slub: remove invalid reference to list iterator variable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33
34 #include <trace/events/kmem.h>
35
36 /*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
191
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195
196 /*
197 * Tracking user of a slab.
198 */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208 };
209
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 kfree(s->name);
224 kfree(s);
225 }
226
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240 int slab_is_available(void)
241 {
242 return slab_state >= UP;
243 }
244
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 return s->node[node];
248 }
249
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253 {
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266 }
267
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 prefetch(object + s->offset);
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 void *p;
281
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
288 }
289
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 *(void **)(object + s->offset) = fp;
293 }
294
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 return (p - addr) / s->size;
304 }
305
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->object_size;
315
316 #endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328 }
329
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 return ((PAGE_SIZE << order) - reserved) / size;
333 }
334
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337 {
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343 }
344
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 return x.x >> OO_SHIFT;
348 }
349
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 return x.x & OO_MASK;
353 }
354
355 /*
356 * Per slab locking using the pagelock
357 */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 bit_spin_lock(PG_locked, &page->flags);
361 }
362
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return 0;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return 0;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * Object debugging
475 */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480 }
481
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484 {
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493 }
494
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497 {
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525 }
526
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535
536 static void print_track(const char *s, struct track *t)
537 {
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552 #endif
553 }
554
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563
564 static void print_page_info(struct page *page)
565 {
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569 }
570
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584 }
585
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->object_size,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631 }
632
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635 {
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638 }
639
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->object_size);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->object_size - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->object_size - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835 }
836
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862 }
863
864 /*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->object_size);
930
931 dump_stack();
932 }
933 }
934
935 /*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->object_size, flags, s->flags);
946 }
947
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
953 }
954
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->object_size);
970 debug_check_no_locks_freed(x, s->object_size);
971 local_irq_restore(flags);
972 }
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->object_size);
976 }
977
978 /*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990 }
991
992 /*
993 * list_lock must be held.
994 */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001 }
1002
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009 }
1010
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037 }
1038
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042 {
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048 }
1049
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052 {
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071 bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087 {
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138 }
1139
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1206 }
1207
1208 __setup("slub_debug", setup_slub_debug);
1209
1210 static unsigned long kmem_cache_flags(unsigned long object_size,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213 {
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243 {
1244 return flags;
1245 }
1246 #define slub_debug 0
1247
1248 #define disable_higher_order_debug 0
1249
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267 #endif /* CONFIG_SLUB_DEBUG */
1268
1269 /*
1270 * Slab allocation and freeing
1271 */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274 {
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283 }
1284
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346 }
1347
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350 {
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354 }
1355
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 __SetPageSlab(page);
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1393 }
1394
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421 }
1422
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436 }
1437
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459 }
1460
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465 }
1466
1467 /*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474 {
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480 }
1481
1482 /*
1483 * list_lock must be held.
1484 */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487 {
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490 }
1491
1492 /*
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock since we modify the partial list.
1499 */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503 {
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
1516 if (mode) {
1517 new.inuse = page->objects;
1518 new.freelist = NULL;
1519 } else {
1520 new.freelist = freelist;
1521 }
1522
1523 VM_BUG_ON(new.frozen);
1524 new.frozen = 1;
1525
1526 if (!__cmpxchg_double_slab(s, page,
1527 freelist, counters,
1528 new.freelist, new.counters,
1529 "acquire_slab"))
1530 return NULL;
1531
1532 remove_partial(n, page);
1533 WARN_ON(!freelist);
1534 return freelist;
1535 }
1536
1537 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1538
1539 /*
1540 * Try to allocate a partial slab from a specific node.
1541 */
1542 static void *get_partial_node(struct kmem_cache *s,
1543 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1544 {
1545 struct page *page, *page2;
1546 void *object = NULL;
1547
1548 /*
1549 * Racy check. If we mistakenly see no partial slabs then we
1550 * just allocate an empty slab. If we mistakenly try to get a
1551 * partial slab and there is none available then get_partials()
1552 * will return NULL.
1553 */
1554 if (!n || !n->nr_partial)
1555 return NULL;
1556
1557 spin_lock(&n->list_lock);
1558 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1559 void *t = acquire_slab(s, n, page, object == NULL);
1560 int available;
1561
1562 if (!t)
1563 break;
1564
1565 if (!object) {
1566 c->page = page;
1567 stat(s, ALLOC_FROM_PARTIAL);
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
1571 available = put_cpu_partial(s, page, 0);
1572 stat(s, CPU_PARTIAL_NODE);
1573 }
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1576
1577 }
1578 spin_unlock(&n->list_lock);
1579 return object;
1580 }
1581
1582 /*
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1584 */
1585 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1586 struct kmem_cache_cpu *c)
1587 {
1588 #ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
1590 struct zoneref *z;
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
1593 void *object;
1594 unsigned int cpuset_mems_cookie;
1595
1596 /*
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
1601 *
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
1606 *
1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
1613 */
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616 return NULL;
1617
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
1620 zonelist = node_zonelist(slab_node(), flags);
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1623
1624 n = get_node(s, zone_to_nid(zone));
1625
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c);
1629 if (object) {
1630 /*
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1637 */
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1640 }
1641 }
1642 }
1643 } while (!put_mems_allowed(cpuset_mems_cookie));
1644 #endif
1645 return NULL;
1646 }
1647
1648 /*
1649 * Get a partial page, lock it and return it.
1650 */
1651 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1652 struct kmem_cache_cpu *c)
1653 {
1654 void *object;
1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1656
1657 object = get_partial_node(s, get_node(s, searchnode), c);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
1660
1661 return get_any_partial(s, flags, c);
1662 }
1663
1664 #ifdef CONFIG_PREEMPT
1665 /*
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1669 */
1670 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671 #else
1672 /*
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1675 */
1676 #define TID_STEP 1
1677 #endif
1678
1679 static inline unsigned long next_tid(unsigned long tid)
1680 {
1681 return tid + TID_STEP;
1682 }
1683
1684 static inline unsigned int tid_to_cpu(unsigned long tid)
1685 {
1686 return tid % TID_STEP;
1687 }
1688
1689 static inline unsigned long tid_to_event(unsigned long tid)
1690 {
1691 return tid / TID_STEP;
1692 }
1693
1694 static inline unsigned int init_tid(int cpu)
1695 {
1696 return cpu;
1697 }
1698
1699 static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1701 {
1702 #ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1704
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1706
1707 #ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712 #endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719 #endif
1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1721 }
1722
1723 void init_kmem_cache_cpus(struct kmem_cache *s)
1724 {
1725 int cpu;
1726
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1729 }
1730
1731 /*
1732 * Remove the cpu slab
1733 */
1734 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1735 {
1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
1740 void *nextfree;
1741 int tail = DEACTIVATE_TO_HEAD;
1742 struct page new;
1743 struct page old;
1744
1745 if (page->freelist) {
1746 stat(s, DEACTIVATE_REMOTE_FREES);
1747 tail = DEACTIVATE_TO_TAIL;
1748 }
1749
1750 /*
1751 * Stage one: Free all available per cpu objects back
1752 * to the page freelist while it is still frozen. Leave the
1753 * last one.
1754 *
1755 * There is no need to take the list->lock because the page
1756 * is still frozen.
1757 */
1758 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1759 void *prior;
1760 unsigned long counters;
1761
1762 do {
1763 prior = page->freelist;
1764 counters = page->counters;
1765 set_freepointer(s, freelist, prior);
1766 new.counters = counters;
1767 new.inuse--;
1768 VM_BUG_ON(!new.frozen);
1769
1770 } while (!__cmpxchg_double_slab(s, page,
1771 prior, counters,
1772 freelist, new.counters,
1773 "drain percpu freelist"));
1774
1775 freelist = nextfree;
1776 }
1777
1778 /*
1779 * Stage two: Ensure that the page is unfrozen while the
1780 * list presence reflects the actual number of objects
1781 * during unfreeze.
1782 *
1783 * We setup the list membership and then perform a cmpxchg
1784 * with the count. If there is a mismatch then the page
1785 * is not unfrozen but the page is on the wrong list.
1786 *
1787 * Then we restart the process which may have to remove
1788 * the page from the list that we just put it on again
1789 * because the number of objects in the slab may have
1790 * changed.
1791 */
1792 redo:
1793
1794 old.freelist = page->freelist;
1795 old.counters = page->counters;
1796 VM_BUG_ON(!old.frozen);
1797
1798 /* Determine target state of the slab */
1799 new.counters = old.counters;
1800 if (freelist) {
1801 new.inuse--;
1802 set_freepointer(s, freelist, old.freelist);
1803 new.freelist = freelist;
1804 } else
1805 new.freelist = old.freelist;
1806
1807 new.frozen = 0;
1808
1809 if (!new.inuse && n->nr_partial > s->min_partial)
1810 m = M_FREE;
1811 else if (new.freelist) {
1812 m = M_PARTIAL;
1813 if (!lock) {
1814 lock = 1;
1815 /*
1816 * Taking the spinlock removes the possiblity
1817 * that acquire_slab() will see a slab page that
1818 * is frozen
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 } else {
1823 m = M_FULL;
1824 if (kmem_cache_debug(s) && !lock) {
1825 lock = 1;
1826 /*
1827 * This also ensures that the scanning of full
1828 * slabs from diagnostic functions will not see
1829 * any frozen slabs.
1830 */
1831 spin_lock(&n->list_lock);
1832 }
1833 }
1834
1835 if (l != m) {
1836
1837 if (l == M_PARTIAL)
1838
1839 remove_partial(n, page);
1840
1841 else if (l == M_FULL)
1842
1843 remove_full(s, page);
1844
1845 if (m == M_PARTIAL) {
1846
1847 add_partial(n, page, tail);
1848 stat(s, tail);
1849
1850 } else if (m == M_FULL) {
1851
1852 stat(s, DEACTIVATE_FULL);
1853 add_full(s, n, page);
1854
1855 }
1856 }
1857
1858 l = m;
1859 if (!__cmpxchg_double_slab(s, page,
1860 old.freelist, old.counters,
1861 new.freelist, new.counters,
1862 "unfreezing slab"))
1863 goto redo;
1864
1865 if (lock)
1866 spin_unlock(&n->list_lock);
1867
1868 if (m == M_FREE) {
1869 stat(s, DEACTIVATE_EMPTY);
1870 discard_slab(s, page);
1871 stat(s, FREE_SLAB);
1872 }
1873 }
1874
1875 /*
1876 * Unfreeze all the cpu partial slabs.
1877 *
1878 * This function must be called with interrupt disabled.
1879 */
1880 static void unfreeze_partials(struct kmem_cache *s)
1881 {
1882 struct kmem_cache_node *n = NULL, *n2 = NULL;
1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1884 struct page *page, *discard_page = NULL;
1885
1886 while ((page = c->partial)) {
1887 struct page new;
1888 struct page old;
1889
1890 c->partial = page->next;
1891
1892 n2 = get_node(s, page_to_nid(page));
1893 if (n != n2) {
1894 if (n)
1895 spin_unlock(&n->list_lock);
1896
1897 n = n2;
1898 spin_lock(&n->list_lock);
1899 }
1900
1901 do {
1902
1903 old.freelist = page->freelist;
1904 old.counters = page->counters;
1905 VM_BUG_ON(!old.frozen);
1906
1907 new.counters = old.counters;
1908 new.freelist = old.freelist;
1909
1910 new.frozen = 0;
1911
1912 } while (!__cmpxchg_double_slab(s, page,
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"));
1916
1917 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1918 page->next = discard_page;
1919 discard_page = page;
1920 } else {
1921 add_partial(n, page, DEACTIVATE_TO_TAIL);
1922 stat(s, FREE_ADD_PARTIAL);
1923 }
1924 }
1925
1926 if (n)
1927 spin_unlock(&n->list_lock);
1928
1929 while (discard_page) {
1930 page = discard_page;
1931 discard_page = discard_page->next;
1932
1933 stat(s, DEACTIVATE_EMPTY);
1934 discard_slab(s, page);
1935 stat(s, FREE_SLAB);
1936 }
1937 }
1938
1939 /*
1940 * Put a page that was just frozen (in __slab_free) into a partial page
1941 * slot if available. This is done without interrupts disabled and without
1942 * preemption disabled. The cmpxchg is racy and may put the partial page
1943 * onto a random cpus partial slot.
1944 *
1945 * If we did not find a slot then simply move all the partials to the
1946 * per node partial list.
1947 */
1948 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1949 {
1950 struct page *oldpage;
1951 int pages;
1952 int pobjects;
1953
1954 do {
1955 pages = 0;
1956 pobjects = 0;
1957 oldpage = this_cpu_read(s->cpu_slab->partial);
1958
1959 if (oldpage) {
1960 pobjects = oldpage->pobjects;
1961 pages = oldpage->pages;
1962 if (drain && pobjects > s->cpu_partial) {
1963 unsigned long flags;
1964 /*
1965 * partial array is full. Move the existing
1966 * set to the per node partial list.
1967 */
1968 local_irq_save(flags);
1969 unfreeze_partials(s);
1970 local_irq_restore(flags);
1971 pobjects = 0;
1972 pages = 0;
1973 stat(s, CPU_PARTIAL_DRAIN);
1974 }
1975 }
1976
1977 pages++;
1978 pobjects += page->objects - page->inuse;
1979
1980 page->pages = pages;
1981 page->pobjects = pobjects;
1982 page->next = oldpage;
1983
1984 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1985 return pobjects;
1986 }
1987
1988 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1989 {
1990 stat(s, CPUSLAB_FLUSH);
1991 deactivate_slab(s, c->page, c->freelist);
1992
1993 c->tid = next_tid(c->tid);
1994 c->page = NULL;
1995 c->freelist = NULL;
1996 }
1997
1998 /*
1999 * Flush cpu slab.
2000 *
2001 * Called from IPI handler with interrupts disabled.
2002 */
2003 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2004 {
2005 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2006
2007 if (likely(c)) {
2008 if (c->page)
2009 flush_slab(s, c);
2010
2011 unfreeze_partials(s);
2012 }
2013 }
2014
2015 static void flush_cpu_slab(void *d)
2016 {
2017 struct kmem_cache *s = d;
2018
2019 __flush_cpu_slab(s, smp_processor_id());
2020 }
2021
2022 static bool has_cpu_slab(int cpu, void *info)
2023 {
2024 struct kmem_cache *s = info;
2025 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2026
2027 return c->page || c->partial;
2028 }
2029
2030 static void flush_all(struct kmem_cache *s)
2031 {
2032 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2033 }
2034
2035 /*
2036 * Check if the objects in a per cpu structure fit numa
2037 * locality expectations.
2038 */
2039 static inline int node_match(struct page *page, int node)
2040 {
2041 #ifdef CONFIG_NUMA
2042 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2043 return 0;
2044 #endif
2045 return 1;
2046 }
2047
2048 static int count_free(struct page *page)
2049 {
2050 return page->objects - page->inuse;
2051 }
2052
2053 static unsigned long count_partial(struct kmem_cache_node *n,
2054 int (*get_count)(struct page *))
2055 {
2056 unsigned long flags;
2057 unsigned long x = 0;
2058 struct page *page;
2059
2060 spin_lock_irqsave(&n->list_lock, flags);
2061 list_for_each_entry(page, &n->partial, lru)
2062 x += get_count(page);
2063 spin_unlock_irqrestore(&n->list_lock, flags);
2064 return x;
2065 }
2066
2067 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2068 {
2069 #ifdef CONFIG_SLUB_DEBUG
2070 return atomic_long_read(&n->total_objects);
2071 #else
2072 return 0;
2073 #endif
2074 }
2075
2076 static noinline void
2077 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2078 {
2079 int node;
2080
2081 printk(KERN_WARNING
2082 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2083 nid, gfpflags);
2084 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2085 "default order: %d, min order: %d\n", s->name, s->object_size,
2086 s->size, oo_order(s->oo), oo_order(s->min));
2087
2088 if (oo_order(s->min) > get_order(s->object_size))
2089 printk(KERN_WARNING " %s debugging increased min order, use "
2090 "slub_debug=O to disable.\n", s->name);
2091
2092 for_each_online_node(node) {
2093 struct kmem_cache_node *n = get_node(s, node);
2094 unsigned long nr_slabs;
2095 unsigned long nr_objs;
2096 unsigned long nr_free;
2097
2098 if (!n)
2099 continue;
2100
2101 nr_free = count_partial(n, count_free);
2102 nr_slabs = node_nr_slabs(n);
2103 nr_objs = node_nr_objs(n);
2104
2105 printk(KERN_WARNING
2106 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2107 node, nr_slabs, nr_objs, nr_free);
2108 }
2109 }
2110
2111 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2112 int node, struct kmem_cache_cpu **pc)
2113 {
2114 void *freelist;
2115 struct kmem_cache_cpu *c = *pc;
2116 struct page *page;
2117
2118 freelist = get_partial(s, flags, node, c);
2119
2120 if (freelist)
2121 return freelist;
2122
2123 page = new_slab(s, flags, node);
2124 if (page) {
2125 c = __this_cpu_ptr(s->cpu_slab);
2126 if (c->page)
2127 flush_slab(s, c);
2128
2129 /*
2130 * No other reference to the page yet so we can
2131 * muck around with it freely without cmpxchg
2132 */
2133 freelist = page->freelist;
2134 page->freelist = NULL;
2135
2136 stat(s, ALLOC_SLAB);
2137 c->page = page;
2138 *pc = c;
2139 } else
2140 freelist = NULL;
2141
2142 return freelist;
2143 }
2144
2145 /*
2146 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2147 * or deactivate the page.
2148 *
2149 * The page is still frozen if the return value is not NULL.
2150 *
2151 * If this function returns NULL then the page has been unfrozen.
2152 *
2153 * This function must be called with interrupt disabled.
2154 */
2155 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2156 {
2157 struct page new;
2158 unsigned long counters;
2159 void *freelist;
2160
2161 do {
2162 freelist = page->freelist;
2163 counters = page->counters;
2164
2165 new.counters = counters;
2166 VM_BUG_ON(!new.frozen);
2167
2168 new.inuse = page->objects;
2169 new.frozen = freelist != NULL;
2170
2171 } while (!__cmpxchg_double_slab(s, page,
2172 freelist, counters,
2173 NULL, new.counters,
2174 "get_freelist"));
2175
2176 return freelist;
2177 }
2178
2179 /*
2180 * Slow path. The lockless freelist is empty or we need to perform
2181 * debugging duties.
2182 *
2183 * Processing is still very fast if new objects have been freed to the
2184 * regular freelist. In that case we simply take over the regular freelist
2185 * as the lockless freelist and zap the regular freelist.
2186 *
2187 * If that is not working then we fall back to the partial lists. We take the
2188 * first element of the freelist as the object to allocate now and move the
2189 * rest of the freelist to the lockless freelist.
2190 *
2191 * And if we were unable to get a new slab from the partial slab lists then
2192 * we need to allocate a new slab. This is the slowest path since it involves
2193 * a call to the page allocator and the setup of a new slab.
2194 */
2195 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2196 unsigned long addr, struct kmem_cache_cpu *c)
2197 {
2198 void *freelist;
2199 struct page *page;
2200 unsigned long flags;
2201
2202 local_irq_save(flags);
2203 #ifdef CONFIG_PREEMPT
2204 /*
2205 * We may have been preempted and rescheduled on a different
2206 * cpu before disabling interrupts. Need to reload cpu area
2207 * pointer.
2208 */
2209 c = this_cpu_ptr(s->cpu_slab);
2210 #endif
2211
2212 page = c->page;
2213 if (!page)
2214 goto new_slab;
2215 redo:
2216
2217 if (unlikely(!node_match(page, node))) {
2218 stat(s, ALLOC_NODE_MISMATCH);
2219 deactivate_slab(s, page, c->freelist);
2220 c->page = NULL;
2221 c->freelist = NULL;
2222 goto new_slab;
2223 }
2224
2225 /* must check again c->freelist in case of cpu migration or IRQ */
2226 freelist = c->freelist;
2227 if (freelist)
2228 goto load_freelist;
2229
2230 stat(s, ALLOC_SLOWPATH);
2231
2232 freelist = get_freelist(s, page);
2233
2234 if (!freelist) {
2235 c->page = NULL;
2236 stat(s, DEACTIVATE_BYPASS);
2237 goto new_slab;
2238 }
2239
2240 stat(s, ALLOC_REFILL);
2241
2242 load_freelist:
2243 /*
2244 * freelist is pointing to the list of objects to be used.
2245 * page is pointing to the page from which the objects are obtained.
2246 * That page must be frozen for per cpu allocations to work.
2247 */
2248 VM_BUG_ON(!c->page->frozen);
2249 c->freelist = get_freepointer(s, freelist);
2250 c->tid = next_tid(c->tid);
2251 local_irq_restore(flags);
2252 return freelist;
2253
2254 new_slab:
2255
2256 if (c->partial) {
2257 page = c->page = c->partial;
2258 c->partial = page->next;
2259 stat(s, CPU_PARTIAL_ALLOC);
2260 c->freelist = NULL;
2261 goto redo;
2262 }
2263
2264 freelist = new_slab_objects(s, gfpflags, node, &c);
2265
2266 if (unlikely(!freelist)) {
2267 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2268 slab_out_of_memory(s, gfpflags, node);
2269
2270 local_irq_restore(flags);
2271 return NULL;
2272 }
2273
2274 page = c->page;
2275 if (likely(!kmem_cache_debug(s)))
2276 goto load_freelist;
2277
2278 /* Only entered in the debug case */
2279 if (!alloc_debug_processing(s, page, freelist, addr))
2280 goto new_slab; /* Slab failed checks. Next slab needed */
2281
2282 deactivate_slab(s, page, get_freepointer(s, freelist));
2283 c->page = NULL;
2284 c->freelist = NULL;
2285 local_irq_restore(flags);
2286 return freelist;
2287 }
2288
2289 /*
2290 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2291 * have the fastpath folded into their functions. So no function call
2292 * overhead for requests that can be satisfied on the fastpath.
2293 *
2294 * The fastpath works by first checking if the lockless freelist can be used.
2295 * If not then __slab_alloc is called for slow processing.
2296 *
2297 * Otherwise we can simply pick the next object from the lockless free list.
2298 */
2299 static __always_inline void *slab_alloc(struct kmem_cache *s,
2300 gfp_t gfpflags, int node, unsigned long addr)
2301 {
2302 void **object;
2303 struct kmem_cache_cpu *c;
2304 struct page *page;
2305 unsigned long tid;
2306
2307 if (slab_pre_alloc_hook(s, gfpflags))
2308 return NULL;
2309
2310 redo:
2311
2312 /*
2313 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2314 * enabled. We may switch back and forth between cpus while
2315 * reading from one cpu area. That does not matter as long
2316 * as we end up on the original cpu again when doing the cmpxchg.
2317 */
2318 c = __this_cpu_ptr(s->cpu_slab);
2319
2320 /*
2321 * The transaction ids are globally unique per cpu and per operation on
2322 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2323 * occurs on the right processor and that there was no operation on the
2324 * linked list in between.
2325 */
2326 tid = c->tid;
2327 barrier();
2328
2329 object = c->freelist;
2330 page = c->page;
2331 if (unlikely(!object || !node_match(page, node)))
2332
2333 object = __slab_alloc(s, gfpflags, node, addr, c);
2334
2335 else {
2336 void *next_object = get_freepointer_safe(s, object);
2337
2338 /*
2339 * The cmpxchg will only match if there was no additional
2340 * operation and if we are on the right processor.
2341 *
2342 * The cmpxchg does the following atomically (without lock semantics!)
2343 * 1. Relocate first pointer to the current per cpu area.
2344 * 2. Verify that tid and freelist have not been changed
2345 * 3. If they were not changed replace tid and freelist
2346 *
2347 * Since this is without lock semantics the protection is only against
2348 * code executing on this cpu *not* from access by other cpus.
2349 */
2350 if (unlikely(!this_cpu_cmpxchg_double(
2351 s->cpu_slab->freelist, s->cpu_slab->tid,
2352 object, tid,
2353 next_object, next_tid(tid)))) {
2354
2355 note_cmpxchg_failure("slab_alloc", s, tid);
2356 goto redo;
2357 }
2358 prefetch_freepointer(s, next_object);
2359 stat(s, ALLOC_FASTPATH);
2360 }
2361
2362 if (unlikely(gfpflags & __GFP_ZERO) && object)
2363 memset(object, 0, s->object_size);
2364
2365 slab_post_alloc_hook(s, gfpflags, object);
2366
2367 return object;
2368 }
2369
2370 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2371 {
2372 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2373
2374 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2375
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(kmem_cache_alloc);
2379
2380 #ifdef CONFIG_TRACING
2381 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2382 {
2383 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2384 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2385 return ret;
2386 }
2387 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2388
2389 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2390 {
2391 void *ret = kmalloc_order(size, flags, order);
2392 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2393 return ret;
2394 }
2395 EXPORT_SYMBOL(kmalloc_order_trace);
2396 #endif
2397
2398 #ifdef CONFIG_NUMA
2399 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2400 {
2401 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2402
2403 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2404 s->object_size, s->size, gfpflags, node);
2405
2406 return ret;
2407 }
2408 EXPORT_SYMBOL(kmem_cache_alloc_node);
2409
2410 #ifdef CONFIG_TRACING
2411 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2412 gfp_t gfpflags,
2413 int node, size_t size)
2414 {
2415 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2416
2417 trace_kmalloc_node(_RET_IP_, ret,
2418 size, s->size, gfpflags, node);
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2422 #endif
2423 #endif
2424
2425 /*
2426 * Slow patch handling. This may still be called frequently since objects
2427 * have a longer lifetime than the cpu slabs in most processing loads.
2428 *
2429 * So we still attempt to reduce cache line usage. Just take the slab
2430 * lock and free the item. If there is no additional partial page
2431 * handling required then we can return immediately.
2432 */
2433 static void __slab_free(struct kmem_cache *s, struct page *page,
2434 void *x, unsigned long addr)
2435 {
2436 void *prior;
2437 void **object = (void *)x;
2438 int was_frozen;
2439 int inuse;
2440 struct page new;
2441 unsigned long counters;
2442 struct kmem_cache_node *n = NULL;
2443 unsigned long uninitialized_var(flags);
2444
2445 stat(s, FREE_SLOWPATH);
2446
2447 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2448 return;
2449
2450 do {
2451 prior = page->freelist;
2452 counters = page->counters;
2453 set_freepointer(s, object, prior);
2454 new.counters = counters;
2455 was_frozen = new.frozen;
2456 new.inuse--;
2457 if ((!new.inuse || !prior) && !was_frozen && !n) {
2458
2459 if (!kmem_cache_debug(s) && !prior)
2460
2461 /*
2462 * Slab was on no list before and will be partially empty
2463 * We can defer the list move and instead freeze it.
2464 */
2465 new.frozen = 1;
2466
2467 else { /* Needs to be taken off a list */
2468
2469 n = get_node(s, page_to_nid(page));
2470 /*
2471 * Speculatively acquire the list_lock.
2472 * If the cmpxchg does not succeed then we may
2473 * drop the list_lock without any processing.
2474 *
2475 * Otherwise the list_lock will synchronize with
2476 * other processors updating the list of slabs.
2477 */
2478 spin_lock_irqsave(&n->list_lock, flags);
2479
2480 }
2481 }
2482 inuse = new.inuse;
2483
2484 } while (!cmpxchg_double_slab(s, page,
2485 prior, counters,
2486 object, new.counters,
2487 "__slab_free"));
2488
2489 if (likely(!n)) {
2490
2491 /*
2492 * If we just froze the page then put it onto the
2493 * per cpu partial list.
2494 */
2495 if (new.frozen && !was_frozen) {
2496 put_cpu_partial(s, page, 1);
2497 stat(s, CPU_PARTIAL_FREE);
2498 }
2499 /*
2500 * The list lock was not taken therefore no list
2501 * activity can be necessary.
2502 */
2503 if (was_frozen)
2504 stat(s, FREE_FROZEN);
2505 return;
2506 }
2507
2508 /*
2509 * was_frozen may have been set after we acquired the list_lock in
2510 * an earlier loop. So we need to check it here again.
2511 */
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
2514 else {
2515 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2516 goto slab_empty;
2517
2518 /*
2519 * Objects left in the slab. If it was not on the partial list before
2520 * then add it.
2521 */
2522 if (unlikely(!prior)) {
2523 remove_full(s, page);
2524 add_partial(n, page, DEACTIVATE_TO_TAIL);
2525 stat(s, FREE_ADD_PARTIAL);
2526 }
2527 }
2528 spin_unlock_irqrestore(&n->list_lock, flags);
2529 return;
2530
2531 slab_empty:
2532 if (prior) {
2533 /*
2534 * Slab on the partial list.
2535 */
2536 remove_partial(n, page);
2537 stat(s, FREE_REMOVE_PARTIAL);
2538 } else
2539 /* Slab must be on the full list */
2540 remove_full(s, page);
2541
2542 spin_unlock_irqrestore(&n->list_lock, flags);
2543 stat(s, FREE_SLAB);
2544 discard_slab(s, page);
2545 }
2546
2547 /*
2548 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2549 * can perform fastpath freeing without additional function calls.
2550 *
2551 * The fastpath is only possible if we are freeing to the current cpu slab
2552 * of this processor. This typically the case if we have just allocated
2553 * the item before.
2554 *
2555 * If fastpath is not possible then fall back to __slab_free where we deal
2556 * with all sorts of special processing.
2557 */
2558 static __always_inline void slab_free(struct kmem_cache *s,
2559 struct page *page, void *x, unsigned long addr)
2560 {
2561 void **object = (void *)x;
2562 struct kmem_cache_cpu *c;
2563 unsigned long tid;
2564
2565 slab_free_hook(s, x);
2566
2567 redo:
2568 /*
2569 * Determine the currently cpus per cpu slab.
2570 * The cpu may change afterward. However that does not matter since
2571 * data is retrieved via this pointer. If we are on the same cpu
2572 * during the cmpxchg then the free will succedd.
2573 */
2574 c = __this_cpu_ptr(s->cpu_slab);
2575
2576 tid = c->tid;
2577 barrier();
2578
2579 if (likely(page == c->page)) {
2580 set_freepointer(s, object, c->freelist);
2581
2582 if (unlikely(!this_cpu_cmpxchg_double(
2583 s->cpu_slab->freelist, s->cpu_slab->tid,
2584 c->freelist, tid,
2585 object, next_tid(tid)))) {
2586
2587 note_cmpxchg_failure("slab_free", s, tid);
2588 goto redo;
2589 }
2590 stat(s, FREE_FASTPATH);
2591 } else
2592 __slab_free(s, page, x, addr);
2593
2594 }
2595
2596 void kmem_cache_free(struct kmem_cache *s, void *x)
2597 {
2598 struct page *page;
2599
2600 page = virt_to_head_page(x);
2601
2602 slab_free(s, page, x, _RET_IP_);
2603
2604 trace_kmem_cache_free(_RET_IP_, x);
2605 }
2606 EXPORT_SYMBOL(kmem_cache_free);
2607
2608 /*
2609 * Object placement in a slab is made very easy because we always start at
2610 * offset 0. If we tune the size of the object to the alignment then we can
2611 * get the required alignment by putting one properly sized object after
2612 * another.
2613 *
2614 * Notice that the allocation order determines the sizes of the per cpu
2615 * caches. Each processor has always one slab available for allocations.
2616 * Increasing the allocation order reduces the number of times that slabs
2617 * must be moved on and off the partial lists and is therefore a factor in
2618 * locking overhead.
2619 */
2620
2621 /*
2622 * Mininum / Maximum order of slab pages. This influences locking overhead
2623 * and slab fragmentation. A higher order reduces the number of partial slabs
2624 * and increases the number of allocations possible without having to
2625 * take the list_lock.
2626 */
2627 static int slub_min_order;
2628 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2629 static int slub_min_objects;
2630
2631 /*
2632 * Merge control. If this is set then no merging of slab caches will occur.
2633 * (Could be removed. This was introduced to pacify the merge skeptics.)
2634 */
2635 static int slub_nomerge;
2636
2637 /*
2638 * Calculate the order of allocation given an slab object size.
2639 *
2640 * The order of allocation has significant impact on performance and other
2641 * system components. Generally order 0 allocations should be preferred since
2642 * order 0 does not cause fragmentation in the page allocator. Larger objects
2643 * be problematic to put into order 0 slabs because there may be too much
2644 * unused space left. We go to a higher order if more than 1/16th of the slab
2645 * would be wasted.
2646 *
2647 * In order to reach satisfactory performance we must ensure that a minimum
2648 * number of objects is in one slab. Otherwise we may generate too much
2649 * activity on the partial lists which requires taking the list_lock. This is
2650 * less a concern for large slabs though which are rarely used.
2651 *
2652 * slub_max_order specifies the order where we begin to stop considering the
2653 * number of objects in a slab as critical. If we reach slub_max_order then
2654 * we try to keep the page order as low as possible. So we accept more waste
2655 * of space in favor of a small page order.
2656 *
2657 * Higher order allocations also allow the placement of more objects in a
2658 * slab and thereby reduce object handling overhead. If the user has
2659 * requested a higher mininum order then we start with that one instead of
2660 * the smallest order which will fit the object.
2661 */
2662 static inline int slab_order(int size, int min_objects,
2663 int max_order, int fract_leftover, int reserved)
2664 {
2665 int order;
2666 int rem;
2667 int min_order = slub_min_order;
2668
2669 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2670 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2671
2672 for (order = max(min_order,
2673 fls(min_objects * size - 1) - PAGE_SHIFT);
2674 order <= max_order; order++) {
2675
2676 unsigned long slab_size = PAGE_SIZE << order;
2677
2678 if (slab_size < min_objects * size + reserved)
2679 continue;
2680
2681 rem = (slab_size - reserved) % size;
2682
2683 if (rem <= slab_size / fract_leftover)
2684 break;
2685
2686 }
2687
2688 return order;
2689 }
2690
2691 static inline int calculate_order(int size, int reserved)
2692 {
2693 int order;
2694 int min_objects;
2695 int fraction;
2696 int max_objects;
2697
2698 /*
2699 * Attempt to find best configuration for a slab. This
2700 * works by first attempting to generate a layout with
2701 * the best configuration and backing off gradually.
2702 *
2703 * First we reduce the acceptable waste in a slab. Then
2704 * we reduce the minimum objects required in a slab.
2705 */
2706 min_objects = slub_min_objects;
2707 if (!min_objects)
2708 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2709 max_objects = order_objects(slub_max_order, size, reserved);
2710 min_objects = min(min_objects, max_objects);
2711
2712 while (min_objects > 1) {
2713 fraction = 16;
2714 while (fraction >= 4) {
2715 order = slab_order(size, min_objects,
2716 slub_max_order, fraction, reserved);
2717 if (order <= slub_max_order)
2718 return order;
2719 fraction /= 2;
2720 }
2721 min_objects--;
2722 }
2723
2724 /*
2725 * We were unable to place multiple objects in a slab. Now
2726 * lets see if we can place a single object there.
2727 */
2728 order = slab_order(size, 1, slub_max_order, 1, reserved);
2729 if (order <= slub_max_order)
2730 return order;
2731
2732 /*
2733 * Doh this slab cannot be placed using slub_max_order.
2734 */
2735 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2736 if (order < MAX_ORDER)
2737 return order;
2738 return -ENOSYS;
2739 }
2740
2741 /*
2742 * Figure out what the alignment of the objects will be.
2743 */
2744 static unsigned long calculate_alignment(unsigned long flags,
2745 unsigned long align, unsigned long size)
2746 {
2747 /*
2748 * If the user wants hardware cache aligned objects then follow that
2749 * suggestion if the object is sufficiently large.
2750 *
2751 * The hardware cache alignment cannot override the specified
2752 * alignment though. If that is greater then use it.
2753 */
2754 if (flags & SLAB_HWCACHE_ALIGN) {
2755 unsigned long ralign = cache_line_size();
2756 while (size <= ralign / 2)
2757 ralign /= 2;
2758 align = max(align, ralign);
2759 }
2760
2761 if (align < ARCH_SLAB_MINALIGN)
2762 align = ARCH_SLAB_MINALIGN;
2763
2764 return ALIGN(align, sizeof(void *));
2765 }
2766
2767 static void
2768 init_kmem_cache_node(struct kmem_cache_node *n)
2769 {
2770 n->nr_partial = 0;
2771 spin_lock_init(&n->list_lock);
2772 INIT_LIST_HEAD(&n->partial);
2773 #ifdef CONFIG_SLUB_DEBUG
2774 atomic_long_set(&n->nr_slabs, 0);
2775 atomic_long_set(&n->total_objects, 0);
2776 INIT_LIST_HEAD(&n->full);
2777 #endif
2778 }
2779
2780 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2781 {
2782 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2783 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2784
2785 /*
2786 * Must align to double word boundary for the double cmpxchg
2787 * instructions to work; see __pcpu_double_call_return_bool().
2788 */
2789 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2790 2 * sizeof(void *));
2791
2792 if (!s->cpu_slab)
2793 return 0;
2794
2795 init_kmem_cache_cpus(s);
2796
2797 return 1;
2798 }
2799
2800 static struct kmem_cache *kmem_cache_node;
2801
2802 /*
2803 * No kmalloc_node yet so do it by hand. We know that this is the first
2804 * slab on the node for this slabcache. There are no concurrent accesses
2805 * possible.
2806 *
2807 * Note that this function only works on the kmalloc_node_cache
2808 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2809 * memory on a fresh node that has no slab structures yet.
2810 */
2811 static void early_kmem_cache_node_alloc(int node)
2812 {
2813 struct page *page;
2814 struct kmem_cache_node *n;
2815
2816 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2817
2818 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2819
2820 BUG_ON(!page);
2821 if (page_to_nid(page) != node) {
2822 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2823 "node %d\n", node);
2824 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2825 "in order to be able to continue\n");
2826 }
2827
2828 n = page->freelist;
2829 BUG_ON(!n);
2830 page->freelist = get_freepointer(kmem_cache_node, n);
2831 page->inuse = 1;
2832 page->frozen = 0;
2833 kmem_cache_node->node[node] = n;
2834 #ifdef CONFIG_SLUB_DEBUG
2835 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2836 init_tracking(kmem_cache_node, n);
2837 #endif
2838 init_kmem_cache_node(n);
2839 inc_slabs_node(kmem_cache_node, node, page->objects);
2840
2841 add_partial(n, page, DEACTIVATE_TO_HEAD);
2842 }
2843
2844 static void free_kmem_cache_nodes(struct kmem_cache *s)
2845 {
2846 int node;
2847
2848 for_each_node_state(node, N_NORMAL_MEMORY) {
2849 struct kmem_cache_node *n = s->node[node];
2850
2851 if (n)
2852 kmem_cache_free(kmem_cache_node, n);
2853
2854 s->node[node] = NULL;
2855 }
2856 }
2857
2858 static int init_kmem_cache_nodes(struct kmem_cache *s)
2859 {
2860 int node;
2861
2862 for_each_node_state(node, N_NORMAL_MEMORY) {
2863 struct kmem_cache_node *n;
2864
2865 if (slab_state == DOWN) {
2866 early_kmem_cache_node_alloc(node);
2867 continue;
2868 }
2869 n = kmem_cache_alloc_node(kmem_cache_node,
2870 GFP_KERNEL, node);
2871
2872 if (!n) {
2873 free_kmem_cache_nodes(s);
2874 return 0;
2875 }
2876
2877 s->node[node] = n;
2878 init_kmem_cache_node(n);
2879 }
2880 return 1;
2881 }
2882
2883 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2884 {
2885 if (min < MIN_PARTIAL)
2886 min = MIN_PARTIAL;
2887 else if (min > MAX_PARTIAL)
2888 min = MAX_PARTIAL;
2889 s->min_partial = min;
2890 }
2891
2892 /*
2893 * calculate_sizes() determines the order and the distribution of data within
2894 * a slab object.
2895 */
2896 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2897 {
2898 unsigned long flags = s->flags;
2899 unsigned long size = s->object_size;
2900 unsigned long align = s->align;
2901 int order;
2902
2903 /*
2904 * Round up object size to the next word boundary. We can only
2905 * place the free pointer at word boundaries and this determines
2906 * the possible location of the free pointer.
2907 */
2908 size = ALIGN(size, sizeof(void *));
2909
2910 #ifdef CONFIG_SLUB_DEBUG
2911 /*
2912 * Determine if we can poison the object itself. If the user of
2913 * the slab may touch the object after free or before allocation
2914 * then we should never poison the object itself.
2915 */
2916 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2917 !s->ctor)
2918 s->flags |= __OBJECT_POISON;
2919 else
2920 s->flags &= ~__OBJECT_POISON;
2921
2922
2923 /*
2924 * If we are Redzoning then check if there is some space between the
2925 * end of the object and the free pointer. If not then add an
2926 * additional word to have some bytes to store Redzone information.
2927 */
2928 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2929 size += sizeof(void *);
2930 #endif
2931
2932 /*
2933 * With that we have determined the number of bytes in actual use
2934 * by the object. This is the potential offset to the free pointer.
2935 */
2936 s->inuse = size;
2937
2938 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2939 s->ctor)) {
2940 /*
2941 * Relocate free pointer after the object if it is not
2942 * permitted to overwrite the first word of the object on
2943 * kmem_cache_free.
2944 *
2945 * This is the case if we do RCU, have a constructor or
2946 * destructor or are poisoning the objects.
2947 */
2948 s->offset = size;
2949 size += sizeof(void *);
2950 }
2951
2952 #ifdef CONFIG_SLUB_DEBUG
2953 if (flags & SLAB_STORE_USER)
2954 /*
2955 * Need to store information about allocs and frees after
2956 * the object.
2957 */
2958 size += 2 * sizeof(struct track);
2959
2960 if (flags & SLAB_RED_ZONE)
2961 /*
2962 * Add some empty padding so that we can catch
2963 * overwrites from earlier objects rather than let
2964 * tracking information or the free pointer be
2965 * corrupted if a user writes before the start
2966 * of the object.
2967 */
2968 size += sizeof(void *);
2969 #endif
2970
2971 /*
2972 * Determine the alignment based on various parameters that the
2973 * user specified and the dynamic determination of cache line size
2974 * on bootup.
2975 */
2976 align = calculate_alignment(flags, align, s->object_size);
2977 s->align = align;
2978
2979 /*
2980 * SLUB stores one object immediately after another beginning from
2981 * offset 0. In order to align the objects we have to simply size
2982 * each object to conform to the alignment.
2983 */
2984 size = ALIGN(size, align);
2985 s->size = size;
2986 if (forced_order >= 0)
2987 order = forced_order;
2988 else
2989 order = calculate_order(size, s->reserved);
2990
2991 if (order < 0)
2992 return 0;
2993
2994 s->allocflags = 0;
2995 if (order)
2996 s->allocflags |= __GFP_COMP;
2997
2998 if (s->flags & SLAB_CACHE_DMA)
2999 s->allocflags |= SLUB_DMA;
3000
3001 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3002 s->allocflags |= __GFP_RECLAIMABLE;
3003
3004 /*
3005 * Determine the number of objects per slab
3006 */
3007 s->oo = oo_make(order, size, s->reserved);
3008 s->min = oo_make(get_order(size), size, s->reserved);
3009 if (oo_objects(s->oo) > oo_objects(s->max))
3010 s->max = s->oo;
3011
3012 return !!oo_objects(s->oo);
3013
3014 }
3015
3016 static int kmem_cache_open(struct kmem_cache *s,
3017 const char *name, size_t size,
3018 size_t align, unsigned long flags,
3019 void (*ctor)(void *))
3020 {
3021 memset(s, 0, kmem_size);
3022 s->name = name;
3023 s->ctor = ctor;
3024 s->object_size = size;
3025 s->align = align;
3026 s->flags = kmem_cache_flags(size, flags, name, ctor);
3027 s->reserved = 0;
3028
3029 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3030 s->reserved = sizeof(struct rcu_head);
3031
3032 if (!calculate_sizes(s, -1))
3033 goto error;
3034 if (disable_higher_order_debug) {
3035 /*
3036 * Disable debugging flags that store metadata if the min slab
3037 * order increased.
3038 */
3039 if (get_order(s->size) > get_order(s->object_size)) {
3040 s->flags &= ~DEBUG_METADATA_FLAGS;
3041 s->offset = 0;
3042 if (!calculate_sizes(s, -1))
3043 goto error;
3044 }
3045 }
3046
3047 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3048 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3049 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3050 /* Enable fast mode */
3051 s->flags |= __CMPXCHG_DOUBLE;
3052 #endif
3053
3054 /*
3055 * The larger the object size is, the more pages we want on the partial
3056 * list to avoid pounding the page allocator excessively.
3057 */
3058 set_min_partial(s, ilog2(s->size) / 2);
3059
3060 /*
3061 * cpu_partial determined the maximum number of objects kept in the
3062 * per cpu partial lists of a processor.
3063 *
3064 * Per cpu partial lists mainly contain slabs that just have one
3065 * object freed. If they are used for allocation then they can be
3066 * filled up again with minimal effort. The slab will never hit the
3067 * per node partial lists and therefore no locking will be required.
3068 *
3069 * This setting also determines
3070 *
3071 * A) The number of objects from per cpu partial slabs dumped to the
3072 * per node list when we reach the limit.
3073 * B) The number of objects in cpu partial slabs to extract from the
3074 * per node list when we run out of per cpu objects. We only fetch 50%
3075 * to keep some capacity around for frees.
3076 */
3077 if (kmem_cache_debug(s))
3078 s->cpu_partial = 0;
3079 else if (s->size >= PAGE_SIZE)
3080 s->cpu_partial = 2;
3081 else if (s->size >= 1024)
3082 s->cpu_partial = 6;
3083 else if (s->size >= 256)
3084 s->cpu_partial = 13;
3085 else
3086 s->cpu_partial = 30;
3087
3088 s->refcount = 1;
3089 #ifdef CONFIG_NUMA
3090 s->remote_node_defrag_ratio = 1000;
3091 #endif
3092 if (!init_kmem_cache_nodes(s))
3093 goto error;
3094
3095 if (alloc_kmem_cache_cpus(s))
3096 return 1;
3097
3098 free_kmem_cache_nodes(s);
3099 error:
3100 if (flags & SLAB_PANIC)
3101 panic("Cannot create slab %s size=%lu realsize=%u "
3102 "order=%u offset=%u flags=%lx\n",
3103 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3104 s->offset, flags);
3105 return 0;
3106 }
3107
3108 /*
3109 * Determine the size of a slab object
3110 */
3111 unsigned int kmem_cache_size(struct kmem_cache *s)
3112 {
3113 return s->object_size;
3114 }
3115 EXPORT_SYMBOL(kmem_cache_size);
3116
3117 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3118 const char *text)
3119 {
3120 #ifdef CONFIG_SLUB_DEBUG
3121 void *addr = page_address(page);
3122 void *p;
3123 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3124 sizeof(long), GFP_ATOMIC);
3125 if (!map)
3126 return;
3127 slab_err(s, page, "%s", text);
3128 slab_lock(page);
3129
3130 get_map(s, page, map);
3131 for_each_object(p, s, addr, page->objects) {
3132
3133 if (!test_bit(slab_index(p, s, addr), map)) {
3134 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3135 p, p - addr);
3136 print_tracking(s, p);
3137 }
3138 }
3139 slab_unlock(page);
3140 kfree(map);
3141 #endif
3142 }
3143
3144 /*
3145 * Attempt to free all partial slabs on a node.
3146 * This is called from kmem_cache_close(). We must be the last thread
3147 * using the cache and therefore we do not need to lock anymore.
3148 */
3149 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3150 {
3151 struct page *page, *h;
3152
3153 list_for_each_entry_safe(page, h, &n->partial, lru) {
3154 if (!page->inuse) {
3155 remove_partial(n, page);
3156 discard_slab(s, page);
3157 } else {
3158 list_slab_objects(s, page,
3159 "Objects remaining on kmem_cache_close()");
3160 }
3161 }
3162 }
3163
3164 /*
3165 * Release all resources used by a slab cache.
3166 */
3167 static inline int kmem_cache_close(struct kmem_cache *s)
3168 {
3169 int node;
3170
3171 flush_all(s);
3172 free_percpu(s->cpu_slab);
3173 /* Attempt to free all objects */
3174 for_each_node_state(node, N_NORMAL_MEMORY) {
3175 struct kmem_cache_node *n = get_node(s, node);
3176
3177 free_partial(s, n);
3178 if (n->nr_partial || slabs_node(s, node))
3179 return 1;
3180 }
3181 free_kmem_cache_nodes(s);
3182 return 0;
3183 }
3184
3185 /*
3186 * Close a cache and release the kmem_cache structure
3187 * (must be used for caches created using kmem_cache_create)
3188 */
3189 void kmem_cache_destroy(struct kmem_cache *s)
3190 {
3191 down_write(&slub_lock);
3192 s->refcount--;
3193 if (!s->refcount) {
3194 list_del(&s->list);
3195 up_write(&slub_lock);
3196 if (kmem_cache_close(s)) {
3197 printk(KERN_ERR "SLUB %s: %s called for cache that "
3198 "still has objects.\n", s->name, __func__);
3199 dump_stack();
3200 }
3201 if (s->flags & SLAB_DESTROY_BY_RCU)
3202 rcu_barrier();
3203 sysfs_slab_remove(s);
3204 } else
3205 up_write(&slub_lock);
3206 }
3207 EXPORT_SYMBOL(kmem_cache_destroy);
3208
3209 /********************************************************************
3210 * Kmalloc subsystem
3211 *******************************************************************/
3212
3213 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3214 EXPORT_SYMBOL(kmalloc_caches);
3215
3216 static struct kmem_cache *kmem_cache;
3217
3218 #ifdef CONFIG_ZONE_DMA
3219 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3220 #endif
3221
3222 static int __init setup_slub_min_order(char *str)
3223 {
3224 get_option(&str, &slub_min_order);
3225
3226 return 1;
3227 }
3228
3229 __setup("slub_min_order=", setup_slub_min_order);
3230
3231 static int __init setup_slub_max_order(char *str)
3232 {
3233 get_option(&str, &slub_max_order);
3234 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3235
3236 return 1;
3237 }
3238
3239 __setup("slub_max_order=", setup_slub_max_order);
3240
3241 static int __init setup_slub_min_objects(char *str)
3242 {
3243 get_option(&str, &slub_min_objects);
3244
3245 return 1;
3246 }
3247
3248 __setup("slub_min_objects=", setup_slub_min_objects);
3249
3250 static int __init setup_slub_nomerge(char *str)
3251 {
3252 slub_nomerge = 1;
3253 return 1;
3254 }
3255
3256 __setup("slub_nomerge", setup_slub_nomerge);
3257
3258 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3259 int size, unsigned int flags)
3260 {
3261 struct kmem_cache *s;
3262
3263 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3264
3265 /*
3266 * This function is called with IRQs disabled during early-boot on
3267 * single CPU so there's no need to take slub_lock here.
3268 */
3269 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3270 flags, NULL))
3271 goto panic;
3272
3273 list_add(&s->list, &slab_caches);
3274 return s;
3275
3276 panic:
3277 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3278 return NULL;
3279 }
3280
3281 /*
3282 * Conversion table for small slabs sizes / 8 to the index in the
3283 * kmalloc array. This is necessary for slabs < 192 since we have non power
3284 * of two cache sizes there. The size of larger slabs can be determined using
3285 * fls.
3286 */
3287 static s8 size_index[24] = {
3288 3, /* 8 */
3289 4, /* 16 */
3290 5, /* 24 */
3291 5, /* 32 */
3292 6, /* 40 */
3293 6, /* 48 */
3294 6, /* 56 */
3295 6, /* 64 */
3296 1, /* 72 */
3297 1, /* 80 */
3298 1, /* 88 */
3299 1, /* 96 */
3300 7, /* 104 */
3301 7, /* 112 */
3302 7, /* 120 */
3303 7, /* 128 */
3304 2, /* 136 */
3305 2, /* 144 */
3306 2, /* 152 */
3307 2, /* 160 */
3308 2, /* 168 */
3309 2, /* 176 */
3310 2, /* 184 */
3311 2 /* 192 */
3312 };
3313
3314 static inline int size_index_elem(size_t bytes)
3315 {
3316 return (bytes - 1) / 8;
3317 }
3318
3319 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3320 {
3321 int index;
3322
3323 if (size <= 192) {
3324 if (!size)
3325 return ZERO_SIZE_PTR;
3326
3327 index = size_index[size_index_elem(size)];
3328 } else
3329 index = fls(size - 1);
3330
3331 #ifdef CONFIG_ZONE_DMA
3332 if (unlikely((flags & SLUB_DMA)))
3333 return kmalloc_dma_caches[index];
3334
3335 #endif
3336 return kmalloc_caches[index];
3337 }
3338
3339 void *__kmalloc(size_t size, gfp_t flags)
3340 {
3341 struct kmem_cache *s;
3342 void *ret;
3343
3344 if (unlikely(size > SLUB_MAX_SIZE))
3345 return kmalloc_large(size, flags);
3346
3347 s = get_slab(size, flags);
3348
3349 if (unlikely(ZERO_OR_NULL_PTR(s)))
3350 return s;
3351
3352 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3353
3354 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3355
3356 return ret;
3357 }
3358 EXPORT_SYMBOL(__kmalloc);
3359
3360 #ifdef CONFIG_NUMA
3361 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3362 {
3363 struct page *page;
3364 void *ptr = NULL;
3365
3366 flags |= __GFP_COMP | __GFP_NOTRACK;
3367 page = alloc_pages_node(node, flags, get_order(size));
3368 if (page)
3369 ptr = page_address(page);
3370
3371 kmemleak_alloc(ptr, size, 1, flags);
3372 return ptr;
3373 }
3374
3375 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3376 {
3377 struct kmem_cache *s;
3378 void *ret;
3379
3380 if (unlikely(size > SLUB_MAX_SIZE)) {
3381 ret = kmalloc_large_node(size, flags, node);
3382
3383 trace_kmalloc_node(_RET_IP_, ret,
3384 size, PAGE_SIZE << get_order(size),
3385 flags, node);
3386
3387 return ret;
3388 }
3389
3390 s = get_slab(size, flags);
3391
3392 if (unlikely(ZERO_OR_NULL_PTR(s)))
3393 return s;
3394
3395 ret = slab_alloc(s, flags, node, _RET_IP_);
3396
3397 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3398
3399 return ret;
3400 }
3401 EXPORT_SYMBOL(__kmalloc_node);
3402 #endif
3403
3404 size_t ksize(const void *object)
3405 {
3406 struct page *page;
3407
3408 if (unlikely(object == ZERO_SIZE_PTR))
3409 return 0;
3410
3411 page = virt_to_head_page(object);
3412
3413 if (unlikely(!PageSlab(page))) {
3414 WARN_ON(!PageCompound(page));
3415 return PAGE_SIZE << compound_order(page);
3416 }
3417
3418 return slab_ksize(page->slab);
3419 }
3420 EXPORT_SYMBOL(ksize);
3421
3422 #ifdef CONFIG_SLUB_DEBUG
3423 bool verify_mem_not_deleted(const void *x)
3424 {
3425 struct page *page;
3426 void *object = (void *)x;
3427 unsigned long flags;
3428 bool rv;
3429
3430 if (unlikely(ZERO_OR_NULL_PTR(x)))
3431 return false;
3432
3433 local_irq_save(flags);
3434
3435 page = virt_to_head_page(x);
3436 if (unlikely(!PageSlab(page))) {
3437 /* maybe it was from stack? */
3438 rv = true;
3439 goto out_unlock;
3440 }
3441
3442 slab_lock(page);
3443 if (on_freelist(page->slab, page, object)) {
3444 object_err(page->slab, page, object, "Object is on free-list");
3445 rv = false;
3446 } else {
3447 rv = true;
3448 }
3449 slab_unlock(page);
3450
3451 out_unlock:
3452 local_irq_restore(flags);
3453 return rv;
3454 }
3455 EXPORT_SYMBOL(verify_mem_not_deleted);
3456 #endif
3457
3458 void kfree(const void *x)
3459 {
3460 struct page *page;
3461 void *object = (void *)x;
3462
3463 trace_kfree(_RET_IP_, x);
3464
3465 if (unlikely(ZERO_OR_NULL_PTR(x)))
3466 return;
3467
3468 page = virt_to_head_page(x);
3469 if (unlikely(!PageSlab(page))) {
3470 BUG_ON(!PageCompound(page));
3471 kmemleak_free(x);
3472 put_page(page);
3473 return;
3474 }
3475 slab_free(page->slab, page, object, _RET_IP_);
3476 }
3477 EXPORT_SYMBOL(kfree);
3478
3479 /*
3480 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3481 * the remaining slabs by the number of items in use. The slabs with the
3482 * most items in use come first. New allocations will then fill those up
3483 * and thus they can be removed from the partial lists.
3484 *
3485 * The slabs with the least items are placed last. This results in them
3486 * being allocated from last increasing the chance that the last objects
3487 * are freed in them.
3488 */
3489 int kmem_cache_shrink(struct kmem_cache *s)
3490 {
3491 int node;
3492 int i;
3493 struct kmem_cache_node *n;
3494 struct page *page;
3495 struct page *t;
3496 int objects = oo_objects(s->max);
3497 struct list_head *slabs_by_inuse =
3498 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3499 unsigned long flags;
3500
3501 if (!slabs_by_inuse)
3502 return -ENOMEM;
3503
3504 flush_all(s);
3505 for_each_node_state(node, N_NORMAL_MEMORY) {
3506 n = get_node(s, node);
3507
3508 if (!n->nr_partial)
3509 continue;
3510
3511 for (i = 0; i < objects; i++)
3512 INIT_LIST_HEAD(slabs_by_inuse + i);
3513
3514 spin_lock_irqsave(&n->list_lock, flags);
3515
3516 /*
3517 * Build lists indexed by the items in use in each slab.
3518 *
3519 * Note that concurrent frees may occur while we hold the
3520 * list_lock. page->inuse here is the upper limit.
3521 */
3522 list_for_each_entry_safe(page, t, &n->partial, lru) {
3523 list_move(&page->lru, slabs_by_inuse + page->inuse);
3524 if (!page->inuse)
3525 n->nr_partial--;
3526 }
3527
3528 /*
3529 * Rebuild the partial list with the slabs filled up most
3530 * first and the least used slabs at the end.
3531 */
3532 for (i = objects - 1; i > 0; i--)
3533 list_splice(slabs_by_inuse + i, n->partial.prev);
3534
3535 spin_unlock_irqrestore(&n->list_lock, flags);
3536
3537 /* Release empty slabs */
3538 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3539 discard_slab(s, page);
3540 }
3541
3542 kfree(slabs_by_inuse);
3543 return 0;
3544 }
3545 EXPORT_SYMBOL(kmem_cache_shrink);
3546
3547 #if defined(CONFIG_MEMORY_HOTPLUG)
3548 static int slab_mem_going_offline_callback(void *arg)
3549 {
3550 struct kmem_cache *s;
3551
3552 down_read(&slub_lock);
3553 list_for_each_entry(s, &slab_caches, list)
3554 kmem_cache_shrink(s);
3555 up_read(&slub_lock);
3556
3557 return 0;
3558 }
3559
3560 static void slab_mem_offline_callback(void *arg)
3561 {
3562 struct kmem_cache_node *n;
3563 struct kmem_cache *s;
3564 struct memory_notify *marg = arg;
3565 int offline_node;
3566
3567 offline_node = marg->status_change_nid;
3568
3569 /*
3570 * If the node still has available memory. we need kmem_cache_node
3571 * for it yet.
3572 */
3573 if (offline_node < 0)
3574 return;
3575
3576 down_read(&slub_lock);
3577 list_for_each_entry(s, &slab_caches, list) {
3578 n = get_node(s, offline_node);
3579 if (n) {
3580 /*
3581 * if n->nr_slabs > 0, slabs still exist on the node
3582 * that is going down. We were unable to free them,
3583 * and offline_pages() function shouldn't call this
3584 * callback. So, we must fail.
3585 */
3586 BUG_ON(slabs_node(s, offline_node));
3587
3588 s->node[offline_node] = NULL;
3589 kmem_cache_free(kmem_cache_node, n);
3590 }
3591 }
3592 up_read(&slub_lock);
3593 }
3594
3595 static int slab_mem_going_online_callback(void *arg)
3596 {
3597 struct kmem_cache_node *n;
3598 struct kmem_cache *s;
3599 struct memory_notify *marg = arg;
3600 int nid = marg->status_change_nid;
3601 int ret = 0;
3602
3603 /*
3604 * If the node's memory is already available, then kmem_cache_node is
3605 * already created. Nothing to do.
3606 */
3607 if (nid < 0)
3608 return 0;
3609
3610 /*
3611 * We are bringing a node online. No memory is available yet. We must
3612 * allocate a kmem_cache_node structure in order to bring the node
3613 * online.
3614 */
3615 down_read(&slub_lock);
3616 list_for_each_entry(s, &slab_caches, list) {
3617 /*
3618 * XXX: kmem_cache_alloc_node will fallback to other nodes
3619 * since memory is not yet available from the node that
3620 * is brought up.
3621 */
3622 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3623 if (!n) {
3624 ret = -ENOMEM;
3625 goto out;
3626 }
3627 init_kmem_cache_node(n);
3628 s->node[nid] = n;
3629 }
3630 out:
3631 up_read(&slub_lock);
3632 return ret;
3633 }
3634
3635 static int slab_memory_callback(struct notifier_block *self,
3636 unsigned long action, void *arg)
3637 {
3638 int ret = 0;
3639
3640 switch (action) {
3641 case MEM_GOING_ONLINE:
3642 ret = slab_mem_going_online_callback(arg);
3643 break;
3644 case MEM_GOING_OFFLINE:
3645 ret = slab_mem_going_offline_callback(arg);
3646 break;
3647 case MEM_OFFLINE:
3648 case MEM_CANCEL_ONLINE:
3649 slab_mem_offline_callback(arg);
3650 break;
3651 case MEM_ONLINE:
3652 case MEM_CANCEL_OFFLINE:
3653 break;
3654 }
3655 if (ret)
3656 ret = notifier_from_errno(ret);
3657 else
3658 ret = NOTIFY_OK;
3659 return ret;
3660 }
3661
3662 #endif /* CONFIG_MEMORY_HOTPLUG */
3663
3664 /********************************************************************
3665 * Basic setup of slabs
3666 *******************************************************************/
3667
3668 /*
3669 * Used for early kmem_cache structures that were allocated using
3670 * the page allocator
3671 */
3672
3673 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3674 {
3675 int node;
3676
3677 list_add(&s->list, &slab_caches);
3678 s->refcount = -1;
3679
3680 for_each_node_state(node, N_NORMAL_MEMORY) {
3681 struct kmem_cache_node *n = get_node(s, node);
3682 struct page *p;
3683
3684 if (n) {
3685 list_for_each_entry(p, &n->partial, lru)
3686 p->slab = s;
3687
3688 #ifdef CONFIG_SLUB_DEBUG
3689 list_for_each_entry(p, &n->full, lru)
3690 p->slab = s;
3691 #endif
3692 }
3693 }
3694 }
3695
3696 void __init kmem_cache_init(void)
3697 {
3698 int i;
3699 int caches = 0;
3700 struct kmem_cache *temp_kmem_cache;
3701 int order;
3702 struct kmem_cache *temp_kmem_cache_node;
3703 unsigned long kmalloc_size;
3704
3705 if (debug_guardpage_minorder())
3706 slub_max_order = 0;
3707
3708 kmem_size = offsetof(struct kmem_cache, node) +
3709 nr_node_ids * sizeof(struct kmem_cache_node *);
3710
3711 /* Allocate two kmem_caches from the page allocator */
3712 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3713 order = get_order(2 * kmalloc_size);
3714 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3715
3716 /*
3717 * Must first have the slab cache available for the allocations of the
3718 * struct kmem_cache_node's. There is special bootstrap code in
3719 * kmem_cache_open for slab_state == DOWN.
3720 */
3721 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3722
3723 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3724 sizeof(struct kmem_cache_node),
3725 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3726
3727 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3728
3729 /* Able to allocate the per node structures */
3730 slab_state = PARTIAL;
3731
3732 temp_kmem_cache = kmem_cache;
3733 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3734 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3735 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3736 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3737
3738 /*
3739 * Allocate kmem_cache_node properly from the kmem_cache slab.
3740 * kmem_cache_node is separately allocated so no need to
3741 * update any list pointers.
3742 */
3743 temp_kmem_cache_node = kmem_cache_node;
3744
3745 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3746 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3747
3748 kmem_cache_bootstrap_fixup(kmem_cache_node);
3749
3750 caches++;
3751 kmem_cache_bootstrap_fixup(kmem_cache);
3752 caches++;
3753 /* Free temporary boot structure */
3754 free_pages((unsigned long)temp_kmem_cache, order);
3755
3756 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3757
3758 /*
3759 * Patch up the size_index table if we have strange large alignment
3760 * requirements for the kmalloc array. This is only the case for
3761 * MIPS it seems. The standard arches will not generate any code here.
3762 *
3763 * Largest permitted alignment is 256 bytes due to the way we
3764 * handle the index determination for the smaller caches.
3765 *
3766 * Make sure that nothing crazy happens if someone starts tinkering
3767 * around with ARCH_KMALLOC_MINALIGN
3768 */
3769 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3770 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3771
3772 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3773 int elem = size_index_elem(i);
3774 if (elem >= ARRAY_SIZE(size_index))
3775 break;
3776 size_index[elem] = KMALLOC_SHIFT_LOW;
3777 }
3778
3779 if (KMALLOC_MIN_SIZE == 64) {
3780 /*
3781 * The 96 byte size cache is not used if the alignment
3782 * is 64 byte.
3783 */
3784 for (i = 64 + 8; i <= 96; i += 8)
3785 size_index[size_index_elem(i)] = 7;
3786 } else if (KMALLOC_MIN_SIZE == 128) {
3787 /*
3788 * The 192 byte sized cache is not used if the alignment
3789 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3790 * instead.
3791 */
3792 for (i = 128 + 8; i <= 192; i += 8)
3793 size_index[size_index_elem(i)] = 8;
3794 }
3795
3796 /* Caches that are not of the two-to-the-power-of size */
3797 if (KMALLOC_MIN_SIZE <= 32) {
3798 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3799 caches++;
3800 }
3801
3802 if (KMALLOC_MIN_SIZE <= 64) {
3803 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3804 caches++;
3805 }
3806
3807 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3808 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3809 caches++;
3810 }
3811
3812 slab_state = UP;
3813
3814 /* Provide the correct kmalloc names now that the caches are up */
3815 if (KMALLOC_MIN_SIZE <= 32) {
3816 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3817 BUG_ON(!kmalloc_caches[1]->name);
3818 }
3819
3820 if (KMALLOC_MIN_SIZE <= 64) {
3821 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3822 BUG_ON(!kmalloc_caches[2]->name);
3823 }
3824
3825 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3826 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3827
3828 BUG_ON(!s);
3829 kmalloc_caches[i]->name = s;
3830 }
3831
3832 #ifdef CONFIG_SMP
3833 register_cpu_notifier(&slab_notifier);
3834 #endif
3835
3836 #ifdef CONFIG_ZONE_DMA
3837 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3838 struct kmem_cache *s = kmalloc_caches[i];
3839
3840 if (s && s->size) {
3841 char *name = kasprintf(GFP_NOWAIT,
3842 "dma-kmalloc-%d", s->object_size);
3843
3844 BUG_ON(!name);
3845 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3846 s->object_size, SLAB_CACHE_DMA);
3847 }
3848 }
3849 #endif
3850 printk(KERN_INFO
3851 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3852 " CPUs=%d, Nodes=%d\n",
3853 caches, cache_line_size(),
3854 slub_min_order, slub_max_order, slub_min_objects,
3855 nr_cpu_ids, nr_node_ids);
3856 }
3857
3858 void __init kmem_cache_init_late(void)
3859 {
3860 }
3861
3862 /*
3863 * Find a mergeable slab cache
3864 */
3865 static int slab_unmergeable(struct kmem_cache *s)
3866 {
3867 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3868 return 1;
3869
3870 if (s->ctor)
3871 return 1;
3872
3873 /*
3874 * We may have set a slab to be unmergeable during bootstrap.
3875 */
3876 if (s->refcount < 0)
3877 return 1;
3878
3879 return 0;
3880 }
3881
3882 static struct kmem_cache *find_mergeable(size_t size,
3883 size_t align, unsigned long flags, const char *name,
3884 void (*ctor)(void *))
3885 {
3886 struct kmem_cache *s;
3887
3888 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3889 return NULL;
3890
3891 if (ctor)
3892 return NULL;
3893
3894 size = ALIGN(size, sizeof(void *));
3895 align = calculate_alignment(flags, align, size);
3896 size = ALIGN(size, align);
3897 flags = kmem_cache_flags(size, flags, name, NULL);
3898
3899 list_for_each_entry(s, &slab_caches, list) {
3900 if (slab_unmergeable(s))
3901 continue;
3902
3903 if (size > s->size)
3904 continue;
3905
3906 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3907 continue;
3908 /*
3909 * Check if alignment is compatible.
3910 * Courtesy of Adrian Drzewiecki
3911 */
3912 if ((s->size & ~(align - 1)) != s->size)
3913 continue;
3914
3915 if (s->size - size >= sizeof(void *))
3916 continue;
3917
3918 return s;
3919 }
3920 return NULL;
3921 }
3922
3923 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3924 size_t align, unsigned long flags, void (*ctor)(void *))
3925 {
3926 struct kmem_cache *s;
3927 char *n;
3928
3929 if (WARN_ON(!name))
3930 return NULL;
3931
3932 down_write(&slub_lock);
3933 s = find_mergeable(size, align, flags, name, ctor);
3934 if (s) {
3935 s->refcount++;
3936 /*
3937 * Adjust the object sizes so that we clear
3938 * the complete object on kzalloc.
3939 */
3940 s->object_size = max(s->object_size, (int)size);
3941 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3942
3943 if (sysfs_slab_alias(s, name)) {
3944 s->refcount--;
3945 goto err;
3946 }
3947 up_write(&slub_lock);
3948 return s;
3949 }
3950
3951 n = kstrdup(name, GFP_KERNEL);
3952 if (!n)
3953 goto err;
3954
3955 s = kmalloc(kmem_size, GFP_KERNEL);
3956 if (s) {
3957 if (kmem_cache_open(s, n,
3958 size, align, flags, ctor)) {
3959 list_add(&s->list, &slab_caches);
3960 up_write(&slub_lock);
3961 if (sysfs_slab_add(s)) {
3962 down_write(&slub_lock);
3963 list_del(&s->list);
3964 kfree(n);
3965 kfree(s);
3966 goto err;
3967 }
3968 return s;
3969 }
3970 kfree(s);
3971 }
3972 kfree(n);
3973 err:
3974 up_write(&slub_lock);
3975
3976 if (flags & SLAB_PANIC)
3977 panic("Cannot create slabcache %s\n", name);
3978 else
3979 s = NULL;
3980 return s;
3981 }
3982 EXPORT_SYMBOL(kmem_cache_create);
3983
3984 #ifdef CONFIG_SMP
3985 /*
3986 * Use the cpu notifier to insure that the cpu slabs are flushed when
3987 * necessary.
3988 */
3989 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3990 unsigned long action, void *hcpu)
3991 {
3992 long cpu = (long)hcpu;
3993 struct kmem_cache *s;
3994 unsigned long flags;
3995
3996 switch (action) {
3997 case CPU_UP_CANCELED:
3998 case CPU_UP_CANCELED_FROZEN:
3999 case CPU_DEAD:
4000 case CPU_DEAD_FROZEN:
4001 down_read(&slub_lock);
4002 list_for_each_entry(s, &slab_caches, list) {
4003 local_irq_save(flags);
4004 __flush_cpu_slab(s, cpu);
4005 local_irq_restore(flags);
4006 }
4007 up_read(&slub_lock);
4008 break;
4009 default:
4010 break;
4011 }
4012 return NOTIFY_OK;
4013 }
4014
4015 static struct notifier_block __cpuinitdata slab_notifier = {
4016 .notifier_call = slab_cpuup_callback
4017 };
4018
4019 #endif
4020
4021 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4022 {
4023 struct kmem_cache *s;
4024 void *ret;
4025
4026 if (unlikely(size > SLUB_MAX_SIZE))
4027 return kmalloc_large(size, gfpflags);
4028
4029 s = get_slab(size, gfpflags);
4030
4031 if (unlikely(ZERO_OR_NULL_PTR(s)))
4032 return s;
4033
4034 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4035
4036 /* Honor the call site pointer we received. */
4037 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4038
4039 return ret;
4040 }
4041
4042 #ifdef CONFIG_NUMA
4043 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4044 int node, unsigned long caller)
4045 {
4046 struct kmem_cache *s;
4047 void *ret;
4048
4049 if (unlikely(size > SLUB_MAX_SIZE)) {
4050 ret = kmalloc_large_node(size, gfpflags, node);
4051
4052 trace_kmalloc_node(caller, ret,
4053 size, PAGE_SIZE << get_order(size),
4054 gfpflags, node);
4055
4056 return ret;
4057 }
4058
4059 s = get_slab(size, gfpflags);
4060
4061 if (unlikely(ZERO_OR_NULL_PTR(s)))
4062 return s;
4063
4064 ret = slab_alloc(s, gfpflags, node, caller);
4065
4066 /* Honor the call site pointer we received. */
4067 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4068
4069 return ret;
4070 }
4071 #endif
4072
4073 #ifdef CONFIG_SYSFS
4074 static int count_inuse(struct page *page)
4075 {
4076 return page->inuse;
4077 }
4078
4079 static int count_total(struct page *page)
4080 {
4081 return page->objects;
4082 }
4083 #endif
4084
4085 #ifdef CONFIG_SLUB_DEBUG
4086 static int validate_slab(struct kmem_cache *s, struct page *page,
4087 unsigned long *map)
4088 {
4089 void *p;
4090 void *addr = page_address(page);
4091
4092 if (!check_slab(s, page) ||
4093 !on_freelist(s, page, NULL))
4094 return 0;
4095
4096 /* Now we know that a valid freelist exists */
4097 bitmap_zero(map, page->objects);
4098
4099 get_map(s, page, map);
4100 for_each_object(p, s, addr, page->objects) {
4101 if (test_bit(slab_index(p, s, addr), map))
4102 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4103 return 0;
4104 }
4105
4106 for_each_object(p, s, addr, page->objects)
4107 if (!test_bit(slab_index(p, s, addr), map))
4108 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4109 return 0;
4110 return 1;
4111 }
4112
4113 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4114 unsigned long *map)
4115 {
4116 slab_lock(page);
4117 validate_slab(s, page, map);
4118 slab_unlock(page);
4119 }
4120
4121 static int validate_slab_node(struct kmem_cache *s,
4122 struct kmem_cache_node *n, unsigned long *map)
4123 {
4124 unsigned long count = 0;
4125 struct page *page;
4126 unsigned long flags;
4127
4128 spin_lock_irqsave(&n->list_lock, flags);
4129
4130 list_for_each_entry(page, &n->partial, lru) {
4131 validate_slab_slab(s, page, map);
4132 count++;
4133 }
4134 if (count != n->nr_partial)
4135 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4136 "counter=%ld\n", s->name, count, n->nr_partial);
4137
4138 if (!(s->flags & SLAB_STORE_USER))
4139 goto out;
4140
4141 list_for_each_entry(page, &n->full, lru) {
4142 validate_slab_slab(s, page, map);
4143 count++;
4144 }
4145 if (count != atomic_long_read(&n->nr_slabs))
4146 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4147 "counter=%ld\n", s->name, count,
4148 atomic_long_read(&n->nr_slabs));
4149
4150 out:
4151 spin_unlock_irqrestore(&n->list_lock, flags);
4152 return count;
4153 }
4154
4155 static long validate_slab_cache(struct kmem_cache *s)
4156 {
4157 int node;
4158 unsigned long count = 0;
4159 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4160 sizeof(unsigned long), GFP_KERNEL);
4161
4162 if (!map)
4163 return -ENOMEM;
4164
4165 flush_all(s);
4166 for_each_node_state(node, N_NORMAL_MEMORY) {
4167 struct kmem_cache_node *n = get_node(s, node);
4168
4169 count += validate_slab_node(s, n, map);
4170 }
4171 kfree(map);
4172 return count;
4173 }
4174 /*
4175 * Generate lists of code addresses where slabcache objects are allocated
4176 * and freed.
4177 */
4178
4179 struct location {
4180 unsigned long count;
4181 unsigned long addr;
4182 long long sum_time;
4183 long min_time;
4184 long max_time;
4185 long min_pid;
4186 long max_pid;
4187 DECLARE_BITMAP(cpus, NR_CPUS);
4188 nodemask_t nodes;
4189 };
4190
4191 struct loc_track {
4192 unsigned long max;
4193 unsigned long count;
4194 struct location *loc;
4195 };
4196
4197 static void free_loc_track(struct loc_track *t)
4198 {
4199 if (t->max)
4200 free_pages((unsigned long)t->loc,
4201 get_order(sizeof(struct location) * t->max));
4202 }
4203
4204 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4205 {
4206 struct location *l;
4207 int order;
4208
4209 order = get_order(sizeof(struct location) * max);
4210
4211 l = (void *)__get_free_pages(flags, order);
4212 if (!l)
4213 return 0;
4214
4215 if (t->count) {
4216 memcpy(l, t->loc, sizeof(struct location) * t->count);
4217 free_loc_track(t);
4218 }
4219 t->max = max;
4220 t->loc = l;
4221 return 1;
4222 }
4223
4224 static int add_location(struct loc_track *t, struct kmem_cache *s,
4225 const struct track *track)
4226 {
4227 long start, end, pos;
4228 struct location *l;
4229 unsigned long caddr;
4230 unsigned long age = jiffies - track->when;
4231
4232 start = -1;
4233 end = t->count;
4234
4235 for ( ; ; ) {
4236 pos = start + (end - start + 1) / 2;
4237
4238 /*
4239 * There is nothing at "end". If we end up there
4240 * we need to add something to before end.
4241 */
4242 if (pos == end)
4243 break;
4244
4245 caddr = t->loc[pos].addr;
4246 if (track->addr == caddr) {
4247
4248 l = &t->loc[pos];
4249 l->count++;
4250 if (track->when) {
4251 l->sum_time += age;
4252 if (age < l->min_time)
4253 l->min_time = age;
4254 if (age > l->max_time)
4255 l->max_time = age;
4256
4257 if (track->pid < l->min_pid)
4258 l->min_pid = track->pid;
4259 if (track->pid > l->max_pid)
4260 l->max_pid = track->pid;
4261
4262 cpumask_set_cpu(track->cpu,
4263 to_cpumask(l->cpus));
4264 }
4265 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4266 return 1;
4267 }
4268
4269 if (track->addr < caddr)
4270 end = pos;
4271 else
4272 start = pos;
4273 }
4274
4275 /*
4276 * Not found. Insert new tracking element.
4277 */
4278 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4279 return 0;
4280
4281 l = t->loc + pos;
4282 if (pos < t->count)
4283 memmove(l + 1, l,
4284 (t->count - pos) * sizeof(struct location));
4285 t->count++;
4286 l->count = 1;
4287 l->addr = track->addr;
4288 l->sum_time = age;
4289 l->min_time = age;
4290 l->max_time = age;
4291 l->min_pid = track->pid;
4292 l->max_pid = track->pid;
4293 cpumask_clear(to_cpumask(l->cpus));
4294 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4295 nodes_clear(l->nodes);
4296 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4297 return 1;
4298 }
4299
4300 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4301 struct page *page, enum track_item alloc,
4302 unsigned long *map)
4303 {
4304 void *addr = page_address(page);
4305 void *p;
4306
4307 bitmap_zero(map, page->objects);
4308 get_map(s, page, map);
4309
4310 for_each_object(p, s, addr, page->objects)
4311 if (!test_bit(slab_index(p, s, addr), map))
4312 add_location(t, s, get_track(s, p, alloc));
4313 }
4314
4315 static int list_locations(struct kmem_cache *s, char *buf,
4316 enum track_item alloc)
4317 {
4318 int len = 0;
4319 unsigned long i;
4320 struct loc_track t = { 0, 0, NULL };
4321 int node;
4322 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4323 sizeof(unsigned long), GFP_KERNEL);
4324
4325 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4326 GFP_TEMPORARY)) {
4327 kfree(map);
4328 return sprintf(buf, "Out of memory\n");
4329 }
4330 /* Push back cpu slabs */
4331 flush_all(s);
4332
4333 for_each_node_state(node, N_NORMAL_MEMORY) {
4334 struct kmem_cache_node *n = get_node(s, node);
4335 unsigned long flags;
4336 struct page *page;
4337
4338 if (!atomic_long_read(&n->nr_slabs))
4339 continue;
4340
4341 spin_lock_irqsave(&n->list_lock, flags);
4342 list_for_each_entry(page, &n->partial, lru)
4343 process_slab(&t, s, page, alloc, map);
4344 list_for_each_entry(page, &n->full, lru)
4345 process_slab(&t, s, page, alloc, map);
4346 spin_unlock_irqrestore(&n->list_lock, flags);
4347 }
4348
4349 for (i = 0; i < t.count; i++) {
4350 struct location *l = &t.loc[i];
4351
4352 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4353 break;
4354 len += sprintf(buf + len, "%7ld ", l->count);
4355
4356 if (l->addr)
4357 len += sprintf(buf + len, "%pS", (void *)l->addr);
4358 else
4359 len += sprintf(buf + len, "<not-available>");
4360
4361 if (l->sum_time != l->min_time) {
4362 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4363 l->min_time,
4364 (long)div_u64(l->sum_time, l->count),
4365 l->max_time);
4366 } else
4367 len += sprintf(buf + len, " age=%ld",
4368 l->min_time);
4369
4370 if (l->min_pid != l->max_pid)
4371 len += sprintf(buf + len, " pid=%ld-%ld",
4372 l->min_pid, l->max_pid);
4373 else
4374 len += sprintf(buf + len, " pid=%ld",
4375 l->min_pid);
4376
4377 if (num_online_cpus() > 1 &&
4378 !cpumask_empty(to_cpumask(l->cpus)) &&
4379 len < PAGE_SIZE - 60) {
4380 len += sprintf(buf + len, " cpus=");
4381 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 to_cpumask(l->cpus));
4383 }
4384
4385 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4386 len < PAGE_SIZE - 60) {
4387 len += sprintf(buf + len, " nodes=");
4388 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4389 l->nodes);
4390 }
4391
4392 len += sprintf(buf + len, "\n");
4393 }
4394
4395 free_loc_track(&t);
4396 kfree(map);
4397 if (!t.count)
4398 len += sprintf(buf, "No data\n");
4399 return len;
4400 }
4401 #endif
4402
4403 #ifdef SLUB_RESILIENCY_TEST
4404 static void resiliency_test(void)
4405 {
4406 u8 *p;
4407
4408 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4409
4410 printk(KERN_ERR "SLUB resiliency testing\n");
4411 printk(KERN_ERR "-----------------------\n");
4412 printk(KERN_ERR "A. Corruption after allocation\n");
4413
4414 p = kzalloc(16, GFP_KERNEL);
4415 p[16] = 0x12;
4416 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4417 " 0x12->0x%p\n\n", p + 16);
4418
4419 validate_slab_cache(kmalloc_caches[4]);
4420
4421 /* Hmmm... The next two are dangerous */
4422 p = kzalloc(32, GFP_KERNEL);
4423 p[32 + sizeof(void *)] = 0x34;
4424 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4425 " 0x34 -> -0x%p\n", p);
4426 printk(KERN_ERR
4427 "If allocated object is overwritten then not detectable\n\n");
4428
4429 validate_slab_cache(kmalloc_caches[5]);
4430 p = kzalloc(64, GFP_KERNEL);
4431 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4432 *p = 0x56;
4433 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4434 p);
4435 printk(KERN_ERR
4436 "If allocated object is overwritten then not detectable\n\n");
4437 validate_slab_cache(kmalloc_caches[6]);
4438
4439 printk(KERN_ERR "\nB. Corruption after free\n");
4440 p = kzalloc(128, GFP_KERNEL);
4441 kfree(p);
4442 *p = 0x78;
4443 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4444 validate_slab_cache(kmalloc_caches[7]);
4445
4446 p = kzalloc(256, GFP_KERNEL);
4447 kfree(p);
4448 p[50] = 0x9a;
4449 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4450 p);
4451 validate_slab_cache(kmalloc_caches[8]);
4452
4453 p = kzalloc(512, GFP_KERNEL);
4454 kfree(p);
4455 p[512] = 0xab;
4456 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4457 validate_slab_cache(kmalloc_caches[9]);
4458 }
4459 #else
4460 #ifdef CONFIG_SYSFS
4461 static void resiliency_test(void) {};
4462 #endif
4463 #endif
4464
4465 #ifdef CONFIG_SYSFS
4466 enum slab_stat_type {
4467 SL_ALL, /* All slabs */
4468 SL_PARTIAL, /* Only partially allocated slabs */
4469 SL_CPU, /* Only slabs used for cpu caches */
4470 SL_OBJECTS, /* Determine allocated objects not slabs */
4471 SL_TOTAL /* Determine object capacity not slabs */
4472 };
4473
4474 #define SO_ALL (1 << SL_ALL)
4475 #define SO_PARTIAL (1 << SL_PARTIAL)
4476 #define SO_CPU (1 << SL_CPU)
4477 #define SO_OBJECTS (1 << SL_OBJECTS)
4478 #define SO_TOTAL (1 << SL_TOTAL)
4479
4480 static ssize_t show_slab_objects(struct kmem_cache *s,
4481 char *buf, unsigned long flags)
4482 {
4483 unsigned long total = 0;
4484 int node;
4485 int x;
4486 unsigned long *nodes;
4487 unsigned long *per_cpu;
4488
4489 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4490 if (!nodes)
4491 return -ENOMEM;
4492 per_cpu = nodes + nr_node_ids;
4493
4494 if (flags & SO_CPU) {
4495 int cpu;
4496
4497 for_each_possible_cpu(cpu) {
4498 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4499 int node;
4500 struct page *page;
4501
4502 page = ACCESS_ONCE(c->page);
4503 if (!page)
4504 continue;
4505
4506 node = page_to_nid(page);
4507 if (flags & SO_TOTAL)
4508 x = page->objects;
4509 else if (flags & SO_OBJECTS)
4510 x = page->inuse;
4511 else
4512 x = 1;
4513
4514 total += x;
4515 nodes[node] += x;
4516
4517 page = ACCESS_ONCE(c->partial);
4518 if (page) {
4519 x = page->pobjects;
4520 total += x;
4521 nodes[node] += x;
4522 }
4523
4524 per_cpu[node]++;
4525 }
4526 }
4527
4528 lock_memory_hotplug();
4529 #ifdef CONFIG_SLUB_DEBUG
4530 if (flags & SO_ALL) {
4531 for_each_node_state(node, N_NORMAL_MEMORY) {
4532 struct kmem_cache_node *n = get_node(s, node);
4533
4534 if (flags & SO_TOTAL)
4535 x = atomic_long_read(&n->total_objects);
4536 else if (flags & SO_OBJECTS)
4537 x = atomic_long_read(&n->total_objects) -
4538 count_partial(n, count_free);
4539
4540 else
4541 x = atomic_long_read(&n->nr_slabs);
4542 total += x;
4543 nodes[node] += x;
4544 }
4545
4546 } else
4547 #endif
4548 if (flags & SO_PARTIAL) {
4549 for_each_node_state(node, N_NORMAL_MEMORY) {
4550 struct kmem_cache_node *n = get_node(s, node);
4551
4552 if (flags & SO_TOTAL)
4553 x = count_partial(n, count_total);
4554 else if (flags & SO_OBJECTS)
4555 x = count_partial(n, count_inuse);
4556 else
4557 x = n->nr_partial;
4558 total += x;
4559 nodes[node] += x;
4560 }
4561 }
4562 x = sprintf(buf, "%lu", total);
4563 #ifdef CONFIG_NUMA
4564 for_each_node_state(node, N_NORMAL_MEMORY)
4565 if (nodes[node])
4566 x += sprintf(buf + x, " N%d=%lu",
4567 node, nodes[node]);
4568 #endif
4569 unlock_memory_hotplug();
4570 kfree(nodes);
4571 return x + sprintf(buf + x, "\n");
4572 }
4573
4574 #ifdef CONFIG_SLUB_DEBUG
4575 static int any_slab_objects(struct kmem_cache *s)
4576 {
4577 int node;
4578
4579 for_each_online_node(node) {
4580 struct kmem_cache_node *n = get_node(s, node);
4581
4582 if (!n)
4583 continue;
4584
4585 if (atomic_long_read(&n->total_objects))
4586 return 1;
4587 }
4588 return 0;
4589 }
4590 #endif
4591
4592 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4593 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4594
4595 struct slab_attribute {
4596 struct attribute attr;
4597 ssize_t (*show)(struct kmem_cache *s, char *buf);
4598 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4599 };
4600
4601 #define SLAB_ATTR_RO(_name) \
4602 static struct slab_attribute _name##_attr = \
4603 __ATTR(_name, 0400, _name##_show, NULL)
4604
4605 #define SLAB_ATTR(_name) \
4606 static struct slab_attribute _name##_attr = \
4607 __ATTR(_name, 0600, _name##_show, _name##_store)
4608
4609 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4610 {
4611 return sprintf(buf, "%d\n", s->size);
4612 }
4613 SLAB_ATTR_RO(slab_size);
4614
4615 static ssize_t align_show(struct kmem_cache *s, char *buf)
4616 {
4617 return sprintf(buf, "%d\n", s->align);
4618 }
4619 SLAB_ATTR_RO(align);
4620
4621 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4622 {
4623 return sprintf(buf, "%d\n", s->object_size);
4624 }
4625 SLAB_ATTR_RO(object_size);
4626
4627 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4628 {
4629 return sprintf(buf, "%d\n", oo_objects(s->oo));
4630 }
4631 SLAB_ATTR_RO(objs_per_slab);
4632
4633 static ssize_t order_store(struct kmem_cache *s,
4634 const char *buf, size_t length)
4635 {
4636 unsigned long order;
4637 int err;
4638
4639 err = strict_strtoul(buf, 10, &order);
4640 if (err)
4641 return err;
4642
4643 if (order > slub_max_order || order < slub_min_order)
4644 return -EINVAL;
4645
4646 calculate_sizes(s, order);
4647 return length;
4648 }
4649
4650 static ssize_t order_show(struct kmem_cache *s, char *buf)
4651 {
4652 return sprintf(buf, "%d\n", oo_order(s->oo));
4653 }
4654 SLAB_ATTR(order);
4655
4656 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4657 {
4658 return sprintf(buf, "%lu\n", s->min_partial);
4659 }
4660
4661 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663 {
4664 unsigned long min;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &min);
4668 if (err)
4669 return err;
4670
4671 set_min_partial(s, min);
4672 return length;
4673 }
4674 SLAB_ATTR(min_partial);
4675
4676 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4677 {
4678 return sprintf(buf, "%u\n", s->cpu_partial);
4679 }
4680
4681 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4682 size_t length)
4683 {
4684 unsigned long objects;
4685 int err;
4686
4687 err = strict_strtoul(buf, 10, &objects);
4688 if (err)
4689 return err;
4690 if (objects && kmem_cache_debug(s))
4691 return -EINVAL;
4692
4693 s->cpu_partial = objects;
4694 flush_all(s);
4695 return length;
4696 }
4697 SLAB_ATTR(cpu_partial);
4698
4699 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4700 {
4701 if (!s->ctor)
4702 return 0;
4703 return sprintf(buf, "%pS\n", s->ctor);
4704 }
4705 SLAB_ATTR_RO(ctor);
4706
4707 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4708 {
4709 return sprintf(buf, "%d\n", s->refcount - 1);
4710 }
4711 SLAB_ATTR_RO(aliases);
4712
4713 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4714 {
4715 return show_slab_objects(s, buf, SO_PARTIAL);
4716 }
4717 SLAB_ATTR_RO(partial);
4718
4719 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4720 {
4721 return show_slab_objects(s, buf, SO_CPU);
4722 }
4723 SLAB_ATTR_RO(cpu_slabs);
4724
4725 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4726 {
4727 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4728 }
4729 SLAB_ATTR_RO(objects);
4730
4731 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4732 {
4733 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4734 }
4735 SLAB_ATTR_RO(objects_partial);
4736
4737 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4738 {
4739 int objects = 0;
4740 int pages = 0;
4741 int cpu;
4742 int len;
4743
4744 for_each_online_cpu(cpu) {
4745 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4746
4747 if (page) {
4748 pages += page->pages;
4749 objects += page->pobjects;
4750 }
4751 }
4752
4753 len = sprintf(buf, "%d(%d)", objects, pages);
4754
4755 #ifdef CONFIG_SMP
4756 for_each_online_cpu(cpu) {
4757 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4758
4759 if (page && len < PAGE_SIZE - 20)
4760 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4761 page->pobjects, page->pages);
4762 }
4763 #endif
4764 return len + sprintf(buf + len, "\n");
4765 }
4766 SLAB_ATTR_RO(slabs_cpu_partial);
4767
4768 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4769 {
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4771 }
4772
4773 static ssize_t reclaim_account_store(struct kmem_cache *s,
4774 const char *buf, size_t length)
4775 {
4776 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4777 if (buf[0] == '1')
4778 s->flags |= SLAB_RECLAIM_ACCOUNT;
4779 return length;
4780 }
4781 SLAB_ATTR(reclaim_account);
4782
4783 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4784 {
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4786 }
4787 SLAB_ATTR_RO(hwcache_align);
4788
4789 #ifdef CONFIG_ZONE_DMA
4790 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4791 {
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4793 }
4794 SLAB_ATTR_RO(cache_dma);
4795 #endif
4796
4797 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4798 {
4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4800 }
4801 SLAB_ATTR_RO(destroy_by_rcu);
4802
4803 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4804 {
4805 return sprintf(buf, "%d\n", s->reserved);
4806 }
4807 SLAB_ATTR_RO(reserved);
4808
4809 #ifdef CONFIG_SLUB_DEBUG
4810 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4811 {
4812 return show_slab_objects(s, buf, SO_ALL);
4813 }
4814 SLAB_ATTR_RO(slabs);
4815
4816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4817 {
4818 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4819 }
4820 SLAB_ATTR_RO(total_objects);
4821
4822 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4823 {
4824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4825 }
4826
4827 static ssize_t sanity_checks_store(struct kmem_cache *s,
4828 const char *buf, size_t length)
4829 {
4830 s->flags &= ~SLAB_DEBUG_FREE;
4831 if (buf[0] == '1') {
4832 s->flags &= ~__CMPXCHG_DOUBLE;
4833 s->flags |= SLAB_DEBUG_FREE;
4834 }
4835 return length;
4836 }
4837 SLAB_ATTR(sanity_checks);
4838
4839 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4840 {
4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4842 }
4843
4844 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4845 size_t length)
4846 {
4847 s->flags &= ~SLAB_TRACE;
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
4850 s->flags |= SLAB_TRACE;
4851 }
4852 return length;
4853 }
4854 SLAB_ATTR(trace);
4855
4856 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4857 {
4858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4859 }
4860
4861 static ssize_t red_zone_store(struct kmem_cache *s,
4862 const char *buf, size_t length)
4863 {
4864 if (any_slab_objects(s))
4865 return -EBUSY;
4866
4867 s->flags &= ~SLAB_RED_ZONE;
4868 if (buf[0] == '1') {
4869 s->flags &= ~__CMPXCHG_DOUBLE;
4870 s->flags |= SLAB_RED_ZONE;
4871 }
4872 calculate_sizes(s, -1);
4873 return length;
4874 }
4875 SLAB_ATTR(red_zone);
4876
4877 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4878 {
4879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4880 }
4881
4882 static ssize_t poison_store(struct kmem_cache *s,
4883 const char *buf, size_t length)
4884 {
4885 if (any_slab_objects(s))
4886 return -EBUSY;
4887
4888 s->flags &= ~SLAB_POISON;
4889 if (buf[0] == '1') {
4890 s->flags &= ~__CMPXCHG_DOUBLE;
4891 s->flags |= SLAB_POISON;
4892 }
4893 calculate_sizes(s, -1);
4894 return length;
4895 }
4896 SLAB_ATTR(poison);
4897
4898 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4899 {
4900 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4901 }
4902
4903 static ssize_t store_user_store(struct kmem_cache *s,
4904 const char *buf, size_t length)
4905 {
4906 if (any_slab_objects(s))
4907 return -EBUSY;
4908
4909 s->flags &= ~SLAB_STORE_USER;
4910 if (buf[0] == '1') {
4911 s->flags &= ~__CMPXCHG_DOUBLE;
4912 s->flags |= SLAB_STORE_USER;
4913 }
4914 calculate_sizes(s, -1);
4915 return length;
4916 }
4917 SLAB_ATTR(store_user);
4918
4919 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4920 {
4921 return 0;
4922 }
4923
4924 static ssize_t validate_store(struct kmem_cache *s,
4925 const char *buf, size_t length)
4926 {
4927 int ret = -EINVAL;
4928
4929 if (buf[0] == '1') {
4930 ret = validate_slab_cache(s);
4931 if (ret >= 0)
4932 ret = length;
4933 }
4934 return ret;
4935 }
4936 SLAB_ATTR(validate);
4937
4938 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4939 {
4940 if (!(s->flags & SLAB_STORE_USER))
4941 return -ENOSYS;
4942 return list_locations(s, buf, TRACK_ALLOC);
4943 }
4944 SLAB_ATTR_RO(alloc_calls);
4945
4946 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4947 {
4948 if (!(s->flags & SLAB_STORE_USER))
4949 return -ENOSYS;
4950 return list_locations(s, buf, TRACK_FREE);
4951 }
4952 SLAB_ATTR_RO(free_calls);
4953 #endif /* CONFIG_SLUB_DEBUG */
4954
4955 #ifdef CONFIG_FAILSLAB
4956 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4957 {
4958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4959 }
4960
4961 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4962 size_t length)
4963 {
4964 s->flags &= ~SLAB_FAILSLAB;
4965 if (buf[0] == '1')
4966 s->flags |= SLAB_FAILSLAB;
4967 return length;
4968 }
4969 SLAB_ATTR(failslab);
4970 #endif
4971
4972 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4973 {
4974 return 0;
4975 }
4976
4977 static ssize_t shrink_store(struct kmem_cache *s,
4978 const char *buf, size_t length)
4979 {
4980 if (buf[0] == '1') {
4981 int rc = kmem_cache_shrink(s);
4982
4983 if (rc)
4984 return rc;
4985 } else
4986 return -EINVAL;
4987 return length;
4988 }
4989 SLAB_ATTR(shrink);
4990
4991 #ifdef CONFIG_NUMA
4992 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4993 {
4994 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4995 }
4996
4997 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4998 const char *buf, size_t length)
4999 {
5000 unsigned long ratio;
5001 int err;
5002
5003 err = strict_strtoul(buf, 10, &ratio);
5004 if (err)
5005 return err;
5006
5007 if (ratio <= 100)
5008 s->remote_node_defrag_ratio = ratio * 10;
5009
5010 return length;
5011 }
5012 SLAB_ATTR(remote_node_defrag_ratio);
5013 #endif
5014
5015 #ifdef CONFIG_SLUB_STATS
5016 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5017 {
5018 unsigned long sum = 0;
5019 int cpu;
5020 int len;
5021 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5022
5023 if (!data)
5024 return -ENOMEM;
5025
5026 for_each_online_cpu(cpu) {
5027 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5028
5029 data[cpu] = x;
5030 sum += x;
5031 }
5032
5033 len = sprintf(buf, "%lu", sum);
5034
5035 #ifdef CONFIG_SMP
5036 for_each_online_cpu(cpu) {
5037 if (data[cpu] && len < PAGE_SIZE - 20)
5038 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5039 }
5040 #endif
5041 kfree(data);
5042 return len + sprintf(buf + len, "\n");
5043 }
5044
5045 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5046 {
5047 int cpu;
5048
5049 for_each_online_cpu(cpu)
5050 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5051 }
5052
5053 #define STAT_ATTR(si, text) \
5054 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5055 { \
5056 return show_stat(s, buf, si); \
5057 } \
5058 static ssize_t text##_store(struct kmem_cache *s, \
5059 const char *buf, size_t length) \
5060 { \
5061 if (buf[0] != '0') \
5062 return -EINVAL; \
5063 clear_stat(s, si); \
5064 return length; \
5065 } \
5066 SLAB_ATTR(text); \
5067
5068 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5069 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5070 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5071 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5072 STAT_ATTR(FREE_FROZEN, free_frozen);
5073 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5074 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5075 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5076 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5077 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5078 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5079 STAT_ATTR(FREE_SLAB, free_slab);
5080 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5081 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5082 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5083 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5084 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5085 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5086 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5087 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5088 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5089 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5090 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5091 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5092 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5093 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5094 #endif
5095
5096 static struct attribute *slab_attrs[] = {
5097 &slab_size_attr.attr,
5098 &object_size_attr.attr,
5099 &objs_per_slab_attr.attr,
5100 &order_attr.attr,
5101 &min_partial_attr.attr,
5102 &cpu_partial_attr.attr,
5103 &objects_attr.attr,
5104 &objects_partial_attr.attr,
5105 &partial_attr.attr,
5106 &cpu_slabs_attr.attr,
5107 &ctor_attr.attr,
5108 &aliases_attr.attr,
5109 &align_attr.attr,
5110 &hwcache_align_attr.attr,
5111 &reclaim_account_attr.attr,
5112 &destroy_by_rcu_attr.attr,
5113 &shrink_attr.attr,
5114 &reserved_attr.attr,
5115 &slabs_cpu_partial_attr.attr,
5116 #ifdef CONFIG_SLUB_DEBUG
5117 &total_objects_attr.attr,
5118 &slabs_attr.attr,
5119 &sanity_checks_attr.attr,
5120 &trace_attr.attr,
5121 &red_zone_attr.attr,
5122 &poison_attr.attr,
5123 &store_user_attr.attr,
5124 &validate_attr.attr,
5125 &alloc_calls_attr.attr,
5126 &free_calls_attr.attr,
5127 #endif
5128 #ifdef CONFIG_ZONE_DMA
5129 &cache_dma_attr.attr,
5130 #endif
5131 #ifdef CONFIG_NUMA
5132 &remote_node_defrag_ratio_attr.attr,
5133 #endif
5134 #ifdef CONFIG_SLUB_STATS
5135 &alloc_fastpath_attr.attr,
5136 &alloc_slowpath_attr.attr,
5137 &free_fastpath_attr.attr,
5138 &free_slowpath_attr.attr,
5139 &free_frozen_attr.attr,
5140 &free_add_partial_attr.attr,
5141 &free_remove_partial_attr.attr,
5142 &alloc_from_partial_attr.attr,
5143 &alloc_slab_attr.attr,
5144 &alloc_refill_attr.attr,
5145 &alloc_node_mismatch_attr.attr,
5146 &free_slab_attr.attr,
5147 &cpuslab_flush_attr.attr,
5148 &deactivate_full_attr.attr,
5149 &deactivate_empty_attr.attr,
5150 &deactivate_to_head_attr.attr,
5151 &deactivate_to_tail_attr.attr,
5152 &deactivate_remote_frees_attr.attr,
5153 &deactivate_bypass_attr.attr,
5154 &order_fallback_attr.attr,
5155 &cmpxchg_double_fail_attr.attr,
5156 &cmpxchg_double_cpu_fail_attr.attr,
5157 &cpu_partial_alloc_attr.attr,
5158 &cpu_partial_free_attr.attr,
5159 &cpu_partial_node_attr.attr,
5160 &cpu_partial_drain_attr.attr,
5161 #endif
5162 #ifdef CONFIG_FAILSLAB
5163 &failslab_attr.attr,
5164 #endif
5165
5166 NULL
5167 };
5168
5169 static struct attribute_group slab_attr_group = {
5170 .attrs = slab_attrs,
5171 };
5172
5173 static ssize_t slab_attr_show(struct kobject *kobj,
5174 struct attribute *attr,
5175 char *buf)
5176 {
5177 struct slab_attribute *attribute;
5178 struct kmem_cache *s;
5179 int err;
5180
5181 attribute = to_slab_attr(attr);
5182 s = to_slab(kobj);
5183
5184 if (!attribute->show)
5185 return -EIO;
5186
5187 err = attribute->show(s, buf);
5188
5189 return err;
5190 }
5191
5192 static ssize_t slab_attr_store(struct kobject *kobj,
5193 struct attribute *attr,
5194 const char *buf, size_t len)
5195 {
5196 struct slab_attribute *attribute;
5197 struct kmem_cache *s;
5198 int err;
5199
5200 attribute = to_slab_attr(attr);
5201 s = to_slab(kobj);
5202
5203 if (!attribute->store)
5204 return -EIO;
5205
5206 err = attribute->store(s, buf, len);
5207
5208 return err;
5209 }
5210
5211 static void kmem_cache_release(struct kobject *kobj)
5212 {
5213 struct kmem_cache *s = to_slab(kobj);
5214
5215 kfree(s->name);
5216 kfree(s);
5217 }
5218
5219 static const struct sysfs_ops slab_sysfs_ops = {
5220 .show = slab_attr_show,
5221 .store = slab_attr_store,
5222 };
5223
5224 static struct kobj_type slab_ktype = {
5225 .sysfs_ops = &slab_sysfs_ops,
5226 .release = kmem_cache_release
5227 };
5228
5229 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5230 {
5231 struct kobj_type *ktype = get_ktype(kobj);
5232
5233 if (ktype == &slab_ktype)
5234 return 1;
5235 return 0;
5236 }
5237
5238 static const struct kset_uevent_ops slab_uevent_ops = {
5239 .filter = uevent_filter,
5240 };
5241
5242 static struct kset *slab_kset;
5243
5244 #define ID_STR_LENGTH 64
5245
5246 /* Create a unique string id for a slab cache:
5247 *
5248 * Format :[flags-]size
5249 */
5250 static char *create_unique_id(struct kmem_cache *s)
5251 {
5252 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5253 char *p = name;
5254
5255 BUG_ON(!name);
5256
5257 *p++ = ':';
5258 /*
5259 * First flags affecting slabcache operations. We will only
5260 * get here for aliasable slabs so we do not need to support
5261 * too many flags. The flags here must cover all flags that
5262 * are matched during merging to guarantee that the id is
5263 * unique.
5264 */
5265 if (s->flags & SLAB_CACHE_DMA)
5266 *p++ = 'd';
5267 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5268 *p++ = 'a';
5269 if (s->flags & SLAB_DEBUG_FREE)
5270 *p++ = 'F';
5271 if (!(s->flags & SLAB_NOTRACK))
5272 *p++ = 't';
5273 if (p != name + 1)
5274 *p++ = '-';
5275 p += sprintf(p, "%07d", s->size);
5276 BUG_ON(p > name + ID_STR_LENGTH - 1);
5277 return name;
5278 }
5279
5280 static int sysfs_slab_add(struct kmem_cache *s)
5281 {
5282 int err;
5283 const char *name;
5284 int unmergeable;
5285
5286 if (slab_state < SYSFS)
5287 /* Defer until later */
5288 return 0;
5289
5290 unmergeable = slab_unmergeable(s);
5291 if (unmergeable) {
5292 /*
5293 * Slabcache can never be merged so we can use the name proper.
5294 * This is typically the case for debug situations. In that
5295 * case we can catch duplicate names easily.
5296 */
5297 sysfs_remove_link(&slab_kset->kobj, s->name);
5298 name = s->name;
5299 } else {
5300 /*
5301 * Create a unique name for the slab as a target
5302 * for the symlinks.
5303 */
5304 name = create_unique_id(s);
5305 }
5306
5307 s->kobj.kset = slab_kset;
5308 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5309 if (err) {
5310 kobject_put(&s->kobj);
5311 return err;
5312 }
5313
5314 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5315 if (err) {
5316 kobject_del(&s->kobj);
5317 kobject_put(&s->kobj);
5318 return err;
5319 }
5320 kobject_uevent(&s->kobj, KOBJ_ADD);
5321 if (!unmergeable) {
5322 /* Setup first alias */
5323 sysfs_slab_alias(s, s->name);
5324 kfree(name);
5325 }
5326 return 0;
5327 }
5328
5329 static void sysfs_slab_remove(struct kmem_cache *s)
5330 {
5331 if (slab_state < SYSFS)
5332 /*
5333 * Sysfs has not been setup yet so no need to remove the
5334 * cache from sysfs.
5335 */
5336 return;
5337
5338 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5339 kobject_del(&s->kobj);
5340 kobject_put(&s->kobj);
5341 }
5342
5343 /*
5344 * Need to buffer aliases during bootup until sysfs becomes
5345 * available lest we lose that information.
5346 */
5347 struct saved_alias {
5348 struct kmem_cache *s;
5349 const char *name;
5350 struct saved_alias *next;
5351 };
5352
5353 static struct saved_alias *alias_list;
5354
5355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5356 {
5357 struct saved_alias *al;
5358
5359 if (slab_state == SYSFS) {
5360 /*
5361 * If we have a leftover link then remove it.
5362 */
5363 sysfs_remove_link(&slab_kset->kobj, name);
5364 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5365 }
5366
5367 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5368 if (!al)
5369 return -ENOMEM;
5370
5371 al->s = s;
5372 al->name = name;
5373 al->next = alias_list;
5374 alias_list = al;
5375 return 0;
5376 }
5377
5378 static int __init slab_sysfs_init(void)
5379 {
5380 struct kmem_cache *s;
5381 int err;
5382
5383 down_write(&slub_lock);
5384
5385 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5386 if (!slab_kset) {
5387 up_write(&slub_lock);
5388 printk(KERN_ERR "Cannot register slab subsystem.\n");
5389 return -ENOSYS;
5390 }
5391
5392 slab_state = SYSFS;
5393
5394 list_for_each_entry(s, &slab_caches, list) {
5395 err = sysfs_slab_add(s);
5396 if (err)
5397 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5398 " to sysfs\n", s->name);
5399 }
5400
5401 while (alias_list) {
5402 struct saved_alias *al = alias_list;
5403
5404 alias_list = alias_list->next;
5405 err = sysfs_slab_alias(al->s, al->name);
5406 if (err)
5407 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5408 " %s to sysfs\n", al->name);
5409 kfree(al);
5410 }
5411
5412 up_write(&slub_lock);
5413 resiliency_test();
5414 return 0;
5415 }
5416
5417 __initcall(slab_sysfs_init);
5418 #endif /* CONFIG_SYSFS */
5419
5420 /*
5421 * The /proc/slabinfo ABI
5422 */
5423 #ifdef CONFIG_SLABINFO
5424 static void print_slabinfo_header(struct seq_file *m)
5425 {
5426 seq_puts(m, "slabinfo - version: 2.1\n");
5427 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5428 "<objperslab> <pagesperslab>");
5429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5431 seq_putc(m, '\n');
5432 }
5433
5434 static void *s_start(struct seq_file *m, loff_t *pos)
5435 {
5436 loff_t n = *pos;
5437
5438 down_read(&slub_lock);
5439 if (!n)
5440 print_slabinfo_header(m);
5441
5442 return seq_list_start(&slab_caches, *pos);
5443 }
5444
5445 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5446 {
5447 return seq_list_next(p, &slab_caches, pos);
5448 }
5449
5450 static void s_stop(struct seq_file *m, void *p)
5451 {
5452 up_read(&slub_lock);
5453 }
5454
5455 static int s_show(struct seq_file *m, void *p)
5456 {
5457 unsigned long nr_partials = 0;
5458 unsigned long nr_slabs = 0;
5459 unsigned long nr_inuse = 0;
5460 unsigned long nr_objs = 0;
5461 unsigned long nr_free = 0;
5462 struct kmem_cache *s;
5463 int node;
5464
5465 s = list_entry(p, struct kmem_cache, list);
5466
5467 for_each_online_node(node) {
5468 struct kmem_cache_node *n = get_node(s, node);
5469
5470 if (!n)
5471 continue;
5472
5473 nr_partials += n->nr_partial;
5474 nr_slabs += atomic_long_read(&n->nr_slabs);
5475 nr_objs += atomic_long_read(&n->total_objects);
5476 nr_free += count_partial(n, count_free);
5477 }
5478
5479 nr_inuse = nr_objs - nr_free;
5480
5481 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5482 nr_objs, s->size, oo_objects(s->oo),
5483 (1 << oo_order(s->oo)));
5484 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5485 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5486 0UL);
5487 seq_putc(m, '\n');
5488 return 0;
5489 }
5490
5491 static const struct seq_operations slabinfo_op = {
5492 .start = s_start,
5493 .next = s_next,
5494 .stop = s_stop,
5495 .show = s_show,
5496 };
5497
5498 static int slabinfo_open(struct inode *inode, struct file *file)
5499 {
5500 return seq_open(file, &slabinfo_op);
5501 }
5502
5503 static const struct file_operations proc_slabinfo_operations = {
5504 .open = slabinfo_open,
5505 .read = seq_read,
5506 .llseek = seq_lseek,
5507 .release = seq_release,
5508 };
5509
5510 static int __init slab_proc_init(void)
5511 {
5512 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5513 return 0;
5514 }
5515 module_init(slab_proc_init);
5516 #endif /* CONFIG_SLABINFO */