UPSTREAM: mm/slub: support left redzone
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * Debugging flags that require metadata to be stored in the slab. These get
176 * disabled when slub_debug=O is used and a cache's min order increases with
177 * metadata.
178 */
179 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
180
181 #define OO_SHIFT 16
182 #define OO_MASK ((1 << OO_SHIFT) - 1)
183 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
184
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000UL /* Poison object */
187 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
188
189 #ifdef CONFIG_SMP
190 static struct notifier_block slab_notifier;
191 #endif
192
193 /*
194 * Tracking user of a slab.
195 */
196 #define TRACK_ADDRS_COUNT 16
197 struct track {
198 unsigned long addr; /* Called from address */
199 #ifdef CONFIG_STACKTRACE
200 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
201 #endif
202 int cpu; /* Was running on cpu */
203 int pid; /* Pid context */
204 unsigned long when; /* When did the operation occur */
205 };
206
207 enum track_item { TRACK_ALLOC, TRACK_FREE };
208
209 #ifdef CONFIG_SYSFS
210 static int sysfs_slab_add(struct kmem_cache *);
211 static int sysfs_slab_alias(struct kmem_cache *, const char *);
212 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
213 #else
214 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
215 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
216 { return 0; }
217 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
218 #endif
219
220 static inline void stat(const struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 /*
224 * The rmw is racy on a preemptible kernel but this is acceptable, so
225 * avoid this_cpu_add()'s irq-disable overhead.
226 */
227 raw_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline void *get_freepointer(struct kmem_cache *s, void *object)
236 {
237 return *(void **)(object + s->offset);
238 }
239
240 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
241 {
242 prefetch(object + s->offset);
243 }
244
245 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
246 {
247 void *p;
248
249 #ifdef CONFIG_DEBUG_PAGEALLOC
250 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
251 #else
252 p = get_freepointer(s, object);
253 #endif
254 return p;
255 }
256
257 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
258 {
259 *(void **)(object + s->offset) = fp;
260 }
261
262 /* Loop over all objects in a slab */
263 #define for_each_object(__p, __s, __addr, __objects) \
264 for (__p = fixup_red_left(__s, __addr); \
265 __p < (__addr) + (__objects) * (__s)->size; \
266 __p += (__s)->size)
267
268 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
269 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
270 __idx <= __objects; \
271 __p += (__s)->size, __idx++)
272
273 /* Determine object index from a given position */
274 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
275 {
276 return (p - addr) / s->size;
277 }
278
279 static inline size_t slab_ksize(const struct kmem_cache *s)
280 {
281 #ifdef CONFIG_SLUB_DEBUG
282 /*
283 * Debugging requires use of the padding between object
284 * and whatever may come after it.
285 */
286 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
287 return s->object_size;
288
289 #endif
290 /*
291 * If we have the need to store the freelist pointer
292 * back there or track user information then we can
293 * only use the space before that information.
294 */
295 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
296 return s->inuse;
297 /*
298 * Else we can use all the padding etc for the allocation
299 */
300 return s->size;
301 }
302
303 static inline int order_objects(int order, unsigned long size, int reserved)
304 {
305 return ((PAGE_SIZE << order) - reserved) / size;
306 }
307
308 static inline struct kmem_cache_order_objects oo_make(int order,
309 unsigned long size, int reserved)
310 {
311 struct kmem_cache_order_objects x = {
312 (order << OO_SHIFT) + order_objects(order, size, reserved)
313 };
314
315 return x;
316 }
317
318 static inline int oo_order(struct kmem_cache_order_objects x)
319 {
320 return x.x >> OO_SHIFT;
321 }
322
323 static inline int oo_objects(struct kmem_cache_order_objects x)
324 {
325 return x.x & OO_MASK;
326 }
327
328 /*
329 * Per slab locking using the pagelock
330 */
331 static __always_inline void slab_lock(struct page *page)
332 {
333 bit_spin_lock(PG_locked, &page->flags);
334 }
335
336 static __always_inline void slab_unlock(struct page *page)
337 {
338 __bit_spin_unlock(PG_locked, &page->flags);
339 }
340
341 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
342 {
343 struct page tmp;
344 tmp.counters = counters_new;
345 /*
346 * page->counters can cover frozen/inuse/objects as well
347 * as page->_count. If we assign to ->counters directly
348 * we run the risk of losing updates to page->_count, so
349 * be careful and only assign to the fields we need.
350 */
351 page->frozen = tmp.frozen;
352 page->inuse = tmp.inuse;
353 page->objects = tmp.objects;
354 }
355
356 /* Interrupts must be disabled (for the fallback code to work right) */
357 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361 {
362 VM_BUG_ON(!irqs_disabled());
363 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
365 if (s->flags & __CMPXCHG_DOUBLE) {
366 if (cmpxchg_double(&page->freelist, &page->counters,
367 freelist_old, counters_old,
368 freelist_new, counters_new))
369 return true;
370 } else
371 #endif
372 {
373 slab_lock(page);
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
376 page->freelist = freelist_new;
377 set_page_slub_counters(page, counters_new);
378 slab_unlock(page);
379 return true;
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387 #ifdef SLUB_DEBUG_CMPXCHG
388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
389 #endif
390
391 return false;
392 }
393
394 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398 {
399 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
401 if (s->flags & __CMPXCHG_DOUBLE) {
402 if (cmpxchg_double(&page->freelist, &page->counters,
403 freelist_old, counters_old,
404 freelist_new, counters_new))
405 return true;
406 } else
407 #endif
408 {
409 unsigned long flags;
410
411 local_irq_save(flags);
412 slab_lock(page);
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
415 page->freelist = freelist_new;
416 set_page_slub_counters(page, counters_new);
417 slab_unlock(page);
418 local_irq_restore(flags);
419 return true;
420 }
421 slab_unlock(page);
422 local_irq_restore(flags);
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428 #ifdef SLUB_DEBUG_CMPXCHG
429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431
432 return false;
433 }
434
435 #ifdef CONFIG_SLUB_DEBUG
436 /*
437 * Determine a map of object in use on a page.
438 *
439 * Node listlock must be held to guarantee that the page does
440 * not vanish from under us.
441 */
442 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
443 {
444 void *p;
445 void *addr = page_address(page);
446
447 for (p = page->freelist; p; p = get_freepointer(s, p))
448 set_bit(slab_index(p, s, addr), map);
449 }
450
451 static inline int size_from_object(struct kmem_cache *s)
452 {
453 if (s->flags & SLAB_RED_ZONE)
454 return s->size - s->red_left_pad;
455
456 return s->size;
457 }
458
459 static inline void *restore_red_left(struct kmem_cache *s, void *p)
460 {
461 if (s->flags & SLAB_RED_ZONE)
462 p -= s->red_left_pad;
463
464 return p;
465 }
466
467 /*
468 * Debug settings:
469 */
470 #if defined(CONFIG_SLUB_DEBUG_ON)
471 static int slub_debug = DEBUG_DEFAULT_FLAGS;
472 #elif defined(CONFIG_KASAN)
473 static int slub_debug = SLAB_STORE_USER;
474 #else
475 static int slub_debug;
476 #endif
477
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480
481 /*
482 * slub is about to manipulate internal object metadata. This memory lies
483 * outside the range of the allocated object, so accessing it would normally
484 * be reported by kasan as a bounds error. metadata_access_enable() is used
485 * to tell kasan that these accesses are OK.
486 */
487 static inline void metadata_access_enable(void)
488 {
489 kasan_disable_current();
490 }
491
492 static inline void metadata_access_disable(void)
493 {
494 kasan_enable_current();
495 }
496
497 /*
498 * Object debugging
499 */
500
501 /* Verify that a pointer has an address that is valid within a slab page */
502 static inline int check_valid_pointer(struct kmem_cache *s,
503 struct page *page, void *object)
504 {
505 void *base;
506
507 if (!object)
508 return 1;
509
510 base = page_address(page);
511 object = restore_red_left(s, object);
512 if (object < base || object >= base + page->objects * s->size ||
513 (object - base) % s->size) {
514 return 0;
515 }
516
517 return 1;
518 }
519
520 static void print_section(char *text, u8 *addr, unsigned int length)
521 {
522 metadata_access_enable();
523 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
524 length, 1);
525 metadata_access_disable();
526 }
527
528 static struct track *get_track(struct kmem_cache *s, void *object,
529 enum track_item alloc)
530 {
531 struct track *p;
532
533 if (s->offset)
534 p = object + s->offset + sizeof(void *);
535 else
536 p = object + s->inuse;
537
538 return p + alloc;
539 }
540
541 static void set_track(struct kmem_cache *s, void *object,
542 enum track_item alloc, unsigned long addr)
543 {
544 struct track *p = get_track(s, object, alloc);
545
546 if (addr) {
547 #ifdef CONFIG_STACKTRACE
548 struct stack_trace trace;
549 int i;
550
551 trace.nr_entries = 0;
552 trace.max_entries = TRACK_ADDRS_COUNT;
553 trace.entries = p->addrs;
554 trace.skip = 3;
555 metadata_access_enable();
556 save_stack_trace(&trace);
557 metadata_access_disable();
558
559 /* See rant in lockdep.c */
560 if (trace.nr_entries != 0 &&
561 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
562 trace.nr_entries--;
563
564 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
565 p->addrs[i] = 0;
566 #endif
567 p->addr = addr;
568 p->cpu = smp_processor_id();
569 p->pid = current->pid;
570 p->when = jiffies;
571 } else
572 memset(p, 0, sizeof(struct track));
573 }
574
575 static void init_tracking(struct kmem_cache *s, void *object)
576 {
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 set_track(s, object, TRACK_FREE, 0UL);
581 set_track(s, object, TRACK_ALLOC, 0UL);
582 }
583
584 static void print_track(const char *s, struct track *t)
585 {
586 if (!t->addr)
587 return;
588
589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
591 #ifdef CONFIG_STACKTRACE
592 {
593 int i;
594 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
595 if (t->addrs[i])
596 pr_err("\t%pS\n", (void *)t->addrs[i]);
597 else
598 break;
599 }
600 #endif
601 }
602
603 static void print_tracking(struct kmem_cache *s, void *object)
604 {
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
609 print_track("Freed", get_track(s, object, TRACK_FREE));
610 }
611
612 static void print_page_info(struct page *page)
613 {
614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 page, page->objects, page->inuse, page->freelist, page->flags);
616
617 }
618
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 struct va_format vaf;
622 va_list args;
623
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 pr_err("=============================================================================\n");
628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 pr_err("-----------------------------------------------------------------------------\n\n");
630
631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 va_end(args);
633 }
634
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 struct va_format vaf;
638 va_list args;
639
640 va_start(args, fmt);
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
644 va_end(args);
645 }
646
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 unsigned int off; /* Offset of last byte */
650 u8 *addr = page_address(page);
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
658
659 if (s->flags & SLAB_RED_ZONE)
660 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
661 else if (p > addr + 16)
662 print_section("Bytes b4 ", p - 16, 16);
663
664 print_section("Object ", p, min_t(unsigned long, s->object_size,
665 PAGE_SIZE));
666 if (s->flags & SLAB_RED_ZONE)
667 print_section("Redzone ", p + s->object_size,
668 s->inuse - s->object_size);
669
670 if (s->offset)
671 off = s->offset + sizeof(void *);
672 else
673 off = s->inuse;
674
675 if (s->flags & SLAB_STORE_USER)
676 off += 2 * sizeof(struct track);
677
678 if (off != size_from_object(s))
679 /* Beginning of the filler is the free pointer */
680 print_section("Padding ", p + off, size_from_object(s) - off);
681
682 dump_stack();
683 }
684
685 void object_err(struct kmem_cache *s, struct page *page,
686 u8 *object, char *reason)
687 {
688 slab_bug(s, "%s", reason);
689 print_trailer(s, page, object);
690 }
691
692 static void slab_err(struct kmem_cache *s, struct page *page,
693 const char *fmt, ...)
694 {
695 va_list args;
696 char buf[100];
697
698 va_start(args, fmt);
699 vsnprintf(buf, sizeof(buf), fmt, args);
700 va_end(args);
701 slab_bug(s, "%s", buf);
702 print_page_info(page);
703 dump_stack();
704 }
705
706 static void init_object(struct kmem_cache *s, void *object, u8 val)
707 {
708 u8 *p = object;
709
710 if (s->flags & SLAB_RED_ZONE)
711 memset(p - s->red_left_pad, val, s->red_left_pad);
712
713 if (s->flags & __OBJECT_POISON) {
714 memset(p, POISON_FREE, s->object_size - 1);
715 p[s->object_size - 1] = POISON_END;
716 }
717
718 if (s->flags & SLAB_RED_ZONE)
719 memset(p + s->object_size, val, s->inuse - s->object_size);
720 }
721
722 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
723 void *from, void *to)
724 {
725 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
726 memset(from, data, to - from);
727 }
728
729 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
730 u8 *object, char *what,
731 u8 *start, unsigned int value, unsigned int bytes)
732 {
733 u8 *fault;
734 u8 *end;
735
736 metadata_access_enable();
737 fault = memchr_inv(start, value, bytes);
738 metadata_access_disable();
739 if (!fault)
740 return 1;
741
742 end = start + bytes;
743 while (end > fault && end[-1] == value)
744 end--;
745
746 slab_bug(s, "%s overwritten", what);
747 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
748 fault, end - 1, fault[0], value);
749 print_trailer(s, page, object);
750
751 restore_bytes(s, what, value, fault, end);
752 return 0;
753 }
754
755 /*
756 * Object layout:
757 *
758 * object address
759 * Bytes of the object to be managed.
760 * If the freepointer may overlay the object then the free
761 * pointer is the first word of the object.
762 *
763 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
764 * 0xa5 (POISON_END)
765 *
766 * object + s->object_size
767 * Padding to reach word boundary. This is also used for Redzoning.
768 * Padding is extended by another word if Redzoning is enabled and
769 * object_size == inuse.
770 *
771 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
772 * 0xcc (RED_ACTIVE) for objects in use.
773 *
774 * object + s->inuse
775 * Meta data starts here.
776 *
777 * A. Free pointer (if we cannot overwrite object on free)
778 * B. Tracking data for SLAB_STORE_USER
779 * C. Padding to reach required alignment boundary or at mininum
780 * one word if debugging is on to be able to detect writes
781 * before the word boundary.
782 *
783 * Padding is done using 0x5a (POISON_INUSE)
784 *
785 * object + s->size
786 * Nothing is used beyond s->size.
787 *
788 * If slabcaches are merged then the object_size and inuse boundaries are mostly
789 * ignored. And therefore no slab options that rely on these boundaries
790 * may be used with merged slabcaches.
791 */
792
793 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
794 {
795 unsigned long off = s->inuse; /* The end of info */
796
797 if (s->offset)
798 /* Freepointer is placed after the object. */
799 off += sizeof(void *);
800
801 if (s->flags & SLAB_STORE_USER)
802 /* We also have user information there */
803 off += 2 * sizeof(struct track);
804
805 if (size_from_object(s) == off)
806 return 1;
807
808 return check_bytes_and_report(s, page, p, "Object padding",
809 p + off, POISON_INUSE, size_from_object(s) - off);
810 }
811
812 /* Check the pad bytes at the end of a slab page */
813 static int slab_pad_check(struct kmem_cache *s, struct page *page)
814 {
815 u8 *start;
816 u8 *fault;
817 u8 *end;
818 int length;
819 int remainder;
820
821 if (!(s->flags & SLAB_POISON))
822 return 1;
823
824 start = page_address(page);
825 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
826 end = start + length;
827 remainder = length % s->size;
828 if (!remainder)
829 return 1;
830
831 metadata_access_enable();
832 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
833 metadata_access_disable();
834 if (!fault)
835 return 1;
836 while (end > fault && end[-1] == POISON_INUSE)
837 end--;
838
839 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
840 print_section("Padding ", end - remainder, remainder);
841
842 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
843 return 0;
844 }
845
846 static int check_object(struct kmem_cache *s, struct page *page,
847 void *object, u8 val)
848 {
849 u8 *p = object;
850 u8 *endobject = object + s->object_size;
851
852 if (s->flags & SLAB_RED_ZONE) {
853 if (!check_bytes_and_report(s, page, object, "Redzone",
854 object - s->red_left_pad, val, s->red_left_pad))
855 return 0;
856
857 if (!check_bytes_and_report(s, page, object, "Redzone",
858 endobject, val, s->inuse - s->object_size))
859 return 0;
860 } else {
861 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
862 check_bytes_and_report(s, page, p, "Alignment padding",
863 endobject, POISON_INUSE,
864 s->inuse - s->object_size);
865 }
866 }
867
868 if (s->flags & SLAB_POISON) {
869 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
870 (!check_bytes_and_report(s, page, p, "Poison", p,
871 POISON_FREE, s->object_size - 1) ||
872 !check_bytes_and_report(s, page, p, "Poison",
873 p + s->object_size - 1, POISON_END, 1)))
874 return 0;
875 /*
876 * check_pad_bytes cleans up on its own.
877 */
878 check_pad_bytes(s, page, p);
879 }
880
881 if (!s->offset && val == SLUB_RED_ACTIVE)
882 /*
883 * Object and freepointer overlap. Cannot check
884 * freepointer while object is allocated.
885 */
886 return 1;
887
888 /* Check free pointer validity */
889 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
890 object_err(s, page, p, "Freepointer corrupt");
891 /*
892 * No choice but to zap it and thus lose the remainder
893 * of the free objects in this slab. May cause
894 * another error because the object count is now wrong.
895 */
896 set_freepointer(s, p, NULL);
897 return 0;
898 }
899 return 1;
900 }
901
902 static int check_slab(struct kmem_cache *s, struct page *page)
903 {
904 int maxobj;
905
906 VM_BUG_ON(!irqs_disabled());
907
908 if (!PageSlab(page)) {
909 slab_err(s, page, "Not a valid slab page");
910 return 0;
911 }
912
913 maxobj = order_objects(compound_order(page), s->size, s->reserved);
914 if (page->objects > maxobj) {
915 slab_err(s, page, "objects %u > max %u",
916 page->objects, maxobj);
917 return 0;
918 }
919 if (page->inuse > page->objects) {
920 slab_err(s, page, "inuse %u > max %u",
921 page->inuse, page->objects);
922 return 0;
923 }
924 /* Slab_pad_check fixes things up after itself */
925 slab_pad_check(s, page);
926 return 1;
927 }
928
929 /*
930 * Determine if a certain object on a page is on the freelist. Must hold the
931 * slab lock to guarantee that the chains are in a consistent state.
932 */
933 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
934 {
935 int nr = 0;
936 void *fp;
937 void *object = NULL;
938 int max_objects;
939
940 fp = page->freelist;
941 while (fp && nr <= page->objects) {
942 if (fp == search)
943 return 1;
944 if (!check_valid_pointer(s, page, fp)) {
945 if (object) {
946 object_err(s, page, object,
947 "Freechain corrupt");
948 set_freepointer(s, object, NULL);
949 } else {
950 slab_err(s, page, "Freepointer corrupt");
951 page->freelist = NULL;
952 page->inuse = page->objects;
953 slab_fix(s, "Freelist cleared");
954 return 0;
955 }
956 break;
957 }
958 object = fp;
959 fp = get_freepointer(s, object);
960 nr++;
961 }
962
963 max_objects = order_objects(compound_order(page), s->size, s->reserved);
964 if (max_objects > MAX_OBJS_PER_PAGE)
965 max_objects = MAX_OBJS_PER_PAGE;
966
967 if (page->objects != max_objects) {
968 slab_err(s, page, "Wrong number of objects. Found %d but "
969 "should be %d", page->objects, max_objects);
970 page->objects = max_objects;
971 slab_fix(s, "Number of objects adjusted.");
972 }
973 if (page->inuse != page->objects - nr) {
974 slab_err(s, page, "Wrong object count. Counter is %d but "
975 "counted were %d", page->inuse, page->objects - nr);
976 page->inuse = page->objects - nr;
977 slab_fix(s, "Object count adjusted.");
978 }
979 return search == NULL;
980 }
981
982 static void trace(struct kmem_cache *s, struct page *page, void *object,
983 int alloc)
984 {
985 if (s->flags & SLAB_TRACE) {
986 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
987 s->name,
988 alloc ? "alloc" : "free",
989 object, page->inuse,
990 page->freelist);
991
992 if (!alloc)
993 print_section("Object ", (void *)object,
994 s->object_size);
995
996 dump_stack();
997 }
998 }
999
1000 /*
1001 * Tracking of fully allocated slabs for debugging purposes.
1002 */
1003 static void add_full(struct kmem_cache *s,
1004 struct kmem_cache_node *n, struct page *page)
1005 {
1006 if (!(s->flags & SLAB_STORE_USER))
1007 return;
1008
1009 lockdep_assert_held(&n->list_lock);
1010 list_add(&page->lru, &n->full);
1011 }
1012
1013 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1014 {
1015 if (!(s->flags & SLAB_STORE_USER))
1016 return;
1017
1018 lockdep_assert_held(&n->list_lock);
1019 list_del(&page->lru);
1020 }
1021
1022 /* Tracking of the number of slabs for debugging purposes */
1023 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 return atomic_long_read(&n->nr_slabs);
1028 }
1029
1030 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1031 {
1032 return atomic_long_read(&n->nr_slabs);
1033 }
1034
1035 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1036 {
1037 struct kmem_cache_node *n = get_node(s, node);
1038
1039 /*
1040 * May be called early in order to allocate a slab for the
1041 * kmem_cache_node structure. Solve the chicken-egg
1042 * dilemma by deferring the increment of the count during
1043 * bootstrap (see early_kmem_cache_node_alloc).
1044 */
1045 if (likely(n)) {
1046 atomic_long_inc(&n->nr_slabs);
1047 atomic_long_add(objects, &n->total_objects);
1048 }
1049 }
1050 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1051 {
1052 struct kmem_cache_node *n = get_node(s, node);
1053
1054 atomic_long_dec(&n->nr_slabs);
1055 atomic_long_sub(objects, &n->total_objects);
1056 }
1057
1058 /* Object debug checks for alloc/free paths */
1059 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1060 void *object)
1061 {
1062 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1063 return;
1064
1065 init_object(s, object, SLUB_RED_INACTIVE);
1066 init_tracking(s, object);
1067 }
1068
1069 static noinline int alloc_debug_processing(struct kmem_cache *s,
1070 struct page *page,
1071 void *object, unsigned long addr)
1072 {
1073 if (!check_slab(s, page))
1074 goto bad;
1075
1076 if (!check_valid_pointer(s, page, object)) {
1077 object_err(s, page, object, "Freelist Pointer check fails");
1078 goto bad;
1079 }
1080
1081 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1082 goto bad;
1083
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
1088 init_object(s, object, SLUB_RED_ACTIVE);
1089 return 1;
1090
1091 bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1097 */
1098 slab_fix(s, "Marking all objects used");
1099 page->inuse = page->objects;
1100 page->freelist = NULL;
1101 }
1102 return 0;
1103 }
1104
1105 /* Supports checking bulk free of a constructed freelist */
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page,
1108 void *head, void *tail, int bulk_cnt,
1109 unsigned long addr, unsigned long *flags)
1110 {
1111 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1112 void *object = head;
1113 int cnt = 0;
1114
1115 spin_lock_irqsave(&n->list_lock, *flags);
1116 slab_lock(page);
1117
1118 if (!check_slab(s, page))
1119 goto fail;
1120
1121 next_object:
1122 cnt++;
1123
1124 if (!check_valid_pointer(s, page, object)) {
1125 slab_err(s, page, "Invalid object pointer 0x%p", object);
1126 goto fail;
1127 }
1128
1129 if (on_freelist(s, page, object)) {
1130 object_err(s, page, object, "Object already free");
1131 goto fail;
1132 }
1133
1134 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1135 goto out;
1136
1137 if (unlikely(s != page->slab_cache)) {
1138 if (!PageSlab(page)) {
1139 slab_err(s, page, "Attempt to free object(0x%p) "
1140 "outside of slab", object);
1141 } else if (!page->slab_cache) {
1142 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1143 object);
1144 dump_stack();
1145 } else
1146 object_err(s, page, object,
1147 "page slab pointer corrupt.");
1148 goto fail;
1149 }
1150
1151 if (s->flags & SLAB_STORE_USER)
1152 set_track(s, object, TRACK_FREE, addr);
1153 trace(s, page, object, 0);
1154 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1155 init_object(s, object, SLUB_RED_INACTIVE);
1156
1157 /* Reached end of constructed freelist yet? */
1158 if (object != tail) {
1159 object = get_freepointer(s, object);
1160 goto next_object;
1161 }
1162 out:
1163 if (cnt != bulk_cnt)
1164 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1165 bulk_cnt, cnt);
1166
1167 slab_unlock(page);
1168 /*
1169 * Keep node_lock to preserve integrity
1170 * until the object is actually freed
1171 */
1172 return n;
1173
1174 fail:
1175 slab_unlock(page);
1176 spin_unlock_irqrestore(&n->list_lock, *flags);
1177 slab_fix(s, "Object at 0x%p not freed", object);
1178 return NULL;
1179 }
1180
1181 static int __init setup_slub_debug(char *str)
1182 {
1183 slub_debug = DEBUG_DEFAULT_FLAGS;
1184 if (*str++ != '=' || !*str)
1185 /*
1186 * No options specified. Switch on full debugging.
1187 */
1188 goto out;
1189
1190 if (*str == ',')
1191 /*
1192 * No options but restriction on slabs. This means full
1193 * debugging for slabs matching a pattern.
1194 */
1195 goto check_slabs;
1196
1197 slub_debug = 0;
1198 if (*str == '-')
1199 /*
1200 * Switch off all debugging measures.
1201 */
1202 goto out;
1203
1204 /*
1205 * Determine which debug features should be switched on
1206 */
1207 for (; *str && *str != ','; str++) {
1208 switch (tolower(*str)) {
1209 case 'f':
1210 slub_debug |= SLAB_DEBUG_FREE;
1211 break;
1212 case 'z':
1213 slub_debug |= SLAB_RED_ZONE;
1214 break;
1215 case 'p':
1216 slub_debug |= SLAB_POISON;
1217 break;
1218 case 'u':
1219 slub_debug |= SLAB_STORE_USER;
1220 break;
1221 case 't':
1222 slub_debug |= SLAB_TRACE;
1223 break;
1224 case 'a':
1225 slub_debug |= SLAB_FAILSLAB;
1226 break;
1227 case 'o':
1228 /*
1229 * Avoid enabling debugging on caches if its minimum
1230 * order would increase as a result.
1231 */
1232 disable_higher_order_debug = 1;
1233 break;
1234 default:
1235 pr_err("slub_debug option '%c' unknown. skipped\n",
1236 *str);
1237 }
1238 }
1239
1240 check_slabs:
1241 if (*str == ',')
1242 slub_debug_slabs = str + 1;
1243 out:
1244 return 1;
1245 }
1246
1247 __setup("slub_debug", setup_slub_debug);
1248
1249 unsigned long kmem_cache_flags(unsigned long object_size,
1250 unsigned long flags, const char *name,
1251 void (*ctor)(void *))
1252 {
1253 /*
1254 * Enable debugging if selected on the kernel commandline.
1255 */
1256 if (slub_debug && (!slub_debug_slabs || (name &&
1257 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1258 flags |= slub_debug;
1259
1260 return flags;
1261 }
1262 #else /* !CONFIG_SLUB_DEBUG */
1263 static inline void setup_object_debug(struct kmem_cache *s,
1264 struct page *page, void *object) {}
1265
1266 static inline int alloc_debug_processing(struct kmem_cache *s,
1267 struct page *page, void *object, unsigned long addr) { return 0; }
1268
1269 static inline struct kmem_cache_node *free_debug_processing(
1270 struct kmem_cache *s, struct page *page,
1271 void *head, void *tail, int bulk_cnt,
1272 unsigned long addr, unsigned long *flags) { return NULL; }
1273
1274 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1275 { return 1; }
1276 static inline int check_object(struct kmem_cache *s, struct page *page,
1277 void *object, u8 val) { return 1; }
1278 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1279 struct page *page) {}
1280 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1281 struct page *page) {}
1282 unsigned long kmem_cache_flags(unsigned long object_size,
1283 unsigned long flags, const char *name,
1284 void (*ctor)(void *))
1285 {
1286 return flags;
1287 }
1288 #define slub_debug 0
1289
1290 #define disable_higher_order_debug 0
1291
1292 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1293 { return 0; }
1294 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1295 { return 0; }
1296 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1297 int objects) {}
1298 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1299 int objects) {}
1300
1301 #endif /* CONFIG_SLUB_DEBUG */
1302
1303 /*
1304 * Hooks for other subsystems that check memory allocations. In a typical
1305 * production configuration these hooks all should produce no code at all.
1306 */
1307 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1308 {
1309 kmemleak_alloc(ptr, size, 1, flags);
1310 kasan_kmalloc_large(ptr, size);
1311 }
1312
1313 static inline void kfree_hook(const void *x)
1314 {
1315 kmemleak_free(x);
1316 kasan_kfree_large(x);
1317 }
1318
1319 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1320 gfp_t flags)
1321 {
1322 flags &= gfp_allowed_mask;
1323 lockdep_trace_alloc(flags);
1324 might_sleep_if(gfpflags_allow_blocking(flags));
1325
1326 if (should_failslab(s->object_size, flags, s->flags))
1327 return NULL;
1328
1329 return memcg_kmem_get_cache(s, flags);
1330 }
1331
1332 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1333 size_t size, void **p)
1334 {
1335 size_t i;
1336
1337 flags &= gfp_allowed_mask;
1338 for (i = 0; i < size; i++) {
1339 void *object = p[i];
1340
1341 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1342 kmemleak_alloc_recursive(object, s->object_size, 1,
1343 s->flags, flags);
1344 kasan_slab_alloc(s, object);
1345 }
1346 memcg_kmem_put_cache(s);
1347 }
1348
1349 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1350 {
1351 kmemleak_free_recursive(x, s->flags);
1352
1353 /*
1354 * Trouble is that we may no longer disable interrupts in the fast path
1355 * So in order to make the debug calls that expect irqs to be
1356 * disabled we need to disable interrupts temporarily.
1357 */
1358 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1359 {
1360 unsigned long flags;
1361
1362 local_irq_save(flags);
1363 kmemcheck_slab_free(s, x, s->object_size);
1364 debug_check_no_locks_freed(x, s->object_size);
1365 local_irq_restore(flags);
1366 }
1367 #endif
1368 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1369 debug_check_no_obj_freed(x, s->object_size);
1370
1371 kasan_slab_free(s, x);
1372 }
1373
1374 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1375 void *head, void *tail)
1376 {
1377 /*
1378 * Compiler cannot detect this function can be removed if slab_free_hook()
1379 * evaluates to nothing. Thus, catch all relevant config debug options here.
1380 */
1381 #if defined(CONFIG_KMEMCHECK) || \
1382 defined(CONFIG_LOCKDEP) || \
1383 defined(CONFIG_DEBUG_KMEMLEAK) || \
1384 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1385 defined(CONFIG_KASAN)
1386
1387 void *object = head;
1388 void *tail_obj = tail ? : head;
1389
1390 do {
1391 slab_free_hook(s, object);
1392 } while ((object != tail_obj) &&
1393 (object = get_freepointer(s, object)));
1394 #endif
1395 }
1396
1397 static void setup_object(struct kmem_cache *s, struct page *page,
1398 void *object)
1399 {
1400 setup_object_debug(s, page, object);
1401 if (unlikely(s->ctor)) {
1402 kasan_unpoison_object_data(s, object);
1403 s->ctor(object);
1404 kasan_poison_object_data(s, object);
1405 }
1406 }
1407
1408 /*
1409 * Slab allocation and freeing
1410 */
1411 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1412 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1413 {
1414 struct page *page;
1415 int order = oo_order(oo);
1416
1417 flags |= __GFP_NOTRACK;
1418
1419 if (node == NUMA_NO_NODE)
1420 page = alloc_pages(flags, order);
1421 else
1422 page = __alloc_pages_node(node, flags, order);
1423
1424 if (page && memcg_charge_slab(page, flags, order, s)) {
1425 __free_pages(page, order);
1426 page = NULL;
1427 }
1428
1429 return page;
1430 }
1431
1432 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1433 {
1434 struct page *page;
1435 struct kmem_cache_order_objects oo = s->oo;
1436 gfp_t alloc_gfp;
1437 void *start, *p;
1438 int idx, order;
1439
1440 flags &= gfp_allowed_mask;
1441
1442 if (gfpflags_allow_blocking(flags))
1443 local_irq_enable();
1444
1445 flags |= s->allocflags;
1446
1447 /*
1448 * Let the initial higher-order allocation fail under memory pressure
1449 * so we fall-back to the minimum order allocation.
1450 */
1451 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1452 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1453 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1454
1455 page = alloc_slab_page(s, alloc_gfp, node, oo);
1456 if (unlikely(!page)) {
1457 oo = s->min;
1458 alloc_gfp = flags;
1459 /*
1460 * Allocation may have failed due to fragmentation.
1461 * Try a lower order alloc if possible
1462 */
1463 page = alloc_slab_page(s, alloc_gfp, node, oo);
1464 if (unlikely(!page))
1465 goto out;
1466 stat(s, ORDER_FALLBACK);
1467 }
1468
1469 if (kmemcheck_enabled &&
1470 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1471 int pages = 1 << oo_order(oo);
1472
1473 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1474
1475 /*
1476 * Objects from caches that have a constructor don't get
1477 * cleared when they're allocated, so we need to do it here.
1478 */
1479 if (s->ctor)
1480 kmemcheck_mark_uninitialized_pages(page, pages);
1481 else
1482 kmemcheck_mark_unallocated_pages(page, pages);
1483 }
1484
1485 page->objects = oo_objects(oo);
1486
1487 order = compound_order(page);
1488 page->slab_cache = s;
1489 __SetPageSlab(page);
1490 if (page_is_pfmemalloc(page))
1491 SetPageSlabPfmemalloc(page);
1492
1493 start = page_address(page);
1494
1495 if (unlikely(s->flags & SLAB_POISON))
1496 memset(start, POISON_INUSE, PAGE_SIZE << order);
1497
1498 kasan_poison_slab(page);
1499
1500 for_each_object_idx(p, idx, s, start, page->objects) {
1501 setup_object(s, page, p);
1502 if (likely(idx < page->objects))
1503 set_freepointer(s, p, p + s->size);
1504 else
1505 set_freepointer(s, p, NULL);
1506 }
1507
1508 page->freelist = fixup_red_left(s, start);
1509 page->inuse = page->objects;
1510 page->frozen = 1;
1511
1512 out:
1513 if (gfpflags_allow_blocking(flags))
1514 local_irq_disable();
1515 if (!page)
1516 return NULL;
1517
1518 mod_zone_page_state(page_zone(page),
1519 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1520 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1521 1 << oo_order(oo));
1522
1523 inc_slabs_node(s, page_to_nid(page), page->objects);
1524
1525 return page;
1526 }
1527
1528 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1529 {
1530 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1531 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1532 BUG();
1533 }
1534
1535 return allocate_slab(s,
1536 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1537 }
1538
1539 static void __free_slab(struct kmem_cache *s, struct page *page)
1540 {
1541 int order = compound_order(page);
1542 int pages = 1 << order;
1543
1544 if (kmem_cache_debug(s)) {
1545 void *p;
1546
1547 slab_pad_check(s, page);
1548 for_each_object(p, s, page_address(page),
1549 page->objects)
1550 check_object(s, page, p, SLUB_RED_INACTIVE);
1551 }
1552
1553 kmemcheck_free_shadow(page, compound_order(page));
1554
1555 mod_zone_page_state(page_zone(page),
1556 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1557 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1558 -pages);
1559
1560 __ClearPageSlabPfmemalloc(page);
1561 __ClearPageSlab(page);
1562
1563 page_mapcount_reset(page);
1564 if (current->reclaim_state)
1565 current->reclaim_state->reclaimed_slab += pages;
1566 __free_kmem_pages(page, order);
1567 }
1568
1569 #define need_reserve_slab_rcu \
1570 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1571
1572 static void rcu_free_slab(struct rcu_head *h)
1573 {
1574 struct page *page;
1575
1576 if (need_reserve_slab_rcu)
1577 page = virt_to_head_page(h);
1578 else
1579 page = container_of((struct list_head *)h, struct page, lru);
1580
1581 __free_slab(page->slab_cache, page);
1582 }
1583
1584 static void free_slab(struct kmem_cache *s, struct page *page)
1585 {
1586 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1587 struct rcu_head *head;
1588
1589 if (need_reserve_slab_rcu) {
1590 int order = compound_order(page);
1591 int offset = (PAGE_SIZE << order) - s->reserved;
1592
1593 VM_BUG_ON(s->reserved != sizeof(*head));
1594 head = page_address(page) + offset;
1595 } else {
1596 head = &page->rcu_head;
1597 }
1598
1599 call_rcu(head, rcu_free_slab);
1600 } else
1601 __free_slab(s, page);
1602 }
1603
1604 static void discard_slab(struct kmem_cache *s, struct page *page)
1605 {
1606 dec_slabs_node(s, page_to_nid(page), page->objects);
1607 free_slab(s, page);
1608 }
1609
1610 /*
1611 * Management of partially allocated slabs.
1612 */
1613 static inline void
1614 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1615 {
1616 n->nr_partial++;
1617 if (tail == DEACTIVATE_TO_TAIL)
1618 list_add_tail(&page->lru, &n->partial);
1619 else
1620 list_add(&page->lru, &n->partial);
1621 }
1622
1623 static inline void add_partial(struct kmem_cache_node *n,
1624 struct page *page, int tail)
1625 {
1626 lockdep_assert_held(&n->list_lock);
1627 __add_partial(n, page, tail);
1628 }
1629
1630 static inline void
1631 __remove_partial(struct kmem_cache_node *n, struct page *page)
1632 {
1633 list_del(&page->lru);
1634 n->nr_partial--;
1635 }
1636
1637 static inline void remove_partial(struct kmem_cache_node *n,
1638 struct page *page)
1639 {
1640 lockdep_assert_held(&n->list_lock);
1641 __remove_partial(n, page);
1642 }
1643
1644 /*
1645 * Remove slab from the partial list, freeze it and
1646 * return the pointer to the freelist.
1647 *
1648 * Returns a list of objects or NULL if it fails.
1649 */
1650 static inline void *acquire_slab(struct kmem_cache *s,
1651 struct kmem_cache_node *n, struct page *page,
1652 int mode, int *objects)
1653 {
1654 void *freelist;
1655 unsigned long counters;
1656 struct page new;
1657
1658 lockdep_assert_held(&n->list_lock);
1659
1660 /*
1661 * Zap the freelist and set the frozen bit.
1662 * The old freelist is the list of objects for the
1663 * per cpu allocation list.
1664 */
1665 freelist = page->freelist;
1666 counters = page->counters;
1667 new.counters = counters;
1668 *objects = new.objects - new.inuse;
1669 if (mode) {
1670 new.inuse = page->objects;
1671 new.freelist = NULL;
1672 } else {
1673 new.freelist = freelist;
1674 }
1675
1676 VM_BUG_ON(new.frozen);
1677 new.frozen = 1;
1678
1679 if (!__cmpxchg_double_slab(s, page,
1680 freelist, counters,
1681 new.freelist, new.counters,
1682 "acquire_slab"))
1683 return NULL;
1684
1685 remove_partial(n, page);
1686 WARN_ON(!freelist);
1687 return freelist;
1688 }
1689
1690 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1691 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1692
1693 /*
1694 * Try to allocate a partial slab from a specific node.
1695 */
1696 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1697 struct kmem_cache_cpu *c, gfp_t flags)
1698 {
1699 struct page *page, *page2;
1700 void *object = NULL;
1701 int available = 0;
1702 int objects;
1703
1704 /*
1705 * Racy check. If we mistakenly see no partial slabs then we
1706 * just allocate an empty slab. If we mistakenly try to get a
1707 * partial slab and there is none available then get_partials()
1708 * will return NULL.
1709 */
1710 if (!n || !n->nr_partial)
1711 return NULL;
1712
1713 spin_lock(&n->list_lock);
1714 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1715 void *t;
1716
1717 if (!pfmemalloc_match(page, flags))
1718 continue;
1719
1720 t = acquire_slab(s, n, page, object == NULL, &objects);
1721 if (!t)
1722 break;
1723
1724 available += objects;
1725 if (!object) {
1726 c->page = page;
1727 stat(s, ALLOC_FROM_PARTIAL);
1728 object = t;
1729 } else {
1730 put_cpu_partial(s, page, 0);
1731 stat(s, CPU_PARTIAL_NODE);
1732 }
1733 if (!kmem_cache_has_cpu_partial(s)
1734 || available > s->cpu_partial / 2)
1735 break;
1736
1737 }
1738 spin_unlock(&n->list_lock);
1739 return object;
1740 }
1741
1742 /*
1743 * Get a page from somewhere. Search in increasing NUMA distances.
1744 */
1745 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1746 struct kmem_cache_cpu *c)
1747 {
1748 #ifdef CONFIG_NUMA
1749 struct zonelist *zonelist;
1750 struct zoneref *z;
1751 struct zone *zone;
1752 enum zone_type high_zoneidx = gfp_zone(flags);
1753 void *object;
1754 unsigned int cpuset_mems_cookie;
1755
1756 /*
1757 * The defrag ratio allows a configuration of the tradeoffs between
1758 * inter node defragmentation and node local allocations. A lower
1759 * defrag_ratio increases the tendency to do local allocations
1760 * instead of attempting to obtain partial slabs from other nodes.
1761 *
1762 * If the defrag_ratio is set to 0 then kmalloc() always
1763 * returns node local objects. If the ratio is higher then kmalloc()
1764 * may return off node objects because partial slabs are obtained
1765 * from other nodes and filled up.
1766 *
1767 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1768 * defrag_ratio = 1000) then every (well almost) allocation will
1769 * first attempt to defrag slab caches on other nodes. This means
1770 * scanning over all nodes to look for partial slabs which may be
1771 * expensive if we do it every time we are trying to find a slab
1772 * with available objects.
1773 */
1774 if (!s->remote_node_defrag_ratio ||
1775 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1776 return NULL;
1777
1778 do {
1779 cpuset_mems_cookie = read_mems_allowed_begin();
1780 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1781 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1782 struct kmem_cache_node *n;
1783
1784 n = get_node(s, zone_to_nid(zone));
1785
1786 if (n && cpuset_zone_allowed(zone, flags) &&
1787 n->nr_partial > s->min_partial) {
1788 object = get_partial_node(s, n, c, flags);
1789 if (object) {
1790 /*
1791 * Don't check read_mems_allowed_retry()
1792 * here - if mems_allowed was updated in
1793 * parallel, that was a harmless race
1794 * between allocation and the cpuset
1795 * update
1796 */
1797 return object;
1798 }
1799 }
1800 }
1801 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1802 #endif
1803 return NULL;
1804 }
1805
1806 /*
1807 * Get a partial page, lock it and return it.
1808 */
1809 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1810 struct kmem_cache_cpu *c)
1811 {
1812 void *object;
1813 int searchnode = node;
1814
1815 if (node == NUMA_NO_NODE)
1816 searchnode = numa_mem_id();
1817 else if (!node_present_pages(node))
1818 searchnode = node_to_mem_node(node);
1819
1820 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1821 if (object || node != NUMA_NO_NODE)
1822 return object;
1823
1824 return get_any_partial(s, flags, c);
1825 }
1826
1827 #ifdef CONFIG_PREEMPT
1828 /*
1829 * Calculate the next globally unique transaction for disambiguiation
1830 * during cmpxchg. The transactions start with the cpu number and are then
1831 * incremented by CONFIG_NR_CPUS.
1832 */
1833 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1834 #else
1835 /*
1836 * No preemption supported therefore also no need to check for
1837 * different cpus.
1838 */
1839 #define TID_STEP 1
1840 #endif
1841
1842 static inline unsigned long next_tid(unsigned long tid)
1843 {
1844 return tid + TID_STEP;
1845 }
1846
1847 static inline unsigned int tid_to_cpu(unsigned long tid)
1848 {
1849 return tid % TID_STEP;
1850 }
1851
1852 static inline unsigned long tid_to_event(unsigned long tid)
1853 {
1854 return tid / TID_STEP;
1855 }
1856
1857 static inline unsigned int init_tid(int cpu)
1858 {
1859 return cpu;
1860 }
1861
1862 static inline void note_cmpxchg_failure(const char *n,
1863 const struct kmem_cache *s, unsigned long tid)
1864 {
1865 #ifdef SLUB_DEBUG_CMPXCHG
1866 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1867
1868 pr_info("%s %s: cmpxchg redo ", n, s->name);
1869
1870 #ifdef CONFIG_PREEMPT
1871 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1872 pr_warn("due to cpu change %d -> %d\n",
1873 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1874 else
1875 #endif
1876 if (tid_to_event(tid) != tid_to_event(actual_tid))
1877 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1878 tid_to_event(tid), tid_to_event(actual_tid));
1879 else
1880 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1881 actual_tid, tid, next_tid(tid));
1882 #endif
1883 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1884 }
1885
1886 static void init_kmem_cache_cpus(struct kmem_cache *s)
1887 {
1888 int cpu;
1889
1890 for_each_possible_cpu(cpu)
1891 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1892 }
1893
1894 /*
1895 * Remove the cpu slab
1896 */
1897 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1898 void *freelist)
1899 {
1900 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1901 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1902 int lock = 0;
1903 enum slab_modes l = M_NONE, m = M_NONE;
1904 void *nextfree;
1905 int tail = DEACTIVATE_TO_HEAD;
1906 struct page new;
1907 struct page old;
1908
1909 if (page->freelist) {
1910 stat(s, DEACTIVATE_REMOTE_FREES);
1911 tail = DEACTIVATE_TO_TAIL;
1912 }
1913
1914 /*
1915 * Stage one: Free all available per cpu objects back
1916 * to the page freelist while it is still frozen. Leave the
1917 * last one.
1918 *
1919 * There is no need to take the list->lock because the page
1920 * is still frozen.
1921 */
1922 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1923 void *prior;
1924 unsigned long counters;
1925
1926 do {
1927 prior = page->freelist;
1928 counters = page->counters;
1929 set_freepointer(s, freelist, prior);
1930 new.counters = counters;
1931 new.inuse--;
1932 VM_BUG_ON(!new.frozen);
1933
1934 } while (!__cmpxchg_double_slab(s, page,
1935 prior, counters,
1936 freelist, new.counters,
1937 "drain percpu freelist"));
1938
1939 freelist = nextfree;
1940 }
1941
1942 /*
1943 * Stage two: Ensure that the page is unfrozen while the
1944 * list presence reflects the actual number of objects
1945 * during unfreeze.
1946 *
1947 * We setup the list membership and then perform a cmpxchg
1948 * with the count. If there is a mismatch then the page
1949 * is not unfrozen but the page is on the wrong list.
1950 *
1951 * Then we restart the process which may have to remove
1952 * the page from the list that we just put it on again
1953 * because the number of objects in the slab may have
1954 * changed.
1955 */
1956 redo:
1957
1958 old.freelist = page->freelist;
1959 old.counters = page->counters;
1960 VM_BUG_ON(!old.frozen);
1961
1962 /* Determine target state of the slab */
1963 new.counters = old.counters;
1964 if (freelist) {
1965 new.inuse--;
1966 set_freepointer(s, freelist, old.freelist);
1967 new.freelist = freelist;
1968 } else
1969 new.freelist = old.freelist;
1970
1971 new.frozen = 0;
1972
1973 if (!new.inuse && n->nr_partial >= s->min_partial)
1974 m = M_FREE;
1975 else if (new.freelist) {
1976 m = M_PARTIAL;
1977 if (!lock) {
1978 lock = 1;
1979 /*
1980 * Taking the spinlock removes the possiblity
1981 * that acquire_slab() will see a slab page that
1982 * is frozen
1983 */
1984 spin_lock(&n->list_lock);
1985 }
1986 } else {
1987 m = M_FULL;
1988 if (kmem_cache_debug(s) && !lock) {
1989 lock = 1;
1990 /*
1991 * This also ensures that the scanning of full
1992 * slabs from diagnostic functions will not see
1993 * any frozen slabs.
1994 */
1995 spin_lock(&n->list_lock);
1996 }
1997 }
1998
1999 if (l != m) {
2000
2001 if (l == M_PARTIAL)
2002
2003 remove_partial(n, page);
2004
2005 else if (l == M_FULL)
2006
2007 remove_full(s, n, page);
2008
2009 if (m == M_PARTIAL) {
2010
2011 add_partial(n, page, tail);
2012 stat(s, tail);
2013
2014 } else if (m == M_FULL) {
2015
2016 stat(s, DEACTIVATE_FULL);
2017 add_full(s, n, page);
2018
2019 }
2020 }
2021
2022 l = m;
2023 if (!__cmpxchg_double_slab(s, page,
2024 old.freelist, old.counters,
2025 new.freelist, new.counters,
2026 "unfreezing slab"))
2027 goto redo;
2028
2029 if (lock)
2030 spin_unlock(&n->list_lock);
2031
2032 if (m == M_FREE) {
2033 stat(s, DEACTIVATE_EMPTY);
2034 discard_slab(s, page);
2035 stat(s, FREE_SLAB);
2036 }
2037 }
2038
2039 /*
2040 * Unfreeze all the cpu partial slabs.
2041 *
2042 * This function must be called with interrupts disabled
2043 * for the cpu using c (or some other guarantee must be there
2044 * to guarantee no concurrent accesses).
2045 */
2046 static void unfreeze_partials(struct kmem_cache *s,
2047 struct kmem_cache_cpu *c)
2048 {
2049 #ifdef CONFIG_SLUB_CPU_PARTIAL
2050 struct kmem_cache_node *n = NULL, *n2 = NULL;
2051 struct page *page, *discard_page = NULL;
2052
2053 while ((page = c->partial)) {
2054 struct page new;
2055 struct page old;
2056
2057 c->partial = page->next;
2058
2059 n2 = get_node(s, page_to_nid(page));
2060 if (n != n2) {
2061 if (n)
2062 spin_unlock(&n->list_lock);
2063
2064 n = n2;
2065 spin_lock(&n->list_lock);
2066 }
2067
2068 do {
2069
2070 old.freelist = page->freelist;
2071 old.counters = page->counters;
2072 VM_BUG_ON(!old.frozen);
2073
2074 new.counters = old.counters;
2075 new.freelist = old.freelist;
2076
2077 new.frozen = 0;
2078
2079 } while (!__cmpxchg_double_slab(s, page,
2080 old.freelist, old.counters,
2081 new.freelist, new.counters,
2082 "unfreezing slab"));
2083
2084 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2085 page->next = discard_page;
2086 discard_page = page;
2087 } else {
2088 add_partial(n, page, DEACTIVATE_TO_TAIL);
2089 stat(s, FREE_ADD_PARTIAL);
2090 }
2091 }
2092
2093 if (n)
2094 spin_unlock(&n->list_lock);
2095
2096 while (discard_page) {
2097 page = discard_page;
2098 discard_page = discard_page->next;
2099
2100 stat(s, DEACTIVATE_EMPTY);
2101 discard_slab(s, page);
2102 stat(s, FREE_SLAB);
2103 }
2104 #endif
2105 }
2106
2107 /*
2108 * Put a page that was just frozen (in __slab_free) into a partial page
2109 * slot if available. This is done without interrupts disabled and without
2110 * preemption disabled. The cmpxchg is racy and may put the partial page
2111 * onto a random cpus partial slot.
2112 *
2113 * If we did not find a slot then simply move all the partials to the
2114 * per node partial list.
2115 */
2116 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2117 {
2118 #ifdef CONFIG_SLUB_CPU_PARTIAL
2119 struct page *oldpage;
2120 int pages;
2121 int pobjects;
2122
2123 preempt_disable();
2124 do {
2125 pages = 0;
2126 pobjects = 0;
2127 oldpage = this_cpu_read(s->cpu_slab->partial);
2128
2129 if (oldpage) {
2130 pobjects = oldpage->pobjects;
2131 pages = oldpage->pages;
2132 if (drain && pobjects > s->cpu_partial) {
2133 unsigned long flags;
2134 /*
2135 * partial array is full. Move the existing
2136 * set to the per node partial list.
2137 */
2138 local_irq_save(flags);
2139 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2140 local_irq_restore(flags);
2141 oldpage = NULL;
2142 pobjects = 0;
2143 pages = 0;
2144 stat(s, CPU_PARTIAL_DRAIN);
2145 }
2146 }
2147
2148 pages++;
2149 pobjects += page->objects - page->inuse;
2150
2151 page->pages = pages;
2152 page->pobjects = pobjects;
2153 page->next = oldpage;
2154
2155 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2156 != oldpage);
2157 if (unlikely(!s->cpu_partial)) {
2158 unsigned long flags;
2159
2160 local_irq_save(flags);
2161 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2162 local_irq_restore(flags);
2163 }
2164 preempt_enable();
2165 #endif
2166 }
2167
2168 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2169 {
2170 stat(s, CPUSLAB_FLUSH);
2171 deactivate_slab(s, c->page, c->freelist);
2172
2173 c->tid = next_tid(c->tid);
2174 c->page = NULL;
2175 c->freelist = NULL;
2176 }
2177
2178 /*
2179 * Flush cpu slab.
2180 *
2181 * Called from IPI handler with interrupts disabled.
2182 */
2183 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2184 {
2185 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2186
2187 if (likely(c)) {
2188 if (c->page)
2189 flush_slab(s, c);
2190
2191 unfreeze_partials(s, c);
2192 }
2193 }
2194
2195 static void flush_cpu_slab(void *d)
2196 {
2197 struct kmem_cache *s = d;
2198
2199 __flush_cpu_slab(s, smp_processor_id());
2200 }
2201
2202 static bool has_cpu_slab(int cpu, void *info)
2203 {
2204 struct kmem_cache *s = info;
2205 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2206
2207 return c->page || c->partial;
2208 }
2209
2210 static void flush_all(struct kmem_cache *s)
2211 {
2212 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2213 }
2214
2215 /*
2216 * Check if the objects in a per cpu structure fit numa
2217 * locality expectations.
2218 */
2219 static inline int node_match(struct page *page, int node)
2220 {
2221 #ifdef CONFIG_NUMA
2222 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2223 return 0;
2224 #endif
2225 return 1;
2226 }
2227
2228 #ifdef CONFIG_SLUB_DEBUG
2229 static int count_free(struct page *page)
2230 {
2231 return page->objects - page->inuse;
2232 }
2233
2234 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2235 {
2236 return atomic_long_read(&n->total_objects);
2237 }
2238 #endif /* CONFIG_SLUB_DEBUG */
2239
2240 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2241 static unsigned long count_partial(struct kmem_cache_node *n,
2242 int (*get_count)(struct page *))
2243 {
2244 unsigned long flags;
2245 unsigned long x = 0;
2246 struct page *page;
2247
2248 spin_lock_irqsave(&n->list_lock, flags);
2249 list_for_each_entry(page, &n->partial, lru)
2250 x += get_count(page);
2251 spin_unlock_irqrestore(&n->list_lock, flags);
2252 return x;
2253 }
2254 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2255
2256 static noinline void
2257 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2258 {
2259 #ifdef CONFIG_SLUB_DEBUG
2260 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2261 DEFAULT_RATELIMIT_BURST);
2262 int node;
2263 struct kmem_cache_node *n;
2264
2265 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2266 return;
2267
2268 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2269 nid, gfpflags);
2270 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2271 s->name, s->object_size, s->size, oo_order(s->oo),
2272 oo_order(s->min));
2273
2274 if (oo_order(s->min) > get_order(s->object_size))
2275 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2276 s->name);
2277
2278 for_each_kmem_cache_node(s, node, n) {
2279 unsigned long nr_slabs;
2280 unsigned long nr_objs;
2281 unsigned long nr_free;
2282
2283 nr_free = count_partial(n, count_free);
2284 nr_slabs = node_nr_slabs(n);
2285 nr_objs = node_nr_objs(n);
2286
2287 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2288 node, nr_slabs, nr_objs, nr_free);
2289 }
2290 #endif
2291 }
2292
2293 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2294 int node, struct kmem_cache_cpu **pc)
2295 {
2296 void *freelist;
2297 struct kmem_cache_cpu *c = *pc;
2298 struct page *page;
2299
2300 freelist = get_partial(s, flags, node, c);
2301
2302 if (freelist)
2303 return freelist;
2304
2305 page = new_slab(s, flags, node);
2306 if (page) {
2307 c = raw_cpu_ptr(s->cpu_slab);
2308 if (c->page)
2309 flush_slab(s, c);
2310
2311 /*
2312 * No other reference to the page yet so we can
2313 * muck around with it freely without cmpxchg
2314 */
2315 freelist = page->freelist;
2316 page->freelist = NULL;
2317
2318 stat(s, ALLOC_SLAB);
2319 c->page = page;
2320 *pc = c;
2321 } else
2322 freelist = NULL;
2323
2324 return freelist;
2325 }
2326
2327 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2328 {
2329 if (unlikely(PageSlabPfmemalloc(page)))
2330 return gfp_pfmemalloc_allowed(gfpflags);
2331
2332 return true;
2333 }
2334
2335 /*
2336 * Check the page->freelist of a page and either transfer the freelist to the
2337 * per cpu freelist or deactivate the page.
2338 *
2339 * The page is still frozen if the return value is not NULL.
2340 *
2341 * If this function returns NULL then the page has been unfrozen.
2342 *
2343 * This function must be called with interrupt disabled.
2344 */
2345 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2346 {
2347 struct page new;
2348 unsigned long counters;
2349 void *freelist;
2350
2351 do {
2352 freelist = page->freelist;
2353 counters = page->counters;
2354
2355 new.counters = counters;
2356 VM_BUG_ON(!new.frozen);
2357
2358 new.inuse = page->objects;
2359 new.frozen = freelist != NULL;
2360
2361 } while (!__cmpxchg_double_slab(s, page,
2362 freelist, counters,
2363 NULL, new.counters,
2364 "get_freelist"));
2365
2366 return freelist;
2367 }
2368
2369 /*
2370 * Slow path. The lockless freelist is empty or we need to perform
2371 * debugging duties.
2372 *
2373 * Processing is still very fast if new objects have been freed to the
2374 * regular freelist. In that case we simply take over the regular freelist
2375 * as the lockless freelist and zap the regular freelist.
2376 *
2377 * If that is not working then we fall back to the partial lists. We take the
2378 * first element of the freelist as the object to allocate now and move the
2379 * rest of the freelist to the lockless freelist.
2380 *
2381 * And if we were unable to get a new slab from the partial slab lists then
2382 * we need to allocate a new slab. This is the slowest path since it involves
2383 * a call to the page allocator and the setup of a new slab.
2384 *
2385 * Version of __slab_alloc to use when we know that interrupts are
2386 * already disabled (which is the case for bulk allocation).
2387 */
2388 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2389 unsigned long addr, struct kmem_cache_cpu *c)
2390 {
2391 void *freelist;
2392 struct page *page;
2393
2394 page = c->page;
2395 if (!page)
2396 goto new_slab;
2397 redo:
2398
2399 if (unlikely(!node_match(page, node))) {
2400 int searchnode = node;
2401
2402 if (node != NUMA_NO_NODE && !node_present_pages(node))
2403 searchnode = node_to_mem_node(node);
2404
2405 if (unlikely(!node_match(page, searchnode))) {
2406 stat(s, ALLOC_NODE_MISMATCH);
2407 deactivate_slab(s, page, c->freelist);
2408 c->page = NULL;
2409 c->freelist = NULL;
2410 goto new_slab;
2411 }
2412 }
2413
2414 /*
2415 * By rights, we should be searching for a slab page that was
2416 * PFMEMALLOC but right now, we are losing the pfmemalloc
2417 * information when the page leaves the per-cpu allocator
2418 */
2419 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2420 deactivate_slab(s, page, c->freelist);
2421 c->page = NULL;
2422 c->freelist = NULL;
2423 goto new_slab;
2424 }
2425
2426 /* must check again c->freelist in case of cpu migration or IRQ */
2427 freelist = c->freelist;
2428 if (freelist)
2429 goto load_freelist;
2430
2431 freelist = get_freelist(s, page);
2432
2433 if (!freelist) {
2434 c->page = NULL;
2435 stat(s, DEACTIVATE_BYPASS);
2436 goto new_slab;
2437 }
2438
2439 stat(s, ALLOC_REFILL);
2440
2441 load_freelist:
2442 /*
2443 * freelist is pointing to the list of objects to be used.
2444 * page is pointing to the page from which the objects are obtained.
2445 * That page must be frozen for per cpu allocations to work.
2446 */
2447 VM_BUG_ON(!c->page->frozen);
2448 c->freelist = get_freepointer(s, freelist);
2449 c->tid = next_tid(c->tid);
2450 return freelist;
2451
2452 new_slab:
2453
2454 if (c->partial) {
2455 page = c->page = c->partial;
2456 c->partial = page->next;
2457 stat(s, CPU_PARTIAL_ALLOC);
2458 c->freelist = NULL;
2459 goto redo;
2460 }
2461
2462 freelist = new_slab_objects(s, gfpflags, node, &c);
2463
2464 if (unlikely(!freelist)) {
2465 slab_out_of_memory(s, gfpflags, node);
2466 return NULL;
2467 }
2468
2469 page = c->page;
2470 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2471 goto load_freelist;
2472
2473 /* Only entered in the debug case */
2474 if (kmem_cache_debug(s) &&
2475 !alloc_debug_processing(s, page, freelist, addr))
2476 goto new_slab; /* Slab failed checks. Next slab needed */
2477
2478 deactivate_slab(s, page, get_freepointer(s, freelist));
2479 c->page = NULL;
2480 c->freelist = NULL;
2481 return freelist;
2482 }
2483
2484 /*
2485 * Another one that disabled interrupt and compensates for possible
2486 * cpu changes by refetching the per cpu area pointer.
2487 */
2488 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2489 unsigned long addr, struct kmem_cache_cpu *c)
2490 {
2491 void *p;
2492 unsigned long flags;
2493
2494 local_irq_save(flags);
2495 #ifdef CONFIG_PREEMPT
2496 /*
2497 * We may have been preempted and rescheduled on a different
2498 * cpu before disabling interrupts. Need to reload cpu area
2499 * pointer.
2500 */
2501 c = this_cpu_ptr(s->cpu_slab);
2502 #endif
2503
2504 p = ___slab_alloc(s, gfpflags, node, addr, c);
2505 local_irq_restore(flags);
2506 return p;
2507 }
2508
2509 /*
2510 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2511 * have the fastpath folded into their functions. So no function call
2512 * overhead for requests that can be satisfied on the fastpath.
2513 *
2514 * The fastpath works by first checking if the lockless freelist can be used.
2515 * If not then __slab_alloc is called for slow processing.
2516 *
2517 * Otherwise we can simply pick the next object from the lockless free list.
2518 */
2519 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2520 gfp_t gfpflags, int node, unsigned long addr)
2521 {
2522 void *object;
2523 struct kmem_cache_cpu *c;
2524 struct page *page;
2525 unsigned long tid;
2526
2527 s = slab_pre_alloc_hook(s, gfpflags);
2528 if (!s)
2529 return NULL;
2530 redo:
2531 /*
2532 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2533 * enabled. We may switch back and forth between cpus while
2534 * reading from one cpu area. That does not matter as long
2535 * as we end up on the original cpu again when doing the cmpxchg.
2536 *
2537 * We should guarantee that tid and kmem_cache are retrieved on
2538 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2539 * to check if it is matched or not.
2540 */
2541 do {
2542 tid = this_cpu_read(s->cpu_slab->tid);
2543 c = raw_cpu_ptr(s->cpu_slab);
2544 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2545 unlikely(tid != READ_ONCE(c->tid)));
2546
2547 /*
2548 * Irqless object alloc/free algorithm used here depends on sequence
2549 * of fetching cpu_slab's data. tid should be fetched before anything
2550 * on c to guarantee that object and page associated with previous tid
2551 * won't be used with current tid. If we fetch tid first, object and
2552 * page could be one associated with next tid and our alloc/free
2553 * request will be failed. In this case, we will retry. So, no problem.
2554 */
2555 barrier();
2556
2557 /*
2558 * The transaction ids are globally unique per cpu and per operation on
2559 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2560 * occurs on the right processor and that there was no operation on the
2561 * linked list in between.
2562 */
2563
2564 object = c->freelist;
2565 page = c->page;
2566 if (unlikely(!object || !node_match(page, node))) {
2567 object = __slab_alloc(s, gfpflags, node, addr, c);
2568 stat(s, ALLOC_SLOWPATH);
2569 } else {
2570 void *next_object = get_freepointer_safe(s, object);
2571
2572 /*
2573 * The cmpxchg will only match if there was no additional
2574 * operation and if we are on the right processor.
2575 *
2576 * The cmpxchg does the following atomically (without lock
2577 * semantics!)
2578 * 1. Relocate first pointer to the current per cpu area.
2579 * 2. Verify that tid and freelist have not been changed
2580 * 3. If they were not changed replace tid and freelist
2581 *
2582 * Since this is without lock semantics the protection is only
2583 * against code executing on this cpu *not* from access by
2584 * other cpus.
2585 */
2586 if (unlikely(!this_cpu_cmpxchg_double(
2587 s->cpu_slab->freelist, s->cpu_slab->tid,
2588 object, tid,
2589 next_object, next_tid(tid)))) {
2590
2591 note_cmpxchg_failure("slab_alloc", s, tid);
2592 goto redo;
2593 }
2594 prefetch_freepointer(s, next_object);
2595 stat(s, ALLOC_FASTPATH);
2596 }
2597
2598 if (unlikely(gfpflags & __GFP_ZERO) && object)
2599 memset(object, 0, s->object_size);
2600
2601 slab_post_alloc_hook(s, gfpflags, 1, &object);
2602
2603 return object;
2604 }
2605
2606 static __always_inline void *slab_alloc(struct kmem_cache *s,
2607 gfp_t gfpflags, unsigned long addr)
2608 {
2609 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2610 }
2611
2612 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2613 {
2614 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2615
2616 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2617 s->size, gfpflags);
2618
2619 return ret;
2620 }
2621 EXPORT_SYMBOL(kmem_cache_alloc);
2622
2623 #ifdef CONFIG_TRACING
2624 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2625 {
2626 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2627 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2628 kasan_kmalloc(s, ret, size);
2629 return ret;
2630 }
2631 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2632 #endif
2633
2634 #ifdef CONFIG_NUMA
2635 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2636 {
2637 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2638
2639 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2640 s->object_size, s->size, gfpflags, node);
2641
2642 return ret;
2643 }
2644 EXPORT_SYMBOL(kmem_cache_alloc_node);
2645
2646 #ifdef CONFIG_TRACING
2647 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2648 gfp_t gfpflags,
2649 int node, size_t size)
2650 {
2651 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2652
2653 trace_kmalloc_node(_RET_IP_, ret,
2654 size, s->size, gfpflags, node);
2655
2656 kasan_kmalloc(s, ret, size);
2657 return ret;
2658 }
2659 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2660 #endif
2661 #endif
2662
2663 /*
2664 * Slow path handling. This may still be called frequently since objects
2665 * have a longer lifetime than the cpu slabs in most processing loads.
2666 *
2667 * So we still attempt to reduce cache line usage. Just take the slab
2668 * lock and free the item. If there is no additional partial page
2669 * handling required then we can return immediately.
2670 */
2671 static void __slab_free(struct kmem_cache *s, struct page *page,
2672 void *head, void *tail, int cnt,
2673 unsigned long addr)
2674
2675 {
2676 void *prior;
2677 int was_frozen;
2678 struct page new;
2679 unsigned long counters;
2680 struct kmem_cache_node *n = NULL;
2681 unsigned long uninitialized_var(flags);
2682
2683 stat(s, FREE_SLOWPATH);
2684
2685 if (kmem_cache_debug(s) &&
2686 !(n = free_debug_processing(s, page, head, tail, cnt,
2687 addr, &flags)))
2688 return;
2689
2690 do {
2691 if (unlikely(n)) {
2692 spin_unlock_irqrestore(&n->list_lock, flags);
2693 n = NULL;
2694 }
2695 prior = page->freelist;
2696 counters = page->counters;
2697 set_freepointer(s, tail, prior);
2698 new.counters = counters;
2699 was_frozen = new.frozen;
2700 new.inuse -= cnt;
2701 if ((!new.inuse || !prior) && !was_frozen) {
2702
2703 if (kmem_cache_has_cpu_partial(s) && !prior) {
2704
2705 /*
2706 * Slab was on no list before and will be
2707 * partially empty
2708 * We can defer the list move and instead
2709 * freeze it.
2710 */
2711 new.frozen = 1;
2712
2713 } else { /* Needs to be taken off a list */
2714
2715 n = get_node(s, page_to_nid(page));
2716 /*
2717 * Speculatively acquire the list_lock.
2718 * If the cmpxchg does not succeed then we may
2719 * drop the list_lock without any processing.
2720 *
2721 * Otherwise the list_lock will synchronize with
2722 * other processors updating the list of slabs.
2723 */
2724 spin_lock_irqsave(&n->list_lock, flags);
2725
2726 }
2727 }
2728
2729 } while (!cmpxchg_double_slab(s, page,
2730 prior, counters,
2731 head, new.counters,
2732 "__slab_free"));
2733
2734 if (likely(!n)) {
2735
2736 /*
2737 * If we just froze the page then put it onto the
2738 * per cpu partial list.
2739 */
2740 if (new.frozen && !was_frozen) {
2741 put_cpu_partial(s, page, 1);
2742 stat(s, CPU_PARTIAL_FREE);
2743 }
2744 /*
2745 * The list lock was not taken therefore no list
2746 * activity can be necessary.
2747 */
2748 if (was_frozen)
2749 stat(s, FREE_FROZEN);
2750 return;
2751 }
2752
2753 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2754 goto slab_empty;
2755
2756 /*
2757 * Objects left in the slab. If it was not on the partial list before
2758 * then add it.
2759 */
2760 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2761 if (kmem_cache_debug(s))
2762 remove_full(s, n, page);
2763 add_partial(n, page, DEACTIVATE_TO_TAIL);
2764 stat(s, FREE_ADD_PARTIAL);
2765 }
2766 spin_unlock_irqrestore(&n->list_lock, flags);
2767 return;
2768
2769 slab_empty:
2770 if (prior) {
2771 /*
2772 * Slab on the partial list.
2773 */
2774 remove_partial(n, page);
2775 stat(s, FREE_REMOVE_PARTIAL);
2776 } else {
2777 /* Slab must be on the full list */
2778 remove_full(s, n, page);
2779 }
2780
2781 spin_unlock_irqrestore(&n->list_lock, flags);
2782 stat(s, FREE_SLAB);
2783 discard_slab(s, page);
2784 }
2785
2786 /*
2787 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2788 * can perform fastpath freeing without additional function calls.
2789 *
2790 * The fastpath is only possible if we are freeing to the current cpu slab
2791 * of this processor. This typically the case if we have just allocated
2792 * the item before.
2793 *
2794 * If fastpath is not possible then fall back to __slab_free where we deal
2795 * with all sorts of special processing.
2796 *
2797 * Bulk free of a freelist with several objects (all pointing to the
2798 * same page) possible by specifying head and tail ptr, plus objects
2799 * count (cnt). Bulk free indicated by tail pointer being set.
2800 */
2801 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2802 void *head, void *tail, int cnt,
2803 unsigned long addr)
2804 {
2805 void *tail_obj = tail ? : head;
2806 struct kmem_cache_cpu *c;
2807 unsigned long tid;
2808
2809 slab_free_freelist_hook(s, head, tail);
2810
2811 redo:
2812 /*
2813 * Determine the currently cpus per cpu slab.
2814 * The cpu may change afterward. However that does not matter since
2815 * data is retrieved via this pointer. If we are on the same cpu
2816 * during the cmpxchg then the free will succeed.
2817 */
2818 do {
2819 tid = this_cpu_read(s->cpu_slab->tid);
2820 c = raw_cpu_ptr(s->cpu_slab);
2821 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2822 unlikely(tid != READ_ONCE(c->tid)));
2823
2824 /* Same with comment on barrier() in slab_alloc_node() */
2825 barrier();
2826
2827 if (likely(page == c->page)) {
2828 set_freepointer(s, tail_obj, c->freelist);
2829
2830 if (unlikely(!this_cpu_cmpxchg_double(
2831 s->cpu_slab->freelist, s->cpu_slab->tid,
2832 c->freelist, tid,
2833 head, next_tid(tid)))) {
2834
2835 note_cmpxchg_failure("slab_free", s, tid);
2836 goto redo;
2837 }
2838 stat(s, FREE_FASTPATH);
2839 } else
2840 __slab_free(s, page, head, tail_obj, cnt, addr);
2841
2842 }
2843
2844 void kmem_cache_free(struct kmem_cache *s, void *x)
2845 {
2846 s = cache_from_obj(s, x);
2847 if (!s)
2848 return;
2849 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2850 trace_kmem_cache_free(_RET_IP_, x);
2851 }
2852 EXPORT_SYMBOL(kmem_cache_free);
2853
2854 struct detached_freelist {
2855 struct page *page;
2856 void *tail;
2857 void *freelist;
2858 int cnt;
2859 };
2860
2861 /*
2862 * This function progressively scans the array with free objects (with
2863 * a limited look ahead) and extract objects belonging to the same
2864 * page. It builds a detached freelist directly within the given
2865 * page/objects. This can happen without any need for
2866 * synchronization, because the objects are owned by running process.
2867 * The freelist is build up as a single linked list in the objects.
2868 * The idea is, that this detached freelist can then be bulk
2869 * transferred to the real freelist(s), but only requiring a single
2870 * synchronization primitive. Look ahead in the array is limited due
2871 * to performance reasons.
2872 */
2873 static int build_detached_freelist(struct kmem_cache *s, size_t size,
2874 void **p, struct detached_freelist *df)
2875 {
2876 size_t first_skipped_index = 0;
2877 int lookahead = 3;
2878 void *object;
2879
2880 /* Always re-init detached_freelist */
2881 df->page = NULL;
2882
2883 do {
2884 object = p[--size];
2885 } while (!object && size);
2886
2887 if (!object)
2888 return 0;
2889
2890 /* Start new detached freelist */
2891 set_freepointer(s, object, NULL);
2892 df->page = virt_to_head_page(object);
2893 df->tail = object;
2894 df->freelist = object;
2895 p[size] = NULL; /* mark object processed */
2896 df->cnt = 1;
2897
2898 while (size) {
2899 object = p[--size];
2900 if (!object)
2901 continue; /* Skip processed objects */
2902
2903 /* df->page is always set at this point */
2904 if (df->page == virt_to_head_page(object)) {
2905 /* Opportunity build freelist */
2906 set_freepointer(s, object, df->freelist);
2907 df->freelist = object;
2908 df->cnt++;
2909 p[size] = NULL; /* mark object processed */
2910
2911 continue;
2912 }
2913
2914 /* Limit look ahead search */
2915 if (!--lookahead)
2916 break;
2917
2918 if (!first_skipped_index)
2919 first_skipped_index = size + 1;
2920 }
2921
2922 return first_skipped_index;
2923 }
2924
2925
2926 /* Note that interrupts must be enabled when calling this function. */
2927 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2928 {
2929 if (WARN_ON(!size))
2930 return;
2931
2932 do {
2933 struct detached_freelist df;
2934 struct kmem_cache *s;
2935
2936 /* Support for memcg */
2937 s = cache_from_obj(orig_s, p[size - 1]);
2938
2939 size = build_detached_freelist(s, size, p, &df);
2940 if (unlikely(!df.page))
2941 continue;
2942
2943 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2944 } while (likely(size));
2945 }
2946 EXPORT_SYMBOL(kmem_cache_free_bulk);
2947
2948 /* Note that interrupts must be enabled when calling this function. */
2949 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2950 void **p)
2951 {
2952 struct kmem_cache_cpu *c;
2953 int i;
2954
2955 /* memcg and kmem_cache debug support */
2956 s = slab_pre_alloc_hook(s, flags);
2957 if (unlikely(!s))
2958 return false;
2959 /*
2960 * Drain objects in the per cpu slab, while disabling local
2961 * IRQs, which protects against PREEMPT and interrupts
2962 * handlers invoking normal fastpath.
2963 */
2964 local_irq_disable();
2965 c = this_cpu_ptr(s->cpu_slab);
2966
2967 for (i = 0; i < size; i++) {
2968 void *object = c->freelist;
2969
2970 if (unlikely(!object)) {
2971 /*
2972 * Invoking slow path likely have side-effect
2973 * of re-populating per CPU c->freelist
2974 */
2975 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2976 _RET_IP_, c);
2977 if (unlikely(!p[i]))
2978 goto error;
2979
2980 c = this_cpu_ptr(s->cpu_slab);
2981 continue; /* goto for-loop */
2982 }
2983 c->freelist = get_freepointer(s, object);
2984 p[i] = object;
2985 }
2986 c->tid = next_tid(c->tid);
2987 local_irq_enable();
2988
2989 /* Clear memory outside IRQ disabled fastpath loop */
2990 if (unlikely(flags & __GFP_ZERO)) {
2991 int j;
2992
2993 for (j = 0; j < i; j++)
2994 memset(p[j], 0, s->object_size);
2995 }
2996
2997 /* memcg and kmem_cache debug support */
2998 slab_post_alloc_hook(s, flags, size, p);
2999 return i;
3000 error:
3001 local_irq_enable();
3002 slab_post_alloc_hook(s, flags, i, p);
3003 __kmem_cache_free_bulk(s, i, p);
3004 return 0;
3005 }
3006 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3007
3008
3009 /*
3010 * Object placement in a slab is made very easy because we always start at
3011 * offset 0. If we tune the size of the object to the alignment then we can
3012 * get the required alignment by putting one properly sized object after
3013 * another.
3014 *
3015 * Notice that the allocation order determines the sizes of the per cpu
3016 * caches. Each processor has always one slab available for allocations.
3017 * Increasing the allocation order reduces the number of times that slabs
3018 * must be moved on and off the partial lists and is therefore a factor in
3019 * locking overhead.
3020 */
3021
3022 /*
3023 * Mininum / Maximum order of slab pages. This influences locking overhead
3024 * and slab fragmentation. A higher order reduces the number of partial slabs
3025 * and increases the number of allocations possible without having to
3026 * take the list_lock.
3027 */
3028 static int slub_min_order;
3029 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3030 static int slub_min_objects;
3031
3032 /*
3033 * Calculate the order of allocation given an slab object size.
3034 *
3035 * The order of allocation has significant impact on performance and other
3036 * system components. Generally order 0 allocations should be preferred since
3037 * order 0 does not cause fragmentation in the page allocator. Larger objects
3038 * be problematic to put into order 0 slabs because there may be too much
3039 * unused space left. We go to a higher order if more than 1/16th of the slab
3040 * would be wasted.
3041 *
3042 * In order to reach satisfactory performance we must ensure that a minimum
3043 * number of objects is in one slab. Otherwise we may generate too much
3044 * activity on the partial lists which requires taking the list_lock. This is
3045 * less a concern for large slabs though which are rarely used.
3046 *
3047 * slub_max_order specifies the order where we begin to stop considering the
3048 * number of objects in a slab as critical. If we reach slub_max_order then
3049 * we try to keep the page order as low as possible. So we accept more waste
3050 * of space in favor of a small page order.
3051 *
3052 * Higher order allocations also allow the placement of more objects in a
3053 * slab and thereby reduce object handling overhead. If the user has
3054 * requested a higher mininum order then we start with that one instead of
3055 * the smallest order which will fit the object.
3056 */
3057 static inline int slab_order(int size, int min_objects,
3058 int max_order, int fract_leftover, int reserved)
3059 {
3060 int order;
3061 int rem;
3062 int min_order = slub_min_order;
3063
3064 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3065 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3066
3067 for (order = max(min_order, get_order(min_objects * size + reserved));
3068 order <= max_order; order++) {
3069
3070 unsigned long slab_size = PAGE_SIZE << order;
3071
3072 rem = (slab_size - reserved) % size;
3073
3074 if (rem <= slab_size / fract_leftover)
3075 break;
3076 }
3077
3078 return order;
3079 }
3080
3081 static inline int calculate_order(int size, int reserved)
3082 {
3083 int order;
3084 int min_objects;
3085 int fraction;
3086 int max_objects;
3087
3088 /*
3089 * Attempt to find best configuration for a slab. This
3090 * works by first attempting to generate a layout with
3091 * the best configuration and backing off gradually.
3092 *
3093 * First we increase the acceptable waste in a slab. Then
3094 * we reduce the minimum objects required in a slab.
3095 */
3096 min_objects = slub_min_objects;
3097 if (!min_objects)
3098 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3099 max_objects = order_objects(slub_max_order, size, reserved);
3100 min_objects = min(min_objects, max_objects);
3101
3102 while (min_objects > 1) {
3103 fraction = 16;
3104 while (fraction >= 4) {
3105 order = slab_order(size, min_objects,
3106 slub_max_order, fraction, reserved);
3107 if (order <= slub_max_order)
3108 return order;
3109 fraction /= 2;
3110 }
3111 min_objects--;
3112 }
3113
3114 /*
3115 * We were unable to place multiple objects in a slab. Now
3116 * lets see if we can place a single object there.
3117 */
3118 order = slab_order(size, 1, slub_max_order, 1, reserved);
3119 if (order <= slub_max_order)
3120 return order;
3121
3122 /*
3123 * Doh this slab cannot be placed using slub_max_order.
3124 */
3125 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3126 if (order < MAX_ORDER)
3127 return order;
3128 return -ENOSYS;
3129 }
3130
3131 static void
3132 init_kmem_cache_node(struct kmem_cache_node *n)
3133 {
3134 n->nr_partial = 0;
3135 spin_lock_init(&n->list_lock);
3136 INIT_LIST_HEAD(&n->partial);
3137 #ifdef CONFIG_SLUB_DEBUG
3138 atomic_long_set(&n->nr_slabs, 0);
3139 atomic_long_set(&n->total_objects, 0);
3140 INIT_LIST_HEAD(&n->full);
3141 #endif
3142 }
3143
3144 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3145 {
3146 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3147 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3148
3149 /*
3150 * Must align to double word boundary for the double cmpxchg
3151 * instructions to work; see __pcpu_double_call_return_bool().
3152 */
3153 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3154 2 * sizeof(void *));
3155
3156 if (!s->cpu_slab)
3157 return 0;
3158
3159 init_kmem_cache_cpus(s);
3160
3161 return 1;
3162 }
3163
3164 static struct kmem_cache *kmem_cache_node;
3165
3166 /*
3167 * No kmalloc_node yet so do it by hand. We know that this is the first
3168 * slab on the node for this slabcache. There are no concurrent accesses
3169 * possible.
3170 *
3171 * Note that this function only works on the kmem_cache_node
3172 * when allocating for the kmem_cache_node. This is used for bootstrapping
3173 * memory on a fresh node that has no slab structures yet.
3174 */
3175 static void early_kmem_cache_node_alloc(int node)
3176 {
3177 struct page *page;
3178 struct kmem_cache_node *n;
3179
3180 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3181
3182 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3183
3184 BUG_ON(!page);
3185 if (page_to_nid(page) != node) {
3186 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3187 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3188 }
3189
3190 n = page->freelist;
3191 BUG_ON(!n);
3192 page->freelist = get_freepointer(kmem_cache_node, n);
3193 page->inuse = 1;
3194 page->frozen = 0;
3195 kmem_cache_node->node[node] = n;
3196 #ifdef CONFIG_SLUB_DEBUG
3197 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3198 init_tracking(kmem_cache_node, n);
3199 #endif
3200 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3201 init_kmem_cache_node(n);
3202 inc_slabs_node(kmem_cache_node, node, page->objects);
3203
3204 /*
3205 * No locks need to be taken here as it has just been
3206 * initialized and there is no concurrent access.
3207 */
3208 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3209 }
3210
3211 static void free_kmem_cache_nodes(struct kmem_cache *s)
3212 {
3213 int node;
3214 struct kmem_cache_node *n;
3215
3216 for_each_kmem_cache_node(s, node, n) {
3217 kmem_cache_free(kmem_cache_node, n);
3218 s->node[node] = NULL;
3219 }
3220 }
3221
3222 static int init_kmem_cache_nodes(struct kmem_cache *s)
3223 {
3224 int node;
3225
3226 for_each_node_state(node, N_NORMAL_MEMORY) {
3227 struct kmem_cache_node *n;
3228
3229 if (slab_state == DOWN) {
3230 early_kmem_cache_node_alloc(node);
3231 continue;
3232 }
3233 n = kmem_cache_alloc_node(kmem_cache_node,
3234 GFP_KERNEL, node);
3235
3236 if (!n) {
3237 free_kmem_cache_nodes(s);
3238 return 0;
3239 }
3240
3241 s->node[node] = n;
3242 init_kmem_cache_node(n);
3243 }
3244 return 1;
3245 }
3246
3247 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3248 {
3249 if (min < MIN_PARTIAL)
3250 min = MIN_PARTIAL;
3251 else if (min > MAX_PARTIAL)
3252 min = MAX_PARTIAL;
3253 s->min_partial = min;
3254 }
3255
3256 /*
3257 * calculate_sizes() determines the order and the distribution of data within
3258 * a slab object.
3259 */
3260 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3261 {
3262 unsigned long flags = s->flags;
3263 unsigned long size = s->object_size;
3264 int order;
3265
3266 /*
3267 * Round up object size to the next word boundary. We can only
3268 * place the free pointer at word boundaries and this determines
3269 * the possible location of the free pointer.
3270 */
3271 size = ALIGN(size, sizeof(void *));
3272
3273 #ifdef CONFIG_SLUB_DEBUG
3274 /*
3275 * Determine if we can poison the object itself. If the user of
3276 * the slab may touch the object after free or before allocation
3277 * then we should never poison the object itself.
3278 */
3279 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3280 !s->ctor)
3281 s->flags |= __OBJECT_POISON;
3282 else
3283 s->flags &= ~__OBJECT_POISON;
3284
3285
3286 /*
3287 * If we are Redzoning then check if there is some space between the
3288 * end of the object and the free pointer. If not then add an
3289 * additional word to have some bytes to store Redzone information.
3290 */
3291 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3292 size += sizeof(void *);
3293 #endif
3294
3295 /*
3296 * With that we have determined the number of bytes in actual use
3297 * by the object. This is the potential offset to the free pointer.
3298 */
3299 s->inuse = size;
3300
3301 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3302 s->ctor)) {
3303 /*
3304 * Relocate free pointer after the object if it is not
3305 * permitted to overwrite the first word of the object on
3306 * kmem_cache_free.
3307 *
3308 * This is the case if we do RCU, have a constructor or
3309 * destructor or are poisoning the objects.
3310 */
3311 s->offset = size;
3312 size += sizeof(void *);
3313 }
3314
3315 #ifdef CONFIG_SLUB_DEBUG
3316 if (flags & SLAB_STORE_USER)
3317 /*
3318 * Need to store information about allocs and frees after
3319 * the object.
3320 */
3321 size += 2 * sizeof(struct track);
3322
3323 if (flags & SLAB_RED_ZONE) {
3324 /*
3325 * Add some empty padding so that we can catch
3326 * overwrites from earlier objects rather than let
3327 * tracking information or the free pointer be
3328 * corrupted if a user writes before the start
3329 * of the object.
3330 */
3331 size += sizeof(void *);
3332
3333 s->red_left_pad = sizeof(void *);
3334 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3335 size += s->red_left_pad;
3336 }
3337 #endif
3338
3339 /*
3340 * SLUB stores one object immediately after another beginning from
3341 * offset 0. In order to align the objects we have to simply size
3342 * each object to conform to the alignment.
3343 */
3344 size = ALIGN(size, s->align);
3345 s->size = size;
3346 if (forced_order >= 0)
3347 order = forced_order;
3348 else
3349 order = calculate_order(size, s->reserved);
3350
3351 if (order < 0)
3352 return 0;
3353
3354 s->allocflags = 0;
3355 if (order)
3356 s->allocflags |= __GFP_COMP;
3357
3358 if (s->flags & SLAB_CACHE_DMA)
3359 s->allocflags |= GFP_DMA;
3360
3361 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3362 s->allocflags |= __GFP_RECLAIMABLE;
3363
3364 /*
3365 * Determine the number of objects per slab
3366 */
3367 s->oo = oo_make(order, size, s->reserved);
3368 s->min = oo_make(get_order(size), size, s->reserved);
3369 if (oo_objects(s->oo) > oo_objects(s->max))
3370 s->max = s->oo;
3371
3372 return !!oo_objects(s->oo);
3373 }
3374
3375 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3376 {
3377 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3378 s->reserved = 0;
3379
3380 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3381 s->reserved = sizeof(struct rcu_head);
3382
3383 if (!calculate_sizes(s, -1))
3384 goto error;
3385 if (disable_higher_order_debug) {
3386 /*
3387 * Disable debugging flags that store metadata if the min slab
3388 * order increased.
3389 */
3390 if (get_order(s->size) > get_order(s->object_size)) {
3391 s->flags &= ~DEBUG_METADATA_FLAGS;
3392 s->offset = 0;
3393 if (!calculate_sizes(s, -1))
3394 goto error;
3395 }
3396 }
3397
3398 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3399 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3400 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3401 /* Enable fast mode */
3402 s->flags |= __CMPXCHG_DOUBLE;
3403 #endif
3404
3405 /*
3406 * The larger the object size is, the more pages we want on the partial
3407 * list to avoid pounding the page allocator excessively.
3408 */
3409 set_min_partial(s, ilog2(s->size) / 2);
3410
3411 /*
3412 * cpu_partial determined the maximum number of objects kept in the
3413 * per cpu partial lists of a processor.
3414 *
3415 * Per cpu partial lists mainly contain slabs that just have one
3416 * object freed. If they are used for allocation then they can be
3417 * filled up again with minimal effort. The slab will never hit the
3418 * per node partial lists and therefore no locking will be required.
3419 *
3420 * This setting also determines
3421 *
3422 * A) The number of objects from per cpu partial slabs dumped to the
3423 * per node list when we reach the limit.
3424 * B) The number of objects in cpu partial slabs to extract from the
3425 * per node list when we run out of per cpu objects. We only fetch
3426 * 50% to keep some capacity around for frees.
3427 */
3428 if (!kmem_cache_has_cpu_partial(s))
3429 s->cpu_partial = 0;
3430 else if (s->size >= PAGE_SIZE)
3431 s->cpu_partial = 2;
3432 else if (s->size >= 1024)
3433 s->cpu_partial = 6;
3434 else if (s->size >= 256)
3435 s->cpu_partial = 13;
3436 else
3437 s->cpu_partial = 30;
3438
3439 #ifdef CONFIG_NUMA
3440 s->remote_node_defrag_ratio = 1000;
3441 #endif
3442 if (!init_kmem_cache_nodes(s))
3443 goto error;
3444
3445 if (alloc_kmem_cache_cpus(s))
3446 return 0;
3447
3448 free_kmem_cache_nodes(s);
3449 error:
3450 if (flags & SLAB_PANIC)
3451 panic("Cannot create slab %s size=%lu realsize=%u "
3452 "order=%u offset=%u flags=%lx\n",
3453 s->name, (unsigned long)s->size, s->size,
3454 oo_order(s->oo), s->offset, flags);
3455 return -EINVAL;
3456 }
3457
3458 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3459 const char *text)
3460 {
3461 #ifdef CONFIG_SLUB_DEBUG
3462 void *addr = page_address(page);
3463 void *p;
3464 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3465 sizeof(long), GFP_ATOMIC);
3466 if (!map)
3467 return;
3468 slab_err(s, page, text, s->name);
3469 slab_lock(page);
3470
3471 get_map(s, page, map);
3472 for_each_object(p, s, addr, page->objects) {
3473
3474 if (!test_bit(slab_index(p, s, addr), map)) {
3475 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3476 print_tracking(s, p);
3477 }
3478 }
3479 slab_unlock(page);
3480 kfree(map);
3481 #endif
3482 }
3483
3484 /*
3485 * Attempt to free all partial slabs on a node.
3486 * This is called from kmem_cache_close(). We must be the last thread
3487 * using the cache and therefore we do not need to lock anymore.
3488 */
3489 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3490 {
3491 struct page *page, *h;
3492
3493 list_for_each_entry_safe(page, h, &n->partial, lru) {
3494 if (!page->inuse) {
3495 __remove_partial(n, page);
3496 discard_slab(s, page);
3497 } else {
3498 list_slab_objects(s, page,
3499 "Objects remaining in %s on kmem_cache_close()");
3500 }
3501 }
3502 }
3503
3504 /*
3505 * Release all resources used by a slab cache.
3506 */
3507 static inline int kmem_cache_close(struct kmem_cache *s)
3508 {
3509 int node;
3510 struct kmem_cache_node *n;
3511
3512 flush_all(s);
3513 /* Attempt to free all objects */
3514 for_each_kmem_cache_node(s, node, n) {
3515 free_partial(s, n);
3516 if (n->nr_partial || slabs_node(s, node))
3517 return 1;
3518 }
3519 free_percpu(s->cpu_slab);
3520 free_kmem_cache_nodes(s);
3521 return 0;
3522 }
3523
3524 int __kmem_cache_shutdown(struct kmem_cache *s)
3525 {
3526 return kmem_cache_close(s);
3527 }
3528
3529 /********************************************************************
3530 * Kmalloc subsystem
3531 *******************************************************************/
3532
3533 static int __init setup_slub_min_order(char *str)
3534 {
3535 get_option(&str, &slub_min_order);
3536
3537 return 1;
3538 }
3539
3540 __setup("slub_min_order=", setup_slub_min_order);
3541
3542 static int __init setup_slub_max_order(char *str)
3543 {
3544 get_option(&str, &slub_max_order);
3545 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3546
3547 return 1;
3548 }
3549
3550 __setup("slub_max_order=", setup_slub_max_order);
3551
3552 static int __init setup_slub_min_objects(char *str)
3553 {
3554 get_option(&str, &slub_min_objects);
3555
3556 return 1;
3557 }
3558
3559 __setup("slub_min_objects=", setup_slub_min_objects);
3560
3561 void *__kmalloc(size_t size, gfp_t flags)
3562 {
3563 struct kmem_cache *s;
3564 void *ret;
3565
3566 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3567 return kmalloc_large(size, flags);
3568
3569 s = kmalloc_slab(size, flags);
3570
3571 if (unlikely(ZERO_OR_NULL_PTR(s)))
3572 return s;
3573
3574 ret = slab_alloc(s, flags, _RET_IP_);
3575
3576 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3577
3578 kasan_kmalloc(s, ret, size);
3579
3580 return ret;
3581 }
3582 EXPORT_SYMBOL(__kmalloc);
3583
3584 #ifdef CONFIG_NUMA
3585 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3586 {
3587 struct page *page;
3588 void *ptr = NULL;
3589
3590 flags |= __GFP_COMP | __GFP_NOTRACK;
3591 page = alloc_kmem_pages_node(node, flags, get_order(size));
3592 if (page)
3593 ptr = page_address(page);
3594
3595 kmalloc_large_node_hook(ptr, size, flags);
3596 return ptr;
3597 }
3598
3599 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3600 {
3601 struct kmem_cache *s;
3602 void *ret;
3603
3604 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3605 ret = kmalloc_large_node(size, flags, node);
3606
3607 trace_kmalloc_node(_RET_IP_, ret,
3608 size, PAGE_SIZE << get_order(size),
3609 flags, node);
3610
3611 return ret;
3612 }
3613
3614 s = kmalloc_slab(size, flags);
3615
3616 if (unlikely(ZERO_OR_NULL_PTR(s)))
3617 return s;
3618
3619 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3620
3621 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3622
3623 kasan_kmalloc(s, ret, size);
3624
3625 return ret;
3626 }
3627 EXPORT_SYMBOL(__kmalloc_node);
3628 #endif
3629
3630 #ifdef CONFIG_HARDENED_USERCOPY
3631 /*
3632 * Rejects objects that are incorrectly sized.
3633 *
3634 * Returns NULL if check passes, otherwise const char * to name of cache
3635 * to indicate an error.
3636 */
3637 const char *__check_heap_object(const void *ptr, unsigned long n,
3638 struct page *page)
3639 {
3640 struct kmem_cache *s;
3641 unsigned long offset;
3642 size_t object_size;
3643
3644 /* Find object and usable object size. */
3645 s = page->slab_cache;
3646 object_size = slab_ksize(s);
3647
3648 /* Reject impossible pointers. */
3649 if (ptr < page_address(page))
3650 return s->name;
3651
3652 /* Find offset within object. */
3653 offset = (ptr - page_address(page)) % s->size;
3654
3655 /* Adjust for redzone and reject if within the redzone. */
3656 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3657 if (offset < s->red_left_pad)
3658 return s->name;
3659 offset -= s->red_left_pad;
3660 }
3661
3662 /* Allow address range falling entirely within object size. */
3663 if (offset <= object_size && n <= object_size - offset)
3664 return NULL;
3665
3666 return s->name;
3667 }
3668 #endif /* CONFIG_HARDENED_USERCOPY */
3669
3670 static size_t __ksize(const void *object)
3671 {
3672 struct page *page;
3673
3674 if (unlikely(object == ZERO_SIZE_PTR))
3675 return 0;
3676
3677 page = virt_to_head_page(object);
3678
3679 if (unlikely(!PageSlab(page))) {
3680 WARN_ON(!PageCompound(page));
3681 return PAGE_SIZE << compound_order(page);
3682 }
3683
3684 return slab_ksize(page->slab_cache);
3685 }
3686
3687 size_t ksize(const void *object)
3688 {
3689 size_t size = __ksize(object);
3690 /* We assume that ksize callers could use whole allocated area,
3691 so we need unpoison this area. */
3692 kasan_krealloc(object, size);
3693 return size;
3694 }
3695 EXPORT_SYMBOL(ksize);
3696
3697 void kfree(const void *x)
3698 {
3699 struct page *page;
3700 void *object = (void *)x;
3701
3702 trace_kfree(_RET_IP_, x);
3703
3704 if (unlikely(ZERO_OR_NULL_PTR(x)))
3705 return;
3706
3707 page = virt_to_head_page(x);
3708 if (unlikely(!PageSlab(page))) {
3709 BUG_ON(!PageCompound(page));
3710 kfree_hook(x);
3711 __free_kmem_pages(page, compound_order(page));
3712 return;
3713 }
3714 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3715 }
3716 EXPORT_SYMBOL(kfree);
3717
3718 #define SHRINK_PROMOTE_MAX 32
3719
3720 /*
3721 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3722 * up most to the head of the partial lists. New allocations will then
3723 * fill those up and thus they can be removed from the partial lists.
3724 *
3725 * The slabs with the least items are placed last. This results in them
3726 * being allocated from last increasing the chance that the last objects
3727 * are freed in them.
3728 */
3729 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3730 {
3731 int node;
3732 int i;
3733 struct kmem_cache_node *n;
3734 struct page *page;
3735 struct page *t;
3736 struct list_head discard;
3737 struct list_head promote[SHRINK_PROMOTE_MAX];
3738 unsigned long flags;
3739 int ret = 0;
3740
3741 if (deactivate) {
3742 /*
3743 * Disable empty slabs caching. Used to avoid pinning offline
3744 * memory cgroups by kmem pages that can be freed.
3745 */
3746 s->cpu_partial = 0;
3747 s->min_partial = 0;
3748
3749 /*
3750 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3751 * so we have to make sure the change is visible.
3752 */
3753 kick_all_cpus_sync();
3754 }
3755
3756 flush_all(s);
3757 for_each_kmem_cache_node(s, node, n) {
3758 INIT_LIST_HEAD(&discard);
3759 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3760 INIT_LIST_HEAD(promote + i);
3761
3762 spin_lock_irqsave(&n->list_lock, flags);
3763
3764 /*
3765 * Build lists of slabs to discard or promote.
3766 *
3767 * Note that concurrent frees may occur while we hold the
3768 * list_lock. page->inuse here is the upper limit.
3769 */
3770 list_for_each_entry_safe(page, t, &n->partial, lru) {
3771 int free = page->objects - page->inuse;
3772
3773 /* Do not reread page->inuse */
3774 barrier();
3775
3776 /* We do not keep full slabs on the list */
3777 BUG_ON(free <= 0);
3778
3779 if (free == page->objects) {
3780 list_move(&page->lru, &discard);
3781 n->nr_partial--;
3782 } else if (free <= SHRINK_PROMOTE_MAX)
3783 list_move(&page->lru, promote + free - 1);
3784 }
3785
3786 /*
3787 * Promote the slabs filled up most to the head of the
3788 * partial list.
3789 */
3790 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3791 list_splice(promote + i, &n->partial);
3792
3793 spin_unlock_irqrestore(&n->list_lock, flags);
3794
3795 /* Release empty slabs */
3796 list_for_each_entry_safe(page, t, &discard, lru)
3797 discard_slab(s, page);
3798
3799 if (slabs_node(s, node))
3800 ret = 1;
3801 }
3802
3803 return ret;
3804 }
3805
3806 static int slab_mem_going_offline_callback(void *arg)
3807 {
3808 struct kmem_cache *s;
3809
3810 mutex_lock(&slab_mutex);
3811 list_for_each_entry(s, &slab_caches, list)
3812 __kmem_cache_shrink(s, false);
3813 mutex_unlock(&slab_mutex);
3814
3815 return 0;
3816 }
3817
3818 static void slab_mem_offline_callback(void *arg)
3819 {
3820 struct kmem_cache_node *n;
3821 struct kmem_cache *s;
3822 struct memory_notify *marg = arg;
3823 int offline_node;
3824
3825 offline_node = marg->status_change_nid_normal;
3826
3827 /*
3828 * If the node still has available memory. we need kmem_cache_node
3829 * for it yet.
3830 */
3831 if (offline_node < 0)
3832 return;
3833
3834 mutex_lock(&slab_mutex);
3835 list_for_each_entry(s, &slab_caches, list) {
3836 n = get_node(s, offline_node);
3837 if (n) {
3838 /*
3839 * if n->nr_slabs > 0, slabs still exist on the node
3840 * that is going down. We were unable to free them,
3841 * and offline_pages() function shouldn't call this
3842 * callback. So, we must fail.
3843 */
3844 BUG_ON(slabs_node(s, offline_node));
3845
3846 s->node[offline_node] = NULL;
3847 kmem_cache_free(kmem_cache_node, n);
3848 }
3849 }
3850 mutex_unlock(&slab_mutex);
3851 }
3852
3853 static int slab_mem_going_online_callback(void *arg)
3854 {
3855 struct kmem_cache_node *n;
3856 struct kmem_cache *s;
3857 struct memory_notify *marg = arg;
3858 int nid = marg->status_change_nid_normal;
3859 int ret = 0;
3860
3861 /*
3862 * If the node's memory is already available, then kmem_cache_node is
3863 * already created. Nothing to do.
3864 */
3865 if (nid < 0)
3866 return 0;
3867
3868 /*
3869 * We are bringing a node online. No memory is available yet. We must
3870 * allocate a kmem_cache_node structure in order to bring the node
3871 * online.
3872 */
3873 mutex_lock(&slab_mutex);
3874 list_for_each_entry(s, &slab_caches, list) {
3875 /*
3876 * XXX: kmem_cache_alloc_node will fallback to other nodes
3877 * since memory is not yet available from the node that
3878 * is brought up.
3879 */
3880 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3881 if (!n) {
3882 ret = -ENOMEM;
3883 goto out;
3884 }
3885 init_kmem_cache_node(n);
3886 s->node[nid] = n;
3887 }
3888 out:
3889 mutex_unlock(&slab_mutex);
3890 return ret;
3891 }
3892
3893 static int slab_memory_callback(struct notifier_block *self,
3894 unsigned long action, void *arg)
3895 {
3896 int ret = 0;
3897
3898 switch (action) {
3899 case MEM_GOING_ONLINE:
3900 ret = slab_mem_going_online_callback(arg);
3901 break;
3902 case MEM_GOING_OFFLINE:
3903 ret = slab_mem_going_offline_callback(arg);
3904 break;
3905 case MEM_OFFLINE:
3906 case MEM_CANCEL_ONLINE:
3907 slab_mem_offline_callback(arg);
3908 break;
3909 case MEM_ONLINE:
3910 case MEM_CANCEL_OFFLINE:
3911 break;
3912 }
3913 if (ret)
3914 ret = notifier_from_errno(ret);
3915 else
3916 ret = NOTIFY_OK;
3917 return ret;
3918 }
3919
3920 static struct notifier_block slab_memory_callback_nb = {
3921 .notifier_call = slab_memory_callback,
3922 .priority = SLAB_CALLBACK_PRI,
3923 };
3924
3925 /********************************************************************
3926 * Basic setup of slabs
3927 *******************************************************************/
3928
3929 /*
3930 * Used for early kmem_cache structures that were allocated using
3931 * the page allocator. Allocate them properly then fix up the pointers
3932 * that may be pointing to the wrong kmem_cache structure.
3933 */
3934
3935 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3936 {
3937 int node;
3938 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3939 struct kmem_cache_node *n;
3940
3941 memcpy(s, static_cache, kmem_cache->object_size);
3942
3943 /*
3944 * This runs very early, and only the boot processor is supposed to be
3945 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3946 * IPIs around.
3947 */
3948 __flush_cpu_slab(s, smp_processor_id());
3949 for_each_kmem_cache_node(s, node, n) {
3950 struct page *p;
3951
3952 list_for_each_entry(p, &n->partial, lru)
3953 p->slab_cache = s;
3954
3955 #ifdef CONFIG_SLUB_DEBUG
3956 list_for_each_entry(p, &n->full, lru)
3957 p->slab_cache = s;
3958 #endif
3959 }
3960 slab_init_memcg_params(s);
3961 list_add(&s->list, &slab_caches);
3962 return s;
3963 }
3964
3965 void __init kmem_cache_init(void)
3966 {
3967 static __initdata struct kmem_cache boot_kmem_cache,
3968 boot_kmem_cache_node;
3969
3970 if (debug_guardpage_minorder())
3971 slub_max_order = 0;
3972
3973 kmem_cache_node = &boot_kmem_cache_node;
3974 kmem_cache = &boot_kmem_cache;
3975
3976 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3977 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3978
3979 register_hotmemory_notifier(&slab_memory_callback_nb);
3980
3981 /* Able to allocate the per node structures */
3982 slab_state = PARTIAL;
3983
3984 create_boot_cache(kmem_cache, "kmem_cache",
3985 offsetof(struct kmem_cache, node) +
3986 nr_node_ids * sizeof(struct kmem_cache_node *),
3987 SLAB_HWCACHE_ALIGN);
3988
3989 kmem_cache = bootstrap(&boot_kmem_cache);
3990
3991 /*
3992 * Allocate kmem_cache_node properly from the kmem_cache slab.
3993 * kmem_cache_node is separately allocated so no need to
3994 * update any list pointers.
3995 */
3996 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3997
3998 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3999 setup_kmalloc_cache_index_table();
4000 create_kmalloc_caches(0);
4001
4002 #ifdef CONFIG_SMP
4003 register_cpu_notifier(&slab_notifier);
4004 #endif
4005
4006 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4007 cache_line_size(),
4008 slub_min_order, slub_max_order, slub_min_objects,
4009 nr_cpu_ids, nr_node_ids);
4010 }
4011
4012 void __init kmem_cache_init_late(void)
4013 {
4014 }
4015
4016 struct kmem_cache *
4017 __kmem_cache_alias(const char *name, size_t size, size_t align,
4018 unsigned long flags, void (*ctor)(void *))
4019 {
4020 struct kmem_cache *s, *c;
4021
4022 s = find_mergeable(size, align, flags, name, ctor);
4023 if (s) {
4024 s->refcount++;
4025
4026 /*
4027 * Adjust the object sizes so that we clear
4028 * the complete object on kzalloc.
4029 */
4030 s->object_size = max(s->object_size, (int)size);
4031 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4032
4033 for_each_memcg_cache(c, s) {
4034 c->object_size = s->object_size;
4035 c->inuse = max_t(int, c->inuse,
4036 ALIGN(size, sizeof(void *)));
4037 }
4038
4039 if (sysfs_slab_alias(s, name)) {
4040 s->refcount--;
4041 s = NULL;
4042 }
4043 }
4044
4045 return s;
4046 }
4047
4048 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4049 {
4050 int err;
4051
4052 err = kmem_cache_open(s, flags);
4053 if (err)
4054 return err;
4055
4056 /* Mutex is not taken during early boot */
4057 if (slab_state <= UP)
4058 return 0;
4059
4060 memcg_propagate_slab_attrs(s);
4061 err = sysfs_slab_add(s);
4062 if (err)
4063 kmem_cache_close(s);
4064
4065 return err;
4066 }
4067
4068 #ifdef CONFIG_SMP
4069 /*
4070 * Use the cpu notifier to insure that the cpu slabs are flushed when
4071 * necessary.
4072 */
4073 static int slab_cpuup_callback(struct notifier_block *nfb,
4074 unsigned long action, void *hcpu)
4075 {
4076 long cpu = (long)hcpu;
4077 struct kmem_cache *s;
4078 unsigned long flags;
4079
4080 switch (action) {
4081 case CPU_UP_CANCELED:
4082 case CPU_UP_CANCELED_FROZEN:
4083 case CPU_DEAD:
4084 case CPU_DEAD_FROZEN:
4085 mutex_lock(&slab_mutex);
4086 list_for_each_entry(s, &slab_caches, list) {
4087 local_irq_save(flags);
4088 __flush_cpu_slab(s, cpu);
4089 local_irq_restore(flags);
4090 }
4091 mutex_unlock(&slab_mutex);
4092 break;
4093 default:
4094 break;
4095 }
4096 return NOTIFY_OK;
4097 }
4098
4099 static struct notifier_block slab_notifier = {
4100 .notifier_call = slab_cpuup_callback
4101 };
4102
4103 #endif
4104
4105 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4106 {
4107 struct kmem_cache *s;
4108 void *ret;
4109
4110 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4111 return kmalloc_large(size, gfpflags);
4112
4113 s = kmalloc_slab(size, gfpflags);
4114
4115 if (unlikely(ZERO_OR_NULL_PTR(s)))
4116 return s;
4117
4118 ret = slab_alloc(s, gfpflags, caller);
4119
4120 /* Honor the call site pointer we received. */
4121 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4122
4123 return ret;
4124 }
4125
4126 #ifdef CONFIG_NUMA
4127 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4128 int node, unsigned long caller)
4129 {
4130 struct kmem_cache *s;
4131 void *ret;
4132
4133 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4134 ret = kmalloc_large_node(size, gfpflags, node);
4135
4136 trace_kmalloc_node(caller, ret,
4137 size, PAGE_SIZE << get_order(size),
4138 gfpflags, node);
4139
4140 return ret;
4141 }
4142
4143 s = kmalloc_slab(size, gfpflags);
4144
4145 if (unlikely(ZERO_OR_NULL_PTR(s)))
4146 return s;
4147
4148 ret = slab_alloc_node(s, gfpflags, node, caller);
4149
4150 /* Honor the call site pointer we received. */
4151 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4152
4153 return ret;
4154 }
4155 #endif
4156
4157 #ifdef CONFIG_SYSFS
4158 static int count_inuse(struct page *page)
4159 {
4160 return page->inuse;
4161 }
4162
4163 static int count_total(struct page *page)
4164 {
4165 return page->objects;
4166 }
4167 #endif
4168
4169 #ifdef CONFIG_SLUB_DEBUG
4170 static int validate_slab(struct kmem_cache *s, struct page *page,
4171 unsigned long *map)
4172 {
4173 void *p;
4174 void *addr = page_address(page);
4175
4176 if (!check_slab(s, page) ||
4177 !on_freelist(s, page, NULL))
4178 return 0;
4179
4180 /* Now we know that a valid freelist exists */
4181 bitmap_zero(map, page->objects);
4182
4183 get_map(s, page, map);
4184 for_each_object(p, s, addr, page->objects) {
4185 if (test_bit(slab_index(p, s, addr), map))
4186 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4187 return 0;
4188 }
4189
4190 for_each_object(p, s, addr, page->objects)
4191 if (!test_bit(slab_index(p, s, addr), map))
4192 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4193 return 0;
4194 return 1;
4195 }
4196
4197 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4198 unsigned long *map)
4199 {
4200 slab_lock(page);
4201 validate_slab(s, page, map);
4202 slab_unlock(page);
4203 }
4204
4205 static int validate_slab_node(struct kmem_cache *s,
4206 struct kmem_cache_node *n, unsigned long *map)
4207 {
4208 unsigned long count = 0;
4209 struct page *page;
4210 unsigned long flags;
4211
4212 spin_lock_irqsave(&n->list_lock, flags);
4213
4214 list_for_each_entry(page, &n->partial, lru) {
4215 validate_slab_slab(s, page, map);
4216 count++;
4217 }
4218 if (count != n->nr_partial)
4219 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4220 s->name, count, n->nr_partial);
4221
4222 if (!(s->flags & SLAB_STORE_USER))
4223 goto out;
4224
4225 list_for_each_entry(page, &n->full, lru) {
4226 validate_slab_slab(s, page, map);
4227 count++;
4228 }
4229 if (count != atomic_long_read(&n->nr_slabs))
4230 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4231 s->name, count, atomic_long_read(&n->nr_slabs));
4232
4233 out:
4234 spin_unlock_irqrestore(&n->list_lock, flags);
4235 return count;
4236 }
4237
4238 static long validate_slab_cache(struct kmem_cache *s)
4239 {
4240 int node;
4241 unsigned long count = 0;
4242 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4243 sizeof(unsigned long), GFP_KERNEL);
4244 struct kmem_cache_node *n;
4245
4246 if (!map)
4247 return -ENOMEM;
4248
4249 flush_all(s);
4250 for_each_kmem_cache_node(s, node, n)
4251 count += validate_slab_node(s, n, map);
4252 kfree(map);
4253 return count;
4254 }
4255 /*
4256 * Generate lists of code addresses where slabcache objects are allocated
4257 * and freed.
4258 */
4259
4260 struct location {
4261 unsigned long count;
4262 unsigned long addr;
4263 long long sum_time;
4264 long min_time;
4265 long max_time;
4266 long min_pid;
4267 long max_pid;
4268 DECLARE_BITMAP(cpus, NR_CPUS);
4269 nodemask_t nodes;
4270 };
4271
4272 struct loc_track {
4273 unsigned long max;
4274 unsigned long count;
4275 struct location *loc;
4276 };
4277
4278 static void free_loc_track(struct loc_track *t)
4279 {
4280 if (t->max)
4281 free_pages((unsigned long)t->loc,
4282 get_order(sizeof(struct location) * t->max));
4283 }
4284
4285 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4286 {
4287 struct location *l;
4288 int order;
4289
4290 order = get_order(sizeof(struct location) * max);
4291
4292 l = (void *)__get_free_pages(flags, order);
4293 if (!l)
4294 return 0;
4295
4296 if (t->count) {
4297 memcpy(l, t->loc, sizeof(struct location) * t->count);
4298 free_loc_track(t);
4299 }
4300 t->max = max;
4301 t->loc = l;
4302 return 1;
4303 }
4304
4305 static int add_location(struct loc_track *t, struct kmem_cache *s,
4306 const struct track *track)
4307 {
4308 long start, end, pos;
4309 struct location *l;
4310 unsigned long caddr;
4311 unsigned long age = jiffies - track->when;
4312
4313 start = -1;
4314 end = t->count;
4315
4316 for ( ; ; ) {
4317 pos = start + (end - start + 1) / 2;
4318
4319 /*
4320 * There is nothing at "end". If we end up there
4321 * we need to add something to before end.
4322 */
4323 if (pos == end)
4324 break;
4325
4326 caddr = t->loc[pos].addr;
4327 if (track->addr == caddr) {
4328
4329 l = &t->loc[pos];
4330 l->count++;
4331 if (track->when) {
4332 l->sum_time += age;
4333 if (age < l->min_time)
4334 l->min_time = age;
4335 if (age > l->max_time)
4336 l->max_time = age;
4337
4338 if (track->pid < l->min_pid)
4339 l->min_pid = track->pid;
4340 if (track->pid > l->max_pid)
4341 l->max_pid = track->pid;
4342
4343 cpumask_set_cpu(track->cpu,
4344 to_cpumask(l->cpus));
4345 }
4346 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4347 return 1;
4348 }
4349
4350 if (track->addr < caddr)
4351 end = pos;
4352 else
4353 start = pos;
4354 }
4355
4356 /*
4357 * Not found. Insert new tracking element.
4358 */
4359 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4360 return 0;
4361
4362 l = t->loc + pos;
4363 if (pos < t->count)
4364 memmove(l + 1, l,
4365 (t->count - pos) * sizeof(struct location));
4366 t->count++;
4367 l->count = 1;
4368 l->addr = track->addr;
4369 l->sum_time = age;
4370 l->min_time = age;
4371 l->max_time = age;
4372 l->min_pid = track->pid;
4373 l->max_pid = track->pid;
4374 cpumask_clear(to_cpumask(l->cpus));
4375 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4376 nodes_clear(l->nodes);
4377 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4378 return 1;
4379 }
4380
4381 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4382 struct page *page, enum track_item alloc,
4383 unsigned long *map)
4384 {
4385 void *addr = page_address(page);
4386 void *p;
4387
4388 bitmap_zero(map, page->objects);
4389 get_map(s, page, map);
4390
4391 for_each_object(p, s, addr, page->objects)
4392 if (!test_bit(slab_index(p, s, addr), map))
4393 add_location(t, s, get_track(s, p, alloc));
4394 }
4395
4396 static int list_locations(struct kmem_cache *s, char *buf,
4397 enum track_item alloc)
4398 {
4399 int len = 0;
4400 unsigned long i;
4401 struct loc_track t = { 0, 0, NULL };
4402 int node;
4403 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4404 sizeof(unsigned long), GFP_KERNEL);
4405 struct kmem_cache_node *n;
4406
4407 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4408 GFP_TEMPORARY)) {
4409 kfree(map);
4410 return sprintf(buf, "Out of memory\n");
4411 }
4412 /* Push back cpu slabs */
4413 flush_all(s);
4414
4415 for_each_kmem_cache_node(s, node, n) {
4416 unsigned long flags;
4417 struct page *page;
4418
4419 if (!atomic_long_read(&n->nr_slabs))
4420 continue;
4421
4422 spin_lock_irqsave(&n->list_lock, flags);
4423 list_for_each_entry(page, &n->partial, lru)
4424 process_slab(&t, s, page, alloc, map);
4425 list_for_each_entry(page, &n->full, lru)
4426 process_slab(&t, s, page, alloc, map);
4427 spin_unlock_irqrestore(&n->list_lock, flags);
4428 }
4429
4430 for (i = 0; i < t.count; i++) {
4431 struct location *l = &t.loc[i];
4432
4433 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4434 break;
4435 len += sprintf(buf + len, "%7ld ", l->count);
4436
4437 if (l->addr)
4438 len += sprintf(buf + len, "%pS", (void *)l->addr);
4439 else
4440 len += sprintf(buf + len, "<not-available>");
4441
4442 if (l->sum_time != l->min_time) {
4443 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4444 l->min_time,
4445 (long)div_u64(l->sum_time, l->count),
4446 l->max_time);
4447 } else
4448 len += sprintf(buf + len, " age=%ld",
4449 l->min_time);
4450
4451 if (l->min_pid != l->max_pid)
4452 len += sprintf(buf + len, " pid=%ld-%ld",
4453 l->min_pid, l->max_pid);
4454 else
4455 len += sprintf(buf + len, " pid=%ld",
4456 l->min_pid);
4457
4458 if (num_online_cpus() > 1 &&
4459 !cpumask_empty(to_cpumask(l->cpus)) &&
4460 len < PAGE_SIZE - 60)
4461 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4462 " cpus=%*pbl",
4463 cpumask_pr_args(to_cpumask(l->cpus)));
4464
4465 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4466 len < PAGE_SIZE - 60)
4467 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4468 " nodes=%*pbl",
4469 nodemask_pr_args(&l->nodes));
4470
4471 len += sprintf(buf + len, "\n");
4472 }
4473
4474 free_loc_track(&t);
4475 kfree(map);
4476 if (!t.count)
4477 len += sprintf(buf, "No data\n");
4478 return len;
4479 }
4480 #endif
4481
4482 #ifdef SLUB_RESILIENCY_TEST
4483 static void __init resiliency_test(void)
4484 {
4485 u8 *p;
4486
4487 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4488
4489 pr_err("SLUB resiliency testing\n");
4490 pr_err("-----------------------\n");
4491 pr_err("A. Corruption after allocation\n");
4492
4493 p = kzalloc(16, GFP_KERNEL);
4494 p[16] = 0x12;
4495 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4496 p + 16);
4497
4498 validate_slab_cache(kmalloc_caches[4]);
4499
4500 /* Hmmm... The next two are dangerous */
4501 p = kzalloc(32, GFP_KERNEL);
4502 p[32 + sizeof(void *)] = 0x34;
4503 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4504 p);
4505 pr_err("If allocated object is overwritten then not detectable\n\n");
4506
4507 validate_slab_cache(kmalloc_caches[5]);
4508 p = kzalloc(64, GFP_KERNEL);
4509 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4510 *p = 0x56;
4511 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4512 p);
4513 pr_err("If allocated object is overwritten then not detectable\n\n");
4514 validate_slab_cache(kmalloc_caches[6]);
4515
4516 pr_err("\nB. Corruption after free\n");
4517 p = kzalloc(128, GFP_KERNEL);
4518 kfree(p);
4519 *p = 0x78;
4520 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4521 validate_slab_cache(kmalloc_caches[7]);
4522
4523 p = kzalloc(256, GFP_KERNEL);
4524 kfree(p);
4525 p[50] = 0x9a;
4526 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4527 validate_slab_cache(kmalloc_caches[8]);
4528
4529 p = kzalloc(512, GFP_KERNEL);
4530 kfree(p);
4531 p[512] = 0xab;
4532 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4533 validate_slab_cache(kmalloc_caches[9]);
4534 }
4535 #else
4536 #ifdef CONFIG_SYSFS
4537 static void resiliency_test(void) {};
4538 #endif
4539 #endif
4540
4541 #ifdef CONFIG_SYSFS
4542 enum slab_stat_type {
4543 SL_ALL, /* All slabs */
4544 SL_PARTIAL, /* Only partially allocated slabs */
4545 SL_CPU, /* Only slabs used for cpu caches */
4546 SL_OBJECTS, /* Determine allocated objects not slabs */
4547 SL_TOTAL /* Determine object capacity not slabs */
4548 };
4549
4550 #define SO_ALL (1 << SL_ALL)
4551 #define SO_PARTIAL (1 << SL_PARTIAL)
4552 #define SO_CPU (1 << SL_CPU)
4553 #define SO_OBJECTS (1 << SL_OBJECTS)
4554 #define SO_TOTAL (1 << SL_TOTAL)
4555
4556 static ssize_t show_slab_objects(struct kmem_cache *s,
4557 char *buf, unsigned long flags)
4558 {
4559 unsigned long total = 0;
4560 int node;
4561 int x;
4562 unsigned long *nodes;
4563
4564 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4565 if (!nodes)
4566 return -ENOMEM;
4567
4568 if (flags & SO_CPU) {
4569 int cpu;
4570
4571 for_each_possible_cpu(cpu) {
4572 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4573 cpu);
4574 int node;
4575 struct page *page;
4576
4577 page = READ_ONCE(c->page);
4578 if (!page)
4579 continue;
4580
4581 node = page_to_nid(page);
4582 if (flags & SO_TOTAL)
4583 x = page->objects;
4584 else if (flags & SO_OBJECTS)
4585 x = page->inuse;
4586 else
4587 x = 1;
4588
4589 total += x;
4590 nodes[node] += x;
4591
4592 page = READ_ONCE(c->partial);
4593 if (page) {
4594 node = page_to_nid(page);
4595 if (flags & SO_TOTAL)
4596 WARN_ON_ONCE(1);
4597 else if (flags & SO_OBJECTS)
4598 WARN_ON_ONCE(1);
4599 else
4600 x = page->pages;
4601 total += x;
4602 nodes[node] += x;
4603 }
4604 }
4605 }
4606
4607 get_online_mems();
4608 #ifdef CONFIG_SLUB_DEBUG
4609 if (flags & SO_ALL) {
4610 struct kmem_cache_node *n;
4611
4612 for_each_kmem_cache_node(s, node, n) {
4613
4614 if (flags & SO_TOTAL)
4615 x = atomic_long_read(&n->total_objects);
4616 else if (flags & SO_OBJECTS)
4617 x = atomic_long_read(&n->total_objects) -
4618 count_partial(n, count_free);
4619 else
4620 x = atomic_long_read(&n->nr_slabs);
4621 total += x;
4622 nodes[node] += x;
4623 }
4624
4625 } else
4626 #endif
4627 if (flags & SO_PARTIAL) {
4628 struct kmem_cache_node *n;
4629
4630 for_each_kmem_cache_node(s, node, n) {
4631 if (flags & SO_TOTAL)
4632 x = count_partial(n, count_total);
4633 else if (flags & SO_OBJECTS)
4634 x = count_partial(n, count_inuse);
4635 else
4636 x = n->nr_partial;
4637 total += x;
4638 nodes[node] += x;
4639 }
4640 }
4641 x = sprintf(buf, "%lu", total);
4642 #ifdef CONFIG_NUMA
4643 for (node = 0; node < nr_node_ids; node++)
4644 if (nodes[node])
4645 x += sprintf(buf + x, " N%d=%lu",
4646 node, nodes[node]);
4647 #endif
4648 put_online_mems();
4649 kfree(nodes);
4650 return x + sprintf(buf + x, "\n");
4651 }
4652
4653 #ifdef CONFIG_SLUB_DEBUG
4654 static int any_slab_objects(struct kmem_cache *s)
4655 {
4656 int node;
4657 struct kmem_cache_node *n;
4658
4659 for_each_kmem_cache_node(s, node, n)
4660 if (atomic_long_read(&n->total_objects))
4661 return 1;
4662
4663 return 0;
4664 }
4665 #endif
4666
4667 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4668 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4669
4670 struct slab_attribute {
4671 struct attribute attr;
4672 ssize_t (*show)(struct kmem_cache *s, char *buf);
4673 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4674 };
4675
4676 #define SLAB_ATTR_RO(_name) \
4677 static struct slab_attribute _name##_attr = \
4678 __ATTR(_name, 0400, _name##_show, NULL)
4679
4680 #define SLAB_ATTR(_name) \
4681 static struct slab_attribute _name##_attr = \
4682 __ATTR(_name, 0600, _name##_show, _name##_store)
4683
4684 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4685 {
4686 return sprintf(buf, "%d\n", s->size);
4687 }
4688 SLAB_ATTR_RO(slab_size);
4689
4690 static ssize_t align_show(struct kmem_cache *s, char *buf)
4691 {
4692 return sprintf(buf, "%d\n", s->align);
4693 }
4694 SLAB_ATTR_RO(align);
4695
4696 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4697 {
4698 return sprintf(buf, "%d\n", s->object_size);
4699 }
4700 SLAB_ATTR_RO(object_size);
4701
4702 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4703 {
4704 return sprintf(buf, "%d\n", oo_objects(s->oo));
4705 }
4706 SLAB_ATTR_RO(objs_per_slab);
4707
4708 static ssize_t order_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710 {
4711 unsigned long order;
4712 int err;
4713
4714 err = kstrtoul(buf, 10, &order);
4715 if (err)
4716 return err;
4717
4718 if (order > slub_max_order || order < slub_min_order)
4719 return -EINVAL;
4720
4721 calculate_sizes(s, order);
4722 return length;
4723 }
4724
4725 static ssize_t order_show(struct kmem_cache *s, char *buf)
4726 {
4727 return sprintf(buf, "%d\n", oo_order(s->oo));
4728 }
4729 SLAB_ATTR(order);
4730
4731 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4732 {
4733 return sprintf(buf, "%lu\n", s->min_partial);
4734 }
4735
4736 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4737 size_t length)
4738 {
4739 unsigned long min;
4740 int err;
4741
4742 err = kstrtoul(buf, 10, &min);
4743 if (err)
4744 return err;
4745
4746 set_min_partial(s, min);
4747 return length;
4748 }
4749 SLAB_ATTR(min_partial);
4750
4751 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4752 {
4753 return sprintf(buf, "%u\n", s->cpu_partial);
4754 }
4755
4756 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4757 size_t length)
4758 {
4759 unsigned long objects;
4760 int err;
4761
4762 err = kstrtoul(buf, 10, &objects);
4763 if (err)
4764 return err;
4765 if (objects && !kmem_cache_has_cpu_partial(s))
4766 return -EINVAL;
4767
4768 s->cpu_partial = objects;
4769 flush_all(s);
4770 return length;
4771 }
4772 SLAB_ATTR(cpu_partial);
4773
4774 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4775 {
4776 if (!s->ctor)
4777 return 0;
4778 return sprintf(buf, "%pS\n", s->ctor);
4779 }
4780 SLAB_ATTR_RO(ctor);
4781
4782 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4783 {
4784 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4785 }
4786 SLAB_ATTR_RO(aliases);
4787
4788 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4789 {
4790 return show_slab_objects(s, buf, SO_PARTIAL);
4791 }
4792 SLAB_ATTR_RO(partial);
4793
4794 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4795 {
4796 return show_slab_objects(s, buf, SO_CPU);
4797 }
4798 SLAB_ATTR_RO(cpu_slabs);
4799
4800 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4801 {
4802 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4803 }
4804 SLAB_ATTR_RO(objects);
4805
4806 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4807 {
4808 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4809 }
4810 SLAB_ATTR_RO(objects_partial);
4811
4812 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4813 {
4814 int objects = 0;
4815 int pages = 0;
4816 int cpu;
4817 int len;
4818
4819 for_each_online_cpu(cpu) {
4820 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4821
4822 if (page) {
4823 pages += page->pages;
4824 objects += page->pobjects;
4825 }
4826 }
4827
4828 len = sprintf(buf, "%d(%d)", objects, pages);
4829
4830 #ifdef CONFIG_SMP
4831 for_each_online_cpu(cpu) {
4832 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4833
4834 if (page && len < PAGE_SIZE - 20)
4835 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4836 page->pobjects, page->pages);
4837 }
4838 #endif
4839 return len + sprintf(buf + len, "\n");
4840 }
4841 SLAB_ATTR_RO(slabs_cpu_partial);
4842
4843 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4844 {
4845 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4846 }
4847
4848 static ssize_t reclaim_account_store(struct kmem_cache *s,
4849 const char *buf, size_t length)
4850 {
4851 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4852 if (buf[0] == '1')
4853 s->flags |= SLAB_RECLAIM_ACCOUNT;
4854 return length;
4855 }
4856 SLAB_ATTR(reclaim_account);
4857
4858 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4859 {
4860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4861 }
4862 SLAB_ATTR_RO(hwcache_align);
4863
4864 #ifdef CONFIG_ZONE_DMA
4865 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4866 {
4867 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4868 }
4869 SLAB_ATTR_RO(cache_dma);
4870 #endif
4871
4872 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4873 {
4874 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4875 }
4876 SLAB_ATTR_RO(destroy_by_rcu);
4877
4878 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", s->reserved);
4881 }
4882 SLAB_ATTR_RO(reserved);
4883
4884 #ifdef CONFIG_SLUB_DEBUG
4885 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4886 {
4887 return show_slab_objects(s, buf, SO_ALL);
4888 }
4889 SLAB_ATTR_RO(slabs);
4890
4891 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4892 {
4893 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4894 }
4895 SLAB_ATTR_RO(total_objects);
4896
4897 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4898 {
4899 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4900 }
4901
4902 static ssize_t sanity_checks_store(struct kmem_cache *s,
4903 const char *buf, size_t length)
4904 {
4905 s->flags &= ~SLAB_DEBUG_FREE;
4906 if (buf[0] == '1') {
4907 s->flags &= ~__CMPXCHG_DOUBLE;
4908 s->flags |= SLAB_DEBUG_FREE;
4909 }
4910 return length;
4911 }
4912 SLAB_ATTR(sanity_checks);
4913
4914 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4915 {
4916 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4917 }
4918
4919 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4920 size_t length)
4921 {
4922 /*
4923 * Tracing a merged cache is going to give confusing results
4924 * as well as cause other issues like converting a mergeable
4925 * cache into an umergeable one.
4926 */
4927 if (s->refcount > 1)
4928 return -EINVAL;
4929
4930 s->flags &= ~SLAB_TRACE;
4931 if (buf[0] == '1') {
4932 s->flags &= ~__CMPXCHG_DOUBLE;
4933 s->flags |= SLAB_TRACE;
4934 }
4935 return length;
4936 }
4937 SLAB_ATTR(trace);
4938
4939 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4940 {
4941 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4942 }
4943
4944 static ssize_t red_zone_store(struct kmem_cache *s,
4945 const char *buf, size_t length)
4946 {
4947 if (any_slab_objects(s))
4948 return -EBUSY;
4949
4950 s->flags &= ~SLAB_RED_ZONE;
4951 if (buf[0] == '1') {
4952 s->flags &= ~__CMPXCHG_DOUBLE;
4953 s->flags |= SLAB_RED_ZONE;
4954 }
4955 calculate_sizes(s, -1);
4956 return length;
4957 }
4958 SLAB_ATTR(red_zone);
4959
4960 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4961 {
4962 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4963 }
4964
4965 static ssize_t poison_store(struct kmem_cache *s,
4966 const char *buf, size_t length)
4967 {
4968 if (any_slab_objects(s))
4969 return -EBUSY;
4970
4971 s->flags &= ~SLAB_POISON;
4972 if (buf[0] == '1') {
4973 s->flags &= ~__CMPXCHG_DOUBLE;
4974 s->flags |= SLAB_POISON;
4975 }
4976 calculate_sizes(s, -1);
4977 return length;
4978 }
4979 SLAB_ATTR(poison);
4980
4981 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4982 {
4983 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4984 }
4985
4986 static ssize_t store_user_store(struct kmem_cache *s,
4987 const char *buf, size_t length)
4988 {
4989 if (any_slab_objects(s))
4990 return -EBUSY;
4991
4992 s->flags &= ~SLAB_STORE_USER;
4993 if (buf[0] == '1') {
4994 s->flags &= ~__CMPXCHG_DOUBLE;
4995 s->flags |= SLAB_STORE_USER;
4996 }
4997 calculate_sizes(s, -1);
4998 return length;
4999 }
5000 SLAB_ATTR(store_user);
5001
5002 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5003 {
5004 return 0;
5005 }
5006
5007 static ssize_t validate_store(struct kmem_cache *s,
5008 const char *buf, size_t length)
5009 {
5010 int ret = -EINVAL;
5011
5012 if (buf[0] == '1') {
5013 ret = validate_slab_cache(s);
5014 if (ret >= 0)
5015 ret = length;
5016 }
5017 return ret;
5018 }
5019 SLAB_ATTR(validate);
5020
5021 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5022 {
5023 if (!(s->flags & SLAB_STORE_USER))
5024 return -ENOSYS;
5025 return list_locations(s, buf, TRACK_ALLOC);
5026 }
5027 SLAB_ATTR_RO(alloc_calls);
5028
5029 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5030 {
5031 if (!(s->flags & SLAB_STORE_USER))
5032 return -ENOSYS;
5033 return list_locations(s, buf, TRACK_FREE);
5034 }
5035 SLAB_ATTR_RO(free_calls);
5036 #endif /* CONFIG_SLUB_DEBUG */
5037
5038 #ifdef CONFIG_FAILSLAB
5039 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5040 {
5041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5042 }
5043
5044 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5045 size_t length)
5046 {
5047 if (s->refcount > 1)
5048 return -EINVAL;
5049
5050 s->flags &= ~SLAB_FAILSLAB;
5051 if (buf[0] == '1')
5052 s->flags |= SLAB_FAILSLAB;
5053 return length;
5054 }
5055 SLAB_ATTR(failslab);
5056 #endif
5057
5058 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5059 {
5060 return 0;
5061 }
5062
5063 static ssize_t shrink_store(struct kmem_cache *s,
5064 const char *buf, size_t length)
5065 {
5066 if (buf[0] == '1')
5067 kmem_cache_shrink(s);
5068 else
5069 return -EINVAL;
5070 return length;
5071 }
5072 SLAB_ATTR(shrink);
5073
5074 #ifdef CONFIG_NUMA
5075 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5076 {
5077 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5078 }
5079
5080 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5081 const char *buf, size_t length)
5082 {
5083 unsigned long ratio;
5084 int err;
5085
5086 err = kstrtoul(buf, 10, &ratio);
5087 if (err)
5088 return err;
5089
5090 if (ratio <= 100)
5091 s->remote_node_defrag_ratio = ratio * 10;
5092
5093 return length;
5094 }
5095 SLAB_ATTR(remote_node_defrag_ratio);
5096 #endif
5097
5098 #ifdef CONFIG_SLUB_STATS
5099 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5100 {
5101 unsigned long sum = 0;
5102 int cpu;
5103 int len;
5104 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5105
5106 if (!data)
5107 return -ENOMEM;
5108
5109 for_each_online_cpu(cpu) {
5110 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5111
5112 data[cpu] = x;
5113 sum += x;
5114 }
5115
5116 len = sprintf(buf, "%lu", sum);
5117
5118 #ifdef CONFIG_SMP
5119 for_each_online_cpu(cpu) {
5120 if (data[cpu] && len < PAGE_SIZE - 20)
5121 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5122 }
5123 #endif
5124 kfree(data);
5125 return len + sprintf(buf + len, "\n");
5126 }
5127
5128 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5129 {
5130 int cpu;
5131
5132 for_each_online_cpu(cpu)
5133 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5134 }
5135
5136 #define STAT_ATTR(si, text) \
5137 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5138 { \
5139 return show_stat(s, buf, si); \
5140 } \
5141 static ssize_t text##_store(struct kmem_cache *s, \
5142 const char *buf, size_t length) \
5143 { \
5144 if (buf[0] != '0') \
5145 return -EINVAL; \
5146 clear_stat(s, si); \
5147 return length; \
5148 } \
5149 SLAB_ATTR(text); \
5150
5151 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5152 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5153 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5154 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5155 STAT_ATTR(FREE_FROZEN, free_frozen);
5156 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5157 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5158 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5159 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5160 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5161 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5162 STAT_ATTR(FREE_SLAB, free_slab);
5163 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5164 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5165 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5166 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5167 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5168 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5169 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5170 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5171 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5172 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5173 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5174 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5175 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5176 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5177 #endif
5178
5179 static struct attribute *slab_attrs[] = {
5180 &slab_size_attr.attr,
5181 &object_size_attr.attr,
5182 &objs_per_slab_attr.attr,
5183 &order_attr.attr,
5184 &min_partial_attr.attr,
5185 &cpu_partial_attr.attr,
5186 &objects_attr.attr,
5187 &objects_partial_attr.attr,
5188 &partial_attr.attr,
5189 &cpu_slabs_attr.attr,
5190 &ctor_attr.attr,
5191 &aliases_attr.attr,
5192 &align_attr.attr,
5193 &hwcache_align_attr.attr,
5194 &reclaim_account_attr.attr,
5195 &destroy_by_rcu_attr.attr,
5196 &shrink_attr.attr,
5197 &reserved_attr.attr,
5198 &slabs_cpu_partial_attr.attr,
5199 #ifdef CONFIG_SLUB_DEBUG
5200 &total_objects_attr.attr,
5201 &slabs_attr.attr,
5202 &sanity_checks_attr.attr,
5203 &trace_attr.attr,
5204 &red_zone_attr.attr,
5205 &poison_attr.attr,
5206 &store_user_attr.attr,
5207 &validate_attr.attr,
5208 &alloc_calls_attr.attr,
5209 &free_calls_attr.attr,
5210 #endif
5211 #ifdef CONFIG_ZONE_DMA
5212 &cache_dma_attr.attr,
5213 #endif
5214 #ifdef CONFIG_NUMA
5215 &remote_node_defrag_ratio_attr.attr,
5216 #endif
5217 #ifdef CONFIG_SLUB_STATS
5218 &alloc_fastpath_attr.attr,
5219 &alloc_slowpath_attr.attr,
5220 &free_fastpath_attr.attr,
5221 &free_slowpath_attr.attr,
5222 &free_frozen_attr.attr,
5223 &free_add_partial_attr.attr,
5224 &free_remove_partial_attr.attr,
5225 &alloc_from_partial_attr.attr,
5226 &alloc_slab_attr.attr,
5227 &alloc_refill_attr.attr,
5228 &alloc_node_mismatch_attr.attr,
5229 &free_slab_attr.attr,
5230 &cpuslab_flush_attr.attr,
5231 &deactivate_full_attr.attr,
5232 &deactivate_empty_attr.attr,
5233 &deactivate_to_head_attr.attr,
5234 &deactivate_to_tail_attr.attr,
5235 &deactivate_remote_frees_attr.attr,
5236 &deactivate_bypass_attr.attr,
5237 &order_fallback_attr.attr,
5238 &cmpxchg_double_fail_attr.attr,
5239 &cmpxchg_double_cpu_fail_attr.attr,
5240 &cpu_partial_alloc_attr.attr,
5241 &cpu_partial_free_attr.attr,
5242 &cpu_partial_node_attr.attr,
5243 &cpu_partial_drain_attr.attr,
5244 #endif
5245 #ifdef CONFIG_FAILSLAB
5246 &failslab_attr.attr,
5247 #endif
5248
5249 NULL
5250 };
5251
5252 static struct attribute_group slab_attr_group = {
5253 .attrs = slab_attrs,
5254 };
5255
5256 static ssize_t slab_attr_show(struct kobject *kobj,
5257 struct attribute *attr,
5258 char *buf)
5259 {
5260 struct slab_attribute *attribute;
5261 struct kmem_cache *s;
5262 int err;
5263
5264 attribute = to_slab_attr(attr);
5265 s = to_slab(kobj);
5266
5267 if (!attribute->show)
5268 return -EIO;
5269
5270 err = attribute->show(s, buf);
5271
5272 return err;
5273 }
5274
5275 static ssize_t slab_attr_store(struct kobject *kobj,
5276 struct attribute *attr,
5277 const char *buf, size_t len)
5278 {
5279 struct slab_attribute *attribute;
5280 struct kmem_cache *s;
5281 int err;
5282
5283 attribute = to_slab_attr(attr);
5284 s = to_slab(kobj);
5285
5286 if (!attribute->store)
5287 return -EIO;
5288
5289 err = attribute->store(s, buf, len);
5290 #ifdef CONFIG_MEMCG_KMEM
5291 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5292 struct kmem_cache *c;
5293
5294 mutex_lock(&slab_mutex);
5295 if (s->max_attr_size < len)
5296 s->max_attr_size = len;
5297
5298 /*
5299 * This is a best effort propagation, so this function's return
5300 * value will be determined by the parent cache only. This is
5301 * basically because not all attributes will have a well
5302 * defined semantics for rollbacks - most of the actions will
5303 * have permanent effects.
5304 *
5305 * Returning the error value of any of the children that fail
5306 * is not 100 % defined, in the sense that users seeing the
5307 * error code won't be able to know anything about the state of
5308 * the cache.
5309 *
5310 * Only returning the error code for the parent cache at least
5311 * has well defined semantics. The cache being written to
5312 * directly either failed or succeeded, in which case we loop
5313 * through the descendants with best-effort propagation.
5314 */
5315 for_each_memcg_cache(c, s)
5316 attribute->store(c, buf, len);
5317 mutex_unlock(&slab_mutex);
5318 }
5319 #endif
5320 return err;
5321 }
5322
5323 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5324 {
5325 #ifdef CONFIG_MEMCG_KMEM
5326 int i;
5327 char *buffer = NULL;
5328 struct kmem_cache *root_cache;
5329
5330 if (is_root_cache(s))
5331 return;
5332
5333 root_cache = s->memcg_params.root_cache;
5334
5335 /*
5336 * This mean this cache had no attribute written. Therefore, no point
5337 * in copying default values around
5338 */
5339 if (!root_cache->max_attr_size)
5340 return;
5341
5342 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5343 char mbuf[64];
5344 char *buf;
5345 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5346
5347 if (!attr || !attr->store || !attr->show)
5348 continue;
5349
5350 /*
5351 * It is really bad that we have to allocate here, so we will
5352 * do it only as a fallback. If we actually allocate, though,
5353 * we can just use the allocated buffer until the end.
5354 *
5355 * Most of the slub attributes will tend to be very small in
5356 * size, but sysfs allows buffers up to a page, so they can
5357 * theoretically happen.
5358 */
5359 if (buffer)
5360 buf = buffer;
5361 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5362 buf = mbuf;
5363 else {
5364 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5365 if (WARN_ON(!buffer))
5366 continue;
5367 buf = buffer;
5368 }
5369
5370 attr->show(root_cache, buf);
5371 attr->store(s, buf, strlen(buf));
5372 }
5373
5374 if (buffer)
5375 free_page((unsigned long)buffer);
5376 #endif
5377 }
5378
5379 static void kmem_cache_release(struct kobject *k)
5380 {
5381 slab_kmem_cache_release(to_slab(k));
5382 }
5383
5384 static const struct sysfs_ops slab_sysfs_ops = {
5385 .show = slab_attr_show,
5386 .store = slab_attr_store,
5387 };
5388
5389 static struct kobj_type slab_ktype = {
5390 .sysfs_ops = &slab_sysfs_ops,
5391 .release = kmem_cache_release,
5392 };
5393
5394 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5395 {
5396 struct kobj_type *ktype = get_ktype(kobj);
5397
5398 if (ktype == &slab_ktype)
5399 return 1;
5400 return 0;
5401 }
5402
5403 static const struct kset_uevent_ops slab_uevent_ops = {
5404 .filter = uevent_filter,
5405 };
5406
5407 static struct kset *slab_kset;
5408
5409 static inline struct kset *cache_kset(struct kmem_cache *s)
5410 {
5411 #ifdef CONFIG_MEMCG_KMEM
5412 if (!is_root_cache(s))
5413 return s->memcg_params.root_cache->memcg_kset;
5414 #endif
5415 return slab_kset;
5416 }
5417
5418 #define ID_STR_LENGTH 64
5419
5420 /* Create a unique string id for a slab cache:
5421 *
5422 * Format :[flags-]size
5423 */
5424 static char *create_unique_id(struct kmem_cache *s)
5425 {
5426 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5427 char *p = name;
5428
5429 BUG_ON(!name);
5430
5431 *p++ = ':';
5432 /*
5433 * First flags affecting slabcache operations. We will only
5434 * get here for aliasable slabs so we do not need to support
5435 * too many flags. The flags here must cover all flags that
5436 * are matched during merging to guarantee that the id is
5437 * unique.
5438 */
5439 if (s->flags & SLAB_CACHE_DMA)
5440 *p++ = 'd';
5441 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5442 *p++ = 'a';
5443 if (s->flags & SLAB_DEBUG_FREE)
5444 *p++ = 'F';
5445 if (!(s->flags & SLAB_NOTRACK))
5446 *p++ = 't';
5447 if (p != name + 1)
5448 *p++ = '-';
5449 p += sprintf(p, "%07d", s->size);
5450
5451 BUG_ON(p > name + ID_STR_LENGTH - 1);
5452 return name;
5453 }
5454
5455 static int sysfs_slab_add(struct kmem_cache *s)
5456 {
5457 int err;
5458 const char *name;
5459 int unmergeable = slab_unmergeable(s);
5460
5461 if (unmergeable) {
5462 /*
5463 * Slabcache can never be merged so we can use the name proper.
5464 * This is typically the case for debug situations. In that
5465 * case we can catch duplicate names easily.
5466 */
5467 sysfs_remove_link(&slab_kset->kobj, s->name);
5468 name = s->name;
5469 } else {
5470 /*
5471 * Create a unique name for the slab as a target
5472 * for the symlinks.
5473 */
5474 name = create_unique_id(s);
5475 }
5476
5477 s->kobj.kset = cache_kset(s);
5478 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5479 if (err)
5480 goto out;
5481
5482 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5483 if (err)
5484 goto out_del_kobj;
5485
5486 #ifdef CONFIG_MEMCG_KMEM
5487 if (is_root_cache(s)) {
5488 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5489 if (!s->memcg_kset) {
5490 err = -ENOMEM;
5491 goto out_del_kobj;
5492 }
5493 }
5494 #endif
5495
5496 kobject_uevent(&s->kobj, KOBJ_ADD);
5497 if (!unmergeable) {
5498 /* Setup first alias */
5499 sysfs_slab_alias(s, s->name);
5500 }
5501 out:
5502 if (!unmergeable)
5503 kfree(name);
5504 return err;
5505 out_del_kobj:
5506 kobject_del(&s->kobj);
5507 goto out;
5508 }
5509
5510 void sysfs_slab_remove(struct kmem_cache *s)
5511 {
5512 if (slab_state < FULL)
5513 /*
5514 * Sysfs has not been setup yet so no need to remove the
5515 * cache from sysfs.
5516 */
5517 return;
5518
5519 #ifdef CONFIG_MEMCG_KMEM
5520 kset_unregister(s->memcg_kset);
5521 #endif
5522 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5523 kobject_del(&s->kobj);
5524 kobject_put(&s->kobj);
5525 }
5526
5527 /*
5528 * Need to buffer aliases during bootup until sysfs becomes
5529 * available lest we lose that information.
5530 */
5531 struct saved_alias {
5532 struct kmem_cache *s;
5533 const char *name;
5534 struct saved_alias *next;
5535 };
5536
5537 static struct saved_alias *alias_list;
5538
5539 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5540 {
5541 struct saved_alias *al;
5542
5543 if (slab_state == FULL) {
5544 /*
5545 * If we have a leftover link then remove it.
5546 */
5547 sysfs_remove_link(&slab_kset->kobj, name);
5548 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5549 }
5550
5551 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5552 if (!al)
5553 return -ENOMEM;
5554
5555 al->s = s;
5556 al->name = name;
5557 al->next = alias_list;
5558 alias_list = al;
5559 return 0;
5560 }
5561
5562 static int __init slab_sysfs_init(void)
5563 {
5564 struct kmem_cache *s;
5565 int err;
5566
5567 mutex_lock(&slab_mutex);
5568
5569 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5570 if (!slab_kset) {
5571 mutex_unlock(&slab_mutex);
5572 pr_err("Cannot register slab subsystem.\n");
5573 return -ENOSYS;
5574 }
5575
5576 slab_state = FULL;
5577
5578 list_for_each_entry(s, &slab_caches, list) {
5579 err = sysfs_slab_add(s);
5580 if (err)
5581 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5582 s->name);
5583 }
5584
5585 while (alias_list) {
5586 struct saved_alias *al = alias_list;
5587
5588 alias_list = alias_list->next;
5589 err = sysfs_slab_alias(al->s, al->name);
5590 if (err)
5591 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5592 al->name);
5593 kfree(al);
5594 }
5595
5596 mutex_unlock(&slab_mutex);
5597 resiliency_test();
5598 return 0;
5599 }
5600
5601 __initcall(slab_sysfs_init);
5602 #endif /* CONFIG_SYSFS */
5603
5604 /*
5605 * The /proc/slabinfo ABI
5606 */
5607 #ifdef CONFIG_SLABINFO
5608 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5609 {
5610 unsigned long nr_slabs = 0;
5611 unsigned long nr_objs = 0;
5612 unsigned long nr_free = 0;
5613 int node;
5614 struct kmem_cache_node *n;
5615
5616 for_each_kmem_cache_node(s, node, n) {
5617 nr_slabs += node_nr_slabs(n);
5618 nr_objs += node_nr_objs(n);
5619 nr_free += count_partial(n, count_free);
5620 }
5621
5622 sinfo->active_objs = nr_objs - nr_free;
5623 sinfo->num_objs = nr_objs;
5624 sinfo->active_slabs = nr_slabs;
5625 sinfo->num_slabs = nr_slabs;
5626 sinfo->objects_per_slab = oo_objects(s->oo);
5627 sinfo->cache_order = oo_order(s->oo);
5628 }
5629
5630 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5631 {
5632 }
5633
5634 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5635 size_t count, loff_t *ppos)
5636 {
5637 return -EIO;
5638 }
5639 #endif /* CONFIG_SLABINFO */