5049 &deactivate_remote_frees_attr.attr,
5050 &deactivate_bypass_attr.attr,
5051 &order_fallback_attr.attr,
5052 &cmpxchg_double_fail_attr.attr,
5053 &cmpxchg_double_cpu_fail_attr.attr,
5054 &cpu_partial_alloc_attr.attr,
5055 &cpu_partial_free_attr.attr,
5056 &cpu_partial_node_attr.attr,
5057 &cpu_partial_drain_attr.attr,
5058 #endif
5059 #ifdef CONFIG_FAILSLAB
5060 &failslab_attr.attr,
5061 #endif
5062
5063 NULL
5064 };
5065
5066 static struct attribute_group slab_attr_group = {
5067 .attrs = slab_attrs,
5068 };
5069
5070 static ssize_t slab_attr_show(struct kobject *kobj,
5071 struct attribute *attr,
5072 char *buf)
5073 {
5074 struct slab_attribute *attribute;
5075 struct kmem_cache *s;
5076 int err;
5077
5078 attribute = to_slab_attr(attr);
5079 s = to_slab(kobj);
5080
5081 if (!attribute->show)
5082 return -EIO;
5083
5084 err = attribute->show(s, buf);
5085
5086 return err;
5087 }
5088
5089 static ssize_t slab_attr_store(struct kobject *kobj,
5090 struct attribute *attr,
5091 const char *buf, size_t len)
5092 {
5093 struct slab_attribute *attribute;
5094 struct kmem_cache *s;
5095 int err;
5096
5097 attribute = to_slab_attr(attr);
5098 s = to_slab(kobj);
5099
5100 if (!attribute->store)
5101 return -EIO;
5102
5103 err = attribute->store(s, buf, len);
5104
5105 return err;
5106 }
5107
5108 static const struct sysfs_ops slab_sysfs_ops = {
5109 .show = slab_attr_show,
5110 .store = slab_attr_store,
5111 };
5112
5113 static struct kobj_type slab_ktype = {
5114 .sysfs_ops = &slab_sysfs_ops,
5115 };
5116
5117 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5118 {
5119 struct kobj_type *ktype = get_ktype(kobj);
5120
5121 if (ktype == &slab_ktype)
5122 return 1;
5123 return 0;
5124 }
5125
5126 static const struct kset_uevent_ops slab_uevent_ops = {
5127 .filter = uevent_filter,
5128 };
5129
5130 static struct kset *slab_kset;
5131
5132 #define ID_STR_LENGTH 64
5133
5134 /* Create a unique string id for a slab cache:
5135 *
5136 * Format :[flags-]size
5137 */
5138 static char *create_unique_id(struct kmem_cache *s)
5139 {
5140 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5141 char *p = name;
5142
5143 BUG_ON(!name);
5144
5145 *p++ = ':';
5146 /*
5147 * First flags affecting slabcache operations. We will only
5148 * get here for aliasable slabs so we do not need to support
5149 * too many flags. The flags here must cover all flags that
5150 * are matched during merging to guarantee that the id is
5151 * unique.
5152 */
5153 if (s->flags & SLAB_CACHE_DMA)
5154 *p++ = 'd';
5155 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5156 *p++ = 'a';
5157 if (s->flags & SLAB_DEBUG_FREE)
5158 *p++ = 'F';
5159 if (!(s->flags & SLAB_NOTRACK))
5160 *p++ = 't';
5161 if (p != name + 1)
5162 *p++ = '-';
5163 p += sprintf(p, "%07d", s->size);
5164
5165 #ifdef CONFIG_MEMCG_KMEM
5166 if (!is_root_cache(s))
5167 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5168 #endif
5169
5170 BUG_ON(p > name + ID_STR_LENGTH - 1);
5171 return name;
5172 }
5173
5174 static int sysfs_slab_add(struct kmem_cache *s)
5175 {
5176 int err;
5177 const char *name;
5178 int unmergeable = slab_unmergeable(s);
5179
5180 if (unmergeable) {
5181 /*
5182 * Slabcache can never be merged so we can use the name proper.
5183 * This is typically the case for debug situations. In that
5184 * case we can catch duplicate names easily.
5185 */
5186 sysfs_remove_link(&slab_kset->kobj, s->name);
5187 name = s->name;
5188 } else {
5189 /*
5190 * Create a unique name for the slab as a target
5191 * for the symlinks.
5192 */
5193 name = create_unique_id(s);
5194 }
5195
5196 s->kobj.kset = slab_kset;
5197 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5198 if (err) {
5199 kobject_put(&s->kobj);
5200 return err;
5201 }
5202
5203 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5204 if (err) {
5205 kobject_del(&s->kobj);
5206 kobject_put(&s->kobj);
5207 return err;
5208 }
5209 kobject_uevent(&s->kobj, KOBJ_ADD);
5210 if (!unmergeable) {
5211 /* Setup first alias */
5212 sysfs_slab_alias(s, s->name);
5213 kfree(name);
5214 }
5215 return 0;
5216 }
5217
5218 static void sysfs_slab_remove(struct kmem_cache *s)
5219 {
5220 if (slab_state < FULL)
5221 /*
5222 * Sysfs has not been setup yet so no need to remove the
5223 * cache from sysfs.
5224 */
5225 return;
5226
5227 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 kobject_del(&s->kobj);
5229 kobject_put(&s->kobj);
5230 }
5231
5232 /*
5233 * Need to buffer aliases during bootup until sysfs becomes
5234 * available lest we lose that information.
5235 */
5236 struct saved_alias {
5237 struct kmem_cache *s;
5238 const char *name;
5239 struct saved_alias *next;
5240 };
5241
5242 static struct saved_alias *alias_list;
5243
5244 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245 {
5246 struct saved_alias *al;
5247
5248 if (slab_state == FULL) {
5249 /*
5250 * If we have a leftover link then remove it.
5251 */
5252 sysfs_remove_link(&slab_kset->kobj, name);
5253 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5254 }
5255
5256 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 if (!al)
5258 return -ENOMEM;
5259
5260 al->s = s;
5261 al->name = name;
5262 al->next = alias_list;
5263 alias_list = al;
5264 return 0;
5265 }
5266
5267 static int __init slab_sysfs_init(void)
5268 {
5269 struct kmem_cache *s;
5270 int err;
5271
5272 mutex_lock(&slab_mutex);
5273
5274 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5275 if (!slab_kset) {
5276 mutex_unlock(&slab_mutex);
5277 printk(KERN_ERR "Cannot register slab subsystem.\n");
5278 return -ENOSYS;
5279 }
5280
5281 slab_state = FULL;
5282
5283 list_for_each_entry(s, &slab_caches, list) {
5284 err = sysfs_slab_add(s);
5285 if (err)
5286 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5287 " to sysfs\n", s->name);
5288 }
5289
5290 while (alias_list) {
5291 struct saved_alias *al = alias_list;
5292
5293 alias_list = alias_list->next;
5294 err = sysfs_slab_alias(al->s, al->name);
5295 if (err)
5296 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5297 " %s to sysfs\n", al->name);
5298 kfree(al);
5299 }
5300
5301 mutex_unlock(&slab_mutex);
5302 resiliency_test();
5303 return 0;
5304 }
5305
5306 __initcall(slab_sysfs_init);
5307 #endif /* CONFIG_SYSFS */
5308
5309 /*
5310 * The /proc/slabinfo ABI
5311 */
5312 #ifdef CONFIG_SLABINFO
5313 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5314 {
5315 unsigned long nr_partials = 0;
5316 unsigned long nr_slabs = 0;
5317 unsigned long nr_objs = 0;
5318 unsigned long nr_free = 0;
5319 int node;
5320
5321 for_each_online_node(node) {
5322 struct kmem_cache_node *n = get_node(s, node);
5323
5324 if (!n)
5325 continue;
5326
5327 nr_partials += n->nr_partial;
5328 nr_slabs += atomic_long_read(&n->nr_slabs);
5329 nr_objs += atomic_long_read(&n->total_objects);
5330 nr_free += count_partial(n, count_free);
5331 }
5332
5333 sinfo->active_objs = nr_objs - nr_free;
5334 sinfo->num_objs = nr_objs;
5335 sinfo->active_slabs = nr_slabs;
5336 sinfo->num_slabs = nr_slabs;
5337 sinfo->objects_per_slab = oo_objects(s->oo);
5338 sinfo->cache_order = oo_order(s->oo);
5339 }
5340
5341 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5342 {
5343 }
5344
5345 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5346 size_t count, loff_t *ppos)
5347 {
5348 return -EIO;
5349 }
5350 #endif /* CONFIG_SLABINFO */