mm: fix infinite loop in filemap_fault
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26
27 /*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
103 */
104
105 #define FROZEN (1 << PG_active)
106
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
112
113 static inline int SlabFrozen(struct page *page)
114 {
115 return page->flags & FROZEN;
116 }
117
118 static inline void SetSlabFrozen(struct page *page)
119 {
120 page->flags |= FROZEN;
121 }
122
123 static inline void ClearSlabFrozen(struct page *page)
124 {
125 page->flags &= ~FROZEN;
126 }
127
128 static inline int SlabDebug(struct page *page)
129 {
130 return page->flags & SLABDEBUG;
131 }
132
133 static inline void SetSlabDebug(struct page *page)
134 {
135 page->flags |= SLABDEBUG;
136 }
137
138 static inline void ClearSlabDebug(struct page *page)
139 {
140 page->flags &= ~SLABDEBUG;
141 }
142
143 /*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153
154 /*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
158 #define MIN_PARTIAL 5
159
160 /*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165 #define MAX_PARTIAL 10
166
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
169
170 /*
171 * Set of flags that will prevent slab merging
172 */
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
182
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
186
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
190
191 static int kmem_size = sizeof(struct kmem_cache);
192
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
196
197 static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
200 UP, /* Everything works but does not show up in sysfs */
201 SYSFS /* Sysfs up */
202 } slab_state = DOWN;
203
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
207
208 /*
209 * Tracking user of a slab.
210 */
211 struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216 };
217
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
219
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
224
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
230 {
231 kfree(s);
232 }
233
234 #endif
235
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237 {
238 #ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240 #endif
241 }
242
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247 int slab_is_available(void)
248 {
249 return slab_state >= UP;
250 }
251
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253 {
254 #ifdef CONFIG_NUMA
255 return s->node[node];
256 #else
257 return &s->local_node;
258 #endif
259 }
260
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262 {
263 #ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265 #else
266 return &s->cpu_slab;
267 #endif
268 }
269
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273 {
274 void *base;
275
276 if (!object)
277 return 1;
278
279 base = page_address(page);
280 if (object < base || object >= base + page->objects * s->size ||
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286 }
287
288 /*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
296 {
297 return *(void **)(object + s->offset);
298 }
299
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 *(void **)(object + s->offset) = fp;
303 }
304
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 __p += (__s)->size)
309
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 {
317 return (p - addr) / s->size;
318 }
319
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322 {
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328 }
329
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 return x.x >> 16;
333 }
334
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 return x.x & ((1 << 16) - 1);
338 }
339
340 #ifdef CONFIG_SLUB_DEBUG
341 /*
342 * Debug settings:
343 */
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
349
350 static char *slub_debug_slabs;
351
352 /*
353 * Object debugging
354 */
355 static void print_section(char *text, u8 *addr, unsigned int length)
356 {
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 newline = 0;
367 }
368 printk(KERN_CONT " %02x", addr[i]);
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
372 printk(KERN_CONT " %s\n", ascii);
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
379 printk(KERN_CONT " ");
380 ascii[i] = ' ';
381 i++;
382 }
383 printk(KERN_CONT " %s\n", ascii);
384 }
385 }
386
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389 {
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398 }
399
400 static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402 {
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418 }
419
420 static void init_tracking(struct kmem_cache *s, void *object)
421 {
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
427 }
428
429 static void print_track(const char *s, struct track *t)
430 {
431 if (!t->addr)
432 return;
433
434 printk(KERN_ERR "INFO: %s in ", s);
435 __print_symbol("%s", (unsigned long)t->addr);
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437 }
438
439 static void print_tracking(struct kmem_cache *s, void *object)
440 {
441 if (!(s->flags & SLAB_STORE_USER))
442 return;
443
444 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 print_track("Freed", get_track(s, object, TRACK_FREE));
446 }
447
448 static void print_page_info(struct page *page)
449 {
450 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page, page->objects, page->inuse, page->freelist, page->flags);
452
453 }
454
455 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456 {
457 va_list args;
458 char buf[100];
459
460 va_start(args, fmt);
461 vsnprintf(buf, sizeof(buf), fmt, args);
462 va_end(args);
463 printk(KERN_ERR "========================================"
464 "=====================================\n");
465 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 printk(KERN_ERR "----------------------------------------"
467 "-------------------------------------\n\n");
468 }
469
470 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471 {
472 va_list args;
473 char buf[100];
474
475 va_start(args, fmt);
476 vsnprintf(buf, sizeof(buf), fmt, args);
477 va_end(args);
478 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479 }
480
481 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
482 {
483 unsigned int off; /* Offset of last byte */
484 u8 *addr = page_address(page);
485
486 print_tracking(s, p);
487
488 print_page_info(page);
489
490 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p, p - addr, get_freepointer(s, p));
492
493 if (p > addr + 16)
494 print_section("Bytes b4", p - 16, 16);
495
496 print_section("Object", p, min(s->objsize, 128));
497
498 if (s->flags & SLAB_RED_ZONE)
499 print_section("Redzone", p + s->objsize,
500 s->inuse - s->objsize);
501
502 if (s->offset)
503 off = s->offset + sizeof(void *);
504 else
505 off = s->inuse;
506
507 if (s->flags & SLAB_STORE_USER)
508 off += 2 * sizeof(struct track);
509
510 if (off != s->size)
511 /* Beginning of the filler is the free pointer */
512 print_section("Padding", p + off, s->size - off);
513
514 dump_stack();
515 }
516
517 static void object_err(struct kmem_cache *s, struct page *page,
518 u8 *object, char *reason)
519 {
520 slab_bug(s, "%s", reason);
521 print_trailer(s, page, object);
522 }
523
524 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
525 {
526 va_list args;
527 char buf[100];
528
529 va_start(args, fmt);
530 vsnprintf(buf, sizeof(buf), fmt, args);
531 va_end(args);
532 slab_bug(s, "%s", buf);
533 print_page_info(page);
534 dump_stack();
535 }
536
537 static void init_object(struct kmem_cache *s, void *object, int active)
538 {
539 u8 *p = object;
540
541 if (s->flags & __OBJECT_POISON) {
542 memset(p, POISON_FREE, s->objsize - 1);
543 p[s->objsize - 1] = POISON_END;
544 }
545
546 if (s->flags & SLAB_RED_ZONE)
547 memset(p + s->objsize,
548 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 s->inuse - s->objsize);
550 }
551
552 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
553 {
554 while (bytes) {
555 if (*start != (u8)value)
556 return start;
557 start++;
558 bytes--;
559 }
560 return NULL;
561 }
562
563 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 void *from, void *to)
565 {
566 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 memset(from, data, to - from);
568 }
569
570 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 u8 *object, char *what,
572 u8 *start, unsigned int value, unsigned int bytes)
573 {
574 u8 *fault;
575 u8 *end;
576
577 fault = check_bytes(start, value, bytes);
578 if (!fault)
579 return 1;
580
581 end = start + bytes;
582 while (end > fault && end[-1] == value)
583 end--;
584
585 slab_bug(s, "%s overwritten", what);
586 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault, end - 1, fault[0], value);
588 print_trailer(s, page, object);
589
590 restore_bytes(s, what, value, fault, end);
591 return 0;
592 }
593
594 /*
595 * Object layout:
596 *
597 * object address
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
601 *
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
607 * Padding is extended by another word if Redzoning is enabled and
608 * objsize == inuse.
609 *
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
614 * Meta data starts here.
615 *
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
618 * C. Padding to reach required alignment boundary or at mininum
619 * one word if debugging is on to be able to detect writes
620 * before the word boundary.
621 *
622 * Padding is done using 0x5a (POISON_INUSE)
623 *
624 * object + s->size
625 * Nothing is used beyond s->size.
626 *
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
629 * may be used with merged slabcaches.
630 */
631
632 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633 {
634 unsigned long off = s->inuse; /* The end of info */
635
636 if (s->offset)
637 /* Freepointer is placed after the object. */
638 off += sizeof(void *);
639
640 if (s->flags & SLAB_STORE_USER)
641 /* We also have user information there */
642 off += 2 * sizeof(struct track);
643
644 if (s->size == off)
645 return 1;
646
647 return check_bytes_and_report(s, page, p, "Object padding",
648 p + off, POISON_INUSE, s->size - off);
649 }
650
651 /* Check the pad bytes at the end of a slab page */
652 static int slab_pad_check(struct kmem_cache *s, struct page *page)
653 {
654 u8 *start;
655 u8 *fault;
656 u8 *end;
657 int length;
658 int remainder;
659
660 if (!(s->flags & SLAB_POISON))
661 return 1;
662
663 start = page_address(page);
664 length = (PAGE_SIZE << compound_order(page));
665 end = start + length;
666 remainder = length % s->size;
667 if (!remainder)
668 return 1;
669
670 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
671 if (!fault)
672 return 1;
673 while (end > fault && end[-1] == POISON_INUSE)
674 end--;
675
676 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
677 print_section("Padding", end - remainder, remainder);
678
679 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 return 0;
681 }
682
683 static int check_object(struct kmem_cache *s, struct page *page,
684 void *object, int active)
685 {
686 u8 *p = object;
687 u8 *endobject = object + s->objsize;
688
689 if (s->flags & SLAB_RED_ZONE) {
690 unsigned int red =
691 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
693 if (!check_bytes_and_report(s, page, object, "Redzone",
694 endobject, red, s->inuse - s->objsize))
695 return 0;
696 } else {
697 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 check_bytes_and_report(s, page, p, "Alignment padding",
699 endobject, POISON_INUSE, s->inuse - s->objsize);
700 }
701 }
702
703 if (s->flags & SLAB_POISON) {
704 if (!active && (s->flags & __OBJECT_POISON) &&
705 (!check_bytes_and_report(s, page, p, "Poison", p,
706 POISON_FREE, s->objsize - 1) ||
707 !check_bytes_and_report(s, page, p, "Poison",
708 p + s->objsize - 1, POISON_END, 1)))
709 return 0;
710 /*
711 * check_pad_bytes cleans up on its own.
712 */
713 check_pad_bytes(s, page, p);
714 }
715
716 if (!s->offset && active)
717 /*
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
720 */
721 return 1;
722
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 object_err(s, page, p, "Freepointer corrupt");
726 /*
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
729 * another error because the object count is now wrong.
730 */
731 set_freepointer(s, p, NULL);
732 return 0;
733 }
734 return 1;
735 }
736
737 static int check_slab(struct kmem_cache *s, struct page *page)
738 {
739 int maxobj;
740
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
744 slab_err(s, page, "Not a valid slab page");
745 return 0;
746 }
747
748 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 if (page->objects > maxobj) {
750 slab_err(s, page, "objects %u > max %u",
751 s->name, page->objects, maxobj);
752 return 0;
753 }
754 if (page->inuse > page->objects) {
755 slab_err(s, page, "inuse %u > max %u",
756 s->name, page->inuse, page->objects);
757 return 0;
758 }
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s, page);
761 return 1;
762 }
763
764 /*
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
767 */
768 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769 {
770 int nr = 0;
771 void *fp = page->freelist;
772 void *object = NULL;
773 unsigned long max_objects;
774
775 while (fp && nr <= page->objects) {
776 if (fp == search)
777 return 1;
778 if (!check_valid_pointer(s, page, fp)) {
779 if (object) {
780 object_err(s, page, object,
781 "Freechain corrupt");
782 set_freepointer(s, object, NULL);
783 break;
784 } else {
785 slab_err(s, page, "Freepointer corrupt");
786 page->freelist = NULL;
787 page->inuse = page->objects;
788 slab_fix(s, "Freelist cleared");
789 return 0;
790 }
791 break;
792 }
793 object = fp;
794 fp = get_freepointer(s, object);
795 nr++;
796 }
797
798 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 if (max_objects > 65535)
800 max_objects = 65535;
801
802 if (page->objects != max_objects) {
803 slab_err(s, page, "Wrong number of objects. Found %d but "
804 "should be %d", page->objects, max_objects);
805 page->objects = max_objects;
806 slab_fix(s, "Number of objects adjusted.");
807 }
808 if (page->inuse != page->objects - nr) {
809 slab_err(s, page, "Wrong object count. Counter is %d but "
810 "counted were %d", page->inuse, page->objects - nr);
811 page->inuse = page->objects - nr;
812 slab_fix(s, "Object count adjusted.");
813 }
814 return search == NULL;
815 }
816
817 static void trace(struct kmem_cache *s, struct page *page, void *object,
818 int alloc)
819 {
820 if (s->flags & SLAB_TRACE) {
821 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 s->name,
823 alloc ? "alloc" : "free",
824 object, page->inuse,
825 page->freelist);
826
827 if (!alloc)
828 print_section("Object", (void *)object, s->objsize);
829
830 dump_stack();
831 }
832 }
833
834 /*
835 * Tracking of fully allocated slabs for debugging purposes.
836 */
837 static void add_full(struct kmem_cache_node *n, struct page *page)
838 {
839 spin_lock(&n->list_lock);
840 list_add(&page->lru, &n->full);
841 spin_unlock(&n->list_lock);
842 }
843
844 static void remove_full(struct kmem_cache *s, struct page *page)
845 {
846 struct kmem_cache_node *n;
847
848 if (!(s->flags & SLAB_STORE_USER))
849 return;
850
851 n = get_node(s, page_to_nid(page));
852
853 spin_lock(&n->list_lock);
854 list_del(&page->lru);
855 spin_unlock(&n->list_lock);
856 }
857
858 /* Tracking of the number of slabs for debugging purposes */
859 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860 {
861 struct kmem_cache_node *n = get_node(s, node);
862
863 return atomic_long_read(&n->nr_slabs);
864 }
865
866 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
867 {
868 struct kmem_cache_node *n = get_node(s, node);
869
870 /*
871 * May be called early in order to allocate a slab for the
872 * kmem_cache_node structure. Solve the chicken-egg
873 * dilemma by deferring the increment of the count during
874 * bootstrap (see early_kmem_cache_node_alloc).
875 */
876 if (!NUMA_BUILD || n) {
877 atomic_long_inc(&n->nr_slabs);
878 atomic_long_add(objects, &n->total_objects);
879 }
880 }
881 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
882 {
883 struct kmem_cache_node *n = get_node(s, node);
884
885 atomic_long_dec(&n->nr_slabs);
886 atomic_long_sub(objects, &n->total_objects);
887 }
888
889 /* Object debug checks for alloc/free paths */
890 static void setup_object_debug(struct kmem_cache *s, struct page *page,
891 void *object)
892 {
893 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894 return;
895
896 init_object(s, object, 0);
897 init_tracking(s, object);
898 }
899
900 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, void *addr)
902 {
903 if (!check_slab(s, page))
904 goto bad;
905
906 if (!on_freelist(s, page, object)) {
907 object_err(s, page, object, "Object already allocated");
908 goto bad;
909 }
910
911 if (!check_valid_pointer(s, page, object)) {
912 object_err(s, page, object, "Freelist Pointer check fails");
913 goto bad;
914 }
915
916 if (!check_object(s, page, object, 0))
917 goto bad;
918
919 /* Success perform special debug activities for allocs */
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_ALLOC, addr);
922 trace(s, page, object, 1);
923 init_object(s, object, 1);
924 return 1;
925
926 bad:
927 if (PageSlab(page)) {
928 /*
929 * If this is a slab page then lets do the best we can
930 * to avoid issues in the future. Marking all objects
931 * as used avoids touching the remaining objects.
932 */
933 slab_fix(s, "Marking all objects used");
934 page->inuse = page->objects;
935 page->freelist = NULL;
936 }
937 return 0;
938 }
939
940 static int free_debug_processing(struct kmem_cache *s, struct page *page,
941 void *object, void *addr)
942 {
943 if (!check_slab(s, page))
944 goto fail;
945
946 if (!check_valid_pointer(s, page, object)) {
947 slab_err(s, page, "Invalid object pointer 0x%p", object);
948 goto fail;
949 }
950
951 if (on_freelist(s, page, object)) {
952 object_err(s, page, object, "Object already free");
953 goto fail;
954 }
955
956 if (!check_object(s, page, object, 1))
957 return 0;
958
959 if (unlikely(s != page->slab)) {
960 if (!PageSlab(page)) {
961 slab_err(s, page, "Attempt to free object(0x%p) "
962 "outside of slab", object);
963 } else if (!page->slab) {
964 printk(KERN_ERR
965 "SLUB <none>: no slab for object 0x%p.\n",
966 object);
967 dump_stack();
968 } else
969 object_err(s, page, object,
970 "page slab pointer corrupt.");
971 goto fail;
972 }
973
974 /* Special debug activities for freeing objects */
975 if (!SlabFrozen(page) && !page->freelist)
976 remove_full(s, page);
977 if (s->flags & SLAB_STORE_USER)
978 set_track(s, object, TRACK_FREE, addr);
979 trace(s, page, object, 0);
980 init_object(s, object, 0);
981 return 1;
982
983 fail:
984 slab_fix(s, "Object at 0x%p not freed", object);
985 return 0;
986 }
987
988 static int __init setup_slub_debug(char *str)
989 {
990 slub_debug = DEBUG_DEFAULT_FLAGS;
991 if (*str++ != '=' || !*str)
992 /*
993 * No options specified. Switch on full debugging.
994 */
995 goto out;
996
997 if (*str == ',')
998 /*
999 * No options but restriction on slabs. This means full
1000 * debugging for slabs matching a pattern.
1001 */
1002 goto check_slabs;
1003
1004 slub_debug = 0;
1005 if (*str == '-')
1006 /*
1007 * Switch off all debugging measures.
1008 */
1009 goto out;
1010
1011 /*
1012 * Determine which debug features should be switched on
1013 */
1014 for (; *str && *str != ','; str++) {
1015 switch (tolower(*str)) {
1016 case 'f':
1017 slub_debug |= SLAB_DEBUG_FREE;
1018 break;
1019 case 'z':
1020 slub_debug |= SLAB_RED_ZONE;
1021 break;
1022 case 'p':
1023 slub_debug |= SLAB_POISON;
1024 break;
1025 case 'u':
1026 slub_debug |= SLAB_STORE_USER;
1027 break;
1028 case 't':
1029 slub_debug |= SLAB_TRACE;
1030 break;
1031 default:
1032 printk(KERN_ERR "slub_debug option '%c' "
1033 "unknown. skipped\n", *str);
1034 }
1035 }
1036
1037 check_slabs:
1038 if (*str == ',')
1039 slub_debug_slabs = str + 1;
1040 out:
1041 return 1;
1042 }
1043
1044 __setup("slub_debug", setup_slub_debug);
1045
1046 static unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(struct kmem_cache *, void *))
1049 {
1050 /*
1051 * Enable debugging if selected on the kernel commandline.
1052 */
1053 if (slub_debug && (!slub_debug_slabs ||
1054 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055 flags |= slub_debug;
1056
1057 return flags;
1058 }
1059 #else
1060 static inline void setup_object_debug(struct kmem_cache *s,
1061 struct page *page, void *object) {}
1062
1063 static inline int alloc_debug_processing(struct kmem_cache *s,
1064 struct page *page, void *object, void *addr) { return 0; }
1065
1066 static inline int free_debug_processing(struct kmem_cache *s,
1067 struct page *page, void *object, void *addr) { return 0; }
1068
1069 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070 { return 1; }
1071 static inline int check_object(struct kmem_cache *s, struct page *page,
1072 void *object, int active) { return 1; }
1073 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1074 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075 unsigned long flags, const char *name,
1076 void (*ctor)(struct kmem_cache *, void *))
1077 {
1078 return flags;
1079 }
1080 #define slub_debug 0
1081
1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 { return 0; }
1084 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 int objects) {}
1086 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
1088 #endif
1089
1090 /*
1091 * Slab allocation and freeing
1092 */
1093 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 struct kmem_cache_order_objects oo)
1095 {
1096 int order = oo_order(oo);
1097
1098 if (node == -1)
1099 return alloc_pages(flags, order);
1100 else
1101 return alloc_pages_node(node, flags, order);
1102 }
1103
1104 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105 {
1106 struct page *page;
1107 struct kmem_cache_order_objects oo = s->oo;
1108
1109 flags |= s->allocflags;
1110
1111 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112 oo);
1113 if (unlikely(!page)) {
1114 oo = s->min;
1115 /*
1116 * Allocation may have failed due to fragmentation.
1117 * Try a lower order alloc if possible
1118 */
1119 page = alloc_slab_page(flags, node, oo);
1120 if (!page)
1121 return NULL;
1122
1123 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 }
1125 page->objects = oo_objects(oo);
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 1 << oo_order(oo));
1130
1131 return page;
1132 }
1133
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1136 {
1137 setup_object_debug(s, page, object);
1138 if (unlikely(s->ctor))
1139 s->ctor(s, object);
1140 }
1141
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143 {
1144 struct page *page;
1145 void *start;
1146 void *last;
1147 void *p;
1148
1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 if (!page)
1154 goto out;
1155
1156 inc_slabs_node(s, page_to_nid(page), page->objects);
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
1161 SetSlabDebug(page);
1162
1163 start = page_address(page);
1164
1165 if (unlikely(s->flags & SLAB_POISON))
1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167
1168 last = start;
1169 for_each_object(p, s, start, page->objects) {
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1173 }
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, NULL);
1176
1177 page->freelist = start;
1178 page->inuse = 0;
1179 out:
1180 return page;
1181 }
1182
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 int order = compound_order(page);
1186 int pages = 1 << order;
1187
1188 if (unlikely(SlabDebug(page))) {
1189 void *p;
1190
1191 slab_pad_check(s, page);
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
1194 check_object(s, page, p, 0);
1195 ClearSlabDebug(page);
1196 }
1197
1198 mod_zone_page_state(page_zone(page),
1199 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1201 -pages);
1202
1203 __ClearPageSlab(page);
1204 reset_page_mapcount(page);
1205 __free_pages(page, order);
1206 }
1207
1208 static void rcu_free_slab(struct rcu_head *h)
1209 {
1210 struct page *page;
1211
1212 page = container_of((struct list_head *)h, struct page, lru);
1213 __free_slab(page->slab, page);
1214 }
1215
1216 static void free_slab(struct kmem_cache *s, struct page *page)
1217 {
1218 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 /*
1220 * RCU free overloads the RCU head over the LRU
1221 */
1222 struct rcu_head *head = (void *)&page->lru;
1223
1224 call_rcu(head, rcu_free_slab);
1225 } else
1226 __free_slab(s, page);
1227 }
1228
1229 static void discard_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 dec_slabs_node(s, page_to_nid(page), page->objects);
1232 free_slab(s, page);
1233 }
1234
1235 /*
1236 * Per slab locking using the pagelock
1237 */
1238 static __always_inline void slab_lock(struct page *page)
1239 {
1240 bit_spin_lock(PG_locked, &page->flags);
1241 }
1242
1243 static __always_inline void slab_unlock(struct page *page)
1244 {
1245 __bit_spin_unlock(PG_locked, &page->flags);
1246 }
1247
1248 static __always_inline int slab_trylock(struct page *page)
1249 {
1250 int rc = 1;
1251
1252 rc = bit_spin_trylock(PG_locked, &page->flags);
1253 return rc;
1254 }
1255
1256 /*
1257 * Management of partially allocated slabs
1258 */
1259 static void add_partial(struct kmem_cache_node *n,
1260 struct page *page, int tail)
1261 {
1262 spin_lock(&n->list_lock);
1263 n->nr_partial++;
1264 if (tail)
1265 list_add_tail(&page->lru, &n->partial);
1266 else
1267 list_add(&page->lru, &n->partial);
1268 spin_unlock(&n->list_lock);
1269 }
1270
1271 static void remove_partial(struct kmem_cache *s, struct page *page)
1272 {
1273 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275 spin_lock(&n->list_lock);
1276 list_del(&page->lru);
1277 n->nr_partial--;
1278 spin_unlock(&n->list_lock);
1279 }
1280
1281 /*
1282 * Lock slab and remove from the partial list.
1283 *
1284 * Must hold list_lock.
1285 */
1286 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287 struct page *page)
1288 {
1289 if (slab_trylock(page)) {
1290 list_del(&page->lru);
1291 n->nr_partial--;
1292 SetSlabFrozen(page);
1293 return 1;
1294 }
1295 return 0;
1296 }
1297
1298 /*
1299 * Try to allocate a partial slab from a specific node.
1300 */
1301 static struct page *get_partial_node(struct kmem_cache_node *n)
1302 {
1303 struct page *page;
1304
1305 /*
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
1308 * partial slab and there is none available then get_partials()
1309 * will return NULL.
1310 */
1311 if (!n || !n->nr_partial)
1312 return NULL;
1313
1314 spin_lock(&n->list_lock);
1315 list_for_each_entry(page, &n->partial, lru)
1316 if (lock_and_freeze_slab(n, page))
1317 goto out;
1318 page = NULL;
1319 out:
1320 spin_unlock(&n->list_lock);
1321 return page;
1322 }
1323
1324 /*
1325 * Get a page from somewhere. Search in increasing NUMA distances.
1326 */
1327 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328 {
1329 #ifdef CONFIG_NUMA
1330 struct zonelist *zonelist;
1331 struct zoneref *z;
1332 struct zone *zone;
1333 enum zone_type high_zoneidx = gfp_zone(flags);
1334 struct page *page;
1335
1336 /*
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1341 *
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1346 *
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1353 */
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1356 return NULL;
1357
1358 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1359 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1360 struct kmem_cache_node *n;
1361
1362 n = get_node(s, zone_to_nid(zone));
1363
1364 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1365 n->nr_partial > MIN_PARTIAL) {
1366 page = get_partial_node(n);
1367 if (page)
1368 return page;
1369 }
1370 }
1371 #endif
1372 return NULL;
1373 }
1374
1375 /*
1376 * Get a partial page, lock it and return it.
1377 */
1378 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379 {
1380 struct page *page;
1381 int searchnode = (node == -1) ? numa_node_id() : node;
1382
1383 page = get_partial_node(get_node(s, searchnode));
1384 if (page || (flags & __GFP_THISNODE))
1385 return page;
1386
1387 return get_any_partial(s, flags);
1388 }
1389
1390 /*
1391 * Move a page back to the lists.
1392 *
1393 * Must be called with the slab lock held.
1394 *
1395 * On exit the slab lock will have been dropped.
1396 */
1397 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1398 {
1399 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1400 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1401
1402 ClearSlabFrozen(page);
1403 if (page->inuse) {
1404
1405 if (page->freelist) {
1406 add_partial(n, page, tail);
1407 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408 } else {
1409 stat(c, DEACTIVATE_FULL);
1410 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411 add_full(n, page);
1412 }
1413 slab_unlock(page);
1414 } else {
1415 stat(c, DEACTIVATE_EMPTY);
1416 if (n->nr_partial < MIN_PARTIAL) {
1417 /*
1418 * Adding an empty slab to the partial slabs in order
1419 * to avoid page allocator overhead. This slab needs
1420 * to come after the other slabs with objects in
1421 * so that the others get filled first. That way the
1422 * size of the partial list stays small.
1423 *
1424 * kmem_cache_shrink can reclaim any empty slabs from
1425 * the partial list.
1426 */
1427 add_partial(n, page, 1);
1428 slab_unlock(page);
1429 } else {
1430 slab_unlock(page);
1431 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1432 discard_slab(s, page);
1433 }
1434 }
1435 }
1436
1437 /*
1438 * Remove the cpu slab
1439 */
1440 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441 {
1442 struct page *page = c->page;
1443 int tail = 1;
1444
1445 if (page->freelist)
1446 stat(c, DEACTIVATE_REMOTE_FREES);
1447 /*
1448 * Merge cpu freelist into slab freelist. Typically we get here
1449 * because both freelists are empty. So this is unlikely
1450 * to occur.
1451 */
1452 while (unlikely(c->freelist)) {
1453 void **object;
1454
1455 tail = 0; /* Hot objects. Put the slab first */
1456
1457 /* Retrieve object from cpu_freelist */
1458 object = c->freelist;
1459 c->freelist = c->freelist[c->offset];
1460
1461 /* And put onto the regular freelist */
1462 object[c->offset] = page->freelist;
1463 page->freelist = object;
1464 page->inuse--;
1465 }
1466 c->page = NULL;
1467 unfreeze_slab(s, page, tail);
1468 }
1469
1470 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1471 {
1472 stat(c, CPUSLAB_FLUSH);
1473 slab_lock(c->page);
1474 deactivate_slab(s, c);
1475 }
1476
1477 /*
1478 * Flush cpu slab.
1479 *
1480 * Called from IPI handler with interrupts disabled.
1481 */
1482 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1483 {
1484 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1485
1486 if (likely(c && c->page))
1487 flush_slab(s, c);
1488 }
1489
1490 static void flush_cpu_slab(void *d)
1491 {
1492 struct kmem_cache *s = d;
1493
1494 __flush_cpu_slab(s, smp_processor_id());
1495 }
1496
1497 static void flush_all(struct kmem_cache *s)
1498 {
1499 #ifdef CONFIG_SMP
1500 on_each_cpu(flush_cpu_slab, s, 1, 1);
1501 #else
1502 unsigned long flags;
1503
1504 local_irq_save(flags);
1505 flush_cpu_slab(s);
1506 local_irq_restore(flags);
1507 #endif
1508 }
1509
1510 /*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1515 {
1516 #ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519 #endif
1520 return 1;
1521 }
1522
1523 /*
1524 * Slow path. The lockless freelist is empty or we need to perform
1525 * debugging duties.
1526 *
1527 * Interrupts are disabled.
1528 *
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
1532 *
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
1536 *
1537 * And if we were unable to get a new slab from the partial slab lists then
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
1540 */
1541 static void *__slab_alloc(struct kmem_cache *s,
1542 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1543 {
1544 void **object;
1545 struct page *new;
1546
1547 /* We handle __GFP_ZERO in the caller */
1548 gfpflags &= ~__GFP_ZERO;
1549
1550 if (!c->page)
1551 goto new_slab;
1552
1553 slab_lock(c->page);
1554 if (unlikely(!node_match(c, node)))
1555 goto another_slab;
1556
1557 stat(c, ALLOC_REFILL);
1558
1559 load_freelist:
1560 object = c->page->freelist;
1561 if (unlikely(!object))
1562 goto another_slab;
1563 if (unlikely(SlabDebug(c->page)))
1564 goto debug;
1565
1566 c->freelist = object[c->offset];
1567 c->page->inuse = c->page->objects;
1568 c->page->freelist = NULL;
1569 c->node = page_to_nid(c->page);
1570 unlock_out:
1571 slab_unlock(c->page);
1572 stat(c, ALLOC_SLOWPATH);
1573 return object;
1574
1575 another_slab:
1576 deactivate_slab(s, c);
1577
1578 new_slab:
1579 new = get_partial(s, gfpflags, node);
1580 if (new) {
1581 c->page = new;
1582 stat(c, ALLOC_FROM_PARTIAL);
1583 goto load_freelist;
1584 }
1585
1586 if (gfpflags & __GFP_WAIT)
1587 local_irq_enable();
1588
1589 new = new_slab(s, gfpflags, node);
1590
1591 if (gfpflags & __GFP_WAIT)
1592 local_irq_disable();
1593
1594 if (new) {
1595 c = get_cpu_slab(s, smp_processor_id());
1596 stat(c, ALLOC_SLAB);
1597 if (c->page)
1598 flush_slab(s, c);
1599 slab_lock(new);
1600 SetSlabFrozen(new);
1601 c->page = new;
1602 goto load_freelist;
1603 }
1604 return NULL;
1605 debug:
1606 if (!alloc_debug_processing(s, c->page, object, addr))
1607 goto another_slab;
1608
1609 c->page->inuse++;
1610 c->page->freelist = object[c->offset];
1611 c->node = -1;
1612 goto unlock_out;
1613 }
1614
1615 /*
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1619 *
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1622 *
1623 * Otherwise we can simply pick the next object from the lockless free list.
1624 */
1625 static __always_inline void *slab_alloc(struct kmem_cache *s,
1626 gfp_t gfpflags, int node, void *addr)
1627 {
1628 void **object;
1629 struct kmem_cache_cpu *c;
1630 unsigned long flags;
1631
1632 local_irq_save(flags);
1633 c = get_cpu_slab(s, smp_processor_id());
1634 if (unlikely(!c->freelist || !node_match(c, node)))
1635
1636 object = __slab_alloc(s, gfpflags, node, addr, c);
1637
1638 else {
1639 object = c->freelist;
1640 c->freelist = object[c->offset];
1641 stat(c, ALLOC_FASTPATH);
1642 }
1643 local_irq_restore(flags);
1644
1645 if (unlikely((gfpflags & __GFP_ZERO) && object))
1646 memset(object, 0, c->objsize);
1647
1648 return object;
1649 }
1650
1651 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652 {
1653 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1654 }
1655 EXPORT_SYMBOL(kmem_cache_alloc);
1656
1657 #ifdef CONFIG_NUMA
1658 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659 {
1660 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1661 }
1662 EXPORT_SYMBOL(kmem_cache_alloc_node);
1663 #endif
1664
1665 /*
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
1668 *
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
1672 */
1673 static void __slab_free(struct kmem_cache *s, struct page *page,
1674 void *x, void *addr, unsigned int offset)
1675 {
1676 void *prior;
1677 void **object = (void *)x;
1678 struct kmem_cache_cpu *c;
1679
1680 c = get_cpu_slab(s, raw_smp_processor_id());
1681 stat(c, FREE_SLOWPATH);
1682 slab_lock(page);
1683
1684 if (unlikely(SlabDebug(page)))
1685 goto debug;
1686
1687 checks_ok:
1688 prior = object[offset] = page->freelist;
1689 page->freelist = object;
1690 page->inuse--;
1691
1692 if (unlikely(SlabFrozen(page))) {
1693 stat(c, FREE_FROZEN);
1694 goto out_unlock;
1695 }
1696
1697 if (unlikely(!page->inuse))
1698 goto slab_empty;
1699
1700 /*
1701 * Objects left in the slab. If it was not on the partial list before
1702 * then add it.
1703 */
1704 if (unlikely(!prior)) {
1705 add_partial(get_node(s, page_to_nid(page)), page, 1);
1706 stat(c, FREE_ADD_PARTIAL);
1707 }
1708
1709 out_unlock:
1710 slab_unlock(page);
1711 return;
1712
1713 slab_empty:
1714 if (prior) {
1715 /*
1716 * Slab still on the partial list.
1717 */
1718 remove_partial(s, page);
1719 stat(c, FREE_REMOVE_PARTIAL);
1720 }
1721 slab_unlock(page);
1722 stat(c, FREE_SLAB);
1723 discard_slab(s, page);
1724 return;
1725
1726 debug:
1727 if (!free_debug_processing(s, page, x, addr))
1728 goto out_unlock;
1729 goto checks_ok;
1730 }
1731
1732 /*
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1735 *
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1738 * the item before.
1739 *
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1742 */
1743 static __always_inline void slab_free(struct kmem_cache *s,
1744 struct page *page, void *x, void *addr)
1745 {
1746 void **object = (void *)x;
1747 struct kmem_cache_cpu *c;
1748 unsigned long flags;
1749
1750 local_irq_save(flags);
1751 c = get_cpu_slab(s, smp_processor_id());
1752 debug_check_no_locks_freed(object, c->objsize);
1753 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754 debug_check_no_obj_freed(object, s->objsize);
1755 if (likely(page == c->page && c->node >= 0)) {
1756 object[c->offset] = c->freelist;
1757 c->freelist = object;
1758 stat(c, FREE_FASTPATH);
1759 } else
1760 __slab_free(s, page, x, addr, c->offset);
1761
1762 local_irq_restore(flags);
1763 }
1764
1765 void kmem_cache_free(struct kmem_cache *s, void *x)
1766 {
1767 struct page *page;
1768
1769 page = virt_to_head_page(x);
1770
1771 slab_free(s, page, x, __builtin_return_address(0));
1772 }
1773 EXPORT_SYMBOL(kmem_cache_free);
1774
1775 /* Figure out on which slab object the object resides */
1776 static struct page *get_object_page(const void *x)
1777 {
1778 struct page *page = virt_to_head_page(x);
1779
1780 if (!PageSlab(page))
1781 return NULL;
1782
1783 return page;
1784 }
1785
1786 /*
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1790 * another.
1791 *
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
1795 * must be moved on and off the partial lists and is therefore a factor in
1796 * locking overhead.
1797 */
1798
1799 /*
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1804 */
1805 static int slub_min_order;
1806 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1807 static int slub_min_objects;
1808
1809 /*
1810 * Merge control. If this is set then no merging of slab caches will occur.
1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
1812 */
1813 static int slub_nomerge;
1814
1815 /*
1816 * Calculate the order of allocation given an slab object size.
1817 *
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
1822 * unused space left. We go to a higher order if more than 1/16th of the slab
1823 * would be wasted.
1824 *
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
1829 *
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
1834 *
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
1839 */
1840 static inline int slab_order(int size, int min_objects,
1841 int max_order, int fract_leftover)
1842 {
1843 int order;
1844 int rem;
1845 int min_order = slub_min_order;
1846
1847 if ((PAGE_SIZE << min_order) / size > 65535)
1848 return get_order(size * 65535) - 1;
1849
1850 for (order = max(min_order,
1851 fls(min_objects * size - 1) - PAGE_SHIFT);
1852 order <= max_order; order++) {
1853
1854 unsigned long slab_size = PAGE_SIZE << order;
1855
1856 if (slab_size < min_objects * size)
1857 continue;
1858
1859 rem = slab_size % size;
1860
1861 if (rem <= slab_size / fract_leftover)
1862 break;
1863
1864 }
1865
1866 return order;
1867 }
1868
1869 static inline int calculate_order(int size)
1870 {
1871 int order;
1872 int min_objects;
1873 int fraction;
1874
1875 /*
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1879 *
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1882 */
1883 min_objects = slub_min_objects;
1884 if (!min_objects)
1885 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1886 while (min_objects > 1) {
1887 fraction = 16;
1888 while (fraction >= 4) {
1889 order = slab_order(size, min_objects,
1890 slub_max_order, fraction);
1891 if (order <= slub_max_order)
1892 return order;
1893 fraction /= 2;
1894 }
1895 min_objects /= 2;
1896 }
1897
1898 /*
1899 * We were unable to place multiple objects in a slab. Now
1900 * lets see if we can place a single object there.
1901 */
1902 order = slab_order(size, 1, slub_max_order, 1);
1903 if (order <= slub_max_order)
1904 return order;
1905
1906 /*
1907 * Doh this slab cannot be placed using slub_max_order.
1908 */
1909 order = slab_order(size, 1, MAX_ORDER, 1);
1910 if (order <= MAX_ORDER)
1911 return order;
1912 return -ENOSYS;
1913 }
1914
1915 /*
1916 * Figure out what the alignment of the objects will be.
1917 */
1918 static unsigned long calculate_alignment(unsigned long flags,
1919 unsigned long align, unsigned long size)
1920 {
1921 /*
1922 * If the user wants hardware cache aligned objects then follow that
1923 * suggestion if the object is sufficiently large.
1924 *
1925 * The hardware cache alignment cannot override the specified
1926 * alignment though. If that is greater then use it.
1927 */
1928 if (flags & SLAB_HWCACHE_ALIGN) {
1929 unsigned long ralign = cache_line_size();
1930 while (size <= ralign / 2)
1931 ralign /= 2;
1932 align = max(align, ralign);
1933 }
1934
1935 if (align < ARCH_SLAB_MINALIGN)
1936 align = ARCH_SLAB_MINALIGN;
1937
1938 return ALIGN(align, sizeof(void *));
1939 }
1940
1941 static void init_kmem_cache_cpu(struct kmem_cache *s,
1942 struct kmem_cache_cpu *c)
1943 {
1944 c->page = NULL;
1945 c->freelist = NULL;
1946 c->node = 0;
1947 c->offset = s->offset / sizeof(void *);
1948 c->objsize = s->objsize;
1949 #ifdef CONFIG_SLUB_STATS
1950 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951 #endif
1952 }
1953
1954 static void init_kmem_cache_node(struct kmem_cache_node *n)
1955 {
1956 n->nr_partial = 0;
1957 spin_lock_init(&n->list_lock);
1958 INIT_LIST_HEAD(&n->partial);
1959 #ifdef CONFIG_SLUB_DEBUG
1960 atomic_long_set(&n->nr_slabs, 0);
1961 INIT_LIST_HEAD(&n->full);
1962 #endif
1963 }
1964
1965 #ifdef CONFIG_SMP
1966 /*
1967 * Per cpu array for per cpu structures.
1968 *
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1973 *
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 *
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1980 */
1981 #define NR_KMEM_CACHE_CPU 100
1982
1983 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985
1986 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988
1989 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990 int cpu, gfp_t flags)
1991 {
1992 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993
1994 if (c)
1995 per_cpu(kmem_cache_cpu_free, cpu) =
1996 (void *)c->freelist;
1997 else {
1998 /* Table overflow: So allocate ourselves */
1999 c = kmalloc_node(
2000 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001 flags, cpu_to_node(cpu));
2002 if (!c)
2003 return NULL;
2004 }
2005
2006 init_kmem_cache_cpu(s, c);
2007 return c;
2008 }
2009
2010 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011 {
2012 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014 kfree(c);
2015 return;
2016 }
2017 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018 per_cpu(kmem_cache_cpu_free, cpu) = c;
2019 }
2020
2021 static void free_kmem_cache_cpus(struct kmem_cache *s)
2022 {
2023 int cpu;
2024
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028 if (c) {
2029 s->cpu_slab[cpu] = NULL;
2030 free_kmem_cache_cpu(c, cpu);
2031 }
2032 }
2033 }
2034
2035 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036 {
2037 int cpu;
2038
2039 for_each_online_cpu(cpu) {
2040 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041
2042 if (c)
2043 continue;
2044
2045 c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 if (!c) {
2047 free_kmem_cache_cpus(s);
2048 return 0;
2049 }
2050 s->cpu_slab[cpu] = c;
2051 }
2052 return 1;
2053 }
2054
2055 /*
2056 * Initialize the per cpu array.
2057 */
2058 static void init_alloc_cpu_cpu(int cpu)
2059 {
2060 int i;
2061
2062 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063 return;
2064
2065 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067
2068 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069 }
2070
2071 static void __init init_alloc_cpu(void)
2072 {
2073 int cpu;
2074
2075 for_each_online_cpu(cpu)
2076 init_alloc_cpu_cpu(cpu);
2077 }
2078
2079 #else
2080 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081 static inline void init_alloc_cpu(void) {}
2082
2083 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084 {
2085 init_kmem_cache_cpu(s, &s->cpu_slab);
2086 return 1;
2087 }
2088 #endif
2089
2090 #ifdef CONFIG_NUMA
2091 /*
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2094 * possible.
2095 *
2096 * Note that this function only works on the kmalloc_node_cache
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
2099 */
2100 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101 int node)
2102 {
2103 struct page *page;
2104 struct kmem_cache_node *n;
2105 unsigned long flags;
2106
2107 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108
2109 page = new_slab(kmalloc_caches, gfpflags, node);
2110
2111 BUG_ON(!page);
2112 if (page_to_nid(page) != node) {
2113 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 "node %d\n", node);
2115 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116 "in order to be able to continue\n");
2117 }
2118
2119 n = page->freelist;
2120 BUG_ON(!n);
2121 page->freelist = get_freepointer(kmalloc_caches, n);
2122 page->inuse++;
2123 kmalloc_caches->node[node] = n;
2124 #ifdef CONFIG_SLUB_DEBUG
2125 init_object(kmalloc_caches, n, 1);
2126 init_tracking(kmalloc_caches, n);
2127 #endif
2128 init_kmem_cache_node(n);
2129 inc_slabs_node(kmalloc_caches, node, page->objects);
2130
2131 /*
2132 * lockdep requires consistent irq usage for each lock
2133 * so even though there cannot be a race this early in
2134 * the boot sequence, we still disable irqs.
2135 */
2136 local_irq_save(flags);
2137 add_partial(n, page, 0);
2138 local_irq_restore(flags);
2139 return n;
2140 }
2141
2142 static void free_kmem_cache_nodes(struct kmem_cache *s)
2143 {
2144 int node;
2145
2146 for_each_node_state(node, N_NORMAL_MEMORY) {
2147 struct kmem_cache_node *n = s->node[node];
2148 if (n && n != &s->local_node)
2149 kmem_cache_free(kmalloc_caches, n);
2150 s->node[node] = NULL;
2151 }
2152 }
2153
2154 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155 {
2156 int node;
2157 int local_node;
2158
2159 if (slab_state >= UP)
2160 local_node = page_to_nid(virt_to_page(s));
2161 else
2162 local_node = 0;
2163
2164 for_each_node_state(node, N_NORMAL_MEMORY) {
2165 struct kmem_cache_node *n;
2166
2167 if (local_node == node)
2168 n = &s->local_node;
2169 else {
2170 if (slab_state == DOWN) {
2171 n = early_kmem_cache_node_alloc(gfpflags,
2172 node);
2173 continue;
2174 }
2175 n = kmem_cache_alloc_node(kmalloc_caches,
2176 gfpflags, node);
2177
2178 if (!n) {
2179 free_kmem_cache_nodes(s);
2180 return 0;
2181 }
2182
2183 }
2184 s->node[node] = n;
2185 init_kmem_cache_node(n);
2186 }
2187 return 1;
2188 }
2189 #else
2190 static void free_kmem_cache_nodes(struct kmem_cache *s)
2191 {
2192 }
2193
2194 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195 {
2196 init_kmem_cache_node(&s->local_node);
2197 return 1;
2198 }
2199 #endif
2200
2201 /*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 {
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
2210 int order;
2211
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219 #ifdef CONFIG_SLUB_DEBUG
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 !s->ctor)
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
2231
2232 /*
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
2239 #endif
2240
2241 /*
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 s->ctor)) {
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
2269 if (flags & SLAB_RED_ZONE)
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if an user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
2278 #endif
2279
2280 /*
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286
2287 /*
2288 * SLUB stores one object immediately after another beginning from
2289 * offset 0. In order to align the objects we have to simply size
2290 * each object to conform to the alignment.
2291 */
2292 size = ALIGN(size, align);
2293 s->size = size;
2294 if (forced_order >= 0)
2295 order = forced_order;
2296 else
2297 order = calculate_order(size);
2298
2299 if (order < 0)
2300 return 0;
2301
2302 s->allocflags = 0;
2303 if (order)
2304 s->allocflags |= __GFP_COMP;
2305
2306 if (s->flags & SLAB_CACHE_DMA)
2307 s->allocflags |= SLUB_DMA;
2308
2309 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310 s->allocflags |= __GFP_RECLAIMABLE;
2311
2312 /*
2313 * Determine the number of objects per slab
2314 */
2315 s->oo = oo_make(order, size);
2316 s->min = oo_make(get_order(size), size);
2317 if (oo_objects(s->oo) > oo_objects(s->max))
2318 s->max = s->oo;
2319
2320 return !!oo_objects(s->oo);
2321
2322 }
2323
2324 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325 const char *name, size_t size,
2326 size_t align, unsigned long flags,
2327 void (*ctor)(struct kmem_cache *, void *))
2328 {
2329 memset(s, 0, kmem_size);
2330 s->name = name;
2331 s->ctor = ctor;
2332 s->objsize = size;
2333 s->align = align;
2334 s->flags = kmem_cache_flags(size, flags, name, ctor);
2335
2336 if (!calculate_sizes(s, -1))
2337 goto error;
2338
2339 s->refcount = 1;
2340 #ifdef CONFIG_NUMA
2341 s->remote_node_defrag_ratio = 100;
2342 #endif
2343 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344 goto error;
2345
2346 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2347 return 1;
2348 free_kmem_cache_nodes(s);
2349 error:
2350 if (flags & SLAB_PANIC)
2351 panic("Cannot create slab %s size=%lu realsize=%u "
2352 "order=%u offset=%u flags=%lx\n",
2353 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2354 s->offset, flags);
2355 return 0;
2356 }
2357
2358 /*
2359 * Check if a given pointer is valid
2360 */
2361 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362 {
2363 struct page *page;
2364
2365 page = get_object_page(object);
2366
2367 if (!page || s != page->slab)
2368 /* No slab or wrong slab */
2369 return 0;
2370
2371 if (!check_valid_pointer(s, page, object))
2372 return 0;
2373
2374 /*
2375 * We could also check if the object is on the slabs freelist.
2376 * But this would be too expensive and it seems that the main
2377 * purpose of kmem_ptr_valid() is to check if the object belongs
2378 * to a certain slab.
2379 */
2380 return 1;
2381 }
2382 EXPORT_SYMBOL(kmem_ptr_validate);
2383
2384 /*
2385 * Determine the size of a slab object
2386 */
2387 unsigned int kmem_cache_size(struct kmem_cache *s)
2388 {
2389 return s->objsize;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_size);
2392
2393 const char *kmem_cache_name(struct kmem_cache *s)
2394 {
2395 return s->name;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_name);
2398
2399 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400 const char *text)
2401 {
2402 #ifdef CONFIG_SLUB_DEBUG
2403 void *addr = page_address(page);
2404 void *p;
2405 DECLARE_BITMAP(map, page->objects);
2406
2407 bitmap_zero(map, page->objects);
2408 slab_err(s, page, "%s", text);
2409 slab_lock(page);
2410 for_each_free_object(p, s, page->freelist)
2411 set_bit(slab_index(p, s, addr), map);
2412
2413 for_each_object(p, s, addr, page->objects) {
2414
2415 if (!test_bit(slab_index(p, s, addr), map)) {
2416 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 p, p - addr);
2418 print_tracking(s, p);
2419 }
2420 }
2421 slab_unlock(page);
2422 #endif
2423 }
2424
2425 /*
2426 * Attempt to free all partial slabs on a node.
2427 */
2428 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2429 {
2430 unsigned long flags;
2431 struct page *page, *h;
2432
2433 spin_lock_irqsave(&n->list_lock, flags);
2434 list_for_each_entry_safe(page, h, &n->partial, lru) {
2435 if (!page->inuse) {
2436 list_del(&page->lru);
2437 discard_slab(s, page);
2438 n->nr_partial--;
2439 } else {
2440 list_slab_objects(s, page,
2441 "Objects remaining on kmem_cache_close()");
2442 }
2443 }
2444 spin_unlock_irqrestore(&n->list_lock, flags);
2445 }
2446
2447 /*
2448 * Release all resources used by a slab cache.
2449 */
2450 static inline int kmem_cache_close(struct kmem_cache *s)
2451 {
2452 int node;
2453
2454 flush_all(s);
2455
2456 /* Attempt to free all objects */
2457 free_kmem_cache_cpus(s);
2458 for_each_node_state(node, N_NORMAL_MEMORY) {
2459 struct kmem_cache_node *n = get_node(s, node);
2460
2461 free_partial(s, n);
2462 if (n->nr_partial || slabs_node(s, node))
2463 return 1;
2464 }
2465 free_kmem_cache_nodes(s);
2466 return 0;
2467 }
2468
2469 /*
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2472 */
2473 void kmem_cache_destroy(struct kmem_cache *s)
2474 {
2475 down_write(&slub_lock);
2476 s->refcount--;
2477 if (!s->refcount) {
2478 list_del(&s->list);
2479 up_write(&slub_lock);
2480 if (kmem_cache_close(s)) {
2481 printk(KERN_ERR "SLUB %s: %s called for cache that "
2482 "still has objects.\n", s->name, __func__);
2483 dump_stack();
2484 }
2485 sysfs_slab_remove(s);
2486 } else
2487 up_write(&slub_lock);
2488 }
2489 EXPORT_SYMBOL(kmem_cache_destroy);
2490
2491 /********************************************************************
2492 * Kmalloc subsystem
2493 *******************************************************************/
2494
2495 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2496 EXPORT_SYMBOL(kmalloc_caches);
2497
2498 static int __init setup_slub_min_order(char *str)
2499 {
2500 get_option(&str, &slub_min_order);
2501
2502 return 1;
2503 }
2504
2505 __setup("slub_min_order=", setup_slub_min_order);
2506
2507 static int __init setup_slub_max_order(char *str)
2508 {
2509 get_option(&str, &slub_max_order);
2510
2511 return 1;
2512 }
2513
2514 __setup("slub_max_order=", setup_slub_max_order);
2515
2516 static int __init setup_slub_min_objects(char *str)
2517 {
2518 get_option(&str, &slub_min_objects);
2519
2520 return 1;
2521 }
2522
2523 __setup("slub_min_objects=", setup_slub_min_objects);
2524
2525 static int __init setup_slub_nomerge(char *str)
2526 {
2527 slub_nomerge = 1;
2528 return 1;
2529 }
2530
2531 __setup("slub_nomerge", setup_slub_nomerge);
2532
2533 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534 const char *name, int size, gfp_t gfp_flags)
2535 {
2536 unsigned int flags = 0;
2537
2538 if (gfp_flags & SLUB_DMA)
2539 flags = SLAB_CACHE_DMA;
2540
2541 down_write(&slub_lock);
2542 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2543 flags, NULL))
2544 goto panic;
2545
2546 list_add(&s->list, &slab_caches);
2547 up_write(&slub_lock);
2548 if (sysfs_slab_add(s))
2549 goto panic;
2550 return s;
2551
2552 panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554 }
2555
2556 #ifdef CONFIG_ZONE_DMA
2557 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2558
2559 static void sysfs_add_func(struct work_struct *w)
2560 {
2561 struct kmem_cache *s;
2562
2563 down_write(&slub_lock);
2564 list_for_each_entry(s, &slab_caches, list) {
2565 if (s->flags & __SYSFS_ADD_DEFERRED) {
2566 s->flags &= ~__SYSFS_ADD_DEFERRED;
2567 sysfs_slab_add(s);
2568 }
2569 }
2570 up_write(&slub_lock);
2571 }
2572
2573 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574
2575 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576 {
2577 struct kmem_cache *s;
2578 char *text;
2579 size_t realsize;
2580
2581 s = kmalloc_caches_dma[index];
2582 if (s)
2583 return s;
2584
2585 /* Dynamically create dma cache */
2586 if (flags & __GFP_WAIT)
2587 down_write(&slub_lock);
2588 else {
2589 if (!down_write_trylock(&slub_lock))
2590 goto out;
2591 }
2592
2593 if (kmalloc_caches_dma[index])
2594 goto unlock_out;
2595
2596 realsize = kmalloc_caches[index].objsize;
2597 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598 (unsigned int)realsize);
2599 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600
2601 if (!s || !text || !kmem_cache_open(s, flags, text,
2602 realsize, ARCH_KMALLOC_MINALIGN,
2603 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604 kfree(s);
2605 kfree(text);
2606 goto unlock_out;
2607 }
2608
2609 list_add(&s->list, &slab_caches);
2610 kmalloc_caches_dma[index] = s;
2611
2612 schedule_work(&sysfs_add_work);
2613
2614 unlock_out:
2615 up_write(&slub_lock);
2616 out:
2617 return kmalloc_caches_dma[index];
2618 }
2619 #endif
2620
2621 /*
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2625 * fls.
2626 */
2627 static s8 size_index[24] = {
2628 3, /* 8 */
2629 4, /* 16 */
2630 5, /* 24 */
2631 5, /* 32 */
2632 6, /* 40 */
2633 6, /* 48 */
2634 6, /* 56 */
2635 6, /* 64 */
2636 1, /* 72 */
2637 1, /* 80 */
2638 1, /* 88 */
2639 1, /* 96 */
2640 7, /* 104 */
2641 7, /* 112 */
2642 7, /* 120 */
2643 7, /* 128 */
2644 2, /* 136 */
2645 2, /* 144 */
2646 2, /* 152 */
2647 2, /* 160 */
2648 2, /* 168 */
2649 2, /* 176 */
2650 2, /* 184 */
2651 2 /* 192 */
2652 };
2653
2654 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655 {
2656 int index;
2657
2658 if (size <= 192) {
2659 if (!size)
2660 return ZERO_SIZE_PTR;
2661
2662 index = size_index[(size - 1) / 8];
2663 } else
2664 index = fls(size - 1);
2665
2666 #ifdef CONFIG_ZONE_DMA
2667 if (unlikely((flags & SLUB_DMA)))
2668 return dma_kmalloc_cache(index, flags);
2669
2670 #endif
2671 return &kmalloc_caches[index];
2672 }
2673
2674 void *__kmalloc(size_t size, gfp_t flags)
2675 {
2676 struct kmem_cache *s;
2677
2678 if (unlikely(size > PAGE_SIZE))
2679 return kmalloc_large(size, flags);
2680
2681 s = get_slab(size, flags);
2682
2683 if (unlikely(ZERO_OR_NULL_PTR(s)))
2684 return s;
2685
2686 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2687 }
2688 EXPORT_SYMBOL(__kmalloc);
2689
2690 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691 {
2692 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693 get_order(size));
2694
2695 if (page)
2696 return page_address(page);
2697 else
2698 return NULL;
2699 }
2700
2701 #ifdef CONFIG_NUMA
2702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703 {
2704 struct kmem_cache *s;
2705
2706 if (unlikely(size > PAGE_SIZE))
2707 return kmalloc_large_node(size, flags, node);
2708
2709 s = get_slab(size, flags);
2710
2711 if (unlikely(ZERO_OR_NULL_PTR(s)))
2712 return s;
2713
2714 return slab_alloc(s, flags, node, __builtin_return_address(0));
2715 }
2716 EXPORT_SYMBOL(__kmalloc_node);
2717 #endif
2718
2719 size_t ksize(const void *object)
2720 {
2721 struct page *page;
2722 struct kmem_cache *s;
2723
2724 if (unlikely(object == ZERO_SIZE_PTR))
2725 return 0;
2726
2727 page = virt_to_head_page(object);
2728
2729 if (unlikely(!PageSlab(page)))
2730 return PAGE_SIZE << compound_order(page);
2731
2732 s = page->slab;
2733
2734 #ifdef CONFIG_SLUB_DEBUG
2735 /*
2736 * Debugging requires use of the padding between object
2737 * and whatever may come after it.
2738 */
2739 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2740 return s->objsize;
2741
2742 #endif
2743 /*
2744 * If we have the need to store the freelist pointer
2745 * back there or track user information then we can
2746 * only use the space before that information.
2747 */
2748 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2749 return s->inuse;
2750 /*
2751 * Else we can use all the padding etc for the allocation
2752 */
2753 return s->size;
2754 }
2755 EXPORT_SYMBOL(ksize);
2756
2757 void kfree(const void *x)
2758 {
2759 struct page *page;
2760 void *object = (void *)x;
2761
2762 if (unlikely(ZERO_OR_NULL_PTR(x)))
2763 return;
2764
2765 page = virt_to_head_page(x);
2766 if (unlikely(!PageSlab(page))) {
2767 put_page(page);
2768 return;
2769 }
2770 slab_free(page->slab, page, object, __builtin_return_address(0));
2771 }
2772 EXPORT_SYMBOL(kfree);
2773
2774 /*
2775 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776 * the remaining slabs by the number of items in use. The slabs with the
2777 * most items in use come first. New allocations will then fill those up
2778 * and thus they can be removed from the partial lists.
2779 *
2780 * The slabs with the least items are placed last. This results in them
2781 * being allocated from last increasing the chance that the last objects
2782 * are freed in them.
2783 */
2784 int kmem_cache_shrink(struct kmem_cache *s)
2785 {
2786 int node;
2787 int i;
2788 struct kmem_cache_node *n;
2789 struct page *page;
2790 struct page *t;
2791 int objects = oo_objects(s->max);
2792 struct list_head *slabs_by_inuse =
2793 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2794 unsigned long flags;
2795
2796 if (!slabs_by_inuse)
2797 return -ENOMEM;
2798
2799 flush_all(s);
2800 for_each_node_state(node, N_NORMAL_MEMORY) {
2801 n = get_node(s, node);
2802
2803 if (!n->nr_partial)
2804 continue;
2805
2806 for (i = 0; i < objects; i++)
2807 INIT_LIST_HEAD(slabs_by_inuse + i);
2808
2809 spin_lock_irqsave(&n->list_lock, flags);
2810
2811 /*
2812 * Build lists indexed by the items in use in each slab.
2813 *
2814 * Note that concurrent frees may occur while we hold the
2815 * list_lock. page->inuse here is the upper limit.
2816 */
2817 list_for_each_entry_safe(page, t, &n->partial, lru) {
2818 if (!page->inuse && slab_trylock(page)) {
2819 /*
2820 * Must hold slab lock here because slab_free
2821 * may have freed the last object and be
2822 * waiting to release the slab.
2823 */
2824 list_del(&page->lru);
2825 n->nr_partial--;
2826 slab_unlock(page);
2827 discard_slab(s, page);
2828 } else {
2829 list_move(&page->lru,
2830 slabs_by_inuse + page->inuse);
2831 }
2832 }
2833
2834 /*
2835 * Rebuild the partial list with the slabs filled up most
2836 * first and the least used slabs at the end.
2837 */
2838 for (i = objects - 1; i >= 0; i--)
2839 list_splice(slabs_by_inuse + i, n->partial.prev);
2840
2841 spin_unlock_irqrestore(&n->list_lock, flags);
2842 }
2843
2844 kfree(slabs_by_inuse);
2845 return 0;
2846 }
2847 EXPORT_SYMBOL(kmem_cache_shrink);
2848
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg)
2851 {
2852 struct kmem_cache *s;
2853
2854 down_read(&slub_lock);
2855 list_for_each_entry(s, &slab_caches, list)
2856 kmem_cache_shrink(s);
2857 up_read(&slub_lock);
2858
2859 return 0;
2860 }
2861
2862 static void slab_mem_offline_callback(void *arg)
2863 {
2864 struct kmem_cache_node *n;
2865 struct kmem_cache *s;
2866 struct memory_notify *marg = arg;
2867 int offline_node;
2868
2869 offline_node = marg->status_change_nid;
2870
2871 /*
2872 * If the node still has available memory. we need kmem_cache_node
2873 * for it yet.
2874 */
2875 if (offline_node < 0)
2876 return;
2877
2878 down_read(&slub_lock);
2879 list_for_each_entry(s, &slab_caches, list) {
2880 n = get_node(s, offline_node);
2881 if (n) {
2882 /*
2883 * if n->nr_slabs > 0, slabs still exist on the node
2884 * that is going down. We were unable to free them,
2885 * and offline_pages() function shoudn't call this
2886 * callback. So, we must fail.
2887 */
2888 BUG_ON(slabs_node(s, offline_node));
2889
2890 s->node[offline_node] = NULL;
2891 kmem_cache_free(kmalloc_caches, n);
2892 }
2893 }
2894 up_read(&slub_lock);
2895 }
2896
2897 static int slab_mem_going_online_callback(void *arg)
2898 {
2899 struct kmem_cache_node *n;
2900 struct kmem_cache *s;
2901 struct memory_notify *marg = arg;
2902 int nid = marg->status_change_nid;
2903 int ret = 0;
2904
2905 /*
2906 * If the node's memory is already available, then kmem_cache_node is
2907 * already created. Nothing to do.
2908 */
2909 if (nid < 0)
2910 return 0;
2911
2912 /*
2913 * We are bringing a node online. No memory is available yet. We must
2914 * allocate a kmem_cache_node structure in order to bring the node
2915 * online.
2916 */
2917 down_read(&slub_lock);
2918 list_for_each_entry(s, &slab_caches, list) {
2919 /*
2920 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 * since memory is not yet available from the node that
2922 * is brought up.
2923 */
2924 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2925 if (!n) {
2926 ret = -ENOMEM;
2927 goto out;
2928 }
2929 init_kmem_cache_node(n);
2930 s->node[nid] = n;
2931 }
2932 out:
2933 up_read(&slub_lock);
2934 return ret;
2935 }
2936
2937 static int slab_memory_callback(struct notifier_block *self,
2938 unsigned long action, void *arg)
2939 {
2940 int ret = 0;
2941
2942 switch (action) {
2943 case MEM_GOING_ONLINE:
2944 ret = slab_mem_going_online_callback(arg);
2945 break;
2946 case MEM_GOING_OFFLINE:
2947 ret = slab_mem_going_offline_callback(arg);
2948 break;
2949 case MEM_OFFLINE:
2950 case MEM_CANCEL_ONLINE:
2951 slab_mem_offline_callback(arg);
2952 break;
2953 case MEM_ONLINE:
2954 case MEM_CANCEL_OFFLINE:
2955 break;
2956 }
2957
2958 ret = notifier_from_errno(ret);
2959 return ret;
2960 }
2961
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2963
2964 /********************************************************************
2965 * Basic setup of slabs
2966 *******************************************************************/
2967
2968 void __init kmem_cache_init(void)
2969 {
2970 int i;
2971 int caches = 0;
2972
2973 init_alloc_cpu();
2974
2975 #ifdef CONFIG_NUMA
2976 /*
2977 * Must first have the slab cache available for the allocations of the
2978 * struct kmem_cache_node's. There is special bootstrap code in
2979 * kmem_cache_open for slab_state == DOWN.
2980 */
2981 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2982 sizeof(struct kmem_cache_node), GFP_KERNEL);
2983 kmalloc_caches[0].refcount = -1;
2984 caches++;
2985
2986 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2987 #endif
2988
2989 /* Able to allocate the per node structures */
2990 slab_state = PARTIAL;
2991
2992 /* Caches that are not of the two-to-the-power-of size */
2993 if (KMALLOC_MIN_SIZE <= 64) {
2994 create_kmalloc_cache(&kmalloc_caches[1],
2995 "kmalloc-96", 96, GFP_KERNEL);
2996 caches++;
2997 }
2998 if (KMALLOC_MIN_SIZE <= 128) {
2999 create_kmalloc_cache(&kmalloc_caches[2],
3000 "kmalloc-192", 192, GFP_KERNEL);
3001 caches++;
3002 }
3003
3004 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3005 create_kmalloc_cache(&kmalloc_caches[i],
3006 "kmalloc", 1 << i, GFP_KERNEL);
3007 caches++;
3008 }
3009
3010
3011 /*
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
3014 * MIPS it seems. The standard arches will not generate any code here.
3015 *
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3018 *
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3021 */
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024
3025 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3026 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3027
3028 slab_state = UP;
3029
3030 /* Provide the correct kmalloc names now that the caches are up */
3031 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3032 kmalloc_caches[i]. name =
3033 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3034
3035 #ifdef CONFIG_SMP
3036 register_cpu_notifier(&slab_notifier);
3037 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3038 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039 #else
3040 kmem_size = sizeof(struct kmem_cache);
3041 #endif
3042
3043 printk(KERN_INFO
3044 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3045 " CPUs=%d, Nodes=%d\n",
3046 caches, cache_line_size(),
3047 slub_min_order, slub_max_order, slub_min_objects,
3048 nr_cpu_ids, nr_node_ids);
3049 }
3050
3051 /*
3052 * Find a mergeable slab cache
3053 */
3054 static int slab_unmergeable(struct kmem_cache *s)
3055 {
3056 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3057 return 1;
3058
3059 if (s->ctor)
3060 return 1;
3061
3062 /*
3063 * We may have set a slab to be unmergeable during bootstrap.
3064 */
3065 if (s->refcount < 0)
3066 return 1;
3067
3068 return 0;
3069 }
3070
3071 static struct kmem_cache *find_mergeable(size_t size,
3072 size_t align, unsigned long flags, const char *name,
3073 void (*ctor)(struct kmem_cache *, void *))
3074 {
3075 struct kmem_cache *s;
3076
3077 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3078 return NULL;
3079
3080 if (ctor)
3081 return NULL;
3082
3083 size = ALIGN(size, sizeof(void *));
3084 align = calculate_alignment(flags, align, size);
3085 size = ALIGN(size, align);
3086 flags = kmem_cache_flags(size, flags, name, NULL);
3087
3088 list_for_each_entry(s, &slab_caches, list) {
3089 if (slab_unmergeable(s))
3090 continue;
3091
3092 if (size > s->size)
3093 continue;
3094
3095 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3096 continue;
3097 /*
3098 * Check if alignment is compatible.
3099 * Courtesy of Adrian Drzewiecki
3100 */
3101 if ((s->size & ~(align - 1)) != s->size)
3102 continue;
3103
3104 if (s->size - size >= sizeof(void *))
3105 continue;
3106
3107 return s;
3108 }
3109 return NULL;
3110 }
3111
3112 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3113 size_t align, unsigned long flags,
3114 void (*ctor)(struct kmem_cache *, void *))
3115 {
3116 struct kmem_cache *s;
3117
3118 down_write(&slub_lock);
3119 s = find_mergeable(size, align, flags, name, ctor);
3120 if (s) {
3121 int cpu;
3122
3123 s->refcount++;
3124 /*
3125 * Adjust the object sizes so that we clear
3126 * the complete object on kzalloc.
3127 */
3128 s->objsize = max(s->objsize, (int)size);
3129
3130 /*
3131 * And then we need to update the object size in the
3132 * per cpu structures
3133 */
3134 for_each_online_cpu(cpu)
3135 get_cpu_slab(s, cpu)->objsize = s->objsize;
3136
3137 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3138 up_write(&slub_lock);
3139
3140 if (sysfs_slab_alias(s, name))
3141 goto err;
3142 return s;
3143 }
3144
3145 s = kmalloc(kmem_size, GFP_KERNEL);
3146 if (s) {
3147 if (kmem_cache_open(s, GFP_KERNEL, name,
3148 size, align, flags, ctor)) {
3149 list_add(&s->list, &slab_caches);
3150 up_write(&slub_lock);
3151 if (sysfs_slab_add(s))
3152 goto err;
3153 return s;
3154 }
3155 kfree(s);
3156 }
3157 up_write(&slub_lock);
3158
3159 err:
3160 if (flags & SLAB_PANIC)
3161 panic("Cannot create slabcache %s\n", name);
3162 else
3163 s = NULL;
3164 return s;
3165 }
3166 EXPORT_SYMBOL(kmem_cache_create);
3167
3168 #ifdef CONFIG_SMP
3169 /*
3170 * Use the cpu notifier to insure that the cpu slabs are flushed when
3171 * necessary.
3172 */
3173 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3174 unsigned long action, void *hcpu)
3175 {
3176 long cpu = (long)hcpu;
3177 struct kmem_cache *s;
3178 unsigned long flags;
3179
3180 switch (action) {
3181 case CPU_UP_PREPARE:
3182 case CPU_UP_PREPARE_FROZEN:
3183 init_alloc_cpu_cpu(cpu);
3184 down_read(&slub_lock);
3185 list_for_each_entry(s, &slab_caches, list)
3186 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3187 GFP_KERNEL);
3188 up_read(&slub_lock);
3189 break;
3190
3191 case CPU_UP_CANCELED:
3192 case CPU_UP_CANCELED_FROZEN:
3193 case CPU_DEAD:
3194 case CPU_DEAD_FROZEN:
3195 down_read(&slub_lock);
3196 list_for_each_entry(s, &slab_caches, list) {
3197 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3198
3199 local_irq_save(flags);
3200 __flush_cpu_slab(s, cpu);
3201 local_irq_restore(flags);
3202 free_kmem_cache_cpu(c, cpu);
3203 s->cpu_slab[cpu] = NULL;
3204 }
3205 up_read(&slub_lock);
3206 break;
3207 default:
3208 break;
3209 }
3210 return NOTIFY_OK;
3211 }
3212
3213 static struct notifier_block __cpuinitdata slab_notifier = {
3214 .notifier_call = slab_cpuup_callback
3215 };
3216
3217 #endif
3218
3219 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3220 {
3221 struct kmem_cache *s;
3222
3223 if (unlikely(size > PAGE_SIZE))
3224 return kmalloc_large(size, gfpflags);
3225
3226 s = get_slab(size, gfpflags);
3227
3228 if (unlikely(ZERO_OR_NULL_PTR(s)))
3229 return s;
3230
3231 return slab_alloc(s, gfpflags, -1, caller);
3232 }
3233
3234 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3235 int node, void *caller)
3236 {
3237 struct kmem_cache *s;
3238
3239 if (unlikely(size > PAGE_SIZE))
3240 return kmalloc_large_node(size, gfpflags, node);
3241
3242 s = get_slab(size, gfpflags);
3243
3244 if (unlikely(ZERO_OR_NULL_PTR(s)))
3245 return s;
3246
3247 return slab_alloc(s, gfpflags, node, caller);
3248 }
3249
3250 #ifdef CONFIG_SLUB_DEBUG
3251 static unsigned long count_partial(struct kmem_cache_node *n,
3252 int (*get_count)(struct page *))
3253 {
3254 unsigned long flags;
3255 unsigned long x = 0;
3256 struct page *page;
3257
3258 spin_lock_irqsave(&n->list_lock, flags);
3259 list_for_each_entry(page, &n->partial, lru)
3260 x += get_count(page);
3261 spin_unlock_irqrestore(&n->list_lock, flags);
3262 return x;
3263 }
3264
3265 static int count_inuse(struct page *page)
3266 {
3267 return page->inuse;
3268 }
3269
3270 static int count_total(struct page *page)
3271 {
3272 return page->objects;
3273 }
3274
3275 static int count_free(struct page *page)
3276 {
3277 return page->objects - page->inuse;
3278 }
3279
3280 static int validate_slab(struct kmem_cache *s, struct page *page,
3281 unsigned long *map)
3282 {
3283 void *p;
3284 void *addr = page_address(page);
3285
3286 if (!check_slab(s, page) ||
3287 !on_freelist(s, page, NULL))
3288 return 0;
3289
3290 /* Now we know that a valid freelist exists */
3291 bitmap_zero(map, page->objects);
3292
3293 for_each_free_object(p, s, page->freelist) {
3294 set_bit(slab_index(p, s, addr), map);
3295 if (!check_object(s, page, p, 0))
3296 return 0;
3297 }
3298
3299 for_each_object(p, s, addr, page->objects)
3300 if (!test_bit(slab_index(p, s, addr), map))
3301 if (!check_object(s, page, p, 1))
3302 return 0;
3303 return 1;
3304 }
3305
3306 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3307 unsigned long *map)
3308 {
3309 if (slab_trylock(page)) {
3310 validate_slab(s, page, map);
3311 slab_unlock(page);
3312 } else
3313 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3314 s->name, page);
3315
3316 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3317 if (!SlabDebug(page))
3318 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3319 "on slab 0x%p\n", s->name, page);
3320 } else {
3321 if (SlabDebug(page))
3322 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3323 "slab 0x%p\n", s->name, page);
3324 }
3325 }
3326
3327 static int validate_slab_node(struct kmem_cache *s,
3328 struct kmem_cache_node *n, unsigned long *map)
3329 {
3330 unsigned long count = 0;
3331 struct page *page;
3332 unsigned long flags;
3333
3334 spin_lock_irqsave(&n->list_lock, flags);
3335
3336 list_for_each_entry(page, &n->partial, lru) {
3337 validate_slab_slab(s, page, map);
3338 count++;
3339 }
3340 if (count != n->nr_partial)
3341 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3342 "counter=%ld\n", s->name, count, n->nr_partial);
3343
3344 if (!(s->flags & SLAB_STORE_USER))
3345 goto out;
3346
3347 list_for_each_entry(page, &n->full, lru) {
3348 validate_slab_slab(s, page, map);
3349 count++;
3350 }
3351 if (count != atomic_long_read(&n->nr_slabs))
3352 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3353 "counter=%ld\n", s->name, count,
3354 atomic_long_read(&n->nr_slabs));
3355
3356 out:
3357 spin_unlock_irqrestore(&n->list_lock, flags);
3358 return count;
3359 }
3360
3361 static long validate_slab_cache(struct kmem_cache *s)
3362 {
3363 int node;
3364 unsigned long count = 0;
3365 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3366 sizeof(unsigned long), GFP_KERNEL);
3367
3368 if (!map)
3369 return -ENOMEM;
3370
3371 flush_all(s);
3372 for_each_node_state(node, N_NORMAL_MEMORY) {
3373 struct kmem_cache_node *n = get_node(s, node);
3374
3375 count += validate_slab_node(s, n, map);
3376 }
3377 kfree(map);
3378 return count;
3379 }
3380
3381 #ifdef SLUB_RESILIENCY_TEST
3382 static void resiliency_test(void)
3383 {
3384 u8 *p;
3385
3386 printk(KERN_ERR "SLUB resiliency testing\n");
3387 printk(KERN_ERR "-----------------------\n");
3388 printk(KERN_ERR "A. Corruption after allocation\n");
3389
3390 p = kzalloc(16, GFP_KERNEL);
3391 p[16] = 0x12;
3392 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3393 " 0x12->0x%p\n\n", p + 16);
3394
3395 validate_slab_cache(kmalloc_caches + 4);
3396
3397 /* Hmmm... The next two are dangerous */
3398 p = kzalloc(32, GFP_KERNEL);
3399 p[32 + sizeof(void *)] = 0x34;
3400 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3401 " 0x34 -> -0x%p\n", p);
3402 printk(KERN_ERR
3403 "If allocated object is overwritten then not detectable\n\n");
3404
3405 validate_slab_cache(kmalloc_caches + 5);
3406 p = kzalloc(64, GFP_KERNEL);
3407 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3408 *p = 0x56;
3409 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3410 p);
3411 printk(KERN_ERR
3412 "If allocated object is overwritten then not detectable\n\n");
3413 validate_slab_cache(kmalloc_caches + 6);
3414
3415 printk(KERN_ERR "\nB. Corruption after free\n");
3416 p = kzalloc(128, GFP_KERNEL);
3417 kfree(p);
3418 *p = 0x78;
3419 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3420 validate_slab_cache(kmalloc_caches + 7);
3421
3422 p = kzalloc(256, GFP_KERNEL);
3423 kfree(p);
3424 p[50] = 0x9a;
3425 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3426 p);
3427 validate_slab_cache(kmalloc_caches + 8);
3428
3429 p = kzalloc(512, GFP_KERNEL);
3430 kfree(p);
3431 p[512] = 0xab;
3432 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3433 validate_slab_cache(kmalloc_caches + 9);
3434 }
3435 #else
3436 static void resiliency_test(void) {};
3437 #endif
3438
3439 /*
3440 * Generate lists of code addresses where slabcache objects are allocated
3441 * and freed.
3442 */
3443
3444 struct location {
3445 unsigned long count;
3446 void *addr;
3447 long long sum_time;
3448 long min_time;
3449 long max_time;
3450 long min_pid;
3451 long max_pid;
3452 cpumask_t cpus;
3453 nodemask_t nodes;
3454 };
3455
3456 struct loc_track {
3457 unsigned long max;
3458 unsigned long count;
3459 struct location *loc;
3460 };
3461
3462 static void free_loc_track(struct loc_track *t)
3463 {
3464 if (t->max)
3465 free_pages((unsigned long)t->loc,
3466 get_order(sizeof(struct location) * t->max));
3467 }
3468
3469 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3470 {
3471 struct location *l;
3472 int order;
3473
3474 order = get_order(sizeof(struct location) * max);
3475
3476 l = (void *)__get_free_pages(flags, order);
3477 if (!l)
3478 return 0;
3479
3480 if (t->count) {
3481 memcpy(l, t->loc, sizeof(struct location) * t->count);
3482 free_loc_track(t);
3483 }
3484 t->max = max;
3485 t->loc = l;
3486 return 1;
3487 }
3488
3489 static int add_location(struct loc_track *t, struct kmem_cache *s,
3490 const struct track *track)
3491 {
3492 long start, end, pos;
3493 struct location *l;
3494 void *caddr;
3495 unsigned long age = jiffies - track->when;
3496
3497 start = -1;
3498 end = t->count;
3499
3500 for ( ; ; ) {
3501 pos = start + (end - start + 1) / 2;
3502
3503 /*
3504 * There is nothing at "end". If we end up there
3505 * we need to add something to before end.
3506 */
3507 if (pos == end)
3508 break;
3509
3510 caddr = t->loc[pos].addr;
3511 if (track->addr == caddr) {
3512
3513 l = &t->loc[pos];
3514 l->count++;
3515 if (track->when) {
3516 l->sum_time += age;
3517 if (age < l->min_time)
3518 l->min_time = age;
3519 if (age > l->max_time)
3520 l->max_time = age;
3521
3522 if (track->pid < l->min_pid)
3523 l->min_pid = track->pid;
3524 if (track->pid > l->max_pid)
3525 l->max_pid = track->pid;
3526
3527 cpu_set(track->cpu, l->cpus);
3528 }
3529 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3530 return 1;
3531 }
3532
3533 if (track->addr < caddr)
3534 end = pos;
3535 else
3536 start = pos;
3537 }
3538
3539 /*
3540 * Not found. Insert new tracking element.
3541 */
3542 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3543 return 0;
3544
3545 l = t->loc + pos;
3546 if (pos < t->count)
3547 memmove(l + 1, l,
3548 (t->count - pos) * sizeof(struct location));
3549 t->count++;
3550 l->count = 1;
3551 l->addr = track->addr;
3552 l->sum_time = age;
3553 l->min_time = age;
3554 l->max_time = age;
3555 l->min_pid = track->pid;
3556 l->max_pid = track->pid;
3557 cpus_clear(l->cpus);
3558 cpu_set(track->cpu, l->cpus);
3559 nodes_clear(l->nodes);
3560 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3561 return 1;
3562 }
3563
3564 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3565 struct page *page, enum track_item alloc)
3566 {
3567 void *addr = page_address(page);
3568 DECLARE_BITMAP(map, page->objects);
3569 void *p;
3570
3571 bitmap_zero(map, page->objects);
3572 for_each_free_object(p, s, page->freelist)
3573 set_bit(slab_index(p, s, addr), map);
3574
3575 for_each_object(p, s, addr, page->objects)
3576 if (!test_bit(slab_index(p, s, addr), map))
3577 add_location(t, s, get_track(s, p, alloc));
3578 }
3579
3580 static int list_locations(struct kmem_cache *s, char *buf,
3581 enum track_item alloc)
3582 {
3583 int len = 0;
3584 unsigned long i;
3585 struct loc_track t = { 0, 0, NULL };
3586 int node;
3587
3588 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3589 GFP_TEMPORARY))
3590 return sprintf(buf, "Out of memory\n");
3591
3592 /* Push back cpu slabs */
3593 flush_all(s);
3594
3595 for_each_node_state(node, N_NORMAL_MEMORY) {
3596 struct kmem_cache_node *n = get_node(s, node);
3597 unsigned long flags;
3598 struct page *page;
3599
3600 if (!atomic_long_read(&n->nr_slabs))
3601 continue;
3602
3603 spin_lock_irqsave(&n->list_lock, flags);
3604 list_for_each_entry(page, &n->partial, lru)
3605 process_slab(&t, s, page, alloc);
3606 list_for_each_entry(page, &n->full, lru)
3607 process_slab(&t, s, page, alloc);
3608 spin_unlock_irqrestore(&n->list_lock, flags);
3609 }
3610
3611 for (i = 0; i < t.count; i++) {
3612 struct location *l = &t.loc[i];
3613
3614 if (len > PAGE_SIZE - 100)
3615 break;
3616 len += sprintf(buf + len, "%7ld ", l->count);
3617
3618 if (l->addr)
3619 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3620 else
3621 len += sprintf(buf + len, "<not-available>");
3622
3623 if (l->sum_time != l->min_time) {
3624 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3625 l->min_time,
3626 (long)div_u64(l->sum_time, l->count),
3627 l->max_time);
3628 } else
3629 len += sprintf(buf + len, " age=%ld",
3630 l->min_time);
3631
3632 if (l->min_pid != l->max_pid)
3633 len += sprintf(buf + len, " pid=%ld-%ld",
3634 l->min_pid, l->max_pid);
3635 else
3636 len += sprintf(buf + len, " pid=%ld",
3637 l->min_pid);
3638
3639 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3640 len < PAGE_SIZE - 60) {
3641 len += sprintf(buf + len, " cpus=");
3642 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3643 l->cpus);
3644 }
3645
3646 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3647 len < PAGE_SIZE - 60) {
3648 len += sprintf(buf + len, " nodes=");
3649 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3650 l->nodes);
3651 }
3652
3653 len += sprintf(buf + len, "\n");
3654 }
3655
3656 free_loc_track(&t);
3657 if (!t.count)
3658 len += sprintf(buf, "No data\n");
3659 return len;
3660 }
3661
3662 enum slab_stat_type {
3663 SL_ALL, /* All slabs */
3664 SL_PARTIAL, /* Only partially allocated slabs */
3665 SL_CPU, /* Only slabs used for cpu caches */
3666 SL_OBJECTS, /* Determine allocated objects not slabs */
3667 SL_TOTAL /* Determine object capacity not slabs */
3668 };
3669
3670 #define SO_ALL (1 << SL_ALL)
3671 #define SO_PARTIAL (1 << SL_PARTIAL)
3672 #define SO_CPU (1 << SL_CPU)
3673 #define SO_OBJECTS (1 << SL_OBJECTS)
3674 #define SO_TOTAL (1 << SL_TOTAL)
3675
3676 static ssize_t show_slab_objects(struct kmem_cache *s,
3677 char *buf, unsigned long flags)
3678 {
3679 unsigned long total = 0;
3680 int node;
3681 int x;
3682 unsigned long *nodes;
3683 unsigned long *per_cpu;
3684
3685 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3686 if (!nodes)
3687 return -ENOMEM;
3688 per_cpu = nodes + nr_node_ids;
3689
3690 if (flags & SO_CPU) {
3691 int cpu;
3692
3693 for_each_possible_cpu(cpu) {
3694 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3695
3696 if (!c || c->node < 0)
3697 continue;
3698
3699 if (c->page) {
3700 if (flags & SO_TOTAL)
3701 x = c->page->objects;
3702 else if (flags & SO_OBJECTS)
3703 x = c->page->inuse;
3704 else
3705 x = 1;
3706
3707 total += x;
3708 nodes[c->node] += x;
3709 }
3710 per_cpu[c->node]++;
3711 }
3712 }
3713
3714 if (flags & SO_ALL) {
3715 for_each_node_state(node, N_NORMAL_MEMORY) {
3716 struct kmem_cache_node *n = get_node(s, node);
3717
3718 if (flags & SO_TOTAL)
3719 x = atomic_long_read(&n->total_objects);
3720 else if (flags & SO_OBJECTS)
3721 x = atomic_long_read(&n->total_objects) -
3722 count_partial(n, count_free);
3723
3724 else
3725 x = atomic_long_read(&n->nr_slabs);
3726 total += x;
3727 nodes[node] += x;
3728 }
3729
3730 } else if (flags & SO_PARTIAL) {
3731 for_each_node_state(node, N_NORMAL_MEMORY) {
3732 struct kmem_cache_node *n = get_node(s, node);
3733
3734 if (flags & SO_TOTAL)
3735 x = count_partial(n, count_total);
3736 else if (flags & SO_OBJECTS)
3737 x = count_partial(n, count_inuse);
3738 else
3739 x = n->nr_partial;
3740 total += x;
3741 nodes[node] += x;
3742 }
3743 }
3744 x = sprintf(buf, "%lu", total);
3745 #ifdef CONFIG_NUMA
3746 for_each_node_state(node, N_NORMAL_MEMORY)
3747 if (nodes[node])
3748 x += sprintf(buf + x, " N%d=%lu",
3749 node, nodes[node]);
3750 #endif
3751 kfree(nodes);
3752 return x + sprintf(buf + x, "\n");
3753 }
3754
3755 static int any_slab_objects(struct kmem_cache *s)
3756 {
3757 int node;
3758
3759 for_each_online_node(node) {
3760 struct kmem_cache_node *n = get_node(s, node);
3761
3762 if (!n)
3763 continue;
3764
3765 if (atomic_long_read(&n->total_objects))
3766 return 1;
3767 }
3768 return 0;
3769 }
3770
3771 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3772 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3773
3774 struct slab_attribute {
3775 struct attribute attr;
3776 ssize_t (*show)(struct kmem_cache *s, char *buf);
3777 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3778 };
3779
3780 #define SLAB_ATTR_RO(_name) \
3781 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3782
3783 #define SLAB_ATTR(_name) \
3784 static struct slab_attribute _name##_attr = \
3785 __ATTR(_name, 0644, _name##_show, _name##_store)
3786
3787 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3788 {
3789 return sprintf(buf, "%d\n", s->size);
3790 }
3791 SLAB_ATTR_RO(slab_size);
3792
3793 static ssize_t align_show(struct kmem_cache *s, char *buf)
3794 {
3795 return sprintf(buf, "%d\n", s->align);
3796 }
3797 SLAB_ATTR_RO(align);
3798
3799 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3800 {
3801 return sprintf(buf, "%d\n", s->objsize);
3802 }
3803 SLAB_ATTR_RO(object_size);
3804
3805 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3806 {
3807 return sprintf(buf, "%d\n", oo_objects(s->oo));
3808 }
3809 SLAB_ATTR_RO(objs_per_slab);
3810
3811 static ssize_t order_store(struct kmem_cache *s,
3812 const char *buf, size_t length)
3813 {
3814 unsigned long order;
3815 int err;
3816
3817 err = strict_strtoul(buf, 10, &order);
3818 if (err)
3819 return err;
3820
3821 if (order > slub_max_order || order < slub_min_order)
3822 return -EINVAL;
3823
3824 calculate_sizes(s, order);
3825 return length;
3826 }
3827
3828 static ssize_t order_show(struct kmem_cache *s, char *buf)
3829 {
3830 return sprintf(buf, "%d\n", oo_order(s->oo));
3831 }
3832 SLAB_ATTR(order);
3833
3834 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3835 {
3836 if (s->ctor) {
3837 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3838
3839 return n + sprintf(buf + n, "\n");
3840 }
3841 return 0;
3842 }
3843 SLAB_ATTR_RO(ctor);
3844
3845 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3846 {
3847 return sprintf(buf, "%d\n", s->refcount - 1);
3848 }
3849 SLAB_ATTR_RO(aliases);
3850
3851 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3852 {
3853 return show_slab_objects(s, buf, SO_ALL);
3854 }
3855 SLAB_ATTR_RO(slabs);
3856
3857 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3858 {
3859 return show_slab_objects(s, buf, SO_PARTIAL);
3860 }
3861 SLAB_ATTR_RO(partial);
3862
3863 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3864 {
3865 return show_slab_objects(s, buf, SO_CPU);
3866 }
3867 SLAB_ATTR_RO(cpu_slabs);
3868
3869 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3870 {
3871 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3872 }
3873 SLAB_ATTR_RO(objects);
3874
3875 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3876 {
3877 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3878 }
3879 SLAB_ATTR_RO(objects_partial);
3880
3881 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3882 {
3883 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3884 }
3885 SLAB_ATTR_RO(total_objects);
3886
3887 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3888 {
3889 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3890 }
3891
3892 static ssize_t sanity_checks_store(struct kmem_cache *s,
3893 const char *buf, size_t length)
3894 {
3895 s->flags &= ~SLAB_DEBUG_FREE;
3896 if (buf[0] == '1')
3897 s->flags |= SLAB_DEBUG_FREE;
3898 return length;
3899 }
3900 SLAB_ATTR(sanity_checks);
3901
3902 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3903 {
3904 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3905 }
3906
3907 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3908 size_t length)
3909 {
3910 s->flags &= ~SLAB_TRACE;
3911 if (buf[0] == '1')
3912 s->flags |= SLAB_TRACE;
3913 return length;
3914 }
3915 SLAB_ATTR(trace);
3916
3917 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3918 {
3919 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3920 }
3921
3922 static ssize_t reclaim_account_store(struct kmem_cache *s,
3923 const char *buf, size_t length)
3924 {
3925 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3926 if (buf[0] == '1')
3927 s->flags |= SLAB_RECLAIM_ACCOUNT;
3928 return length;
3929 }
3930 SLAB_ATTR(reclaim_account);
3931
3932 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3933 {
3934 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3935 }
3936 SLAB_ATTR_RO(hwcache_align);
3937
3938 #ifdef CONFIG_ZONE_DMA
3939 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3940 {
3941 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3942 }
3943 SLAB_ATTR_RO(cache_dma);
3944 #endif
3945
3946 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3947 {
3948 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3949 }
3950 SLAB_ATTR_RO(destroy_by_rcu);
3951
3952 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3953 {
3954 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3955 }
3956
3957 static ssize_t red_zone_store(struct kmem_cache *s,
3958 const char *buf, size_t length)
3959 {
3960 if (any_slab_objects(s))
3961 return -EBUSY;
3962
3963 s->flags &= ~SLAB_RED_ZONE;
3964 if (buf[0] == '1')
3965 s->flags |= SLAB_RED_ZONE;
3966 calculate_sizes(s, -1);
3967 return length;
3968 }
3969 SLAB_ATTR(red_zone);
3970
3971 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3972 {
3973 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3974 }
3975
3976 static ssize_t poison_store(struct kmem_cache *s,
3977 const char *buf, size_t length)
3978 {
3979 if (any_slab_objects(s))
3980 return -EBUSY;
3981
3982 s->flags &= ~SLAB_POISON;
3983 if (buf[0] == '1')
3984 s->flags |= SLAB_POISON;
3985 calculate_sizes(s, -1);
3986 return length;
3987 }
3988 SLAB_ATTR(poison);
3989
3990 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3991 {
3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3993 }
3994
3995 static ssize_t store_user_store(struct kmem_cache *s,
3996 const char *buf, size_t length)
3997 {
3998 if (any_slab_objects(s))
3999 return -EBUSY;
4000
4001 s->flags &= ~SLAB_STORE_USER;
4002 if (buf[0] == '1')
4003 s->flags |= SLAB_STORE_USER;
4004 calculate_sizes(s, -1);
4005 return length;
4006 }
4007 SLAB_ATTR(store_user);
4008
4009 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4010 {
4011 return 0;
4012 }
4013
4014 static ssize_t validate_store(struct kmem_cache *s,
4015 const char *buf, size_t length)
4016 {
4017 int ret = -EINVAL;
4018
4019 if (buf[0] == '1') {
4020 ret = validate_slab_cache(s);
4021 if (ret >= 0)
4022 ret = length;
4023 }
4024 return ret;
4025 }
4026 SLAB_ATTR(validate);
4027
4028 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4029 {
4030 return 0;
4031 }
4032
4033 static ssize_t shrink_store(struct kmem_cache *s,
4034 const char *buf, size_t length)
4035 {
4036 if (buf[0] == '1') {
4037 int rc = kmem_cache_shrink(s);
4038
4039 if (rc)
4040 return rc;
4041 } else
4042 return -EINVAL;
4043 return length;
4044 }
4045 SLAB_ATTR(shrink);
4046
4047 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4048 {
4049 if (!(s->flags & SLAB_STORE_USER))
4050 return -ENOSYS;
4051 return list_locations(s, buf, TRACK_ALLOC);
4052 }
4053 SLAB_ATTR_RO(alloc_calls);
4054
4055 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4056 {
4057 if (!(s->flags & SLAB_STORE_USER))
4058 return -ENOSYS;
4059 return list_locations(s, buf, TRACK_FREE);
4060 }
4061 SLAB_ATTR_RO(free_calls);
4062
4063 #ifdef CONFIG_NUMA
4064 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4065 {
4066 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4067 }
4068
4069 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4070 const char *buf, size_t length)
4071 {
4072 unsigned long ratio;
4073 int err;
4074
4075 err = strict_strtoul(buf, 10, &ratio);
4076 if (err)
4077 return err;
4078
4079 if (ratio < 100)
4080 s->remote_node_defrag_ratio = ratio * 10;
4081
4082 return length;
4083 }
4084 SLAB_ATTR(remote_node_defrag_ratio);
4085 #endif
4086
4087 #ifdef CONFIG_SLUB_STATS
4088 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4089 {
4090 unsigned long sum = 0;
4091 int cpu;
4092 int len;
4093 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4094
4095 if (!data)
4096 return -ENOMEM;
4097
4098 for_each_online_cpu(cpu) {
4099 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4100
4101 data[cpu] = x;
4102 sum += x;
4103 }
4104
4105 len = sprintf(buf, "%lu", sum);
4106
4107 #ifdef CONFIG_SMP
4108 for_each_online_cpu(cpu) {
4109 if (data[cpu] && len < PAGE_SIZE - 20)
4110 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4111 }
4112 #endif
4113 kfree(data);
4114 return len + sprintf(buf + len, "\n");
4115 }
4116
4117 #define STAT_ATTR(si, text) \
4118 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4119 { \
4120 return show_stat(s, buf, si); \
4121 } \
4122 SLAB_ATTR_RO(text); \
4123
4124 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4125 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4126 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4127 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4128 STAT_ATTR(FREE_FROZEN, free_frozen);
4129 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4130 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4131 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4132 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4133 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4134 STAT_ATTR(FREE_SLAB, free_slab);
4135 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4136 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4137 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4138 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4139 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4140 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4141 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4142 #endif
4143
4144 static struct attribute *slab_attrs[] = {
4145 &slab_size_attr.attr,
4146 &object_size_attr.attr,
4147 &objs_per_slab_attr.attr,
4148 &order_attr.attr,
4149 &objects_attr.attr,
4150 &objects_partial_attr.attr,
4151 &total_objects_attr.attr,
4152 &slabs_attr.attr,
4153 &partial_attr.attr,
4154 &cpu_slabs_attr.attr,
4155 &ctor_attr.attr,
4156 &aliases_attr.attr,
4157 &align_attr.attr,
4158 &sanity_checks_attr.attr,
4159 &trace_attr.attr,
4160 &hwcache_align_attr.attr,
4161 &reclaim_account_attr.attr,
4162 &destroy_by_rcu_attr.attr,
4163 &red_zone_attr.attr,
4164 &poison_attr.attr,
4165 &store_user_attr.attr,
4166 &validate_attr.attr,
4167 &shrink_attr.attr,
4168 &alloc_calls_attr.attr,
4169 &free_calls_attr.attr,
4170 #ifdef CONFIG_ZONE_DMA
4171 &cache_dma_attr.attr,
4172 #endif
4173 #ifdef CONFIG_NUMA
4174 &remote_node_defrag_ratio_attr.attr,
4175 #endif
4176 #ifdef CONFIG_SLUB_STATS
4177 &alloc_fastpath_attr.attr,
4178 &alloc_slowpath_attr.attr,
4179 &free_fastpath_attr.attr,
4180 &free_slowpath_attr.attr,
4181 &free_frozen_attr.attr,
4182 &free_add_partial_attr.attr,
4183 &free_remove_partial_attr.attr,
4184 &alloc_from_partial_attr.attr,
4185 &alloc_slab_attr.attr,
4186 &alloc_refill_attr.attr,
4187 &free_slab_attr.attr,
4188 &cpuslab_flush_attr.attr,
4189 &deactivate_full_attr.attr,
4190 &deactivate_empty_attr.attr,
4191 &deactivate_to_head_attr.attr,
4192 &deactivate_to_tail_attr.attr,
4193 &deactivate_remote_frees_attr.attr,
4194 &order_fallback_attr.attr,
4195 #endif
4196 NULL
4197 };
4198
4199 static struct attribute_group slab_attr_group = {
4200 .attrs = slab_attrs,
4201 };
4202
4203 static ssize_t slab_attr_show(struct kobject *kobj,
4204 struct attribute *attr,
4205 char *buf)
4206 {
4207 struct slab_attribute *attribute;
4208 struct kmem_cache *s;
4209 int err;
4210
4211 attribute = to_slab_attr(attr);
4212 s = to_slab(kobj);
4213
4214 if (!attribute->show)
4215 return -EIO;
4216
4217 err = attribute->show(s, buf);
4218
4219 return err;
4220 }
4221
4222 static ssize_t slab_attr_store(struct kobject *kobj,
4223 struct attribute *attr,
4224 const char *buf, size_t len)
4225 {
4226 struct slab_attribute *attribute;
4227 struct kmem_cache *s;
4228 int err;
4229
4230 attribute = to_slab_attr(attr);
4231 s = to_slab(kobj);
4232
4233 if (!attribute->store)
4234 return -EIO;
4235
4236 err = attribute->store(s, buf, len);
4237
4238 return err;
4239 }
4240
4241 static void kmem_cache_release(struct kobject *kobj)
4242 {
4243 struct kmem_cache *s = to_slab(kobj);
4244
4245 kfree(s);
4246 }
4247
4248 static struct sysfs_ops slab_sysfs_ops = {
4249 .show = slab_attr_show,
4250 .store = slab_attr_store,
4251 };
4252
4253 static struct kobj_type slab_ktype = {
4254 .sysfs_ops = &slab_sysfs_ops,
4255 .release = kmem_cache_release
4256 };
4257
4258 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4259 {
4260 struct kobj_type *ktype = get_ktype(kobj);
4261
4262 if (ktype == &slab_ktype)
4263 return 1;
4264 return 0;
4265 }
4266
4267 static struct kset_uevent_ops slab_uevent_ops = {
4268 .filter = uevent_filter,
4269 };
4270
4271 static struct kset *slab_kset;
4272
4273 #define ID_STR_LENGTH 64
4274
4275 /* Create a unique string id for a slab cache:
4276 *
4277 * Format :[flags-]size
4278 */
4279 static char *create_unique_id(struct kmem_cache *s)
4280 {
4281 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4282 char *p = name;
4283
4284 BUG_ON(!name);
4285
4286 *p++ = ':';
4287 /*
4288 * First flags affecting slabcache operations. We will only
4289 * get here for aliasable slabs so we do not need to support
4290 * too many flags. The flags here must cover all flags that
4291 * are matched during merging to guarantee that the id is
4292 * unique.
4293 */
4294 if (s->flags & SLAB_CACHE_DMA)
4295 *p++ = 'd';
4296 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4297 *p++ = 'a';
4298 if (s->flags & SLAB_DEBUG_FREE)
4299 *p++ = 'F';
4300 if (p != name + 1)
4301 *p++ = '-';
4302 p += sprintf(p, "%07d", s->size);
4303 BUG_ON(p > name + ID_STR_LENGTH - 1);
4304 return name;
4305 }
4306
4307 static int sysfs_slab_add(struct kmem_cache *s)
4308 {
4309 int err;
4310 const char *name;
4311 int unmergeable;
4312
4313 if (slab_state < SYSFS)
4314 /* Defer until later */
4315 return 0;
4316
4317 unmergeable = slab_unmergeable(s);
4318 if (unmergeable) {
4319 /*
4320 * Slabcache can never be merged so we can use the name proper.
4321 * This is typically the case for debug situations. In that
4322 * case we can catch duplicate names easily.
4323 */
4324 sysfs_remove_link(&slab_kset->kobj, s->name);
4325 name = s->name;
4326 } else {
4327 /*
4328 * Create a unique name for the slab as a target
4329 * for the symlinks.
4330 */
4331 name = create_unique_id(s);
4332 }
4333
4334 s->kobj.kset = slab_kset;
4335 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4336 if (err) {
4337 kobject_put(&s->kobj);
4338 return err;
4339 }
4340
4341 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4342 if (err)
4343 return err;
4344 kobject_uevent(&s->kobj, KOBJ_ADD);
4345 if (!unmergeable) {
4346 /* Setup first alias */
4347 sysfs_slab_alias(s, s->name);
4348 kfree(name);
4349 }
4350 return 0;
4351 }
4352
4353 static void sysfs_slab_remove(struct kmem_cache *s)
4354 {
4355 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4356 kobject_del(&s->kobj);
4357 kobject_put(&s->kobj);
4358 }
4359
4360 /*
4361 * Need to buffer aliases during bootup until sysfs becomes
4362 * available lest we loose that information.
4363 */
4364 struct saved_alias {
4365 struct kmem_cache *s;
4366 const char *name;
4367 struct saved_alias *next;
4368 };
4369
4370 static struct saved_alias *alias_list;
4371
4372 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4373 {
4374 struct saved_alias *al;
4375
4376 if (slab_state == SYSFS) {
4377 /*
4378 * If we have a leftover link then remove it.
4379 */
4380 sysfs_remove_link(&slab_kset->kobj, name);
4381 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4382 }
4383
4384 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4385 if (!al)
4386 return -ENOMEM;
4387
4388 al->s = s;
4389 al->name = name;
4390 al->next = alias_list;
4391 alias_list = al;
4392 return 0;
4393 }
4394
4395 static int __init slab_sysfs_init(void)
4396 {
4397 struct kmem_cache *s;
4398 int err;
4399
4400 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4401 if (!slab_kset) {
4402 printk(KERN_ERR "Cannot register slab subsystem.\n");
4403 return -ENOSYS;
4404 }
4405
4406 slab_state = SYSFS;
4407
4408 list_for_each_entry(s, &slab_caches, list) {
4409 err = sysfs_slab_add(s);
4410 if (err)
4411 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4412 " to sysfs\n", s->name);
4413 }
4414
4415 while (alias_list) {
4416 struct saved_alias *al = alias_list;
4417
4418 alias_list = alias_list->next;
4419 err = sysfs_slab_alias(al->s, al->name);
4420 if (err)
4421 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4422 " %s to sysfs\n", s->name);
4423 kfree(al);
4424 }
4425
4426 resiliency_test();
4427 return 0;
4428 }
4429
4430 __initcall(slab_sysfs_init);
4431 #endif
4432
4433 /*
4434 * The /proc/slabinfo ABI
4435 */
4436 #ifdef CONFIG_SLABINFO
4437
4438 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4439 size_t count, loff_t *ppos)
4440 {
4441 return -EINVAL;
4442 }
4443
4444
4445 static void print_slabinfo_header(struct seq_file *m)
4446 {
4447 seq_puts(m, "slabinfo - version: 2.1\n");
4448 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4449 "<objperslab> <pagesperslab>");
4450 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4451 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4452 seq_putc(m, '\n');
4453 }
4454
4455 static void *s_start(struct seq_file *m, loff_t *pos)
4456 {
4457 loff_t n = *pos;
4458
4459 down_read(&slub_lock);
4460 if (!n)
4461 print_slabinfo_header(m);
4462
4463 return seq_list_start(&slab_caches, *pos);
4464 }
4465
4466 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4467 {
4468 return seq_list_next(p, &slab_caches, pos);
4469 }
4470
4471 static void s_stop(struct seq_file *m, void *p)
4472 {
4473 up_read(&slub_lock);
4474 }
4475
4476 static int s_show(struct seq_file *m, void *p)
4477 {
4478 unsigned long nr_partials = 0;
4479 unsigned long nr_slabs = 0;
4480 unsigned long nr_inuse = 0;
4481 unsigned long nr_objs = 0;
4482 unsigned long nr_free = 0;
4483 struct kmem_cache *s;
4484 int node;
4485
4486 s = list_entry(p, struct kmem_cache, list);
4487
4488 for_each_online_node(node) {
4489 struct kmem_cache_node *n = get_node(s, node);
4490
4491 if (!n)
4492 continue;
4493
4494 nr_partials += n->nr_partial;
4495 nr_slabs += atomic_long_read(&n->nr_slabs);
4496 nr_objs += atomic_long_read(&n->total_objects);
4497 nr_free += count_partial(n, count_free);
4498 }
4499
4500 nr_inuse = nr_objs - nr_free;
4501
4502 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4503 nr_objs, s->size, oo_objects(s->oo),
4504 (1 << oo_order(s->oo)));
4505 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4506 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4507 0UL);
4508 seq_putc(m, '\n');
4509 return 0;
4510 }
4511
4512 const struct seq_operations slabinfo_op = {
4513 .start = s_start,
4514 .next = s_next,
4515 .stop = s_stop,
4516 .show = s_show,
4517 };
4518
4519 #endif /* CONFIG_SLABINFO */