Christoph has moved
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26
27 /*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
103 */
104
105 #define FROZEN (1 << PG_active)
106
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
112
113 static inline int SlabFrozen(struct page *page)
114 {
115 return page->flags & FROZEN;
116 }
117
118 static inline void SetSlabFrozen(struct page *page)
119 {
120 page->flags |= FROZEN;
121 }
122
123 static inline void ClearSlabFrozen(struct page *page)
124 {
125 page->flags &= ~FROZEN;
126 }
127
128 static inline int SlabDebug(struct page *page)
129 {
130 return page->flags & SLABDEBUG;
131 }
132
133 static inline void SetSlabDebug(struct page *page)
134 {
135 page->flags |= SLABDEBUG;
136 }
137
138 static inline void ClearSlabDebug(struct page *page)
139 {
140 page->flags &= ~SLABDEBUG;
141 }
142
143 /*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153
154 /*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
158 #define MIN_PARTIAL 5
159
160 /*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165 #define MAX_PARTIAL 10
166
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
169
170 /*
171 * Set of flags that will prevent slab merging
172 */
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
182
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
186
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON 0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
190
191 static int kmem_size = sizeof(struct kmem_cache);
192
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
196
197 static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
200 UP, /* Everything works but does not show up in sysfs */
201 SYSFS /* Sysfs up */
202 } slab_state = DOWN;
203
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
207
208 /*
209 * Tracking user of a slab.
210 */
211 struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216 };
217
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
219
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
224
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
230 {
231 kfree(s);
232 }
233
234 #endif
235
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237 {
238 #ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240 #endif
241 }
242
243 /********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247 int slab_is_available(void)
248 {
249 return slab_state >= UP;
250 }
251
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253 {
254 #ifdef CONFIG_NUMA
255 return s->node[node];
256 #else
257 return &s->local_node;
258 #endif
259 }
260
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262 {
263 #ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265 #else
266 return &s->cpu_slab;
267 #endif
268 }
269
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273 {
274 void *base;
275
276 if (!object)
277 return 1;
278
279 base = page_address(page);
280 if (object < base || object >= base + page->objects * s->size ||
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286 }
287
288 /*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
296 {
297 return *(void **)(object + s->offset);
298 }
299
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 *(void **)(object + s->offset) = fp;
303 }
304
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 __p += (__s)->size)
309
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 {
317 return (p - addr) / s->size;
318 }
319
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322 {
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328 }
329
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 return x.x >> 16;
333 }
334
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 return x.x & ((1 << 16) - 1);
338 }
339
340 #ifdef CONFIG_SLUB_DEBUG
341 /*
342 * Debug settings:
343 */
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
349
350 static char *slub_debug_slabs;
351
352 /*
353 * Object debugging
354 */
355 static void print_section(char *text, u8 *addr, unsigned int length)
356 {
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 newline = 0;
367 }
368 printk(KERN_CONT " %02x", addr[i]);
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
372 printk(KERN_CONT " %s\n", ascii);
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
379 printk(KERN_CONT " ");
380 ascii[i] = ' ';
381 i++;
382 }
383 printk(KERN_CONT " %s\n", ascii);
384 }
385 }
386
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389 {
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398 }
399
400 static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402 {
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418 }
419
420 static void init_tracking(struct kmem_cache *s, void *object)
421 {
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
427 }
428
429 static void print_track(const char *s, struct track *t)
430 {
431 if (!t->addr)
432 return;
433
434 printk(KERN_ERR "INFO: %s in ", s);
435 __print_symbol("%s", (unsigned long)t->addr);
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437 }
438
439 static void print_tracking(struct kmem_cache *s, void *object)
440 {
441 if (!(s->flags & SLAB_STORE_USER))
442 return;
443
444 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 print_track("Freed", get_track(s, object, TRACK_FREE));
446 }
447
448 static void print_page_info(struct page *page)
449 {
450 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page, page->objects, page->inuse, page->freelist, page->flags);
452
453 }
454
455 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456 {
457 va_list args;
458 char buf[100];
459
460 va_start(args, fmt);
461 vsnprintf(buf, sizeof(buf), fmt, args);
462 va_end(args);
463 printk(KERN_ERR "========================================"
464 "=====================================\n");
465 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 printk(KERN_ERR "----------------------------------------"
467 "-------------------------------------\n\n");
468 }
469
470 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471 {
472 va_list args;
473 char buf[100];
474
475 va_start(args, fmt);
476 vsnprintf(buf, sizeof(buf), fmt, args);
477 va_end(args);
478 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479 }
480
481 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
482 {
483 unsigned int off; /* Offset of last byte */
484 u8 *addr = page_address(page);
485
486 print_tracking(s, p);
487
488 print_page_info(page);
489
490 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p, p - addr, get_freepointer(s, p));
492
493 if (p > addr + 16)
494 print_section("Bytes b4", p - 16, 16);
495
496 print_section("Object", p, min(s->objsize, 128));
497
498 if (s->flags & SLAB_RED_ZONE)
499 print_section("Redzone", p + s->objsize,
500 s->inuse - s->objsize);
501
502 if (s->offset)
503 off = s->offset + sizeof(void *);
504 else
505 off = s->inuse;
506
507 if (s->flags & SLAB_STORE_USER)
508 off += 2 * sizeof(struct track);
509
510 if (off != s->size)
511 /* Beginning of the filler is the free pointer */
512 print_section("Padding", p + off, s->size - off);
513
514 dump_stack();
515 }
516
517 static void object_err(struct kmem_cache *s, struct page *page,
518 u8 *object, char *reason)
519 {
520 slab_bug(s, "%s", reason);
521 print_trailer(s, page, object);
522 }
523
524 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
525 {
526 va_list args;
527 char buf[100];
528
529 va_start(args, fmt);
530 vsnprintf(buf, sizeof(buf), fmt, args);
531 va_end(args);
532 slab_bug(s, "%s", buf);
533 print_page_info(page);
534 dump_stack();
535 }
536
537 static void init_object(struct kmem_cache *s, void *object, int active)
538 {
539 u8 *p = object;
540
541 if (s->flags & __OBJECT_POISON) {
542 memset(p, POISON_FREE, s->objsize - 1);
543 p[s->objsize - 1] = POISON_END;
544 }
545
546 if (s->flags & SLAB_RED_ZONE)
547 memset(p + s->objsize,
548 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 s->inuse - s->objsize);
550 }
551
552 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
553 {
554 while (bytes) {
555 if (*start != (u8)value)
556 return start;
557 start++;
558 bytes--;
559 }
560 return NULL;
561 }
562
563 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 void *from, void *to)
565 {
566 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 memset(from, data, to - from);
568 }
569
570 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 u8 *object, char *what,
572 u8 *start, unsigned int value, unsigned int bytes)
573 {
574 u8 *fault;
575 u8 *end;
576
577 fault = check_bytes(start, value, bytes);
578 if (!fault)
579 return 1;
580
581 end = start + bytes;
582 while (end > fault && end[-1] == value)
583 end--;
584
585 slab_bug(s, "%s overwritten", what);
586 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault, end - 1, fault[0], value);
588 print_trailer(s, page, object);
589
590 restore_bytes(s, what, value, fault, end);
591 return 0;
592 }
593
594 /*
595 * Object layout:
596 *
597 * object address
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
601 *
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
607 * Padding is extended by another word if Redzoning is enabled and
608 * objsize == inuse.
609 *
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
614 * Meta data starts here.
615 *
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
618 * C. Padding to reach required alignment boundary or at mininum
619 * one word if debugging is on to be able to detect writes
620 * before the word boundary.
621 *
622 * Padding is done using 0x5a (POISON_INUSE)
623 *
624 * object + s->size
625 * Nothing is used beyond s->size.
626 *
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
629 * may be used with merged slabcaches.
630 */
631
632 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633 {
634 unsigned long off = s->inuse; /* The end of info */
635
636 if (s->offset)
637 /* Freepointer is placed after the object. */
638 off += sizeof(void *);
639
640 if (s->flags & SLAB_STORE_USER)
641 /* We also have user information there */
642 off += 2 * sizeof(struct track);
643
644 if (s->size == off)
645 return 1;
646
647 return check_bytes_and_report(s, page, p, "Object padding",
648 p + off, POISON_INUSE, s->size - off);
649 }
650
651 /* Check the pad bytes at the end of a slab page */
652 static int slab_pad_check(struct kmem_cache *s, struct page *page)
653 {
654 u8 *start;
655 u8 *fault;
656 u8 *end;
657 int length;
658 int remainder;
659
660 if (!(s->flags & SLAB_POISON))
661 return 1;
662
663 start = page_address(page);
664 length = (PAGE_SIZE << compound_order(page));
665 end = start + length;
666 remainder = length % s->size;
667 if (!remainder)
668 return 1;
669
670 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
671 if (!fault)
672 return 1;
673 while (end > fault && end[-1] == POISON_INUSE)
674 end--;
675
676 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
677 print_section("Padding", end - remainder, remainder);
678
679 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 return 0;
681 }
682
683 static int check_object(struct kmem_cache *s, struct page *page,
684 void *object, int active)
685 {
686 u8 *p = object;
687 u8 *endobject = object + s->objsize;
688
689 if (s->flags & SLAB_RED_ZONE) {
690 unsigned int red =
691 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
693 if (!check_bytes_and_report(s, page, object, "Redzone",
694 endobject, red, s->inuse - s->objsize))
695 return 0;
696 } else {
697 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 check_bytes_and_report(s, page, p, "Alignment padding",
699 endobject, POISON_INUSE, s->inuse - s->objsize);
700 }
701 }
702
703 if (s->flags & SLAB_POISON) {
704 if (!active && (s->flags & __OBJECT_POISON) &&
705 (!check_bytes_and_report(s, page, p, "Poison", p,
706 POISON_FREE, s->objsize - 1) ||
707 !check_bytes_and_report(s, page, p, "Poison",
708 p + s->objsize - 1, POISON_END, 1)))
709 return 0;
710 /*
711 * check_pad_bytes cleans up on its own.
712 */
713 check_pad_bytes(s, page, p);
714 }
715
716 if (!s->offset && active)
717 /*
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
720 */
721 return 1;
722
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 object_err(s, page, p, "Freepointer corrupt");
726 /*
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
729 * another error because the object count is now wrong.
730 */
731 set_freepointer(s, p, NULL);
732 return 0;
733 }
734 return 1;
735 }
736
737 static int check_slab(struct kmem_cache *s, struct page *page)
738 {
739 int maxobj;
740
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
744 slab_err(s, page, "Not a valid slab page");
745 return 0;
746 }
747
748 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 if (page->objects > maxobj) {
750 slab_err(s, page, "objects %u > max %u",
751 s->name, page->objects, maxobj);
752 return 0;
753 }
754 if (page->inuse > page->objects) {
755 slab_err(s, page, "inuse %u > max %u",
756 s->name, page->inuse, page->objects);
757 return 0;
758 }
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s, page);
761 return 1;
762 }
763
764 /*
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
767 */
768 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769 {
770 int nr = 0;
771 void *fp = page->freelist;
772 void *object = NULL;
773 unsigned long max_objects;
774
775 while (fp && nr <= page->objects) {
776 if (fp == search)
777 return 1;
778 if (!check_valid_pointer(s, page, fp)) {
779 if (object) {
780 object_err(s, page, object,
781 "Freechain corrupt");
782 set_freepointer(s, object, NULL);
783 break;
784 } else {
785 slab_err(s, page, "Freepointer corrupt");
786 page->freelist = NULL;
787 page->inuse = page->objects;
788 slab_fix(s, "Freelist cleared");
789 return 0;
790 }
791 break;
792 }
793 object = fp;
794 fp = get_freepointer(s, object);
795 nr++;
796 }
797
798 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 if (max_objects > 65535)
800 max_objects = 65535;
801
802 if (page->objects != max_objects) {
803 slab_err(s, page, "Wrong number of objects. Found %d but "
804 "should be %d", page->objects, max_objects);
805 page->objects = max_objects;
806 slab_fix(s, "Number of objects adjusted.");
807 }
808 if (page->inuse != page->objects - nr) {
809 slab_err(s, page, "Wrong object count. Counter is %d but "
810 "counted were %d", page->inuse, page->objects - nr);
811 page->inuse = page->objects - nr;
812 slab_fix(s, "Object count adjusted.");
813 }
814 return search == NULL;
815 }
816
817 static void trace(struct kmem_cache *s, struct page *page, void *object,
818 int alloc)
819 {
820 if (s->flags & SLAB_TRACE) {
821 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 s->name,
823 alloc ? "alloc" : "free",
824 object, page->inuse,
825 page->freelist);
826
827 if (!alloc)
828 print_section("Object", (void *)object, s->objsize);
829
830 dump_stack();
831 }
832 }
833
834 /*
835 * Tracking of fully allocated slabs for debugging purposes.
836 */
837 static void add_full(struct kmem_cache_node *n, struct page *page)
838 {
839 spin_lock(&n->list_lock);
840 list_add(&page->lru, &n->full);
841 spin_unlock(&n->list_lock);
842 }
843
844 static void remove_full(struct kmem_cache *s, struct page *page)
845 {
846 struct kmem_cache_node *n;
847
848 if (!(s->flags & SLAB_STORE_USER))
849 return;
850
851 n = get_node(s, page_to_nid(page));
852
853 spin_lock(&n->list_lock);
854 list_del(&page->lru);
855 spin_unlock(&n->list_lock);
856 }
857
858 /* Tracking of the number of slabs for debugging purposes */
859 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860 {
861 struct kmem_cache_node *n = get_node(s, node);
862
863 return atomic_long_read(&n->nr_slabs);
864 }
865
866 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
867 {
868 struct kmem_cache_node *n = get_node(s, node);
869
870 /*
871 * May be called early in order to allocate a slab for the
872 * kmem_cache_node structure. Solve the chicken-egg
873 * dilemma by deferring the increment of the count during
874 * bootstrap (see early_kmem_cache_node_alloc).
875 */
876 if (!NUMA_BUILD || n) {
877 atomic_long_inc(&n->nr_slabs);
878 atomic_long_add(objects, &n->total_objects);
879 }
880 }
881 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
882 {
883 struct kmem_cache_node *n = get_node(s, node);
884
885 atomic_long_dec(&n->nr_slabs);
886 atomic_long_sub(objects, &n->total_objects);
887 }
888
889 /* Object debug checks for alloc/free paths */
890 static void setup_object_debug(struct kmem_cache *s, struct page *page,
891 void *object)
892 {
893 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894 return;
895
896 init_object(s, object, 0);
897 init_tracking(s, object);
898 }
899
900 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, void *addr)
902 {
903 if (!check_slab(s, page))
904 goto bad;
905
906 if (!on_freelist(s, page, object)) {
907 object_err(s, page, object, "Object already allocated");
908 goto bad;
909 }
910
911 if (!check_valid_pointer(s, page, object)) {
912 object_err(s, page, object, "Freelist Pointer check fails");
913 goto bad;
914 }
915
916 if (!check_object(s, page, object, 0))
917 goto bad;
918
919 /* Success perform special debug activities for allocs */
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_ALLOC, addr);
922 trace(s, page, object, 1);
923 init_object(s, object, 1);
924 return 1;
925
926 bad:
927 if (PageSlab(page)) {
928 /*
929 * If this is a slab page then lets do the best we can
930 * to avoid issues in the future. Marking all objects
931 * as used avoids touching the remaining objects.
932 */
933 slab_fix(s, "Marking all objects used");
934 page->inuse = page->objects;
935 page->freelist = NULL;
936 }
937 return 0;
938 }
939
940 static int free_debug_processing(struct kmem_cache *s, struct page *page,
941 void *object, void *addr)
942 {
943 if (!check_slab(s, page))
944 goto fail;
945
946 if (!check_valid_pointer(s, page, object)) {
947 slab_err(s, page, "Invalid object pointer 0x%p", object);
948 goto fail;
949 }
950
951 if (on_freelist(s, page, object)) {
952 object_err(s, page, object, "Object already free");
953 goto fail;
954 }
955
956 if (!check_object(s, page, object, 1))
957 return 0;
958
959 if (unlikely(s != page->slab)) {
960 if (!PageSlab(page)) {
961 slab_err(s, page, "Attempt to free object(0x%p) "
962 "outside of slab", object);
963 } else if (!page->slab) {
964 printk(KERN_ERR
965 "SLUB <none>: no slab for object 0x%p.\n",
966 object);
967 dump_stack();
968 } else
969 object_err(s, page, object,
970 "page slab pointer corrupt.");
971 goto fail;
972 }
973
974 /* Special debug activities for freeing objects */
975 if (!SlabFrozen(page) && !page->freelist)
976 remove_full(s, page);
977 if (s->flags & SLAB_STORE_USER)
978 set_track(s, object, TRACK_FREE, addr);
979 trace(s, page, object, 0);
980 init_object(s, object, 0);
981 return 1;
982
983 fail:
984 slab_fix(s, "Object at 0x%p not freed", object);
985 return 0;
986 }
987
988 static int __init setup_slub_debug(char *str)
989 {
990 slub_debug = DEBUG_DEFAULT_FLAGS;
991 if (*str++ != '=' || !*str)
992 /*
993 * No options specified. Switch on full debugging.
994 */
995 goto out;
996
997 if (*str == ',')
998 /*
999 * No options but restriction on slabs. This means full
1000 * debugging for slabs matching a pattern.
1001 */
1002 goto check_slabs;
1003
1004 slub_debug = 0;
1005 if (*str == '-')
1006 /*
1007 * Switch off all debugging measures.
1008 */
1009 goto out;
1010
1011 /*
1012 * Determine which debug features should be switched on
1013 */
1014 for (; *str && *str != ','; str++) {
1015 switch (tolower(*str)) {
1016 case 'f':
1017 slub_debug |= SLAB_DEBUG_FREE;
1018 break;
1019 case 'z':
1020 slub_debug |= SLAB_RED_ZONE;
1021 break;
1022 case 'p':
1023 slub_debug |= SLAB_POISON;
1024 break;
1025 case 'u':
1026 slub_debug |= SLAB_STORE_USER;
1027 break;
1028 case 't':
1029 slub_debug |= SLAB_TRACE;
1030 break;
1031 default:
1032 printk(KERN_ERR "slub_debug option '%c' "
1033 "unknown. skipped\n", *str);
1034 }
1035 }
1036
1037 check_slabs:
1038 if (*str == ',')
1039 slub_debug_slabs = str + 1;
1040 out:
1041 return 1;
1042 }
1043
1044 __setup("slub_debug", setup_slub_debug);
1045
1046 static unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(struct kmem_cache *, void *))
1049 {
1050 /*
1051 * Enable debugging if selected on the kernel commandline.
1052 */
1053 if (slub_debug && (!slub_debug_slabs ||
1054 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055 flags |= slub_debug;
1056
1057 return flags;
1058 }
1059 #else
1060 static inline void setup_object_debug(struct kmem_cache *s,
1061 struct page *page, void *object) {}
1062
1063 static inline int alloc_debug_processing(struct kmem_cache *s,
1064 struct page *page, void *object, void *addr) { return 0; }
1065
1066 static inline int free_debug_processing(struct kmem_cache *s,
1067 struct page *page, void *object, void *addr) { return 0; }
1068
1069 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070 { return 1; }
1071 static inline int check_object(struct kmem_cache *s, struct page *page,
1072 void *object, int active) { return 1; }
1073 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1074 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075 unsigned long flags, const char *name,
1076 void (*ctor)(struct kmem_cache *, void *))
1077 {
1078 return flags;
1079 }
1080 #define slub_debug 0
1081
1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 { return 0; }
1084 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 int objects) {}
1086 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
1088 #endif
1089
1090 /*
1091 * Slab allocation and freeing
1092 */
1093 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 struct kmem_cache_order_objects oo)
1095 {
1096 int order = oo_order(oo);
1097
1098 if (node == -1)
1099 return alloc_pages(flags, order);
1100 else
1101 return alloc_pages_node(node, flags, order);
1102 }
1103
1104 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105 {
1106 struct page *page;
1107 struct kmem_cache_order_objects oo = s->oo;
1108
1109 flags |= s->allocflags;
1110
1111 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112 oo);
1113 if (unlikely(!page)) {
1114 oo = s->min;
1115 /*
1116 * Allocation may have failed due to fragmentation.
1117 * Try a lower order alloc if possible
1118 */
1119 page = alloc_slab_page(flags, node, oo);
1120 if (!page)
1121 return NULL;
1122
1123 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 }
1125 page->objects = oo_objects(oo);
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 1 << oo_order(oo));
1130
1131 return page;
1132 }
1133
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1136 {
1137 setup_object_debug(s, page, object);
1138 if (unlikely(s->ctor))
1139 s->ctor(s, object);
1140 }
1141
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143 {
1144 struct page *page;
1145 void *start;
1146 void *last;
1147 void *p;
1148
1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 if (!page)
1154 goto out;
1155
1156 inc_slabs_node(s, page_to_nid(page), page->objects);
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
1161 SetSlabDebug(page);
1162
1163 start = page_address(page);
1164
1165 if (unlikely(s->flags & SLAB_POISON))
1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167
1168 last = start;
1169 for_each_object(p, s, start, page->objects) {
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1173 }
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, NULL);
1176
1177 page->freelist = start;
1178 page->inuse = 0;
1179 out:
1180 return page;
1181 }
1182
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 int order = compound_order(page);
1186 int pages = 1 << order;
1187
1188 if (unlikely(SlabDebug(page))) {
1189 void *p;
1190
1191 slab_pad_check(s, page);
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
1194 check_object(s, page, p, 0);
1195 ClearSlabDebug(page);
1196 }
1197
1198 mod_zone_page_state(page_zone(page),
1199 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1201 -pages);
1202
1203 __ClearPageSlab(page);
1204 reset_page_mapcount(page);
1205 __free_pages(page, order);
1206 }
1207
1208 static void rcu_free_slab(struct rcu_head *h)
1209 {
1210 struct page *page;
1211
1212 page = container_of((struct list_head *)h, struct page, lru);
1213 __free_slab(page->slab, page);
1214 }
1215
1216 static void free_slab(struct kmem_cache *s, struct page *page)
1217 {
1218 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 /*
1220 * RCU free overloads the RCU head over the LRU
1221 */
1222 struct rcu_head *head = (void *)&page->lru;
1223
1224 call_rcu(head, rcu_free_slab);
1225 } else
1226 __free_slab(s, page);
1227 }
1228
1229 static void discard_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 dec_slabs_node(s, page_to_nid(page), page->objects);
1232 free_slab(s, page);
1233 }
1234
1235 /*
1236 * Per slab locking using the pagelock
1237 */
1238 static __always_inline void slab_lock(struct page *page)
1239 {
1240 bit_spin_lock(PG_locked, &page->flags);
1241 }
1242
1243 static __always_inline void slab_unlock(struct page *page)
1244 {
1245 __bit_spin_unlock(PG_locked, &page->flags);
1246 }
1247
1248 static __always_inline int slab_trylock(struct page *page)
1249 {
1250 int rc = 1;
1251
1252 rc = bit_spin_trylock(PG_locked, &page->flags);
1253 return rc;
1254 }
1255
1256 /*
1257 * Management of partially allocated slabs
1258 */
1259 static void add_partial(struct kmem_cache_node *n,
1260 struct page *page, int tail)
1261 {
1262 spin_lock(&n->list_lock);
1263 n->nr_partial++;
1264 if (tail)
1265 list_add_tail(&page->lru, &n->partial);
1266 else
1267 list_add(&page->lru, &n->partial);
1268 spin_unlock(&n->list_lock);
1269 }
1270
1271 static void remove_partial(struct kmem_cache *s, struct page *page)
1272 {
1273 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275 spin_lock(&n->list_lock);
1276 list_del(&page->lru);
1277 n->nr_partial--;
1278 spin_unlock(&n->list_lock);
1279 }
1280
1281 /*
1282 * Lock slab and remove from the partial list.
1283 *
1284 * Must hold list_lock.
1285 */
1286 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287 struct page *page)
1288 {
1289 if (slab_trylock(page)) {
1290 list_del(&page->lru);
1291 n->nr_partial--;
1292 SetSlabFrozen(page);
1293 return 1;
1294 }
1295 return 0;
1296 }
1297
1298 /*
1299 * Try to allocate a partial slab from a specific node.
1300 */
1301 static struct page *get_partial_node(struct kmem_cache_node *n)
1302 {
1303 struct page *page;
1304
1305 /*
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
1308 * partial slab and there is none available then get_partials()
1309 * will return NULL.
1310 */
1311 if (!n || !n->nr_partial)
1312 return NULL;
1313
1314 spin_lock(&n->list_lock);
1315 list_for_each_entry(page, &n->partial, lru)
1316 if (lock_and_freeze_slab(n, page))
1317 goto out;
1318 page = NULL;
1319 out:
1320 spin_unlock(&n->list_lock);
1321 return page;
1322 }
1323
1324 /*
1325 * Get a page from somewhere. Search in increasing NUMA distances.
1326 */
1327 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328 {
1329 #ifdef CONFIG_NUMA
1330 struct zonelist *zonelist;
1331 struct zoneref *z;
1332 struct zone *zone;
1333 enum zone_type high_zoneidx = gfp_zone(flags);
1334 struct page *page;
1335
1336 /*
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
1341 *
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
1346 *
1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
1353 */
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1356 return NULL;
1357
1358 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1359 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1360 struct kmem_cache_node *n;
1361
1362 n = get_node(s, zone_to_nid(zone));
1363
1364 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1365 n->nr_partial > MIN_PARTIAL) {
1366 page = get_partial_node(n);
1367 if (page)
1368 return page;
1369 }
1370 }
1371 #endif
1372 return NULL;
1373 }
1374
1375 /*
1376 * Get a partial page, lock it and return it.
1377 */
1378 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379 {
1380 struct page *page;
1381 int searchnode = (node == -1) ? numa_node_id() : node;
1382
1383 page = get_partial_node(get_node(s, searchnode));
1384 if (page || (flags & __GFP_THISNODE))
1385 return page;
1386
1387 return get_any_partial(s, flags);
1388 }
1389
1390 /*
1391 * Move a page back to the lists.
1392 *
1393 * Must be called with the slab lock held.
1394 *
1395 * On exit the slab lock will have been dropped.
1396 */
1397 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1398 {
1399 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1400 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1401
1402 ClearSlabFrozen(page);
1403 if (page->inuse) {
1404
1405 if (page->freelist) {
1406 add_partial(n, page, tail);
1407 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408 } else {
1409 stat(c, DEACTIVATE_FULL);
1410 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411 add_full(n, page);
1412 }
1413 slab_unlock(page);
1414 } else {
1415 stat(c, DEACTIVATE_EMPTY);
1416 if (n->nr_partial < MIN_PARTIAL) {
1417 /*
1418 * Adding an empty slab to the partial slabs in order
1419 * to avoid page allocator overhead. This slab needs
1420 * to come after the other slabs with objects in
1421 * so that the others get filled first. That way the
1422 * size of the partial list stays small.
1423 *
1424 * kmem_cache_shrink can reclaim any empty slabs from
1425 * the partial list.
1426 */
1427 add_partial(n, page, 1);
1428 slab_unlock(page);
1429 } else {
1430 slab_unlock(page);
1431 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1432 discard_slab(s, page);
1433 }
1434 }
1435 }
1436
1437 /*
1438 * Remove the cpu slab
1439 */
1440 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441 {
1442 struct page *page = c->page;
1443 int tail = 1;
1444
1445 if (page->freelist)
1446 stat(c, DEACTIVATE_REMOTE_FREES);
1447 /*
1448 * Merge cpu freelist into slab freelist. Typically we get here
1449 * because both freelists are empty. So this is unlikely
1450 * to occur.
1451 */
1452 while (unlikely(c->freelist)) {
1453 void **object;
1454
1455 tail = 0; /* Hot objects. Put the slab first */
1456
1457 /* Retrieve object from cpu_freelist */
1458 object = c->freelist;
1459 c->freelist = c->freelist[c->offset];
1460
1461 /* And put onto the regular freelist */
1462 object[c->offset] = page->freelist;
1463 page->freelist = object;
1464 page->inuse--;
1465 }
1466 c->page = NULL;
1467 unfreeze_slab(s, page, tail);
1468 }
1469
1470 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1471 {
1472 stat(c, CPUSLAB_FLUSH);
1473 slab_lock(c->page);
1474 deactivate_slab(s, c);
1475 }
1476
1477 /*
1478 * Flush cpu slab.
1479 *
1480 * Called from IPI handler with interrupts disabled.
1481 */
1482 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1483 {
1484 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1485
1486 if (likely(c && c->page))
1487 flush_slab(s, c);
1488 }
1489
1490 static void flush_cpu_slab(void *d)
1491 {
1492 struct kmem_cache *s = d;
1493
1494 __flush_cpu_slab(s, smp_processor_id());
1495 }
1496
1497 static void flush_all(struct kmem_cache *s)
1498 {
1499 #ifdef CONFIG_SMP
1500 on_each_cpu(flush_cpu_slab, s, 1, 1);
1501 #else
1502 unsigned long flags;
1503
1504 local_irq_save(flags);
1505 flush_cpu_slab(s);
1506 local_irq_restore(flags);
1507 #endif
1508 }
1509
1510 /*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1515 {
1516 #ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519 #endif
1520 return 1;
1521 }
1522
1523 /*
1524 * Slow path. The lockless freelist is empty or we need to perform
1525 * debugging duties.
1526 *
1527 * Interrupts are disabled.
1528 *
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
1532 *
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
1536 *
1537 * And if we were unable to get a new slab from the partial slab lists then
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
1540 */
1541 static void *__slab_alloc(struct kmem_cache *s,
1542 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1543 {
1544 void **object;
1545 struct page *new;
1546
1547 /* We handle __GFP_ZERO in the caller */
1548 gfpflags &= ~__GFP_ZERO;
1549
1550 if (!c->page)
1551 goto new_slab;
1552
1553 slab_lock(c->page);
1554 if (unlikely(!node_match(c, node)))
1555 goto another_slab;
1556
1557 stat(c, ALLOC_REFILL);
1558
1559 load_freelist:
1560 object = c->page->freelist;
1561 if (unlikely(!object))
1562 goto another_slab;
1563 if (unlikely(SlabDebug(c->page)))
1564 goto debug;
1565
1566 c->freelist = object[c->offset];
1567 c->page->inuse = c->page->objects;
1568 c->page->freelist = NULL;
1569 c->node = page_to_nid(c->page);
1570 unlock_out:
1571 slab_unlock(c->page);
1572 stat(c, ALLOC_SLOWPATH);
1573 return object;
1574
1575 another_slab:
1576 deactivate_slab(s, c);
1577
1578 new_slab:
1579 new = get_partial(s, gfpflags, node);
1580 if (new) {
1581 c->page = new;
1582 stat(c, ALLOC_FROM_PARTIAL);
1583 goto load_freelist;
1584 }
1585
1586 if (gfpflags & __GFP_WAIT)
1587 local_irq_enable();
1588
1589 new = new_slab(s, gfpflags, node);
1590
1591 if (gfpflags & __GFP_WAIT)
1592 local_irq_disable();
1593
1594 if (new) {
1595 c = get_cpu_slab(s, smp_processor_id());
1596 stat(c, ALLOC_SLAB);
1597 if (c->page)
1598 flush_slab(s, c);
1599 slab_lock(new);
1600 SetSlabFrozen(new);
1601 c->page = new;
1602 goto load_freelist;
1603 }
1604 return NULL;
1605 debug:
1606 if (!alloc_debug_processing(s, c->page, object, addr))
1607 goto another_slab;
1608
1609 c->page->inuse++;
1610 c->page->freelist = object[c->offset];
1611 c->node = -1;
1612 goto unlock_out;
1613 }
1614
1615 /*
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1619 *
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1622 *
1623 * Otherwise we can simply pick the next object from the lockless free list.
1624 */
1625 static __always_inline void *slab_alloc(struct kmem_cache *s,
1626 gfp_t gfpflags, int node, void *addr)
1627 {
1628 void **object;
1629 struct kmem_cache_cpu *c;
1630 unsigned long flags;
1631
1632 local_irq_save(flags);
1633 c = get_cpu_slab(s, smp_processor_id());
1634 if (unlikely(!c->freelist || !node_match(c, node)))
1635
1636 object = __slab_alloc(s, gfpflags, node, addr, c);
1637
1638 else {
1639 object = c->freelist;
1640 c->freelist = object[c->offset];
1641 stat(c, ALLOC_FASTPATH);
1642 }
1643 local_irq_restore(flags);
1644
1645 if (unlikely((gfpflags & __GFP_ZERO) && object))
1646 memset(object, 0, c->objsize);
1647
1648 return object;
1649 }
1650
1651 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652 {
1653 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1654 }
1655 EXPORT_SYMBOL(kmem_cache_alloc);
1656
1657 #ifdef CONFIG_NUMA
1658 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659 {
1660 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1661 }
1662 EXPORT_SYMBOL(kmem_cache_alloc_node);
1663 #endif
1664
1665 /*
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
1668 *
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
1672 */
1673 static void __slab_free(struct kmem_cache *s, struct page *page,
1674 void *x, void *addr, unsigned int offset)
1675 {
1676 void *prior;
1677 void **object = (void *)x;
1678 struct kmem_cache_cpu *c;
1679
1680 c = get_cpu_slab(s, raw_smp_processor_id());
1681 stat(c, FREE_SLOWPATH);
1682 slab_lock(page);
1683
1684 if (unlikely(SlabDebug(page)))
1685 goto debug;
1686
1687 checks_ok:
1688 prior = object[offset] = page->freelist;
1689 page->freelist = object;
1690 page->inuse--;
1691
1692 if (unlikely(SlabFrozen(page))) {
1693 stat(c, FREE_FROZEN);
1694 goto out_unlock;
1695 }
1696
1697 if (unlikely(!page->inuse))
1698 goto slab_empty;
1699
1700 /*
1701 * Objects left in the slab. If it was not on the partial list before
1702 * then add it.
1703 */
1704 if (unlikely(!prior)) {
1705 add_partial(get_node(s, page_to_nid(page)), page, 1);
1706 stat(c, FREE_ADD_PARTIAL);
1707 }
1708
1709 out_unlock:
1710 slab_unlock(page);
1711 return;
1712
1713 slab_empty:
1714 if (prior) {
1715 /*
1716 * Slab still on the partial list.
1717 */
1718 remove_partial(s, page);
1719 stat(c, FREE_REMOVE_PARTIAL);
1720 }
1721 slab_unlock(page);
1722 stat(c, FREE_SLAB);
1723 discard_slab(s, page);
1724 return;
1725
1726 debug:
1727 if (!free_debug_processing(s, page, x, addr))
1728 goto out_unlock;
1729 goto checks_ok;
1730 }
1731
1732 /*
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1735 *
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1738 * the item before.
1739 *
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1742 */
1743 static __always_inline void slab_free(struct kmem_cache *s,
1744 struct page *page, void *x, void *addr)
1745 {
1746 void **object = (void *)x;
1747 struct kmem_cache_cpu *c;
1748 unsigned long flags;
1749
1750 local_irq_save(flags);
1751 c = get_cpu_slab(s, smp_processor_id());
1752 debug_check_no_locks_freed(object, c->objsize);
1753 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754 debug_check_no_obj_freed(object, s->objsize);
1755 if (likely(page == c->page && c->node >= 0)) {
1756 object[c->offset] = c->freelist;
1757 c->freelist = object;
1758 stat(c, FREE_FASTPATH);
1759 } else
1760 __slab_free(s, page, x, addr, c->offset);
1761
1762 local_irq_restore(flags);
1763 }
1764
1765 void kmem_cache_free(struct kmem_cache *s, void *x)
1766 {
1767 struct page *page;
1768
1769 page = virt_to_head_page(x);
1770
1771 slab_free(s, page, x, __builtin_return_address(0));
1772 }
1773 EXPORT_SYMBOL(kmem_cache_free);
1774
1775 /* Figure out on which slab object the object resides */
1776 static struct page *get_object_page(const void *x)
1777 {
1778 struct page *page = virt_to_head_page(x);
1779
1780 if (!PageSlab(page))
1781 return NULL;
1782
1783 return page;
1784 }
1785
1786 /*
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1790 * another.
1791 *
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
1795 * must be moved on and off the partial lists and is therefore a factor in
1796 * locking overhead.
1797 */
1798
1799 /*
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1804 */
1805 static int slub_min_order;
1806 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1807 static int slub_min_objects;
1808
1809 /*
1810 * Merge control. If this is set then no merging of slab caches will occur.
1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
1812 */
1813 static int slub_nomerge;
1814
1815 /*
1816 * Calculate the order of allocation given an slab object size.
1817 *
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
1822 * unused space left. We go to a higher order if more than 1/16th of the slab
1823 * would be wasted.
1824 *
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
1829 *
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
1834 *
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
1839 */
1840 static inline int slab_order(int size, int min_objects,
1841 int max_order, int fract_leftover)
1842 {
1843 int order;
1844 int rem;
1845 int min_order = slub_min_order;
1846
1847 if ((PAGE_SIZE << min_order) / size > 65535)
1848 return get_order(size * 65535) - 1;
1849
1850 for (order = max(min_order,
1851 fls(min_objects * size - 1) - PAGE_SHIFT);
1852 order <= max_order; order++) {
1853
1854 unsigned long slab_size = PAGE_SIZE << order;
1855
1856 if (slab_size < min_objects * size)
1857 continue;
1858
1859 rem = slab_size % size;
1860
1861 if (rem <= slab_size / fract_leftover)
1862 break;
1863
1864 }
1865
1866 return order;
1867 }
1868
1869 static inline int calculate_order(int size)
1870 {
1871 int order;
1872 int min_objects;
1873 int fraction;
1874
1875 /*
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1879 *
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1882 */
1883 min_objects = slub_min_objects;
1884 if (!min_objects)
1885 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1886 while (min_objects > 1) {
1887 fraction = 16;
1888 while (fraction >= 4) {
1889 order = slab_order(size, min_objects,
1890 slub_max_order, fraction);
1891 if (order <= slub_max_order)
1892 return order;
1893 fraction /= 2;
1894 }
1895 min_objects /= 2;
1896 }
1897
1898 /*
1899 * We were unable to place multiple objects in a slab. Now
1900 * lets see if we can place a single object there.
1901 */
1902 order = slab_order(size, 1, slub_max_order, 1);
1903 if (order <= slub_max_order)
1904 return order;
1905
1906 /*
1907 * Doh this slab cannot be placed using slub_max_order.
1908 */
1909 order = slab_order(size, 1, MAX_ORDER, 1);
1910 if (order <= MAX_ORDER)
1911 return order;
1912 return -ENOSYS;
1913 }
1914
1915 /*
1916 * Figure out what the alignment of the objects will be.
1917 */
1918 static unsigned long calculate_alignment(unsigned long flags,
1919 unsigned long align, unsigned long size)
1920 {
1921 /*
1922 * If the user wants hardware cache aligned objects then follow that
1923 * suggestion if the object is sufficiently large.
1924 *
1925 * The hardware cache alignment cannot override the specified
1926 * alignment though. If that is greater then use it.
1927 */
1928 if (flags & SLAB_HWCACHE_ALIGN) {
1929 unsigned long ralign = cache_line_size();
1930 while (size <= ralign / 2)
1931 ralign /= 2;
1932 align = max(align, ralign);
1933 }
1934
1935 if (align < ARCH_SLAB_MINALIGN)
1936 align = ARCH_SLAB_MINALIGN;
1937
1938 return ALIGN(align, sizeof(void *));
1939 }
1940
1941 static void init_kmem_cache_cpu(struct kmem_cache *s,
1942 struct kmem_cache_cpu *c)
1943 {
1944 c->page = NULL;
1945 c->freelist = NULL;
1946 c->node = 0;
1947 c->offset = s->offset / sizeof(void *);
1948 c->objsize = s->objsize;
1949 #ifdef CONFIG_SLUB_STATS
1950 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951 #endif
1952 }
1953
1954 static void init_kmem_cache_node(struct kmem_cache_node *n)
1955 {
1956 n->nr_partial = 0;
1957 spin_lock_init(&n->list_lock);
1958 INIT_LIST_HEAD(&n->partial);
1959 #ifdef CONFIG_SLUB_DEBUG
1960 atomic_long_set(&n->nr_slabs, 0);
1961 INIT_LIST_HEAD(&n->full);
1962 #endif
1963 }
1964
1965 #ifdef CONFIG_SMP
1966 /*
1967 * Per cpu array for per cpu structures.
1968 *
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1973 *
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 *
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1980 */
1981 #define NR_KMEM_CACHE_CPU 100
1982
1983 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985
1986 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988
1989 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990 int cpu, gfp_t flags)
1991 {
1992 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993
1994 if (c)
1995 per_cpu(kmem_cache_cpu_free, cpu) =
1996 (void *)c->freelist;
1997 else {
1998 /* Table overflow: So allocate ourselves */
1999 c = kmalloc_node(
2000 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001 flags, cpu_to_node(cpu));
2002 if (!c)
2003 return NULL;
2004 }
2005
2006 init_kmem_cache_cpu(s, c);
2007 return c;
2008 }
2009
2010 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011 {
2012 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014 kfree(c);
2015 return;
2016 }
2017 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018 per_cpu(kmem_cache_cpu_free, cpu) = c;
2019 }
2020
2021 static void free_kmem_cache_cpus(struct kmem_cache *s)
2022 {
2023 int cpu;
2024
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028 if (c) {
2029 s->cpu_slab[cpu] = NULL;
2030 free_kmem_cache_cpu(c, cpu);
2031 }
2032 }
2033 }
2034
2035 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036 {
2037 int cpu;
2038
2039 for_each_online_cpu(cpu) {
2040 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041
2042 if (c)
2043 continue;
2044
2045 c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 if (!c) {
2047 free_kmem_cache_cpus(s);
2048 return 0;
2049 }
2050 s->cpu_slab[cpu] = c;
2051 }
2052 return 1;
2053 }
2054
2055 /*
2056 * Initialize the per cpu array.
2057 */
2058 static void init_alloc_cpu_cpu(int cpu)
2059 {
2060 int i;
2061
2062 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063 return;
2064
2065 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067
2068 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069 }
2070
2071 static void __init init_alloc_cpu(void)
2072 {
2073 int cpu;
2074
2075 for_each_online_cpu(cpu)
2076 init_alloc_cpu_cpu(cpu);
2077 }
2078
2079 #else
2080 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081 static inline void init_alloc_cpu(void) {}
2082
2083 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084 {
2085 init_kmem_cache_cpu(s, &s->cpu_slab);
2086 return 1;
2087 }
2088 #endif
2089
2090 #ifdef CONFIG_NUMA
2091 /*
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2094 * possible.
2095 *
2096 * Note that this function only works on the kmalloc_node_cache
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
2099 */
2100 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101 int node)
2102 {
2103 struct page *page;
2104 struct kmem_cache_node *n;
2105 unsigned long flags;
2106
2107 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108
2109 page = new_slab(kmalloc_caches, gfpflags, node);
2110
2111 BUG_ON(!page);
2112 if (page_to_nid(page) != node) {
2113 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 "node %d\n", node);
2115 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116 "in order to be able to continue\n");
2117 }
2118
2119 n = page->freelist;
2120 BUG_ON(!n);
2121 page->freelist = get_freepointer(kmalloc_caches, n);
2122 page->inuse++;
2123 kmalloc_caches->node[node] = n;
2124 #ifdef CONFIG_SLUB_DEBUG
2125 init_object(kmalloc_caches, n, 1);
2126 init_tracking(kmalloc_caches, n);
2127 #endif
2128 init_kmem_cache_node(n);
2129 inc_slabs_node(kmalloc_caches, node, page->objects);
2130
2131 /*
2132 * lockdep requires consistent irq usage for each lock
2133 * so even though there cannot be a race this early in
2134 * the boot sequence, we still disable irqs.
2135 */
2136 local_irq_save(flags);
2137 add_partial(n, page, 0);
2138 local_irq_restore(flags);
2139 return n;
2140 }
2141
2142 static void free_kmem_cache_nodes(struct kmem_cache *s)
2143 {
2144 int node;
2145
2146 for_each_node_state(node, N_NORMAL_MEMORY) {
2147 struct kmem_cache_node *n = s->node[node];
2148 if (n && n != &s->local_node)
2149 kmem_cache_free(kmalloc_caches, n);
2150 s->node[node] = NULL;
2151 }
2152 }
2153
2154 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155 {
2156 int node;
2157 int local_node;
2158
2159 if (slab_state >= UP)
2160 local_node = page_to_nid(virt_to_page(s));
2161 else
2162 local_node = 0;
2163
2164 for_each_node_state(node, N_NORMAL_MEMORY) {
2165 struct kmem_cache_node *n;
2166
2167 if (local_node == node)
2168 n = &s->local_node;
2169 else {
2170 if (slab_state == DOWN) {
2171 n = early_kmem_cache_node_alloc(gfpflags,
2172 node);
2173 continue;
2174 }
2175 n = kmem_cache_alloc_node(kmalloc_caches,
2176 gfpflags, node);
2177
2178 if (!n) {
2179 free_kmem_cache_nodes(s);
2180 return 0;
2181 }
2182
2183 }
2184 s->node[node] = n;
2185 init_kmem_cache_node(n);
2186 }
2187 return 1;
2188 }
2189 #else
2190 static void free_kmem_cache_nodes(struct kmem_cache *s)
2191 {
2192 }
2193
2194 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195 {
2196 init_kmem_cache_node(&s->local_node);
2197 return 1;
2198 }
2199 #endif
2200
2201 /*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 {
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
2210 int order;
2211
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219 #ifdef CONFIG_SLUB_DEBUG
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 !s->ctor)
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
2231
2232 /*
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
2239 #endif
2240
2241 /*
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 s->ctor)) {
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
2269 if (flags & SLAB_RED_ZONE)
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if an user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
2278 #endif
2279
2280 /*
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286
2287 /*
2288 * SLUB stores one object immediately after another beginning from
2289 * offset 0. In order to align the objects we have to simply size
2290 * each object to conform to the alignment.
2291 */
2292 size = ALIGN(size, align);
2293 s->size = size;
2294 if (forced_order >= 0)
2295 order = forced_order;
2296 else
2297 order = calculate_order(size);
2298
2299 if (order < 0)
2300 return 0;
2301
2302 s->allocflags = 0;
2303 if (order)
2304 s->allocflags |= __GFP_COMP;
2305
2306 if (s->flags & SLAB_CACHE_DMA)
2307 s->allocflags |= SLUB_DMA;
2308
2309 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310 s->allocflags |= __GFP_RECLAIMABLE;
2311
2312 /*
2313 * Determine the number of objects per slab
2314 */
2315 s->oo = oo_make(order, size);
2316 s->min = oo_make(get_order(size), size);
2317 if (oo_objects(s->oo) > oo_objects(s->max))
2318 s->max = s->oo;
2319
2320 return !!oo_objects(s->oo);
2321
2322 }
2323
2324 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325 const char *name, size_t size,
2326 size_t align, unsigned long flags,
2327 void (*ctor)(struct kmem_cache *, void *))
2328 {
2329 memset(s, 0, kmem_size);
2330 s->name = name;
2331 s->ctor = ctor;
2332 s->objsize = size;
2333 s->align = align;
2334 s->flags = kmem_cache_flags(size, flags, name, ctor);
2335
2336 if (!calculate_sizes(s, -1))
2337 goto error;
2338
2339 s->refcount = 1;
2340 #ifdef CONFIG_NUMA
2341 s->remote_node_defrag_ratio = 100;
2342 #endif
2343 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344 goto error;
2345
2346 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2347 return 1;
2348 free_kmem_cache_nodes(s);
2349 error:
2350 if (flags & SLAB_PANIC)
2351 panic("Cannot create slab %s size=%lu realsize=%u "
2352 "order=%u offset=%u flags=%lx\n",
2353 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2354 s->offset, flags);
2355 return 0;
2356 }
2357
2358 /*
2359 * Check if a given pointer is valid
2360 */
2361 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362 {
2363 struct page *page;
2364
2365 page = get_object_page(object);
2366
2367 if (!page || s != page->slab)
2368 /* No slab or wrong slab */
2369 return 0;
2370
2371 if (!check_valid_pointer(s, page, object))
2372 return 0;
2373
2374 /*
2375 * We could also check if the object is on the slabs freelist.
2376 * But this would be too expensive and it seems that the main
2377 * purpose of kmem_ptr_valid() is to check if the object belongs
2378 * to a certain slab.
2379 */
2380 return 1;
2381 }
2382 EXPORT_SYMBOL(kmem_ptr_validate);
2383
2384 /*
2385 * Determine the size of a slab object
2386 */
2387 unsigned int kmem_cache_size(struct kmem_cache *s)
2388 {
2389 return s->objsize;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_size);
2392
2393 const char *kmem_cache_name(struct kmem_cache *s)
2394 {
2395 return s->name;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_name);
2398
2399 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400 const char *text)
2401 {
2402 #ifdef CONFIG_SLUB_DEBUG
2403 void *addr = page_address(page);
2404 void *p;
2405 DECLARE_BITMAP(map, page->objects);
2406
2407 bitmap_zero(map, page->objects);
2408 slab_err(s, page, "%s", text);
2409 slab_lock(page);
2410 for_each_free_object(p, s, page->freelist)
2411 set_bit(slab_index(p, s, addr), map);
2412
2413 for_each_object(p, s, addr, page->objects) {
2414
2415 if (!test_bit(slab_index(p, s, addr), map)) {
2416 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 p, p - addr);
2418 print_tracking(s, p);
2419 }
2420 }
2421 slab_unlock(page);
2422 #endif
2423 }
2424
2425 /*
2426 * Attempt to free all partial slabs on a node.
2427 */
2428 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2429 {
2430 unsigned long flags;
2431 struct page *page, *h;
2432
2433 spin_lock_irqsave(&n->list_lock, flags);
2434 list_for_each_entry_safe(page, h, &n->partial, lru) {
2435 if (!page->inuse) {
2436 list_del(&page->lru);
2437 discard_slab(s, page);
2438 n->nr_partial--;
2439 } else {
2440 list_slab_objects(s, page,
2441 "Objects remaining on kmem_cache_close()");
2442 }
2443 }
2444 spin_unlock_irqrestore(&n->list_lock, flags);
2445 }
2446
2447 /*
2448 * Release all resources used by a slab cache.
2449 */
2450 static inline int kmem_cache_close(struct kmem_cache *s)
2451 {
2452 int node;
2453
2454 flush_all(s);
2455
2456 /* Attempt to free all objects */
2457 free_kmem_cache_cpus(s);
2458 for_each_node_state(node, N_NORMAL_MEMORY) {
2459 struct kmem_cache_node *n = get_node(s, node);
2460
2461 free_partial(s, n);
2462 if (n->nr_partial || slabs_node(s, node))
2463 return 1;
2464 }
2465 free_kmem_cache_nodes(s);
2466 return 0;
2467 }
2468
2469 /*
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2472 */
2473 void kmem_cache_destroy(struct kmem_cache *s)
2474 {
2475 down_write(&slub_lock);
2476 s->refcount--;
2477 if (!s->refcount) {
2478 list_del(&s->list);
2479 up_write(&slub_lock);
2480 if (kmem_cache_close(s)) {
2481 printk(KERN_ERR "SLUB %s: %s called for cache that "
2482 "still has objects.\n", s->name, __func__);
2483 dump_stack();
2484 }
2485 sysfs_slab_remove(s);
2486 } else
2487 up_write(&slub_lock);
2488 }
2489 EXPORT_SYMBOL(kmem_cache_destroy);
2490
2491 /********************************************************************
2492 * Kmalloc subsystem
2493 *******************************************************************/
2494
2495 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2496 EXPORT_SYMBOL(kmalloc_caches);
2497
2498 static int __init setup_slub_min_order(char *str)
2499 {
2500 get_option(&str, &slub_min_order);
2501
2502 return 1;
2503 }
2504
2505 __setup("slub_min_order=", setup_slub_min_order);
2506
2507 static int __init setup_slub_max_order(char *str)
2508 {
2509 get_option(&str, &slub_max_order);
2510
2511 return 1;
2512 }
2513
2514 __setup("slub_max_order=", setup_slub_max_order);
2515
2516 static int __init setup_slub_min_objects(char *str)
2517 {
2518 get_option(&str, &slub_min_objects);
2519
2520 return 1;
2521 }
2522
2523 __setup("slub_min_objects=", setup_slub_min_objects);
2524
2525 static int __init setup_slub_nomerge(char *str)
2526 {
2527 slub_nomerge = 1;
2528 return 1;
2529 }
2530
2531 __setup("slub_nomerge", setup_slub_nomerge);
2532
2533 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534 const char *name, int size, gfp_t gfp_flags)
2535 {
2536 unsigned int flags = 0;
2537
2538 if (gfp_flags & SLUB_DMA)
2539 flags = SLAB_CACHE_DMA;
2540
2541 down_write(&slub_lock);
2542 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2543 flags, NULL))
2544 goto panic;
2545
2546 list_add(&s->list, &slab_caches);
2547 up_write(&slub_lock);
2548 if (sysfs_slab_add(s))
2549 goto panic;
2550 return s;
2551
2552 panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554 }
2555
2556 #ifdef CONFIG_ZONE_DMA
2557 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2558
2559 static void sysfs_add_func(struct work_struct *w)
2560 {
2561 struct kmem_cache *s;
2562
2563 down_write(&slub_lock);
2564 list_for_each_entry(s, &slab_caches, list) {
2565 if (s->flags & __SYSFS_ADD_DEFERRED) {
2566 s->flags &= ~__SYSFS_ADD_DEFERRED;
2567 sysfs_slab_add(s);
2568 }
2569 }
2570 up_write(&slub_lock);
2571 }
2572
2573 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574
2575 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576 {
2577 struct kmem_cache *s;
2578 char *text;
2579 size_t realsize;
2580
2581 s = kmalloc_caches_dma[index];
2582 if (s)
2583 return s;
2584
2585 /* Dynamically create dma cache */
2586 if (flags & __GFP_WAIT)
2587 down_write(&slub_lock);
2588 else {
2589 if (!down_write_trylock(&slub_lock))
2590 goto out;
2591 }
2592
2593 if (kmalloc_caches_dma[index])
2594 goto unlock_out;
2595
2596 realsize = kmalloc_caches[index].objsize;
2597 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598 (unsigned int)realsize);
2599 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600
2601 if (!s || !text || !kmem_cache_open(s, flags, text,
2602 realsize, ARCH_KMALLOC_MINALIGN,
2603 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604 kfree(s);
2605 kfree(text);
2606 goto unlock_out;
2607 }
2608
2609 list_add(&s->list, &slab_caches);
2610 kmalloc_caches_dma[index] = s;
2611
2612 schedule_work(&sysfs_add_work);
2613
2614 unlock_out:
2615 up_write(&slub_lock);
2616 out:
2617 return kmalloc_caches_dma[index];
2618 }
2619 #endif
2620
2621 /*
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2625 * fls.
2626 */
2627 static s8 size_index[24] = {
2628 3, /* 8 */
2629 4, /* 16 */
2630 5, /* 24 */
2631 5, /* 32 */
2632 6, /* 40 */
2633 6, /* 48 */
2634 6, /* 56 */
2635 6, /* 64 */
2636 1, /* 72 */
2637 1, /* 80 */
2638 1, /* 88 */
2639 1, /* 96 */
2640 7, /* 104 */
2641 7, /* 112 */
2642 7, /* 120 */
2643 7, /* 128 */
2644 2, /* 136 */
2645 2, /* 144 */
2646 2, /* 152 */
2647 2, /* 160 */
2648 2, /* 168 */
2649 2, /* 176 */
2650 2, /* 184 */
2651 2 /* 192 */
2652 };
2653
2654 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655 {
2656 int index;
2657
2658 if (size <= 192) {
2659 if (!size)
2660 return ZERO_SIZE_PTR;
2661
2662 index = size_index[(size - 1) / 8];
2663 } else
2664 index = fls(size - 1);
2665
2666 #ifdef CONFIG_ZONE_DMA
2667 if (unlikely((flags & SLUB_DMA)))
2668 return dma_kmalloc_cache(index, flags);
2669
2670 #endif
2671 return &kmalloc_caches[index];
2672 }
2673
2674 void *__kmalloc(size_t size, gfp_t flags)
2675 {
2676 struct kmem_cache *s;
2677
2678 if (unlikely(size > PAGE_SIZE))
2679 return kmalloc_large(size, flags);
2680
2681 s = get_slab(size, flags);
2682
2683 if (unlikely(ZERO_OR_NULL_PTR(s)))
2684 return s;
2685
2686 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2687 }
2688 EXPORT_SYMBOL(__kmalloc);
2689
2690 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691 {
2692 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693 get_order(size));
2694
2695 if (page)
2696 return page_address(page);
2697 else
2698 return NULL;
2699 }
2700
2701 #ifdef CONFIG_NUMA
2702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703 {
2704 struct kmem_cache *s;
2705
2706 if (unlikely(size > PAGE_SIZE))
2707 return kmalloc_large_node(size, flags, node);
2708
2709 s = get_slab(size, flags);
2710
2711 if (unlikely(ZERO_OR_NULL_PTR(s)))
2712 return s;
2713
2714 return slab_alloc(s, flags, node, __builtin_return_address(0));
2715 }
2716 EXPORT_SYMBOL(__kmalloc_node);
2717 #endif
2718
2719 size_t ksize(const void *object)
2720 {
2721 struct page *page;
2722 struct kmem_cache *s;
2723
2724 if (unlikely(object == ZERO_SIZE_PTR))
2725 return 0;
2726
2727 page = virt_to_head_page(object);
2728
2729 if (unlikely(!PageSlab(page))) {
2730 WARN_ON(!PageCompound(page));
2731 return PAGE_SIZE << compound_order(page);
2732 }
2733 s = page->slab;
2734
2735 #ifdef CONFIG_SLUB_DEBUG
2736 /*
2737 * Debugging requires use of the padding between object
2738 * and whatever may come after it.
2739 */
2740 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2741 return s->objsize;
2742
2743 #endif
2744 /*
2745 * If we have the need to store the freelist pointer
2746 * back there or track user information then we can
2747 * only use the space before that information.
2748 */
2749 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2750 return s->inuse;
2751 /*
2752 * Else we can use all the padding etc for the allocation
2753 */
2754 return s->size;
2755 }
2756 EXPORT_SYMBOL(ksize);
2757
2758 void kfree(const void *x)
2759 {
2760 struct page *page;
2761 void *object = (void *)x;
2762
2763 if (unlikely(ZERO_OR_NULL_PTR(x)))
2764 return;
2765
2766 page = virt_to_head_page(x);
2767 if (unlikely(!PageSlab(page))) {
2768 put_page(page);
2769 return;
2770 }
2771 slab_free(page->slab, page, object, __builtin_return_address(0));
2772 }
2773 EXPORT_SYMBOL(kfree);
2774
2775 /*
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2780 *
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2784 */
2785 int kmem_cache_shrink(struct kmem_cache *s)
2786 {
2787 int node;
2788 int i;
2789 struct kmem_cache_node *n;
2790 struct page *page;
2791 struct page *t;
2792 int objects = oo_objects(s->max);
2793 struct list_head *slabs_by_inuse =
2794 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2795 unsigned long flags;
2796
2797 if (!slabs_by_inuse)
2798 return -ENOMEM;
2799
2800 flush_all(s);
2801 for_each_node_state(node, N_NORMAL_MEMORY) {
2802 n = get_node(s, node);
2803
2804 if (!n->nr_partial)
2805 continue;
2806
2807 for (i = 0; i < objects; i++)
2808 INIT_LIST_HEAD(slabs_by_inuse + i);
2809
2810 spin_lock_irqsave(&n->list_lock, flags);
2811
2812 /*
2813 * Build lists indexed by the items in use in each slab.
2814 *
2815 * Note that concurrent frees may occur while we hold the
2816 * list_lock. page->inuse here is the upper limit.
2817 */
2818 list_for_each_entry_safe(page, t, &n->partial, lru) {
2819 if (!page->inuse && slab_trylock(page)) {
2820 /*
2821 * Must hold slab lock here because slab_free
2822 * may have freed the last object and be
2823 * waiting to release the slab.
2824 */
2825 list_del(&page->lru);
2826 n->nr_partial--;
2827 slab_unlock(page);
2828 discard_slab(s, page);
2829 } else {
2830 list_move(&page->lru,
2831 slabs_by_inuse + page->inuse);
2832 }
2833 }
2834
2835 /*
2836 * Rebuild the partial list with the slabs filled up most
2837 * first and the least used slabs at the end.
2838 */
2839 for (i = objects - 1; i >= 0; i--)
2840 list_splice(slabs_by_inuse + i, n->partial.prev);
2841
2842 spin_unlock_irqrestore(&n->list_lock, flags);
2843 }
2844
2845 kfree(slabs_by_inuse);
2846 return 0;
2847 }
2848 EXPORT_SYMBOL(kmem_cache_shrink);
2849
2850 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2851 static int slab_mem_going_offline_callback(void *arg)
2852 {
2853 struct kmem_cache *s;
2854
2855 down_read(&slub_lock);
2856 list_for_each_entry(s, &slab_caches, list)
2857 kmem_cache_shrink(s);
2858 up_read(&slub_lock);
2859
2860 return 0;
2861 }
2862
2863 static void slab_mem_offline_callback(void *arg)
2864 {
2865 struct kmem_cache_node *n;
2866 struct kmem_cache *s;
2867 struct memory_notify *marg = arg;
2868 int offline_node;
2869
2870 offline_node = marg->status_change_nid;
2871
2872 /*
2873 * If the node still has available memory. we need kmem_cache_node
2874 * for it yet.
2875 */
2876 if (offline_node < 0)
2877 return;
2878
2879 down_read(&slub_lock);
2880 list_for_each_entry(s, &slab_caches, list) {
2881 n = get_node(s, offline_node);
2882 if (n) {
2883 /*
2884 * if n->nr_slabs > 0, slabs still exist on the node
2885 * that is going down. We were unable to free them,
2886 * and offline_pages() function shoudn't call this
2887 * callback. So, we must fail.
2888 */
2889 BUG_ON(slabs_node(s, offline_node));
2890
2891 s->node[offline_node] = NULL;
2892 kmem_cache_free(kmalloc_caches, n);
2893 }
2894 }
2895 up_read(&slub_lock);
2896 }
2897
2898 static int slab_mem_going_online_callback(void *arg)
2899 {
2900 struct kmem_cache_node *n;
2901 struct kmem_cache *s;
2902 struct memory_notify *marg = arg;
2903 int nid = marg->status_change_nid;
2904 int ret = 0;
2905
2906 /*
2907 * If the node's memory is already available, then kmem_cache_node is
2908 * already created. Nothing to do.
2909 */
2910 if (nid < 0)
2911 return 0;
2912
2913 /*
2914 * We are bringing a node online. No memory is available yet. We must
2915 * allocate a kmem_cache_node structure in order to bring the node
2916 * online.
2917 */
2918 down_read(&slub_lock);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 /*
2921 * XXX: kmem_cache_alloc_node will fallback to other nodes
2922 * since memory is not yet available from the node that
2923 * is brought up.
2924 */
2925 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2926 if (!n) {
2927 ret = -ENOMEM;
2928 goto out;
2929 }
2930 init_kmem_cache_node(n);
2931 s->node[nid] = n;
2932 }
2933 out:
2934 up_read(&slub_lock);
2935 return ret;
2936 }
2937
2938 static int slab_memory_callback(struct notifier_block *self,
2939 unsigned long action, void *arg)
2940 {
2941 int ret = 0;
2942
2943 switch (action) {
2944 case MEM_GOING_ONLINE:
2945 ret = slab_mem_going_online_callback(arg);
2946 break;
2947 case MEM_GOING_OFFLINE:
2948 ret = slab_mem_going_offline_callback(arg);
2949 break;
2950 case MEM_OFFLINE:
2951 case MEM_CANCEL_ONLINE:
2952 slab_mem_offline_callback(arg);
2953 break;
2954 case MEM_ONLINE:
2955 case MEM_CANCEL_OFFLINE:
2956 break;
2957 }
2958
2959 ret = notifier_from_errno(ret);
2960 return ret;
2961 }
2962
2963 #endif /* CONFIG_MEMORY_HOTPLUG */
2964
2965 /********************************************************************
2966 * Basic setup of slabs
2967 *******************************************************************/
2968
2969 void __init kmem_cache_init(void)
2970 {
2971 int i;
2972 int caches = 0;
2973
2974 init_alloc_cpu();
2975
2976 #ifdef CONFIG_NUMA
2977 /*
2978 * Must first have the slab cache available for the allocations of the
2979 * struct kmem_cache_node's. There is special bootstrap code in
2980 * kmem_cache_open for slab_state == DOWN.
2981 */
2982 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2983 sizeof(struct kmem_cache_node), GFP_KERNEL);
2984 kmalloc_caches[0].refcount = -1;
2985 caches++;
2986
2987 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2988 #endif
2989
2990 /* Able to allocate the per node structures */
2991 slab_state = PARTIAL;
2992
2993 /* Caches that are not of the two-to-the-power-of size */
2994 if (KMALLOC_MIN_SIZE <= 64) {
2995 create_kmalloc_cache(&kmalloc_caches[1],
2996 "kmalloc-96", 96, GFP_KERNEL);
2997 caches++;
2998 create_kmalloc_cache(&kmalloc_caches[2],
2999 "kmalloc-192", 192, GFP_KERNEL);
3000 caches++;
3001 }
3002
3003 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3004 create_kmalloc_cache(&kmalloc_caches[i],
3005 "kmalloc", 1 << i, GFP_KERNEL);
3006 caches++;
3007 }
3008
3009
3010 /*
3011 * Patch up the size_index table if we have strange large alignment
3012 * requirements for the kmalloc array. This is only the case for
3013 * MIPS it seems. The standard arches will not generate any code here.
3014 *
3015 * Largest permitted alignment is 256 bytes due to the way we
3016 * handle the index determination for the smaller caches.
3017 *
3018 * Make sure that nothing crazy happens if someone starts tinkering
3019 * around with ARCH_KMALLOC_MINALIGN
3020 */
3021 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
3024 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
3027 if (KMALLOC_MIN_SIZE == 128) {
3028 /*
3029 * The 192 byte sized cache is not used if the alignment
3030 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3031 * instead.
3032 */
3033 for (i = 128 + 8; i <= 192; i += 8)
3034 size_index[(i - 1) / 8] = 8;
3035 }
3036
3037 slab_state = UP;
3038
3039 /* Provide the correct kmalloc names now that the caches are up */
3040 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3041 kmalloc_caches[i]. name =
3042 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3043
3044 #ifdef CONFIG_SMP
3045 register_cpu_notifier(&slab_notifier);
3046 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3047 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3048 #else
3049 kmem_size = sizeof(struct kmem_cache);
3050 #endif
3051
3052 printk(KERN_INFO
3053 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3054 " CPUs=%d, Nodes=%d\n",
3055 caches, cache_line_size(),
3056 slub_min_order, slub_max_order, slub_min_objects,
3057 nr_cpu_ids, nr_node_ids);
3058 }
3059
3060 /*
3061 * Find a mergeable slab cache
3062 */
3063 static int slab_unmergeable(struct kmem_cache *s)
3064 {
3065 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3066 return 1;
3067
3068 if (s->ctor)
3069 return 1;
3070
3071 /*
3072 * We may have set a slab to be unmergeable during bootstrap.
3073 */
3074 if (s->refcount < 0)
3075 return 1;
3076
3077 return 0;
3078 }
3079
3080 static struct kmem_cache *find_mergeable(size_t size,
3081 size_t align, unsigned long flags, const char *name,
3082 void (*ctor)(struct kmem_cache *, void *))
3083 {
3084 struct kmem_cache *s;
3085
3086 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3087 return NULL;
3088
3089 if (ctor)
3090 return NULL;
3091
3092 size = ALIGN(size, sizeof(void *));
3093 align = calculate_alignment(flags, align, size);
3094 size = ALIGN(size, align);
3095 flags = kmem_cache_flags(size, flags, name, NULL);
3096
3097 list_for_each_entry(s, &slab_caches, list) {
3098 if (slab_unmergeable(s))
3099 continue;
3100
3101 if (size > s->size)
3102 continue;
3103
3104 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3105 continue;
3106 /*
3107 * Check if alignment is compatible.
3108 * Courtesy of Adrian Drzewiecki
3109 */
3110 if ((s->size & ~(align - 1)) != s->size)
3111 continue;
3112
3113 if (s->size - size >= sizeof(void *))
3114 continue;
3115
3116 return s;
3117 }
3118 return NULL;
3119 }
3120
3121 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3122 size_t align, unsigned long flags,
3123 void (*ctor)(struct kmem_cache *, void *))
3124 {
3125 struct kmem_cache *s;
3126
3127 down_write(&slub_lock);
3128 s = find_mergeable(size, align, flags, name, ctor);
3129 if (s) {
3130 int cpu;
3131
3132 s->refcount++;
3133 /*
3134 * Adjust the object sizes so that we clear
3135 * the complete object on kzalloc.
3136 */
3137 s->objsize = max(s->objsize, (int)size);
3138
3139 /*
3140 * And then we need to update the object size in the
3141 * per cpu structures
3142 */
3143 for_each_online_cpu(cpu)
3144 get_cpu_slab(s, cpu)->objsize = s->objsize;
3145
3146 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3147 up_write(&slub_lock);
3148
3149 if (sysfs_slab_alias(s, name))
3150 goto err;
3151 return s;
3152 }
3153
3154 s = kmalloc(kmem_size, GFP_KERNEL);
3155 if (s) {
3156 if (kmem_cache_open(s, GFP_KERNEL, name,
3157 size, align, flags, ctor)) {
3158 list_add(&s->list, &slab_caches);
3159 up_write(&slub_lock);
3160 if (sysfs_slab_add(s))
3161 goto err;
3162 return s;
3163 }
3164 kfree(s);
3165 }
3166 up_write(&slub_lock);
3167
3168 err:
3169 if (flags & SLAB_PANIC)
3170 panic("Cannot create slabcache %s\n", name);
3171 else
3172 s = NULL;
3173 return s;
3174 }
3175 EXPORT_SYMBOL(kmem_cache_create);
3176
3177 #ifdef CONFIG_SMP
3178 /*
3179 * Use the cpu notifier to insure that the cpu slabs are flushed when
3180 * necessary.
3181 */
3182 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3183 unsigned long action, void *hcpu)
3184 {
3185 long cpu = (long)hcpu;
3186 struct kmem_cache *s;
3187 unsigned long flags;
3188
3189 switch (action) {
3190 case CPU_UP_PREPARE:
3191 case CPU_UP_PREPARE_FROZEN:
3192 init_alloc_cpu_cpu(cpu);
3193 down_read(&slub_lock);
3194 list_for_each_entry(s, &slab_caches, list)
3195 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3196 GFP_KERNEL);
3197 up_read(&slub_lock);
3198 break;
3199
3200 case CPU_UP_CANCELED:
3201 case CPU_UP_CANCELED_FROZEN:
3202 case CPU_DEAD:
3203 case CPU_DEAD_FROZEN:
3204 down_read(&slub_lock);
3205 list_for_each_entry(s, &slab_caches, list) {
3206 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3207
3208 local_irq_save(flags);
3209 __flush_cpu_slab(s, cpu);
3210 local_irq_restore(flags);
3211 free_kmem_cache_cpu(c, cpu);
3212 s->cpu_slab[cpu] = NULL;
3213 }
3214 up_read(&slub_lock);
3215 break;
3216 default:
3217 break;
3218 }
3219 return NOTIFY_OK;
3220 }
3221
3222 static struct notifier_block __cpuinitdata slab_notifier = {
3223 .notifier_call = slab_cpuup_callback
3224 };
3225
3226 #endif
3227
3228 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3229 {
3230 struct kmem_cache *s;
3231
3232 if (unlikely(size > PAGE_SIZE))
3233 return kmalloc_large(size, gfpflags);
3234
3235 s = get_slab(size, gfpflags);
3236
3237 if (unlikely(ZERO_OR_NULL_PTR(s)))
3238 return s;
3239
3240 return slab_alloc(s, gfpflags, -1, caller);
3241 }
3242
3243 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3244 int node, void *caller)
3245 {
3246 struct kmem_cache *s;
3247
3248 if (unlikely(size > PAGE_SIZE))
3249 return kmalloc_large_node(size, gfpflags, node);
3250
3251 s = get_slab(size, gfpflags);
3252
3253 if (unlikely(ZERO_OR_NULL_PTR(s)))
3254 return s;
3255
3256 return slab_alloc(s, gfpflags, node, caller);
3257 }
3258
3259 #ifdef CONFIG_SLUB_DEBUG
3260 static unsigned long count_partial(struct kmem_cache_node *n,
3261 int (*get_count)(struct page *))
3262 {
3263 unsigned long flags;
3264 unsigned long x = 0;
3265 struct page *page;
3266
3267 spin_lock_irqsave(&n->list_lock, flags);
3268 list_for_each_entry(page, &n->partial, lru)
3269 x += get_count(page);
3270 spin_unlock_irqrestore(&n->list_lock, flags);
3271 return x;
3272 }
3273
3274 static int count_inuse(struct page *page)
3275 {
3276 return page->inuse;
3277 }
3278
3279 static int count_total(struct page *page)
3280 {
3281 return page->objects;
3282 }
3283
3284 static int count_free(struct page *page)
3285 {
3286 return page->objects - page->inuse;
3287 }
3288
3289 static int validate_slab(struct kmem_cache *s, struct page *page,
3290 unsigned long *map)
3291 {
3292 void *p;
3293 void *addr = page_address(page);
3294
3295 if (!check_slab(s, page) ||
3296 !on_freelist(s, page, NULL))
3297 return 0;
3298
3299 /* Now we know that a valid freelist exists */
3300 bitmap_zero(map, page->objects);
3301
3302 for_each_free_object(p, s, page->freelist) {
3303 set_bit(slab_index(p, s, addr), map);
3304 if (!check_object(s, page, p, 0))
3305 return 0;
3306 }
3307
3308 for_each_object(p, s, addr, page->objects)
3309 if (!test_bit(slab_index(p, s, addr), map))
3310 if (!check_object(s, page, p, 1))
3311 return 0;
3312 return 1;
3313 }
3314
3315 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3316 unsigned long *map)
3317 {
3318 if (slab_trylock(page)) {
3319 validate_slab(s, page, map);
3320 slab_unlock(page);
3321 } else
3322 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3323 s->name, page);
3324
3325 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3326 if (!SlabDebug(page))
3327 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3328 "on slab 0x%p\n", s->name, page);
3329 } else {
3330 if (SlabDebug(page))
3331 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3332 "slab 0x%p\n", s->name, page);
3333 }
3334 }
3335
3336 static int validate_slab_node(struct kmem_cache *s,
3337 struct kmem_cache_node *n, unsigned long *map)
3338 {
3339 unsigned long count = 0;
3340 struct page *page;
3341 unsigned long flags;
3342
3343 spin_lock_irqsave(&n->list_lock, flags);
3344
3345 list_for_each_entry(page, &n->partial, lru) {
3346 validate_slab_slab(s, page, map);
3347 count++;
3348 }
3349 if (count != n->nr_partial)
3350 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3351 "counter=%ld\n", s->name, count, n->nr_partial);
3352
3353 if (!(s->flags & SLAB_STORE_USER))
3354 goto out;
3355
3356 list_for_each_entry(page, &n->full, lru) {
3357 validate_slab_slab(s, page, map);
3358 count++;
3359 }
3360 if (count != atomic_long_read(&n->nr_slabs))
3361 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3362 "counter=%ld\n", s->name, count,
3363 atomic_long_read(&n->nr_slabs));
3364
3365 out:
3366 spin_unlock_irqrestore(&n->list_lock, flags);
3367 return count;
3368 }
3369
3370 static long validate_slab_cache(struct kmem_cache *s)
3371 {
3372 int node;
3373 unsigned long count = 0;
3374 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3375 sizeof(unsigned long), GFP_KERNEL);
3376
3377 if (!map)
3378 return -ENOMEM;
3379
3380 flush_all(s);
3381 for_each_node_state(node, N_NORMAL_MEMORY) {
3382 struct kmem_cache_node *n = get_node(s, node);
3383
3384 count += validate_slab_node(s, n, map);
3385 }
3386 kfree(map);
3387 return count;
3388 }
3389
3390 #ifdef SLUB_RESILIENCY_TEST
3391 static void resiliency_test(void)
3392 {
3393 u8 *p;
3394
3395 printk(KERN_ERR "SLUB resiliency testing\n");
3396 printk(KERN_ERR "-----------------------\n");
3397 printk(KERN_ERR "A. Corruption after allocation\n");
3398
3399 p = kzalloc(16, GFP_KERNEL);
3400 p[16] = 0x12;
3401 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3402 " 0x12->0x%p\n\n", p + 16);
3403
3404 validate_slab_cache(kmalloc_caches + 4);
3405
3406 /* Hmmm... The next two are dangerous */
3407 p = kzalloc(32, GFP_KERNEL);
3408 p[32 + sizeof(void *)] = 0x34;
3409 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3410 " 0x34 -> -0x%p\n", p);
3411 printk(KERN_ERR
3412 "If allocated object is overwritten then not detectable\n\n");
3413
3414 validate_slab_cache(kmalloc_caches + 5);
3415 p = kzalloc(64, GFP_KERNEL);
3416 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3417 *p = 0x56;
3418 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3419 p);
3420 printk(KERN_ERR
3421 "If allocated object is overwritten then not detectable\n\n");
3422 validate_slab_cache(kmalloc_caches + 6);
3423
3424 printk(KERN_ERR "\nB. Corruption after free\n");
3425 p = kzalloc(128, GFP_KERNEL);
3426 kfree(p);
3427 *p = 0x78;
3428 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3429 validate_slab_cache(kmalloc_caches + 7);
3430
3431 p = kzalloc(256, GFP_KERNEL);
3432 kfree(p);
3433 p[50] = 0x9a;
3434 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3435 p);
3436 validate_slab_cache(kmalloc_caches + 8);
3437
3438 p = kzalloc(512, GFP_KERNEL);
3439 kfree(p);
3440 p[512] = 0xab;
3441 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3442 validate_slab_cache(kmalloc_caches + 9);
3443 }
3444 #else
3445 static void resiliency_test(void) {};
3446 #endif
3447
3448 /*
3449 * Generate lists of code addresses where slabcache objects are allocated
3450 * and freed.
3451 */
3452
3453 struct location {
3454 unsigned long count;
3455 void *addr;
3456 long long sum_time;
3457 long min_time;
3458 long max_time;
3459 long min_pid;
3460 long max_pid;
3461 cpumask_t cpus;
3462 nodemask_t nodes;
3463 };
3464
3465 struct loc_track {
3466 unsigned long max;
3467 unsigned long count;
3468 struct location *loc;
3469 };
3470
3471 static void free_loc_track(struct loc_track *t)
3472 {
3473 if (t->max)
3474 free_pages((unsigned long)t->loc,
3475 get_order(sizeof(struct location) * t->max));
3476 }
3477
3478 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3479 {
3480 struct location *l;
3481 int order;
3482
3483 order = get_order(sizeof(struct location) * max);
3484
3485 l = (void *)__get_free_pages(flags, order);
3486 if (!l)
3487 return 0;
3488
3489 if (t->count) {
3490 memcpy(l, t->loc, sizeof(struct location) * t->count);
3491 free_loc_track(t);
3492 }
3493 t->max = max;
3494 t->loc = l;
3495 return 1;
3496 }
3497
3498 static int add_location(struct loc_track *t, struct kmem_cache *s,
3499 const struct track *track)
3500 {
3501 long start, end, pos;
3502 struct location *l;
3503 void *caddr;
3504 unsigned long age = jiffies - track->when;
3505
3506 start = -1;
3507 end = t->count;
3508
3509 for ( ; ; ) {
3510 pos = start + (end - start + 1) / 2;
3511
3512 /*
3513 * There is nothing at "end". If we end up there
3514 * we need to add something to before end.
3515 */
3516 if (pos == end)
3517 break;
3518
3519 caddr = t->loc[pos].addr;
3520 if (track->addr == caddr) {
3521
3522 l = &t->loc[pos];
3523 l->count++;
3524 if (track->when) {
3525 l->sum_time += age;
3526 if (age < l->min_time)
3527 l->min_time = age;
3528 if (age > l->max_time)
3529 l->max_time = age;
3530
3531 if (track->pid < l->min_pid)
3532 l->min_pid = track->pid;
3533 if (track->pid > l->max_pid)
3534 l->max_pid = track->pid;
3535
3536 cpu_set(track->cpu, l->cpus);
3537 }
3538 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3539 return 1;
3540 }
3541
3542 if (track->addr < caddr)
3543 end = pos;
3544 else
3545 start = pos;
3546 }
3547
3548 /*
3549 * Not found. Insert new tracking element.
3550 */
3551 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3552 return 0;
3553
3554 l = t->loc + pos;
3555 if (pos < t->count)
3556 memmove(l + 1, l,
3557 (t->count - pos) * sizeof(struct location));
3558 t->count++;
3559 l->count = 1;
3560 l->addr = track->addr;
3561 l->sum_time = age;
3562 l->min_time = age;
3563 l->max_time = age;
3564 l->min_pid = track->pid;
3565 l->max_pid = track->pid;
3566 cpus_clear(l->cpus);
3567 cpu_set(track->cpu, l->cpus);
3568 nodes_clear(l->nodes);
3569 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3570 return 1;
3571 }
3572
3573 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3574 struct page *page, enum track_item alloc)
3575 {
3576 void *addr = page_address(page);
3577 DECLARE_BITMAP(map, page->objects);
3578 void *p;
3579
3580 bitmap_zero(map, page->objects);
3581 for_each_free_object(p, s, page->freelist)
3582 set_bit(slab_index(p, s, addr), map);
3583
3584 for_each_object(p, s, addr, page->objects)
3585 if (!test_bit(slab_index(p, s, addr), map))
3586 add_location(t, s, get_track(s, p, alloc));
3587 }
3588
3589 static int list_locations(struct kmem_cache *s, char *buf,
3590 enum track_item alloc)
3591 {
3592 int len = 0;
3593 unsigned long i;
3594 struct loc_track t = { 0, 0, NULL };
3595 int node;
3596
3597 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3598 GFP_TEMPORARY))
3599 return sprintf(buf, "Out of memory\n");
3600
3601 /* Push back cpu slabs */
3602 flush_all(s);
3603
3604 for_each_node_state(node, N_NORMAL_MEMORY) {
3605 struct kmem_cache_node *n = get_node(s, node);
3606 unsigned long flags;
3607 struct page *page;
3608
3609 if (!atomic_long_read(&n->nr_slabs))
3610 continue;
3611
3612 spin_lock_irqsave(&n->list_lock, flags);
3613 list_for_each_entry(page, &n->partial, lru)
3614 process_slab(&t, s, page, alloc);
3615 list_for_each_entry(page, &n->full, lru)
3616 process_slab(&t, s, page, alloc);
3617 spin_unlock_irqrestore(&n->list_lock, flags);
3618 }
3619
3620 for (i = 0; i < t.count; i++) {
3621 struct location *l = &t.loc[i];
3622
3623 if (len > PAGE_SIZE - 100)
3624 break;
3625 len += sprintf(buf + len, "%7ld ", l->count);
3626
3627 if (l->addr)
3628 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3629 else
3630 len += sprintf(buf + len, "<not-available>");
3631
3632 if (l->sum_time != l->min_time) {
3633 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3634 l->min_time,
3635 (long)div_u64(l->sum_time, l->count),
3636 l->max_time);
3637 } else
3638 len += sprintf(buf + len, " age=%ld",
3639 l->min_time);
3640
3641 if (l->min_pid != l->max_pid)
3642 len += sprintf(buf + len, " pid=%ld-%ld",
3643 l->min_pid, l->max_pid);
3644 else
3645 len += sprintf(buf + len, " pid=%ld",
3646 l->min_pid);
3647
3648 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3649 len < PAGE_SIZE - 60) {
3650 len += sprintf(buf + len, " cpus=");
3651 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3652 l->cpus);
3653 }
3654
3655 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3656 len < PAGE_SIZE - 60) {
3657 len += sprintf(buf + len, " nodes=");
3658 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3659 l->nodes);
3660 }
3661
3662 len += sprintf(buf + len, "\n");
3663 }
3664
3665 free_loc_track(&t);
3666 if (!t.count)
3667 len += sprintf(buf, "No data\n");
3668 return len;
3669 }
3670
3671 enum slab_stat_type {
3672 SL_ALL, /* All slabs */
3673 SL_PARTIAL, /* Only partially allocated slabs */
3674 SL_CPU, /* Only slabs used for cpu caches */
3675 SL_OBJECTS, /* Determine allocated objects not slabs */
3676 SL_TOTAL /* Determine object capacity not slabs */
3677 };
3678
3679 #define SO_ALL (1 << SL_ALL)
3680 #define SO_PARTIAL (1 << SL_PARTIAL)
3681 #define SO_CPU (1 << SL_CPU)
3682 #define SO_OBJECTS (1 << SL_OBJECTS)
3683 #define SO_TOTAL (1 << SL_TOTAL)
3684
3685 static ssize_t show_slab_objects(struct kmem_cache *s,
3686 char *buf, unsigned long flags)
3687 {
3688 unsigned long total = 0;
3689 int node;
3690 int x;
3691 unsigned long *nodes;
3692 unsigned long *per_cpu;
3693
3694 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3695 if (!nodes)
3696 return -ENOMEM;
3697 per_cpu = nodes + nr_node_ids;
3698
3699 if (flags & SO_CPU) {
3700 int cpu;
3701
3702 for_each_possible_cpu(cpu) {
3703 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3704
3705 if (!c || c->node < 0)
3706 continue;
3707
3708 if (c->page) {
3709 if (flags & SO_TOTAL)
3710 x = c->page->objects;
3711 else if (flags & SO_OBJECTS)
3712 x = c->page->inuse;
3713 else
3714 x = 1;
3715
3716 total += x;
3717 nodes[c->node] += x;
3718 }
3719 per_cpu[c->node]++;
3720 }
3721 }
3722
3723 if (flags & SO_ALL) {
3724 for_each_node_state(node, N_NORMAL_MEMORY) {
3725 struct kmem_cache_node *n = get_node(s, node);
3726
3727 if (flags & SO_TOTAL)
3728 x = atomic_long_read(&n->total_objects);
3729 else if (flags & SO_OBJECTS)
3730 x = atomic_long_read(&n->total_objects) -
3731 count_partial(n, count_free);
3732
3733 else
3734 x = atomic_long_read(&n->nr_slabs);
3735 total += x;
3736 nodes[node] += x;
3737 }
3738
3739 } else if (flags & SO_PARTIAL) {
3740 for_each_node_state(node, N_NORMAL_MEMORY) {
3741 struct kmem_cache_node *n = get_node(s, node);
3742
3743 if (flags & SO_TOTAL)
3744 x = count_partial(n, count_total);
3745 else if (flags & SO_OBJECTS)
3746 x = count_partial(n, count_inuse);
3747 else
3748 x = n->nr_partial;
3749 total += x;
3750 nodes[node] += x;
3751 }
3752 }
3753 x = sprintf(buf, "%lu", total);
3754 #ifdef CONFIG_NUMA
3755 for_each_node_state(node, N_NORMAL_MEMORY)
3756 if (nodes[node])
3757 x += sprintf(buf + x, " N%d=%lu",
3758 node, nodes[node]);
3759 #endif
3760 kfree(nodes);
3761 return x + sprintf(buf + x, "\n");
3762 }
3763
3764 static int any_slab_objects(struct kmem_cache *s)
3765 {
3766 int node;
3767
3768 for_each_online_node(node) {
3769 struct kmem_cache_node *n = get_node(s, node);
3770
3771 if (!n)
3772 continue;
3773
3774 if (atomic_long_read(&n->total_objects))
3775 return 1;
3776 }
3777 return 0;
3778 }
3779
3780 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3781 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3782
3783 struct slab_attribute {
3784 struct attribute attr;
3785 ssize_t (*show)(struct kmem_cache *s, char *buf);
3786 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3787 };
3788
3789 #define SLAB_ATTR_RO(_name) \
3790 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3791
3792 #define SLAB_ATTR(_name) \
3793 static struct slab_attribute _name##_attr = \
3794 __ATTR(_name, 0644, _name##_show, _name##_store)
3795
3796 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3797 {
3798 return sprintf(buf, "%d\n", s->size);
3799 }
3800 SLAB_ATTR_RO(slab_size);
3801
3802 static ssize_t align_show(struct kmem_cache *s, char *buf)
3803 {
3804 return sprintf(buf, "%d\n", s->align);
3805 }
3806 SLAB_ATTR_RO(align);
3807
3808 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3809 {
3810 return sprintf(buf, "%d\n", s->objsize);
3811 }
3812 SLAB_ATTR_RO(object_size);
3813
3814 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3815 {
3816 return sprintf(buf, "%d\n", oo_objects(s->oo));
3817 }
3818 SLAB_ATTR_RO(objs_per_slab);
3819
3820 static ssize_t order_store(struct kmem_cache *s,
3821 const char *buf, size_t length)
3822 {
3823 unsigned long order;
3824 int err;
3825
3826 err = strict_strtoul(buf, 10, &order);
3827 if (err)
3828 return err;
3829
3830 if (order > slub_max_order || order < slub_min_order)
3831 return -EINVAL;
3832
3833 calculate_sizes(s, order);
3834 return length;
3835 }
3836
3837 static ssize_t order_show(struct kmem_cache *s, char *buf)
3838 {
3839 return sprintf(buf, "%d\n", oo_order(s->oo));
3840 }
3841 SLAB_ATTR(order);
3842
3843 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3844 {
3845 if (s->ctor) {
3846 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3847
3848 return n + sprintf(buf + n, "\n");
3849 }
3850 return 0;
3851 }
3852 SLAB_ATTR_RO(ctor);
3853
3854 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3855 {
3856 return sprintf(buf, "%d\n", s->refcount - 1);
3857 }
3858 SLAB_ATTR_RO(aliases);
3859
3860 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3861 {
3862 return show_slab_objects(s, buf, SO_ALL);
3863 }
3864 SLAB_ATTR_RO(slabs);
3865
3866 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3867 {
3868 return show_slab_objects(s, buf, SO_PARTIAL);
3869 }
3870 SLAB_ATTR_RO(partial);
3871
3872 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3873 {
3874 return show_slab_objects(s, buf, SO_CPU);
3875 }
3876 SLAB_ATTR_RO(cpu_slabs);
3877
3878 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3879 {
3880 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3881 }
3882 SLAB_ATTR_RO(objects);
3883
3884 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3885 {
3886 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3887 }
3888 SLAB_ATTR_RO(objects_partial);
3889
3890 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3891 {
3892 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3893 }
3894 SLAB_ATTR_RO(total_objects);
3895
3896 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3897 {
3898 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3899 }
3900
3901 static ssize_t sanity_checks_store(struct kmem_cache *s,
3902 const char *buf, size_t length)
3903 {
3904 s->flags &= ~SLAB_DEBUG_FREE;
3905 if (buf[0] == '1')
3906 s->flags |= SLAB_DEBUG_FREE;
3907 return length;
3908 }
3909 SLAB_ATTR(sanity_checks);
3910
3911 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3912 {
3913 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3914 }
3915
3916 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3917 size_t length)
3918 {
3919 s->flags &= ~SLAB_TRACE;
3920 if (buf[0] == '1')
3921 s->flags |= SLAB_TRACE;
3922 return length;
3923 }
3924 SLAB_ATTR(trace);
3925
3926 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3927 {
3928 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3929 }
3930
3931 static ssize_t reclaim_account_store(struct kmem_cache *s,
3932 const char *buf, size_t length)
3933 {
3934 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3935 if (buf[0] == '1')
3936 s->flags |= SLAB_RECLAIM_ACCOUNT;
3937 return length;
3938 }
3939 SLAB_ATTR(reclaim_account);
3940
3941 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3942 {
3943 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3944 }
3945 SLAB_ATTR_RO(hwcache_align);
3946
3947 #ifdef CONFIG_ZONE_DMA
3948 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3949 {
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3951 }
3952 SLAB_ATTR_RO(cache_dma);
3953 #endif
3954
3955 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3956 {
3957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3958 }
3959 SLAB_ATTR_RO(destroy_by_rcu);
3960
3961 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3962 {
3963 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3964 }
3965
3966 static ssize_t red_zone_store(struct kmem_cache *s,
3967 const char *buf, size_t length)
3968 {
3969 if (any_slab_objects(s))
3970 return -EBUSY;
3971
3972 s->flags &= ~SLAB_RED_ZONE;
3973 if (buf[0] == '1')
3974 s->flags |= SLAB_RED_ZONE;
3975 calculate_sizes(s, -1);
3976 return length;
3977 }
3978 SLAB_ATTR(red_zone);
3979
3980 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3981 {
3982 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3983 }
3984
3985 static ssize_t poison_store(struct kmem_cache *s,
3986 const char *buf, size_t length)
3987 {
3988 if (any_slab_objects(s))
3989 return -EBUSY;
3990
3991 s->flags &= ~SLAB_POISON;
3992 if (buf[0] == '1')
3993 s->flags |= SLAB_POISON;
3994 calculate_sizes(s, -1);
3995 return length;
3996 }
3997 SLAB_ATTR(poison);
3998
3999 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4000 {
4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4002 }
4003
4004 static ssize_t store_user_store(struct kmem_cache *s,
4005 const char *buf, size_t length)
4006 {
4007 if (any_slab_objects(s))
4008 return -EBUSY;
4009
4010 s->flags &= ~SLAB_STORE_USER;
4011 if (buf[0] == '1')
4012 s->flags |= SLAB_STORE_USER;
4013 calculate_sizes(s, -1);
4014 return length;
4015 }
4016 SLAB_ATTR(store_user);
4017
4018 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4019 {
4020 return 0;
4021 }
4022
4023 static ssize_t validate_store(struct kmem_cache *s,
4024 const char *buf, size_t length)
4025 {
4026 int ret = -EINVAL;
4027
4028 if (buf[0] == '1') {
4029 ret = validate_slab_cache(s);
4030 if (ret >= 0)
4031 ret = length;
4032 }
4033 return ret;
4034 }
4035 SLAB_ATTR(validate);
4036
4037 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4038 {
4039 return 0;
4040 }
4041
4042 static ssize_t shrink_store(struct kmem_cache *s,
4043 const char *buf, size_t length)
4044 {
4045 if (buf[0] == '1') {
4046 int rc = kmem_cache_shrink(s);
4047
4048 if (rc)
4049 return rc;
4050 } else
4051 return -EINVAL;
4052 return length;
4053 }
4054 SLAB_ATTR(shrink);
4055
4056 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4057 {
4058 if (!(s->flags & SLAB_STORE_USER))
4059 return -ENOSYS;
4060 return list_locations(s, buf, TRACK_ALLOC);
4061 }
4062 SLAB_ATTR_RO(alloc_calls);
4063
4064 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4065 {
4066 if (!(s->flags & SLAB_STORE_USER))
4067 return -ENOSYS;
4068 return list_locations(s, buf, TRACK_FREE);
4069 }
4070 SLAB_ATTR_RO(free_calls);
4071
4072 #ifdef CONFIG_NUMA
4073 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4074 {
4075 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4076 }
4077
4078 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4079 const char *buf, size_t length)
4080 {
4081 unsigned long ratio;
4082 int err;
4083
4084 err = strict_strtoul(buf, 10, &ratio);
4085 if (err)
4086 return err;
4087
4088 if (ratio < 100)
4089 s->remote_node_defrag_ratio = ratio * 10;
4090
4091 return length;
4092 }
4093 SLAB_ATTR(remote_node_defrag_ratio);
4094 #endif
4095
4096 #ifdef CONFIG_SLUB_STATS
4097 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4098 {
4099 unsigned long sum = 0;
4100 int cpu;
4101 int len;
4102 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4103
4104 if (!data)
4105 return -ENOMEM;
4106
4107 for_each_online_cpu(cpu) {
4108 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4109
4110 data[cpu] = x;
4111 sum += x;
4112 }
4113
4114 len = sprintf(buf, "%lu", sum);
4115
4116 #ifdef CONFIG_SMP
4117 for_each_online_cpu(cpu) {
4118 if (data[cpu] && len < PAGE_SIZE - 20)
4119 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4120 }
4121 #endif
4122 kfree(data);
4123 return len + sprintf(buf + len, "\n");
4124 }
4125
4126 #define STAT_ATTR(si, text) \
4127 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4128 { \
4129 return show_stat(s, buf, si); \
4130 } \
4131 SLAB_ATTR_RO(text); \
4132
4133 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4134 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4135 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4136 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4137 STAT_ATTR(FREE_FROZEN, free_frozen);
4138 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4139 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4140 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4141 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4142 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4143 STAT_ATTR(FREE_SLAB, free_slab);
4144 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4145 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4146 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4147 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4148 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4149 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4150 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4151 #endif
4152
4153 static struct attribute *slab_attrs[] = {
4154 &slab_size_attr.attr,
4155 &object_size_attr.attr,
4156 &objs_per_slab_attr.attr,
4157 &order_attr.attr,
4158 &objects_attr.attr,
4159 &objects_partial_attr.attr,
4160 &total_objects_attr.attr,
4161 &slabs_attr.attr,
4162 &partial_attr.attr,
4163 &cpu_slabs_attr.attr,
4164 &ctor_attr.attr,
4165 &aliases_attr.attr,
4166 &align_attr.attr,
4167 &sanity_checks_attr.attr,
4168 &trace_attr.attr,
4169 &hwcache_align_attr.attr,
4170 &reclaim_account_attr.attr,
4171 &destroy_by_rcu_attr.attr,
4172 &red_zone_attr.attr,
4173 &poison_attr.attr,
4174 &store_user_attr.attr,
4175 &validate_attr.attr,
4176 &shrink_attr.attr,
4177 &alloc_calls_attr.attr,
4178 &free_calls_attr.attr,
4179 #ifdef CONFIG_ZONE_DMA
4180 &cache_dma_attr.attr,
4181 #endif
4182 #ifdef CONFIG_NUMA
4183 &remote_node_defrag_ratio_attr.attr,
4184 #endif
4185 #ifdef CONFIG_SLUB_STATS
4186 &alloc_fastpath_attr.attr,
4187 &alloc_slowpath_attr.attr,
4188 &free_fastpath_attr.attr,
4189 &free_slowpath_attr.attr,
4190 &free_frozen_attr.attr,
4191 &free_add_partial_attr.attr,
4192 &free_remove_partial_attr.attr,
4193 &alloc_from_partial_attr.attr,
4194 &alloc_slab_attr.attr,
4195 &alloc_refill_attr.attr,
4196 &free_slab_attr.attr,
4197 &cpuslab_flush_attr.attr,
4198 &deactivate_full_attr.attr,
4199 &deactivate_empty_attr.attr,
4200 &deactivate_to_head_attr.attr,
4201 &deactivate_to_tail_attr.attr,
4202 &deactivate_remote_frees_attr.attr,
4203 &order_fallback_attr.attr,
4204 #endif
4205 NULL
4206 };
4207
4208 static struct attribute_group slab_attr_group = {
4209 .attrs = slab_attrs,
4210 };
4211
4212 static ssize_t slab_attr_show(struct kobject *kobj,
4213 struct attribute *attr,
4214 char *buf)
4215 {
4216 struct slab_attribute *attribute;
4217 struct kmem_cache *s;
4218 int err;
4219
4220 attribute = to_slab_attr(attr);
4221 s = to_slab(kobj);
4222
4223 if (!attribute->show)
4224 return -EIO;
4225
4226 err = attribute->show(s, buf);
4227
4228 return err;
4229 }
4230
4231 static ssize_t slab_attr_store(struct kobject *kobj,
4232 struct attribute *attr,
4233 const char *buf, size_t len)
4234 {
4235 struct slab_attribute *attribute;
4236 struct kmem_cache *s;
4237 int err;
4238
4239 attribute = to_slab_attr(attr);
4240 s = to_slab(kobj);
4241
4242 if (!attribute->store)
4243 return -EIO;
4244
4245 err = attribute->store(s, buf, len);
4246
4247 return err;
4248 }
4249
4250 static void kmem_cache_release(struct kobject *kobj)
4251 {
4252 struct kmem_cache *s = to_slab(kobj);
4253
4254 kfree(s);
4255 }
4256
4257 static struct sysfs_ops slab_sysfs_ops = {
4258 .show = slab_attr_show,
4259 .store = slab_attr_store,
4260 };
4261
4262 static struct kobj_type slab_ktype = {
4263 .sysfs_ops = &slab_sysfs_ops,
4264 .release = kmem_cache_release
4265 };
4266
4267 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4268 {
4269 struct kobj_type *ktype = get_ktype(kobj);
4270
4271 if (ktype == &slab_ktype)
4272 return 1;
4273 return 0;
4274 }
4275
4276 static struct kset_uevent_ops slab_uevent_ops = {
4277 .filter = uevent_filter,
4278 };
4279
4280 static struct kset *slab_kset;
4281
4282 #define ID_STR_LENGTH 64
4283
4284 /* Create a unique string id for a slab cache:
4285 *
4286 * Format :[flags-]size
4287 */
4288 static char *create_unique_id(struct kmem_cache *s)
4289 {
4290 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4291 char *p = name;
4292
4293 BUG_ON(!name);
4294
4295 *p++ = ':';
4296 /*
4297 * First flags affecting slabcache operations. We will only
4298 * get here for aliasable slabs so we do not need to support
4299 * too many flags. The flags here must cover all flags that
4300 * are matched during merging to guarantee that the id is
4301 * unique.
4302 */
4303 if (s->flags & SLAB_CACHE_DMA)
4304 *p++ = 'd';
4305 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4306 *p++ = 'a';
4307 if (s->flags & SLAB_DEBUG_FREE)
4308 *p++ = 'F';
4309 if (p != name + 1)
4310 *p++ = '-';
4311 p += sprintf(p, "%07d", s->size);
4312 BUG_ON(p > name + ID_STR_LENGTH - 1);
4313 return name;
4314 }
4315
4316 static int sysfs_slab_add(struct kmem_cache *s)
4317 {
4318 int err;
4319 const char *name;
4320 int unmergeable;
4321
4322 if (slab_state < SYSFS)
4323 /* Defer until later */
4324 return 0;
4325
4326 unmergeable = slab_unmergeable(s);
4327 if (unmergeable) {
4328 /*
4329 * Slabcache can never be merged so we can use the name proper.
4330 * This is typically the case for debug situations. In that
4331 * case we can catch duplicate names easily.
4332 */
4333 sysfs_remove_link(&slab_kset->kobj, s->name);
4334 name = s->name;
4335 } else {
4336 /*
4337 * Create a unique name for the slab as a target
4338 * for the symlinks.
4339 */
4340 name = create_unique_id(s);
4341 }
4342
4343 s->kobj.kset = slab_kset;
4344 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4345 if (err) {
4346 kobject_put(&s->kobj);
4347 return err;
4348 }
4349
4350 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4351 if (err)
4352 return err;
4353 kobject_uevent(&s->kobj, KOBJ_ADD);
4354 if (!unmergeable) {
4355 /* Setup first alias */
4356 sysfs_slab_alias(s, s->name);
4357 kfree(name);
4358 }
4359 return 0;
4360 }
4361
4362 static void sysfs_slab_remove(struct kmem_cache *s)
4363 {
4364 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4365 kobject_del(&s->kobj);
4366 kobject_put(&s->kobj);
4367 }
4368
4369 /*
4370 * Need to buffer aliases during bootup until sysfs becomes
4371 * available lest we loose that information.
4372 */
4373 struct saved_alias {
4374 struct kmem_cache *s;
4375 const char *name;
4376 struct saved_alias *next;
4377 };
4378
4379 static struct saved_alias *alias_list;
4380
4381 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4382 {
4383 struct saved_alias *al;
4384
4385 if (slab_state == SYSFS) {
4386 /*
4387 * If we have a leftover link then remove it.
4388 */
4389 sysfs_remove_link(&slab_kset->kobj, name);
4390 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4391 }
4392
4393 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4394 if (!al)
4395 return -ENOMEM;
4396
4397 al->s = s;
4398 al->name = name;
4399 al->next = alias_list;
4400 alias_list = al;
4401 return 0;
4402 }
4403
4404 static int __init slab_sysfs_init(void)
4405 {
4406 struct kmem_cache *s;
4407 int err;
4408
4409 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4410 if (!slab_kset) {
4411 printk(KERN_ERR "Cannot register slab subsystem.\n");
4412 return -ENOSYS;
4413 }
4414
4415 slab_state = SYSFS;
4416
4417 list_for_each_entry(s, &slab_caches, list) {
4418 err = sysfs_slab_add(s);
4419 if (err)
4420 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4421 " to sysfs\n", s->name);
4422 }
4423
4424 while (alias_list) {
4425 struct saved_alias *al = alias_list;
4426
4427 alias_list = alias_list->next;
4428 err = sysfs_slab_alias(al->s, al->name);
4429 if (err)
4430 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4431 " %s to sysfs\n", s->name);
4432 kfree(al);
4433 }
4434
4435 resiliency_test();
4436 return 0;
4437 }
4438
4439 __initcall(slab_sysfs_init);
4440 #endif
4441
4442 /*
4443 * The /proc/slabinfo ABI
4444 */
4445 #ifdef CONFIG_SLABINFO
4446
4447 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4448 size_t count, loff_t *ppos)
4449 {
4450 return -EINVAL;
4451 }
4452
4453
4454 static void print_slabinfo_header(struct seq_file *m)
4455 {
4456 seq_puts(m, "slabinfo - version: 2.1\n");
4457 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4458 "<objperslab> <pagesperslab>");
4459 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4460 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4461 seq_putc(m, '\n');
4462 }
4463
4464 static void *s_start(struct seq_file *m, loff_t *pos)
4465 {
4466 loff_t n = *pos;
4467
4468 down_read(&slub_lock);
4469 if (!n)
4470 print_slabinfo_header(m);
4471
4472 return seq_list_start(&slab_caches, *pos);
4473 }
4474
4475 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4476 {
4477 return seq_list_next(p, &slab_caches, pos);
4478 }
4479
4480 static void s_stop(struct seq_file *m, void *p)
4481 {
4482 up_read(&slub_lock);
4483 }
4484
4485 static int s_show(struct seq_file *m, void *p)
4486 {
4487 unsigned long nr_partials = 0;
4488 unsigned long nr_slabs = 0;
4489 unsigned long nr_inuse = 0;
4490 unsigned long nr_objs = 0;
4491 unsigned long nr_free = 0;
4492 struct kmem_cache *s;
4493 int node;
4494
4495 s = list_entry(p, struct kmem_cache, list);
4496
4497 for_each_online_node(node) {
4498 struct kmem_cache_node *n = get_node(s, node);
4499
4500 if (!n)
4501 continue;
4502
4503 nr_partials += n->nr_partial;
4504 nr_slabs += atomic_long_read(&n->nr_slabs);
4505 nr_objs += atomic_long_read(&n->total_objects);
4506 nr_free += count_partial(n, count_free);
4507 }
4508
4509 nr_inuse = nr_objs - nr_free;
4510
4511 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4512 nr_objs, s->size, oo_objects(s->oo),
4513 (1 << oo_order(s->oo)));
4514 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4515 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4516 0UL);
4517 seq_putc(m, '\n');
4518 return 0;
4519 }
4520
4521 const struct seq_operations slabinfo_op = {
4522 .start = s_start,
4523 .next = s_next,
4524 .stop = s_stop,
4525 .show = s_show,
4526 };
4527
4528 #endif /* CONFIG_SLABINFO */