Merge git://git.kernel.org/pub/scm/linux/kernel/git/brodo/cpupowerutils
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
123
124 /*
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134 #ifdef CONFIG_DEBUG_SLAB
135 #define DEBUG 1
136 #define STATS 1
137 #define FORCED_DEBUG 1
138 #else
139 #define DEBUG 0
140 #define STATS 0
141 #define FORCED_DEBUG 0
142 #endif
143
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150 #endif
151
152 /* Legal flag mask for kmem_cache_create(). */
153 #if DEBUG
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156 SLAB_CACHE_DMA | \
157 SLAB_STORE_USER | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161 #else
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
163 SLAB_CACHE_DMA | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
167 #endif
168
169 /*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
188 typedef unsigned int kmem_bufctl_t;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
193
194 /*
195 * struct slab_rcu
196 *
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
204 *
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
207 */
208 struct slab_rcu {
209 struct rcu_head head;
210 struct kmem_cache *cachep;
211 void *addr;
212 };
213
214 /*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221 struct slab {
222 union {
223 struct {
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
230 };
231 struct slab_rcu __slab_cover_slab_rcu;
232 };
233 };
234
235 /*
236 * struct array_cache
237 *
238 * Purpose:
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
242 *
243 * The limit is stored in the per-cpu structure to reduce the data cache
244 * footprint.
245 *
246 */
247 struct array_cache {
248 unsigned int avail;
249 unsigned int limit;
250 unsigned int batchcount;
251 unsigned int touched;
252 spinlock_t lock;
253 void *entry[]; /*
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
256 * the entries.
257 */
258 };
259
260 /*
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
263 */
264 #define BOOT_CPUCACHE_ENTRIES 1
265 struct arraycache_init {
266 struct array_cache cache;
267 void *entries[BOOT_CPUCACHE_ENTRIES];
268 };
269
270 /*
271 * The slab lists for all objects.
272 */
273 struct kmem_list3 {
274 struct list_head slabs_partial; /* partial list first, better asm code */
275 struct list_head slabs_full;
276 struct list_head slabs_free;
277 unsigned long free_objects;
278 unsigned int free_limit;
279 unsigned int colour_next; /* Per-node cache coloring */
280 spinlock_t list_lock;
281 struct array_cache *shared; /* shared per node */
282 struct array_cache **alien; /* on other nodes */
283 unsigned long next_reap; /* updated without locking */
284 int free_touched; /* updated without locking */
285 };
286
287 /*
288 * Need this for bootstrapping a per node allocator.
289 */
290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292 #define CACHE_CACHE 0
293 #define SIZE_AC MAX_NUMNODES
294 #define SIZE_L3 (2 * MAX_NUMNODES)
295
296 static int drain_freelist(struct kmem_cache *cache,
297 struct kmem_list3 *l3, int tofree);
298 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299 int node);
300 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301 static void cache_reap(struct work_struct *unused);
302
303 /*
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
306 */
307 static __always_inline int index_of(const size_t size)
308 {
309 extern void __bad_size(void);
310
311 if (__builtin_constant_p(size)) {
312 int i = 0;
313
314 #define CACHE(x) \
315 if (size <=x) \
316 return i; \
317 else \
318 i++;
319 #include <linux/kmalloc_sizes.h>
320 #undef CACHE
321 __bad_size();
322 } else
323 __bad_size();
324 return 0;
325 }
326
327 static int slab_early_init = 1;
328
329 #define INDEX_AC index_of(sizeof(struct arraycache_init))
330 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
331
332 static void kmem_list3_init(struct kmem_list3 *parent)
333 {
334 INIT_LIST_HEAD(&parent->slabs_full);
335 INIT_LIST_HEAD(&parent->slabs_partial);
336 INIT_LIST_HEAD(&parent->slabs_free);
337 parent->shared = NULL;
338 parent->alien = NULL;
339 parent->colour_next = 0;
340 spin_lock_init(&parent->list_lock);
341 parent->free_objects = 0;
342 parent->free_touched = 0;
343 }
344
345 #define MAKE_LIST(cachep, listp, slab, nodeid) \
346 do { \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
349 } while (0)
350
351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
352 do { \
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
356 } while (0)
357
358 #define CFLGS_OFF_SLAB (0x80000000UL)
359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
360
361 #define BATCHREFILL_LIMIT 16
362 /*
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
365 *
366 * OTOH the cpuarrays can contain lots of objects,
367 * which could lock up otherwise freeable slabs.
368 */
369 #define REAPTIMEOUT_CPUC (2*HZ)
370 #define REAPTIMEOUT_LIST3 (4*HZ)
371
372 #if STATS
373 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376 #define STATS_INC_GROWN(x) ((x)->grown++)
377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
378 #define STATS_SET_HIGH(x) \
379 do { \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
382 } while (0)
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
387 #define STATS_SET_FREEABLE(x, i) \
388 do { \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
391 } while (0)
392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396 #else
397 #define STATS_INC_ACTIVE(x) do { } while (0)
398 #define STATS_DEC_ACTIVE(x) do { } while (0)
399 #define STATS_INC_ALLOCED(x) do { } while (0)
400 #define STATS_INC_GROWN(x) do { } while (0)
401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
402 #define STATS_SET_HIGH(x) do { } while (0)
403 #define STATS_INC_ERR(x) do { } while (0)
404 #define STATS_INC_NODEALLOCS(x) do { } while (0)
405 #define STATS_INC_NODEFREES(x) do { } while (0)
406 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
407 #define STATS_SET_FREEABLE(x, i) do { } while (0)
408 #define STATS_INC_ALLOCHIT(x) do { } while (0)
409 #define STATS_INC_ALLOCMISS(x) do { } while (0)
410 #define STATS_INC_FREEHIT(x) do { } while (0)
411 #define STATS_INC_FREEMISS(x) do { } while (0)
412 #endif
413
414 #if DEBUG
415
416 /*
417 * memory layout of objects:
418 * 0 : objp
419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
423 * redzone word.
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
428 */
429 static int obj_offset(struct kmem_cache *cachep)
430 {
431 return cachep->obj_offset;
432 }
433
434 static int obj_size(struct kmem_cache *cachep)
435 {
436 return cachep->obj_size;
437 }
438
439 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
440 {
441 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442 return (unsigned long long*) (objp + obj_offset(cachep) -
443 sizeof(unsigned long long));
444 }
445
446 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
447 {
448 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449 if (cachep->flags & SLAB_STORE_USER)
450 return (unsigned long long *)(objp + cachep->buffer_size -
451 sizeof(unsigned long long) -
452 REDZONE_ALIGN);
453 return (unsigned long long *) (objp + cachep->buffer_size -
454 sizeof(unsigned long long));
455 }
456
457 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
458 {
459 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
461 }
462
463 #else
464
465 #define obj_offset(x) 0
466 #define obj_size(cachep) (cachep->buffer_size)
467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
470
471 #endif
472
473 #ifdef CONFIG_TRACING
474 size_t slab_buffer_size(struct kmem_cache *cachep)
475 {
476 return cachep->buffer_size;
477 }
478 EXPORT_SYMBOL(slab_buffer_size);
479 #endif
480
481 /*
482 * Do not go above this order unless 0 objects fit into the slab.
483 */
484 #define BREAK_GFP_ORDER_HI 1
485 #define BREAK_GFP_ORDER_LO 0
486 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
487
488 /*
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
492 */
493 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
494 {
495 page->lru.next = (struct list_head *)cache;
496 }
497
498 static inline struct kmem_cache *page_get_cache(struct page *page)
499 {
500 page = compound_head(page);
501 BUG_ON(!PageSlab(page));
502 return (struct kmem_cache *)page->lru.next;
503 }
504
505 static inline void page_set_slab(struct page *page, struct slab *slab)
506 {
507 page->lru.prev = (struct list_head *)slab;
508 }
509
510 static inline struct slab *page_get_slab(struct page *page)
511 {
512 BUG_ON(!PageSlab(page));
513 return (struct slab *)page->lru.prev;
514 }
515
516 static inline struct kmem_cache *virt_to_cache(const void *obj)
517 {
518 struct page *page = virt_to_head_page(obj);
519 return page_get_cache(page);
520 }
521
522 static inline struct slab *virt_to_slab(const void *obj)
523 {
524 struct page *page = virt_to_head_page(obj);
525 return page_get_slab(page);
526 }
527
528 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
529 unsigned int idx)
530 {
531 return slab->s_mem + cache->buffer_size * idx;
532 }
533
534 /*
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
539 */
540 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
541 const struct slab *slab, void *obj)
542 {
543 u32 offset = (obj - slab->s_mem);
544 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 }
546
547 /*
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
549 */
550 struct cache_sizes malloc_sizes[] = {
551 #define CACHE(x) { .cs_size = (x) },
552 #include <linux/kmalloc_sizes.h>
553 CACHE(ULONG_MAX)
554 #undef CACHE
555 };
556 EXPORT_SYMBOL(malloc_sizes);
557
558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
559 struct cache_names {
560 char *name;
561 char *name_dma;
562 };
563
564 static struct cache_names __initdata cache_names[] = {
565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566 #include <linux/kmalloc_sizes.h>
567 {NULL,}
568 #undef CACHE
569 };
570
571 static struct arraycache_init initarray_cache __initdata =
572 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
573 static struct arraycache_init initarray_generic =
574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
575
576 /* internal cache of cache description objs */
577 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578 static struct kmem_cache cache_cache = {
579 .nodelists = cache_cache_nodelists,
580 .batchcount = 1,
581 .limit = BOOT_CPUCACHE_ENTRIES,
582 .shared = 1,
583 .buffer_size = sizeof(struct kmem_cache),
584 .name = "kmem_cache",
585 };
586
587 #define BAD_ALIEN_MAGIC 0x01020304ul
588
589 /*
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
592 */
593 static enum {
594 NONE,
595 PARTIAL_AC,
596 PARTIAL_L3,
597 EARLY,
598 FULL
599 } g_cpucache_up;
600
601 /*
602 * used by boot code to determine if it can use slab based allocator
603 */
604 int slab_is_available(void)
605 {
606 return g_cpucache_up >= EARLY;
607 }
608
609 #ifdef CONFIG_LOCKDEP
610
611 /*
612 * Slab sometimes uses the kmalloc slabs to store the slab headers
613 * for other slabs "off slab".
614 * The locking for this is tricky in that it nests within the locks
615 * of all other slabs in a few places; to deal with this special
616 * locking we put on-slab caches into a separate lock-class.
617 *
618 * We set lock class for alien array caches which are up during init.
619 * The lock annotation will be lost if all cpus of a node goes down and
620 * then comes back up during hotplug
621 */
622 static struct lock_class_key on_slab_l3_key;
623 static struct lock_class_key on_slab_alc_key;
624
625 static void init_node_lock_keys(int q)
626 {
627 struct cache_sizes *s = malloc_sizes;
628
629 if (g_cpucache_up != FULL)
630 return;
631
632 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
633 struct array_cache **alc;
634 struct kmem_list3 *l3;
635 int r;
636
637 l3 = s->cs_cachep->nodelists[q];
638 if (!l3 || OFF_SLAB(s->cs_cachep))
639 continue;
640 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
641 alc = l3->alien;
642 /*
643 * FIXME: This check for BAD_ALIEN_MAGIC
644 * should go away when common slab code is taught to
645 * work even without alien caches.
646 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
647 * for alloc_alien_cache,
648 */
649 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
650 continue;
651 for_each_node(r) {
652 if (alc[r])
653 lockdep_set_class(&alc[r]->lock,
654 &on_slab_alc_key);
655 }
656 }
657 }
658
659 static inline void init_lock_keys(void)
660 {
661 int node;
662
663 for_each_node(node)
664 init_node_lock_keys(node);
665 }
666 #else
667 static void init_node_lock_keys(int q)
668 {
669 }
670
671 static inline void init_lock_keys(void)
672 {
673 }
674 #endif
675
676 /*
677 * Guard access to the cache-chain.
678 */
679 static DEFINE_MUTEX(cache_chain_mutex);
680 static struct list_head cache_chain;
681
682 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
683
684 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
685 {
686 return cachep->array[smp_processor_id()];
687 }
688
689 static inline struct kmem_cache *__find_general_cachep(size_t size,
690 gfp_t gfpflags)
691 {
692 struct cache_sizes *csizep = malloc_sizes;
693
694 #if DEBUG
695 /* This happens if someone tries to call
696 * kmem_cache_create(), or __kmalloc(), before
697 * the generic caches are initialized.
698 */
699 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
700 #endif
701 if (!size)
702 return ZERO_SIZE_PTR;
703
704 while (size > csizep->cs_size)
705 csizep++;
706
707 /*
708 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
709 * has cs_{dma,}cachep==NULL. Thus no special case
710 * for large kmalloc calls required.
711 */
712 #ifdef CONFIG_ZONE_DMA
713 if (unlikely(gfpflags & GFP_DMA))
714 return csizep->cs_dmacachep;
715 #endif
716 return csizep->cs_cachep;
717 }
718
719 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
720 {
721 return __find_general_cachep(size, gfpflags);
722 }
723
724 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
725 {
726 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
727 }
728
729 /*
730 * Calculate the number of objects and left-over bytes for a given buffer size.
731 */
732 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
733 size_t align, int flags, size_t *left_over,
734 unsigned int *num)
735 {
736 int nr_objs;
737 size_t mgmt_size;
738 size_t slab_size = PAGE_SIZE << gfporder;
739
740 /*
741 * The slab management structure can be either off the slab or
742 * on it. For the latter case, the memory allocated for a
743 * slab is used for:
744 *
745 * - The struct slab
746 * - One kmem_bufctl_t for each object
747 * - Padding to respect alignment of @align
748 * - @buffer_size bytes for each object
749 *
750 * If the slab management structure is off the slab, then the
751 * alignment will already be calculated into the size. Because
752 * the slabs are all pages aligned, the objects will be at the
753 * correct alignment when allocated.
754 */
755 if (flags & CFLGS_OFF_SLAB) {
756 mgmt_size = 0;
757 nr_objs = slab_size / buffer_size;
758
759 if (nr_objs > SLAB_LIMIT)
760 nr_objs = SLAB_LIMIT;
761 } else {
762 /*
763 * Ignore padding for the initial guess. The padding
764 * is at most @align-1 bytes, and @buffer_size is at
765 * least @align. In the worst case, this result will
766 * be one greater than the number of objects that fit
767 * into the memory allocation when taking the padding
768 * into account.
769 */
770 nr_objs = (slab_size - sizeof(struct slab)) /
771 (buffer_size + sizeof(kmem_bufctl_t));
772
773 /*
774 * This calculated number will be either the right
775 * amount, or one greater than what we want.
776 */
777 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
778 > slab_size)
779 nr_objs--;
780
781 if (nr_objs > SLAB_LIMIT)
782 nr_objs = SLAB_LIMIT;
783
784 mgmt_size = slab_mgmt_size(nr_objs, align);
785 }
786 *num = nr_objs;
787 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
788 }
789
790 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
791
792 static void __slab_error(const char *function, struct kmem_cache *cachep,
793 char *msg)
794 {
795 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
796 function, cachep->name, msg);
797 dump_stack();
798 }
799
800 /*
801 * By default on NUMA we use alien caches to stage the freeing of
802 * objects allocated from other nodes. This causes massive memory
803 * inefficiencies when using fake NUMA setup to split memory into a
804 * large number of small nodes, so it can be disabled on the command
805 * line
806 */
807
808 static int use_alien_caches __read_mostly = 1;
809 static int __init noaliencache_setup(char *s)
810 {
811 use_alien_caches = 0;
812 return 1;
813 }
814 __setup("noaliencache", noaliencache_setup);
815
816 #ifdef CONFIG_NUMA
817 /*
818 * Special reaping functions for NUMA systems called from cache_reap().
819 * These take care of doing round robin flushing of alien caches (containing
820 * objects freed on different nodes from which they were allocated) and the
821 * flushing of remote pcps by calling drain_node_pages.
822 */
823 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
824
825 static void init_reap_node(int cpu)
826 {
827 int node;
828
829 node = next_node(cpu_to_mem(cpu), node_online_map);
830 if (node == MAX_NUMNODES)
831 node = first_node(node_online_map);
832
833 per_cpu(slab_reap_node, cpu) = node;
834 }
835
836 static void next_reap_node(void)
837 {
838 int node = __this_cpu_read(slab_reap_node);
839
840 node = next_node(node, node_online_map);
841 if (unlikely(node >= MAX_NUMNODES))
842 node = first_node(node_online_map);
843 __this_cpu_write(slab_reap_node, node);
844 }
845
846 #else
847 #define init_reap_node(cpu) do { } while (0)
848 #define next_reap_node(void) do { } while (0)
849 #endif
850
851 /*
852 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
853 * via the workqueue/eventd.
854 * Add the CPU number into the expiration time to minimize the possibility of
855 * the CPUs getting into lockstep and contending for the global cache chain
856 * lock.
857 */
858 static void __cpuinit start_cpu_timer(int cpu)
859 {
860 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
861
862 /*
863 * When this gets called from do_initcalls via cpucache_init(),
864 * init_workqueues() has already run, so keventd will be setup
865 * at that time.
866 */
867 if (keventd_up() && reap_work->work.func == NULL) {
868 init_reap_node(cpu);
869 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
870 schedule_delayed_work_on(cpu, reap_work,
871 __round_jiffies_relative(HZ, cpu));
872 }
873 }
874
875 static struct array_cache *alloc_arraycache(int node, int entries,
876 int batchcount, gfp_t gfp)
877 {
878 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
879 struct array_cache *nc = NULL;
880
881 nc = kmalloc_node(memsize, gfp, node);
882 /*
883 * The array_cache structures contain pointers to free object.
884 * However, when such objects are allocated or transferred to another
885 * cache the pointers are not cleared and they could be counted as
886 * valid references during a kmemleak scan. Therefore, kmemleak must
887 * not scan such objects.
888 */
889 kmemleak_no_scan(nc);
890 if (nc) {
891 nc->avail = 0;
892 nc->limit = entries;
893 nc->batchcount = batchcount;
894 nc->touched = 0;
895 spin_lock_init(&nc->lock);
896 }
897 return nc;
898 }
899
900 /*
901 * Transfer objects in one arraycache to another.
902 * Locking must be handled by the caller.
903 *
904 * Return the number of entries transferred.
905 */
906 static int transfer_objects(struct array_cache *to,
907 struct array_cache *from, unsigned int max)
908 {
909 /* Figure out how many entries to transfer */
910 int nr = min3(from->avail, max, to->limit - to->avail);
911
912 if (!nr)
913 return 0;
914
915 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
916 sizeof(void *) *nr);
917
918 from->avail -= nr;
919 to->avail += nr;
920 return nr;
921 }
922
923 #ifndef CONFIG_NUMA
924
925 #define drain_alien_cache(cachep, alien) do { } while (0)
926 #define reap_alien(cachep, l3) do { } while (0)
927
928 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
929 {
930 return (struct array_cache **)BAD_ALIEN_MAGIC;
931 }
932
933 static inline void free_alien_cache(struct array_cache **ac_ptr)
934 {
935 }
936
937 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
938 {
939 return 0;
940 }
941
942 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
943 gfp_t flags)
944 {
945 return NULL;
946 }
947
948 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
949 gfp_t flags, int nodeid)
950 {
951 return NULL;
952 }
953
954 #else /* CONFIG_NUMA */
955
956 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
957 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
958
959 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
960 {
961 struct array_cache **ac_ptr;
962 int memsize = sizeof(void *) * nr_node_ids;
963 int i;
964
965 if (limit > 1)
966 limit = 12;
967 ac_ptr = kzalloc_node(memsize, gfp, node);
968 if (ac_ptr) {
969 for_each_node(i) {
970 if (i == node || !node_online(i))
971 continue;
972 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
973 if (!ac_ptr[i]) {
974 for (i--; i >= 0; i--)
975 kfree(ac_ptr[i]);
976 kfree(ac_ptr);
977 return NULL;
978 }
979 }
980 }
981 return ac_ptr;
982 }
983
984 static void free_alien_cache(struct array_cache **ac_ptr)
985 {
986 int i;
987
988 if (!ac_ptr)
989 return;
990 for_each_node(i)
991 kfree(ac_ptr[i]);
992 kfree(ac_ptr);
993 }
994
995 static void __drain_alien_cache(struct kmem_cache *cachep,
996 struct array_cache *ac, int node)
997 {
998 struct kmem_list3 *rl3 = cachep->nodelists[node];
999
1000 if (ac->avail) {
1001 spin_lock(&rl3->list_lock);
1002 /*
1003 * Stuff objects into the remote nodes shared array first.
1004 * That way we could avoid the overhead of putting the objects
1005 * into the free lists and getting them back later.
1006 */
1007 if (rl3->shared)
1008 transfer_objects(rl3->shared, ac, ac->limit);
1009
1010 free_block(cachep, ac->entry, ac->avail, node);
1011 ac->avail = 0;
1012 spin_unlock(&rl3->list_lock);
1013 }
1014 }
1015
1016 /*
1017 * Called from cache_reap() to regularly drain alien caches round robin.
1018 */
1019 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1020 {
1021 int node = __this_cpu_read(slab_reap_node);
1022
1023 if (l3->alien) {
1024 struct array_cache *ac = l3->alien[node];
1025
1026 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1027 __drain_alien_cache(cachep, ac, node);
1028 spin_unlock_irq(&ac->lock);
1029 }
1030 }
1031 }
1032
1033 static void drain_alien_cache(struct kmem_cache *cachep,
1034 struct array_cache **alien)
1035 {
1036 int i = 0;
1037 struct array_cache *ac;
1038 unsigned long flags;
1039
1040 for_each_online_node(i) {
1041 ac = alien[i];
1042 if (ac) {
1043 spin_lock_irqsave(&ac->lock, flags);
1044 __drain_alien_cache(cachep, ac, i);
1045 spin_unlock_irqrestore(&ac->lock, flags);
1046 }
1047 }
1048 }
1049
1050 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1051 {
1052 struct slab *slabp = virt_to_slab(objp);
1053 int nodeid = slabp->nodeid;
1054 struct kmem_list3 *l3;
1055 struct array_cache *alien = NULL;
1056 int node;
1057
1058 node = numa_mem_id();
1059
1060 /*
1061 * Make sure we are not freeing a object from another node to the array
1062 * cache on this cpu.
1063 */
1064 if (likely(slabp->nodeid == node))
1065 return 0;
1066
1067 l3 = cachep->nodelists[node];
1068 STATS_INC_NODEFREES(cachep);
1069 if (l3->alien && l3->alien[nodeid]) {
1070 alien = l3->alien[nodeid];
1071 spin_lock(&alien->lock);
1072 if (unlikely(alien->avail == alien->limit)) {
1073 STATS_INC_ACOVERFLOW(cachep);
1074 __drain_alien_cache(cachep, alien, nodeid);
1075 }
1076 alien->entry[alien->avail++] = objp;
1077 spin_unlock(&alien->lock);
1078 } else {
1079 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1080 free_block(cachep, &objp, 1, nodeid);
1081 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1082 }
1083 return 1;
1084 }
1085 #endif
1086
1087 /*
1088 * Allocates and initializes nodelists for a node on each slab cache, used for
1089 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1090 * will be allocated off-node since memory is not yet online for the new node.
1091 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1092 * already in use.
1093 *
1094 * Must hold cache_chain_mutex.
1095 */
1096 static int init_cache_nodelists_node(int node)
1097 {
1098 struct kmem_cache *cachep;
1099 struct kmem_list3 *l3;
1100 const int memsize = sizeof(struct kmem_list3);
1101
1102 list_for_each_entry(cachep, &cache_chain, next) {
1103 /*
1104 * Set up the size64 kmemlist for cpu before we can
1105 * begin anything. Make sure some other cpu on this
1106 * node has not already allocated this
1107 */
1108 if (!cachep->nodelists[node]) {
1109 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1110 if (!l3)
1111 return -ENOMEM;
1112 kmem_list3_init(l3);
1113 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1114 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1115
1116 /*
1117 * The l3s don't come and go as CPUs come and
1118 * go. cache_chain_mutex is sufficient
1119 * protection here.
1120 */
1121 cachep->nodelists[node] = l3;
1122 }
1123
1124 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1125 cachep->nodelists[node]->free_limit =
1126 (1 + nr_cpus_node(node)) *
1127 cachep->batchcount + cachep->num;
1128 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1129 }
1130 return 0;
1131 }
1132
1133 static void __cpuinit cpuup_canceled(long cpu)
1134 {
1135 struct kmem_cache *cachep;
1136 struct kmem_list3 *l3 = NULL;
1137 int node = cpu_to_mem(cpu);
1138 const struct cpumask *mask = cpumask_of_node(node);
1139
1140 list_for_each_entry(cachep, &cache_chain, next) {
1141 struct array_cache *nc;
1142 struct array_cache *shared;
1143 struct array_cache **alien;
1144
1145 /* cpu is dead; no one can alloc from it. */
1146 nc = cachep->array[cpu];
1147 cachep->array[cpu] = NULL;
1148 l3 = cachep->nodelists[node];
1149
1150 if (!l3)
1151 goto free_array_cache;
1152
1153 spin_lock_irq(&l3->list_lock);
1154
1155 /* Free limit for this kmem_list3 */
1156 l3->free_limit -= cachep->batchcount;
1157 if (nc)
1158 free_block(cachep, nc->entry, nc->avail, node);
1159
1160 if (!cpumask_empty(mask)) {
1161 spin_unlock_irq(&l3->list_lock);
1162 goto free_array_cache;
1163 }
1164
1165 shared = l3->shared;
1166 if (shared) {
1167 free_block(cachep, shared->entry,
1168 shared->avail, node);
1169 l3->shared = NULL;
1170 }
1171
1172 alien = l3->alien;
1173 l3->alien = NULL;
1174
1175 spin_unlock_irq(&l3->list_lock);
1176
1177 kfree(shared);
1178 if (alien) {
1179 drain_alien_cache(cachep, alien);
1180 free_alien_cache(alien);
1181 }
1182 free_array_cache:
1183 kfree(nc);
1184 }
1185 /*
1186 * In the previous loop, all the objects were freed to
1187 * the respective cache's slabs, now we can go ahead and
1188 * shrink each nodelist to its limit.
1189 */
1190 list_for_each_entry(cachep, &cache_chain, next) {
1191 l3 = cachep->nodelists[node];
1192 if (!l3)
1193 continue;
1194 drain_freelist(cachep, l3, l3->free_objects);
1195 }
1196 }
1197
1198 static int __cpuinit cpuup_prepare(long cpu)
1199 {
1200 struct kmem_cache *cachep;
1201 struct kmem_list3 *l3 = NULL;
1202 int node = cpu_to_mem(cpu);
1203 int err;
1204
1205 /*
1206 * We need to do this right in the beginning since
1207 * alloc_arraycache's are going to use this list.
1208 * kmalloc_node allows us to add the slab to the right
1209 * kmem_list3 and not this cpu's kmem_list3
1210 */
1211 err = init_cache_nodelists_node(node);
1212 if (err < 0)
1213 goto bad;
1214
1215 /*
1216 * Now we can go ahead with allocating the shared arrays and
1217 * array caches
1218 */
1219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
1221 struct array_cache *shared = NULL;
1222 struct array_cache **alien = NULL;
1223
1224 nc = alloc_arraycache(node, cachep->limit,
1225 cachep->batchcount, GFP_KERNEL);
1226 if (!nc)
1227 goto bad;
1228 if (cachep->shared) {
1229 shared = alloc_arraycache(node,
1230 cachep->shared * cachep->batchcount,
1231 0xbaadf00d, GFP_KERNEL);
1232 if (!shared) {
1233 kfree(nc);
1234 goto bad;
1235 }
1236 }
1237 if (use_alien_caches) {
1238 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1239 if (!alien) {
1240 kfree(shared);
1241 kfree(nc);
1242 goto bad;
1243 }
1244 }
1245 cachep->array[cpu] = nc;
1246 l3 = cachep->nodelists[node];
1247 BUG_ON(!l3);
1248
1249 spin_lock_irq(&l3->list_lock);
1250 if (!l3->shared) {
1251 /*
1252 * We are serialised from CPU_DEAD or
1253 * CPU_UP_CANCELLED by the cpucontrol lock
1254 */
1255 l3->shared = shared;
1256 shared = NULL;
1257 }
1258 #ifdef CONFIG_NUMA
1259 if (!l3->alien) {
1260 l3->alien = alien;
1261 alien = NULL;
1262 }
1263 #endif
1264 spin_unlock_irq(&l3->list_lock);
1265 kfree(shared);
1266 free_alien_cache(alien);
1267 }
1268 init_node_lock_keys(node);
1269
1270 return 0;
1271 bad:
1272 cpuup_canceled(cpu);
1273 return -ENOMEM;
1274 }
1275
1276 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1277 unsigned long action, void *hcpu)
1278 {
1279 long cpu = (long)hcpu;
1280 int err = 0;
1281
1282 switch (action) {
1283 case CPU_UP_PREPARE:
1284 case CPU_UP_PREPARE_FROZEN:
1285 mutex_lock(&cache_chain_mutex);
1286 err = cpuup_prepare(cpu);
1287 mutex_unlock(&cache_chain_mutex);
1288 break;
1289 case CPU_ONLINE:
1290 case CPU_ONLINE_FROZEN:
1291 start_cpu_timer(cpu);
1292 break;
1293 #ifdef CONFIG_HOTPLUG_CPU
1294 case CPU_DOWN_PREPARE:
1295 case CPU_DOWN_PREPARE_FROZEN:
1296 /*
1297 * Shutdown cache reaper. Note that the cache_chain_mutex is
1298 * held so that if cache_reap() is invoked it cannot do
1299 * anything expensive but will only modify reap_work
1300 * and reschedule the timer.
1301 */
1302 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1303 /* Now the cache_reaper is guaranteed to be not running. */
1304 per_cpu(slab_reap_work, cpu).work.func = NULL;
1305 break;
1306 case CPU_DOWN_FAILED:
1307 case CPU_DOWN_FAILED_FROZEN:
1308 start_cpu_timer(cpu);
1309 break;
1310 case CPU_DEAD:
1311 case CPU_DEAD_FROZEN:
1312 /*
1313 * Even if all the cpus of a node are down, we don't free the
1314 * kmem_list3 of any cache. This to avoid a race between
1315 * cpu_down, and a kmalloc allocation from another cpu for
1316 * memory from the node of the cpu going down. The list3
1317 * structure is usually allocated from kmem_cache_create() and
1318 * gets destroyed at kmem_cache_destroy().
1319 */
1320 /* fall through */
1321 #endif
1322 case CPU_UP_CANCELED:
1323 case CPU_UP_CANCELED_FROZEN:
1324 mutex_lock(&cache_chain_mutex);
1325 cpuup_canceled(cpu);
1326 mutex_unlock(&cache_chain_mutex);
1327 break;
1328 }
1329 return notifier_from_errno(err);
1330 }
1331
1332 static struct notifier_block __cpuinitdata cpucache_notifier = {
1333 &cpuup_callback, NULL, 0
1334 };
1335
1336 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1337 /*
1338 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1339 * Returns -EBUSY if all objects cannot be drained so that the node is not
1340 * removed.
1341 *
1342 * Must hold cache_chain_mutex.
1343 */
1344 static int __meminit drain_cache_nodelists_node(int node)
1345 {
1346 struct kmem_cache *cachep;
1347 int ret = 0;
1348
1349 list_for_each_entry(cachep, &cache_chain, next) {
1350 struct kmem_list3 *l3;
1351
1352 l3 = cachep->nodelists[node];
1353 if (!l3)
1354 continue;
1355
1356 drain_freelist(cachep, l3, l3->free_objects);
1357
1358 if (!list_empty(&l3->slabs_full) ||
1359 !list_empty(&l3->slabs_partial)) {
1360 ret = -EBUSY;
1361 break;
1362 }
1363 }
1364 return ret;
1365 }
1366
1367 static int __meminit slab_memory_callback(struct notifier_block *self,
1368 unsigned long action, void *arg)
1369 {
1370 struct memory_notify *mnb = arg;
1371 int ret = 0;
1372 int nid;
1373
1374 nid = mnb->status_change_nid;
1375 if (nid < 0)
1376 goto out;
1377
1378 switch (action) {
1379 case MEM_GOING_ONLINE:
1380 mutex_lock(&cache_chain_mutex);
1381 ret = init_cache_nodelists_node(nid);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1384 case MEM_GOING_OFFLINE:
1385 mutex_lock(&cache_chain_mutex);
1386 ret = drain_cache_nodelists_node(nid);
1387 mutex_unlock(&cache_chain_mutex);
1388 break;
1389 case MEM_ONLINE:
1390 case MEM_OFFLINE:
1391 case MEM_CANCEL_ONLINE:
1392 case MEM_CANCEL_OFFLINE:
1393 break;
1394 }
1395 out:
1396 return notifier_from_errno(ret);
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1399
1400 /*
1401 * swap the static kmem_list3 with kmalloced memory
1402 */
1403 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1404 int nodeid)
1405 {
1406 struct kmem_list3 *ptr;
1407
1408 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1409 BUG_ON(!ptr);
1410
1411 memcpy(ptr, list, sizeof(struct kmem_list3));
1412 /*
1413 * Do not assume that spinlocks can be initialized via memcpy:
1414 */
1415 spin_lock_init(&ptr->list_lock);
1416
1417 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1418 cachep->nodelists[nodeid] = ptr;
1419 }
1420
1421 /*
1422 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1423 * size of kmem_list3.
1424 */
1425 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1426 {
1427 int node;
1428
1429 for_each_online_node(node) {
1430 cachep->nodelists[node] = &initkmem_list3[index + node];
1431 cachep->nodelists[node]->next_reap = jiffies +
1432 REAPTIMEOUT_LIST3 +
1433 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1434 }
1435 }
1436
1437 /*
1438 * Initialisation. Called after the page allocator have been initialised and
1439 * before smp_init().
1440 */
1441 void __init kmem_cache_init(void)
1442 {
1443 size_t left_over;
1444 struct cache_sizes *sizes;
1445 struct cache_names *names;
1446 int i;
1447 int order;
1448 int node;
1449
1450 if (num_possible_nodes() == 1)
1451 use_alien_caches = 0;
1452
1453 for (i = 0; i < NUM_INIT_LISTS; i++) {
1454 kmem_list3_init(&initkmem_list3[i]);
1455 if (i < MAX_NUMNODES)
1456 cache_cache.nodelists[i] = NULL;
1457 }
1458 set_up_list3s(&cache_cache, CACHE_CACHE);
1459
1460 /*
1461 * Fragmentation resistance on low memory - only use bigger
1462 * page orders on machines with more than 32MB of memory.
1463 */
1464 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1465 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1466
1467 /* Bootstrap is tricky, because several objects are allocated
1468 * from caches that do not exist yet:
1469 * 1) initialize the cache_cache cache: it contains the struct
1470 * kmem_cache structures of all caches, except cache_cache itself:
1471 * cache_cache is statically allocated.
1472 * Initially an __init data area is used for the head array and the
1473 * kmem_list3 structures, it's replaced with a kmalloc allocated
1474 * array at the end of the bootstrap.
1475 * 2) Create the first kmalloc cache.
1476 * The struct kmem_cache for the new cache is allocated normally.
1477 * An __init data area is used for the head array.
1478 * 3) Create the remaining kmalloc caches, with minimally sized
1479 * head arrays.
1480 * 4) Replace the __init data head arrays for cache_cache and the first
1481 * kmalloc cache with kmalloc allocated arrays.
1482 * 5) Replace the __init data for kmem_list3 for cache_cache and
1483 * the other cache's with kmalloc allocated memory.
1484 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1485 */
1486
1487 node = numa_mem_id();
1488
1489 /* 1) create the cache_cache */
1490 INIT_LIST_HEAD(&cache_chain);
1491 list_add(&cache_cache.next, &cache_chain);
1492 cache_cache.colour_off = cache_line_size();
1493 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1494 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1495
1496 /*
1497 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1498 */
1499 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1500 nr_node_ids * sizeof(struct kmem_list3 *);
1501 #if DEBUG
1502 cache_cache.obj_size = cache_cache.buffer_size;
1503 #endif
1504 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1505 cache_line_size());
1506 cache_cache.reciprocal_buffer_size =
1507 reciprocal_value(cache_cache.buffer_size);
1508
1509 for (order = 0; order < MAX_ORDER; order++) {
1510 cache_estimate(order, cache_cache.buffer_size,
1511 cache_line_size(), 0, &left_over, &cache_cache.num);
1512 if (cache_cache.num)
1513 break;
1514 }
1515 BUG_ON(!cache_cache.num);
1516 cache_cache.gfporder = order;
1517 cache_cache.colour = left_over / cache_cache.colour_off;
1518 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1519 sizeof(struct slab), cache_line_size());
1520
1521 /* 2+3) create the kmalloc caches */
1522 sizes = malloc_sizes;
1523 names = cache_names;
1524
1525 /*
1526 * Initialize the caches that provide memory for the array cache and the
1527 * kmem_list3 structures first. Without this, further allocations will
1528 * bug.
1529 */
1530
1531 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1532 sizes[INDEX_AC].cs_size,
1533 ARCH_KMALLOC_MINALIGN,
1534 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1535 NULL);
1536
1537 if (INDEX_AC != INDEX_L3) {
1538 sizes[INDEX_L3].cs_cachep =
1539 kmem_cache_create(names[INDEX_L3].name,
1540 sizes[INDEX_L3].cs_size,
1541 ARCH_KMALLOC_MINALIGN,
1542 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1543 NULL);
1544 }
1545
1546 slab_early_init = 0;
1547
1548 while (sizes->cs_size != ULONG_MAX) {
1549 /*
1550 * For performance, all the general caches are L1 aligned.
1551 * This should be particularly beneficial on SMP boxes, as it
1552 * eliminates "false sharing".
1553 * Note for systems short on memory removing the alignment will
1554 * allow tighter packing of the smaller caches.
1555 */
1556 if (!sizes->cs_cachep) {
1557 sizes->cs_cachep = kmem_cache_create(names->name,
1558 sizes->cs_size,
1559 ARCH_KMALLOC_MINALIGN,
1560 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1561 NULL);
1562 }
1563 #ifdef CONFIG_ZONE_DMA
1564 sizes->cs_dmacachep = kmem_cache_create(
1565 names->name_dma,
1566 sizes->cs_size,
1567 ARCH_KMALLOC_MINALIGN,
1568 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1569 SLAB_PANIC,
1570 NULL);
1571 #endif
1572 sizes++;
1573 names++;
1574 }
1575 /* 4) Replace the bootstrap head arrays */
1576 {
1577 struct array_cache *ptr;
1578
1579 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1580
1581 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1582 memcpy(ptr, cpu_cache_get(&cache_cache),
1583 sizeof(struct arraycache_init));
1584 /*
1585 * Do not assume that spinlocks can be initialized via memcpy:
1586 */
1587 spin_lock_init(&ptr->lock);
1588
1589 cache_cache.array[smp_processor_id()] = ptr;
1590
1591 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1592
1593 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1594 != &initarray_generic.cache);
1595 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1596 sizeof(struct arraycache_init));
1597 /*
1598 * Do not assume that spinlocks can be initialized via memcpy:
1599 */
1600 spin_lock_init(&ptr->lock);
1601
1602 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1603 ptr;
1604 }
1605 /* 5) Replace the bootstrap kmem_list3's */
1606 {
1607 int nid;
1608
1609 for_each_online_node(nid) {
1610 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1611
1612 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1613 &initkmem_list3[SIZE_AC + nid], nid);
1614
1615 if (INDEX_AC != INDEX_L3) {
1616 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1617 &initkmem_list3[SIZE_L3 + nid], nid);
1618 }
1619 }
1620 }
1621
1622 g_cpucache_up = EARLY;
1623 }
1624
1625 void __init kmem_cache_init_late(void)
1626 {
1627 struct kmem_cache *cachep;
1628
1629 /* 6) resize the head arrays to their final sizes */
1630 mutex_lock(&cache_chain_mutex);
1631 list_for_each_entry(cachep, &cache_chain, next)
1632 if (enable_cpucache(cachep, GFP_NOWAIT))
1633 BUG();
1634 mutex_unlock(&cache_chain_mutex);
1635
1636 /* Done! */
1637 g_cpucache_up = FULL;
1638
1639 /* Annotate slab for lockdep -- annotate the malloc caches */
1640 init_lock_keys();
1641
1642 /*
1643 * Register a cpu startup notifier callback that initializes
1644 * cpu_cache_get for all new cpus
1645 */
1646 register_cpu_notifier(&cpucache_notifier);
1647
1648 #ifdef CONFIG_NUMA
1649 /*
1650 * Register a memory hotplug callback that initializes and frees
1651 * nodelists.
1652 */
1653 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1654 #endif
1655
1656 /*
1657 * The reap timers are started later, with a module init call: That part
1658 * of the kernel is not yet operational.
1659 */
1660 }
1661
1662 static int __init cpucache_init(void)
1663 {
1664 int cpu;
1665
1666 /*
1667 * Register the timers that return unneeded pages to the page allocator
1668 */
1669 for_each_online_cpu(cpu)
1670 start_cpu_timer(cpu);
1671 return 0;
1672 }
1673 __initcall(cpucache_init);
1674
1675 /*
1676 * Interface to system's page allocator. No need to hold the cache-lock.
1677 *
1678 * If we requested dmaable memory, we will get it. Even if we
1679 * did not request dmaable memory, we might get it, but that
1680 * would be relatively rare and ignorable.
1681 */
1682 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1683 {
1684 struct page *page;
1685 int nr_pages;
1686 int i;
1687
1688 #ifndef CONFIG_MMU
1689 /*
1690 * Nommu uses slab's for process anonymous memory allocations, and thus
1691 * requires __GFP_COMP to properly refcount higher order allocations
1692 */
1693 flags |= __GFP_COMP;
1694 #endif
1695
1696 flags |= cachep->gfpflags;
1697 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1698 flags |= __GFP_RECLAIMABLE;
1699
1700 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1701 if (!page)
1702 return NULL;
1703
1704 nr_pages = (1 << cachep->gfporder);
1705 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1706 add_zone_page_state(page_zone(page),
1707 NR_SLAB_RECLAIMABLE, nr_pages);
1708 else
1709 add_zone_page_state(page_zone(page),
1710 NR_SLAB_UNRECLAIMABLE, nr_pages);
1711 for (i = 0; i < nr_pages; i++)
1712 __SetPageSlab(page + i);
1713
1714 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1715 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1716
1717 if (cachep->ctor)
1718 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1719 else
1720 kmemcheck_mark_unallocated_pages(page, nr_pages);
1721 }
1722
1723 return page_address(page);
1724 }
1725
1726 /*
1727 * Interface to system's page release.
1728 */
1729 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1730 {
1731 unsigned long i = (1 << cachep->gfporder);
1732 struct page *page = virt_to_page(addr);
1733 const unsigned long nr_freed = i;
1734
1735 kmemcheck_free_shadow(page, cachep->gfporder);
1736
1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_RECLAIMABLE, nr_freed);
1740 else
1741 sub_zone_page_state(page_zone(page),
1742 NR_SLAB_UNRECLAIMABLE, nr_freed);
1743 while (i--) {
1744 BUG_ON(!PageSlab(page));
1745 __ClearPageSlab(page);
1746 page++;
1747 }
1748 if (current->reclaim_state)
1749 current->reclaim_state->reclaimed_slab += nr_freed;
1750 free_pages((unsigned long)addr, cachep->gfporder);
1751 }
1752
1753 static void kmem_rcu_free(struct rcu_head *head)
1754 {
1755 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1756 struct kmem_cache *cachep = slab_rcu->cachep;
1757
1758 kmem_freepages(cachep, slab_rcu->addr);
1759 if (OFF_SLAB(cachep))
1760 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1761 }
1762
1763 #if DEBUG
1764
1765 #ifdef CONFIG_DEBUG_PAGEALLOC
1766 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1767 unsigned long caller)
1768 {
1769 int size = obj_size(cachep);
1770
1771 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1772
1773 if (size < 5 * sizeof(unsigned long))
1774 return;
1775
1776 *addr++ = 0x12345678;
1777 *addr++ = caller;
1778 *addr++ = smp_processor_id();
1779 size -= 3 * sizeof(unsigned long);
1780 {
1781 unsigned long *sptr = &caller;
1782 unsigned long svalue;
1783
1784 while (!kstack_end(sptr)) {
1785 svalue = *sptr++;
1786 if (kernel_text_address(svalue)) {
1787 *addr++ = svalue;
1788 size -= sizeof(unsigned long);
1789 if (size <= sizeof(unsigned long))
1790 break;
1791 }
1792 }
1793
1794 }
1795 *addr++ = 0x87654321;
1796 }
1797 #endif
1798
1799 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1800 {
1801 int size = obj_size(cachep);
1802 addr = &((char *)addr)[obj_offset(cachep)];
1803
1804 memset(addr, val, size);
1805 *(unsigned char *)(addr + size - 1) = POISON_END;
1806 }
1807
1808 static void dump_line(char *data, int offset, int limit)
1809 {
1810 int i;
1811 unsigned char error = 0;
1812 int bad_count = 0;
1813
1814 printk(KERN_ERR "%03x:", offset);
1815 for (i = 0; i < limit; i++) {
1816 if (data[offset + i] != POISON_FREE) {
1817 error = data[offset + i];
1818 bad_count++;
1819 }
1820 printk(" %02x", (unsigned char)data[offset + i]);
1821 }
1822 printk("\n");
1823
1824 if (bad_count == 1) {
1825 error ^= POISON_FREE;
1826 if (!(error & (error - 1))) {
1827 printk(KERN_ERR "Single bit error detected. Probably "
1828 "bad RAM.\n");
1829 #ifdef CONFIG_X86
1830 printk(KERN_ERR "Run memtest86+ or a similar memory "
1831 "test tool.\n");
1832 #else
1833 printk(KERN_ERR "Run a memory test tool.\n");
1834 #endif
1835 }
1836 }
1837 }
1838 #endif
1839
1840 #if DEBUG
1841
1842 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1843 {
1844 int i, size;
1845 char *realobj;
1846
1847 if (cachep->flags & SLAB_RED_ZONE) {
1848 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1849 *dbg_redzone1(cachep, objp),
1850 *dbg_redzone2(cachep, objp));
1851 }
1852
1853 if (cachep->flags & SLAB_STORE_USER) {
1854 printk(KERN_ERR "Last user: [<%p>]",
1855 *dbg_userword(cachep, objp));
1856 print_symbol("(%s)",
1857 (unsigned long)*dbg_userword(cachep, objp));
1858 printk("\n");
1859 }
1860 realobj = (char *)objp + obj_offset(cachep);
1861 size = obj_size(cachep);
1862 for (i = 0; i < size && lines; i += 16, lines--) {
1863 int limit;
1864 limit = 16;
1865 if (i + limit > size)
1866 limit = size - i;
1867 dump_line(realobj, i, limit);
1868 }
1869 }
1870
1871 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1872 {
1873 char *realobj;
1874 int size, i;
1875 int lines = 0;
1876
1877 realobj = (char *)objp + obj_offset(cachep);
1878 size = obj_size(cachep);
1879
1880 for (i = 0; i < size; i++) {
1881 char exp = POISON_FREE;
1882 if (i == size - 1)
1883 exp = POISON_END;
1884 if (realobj[i] != exp) {
1885 int limit;
1886 /* Mismatch ! */
1887 /* Print header */
1888 if (lines == 0) {
1889 printk(KERN_ERR
1890 "Slab corruption: %s start=%p, len=%d\n",
1891 cachep->name, realobj, size);
1892 print_objinfo(cachep, objp, 0);
1893 }
1894 /* Hexdump the affected line */
1895 i = (i / 16) * 16;
1896 limit = 16;
1897 if (i + limit > size)
1898 limit = size - i;
1899 dump_line(realobj, i, limit);
1900 i += 16;
1901 lines++;
1902 /* Limit to 5 lines */
1903 if (lines > 5)
1904 break;
1905 }
1906 }
1907 if (lines != 0) {
1908 /* Print some data about the neighboring objects, if they
1909 * exist:
1910 */
1911 struct slab *slabp = virt_to_slab(objp);
1912 unsigned int objnr;
1913
1914 objnr = obj_to_index(cachep, slabp, objp);
1915 if (objnr) {
1916 objp = index_to_obj(cachep, slabp, objnr - 1);
1917 realobj = (char *)objp + obj_offset(cachep);
1918 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1919 realobj, size);
1920 print_objinfo(cachep, objp, 2);
1921 }
1922 if (objnr + 1 < cachep->num) {
1923 objp = index_to_obj(cachep, slabp, objnr + 1);
1924 realobj = (char *)objp + obj_offset(cachep);
1925 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1926 realobj, size);
1927 print_objinfo(cachep, objp, 2);
1928 }
1929 }
1930 }
1931 #endif
1932
1933 #if DEBUG
1934 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1935 {
1936 int i;
1937 for (i = 0; i < cachep->num; i++) {
1938 void *objp = index_to_obj(cachep, slabp, i);
1939
1940 if (cachep->flags & SLAB_POISON) {
1941 #ifdef CONFIG_DEBUG_PAGEALLOC
1942 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1943 OFF_SLAB(cachep))
1944 kernel_map_pages(virt_to_page(objp),
1945 cachep->buffer_size / PAGE_SIZE, 1);
1946 else
1947 check_poison_obj(cachep, objp);
1948 #else
1949 check_poison_obj(cachep, objp);
1950 #endif
1951 }
1952 if (cachep->flags & SLAB_RED_ZONE) {
1953 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1954 slab_error(cachep, "start of a freed object "
1955 "was overwritten");
1956 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1957 slab_error(cachep, "end of a freed object "
1958 "was overwritten");
1959 }
1960 }
1961 }
1962 #else
1963 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1964 {
1965 }
1966 #endif
1967
1968 /**
1969 * slab_destroy - destroy and release all objects in a slab
1970 * @cachep: cache pointer being destroyed
1971 * @slabp: slab pointer being destroyed
1972 *
1973 * Destroy all the objs in a slab, and release the mem back to the system.
1974 * Before calling the slab must have been unlinked from the cache. The
1975 * cache-lock is not held/needed.
1976 */
1977 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1978 {
1979 void *addr = slabp->s_mem - slabp->colouroff;
1980
1981 slab_destroy_debugcheck(cachep, slabp);
1982 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1983 struct slab_rcu *slab_rcu;
1984
1985 slab_rcu = (struct slab_rcu *)slabp;
1986 slab_rcu->cachep = cachep;
1987 slab_rcu->addr = addr;
1988 call_rcu(&slab_rcu->head, kmem_rcu_free);
1989 } else {
1990 kmem_freepages(cachep, addr);
1991 if (OFF_SLAB(cachep))
1992 kmem_cache_free(cachep->slabp_cache, slabp);
1993 }
1994 }
1995
1996 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1997 {
1998 int i;
1999 struct kmem_list3 *l3;
2000
2001 for_each_online_cpu(i)
2002 kfree(cachep->array[i]);
2003
2004 /* NUMA: free the list3 structures */
2005 for_each_online_node(i) {
2006 l3 = cachep->nodelists[i];
2007 if (l3) {
2008 kfree(l3->shared);
2009 free_alien_cache(l3->alien);
2010 kfree(l3);
2011 }
2012 }
2013 kmem_cache_free(&cache_cache, cachep);
2014 }
2015
2016
2017 /**
2018 * calculate_slab_order - calculate size (page order) of slabs
2019 * @cachep: pointer to the cache that is being created
2020 * @size: size of objects to be created in this cache.
2021 * @align: required alignment for the objects.
2022 * @flags: slab allocation flags
2023 *
2024 * Also calculates the number of objects per slab.
2025 *
2026 * This could be made much more intelligent. For now, try to avoid using
2027 * high order pages for slabs. When the gfp() functions are more friendly
2028 * towards high-order requests, this should be changed.
2029 */
2030 static size_t calculate_slab_order(struct kmem_cache *cachep,
2031 size_t size, size_t align, unsigned long flags)
2032 {
2033 unsigned long offslab_limit;
2034 size_t left_over = 0;
2035 int gfporder;
2036
2037 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2038 unsigned int num;
2039 size_t remainder;
2040
2041 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2042 if (!num)
2043 continue;
2044
2045 if (flags & CFLGS_OFF_SLAB) {
2046 /*
2047 * Max number of objs-per-slab for caches which
2048 * use off-slab slabs. Needed to avoid a possible
2049 * looping condition in cache_grow().
2050 */
2051 offslab_limit = size - sizeof(struct slab);
2052 offslab_limit /= sizeof(kmem_bufctl_t);
2053
2054 if (num > offslab_limit)
2055 break;
2056 }
2057
2058 /* Found something acceptable - save it away */
2059 cachep->num = num;
2060 cachep->gfporder = gfporder;
2061 left_over = remainder;
2062
2063 /*
2064 * A VFS-reclaimable slab tends to have most allocations
2065 * as GFP_NOFS and we really don't want to have to be allocating
2066 * higher-order pages when we are unable to shrink dcache.
2067 */
2068 if (flags & SLAB_RECLAIM_ACCOUNT)
2069 break;
2070
2071 /*
2072 * Large number of objects is good, but very large slabs are
2073 * currently bad for the gfp()s.
2074 */
2075 if (gfporder >= slab_break_gfp_order)
2076 break;
2077
2078 /*
2079 * Acceptable internal fragmentation?
2080 */
2081 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2082 break;
2083 }
2084 return left_over;
2085 }
2086
2087 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2088 {
2089 if (g_cpucache_up == FULL)
2090 return enable_cpucache(cachep, gfp);
2091
2092 if (g_cpucache_up == NONE) {
2093 /*
2094 * Note: the first kmem_cache_create must create the cache
2095 * that's used by kmalloc(24), otherwise the creation of
2096 * further caches will BUG().
2097 */
2098 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2099
2100 /*
2101 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2102 * the first cache, then we need to set up all its list3s,
2103 * otherwise the creation of further caches will BUG().
2104 */
2105 set_up_list3s(cachep, SIZE_AC);
2106 if (INDEX_AC == INDEX_L3)
2107 g_cpucache_up = PARTIAL_L3;
2108 else
2109 g_cpucache_up = PARTIAL_AC;
2110 } else {
2111 cachep->array[smp_processor_id()] =
2112 kmalloc(sizeof(struct arraycache_init), gfp);
2113
2114 if (g_cpucache_up == PARTIAL_AC) {
2115 set_up_list3s(cachep, SIZE_L3);
2116 g_cpucache_up = PARTIAL_L3;
2117 } else {
2118 int node;
2119 for_each_online_node(node) {
2120 cachep->nodelists[node] =
2121 kmalloc_node(sizeof(struct kmem_list3),
2122 gfp, node);
2123 BUG_ON(!cachep->nodelists[node]);
2124 kmem_list3_init(cachep->nodelists[node]);
2125 }
2126 }
2127 }
2128 cachep->nodelists[numa_mem_id()]->next_reap =
2129 jiffies + REAPTIMEOUT_LIST3 +
2130 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2131
2132 cpu_cache_get(cachep)->avail = 0;
2133 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2134 cpu_cache_get(cachep)->batchcount = 1;
2135 cpu_cache_get(cachep)->touched = 0;
2136 cachep->batchcount = 1;
2137 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2138 return 0;
2139 }
2140
2141 /**
2142 * kmem_cache_create - Create a cache.
2143 * @name: A string which is used in /proc/slabinfo to identify this cache.
2144 * @size: The size of objects to be created in this cache.
2145 * @align: The required alignment for the objects.
2146 * @flags: SLAB flags
2147 * @ctor: A constructor for the objects.
2148 *
2149 * Returns a ptr to the cache on success, NULL on failure.
2150 * Cannot be called within a int, but can be interrupted.
2151 * The @ctor is run when new pages are allocated by the cache.
2152 *
2153 * @name must be valid until the cache is destroyed. This implies that
2154 * the module calling this has to destroy the cache before getting unloaded.
2155 *
2156 * The flags are
2157 *
2158 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2159 * to catch references to uninitialised memory.
2160 *
2161 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2162 * for buffer overruns.
2163 *
2164 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2165 * cacheline. This can be beneficial if you're counting cycles as closely
2166 * as davem.
2167 */
2168 struct kmem_cache *
2169 kmem_cache_create (const char *name, size_t size, size_t align,
2170 unsigned long flags, void (*ctor)(void *))
2171 {
2172 size_t left_over, slab_size, ralign;
2173 struct kmem_cache *cachep = NULL, *pc;
2174 gfp_t gfp;
2175
2176 /*
2177 * Sanity checks... these are all serious usage bugs.
2178 */
2179 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2180 size > KMALLOC_MAX_SIZE) {
2181 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2182 name);
2183 BUG();
2184 }
2185
2186 /*
2187 * We use cache_chain_mutex to ensure a consistent view of
2188 * cpu_online_mask as well. Please see cpuup_callback
2189 */
2190 if (slab_is_available()) {
2191 get_online_cpus();
2192 mutex_lock(&cache_chain_mutex);
2193 }
2194
2195 list_for_each_entry(pc, &cache_chain, next) {
2196 char tmp;
2197 int res;
2198
2199 /*
2200 * This happens when the module gets unloaded and doesn't
2201 * destroy its slab cache and no-one else reuses the vmalloc
2202 * area of the module. Print a warning.
2203 */
2204 res = probe_kernel_address(pc->name, tmp);
2205 if (res) {
2206 printk(KERN_ERR
2207 "SLAB: cache with size %d has lost its name\n",
2208 pc->buffer_size);
2209 continue;
2210 }
2211
2212 if (!strcmp(pc->name, name)) {
2213 printk(KERN_ERR
2214 "kmem_cache_create: duplicate cache %s\n", name);
2215 dump_stack();
2216 goto oops;
2217 }
2218 }
2219
2220 #if DEBUG
2221 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2222 #if FORCED_DEBUG
2223 /*
2224 * Enable redzoning and last user accounting, except for caches with
2225 * large objects, if the increased size would increase the object size
2226 * above the next power of two: caches with object sizes just above a
2227 * power of two have a significant amount of internal fragmentation.
2228 */
2229 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2230 2 * sizeof(unsigned long long)))
2231 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2232 if (!(flags & SLAB_DESTROY_BY_RCU))
2233 flags |= SLAB_POISON;
2234 #endif
2235 if (flags & SLAB_DESTROY_BY_RCU)
2236 BUG_ON(flags & SLAB_POISON);
2237 #endif
2238 /*
2239 * Always checks flags, a caller might be expecting debug support which
2240 * isn't available.
2241 */
2242 BUG_ON(flags & ~CREATE_MASK);
2243
2244 /*
2245 * Check that size is in terms of words. This is needed to avoid
2246 * unaligned accesses for some archs when redzoning is used, and makes
2247 * sure any on-slab bufctl's are also correctly aligned.
2248 */
2249 if (size & (BYTES_PER_WORD - 1)) {
2250 size += (BYTES_PER_WORD - 1);
2251 size &= ~(BYTES_PER_WORD - 1);
2252 }
2253
2254 /* calculate the final buffer alignment: */
2255
2256 /* 1) arch recommendation: can be overridden for debug */
2257 if (flags & SLAB_HWCACHE_ALIGN) {
2258 /*
2259 * Default alignment: as specified by the arch code. Except if
2260 * an object is really small, then squeeze multiple objects into
2261 * one cacheline.
2262 */
2263 ralign = cache_line_size();
2264 while (size <= ralign / 2)
2265 ralign /= 2;
2266 } else {
2267 ralign = BYTES_PER_WORD;
2268 }
2269
2270 /*
2271 * Redzoning and user store require word alignment or possibly larger.
2272 * Note this will be overridden by architecture or caller mandated
2273 * alignment if either is greater than BYTES_PER_WORD.
2274 */
2275 if (flags & SLAB_STORE_USER)
2276 ralign = BYTES_PER_WORD;
2277
2278 if (flags & SLAB_RED_ZONE) {
2279 ralign = REDZONE_ALIGN;
2280 /* If redzoning, ensure that the second redzone is suitably
2281 * aligned, by adjusting the object size accordingly. */
2282 size += REDZONE_ALIGN - 1;
2283 size &= ~(REDZONE_ALIGN - 1);
2284 }
2285
2286 /* 2) arch mandated alignment */
2287 if (ralign < ARCH_SLAB_MINALIGN) {
2288 ralign = ARCH_SLAB_MINALIGN;
2289 }
2290 /* 3) caller mandated alignment */
2291 if (ralign < align) {
2292 ralign = align;
2293 }
2294 /* disable debug if necessary */
2295 if (ralign > __alignof__(unsigned long long))
2296 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2297 /*
2298 * 4) Store it.
2299 */
2300 align = ralign;
2301
2302 if (slab_is_available())
2303 gfp = GFP_KERNEL;
2304 else
2305 gfp = GFP_NOWAIT;
2306
2307 /* Get cache's description obj. */
2308 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2309 if (!cachep)
2310 goto oops;
2311
2312 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2313 #if DEBUG
2314 cachep->obj_size = size;
2315
2316 /*
2317 * Both debugging options require word-alignment which is calculated
2318 * into align above.
2319 */
2320 if (flags & SLAB_RED_ZONE) {
2321 /* add space for red zone words */
2322 cachep->obj_offset += sizeof(unsigned long long);
2323 size += 2 * sizeof(unsigned long long);
2324 }
2325 if (flags & SLAB_STORE_USER) {
2326 /* user store requires one word storage behind the end of
2327 * the real object. But if the second red zone needs to be
2328 * aligned to 64 bits, we must allow that much space.
2329 */
2330 if (flags & SLAB_RED_ZONE)
2331 size += REDZONE_ALIGN;
2332 else
2333 size += BYTES_PER_WORD;
2334 }
2335 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2336 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2337 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2338 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2339 size = PAGE_SIZE;
2340 }
2341 #endif
2342 #endif
2343
2344 /*
2345 * Determine if the slab management is 'on' or 'off' slab.
2346 * (bootstrapping cannot cope with offslab caches so don't do
2347 * it too early on. Always use on-slab management when
2348 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2349 */
2350 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2351 !(flags & SLAB_NOLEAKTRACE))
2352 /*
2353 * Size is large, assume best to place the slab management obj
2354 * off-slab (should allow better packing of objs).
2355 */
2356 flags |= CFLGS_OFF_SLAB;
2357
2358 size = ALIGN(size, align);
2359
2360 left_over = calculate_slab_order(cachep, size, align, flags);
2361
2362 if (!cachep->num) {
2363 printk(KERN_ERR
2364 "kmem_cache_create: couldn't create cache %s.\n", name);
2365 kmem_cache_free(&cache_cache, cachep);
2366 cachep = NULL;
2367 goto oops;
2368 }
2369 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2370 + sizeof(struct slab), align);
2371
2372 /*
2373 * If the slab has been placed off-slab, and we have enough space then
2374 * move it on-slab. This is at the expense of any extra colouring.
2375 */
2376 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2377 flags &= ~CFLGS_OFF_SLAB;
2378 left_over -= slab_size;
2379 }
2380
2381 if (flags & CFLGS_OFF_SLAB) {
2382 /* really off slab. No need for manual alignment */
2383 slab_size =
2384 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2385
2386 #ifdef CONFIG_PAGE_POISONING
2387 /* If we're going to use the generic kernel_map_pages()
2388 * poisoning, then it's going to smash the contents of
2389 * the redzone and userword anyhow, so switch them off.
2390 */
2391 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2392 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2393 #endif
2394 }
2395
2396 cachep->colour_off = cache_line_size();
2397 /* Offset must be a multiple of the alignment. */
2398 if (cachep->colour_off < align)
2399 cachep->colour_off = align;
2400 cachep->colour = left_over / cachep->colour_off;
2401 cachep->slab_size = slab_size;
2402 cachep->flags = flags;
2403 cachep->gfpflags = 0;
2404 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2405 cachep->gfpflags |= GFP_DMA;
2406 cachep->buffer_size = size;
2407 cachep->reciprocal_buffer_size = reciprocal_value(size);
2408
2409 if (flags & CFLGS_OFF_SLAB) {
2410 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2411 /*
2412 * This is a possibility for one of the malloc_sizes caches.
2413 * But since we go off slab only for object size greater than
2414 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2415 * this should not happen at all.
2416 * But leave a BUG_ON for some lucky dude.
2417 */
2418 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2419 }
2420 cachep->ctor = ctor;
2421 cachep->name = name;
2422
2423 if (setup_cpu_cache(cachep, gfp)) {
2424 __kmem_cache_destroy(cachep);
2425 cachep = NULL;
2426 goto oops;
2427 }
2428
2429 /* cache setup completed, link it into the list */
2430 list_add(&cachep->next, &cache_chain);
2431 oops:
2432 if (!cachep && (flags & SLAB_PANIC))
2433 panic("kmem_cache_create(): failed to create slab `%s'\n",
2434 name);
2435 if (slab_is_available()) {
2436 mutex_unlock(&cache_chain_mutex);
2437 put_online_cpus();
2438 }
2439 return cachep;
2440 }
2441 EXPORT_SYMBOL(kmem_cache_create);
2442
2443 #if DEBUG
2444 static void check_irq_off(void)
2445 {
2446 BUG_ON(!irqs_disabled());
2447 }
2448
2449 static void check_irq_on(void)
2450 {
2451 BUG_ON(irqs_disabled());
2452 }
2453
2454 static void check_spinlock_acquired(struct kmem_cache *cachep)
2455 {
2456 #ifdef CONFIG_SMP
2457 check_irq_off();
2458 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2459 #endif
2460 }
2461
2462 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2463 {
2464 #ifdef CONFIG_SMP
2465 check_irq_off();
2466 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2467 #endif
2468 }
2469
2470 #else
2471 #define check_irq_off() do { } while(0)
2472 #define check_irq_on() do { } while(0)
2473 #define check_spinlock_acquired(x) do { } while(0)
2474 #define check_spinlock_acquired_node(x, y) do { } while(0)
2475 #endif
2476
2477 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2478 struct array_cache *ac,
2479 int force, int node);
2480
2481 static void do_drain(void *arg)
2482 {
2483 struct kmem_cache *cachep = arg;
2484 struct array_cache *ac;
2485 int node = numa_mem_id();
2486
2487 check_irq_off();
2488 ac = cpu_cache_get(cachep);
2489 spin_lock(&cachep->nodelists[node]->list_lock);
2490 free_block(cachep, ac->entry, ac->avail, node);
2491 spin_unlock(&cachep->nodelists[node]->list_lock);
2492 ac->avail = 0;
2493 }
2494
2495 static void drain_cpu_caches(struct kmem_cache *cachep)
2496 {
2497 struct kmem_list3 *l3;
2498 int node;
2499
2500 on_each_cpu(do_drain, cachep, 1);
2501 check_irq_on();
2502 for_each_online_node(node) {
2503 l3 = cachep->nodelists[node];
2504 if (l3 && l3->alien)
2505 drain_alien_cache(cachep, l3->alien);
2506 }
2507
2508 for_each_online_node(node) {
2509 l3 = cachep->nodelists[node];
2510 if (l3)
2511 drain_array(cachep, l3, l3->shared, 1, node);
2512 }
2513 }
2514
2515 /*
2516 * Remove slabs from the list of free slabs.
2517 * Specify the number of slabs to drain in tofree.
2518 *
2519 * Returns the actual number of slabs released.
2520 */
2521 static int drain_freelist(struct kmem_cache *cache,
2522 struct kmem_list3 *l3, int tofree)
2523 {
2524 struct list_head *p;
2525 int nr_freed;
2526 struct slab *slabp;
2527
2528 nr_freed = 0;
2529 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2530
2531 spin_lock_irq(&l3->list_lock);
2532 p = l3->slabs_free.prev;
2533 if (p == &l3->slabs_free) {
2534 spin_unlock_irq(&l3->list_lock);
2535 goto out;
2536 }
2537
2538 slabp = list_entry(p, struct slab, list);
2539 #if DEBUG
2540 BUG_ON(slabp->inuse);
2541 #endif
2542 list_del(&slabp->list);
2543 /*
2544 * Safe to drop the lock. The slab is no longer linked
2545 * to the cache.
2546 */
2547 l3->free_objects -= cache->num;
2548 spin_unlock_irq(&l3->list_lock);
2549 slab_destroy(cache, slabp);
2550 nr_freed++;
2551 }
2552 out:
2553 return nr_freed;
2554 }
2555
2556 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2557 static int __cache_shrink(struct kmem_cache *cachep)
2558 {
2559 int ret = 0, i = 0;
2560 struct kmem_list3 *l3;
2561
2562 drain_cpu_caches(cachep);
2563
2564 check_irq_on();
2565 for_each_online_node(i) {
2566 l3 = cachep->nodelists[i];
2567 if (!l3)
2568 continue;
2569
2570 drain_freelist(cachep, l3, l3->free_objects);
2571
2572 ret += !list_empty(&l3->slabs_full) ||
2573 !list_empty(&l3->slabs_partial);
2574 }
2575 return (ret ? 1 : 0);
2576 }
2577
2578 /**
2579 * kmem_cache_shrink - Shrink a cache.
2580 * @cachep: The cache to shrink.
2581 *
2582 * Releases as many slabs as possible for a cache.
2583 * To help debugging, a zero exit status indicates all slabs were released.
2584 */
2585 int kmem_cache_shrink(struct kmem_cache *cachep)
2586 {
2587 int ret;
2588 BUG_ON(!cachep || in_interrupt());
2589
2590 get_online_cpus();
2591 mutex_lock(&cache_chain_mutex);
2592 ret = __cache_shrink(cachep);
2593 mutex_unlock(&cache_chain_mutex);
2594 put_online_cpus();
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(kmem_cache_shrink);
2598
2599 /**
2600 * kmem_cache_destroy - delete a cache
2601 * @cachep: the cache to destroy
2602 *
2603 * Remove a &struct kmem_cache object from the slab cache.
2604 *
2605 * It is expected this function will be called by a module when it is
2606 * unloaded. This will remove the cache completely, and avoid a duplicate
2607 * cache being allocated each time a module is loaded and unloaded, if the
2608 * module doesn't have persistent in-kernel storage across loads and unloads.
2609 *
2610 * The cache must be empty before calling this function.
2611 *
2612 * The caller must guarantee that no one will allocate memory from the cache
2613 * during the kmem_cache_destroy().
2614 */
2615 void kmem_cache_destroy(struct kmem_cache *cachep)
2616 {
2617 BUG_ON(!cachep || in_interrupt());
2618
2619 /* Find the cache in the chain of caches. */
2620 get_online_cpus();
2621 mutex_lock(&cache_chain_mutex);
2622 /*
2623 * the chain is never empty, cache_cache is never destroyed
2624 */
2625 list_del(&cachep->next);
2626 if (__cache_shrink(cachep)) {
2627 slab_error(cachep, "Can't free all objects");
2628 list_add(&cachep->next, &cache_chain);
2629 mutex_unlock(&cache_chain_mutex);
2630 put_online_cpus();
2631 return;
2632 }
2633
2634 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2635 rcu_barrier();
2636
2637 __kmem_cache_destroy(cachep);
2638 mutex_unlock(&cache_chain_mutex);
2639 put_online_cpus();
2640 }
2641 EXPORT_SYMBOL(kmem_cache_destroy);
2642
2643 /*
2644 * Get the memory for a slab management obj.
2645 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2646 * always come from malloc_sizes caches. The slab descriptor cannot
2647 * come from the same cache which is getting created because,
2648 * when we are searching for an appropriate cache for these
2649 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2650 * If we are creating a malloc_sizes cache here it would not be visible to
2651 * kmem_find_general_cachep till the initialization is complete.
2652 * Hence we cannot have slabp_cache same as the original cache.
2653 */
2654 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2655 int colour_off, gfp_t local_flags,
2656 int nodeid)
2657 {
2658 struct slab *slabp;
2659
2660 if (OFF_SLAB(cachep)) {
2661 /* Slab management obj is off-slab. */
2662 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2663 local_flags, nodeid);
2664 /*
2665 * If the first object in the slab is leaked (it's allocated
2666 * but no one has a reference to it), we want to make sure
2667 * kmemleak does not treat the ->s_mem pointer as a reference
2668 * to the object. Otherwise we will not report the leak.
2669 */
2670 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2671 local_flags);
2672 if (!slabp)
2673 return NULL;
2674 } else {
2675 slabp = objp + colour_off;
2676 colour_off += cachep->slab_size;
2677 }
2678 slabp->inuse = 0;
2679 slabp->colouroff = colour_off;
2680 slabp->s_mem = objp + colour_off;
2681 slabp->nodeid = nodeid;
2682 slabp->free = 0;
2683 return slabp;
2684 }
2685
2686 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2687 {
2688 return (kmem_bufctl_t *) (slabp + 1);
2689 }
2690
2691 static void cache_init_objs(struct kmem_cache *cachep,
2692 struct slab *slabp)
2693 {
2694 int i;
2695
2696 for (i = 0; i < cachep->num; i++) {
2697 void *objp = index_to_obj(cachep, slabp, i);
2698 #if DEBUG
2699 /* need to poison the objs? */
2700 if (cachep->flags & SLAB_POISON)
2701 poison_obj(cachep, objp, POISON_FREE);
2702 if (cachep->flags & SLAB_STORE_USER)
2703 *dbg_userword(cachep, objp) = NULL;
2704
2705 if (cachep->flags & SLAB_RED_ZONE) {
2706 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2707 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2708 }
2709 /*
2710 * Constructors are not allowed to allocate memory from the same
2711 * cache which they are a constructor for. Otherwise, deadlock.
2712 * They must also be threaded.
2713 */
2714 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2715 cachep->ctor(objp + obj_offset(cachep));
2716
2717 if (cachep->flags & SLAB_RED_ZONE) {
2718 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
2720 " end of an object");
2721 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2722 slab_error(cachep, "constructor overwrote the"
2723 " start of an object");
2724 }
2725 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2726 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2727 kernel_map_pages(virt_to_page(objp),
2728 cachep->buffer_size / PAGE_SIZE, 0);
2729 #else
2730 if (cachep->ctor)
2731 cachep->ctor(objp);
2732 #endif
2733 slab_bufctl(slabp)[i] = i + 1;
2734 }
2735 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2736 }
2737
2738 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2739 {
2740 if (CONFIG_ZONE_DMA_FLAG) {
2741 if (flags & GFP_DMA)
2742 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2743 else
2744 BUG_ON(cachep->gfpflags & GFP_DMA);
2745 }
2746 }
2747
2748 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2749 int nodeid)
2750 {
2751 void *objp = index_to_obj(cachep, slabp, slabp->free);
2752 kmem_bufctl_t next;
2753
2754 slabp->inuse++;
2755 next = slab_bufctl(slabp)[slabp->free];
2756 #if DEBUG
2757 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2758 WARN_ON(slabp->nodeid != nodeid);
2759 #endif
2760 slabp->free = next;
2761
2762 return objp;
2763 }
2764
2765 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2766 void *objp, int nodeid)
2767 {
2768 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2769
2770 #if DEBUG
2771 /* Verify that the slab belongs to the intended node */
2772 WARN_ON(slabp->nodeid != nodeid);
2773
2774 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2775 printk(KERN_ERR "slab: double free detected in cache "
2776 "'%s', objp %p\n", cachep->name, objp);
2777 BUG();
2778 }
2779 #endif
2780 slab_bufctl(slabp)[objnr] = slabp->free;
2781 slabp->free = objnr;
2782 slabp->inuse--;
2783 }
2784
2785 /*
2786 * Map pages beginning at addr to the given cache and slab. This is required
2787 * for the slab allocator to be able to lookup the cache and slab of a
2788 * virtual address for kfree, ksize, and slab debugging.
2789 */
2790 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2791 void *addr)
2792 {
2793 int nr_pages;
2794 struct page *page;
2795
2796 page = virt_to_page(addr);
2797
2798 nr_pages = 1;
2799 if (likely(!PageCompound(page)))
2800 nr_pages <<= cache->gfporder;
2801
2802 do {
2803 page_set_cache(page, cache);
2804 page_set_slab(page, slab);
2805 page++;
2806 } while (--nr_pages);
2807 }
2808
2809 /*
2810 * Grow (by 1) the number of slabs within a cache. This is called by
2811 * kmem_cache_alloc() when there are no active objs left in a cache.
2812 */
2813 static int cache_grow(struct kmem_cache *cachep,
2814 gfp_t flags, int nodeid, void *objp)
2815 {
2816 struct slab *slabp;
2817 size_t offset;
2818 gfp_t local_flags;
2819 struct kmem_list3 *l3;
2820
2821 /*
2822 * Be lazy and only check for valid flags here, keeping it out of the
2823 * critical path in kmem_cache_alloc().
2824 */
2825 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2826 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2827
2828 /* Take the l3 list lock to change the colour_next on this node */
2829 check_irq_off();
2830 l3 = cachep->nodelists[nodeid];
2831 spin_lock(&l3->list_lock);
2832
2833 /* Get colour for the slab, and cal the next value. */
2834 offset = l3->colour_next;
2835 l3->colour_next++;
2836 if (l3->colour_next >= cachep->colour)
2837 l3->colour_next = 0;
2838 spin_unlock(&l3->list_lock);
2839
2840 offset *= cachep->colour_off;
2841
2842 if (local_flags & __GFP_WAIT)
2843 local_irq_enable();
2844
2845 /*
2846 * The test for missing atomic flag is performed here, rather than
2847 * the more obvious place, simply to reduce the critical path length
2848 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2849 * will eventually be caught here (where it matters).
2850 */
2851 kmem_flagcheck(cachep, flags);
2852
2853 /*
2854 * Get mem for the objs. Attempt to allocate a physical page from
2855 * 'nodeid'.
2856 */
2857 if (!objp)
2858 objp = kmem_getpages(cachep, local_flags, nodeid);
2859 if (!objp)
2860 goto failed;
2861
2862 /* Get slab management. */
2863 slabp = alloc_slabmgmt(cachep, objp, offset,
2864 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2865 if (!slabp)
2866 goto opps1;
2867
2868 slab_map_pages(cachep, slabp, objp);
2869
2870 cache_init_objs(cachep, slabp);
2871
2872 if (local_flags & __GFP_WAIT)
2873 local_irq_disable();
2874 check_irq_off();
2875 spin_lock(&l3->list_lock);
2876
2877 /* Make slab active. */
2878 list_add_tail(&slabp->list, &(l3->slabs_free));
2879 STATS_INC_GROWN(cachep);
2880 l3->free_objects += cachep->num;
2881 spin_unlock(&l3->list_lock);
2882 return 1;
2883 opps1:
2884 kmem_freepages(cachep, objp);
2885 failed:
2886 if (local_flags & __GFP_WAIT)
2887 local_irq_disable();
2888 return 0;
2889 }
2890
2891 #if DEBUG
2892
2893 /*
2894 * Perform extra freeing checks:
2895 * - detect bad pointers.
2896 * - POISON/RED_ZONE checking
2897 */
2898 static void kfree_debugcheck(const void *objp)
2899 {
2900 if (!virt_addr_valid(objp)) {
2901 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2902 (unsigned long)objp);
2903 BUG();
2904 }
2905 }
2906
2907 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2908 {
2909 unsigned long long redzone1, redzone2;
2910
2911 redzone1 = *dbg_redzone1(cache, obj);
2912 redzone2 = *dbg_redzone2(cache, obj);
2913
2914 /*
2915 * Redzone is ok.
2916 */
2917 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2918 return;
2919
2920 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2921 slab_error(cache, "double free detected");
2922 else
2923 slab_error(cache, "memory outside object was overwritten");
2924
2925 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2926 obj, redzone1, redzone2);
2927 }
2928
2929 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2930 void *caller)
2931 {
2932 struct page *page;
2933 unsigned int objnr;
2934 struct slab *slabp;
2935
2936 BUG_ON(virt_to_cache(objp) != cachep);
2937
2938 objp -= obj_offset(cachep);
2939 kfree_debugcheck(objp);
2940 page = virt_to_head_page(objp);
2941
2942 slabp = page_get_slab(page);
2943
2944 if (cachep->flags & SLAB_RED_ZONE) {
2945 verify_redzone_free(cachep, objp);
2946 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2947 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2948 }
2949 if (cachep->flags & SLAB_STORE_USER)
2950 *dbg_userword(cachep, objp) = caller;
2951
2952 objnr = obj_to_index(cachep, slabp, objp);
2953
2954 BUG_ON(objnr >= cachep->num);
2955 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2956
2957 #ifdef CONFIG_DEBUG_SLAB_LEAK
2958 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2959 #endif
2960 if (cachep->flags & SLAB_POISON) {
2961 #ifdef CONFIG_DEBUG_PAGEALLOC
2962 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2963 store_stackinfo(cachep, objp, (unsigned long)caller);
2964 kernel_map_pages(virt_to_page(objp),
2965 cachep->buffer_size / PAGE_SIZE, 0);
2966 } else {
2967 poison_obj(cachep, objp, POISON_FREE);
2968 }
2969 #else
2970 poison_obj(cachep, objp, POISON_FREE);
2971 #endif
2972 }
2973 return objp;
2974 }
2975
2976 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2977 {
2978 kmem_bufctl_t i;
2979 int entries = 0;
2980
2981 /* Check slab's freelist to see if this obj is there. */
2982 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2983 entries++;
2984 if (entries > cachep->num || i >= cachep->num)
2985 goto bad;
2986 }
2987 if (entries != cachep->num - slabp->inuse) {
2988 bad:
2989 printk(KERN_ERR "slab: Internal list corruption detected in "
2990 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2991 cachep->name, cachep->num, slabp, slabp->inuse);
2992 for (i = 0;
2993 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2994 i++) {
2995 if (i % 16 == 0)
2996 printk("\n%03x:", i);
2997 printk(" %02x", ((unsigned char *)slabp)[i]);
2998 }
2999 printk("\n");
3000 BUG();
3001 }
3002 }
3003 #else
3004 #define kfree_debugcheck(x) do { } while(0)
3005 #define cache_free_debugcheck(x,objp,z) (objp)
3006 #define check_slabp(x,y) do { } while(0)
3007 #endif
3008
3009 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3010 {
3011 int batchcount;
3012 struct kmem_list3 *l3;
3013 struct array_cache *ac;
3014 int node;
3015
3016 retry:
3017 check_irq_off();
3018 node = numa_mem_id();
3019 ac = cpu_cache_get(cachep);
3020 batchcount = ac->batchcount;
3021 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3022 /*
3023 * If there was little recent activity on this cache, then
3024 * perform only a partial refill. Otherwise we could generate
3025 * refill bouncing.
3026 */
3027 batchcount = BATCHREFILL_LIMIT;
3028 }
3029 l3 = cachep->nodelists[node];
3030
3031 BUG_ON(ac->avail > 0 || !l3);
3032 spin_lock(&l3->list_lock);
3033
3034 /* See if we can refill from the shared array */
3035 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3036 l3->shared->touched = 1;
3037 goto alloc_done;
3038 }
3039
3040 while (batchcount > 0) {
3041 struct list_head *entry;
3042 struct slab *slabp;
3043 /* Get slab alloc is to come from. */
3044 entry = l3->slabs_partial.next;
3045 if (entry == &l3->slabs_partial) {
3046 l3->free_touched = 1;
3047 entry = l3->slabs_free.next;
3048 if (entry == &l3->slabs_free)
3049 goto must_grow;
3050 }
3051
3052 slabp = list_entry(entry, struct slab, list);
3053 check_slabp(cachep, slabp);
3054 check_spinlock_acquired(cachep);
3055
3056 /*
3057 * The slab was either on partial or free list so
3058 * there must be at least one object available for
3059 * allocation.
3060 */
3061 BUG_ON(slabp->inuse >= cachep->num);
3062
3063 while (slabp->inuse < cachep->num && batchcount--) {
3064 STATS_INC_ALLOCED(cachep);
3065 STATS_INC_ACTIVE(cachep);
3066 STATS_SET_HIGH(cachep);
3067
3068 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3069 node);
3070 }
3071 check_slabp(cachep, slabp);
3072
3073 /* move slabp to correct slabp list: */
3074 list_del(&slabp->list);
3075 if (slabp->free == BUFCTL_END)
3076 list_add(&slabp->list, &l3->slabs_full);
3077 else
3078 list_add(&slabp->list, &l3->slabs_partial);
3079 }
3080
3081 must_grow:
3082 l3->free_objects -= ac->avail;
3083 alloc_done:
3084 spin_unlock(&l3->list_lock);
3085
3086 if (unlikely(!ac->avail)) {
3087 int x;
3088 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3089
3090 /* cache_grow can reenable interrupts, then ac could change. */
3091 ac = cpu_cache_get(cachep);
3092 if (!x && ac->avail == 0) /* no objects in sight? abort */
3093 return NULL;
3094
3095 if (!ac->avail) /* objects refilled by interrupt? */
3096 goto retry;
3097 }
3098 ac->touched = 1;
3099 return ac->entry[--ac->avail];
3100 }
3101
3102 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3103 gfp_t flags)
3104 {
3105 might_sleep_if(flags & __GFP_WAIT);
3106 #if DEBUG
3107 kmem_flagcheck(cachep, flags);
3108 #endif
3109 }
3110
3111 #if DEBUG
3112 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3113 gfp_t flags, void *objp, void *caller)
3114 {
3115 if (!objp)
3116 return objp;
3117 if (cachep->flags & SLAB_POISON) {
3118 #ifdef CONFIG_DEBUG_PAGEALLOC
3119 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3120 kernel_map_pages(virt_to_page(objp),
3121 cachep->buffer_size / PAGE_SIZE, 1);
3122 else
3123 check_poison_obj(cachep, objp);
3124 #else
3125 check_poison_obj(cachep, objp);
3126 #endif
3127 poison_obj(cachep, objp, POISON_INUSE);
3128 }
3129 if (cachep->flags & SLAB_STORE_USER)
3130 *dbg_userword(cachep, objp) = caller;
3131
3132 if (cachep->flags & SLAB_RED_ZONE) {
3133 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3134 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3135 slab_error(cachep, "double free, or memory outside"
3136 " object was overwritten");
3137 printk(KERN_ERR
3138 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3139 objp, *dbg_redzone1(cachep, objp),
3140 *dbg_redzone2(cachep, objp));
3141 }
3142 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3143 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3144 }
3145 #ifdef CONFIG_DEBUG_SLAB_LEAK
3146 {
3147 struct slab *slabp;
3148 unsigned objnr;
3149
3150 slabp = page_get_slab(virt_to_head_page(objp));
3151 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3152 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3153 }
3154 #endif
3155 objp += obj_offset(cachep);
3156 if (cachep->ctor && cachep->flags & SLAB_POISON)
3157 cachep->ctor(objp);
3158 if (ARCH_SLAB_MINALIGN &&
3159 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3160 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3161 objp, (int)ARCH_SLAB_MINALIGN);
3162 }
3163 return objp;
3164 }
3165 #else
3166 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3167 #endif
3168
3169 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3170 {
3171 if (cachep == &cache_cache)
3172 return false;
3173
3174 return should_failslab(obj_size(cachep), flags, cachep->flags);
3175 }
3176
3177 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3178 {
3179 void *objp;
3180 struct array_cache *ac;
3181
3182 check_irq_off();
3183
3184 ac = cpu_cache_get(cachep);
3185 if (likely(ac->avail)) {
3186 STATS_INC_ALLOCHIT(cachep);
3187 ac->touched = 1;
3188 objp = ac->entry[--ac->avail];
3189 } else {
3190 STATS_INC_ALLOCMISS(cachep);
3191 objp = cache_alloc_refill(cachep, flags);
3192 /*
3193 * the 'ac' may be updated by cache_alloc_refill(),
3194 * and kmemleak_erase() requires its correct value.
3195 */
3196 ac = cpu_cache_get(cachep);
3197 }
3198 /*
3199 * To avoid a false negative, if an object that is in one of the
3200 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3201 * treat the array pointers as a reference to the object.
3202 */
3203 if (objp)
3204 kmemleak_erase(&ac->entry[ac->avail]);
3205 return objp;
3206 }
3207
3208 #ifdef CONFIG_NUMA
3209 /*
3210 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3211 *
3212 * If we are in_interrupt, then process context, including cpusets and
3213 * mempolicy, may not apply and should not be used for allocation policy.
3214 */
3215 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3216 {
3217 int nid_alloc, nid_here;
3218
3219 if (in_interrupt() || (flags & __GFP_THISNODE))
3220 return NULL;
3221 nid_alloc = nid_here = numa_mem_id();
3222 get_mems_allowed();
3223 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3224 nid_alloc = cpuset_slab_spread_node();
3225 else if (current->mempolicy)
3226 nid_alloc = slab_node(current->mempolicy);
3227 put_mems_allowed();
3228 if (nid_alloc != nid_here)
3229 return ____cache_alloc_node(cachep, flags, nid_alloc);
3230 return NULL;
3231 }
3232
3233 /*
3234 * Fallback function if there was no memory available and no objects on a
3235 * certain node and fall back is permitted. First we scan all the
3236 * available nodelists for available objects. If that fails then we
3237 * perform an allocation without specifying a node. This allows the page
3238 * allocator to do its reclaim / fallback magic. We then insert the
3239 * slab into the proper nodelist and then allocate from it.
3240 */
3241 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3242 {
3243 struct zonelist *zonelist;
3244 gfp_t local_flags;
3245 struct zoneref *z;
3246 struct zone *zone;
3247 enum zone_type high_zoneidx = gfp_zone(flags);
3248 void *obj = NULL;
3249 int nid;
3250
3251 if (flags & __GFP_THISNODE)
3252 return NULL;
3253
3254 get_mems_allowed();
3255 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3256 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3257
3258 retry:
3259 /*
3260 * Look through allowed nodes for objects available
3261 * from existing per node queues.
3262 */
3263 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3264 nid = zone_to_nid(zone);
3265
3266 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3267 cache->nodelists[nid] &&
3268 cache->nodelists[nid]->free_objects) {
3269 obj = ____cache_alloc_node(cache,
3270 flags | GFP_THISNODE, nid);
3271 if (obj)
3272 break;
3273 }
3274 }
3275
3276 if (!obj) {
3277 /*
3278 * This allocation will be performed within the constraints
3279 * of the current cpuset / memory policy requirements.
3280 * We may trigger various forms of reclaim on the allowed
3281 * set and go into memory reserves if necessary.
3282 */
3283 if (local_flags & __GFP_WAIT)
3284 local_irq_enable();
3285 kmem_flagcheck(cache, flags);
3286 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3287 if (local_flags & __GFP_WAIT)
3288 local_irq_disable();
3289 if (obj) {
3290 /*
3291 * Insert into the appropriate per node queues
3292 */
3293 nid = page_to_nid(virt_to_page(obj));
3294 if (cache_grow(cache, flags, nid, obj)) {
3295 obj = ____cache_alloc_node(cache,
3296 flags | GFP_THISNODE, nid);
3297 if (!obj)
3298 /*
3299 * Another processor may allocate the
3300 * objects in the slab since we are
3301 * not holding any locks.
3302 */
3303 goto retry;
3304 } else {
3305 /* cache_grow already freed obj */
3306 obj = NULL;
3307 }
3308 }
3309 }
3310 put_mems_allowed();
3311 return obj;
3312 }
3313
3314 /*
3315 * A interface to enable slab creation on nodeid
3316 */
3317 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3318 int nodeid)
3319 {
3320 struct list_head *entry;
3321 struct slab *slabp;
3322 struct kmem_list3 *l3;
3323 void *obj;
3324 int x;
3325
3326 l3 = cachep->nodelists[nodeid];
3327 BUG_ON(!l3);
3328
3329 retry:
3330 check_irq_off();
3331 spin_lock(&l3->list_lock);
3332 entry = l3->slabs_partial.next;
3333 if (entry == &l3->slabs_partial) {
3334 l3->free_touched = 1;
3335 entry = l3->slabs_free.next;
3336 if (entry == &l3->slabs_free)
3337 goto must_grow;
3338 }
3339
3340 slabp = list_entry(entry, struct slab, list);
3341 check_spinlock_acquired_node(cachep, nodeid);
3342 check_slabp(cachep, slabp);
3343
3344 STATS_INC_NODEALLOCS(cachep);
3345 STATS_INC_ACTIVE(cachep);
3346 STATS_SET_HIGH(cachep);
3347
3348 BUG_ON(slabp->inuse == cachep->num);
3349
3350 obj = slab_get_obj(cachep, slabp, nodeid);
3351 check_slabp(cachep, slabp);
3352 l3->free_objects--;
3353 /* move slabp to correct slabp list: */
3354 list_del(&slabp->list);
3355
3356 if (slabp->free == BUFCTL_END)
3357 list_add(&slabp->list, &l3->slabs_full);
3358 else
3359 list_add(&slabp->list, &l3->slabs_partial);
3360
3361 spin_unlock(&l3->list_lock);
3362 goto done;
3363
3364 must_grow:
3365 spin_unlock(&l3->list_lock);
3366 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3367 if (x)
3368 goto retry;
3369
3370 return fallback_alloc(cachep, flags);
3371
3372 done:
3373 return obj;
3374 }
3375
3376 /**
3377 * kmem_cache_alloc_node - Allocate an object on the specified node
3378 * @cachep: The cache to allocate from.
3379 * @flags: See kmalloc().
3380 * @nodeid: node number of the target node.
3381 * @caller: return address of caller, used for debug information
3382 *
3383 * Identical to kmem_cache_alloc but it will allocate memory on the given
3384 * node, which can improve the performance for cpu bound structures.
3385 *
3386 * Fallback to other node is possible if __GFP_THISNODE is not set.
3387 */
3388 static __always_inline void *
3389 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3390 void *caller)
3391 {
3392 unsigned long save_flags;
3393 void *ptr;
3394 int slab_node = numa_mem_id();
3395
3396 flags &= gfp_allowed_mask;
3397
3398 lockdep_trace_alloc(flags);
3399
3400 if (slab_should_failslab(cachep, flags))
3401 return NULL;
3402
3403 cache_alloc_debugcheck_before(cachep, flags);
3404 local_irq_save(save_flags);
3405
3406 if (nodeid == -1)
3407 nodeid = slab_node;
3408
3409 if (unlikely(!cachep->nodelists[nodeid])) {
3410 /* Node not bootstrapped yet */
3411 ptr = fallback_alloc(cachep, flags);
3412 goto out;
3413 }
3414
3415 if (nodeid == slab_node) {
3416 /*
3417 * Use the locally cached objects if possible.
3418 * However ____cache_alloc does not allow fallback
3419 * to other nodes. It may fail while we still have
3420 * objects on other nodes available.
3421 */
3422 ptr = ____cache_alloc(cachep, flags);
3423 if (ptr)
3424 goto out;
3425 }
3426 /* ___cache_alloc_node can fall back to other nodes */
3427 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3428 out:
3429 local_irq_restore(save_flags);
3430 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3431 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3432 flags);
3433
3434 if (likely(ptr))
3435 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3436
3437 if (unlikely((flags & __GFP_ZERO) && ptr))
3438 memset(ptr, 0, obj_size(cachep));
3439
3440 return ptr;
3441 }
3442
3443 static __always_inline void *
3444 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3445 {
3446 void *objp;
3447
3448 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3449 objp = alternate_node_alloc(cache, flags);
3450 if (objp)
3451 goto out;
3452 }
3453 objp = ____cache_alloc(cache, flags);
3454
3455 /*
3456 * We may just have run out of memory on the local node.
3457 * ____cache_alloc_node() knows how to locate memory on other nodes
3458 */
3459 if (!objp)
3460 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3461
3462 out:
3463 return objp;
3464 }
3465 #else
3466
3467 static __always_inline void *
3468 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3469 {
3470 return ____cache_alloc(cachep, flags);
3471 }
3472
3473 #endif /* CONFIG_NUMA */
3474
3475 static __always_inline void *
3476 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3477 {
3478 unsigned long save_flags;
3479 void *objp;
3480
3481 flags &= gfp_allowed_mask;
3482
3483 lockdep_trace_alloc(flags);
3484
3485 if (slab_should_failslab(cachep, flags))
3486 return NULL;
3487
3488 cache_alloc_debugcheck_before(cachep, flags);
3489 local_irq_save(save_flags);
3490 objp = __do_cache_alloc(cachep, flags);
3491 local_irq_restore(save_flags);
3492 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3493 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3494 flags);
3495 prefetchw(objp);
3496
3497 if (likely(objp))
3498 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3499
3500 if (unlikely((flags & __GFP_ZERO) && objp))
3501 memset(objp, 0, obj_size(cachep));
3502
3503 return objp;
3504 }
3505
3506 /*
3507 * Caller needs to acquire correct kmem_list's list_lock
3508 */
3509 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3510 int node)
3511 {
3512 int i;
3513 struct kmem_list3 *l3;
3514
3515 for (i = 0; i < nr_objects; i++) {
3516 void *objp = objpp[i];
3517 struct slab *slabp;
3518
3519 slabp = virt_to_slab(objp);
3520 l3 = cachep->nodelists[node];
3521 list_del(&slabp->list);
3522 check_spinlock_acquired_node(cachep, node);
3523 check_slabp(cachep, slabp);
3524 slab_put_obj(cachep, slabp, objp, node);
3525 STATS_DEC_ACTIVE(cachep);
3526 l3->free_objects++;
3527 check_slabp(cachep, slabp);
3528
3529 /* fixup slab chains */
3530 if (slabp->inuse == 0) {
3531 if (l3->free_objects > l3->free_limit) {
3532 l3->free_objects -= cachep->num;
3533 /* No need to drop any previously held
3534 * lock here, even if we have a off-slab slab
3535 * descriptor it is guaranteed to come from
3536 * a different cache, refer to comments before
3537 * alloc_slabmgmt.
3538 */
3539 slab_destroy(cachep, slabp);
3540 } else {
3541 list_add(&slabp->list, &l3->slabs_free);
3542 }
3543 } else {
3544 /* Unconditionally move a slab to the end of the
3545 * partial list on free - maximum time for the
3546 * other objects to be freed, too.
3547 */
3548 list_add_tail(&slabp->list, &l3->slabs_partial);
3549 }
3550 }
3551 }
3552
3553 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3554 {
3555 int batchcount;
3556 struct kmem_list3 *l3;
3557 int node = numa_mem_id();
3558
3559 batchcount = ac->batchcount;
3560 #if DEBUG
3561 BUG_ON(!batchcount || batchcount > ac->avail);
3562 #endif
3563 check_irq_off();
3564 l3 = cachep->nodelists[node];
3565 spin_lock(&l3->list_lock);
3566 if (l3->shared) {
3567 struct array_cache *shared_array = l3->shared;
3568 int max = shared_array->limit - shared_array->avail;
3569 if (max) {
3570 if (batchcount > max)
3571 batchcount = max;
3572 memcpy(&(shared_array->entry[shared_array->avail]),
3573 ac->entry, sizeof(void *) * batchcount);
3574 shared_array->avail += batchcount;
3575 goto free_done;
3576 }
3577 }
3578
3579 free_block(cachep, ac->entry, batchcount, node);
3580 free_done:
3581 #if STATS
3582 {
3583 int i = 0;
3584 struct list_head *p;
3585
3586 p = l3->slabs_free.next;
3587 while (p != &(l3->slabs_free)) {
3588 struct slab *slabp;
3589
3590 slabp = list_entry(p, struct slab, list);
3591 BUG_ON(slabp->inuse);
3592
3593 i++;
3594 p = p->next;
3595 }
3596 STATS_SET_FREEABLE(cachep, i);
3597 }
3598 #endif
3599 spin_unlock(&l3->list_lock);
3600 ac->avail -= batchcount;
3601 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3602 }
3603
3604 /*
3605 * Release an obj back to its cache. If the obj has a constructed state, it must
3606 * be in this state _before_ it is released. Called with disabled ints.
3607 */
3608 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3609 void *caller)
3610 {
3611 struct array_cache *ac = cpu_cache_get(cachep);
3612
3613 check_irq_off();
3614 kmemleak_free_recursive(objp, cachep->flags);
3615 objp = cache_free_debugcheck(cachep, objp, caller);
3616
3617 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3618
3619 /*
3620 * Skip calling cache_free_alien() when the platform is not numa.
3621 * This will avoid cache misses that happen while accessing slabp (which
3622 * is per page memory reference) to get nodeid. Instead use a global
3623 * variable to skip the call, which is mostly likely to be present in
3624 * the cache.
3625 */
3626 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3627 return;
3628
3629 if (likely(ac->avail < ac->limit)) {
3630 STATS_INC_FREEHIT(cachep);
3631 ac->entry[ac->avail++] = objp;
3632 return;
3633 } else {
3634 STATS_INC_FREEMISS(cachep);
3635 cache_flusharray(cachep, ac);
3636 ac->entry[ac->avail++] = objp;
3637 }
3638 }
3639
3640 /**
3641 * kmem_cache_alloc - Allocate an object
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 *
3645 * Allocate an object from this cache. The flags are only relevant
3646 * if the cache has no available objects.
3647 */
3648 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3649 {
3650 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3651
3652 trace_kmem_cache_alloc(_RET_IP_, ret,
3653 obj_size(cachep), cachep->buffer_size, flags);
3654
3655 return ret;
3656 }
3657 EXPORT_SYMBOL(kmem_cache_alloc);
3658
3659 #ifdef CONFIG_TRACING
3660 void *
3661 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3662 {
3663 void *ret;
3664
3665 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3666
3667 trace_kmalloc(_RET_IP_, ret,
3668 size, slab_buffer_size(cachep), flags);
3669 return ret;
3670 }
3671 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3672 #endif
3673
3674 #ifdef CONFIG_NUMA
3675 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676 {
3677 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3679
3680 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3681 obj_size(cachep), cachep->buffer_size,
3682 flags, nodeid);
3683
3684 return ret;
3685 }
3686 EXPORT_SYMBOL(kmem_cache_alloc_node);
3687
3688 #ifdef CONFIG_TRACING
3689 void *kmem_cache_alloc_node_trace(size_t size,
3690 struct kmem_cache *cachep,
3691 gfp_t flags,
3692 int nodeid)
3693 {
3694 void *ret;
3695
3696 ret = __cache_alloc_node(cachep, flags, nodeid,
3697 __builtin_return_address(0));
3698 trace_kmalloc_node(_RET_IP_, ret,
3699 size, slab_buffer_size(cachep),
3700 flags, nodeid);
3701 return ret;
3702 }
3703 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3704 #endif
3705
3706 static __always_inline void *
3707 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3708 {
3709 struct kmem_cache *cachep;
3710
3711 cachep = kmem_find_general_cachep(size, flags);
3712 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3713 return cachep;
3714 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3715 }
3716
3717 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3718 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3719 {
3720 return __do_kmalloc_node(size, flags, node,
3721 __builtin_return_address(0));
3722 }
3723 EXPORT_SYMBOL(__kmalloc_node);
3724
3725 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3726 int node, unsigned long caller)
3727 {
3728 return __do_kmalloc_node(size, flags, node, (void *)caller);
3729 }
3730 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3731 #else
3732 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3733 {
3734 return __do_kmalloc_node(size, flags, node, NULL);
3735 }
3736 EXPORT_SYMBOL(__kmalloc_node);
3737 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3738 #endif /* CONFIG_NUMA */
3739
3740 /**
3741 * __do_kmalloc - allocate memory
3742 * @size: how many bytes of memory are required.
3743 * @flags: the type of memory to allocate (see kmalloc).
3744 * @caller: function caller for debug tracking of the caller
3745 */
3746 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3747 void *caller)
3748 {
3749 struct kmem_cache *cachep;
3750 void *ret;
3751
3752 /* If you want to save a few bytes .text space: replace
3753 * __ with kmem_.
3754 * Then kmalloc uses the uninlined functions instead of the inline
3755 * functions.
3756 */
3757 cachep = __find_general_cachep(size, flags);
3758 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3759 return cachep;
3760 ret = __cache_alloc(cachep, flags, caller);
3761
3762 trace_kmalloc((unsigned long) caller, ret,
3763 size, cachep->buffer_size, flags);
3764
3765 return ret;
3766 }
3767
3768
3769 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3770 void *__kmalloc(size_t size, gfp_t flags)
3771 {
3772 return __do_kmalloc(size, flags, __builtin_return_address(0));
3773 }
3774 EXPORT_SYMBOL(__kmalloc);
3775
3776 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3777 {
3778 return __do_kmalloc(size, flags, (void *)caller);
3779 }
3780 EXPORT_SYMBOL(__kmalloc_track_caller);
3781
3782 #else
3783 void *__kmalloc(size_t size, gfp_t flags)
3784 {
3785 return __do_kmalloc(size, flags, NULL);
3786 }
3787 EXPORT_SYMBOL(__kmalloc);
3788 #endif
3789
3790 /**
3791 * kmem_cache_free - Deallocate an object
3792 * @cachep: The cache the allocation was from.
3793 * @objp: The previously allocated object.
3794 *
3795 * Free an object which was previously allocated from this
3796 * cache.
3797 */
3798 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3799 {
3800 unsigned long flags;
3801
3802 local_irq_save(flags);
3803 debug_check_no_locks_freed(objp, obj_size(cachep));
3804 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3805 debug_check_no_obj_freed(objp, obj_size(cachep));
3806 __cache_free(cachep, objp, __builtin_return_address(0));
3807 local_irq_restore(flags);
3808
3809 trace_kmem_cache_free(_RET_IP_, objp);
3810 }
3811 EXPORT_SYMBOL(kmem_cache_free);
3812
3813 /**
3814 * kfree - free previously allocated memory
3815 * @objp: pointer returned by kmalloc.
3816 *
3817 * If @objp is NULL, no operation is performed.
3818 *
3819 * Don't free memory not originally allocated by kmalloc()
3820 * or you will run into trouble.
3821 */
3822 void kfree(const void *objp)
3823 {
3824 struct kmem_cache *c;
3825 unsigned long flags;
3826
3827 trace_kfree(_RET_IP_, objp);
3828
3829 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3830 return;
3831 local_irq_save(flags);
3832 kfree_debugcheck(objp);
3833 c = virt_to_cache(objp);
3834 debug_check_no_locks_freed(objp, obj_size(c));
3835 debug_check_no_obj_freed(objp, obj_size(c));
3836 __cache_free(c, (void *)objp, __builtin_return_address(0));
3837 local_irq_restore(flags);
3838 }
3839 EXPORT_SYMBOL(kfree);
3840
3841 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3842 {
3843 return obj_size(cachep);
3844 }
3845 EXPORT_SYMBOL(kmem_cache_size);
3846
3847 /*
3848 * This initializes kmem_list3 or resizes various caches for all nodes.
3849 */
3850 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3851 {
3852 int node;
3853 struct kmem_list3 *l3;
3854 struct array_cache *new_shared;
3855 struct array_cache **new_alien = NULL;
3856
3857 for_each_online_node(node) {
3858
3859 if (use_alien_caches) {
3860 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3861 if (!new_alien)
3862 goto fail;
3863 }
3864
3865 new_shared = NULL;
3866 if (cachep->shared) {
3867 new_shared = alloc_arraycache(node,
3868 cachep->shared*cachep->batchcount,
3869 0xbaadf00d, gfp);
3870 if (!new_shared) {
3871 free_alien_cache(new_alien);
3872 goto fail;
3873 }
3874 }
3875
3876 l3 = cachep->nodelists[node];
3877 if (l3) {
3878 struct array_cache *shared = l3->shared;
3879
3880 spin_lock_irq(&l3->list_lock);
3881
3882 if (shared)
3883 free_block(cachep, shared->entry,
3884 shared->avail, node);
3885
3886 l3->shared = new_shared;
3887 if (!l3->alien) {
3888 l3->alien = new_alien;
3889 new_alien = NULL;
3890 }
3891 l3->free_limit = (1 + nr_cpus_node(node)) *
3892 cachep->batchcount + cachep->num;
3893 spin_unlock_irq(&l3->list_lock);
3894 kfree(shared);
3895 free_alien_cache(new_alien);
3896 continue;
3897 }
3898 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3899 if (!l3) {
3900 free_alien_cache(new_alien);
3901 kfree(new_shared);
3902 goto fail;
3903 }
3904
3905 kmem_list3_init(l3);
3906 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3907 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3908 l3->shared = new_shared;
3909 l3->alien = new_alien;
3910 l3->free_limit = (1 + nr_cpus_node(node)) *
3911 cachep->batchcount + cachep->num;
3912 cachep->nodelists[node] = l3;
3913 }
3914 return 0;
3915
3916 fail:
3917 if (!cachep->next.next) {
3918 /* Cache is not active yet. Roll back what we did */
3919 node--;
3920 while (node >= 0) {
3921 if (cachep->nodelists[node]) {
3922 l3 = cachep->nodelists[node];
3923
3924 kfree(l3->shared);
3925 free_alien_cache(l3->alien);
3926 kfree(l3);
3927 cachep->nodelists[node] = NULL;
3928 }
3929 node--;
3930 }
3931 }
3932 return -ENOMEM;
3933 }
3934
3935 struct ccupdate_struct {
3936 struct kmem_cache *cachep;
3937 struct array_cache *new[NR_CPUS];
3938 };
3939
3940 static void do_ccupdate_local(void *info)
3941 {
3942 struct ccupdate_struct *new = info;
3943 struct array_cache *old;
3944
3945 check_irq_off();
3946 old = cpu_cache_get(new->cachep);
3947
3948 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3949 new->new[smp_processor_id()] = old;
3950 }
3951
3952 /* Always called with the cache_chain_mutex held */
3953 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3954 int batchcount, int shared, gfp_t gfp)
3955 {
3956 struct ccupdate_struct *new;
3957 int i;
3958
3959 new = kzalloc(sizeof(*new), gfp);
3960 if (!new)
3961 return -ENOMEM;
3962
3963 for_each_online_cpu(i) {
3964 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3965 batchcount, gfp);
3966 if (!new->new[i]) {
3967 for (i--; i >= 0; i--)
3968 kfree(new->new[i]);
3969 kfree(new);
3970 return -ENOMEM;
3971 }
3972 }
3973 new->cachep = cachep;
3974
3975 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3976
3977 check_irq_on();
3978 cachep->batchcount = batchcount;
3979 cachep->limit = limit;
3980 cachep->shared = shared;
3981
3982 for_each_online_cpu(i) {
3983 struct array_cache *ccold = new->new[i];
3984 if (!ccold)
3985 continue;
3986 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3987 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3988 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3989 kfree(ccold);
3990 }
3991 kfree(new);
3992 return alloc_kmemlist(cachep, gfp);
3993 }
3994
3995 /* Called with cache_chain_mutex held always */
3996 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3997 {
3998 int err;
3999 int limit, shared;
4000
4001 /*
4002 * The head array serves three purposes:
4003 * - create a LIFO ordering, i.e. return objects that are cache-warm
4004 * - reduce the number of spinlock operations.
4005 * - reduce the number of linked list operations on the slab and
4006 * bufctl chains: array operations are cheaper.
4007 * The numbers are guessed, we should auto-tune as described by
4008 * Bonwick.
4009 */
4010 if (cachep->buffer_size > 131072)
4011 limit = 1;
4012 else if (cachep->buffer_size > PAGE_SIZE)
4013 limit = 8;
4014 else if (cachep->buffer_size > 1024)
4015 limit = 24;
4016 else if (cachep->buffer_size > 256)
4017 limit = 54;
4018 else
4019 limit = 120;
4020
4021 /*
4022 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4023 * allocation behaviour: Most allocs on one cpu, most free operations
4024 * on another cpu. For these cases, an efficient object passing between
4025 * cpus is necessary. This is provided by a shared array. The array
4026 * replaces Bonwick's magazine layer.
4027 * On uniprocessor, it's functionally equivalent (but less efficient)
4028 * to a larger limit. Thus disabled by default.
4029 */
4030 shared = 0;
4031 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4032 shared = 8;
4033
4034 #if DEBUG
4035 /*
4036 * With debugging enabled, large batchcount lead to excessively long
4037 * periods with disabled local interrupts. Limit the batchcount
4038 */
4039 if (limit > 32)
4040 limit = 32;
4041 #endif
4042 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4043 if (err)
4044 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4045 cachep->name, -err);
4046 return err;
4047 }
4048
4049 /*
4050 * Drain an array if it contains any elements taking the l3 lock only if
4051 * necessary. Note that the l3 listlock also protects the array_cache
4052 * if drain_array() is used on the shared array.
4053 */
4054 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4055 struct array_cache *ac, int force, int node)
4056 {
4057 int tofree;
4058
4059 if (!ac || !ac->avail)
4060 return;
4061 if (ac->touched && !force) {
4062 ac->touched = 0;
4063 } else {
4064 spin_lock_irq(&l3->list_lock);
4065 if (ac->avail) {
4066 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4067 if (tofree > ac->avail)
4068 tofree = (ac->avail + 1) / 2;
4069 free_block(cachep, ac->entry, tofree, node);
4070 ac->avail -= tofree;
4071 memmove(ac->entry, &(ac->entry[tofree]),
4072 sizeof(void *) * ac->avail);
4073 }
4074 spin_unlock_irq(&l3->list_lock);
4075 }
4076 }
4077
4078 /**
4079 * cache_reap - Reclaim memory from caches.
4080 * @w: work descriptor
4081 *
4082 * Called from workqueue/eventd every few seconds.
4083 * Purpose:
4084 * - clear the per-cpu caches for this CPU.
4085 * - return freeable pages to the main free memory pool.
4086 *
4087 * If we cannot acquire the cache chain mutex then just give up - we'll try
4088 * again on the next iteration.
4089 */
4090 static void cache_reap(struct work_struct *w)
4091 {
4092 struct kmem_cache *searchp;
4093 struct kmem_list3 *l3;
4094 int node = numa_mem_id();
4095 struct delayed_work *work = to_delayed_work(w);
4096
4097 if (!mutex_trylock(&cache_chain_mutex))
4098 /* Give up. Setup the next iteration. */
4099 goto out;
4100
4101 list_for_each_entry(searchp, &cache_chain, next) {
4102 check_irq_on();
4103
4104 /*
4105 * We only take the l3 lock if absolutely necessary and we
4106 * have established with reasonable certainty that
4107 * we can do some work if the lock was obtained.
4108 */
4109 l3 = searchp->nodelists[node];
4110
4111 reap_alien(searchp, l3);
4112
4113 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4114
4115 /*
4116 * These are racy checks but it does not matter
4117 * if we skip one check or scan twice.
4118 */
4119 if (time_after(l3->next_reap, jiffies))
4120 goto next;
4121
4122 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4123
4124 drain_array(searchp, l3, l3->shared, 0, node);
4125
4126 if (l3->free_touched)
4127 l3->free_touched = 0;
4128 else {
4129 int freed;
4130
4131 freed = drain_freelist(searchp, l3, (l3->free_limit +
4132 5 * searchp->num - 1) / (5 * searchp->num));
4133 STATS_ADD_REAPED(searchp, freed);
4134 }
4135 next:
4136 cond_resched();
4137 }
4138 check_irq_on();
4139 mutex_unlock(&cache_chain_mutex);
4140 next_reap_node();
4141 out:
4142 /* Set up the next iteration */
4143 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4144 }
4145
4146 #ifdef CONFIG_SLABINFO
4147
4148 static void print_slabinfo_header(struct seq_file *m)
4149 {
4150 /*
4151 * Output format version, so at least we can change it
4152 * without _too_ many complaints.
4153 */
4154 #if STATS
4155 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4156 #else
4157 seq_puts(m, "slabinfo - version: 2.1\n");
4158 #endif
4159 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4160 "<objperslab> <pagesperslab>");
4161 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4162 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4163 #if STATS
4164 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4165 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4166 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4167 #endif
4168 seq_putc(m, '\n');
4169 }
4170
4171 static void *s_start(struct seq_file *m, loff_t *pos)
4172 {
4173 loff_t n = *pos;
4174
4175 mutex_lock(&cache_chain_mutex);
4176 if (!n)
4177 print_slabinfo_header(m);
4178
4179 return seq_list_start(&cache_chain, *pos);
4180 }
4181
4182 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4183 {
4184 return seq_list_next(p, &cache_chain, pos);
4185 }
4186
4187 static void s_stop(struct seq_file *m, void *p)
4188 {
4189 mutex_unlock(&cache_chain_mutex);
4190 }
4191
4192 static int s_show(struct seq_file *m, void *p)
4193 {
4194 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4195 struct slab *slabp;
4196 unsigned long active_objs;
4197 unsigned long num_objs;
4198 unsigned long active_slabs = 0;
4199 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4200 const char *name;
4201 char *error = NULL;
4202 int node;
4203 struct kmem_list3 *l3;
4204
4205 active_objs = 0;
4206 num_slabs = 0;
4207 for_each_online_node(node) {
4208 l3 = cachep->nodelists[node];
4209 if (!l3)
4210 continue;
4211
4212 check_irq_on();
4213 spin_lock_irq(&l3->list_lock);
4214
4215 list_for_each_entry(slabp, &l3->slabs_full, list) {
4216 if (slabp->inuse != cachep->num && !error)
4217 error = "slabs_full accounting error";
4218 active_objs += cachep->num;
4219 active_slabs++;
4220 }
4221 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4222 if (slabp->inuse == cachep->num && !error)
4223 error = "slabs_partial inuse accounting error";
4224 if (!slabp->inuse && !error)
4225 error = "slabs_partial/inuse accounting error";
4226 active_objs += slabp->inuse;
4227 active_slabs++;
4228 }
4229 list_for_each_entry(slabp, &l3->slabs_free, list) {
4230 if (slabp->inuse && !error)
4231 error = "slabs_free/inuse accounting error";
4232 num_slabs++;
4233 }
4234 free_objects += l3->free_objects;
4235 if (l3->shared)
4236 shared_avail += l3->shared->avail;
4237
4238 spin_unlock_irq(&l3->list_lock);
4239 }
4240 num_slabs += active_slabs;
4241 num_objs = num_slabs * cachep->num;
4242 if (num_objs - active_objs != free_objects && !error)
4243 error = "free_objects accounting error";
4244
4245 name = cachep->name;
4246 if (error)
4247 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4248
4249 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4250 name, active_objs, num_objs, cachep->buffer_size,
4251 cachep->num, (1 << cachep->gfporder));
4252 seq_printf(m, " : tunables %4u %4u %4u",
4253 cachep->limit, cachep->batchcount, cachep->shared);
4254 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4255 active_slabs, num_slabs, shared_avail);
4256 #if STATS
4257 { /* list3 stats */
4258 unsigned long high = cachep->high_mark;
4259 unsigned long allocs = cachep->num_allocations;
4260 unsigned long grown = cachep->grown;
4261 unsigned long reaped = cachep->reaped;
4262 unsigned long errors = cachep->errors;
4263 unsigned long max_freeable = cachep->max_freeable;
4264 unsigned long node_allocs = cachep->node_allocs;
4265 unsigned long node_frees = cachep->node_frees;
4266 unsigned long overflows = cachep->node_overflow;
4267
4268 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4269 "%4lu %4lu %4lu %4lu %4lu",
4270 allocs, high, grown,
4271 reaped, errors, max_freeable, node_allocs,
4272 node_frees, overflows);
4273 }
4274 /* cpu stats */
4275 {
4276 unsigned long allochit = atomic_read(&cachep->allochit);
4277 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4278 unsigned long freehit = atomic_read(&cachep->freehit);
4279 unsigned long freemiss = atomic_read(&cachep->freemiss);
4280
4281 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4282 allochit, allocmiss, freehit, freemiss);
4283 }
4284 #endif
4285 seq_putc(m, '\n');
4286 return 0;
4287 }
4288
4289 /*
4290 * slabinfo_op - iterator that generates /proc/slabinfo
4291 *
4292 * Output layout:
4293 * cache-name
4294 * num-active-objs
4295 * total-objs
4296 * object size
4297 * num-active-slabs
4298 * total-slabs
4299 * num-pages-per-slab
4300 * + further values on SMP and with statistics enabled
4301 */
4302
4303 static const struct seq_operations slabinfo_op = {
4304 .start = s_start,
4305 .next = s_next,
4306 .stop = s_stop,
4307 .show = s_show,
4308 };
4309
4310 #define MAX_SLABINFO_WRITE 128
4311 /**
4312 * slabinfo_write - Tuning for the slab allocator
4313 * @file: unused
4314 * @buffer: user buffer
4315 * @count: data length
4316 * @ppos: unused
4317 */
4318 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4319 size_t count, loff_t *ppos)
4320 {
4321 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4322 int limit, batchcount, shared, res;
4323 struct kmem_cache *cachep;
4324
4325 if (count > MAX_SLABINFO_WRITE)
4326 return -EINVAL;
4327 if (copy_from_user(&kbuf, buffer, count))
4328 return -EFAULT;
4329 kbuf[MAX_SLABINFO_WRITE] = '\0';
4330
4331 tmp = strchr(kbuf, ' ');
4332 if (!tmp)
4333 return -EINVAL;
4334 *tmp = '\0';
4335 tmp++;
4336 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4337 return -EINVAL;
4338
4339 /* Find the cache in the chain of caches. */
4340 mutex_lock(&cache_chain_mutex);
4341 res = -EINVAL;
4342 list_for_each_entry(cachep, &cache_chain, next) {
4343 if (!strcmp(cachep->name, kbuf)) {
4344 if (limit < 1 || batchcount < 1 ||
4345 batchcount > limit || shared < 0) {
4346 res = 0;
4347 } else {
4348 res = do_tune_cpucache(cachep, limit,
4349 batchcount, shared,
4350 GFP_KERNEL);
4351 }
4352 break;
4353 }
4354 }
4355 mutex_unlock(&cache_chain_mutex);
4356 if (res >= 0)
4357 res = count;
4358 return res;
4359 }
4360
4361 static int slabinfo_open(struct inode *inode, struct file *file)
4362 {
4363 return seq_open(file, &slabinfo_op);
4364 }
4365
4366 static const struct file_operations proc_slabinfo_operations = {
4367 .open = slabinfo_open,
4368 .read = seq_read,
4369 .write = slabinfo_write,
4370 .llseek = seq_lseek,
4371 .release = seq_release,
4372 };
4373
4374 #ifdef CONFIG_DEBUG_SLAB_LEAK
4375
4376 static void *leaks_start(struct seq_file *m, loff_t *pos)
4377 {
4378 mutex_lock(&cache_chain_mutex);
4379 return seq_list_start(&cache_chain, *pos);
4380 }
4381
4382 static inline int add_caller(unsigned long *n, unsigned long v)
4383 {
4384 unsigned long *p;
4385 int l;
4386 if (!v)
4387 return 1;
4388 l = n[1];
4389 p = n + 2;
4390 while (l) {
4391 int i = l/2;
4392 unsigned long *q = p + 2 * i;
4393 if (*q == v) {
4394 q[1]++;
4395 return 1;
4396 }
4397 if (*q > v) {
4398 l = i;
4399 } else {
4400 p = q + 2;
4401 l -= i + 1;
4402 }
4403 }
4404 if (++n[1] == n[0])
4405 return 0;
4406 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4407 p[0] = v;
4408 p[1] = 1;
4409 return 1;
4410 }
4411
4412 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4413 {
4414 void *p;
4415 int i;
4416 if (n[0] == n[1])
4417 return;
4418 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4419 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4420 continue;
4421 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4422 return;
4423 }
4424 }
4425
4426 static void show_symbol(struct seq_file *m, unsigned long address)
4427 {
4428 #ifdef CONFIG_KALLSYMS
4429 unsigned long offset, size;
4430 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4431
4432 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4433 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4434 if (modname[0])
4435 seq_printf(m, " [%s]", modname);
4436 return;
4437 }
4438 #endif
4439 seq_printf(m, "%p", (void *)address);
4440 }
4441
4442 static int leaks_show(struct seq_file *m, void *p)
4443 {
4444 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4445 struct slab *slabp;
4446 struct kmem_list3 *l3;
4447 const char *name;
4448 unsigned long *n = m->private;
4449 int node;
4450 int i;
4451
4452 if (!(cachep->flags & SLAB_STORE_USER))
4453 return 0;
4454 if (!(cachep->flags & SLAB_RED_ZONE))
4455 return 0;
4456
4457 /* OK, we can do it */
4458
4459 n[1] = 0;
4460
4461 for_each_online_node(node) {
4462 l3 = cachep->nodelists[node];
4463 if (!l3)
4464 continue;
4465
4466 check_irq_on();
4467 spin_lock_irq(&l3->list_lock);
4468
4469 list_for_each_entry(slabp, &l3->slabs_full, list)
4470 handle_slab(n, cachep, slabp);
4471 list_for_each_entry(slabp, &l3->slabs_partial, list)
4472 handle_slab(n, cachep, slabp);
4473 spin_unlock_irq(&l3->list_lock);
4474 }
4475 name = cachep->name;
4476 if (n[0] == n[1]) {
4477 /* Increase the buffer size */
4478 mutex_unlock(&cache_chain_mutex);
4479 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4480 if (!m->private) {
4481 /* Too bad, we are really out */
4482 m->private = n;
4483 mutex_lock(&cache_chain_mutex);
4484 return -ENOMEM;
4485 }
4486 *(unsigned long *)m->private = n[0] * 2;
4487 kfree(n);
4488 mutex_lock(&cache_chain_mutex);
4489 /* Now make sure this entry will be retried */
4490 m->count = m->size;
4491 return 0;
4492 }
4493 for (i = 0; i < n[1]; i++) {
4494 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4495 show_symbol(m, n[2*i+2]);
4496 seq_putc(m, '\n');
4497 }
4498
4499 return 0;
4500 }
4501
4502 static const struct seq_operations slabstats_op = {
4503 .start = leaks_start,
4504 .next = s_next,
4505 .stop = s_stop,
4506 .show = leaks_show,
4507 };
4508
4509 static int slabstats_open(struct inode *inode, struct file *file)
4510 {
4511 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4512 int ret = -ENOMEM;
4513 if (n) {
4514 ret = seq_open(file, &slabstats_op);
4515 if (!ret) {
4516 struct seq_file *m = file->private_data;
4517 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4518 m->private = n;
4519 n = NULL;
4520 }
4521 kfree(n);
4522 }
4523 return ret;
4524 }
4525
4526 static const struct file_operations proc_slabstats_operations = {
4527 .open = slabstats_open,
4528 .read = seq_read,
4529 .llseek = seq_lseek,
4530 .release = seq_release_private,
4531 };
4532 #endif
4533
4534 static int __init slab_proc_init(void)
4535 {
4536 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4537 #ifdef CONFIG_DEBUG_SLAB_LEAK
4538 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4539 #endif
4540 return 0;
4541 }
4542 module_init(slab_proc_init);
4543 #endif
4544
4545 /**
4546 * ksize - get the actual amount of memory allocated for a given object
4547 * @objp: Pointer to the object
4548 *
4549 * kmalloc may internally round up allocations and return more memory
4550 * than requested. ksize() can be used to determine the actual amount of
4551 * memory allocated. The caller may use this additional memory, even though
4552 * a smaller amount of memory was initially specified with the kmalloc call.
4553 * The caller must guarantee that objp points to a valid object previously
4554 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4555 * must not be freed during the duration of the call.
4556 */
4557 size_t ksize(const void *objp)
4558 {
4559 BUG_ON(!objp);
4560 if (unlikely(objp == ZERO_SIZE_PTR))
4561 return 0;
4562
4563 return obj_size(virt_to_cache(objp));
4564 }
4565 EXPORT_SYMBOL(ksize);