mm, sl[aou]b: Use a common mutex definition
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include "slab.h"
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/cacheflush.h>
122 #include <asm/tlbflush.h>
123 #include <asm/page.h>
124
125 #include <trace/events/kmem.h>
126
127 /*
128 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * STATS - 1 to collect stats for /proc/slabinfo.
132 * 0 for faster, smaller code (especially in the critical paths).
133 *
134 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
135 */
136
137 #ifdef CONFIG_DEBUG_SLAB
138 #define DEBUG 1
139 #define STATS 1
140 #define FORCED_DEBUG 1
141 #else
142 #define DEBUG 0
143 #define STATS 0
144 #define FORCED_DEBUG 0
145 #endif
146
147 /* Shouldn't this be in a header file somewhere? */
148 #define BYTES_PER_WORD sizeof(void *)
149 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
150
151 #ifndef ARCH_KMALLOC_FLAGS
152 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
153 #endif
154
155 /* Legal flag mask for kmem_cache_create(). */
156 #if DEBUG
157 # define CREATE_MASK (SLAB_RED_ZONE | \
158 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
159 SLAB_CACHE_DMA | \
160 SLAB_STORE_USER | \
161 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
162 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
163 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
164 #else
165 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
166 SLAB_CACHE_DMA | \
167 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
168 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
169 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
170 #endif
171
172 /*
173 * kmem_bufctl_t:
174 *
175 * Bufctl's are used for linking objs within a slab
176 * linked offsets.
177 *
178 * This implementation relies on "struct page" for locating the cache &
179 * slab an object belongs to.
180 * This allows the bufctl structure to be small (one int), but limits
181 * the number of objects a slab (not a cache) can contain when off-slab
182 * bufctls are used. The limit is the size of the largest general cache
183 * that does not use off-slab slabs.
184 * For 32bit archs with 4 kB pages, is this 56.
185 * This is not serious, as it is only for large objects, when it is unwise
186 * to have too many per slab.
187 * Note: This limit can be raised by introducing a general cache whose size
188 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
189 */
190
191 typedef unsigned int kmem_bufctl_t;
192 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
193 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
194 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
195 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
196
197 /*
198 * struct slab_rcu
199 *
200 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
201 * arrange for kmem_freepages to be called via RCU. This is useful if
202 * we need to approach a kernel structure obliquely, from its address
203 * obtained without the usual locking. We can lock the structure to
204 * stabilize it and check it's still at the given address, only if we
205 * can be sure that the memory has not been meanwhile reused for some
206 * other kind of object (which our subsystem's lock might corrupt).
207 *
208 * rcu_read_lock before reading the address, then rcu_read_unlock after
209 * taking the spinlock within the structure expected at that address.
210 */
211 struct slab_rcu {
212 struct rcu_head head;
213 struct kmem_cache *cachep;
214 void *addr;
215 };
216
217 /*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224 struct slab {
225 union {
226 struct {
227 struct list_head list;
228 unsigned long colouroff;
229 void *s_mem; /* including colour offset */
230 unsigned int inuse; /* num of objs active in slab */
231 kmem_bufctl_t free;
232 unsigned short nodeid;
233 };
234 struct slab_rcu __slab_cover_slab_rcu;
235 };
236 };
237
238 /*
239 * struct array_cache
240 *
241 * Purpose:
242 * - LIFO ordering, to hand out cache-warm objects from _alloc
243 * - reduce the number of linked list operations
244 * - reduce spinlock operations
245 *
246 * The limit is stored in the per-cpu structure to reduce the data cache
247 * footprint.
248 *
249 */
250 struct array_cache {
251 unsigned int avail;
252 unsigned int limit;
253 unsigned int batchcount;
254 unsigned int touched;
255 spinlock_t lock;
256 void *entry[]; /*
257 * Must have this definition in here for the proper
258 * alignment of array_cache. Also simplifies accessing
259 * the entries.
260 */
261 };
262
263 /*
264 * bootstrap: The caches do not work without cpuarrays anymore, but the
265 * cpuarrays are allocated from the generic caches...
266 */
267 #define BOOT_CPUCACHE_ENTRIES 1
268 struct arraycache_init {
269 struct array_cache cache;
270 void *entries[BOOT_CPUCACHE_ENTRIES];
271 };
272
273 /*
274 * The slab lists for all objects.
275 */
276 struct kmem_list3 {
277 struct list_head slabs_partial; /* partial list first, better asm code */
278 struct list_head slabs_full;
279 struct list_head slabs_free;
280 unsigned long free_objects;
281 unsigned int free_limit;
282 unsigned int colour_next; /* Per-node cache coloring */
283 spinlock_t list_lock;
284 struct array_cache *shared; /* shared per node */
285 struct array_cache **alien; /* on other nodes */
286 unsigned long next_reap; /* updated without locking */
287 int free_touched; /* updated without locking */
288 };
289
290 /*
291 * Need this for bootstrapping a per node allocator.
292 */
293 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
294 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
295 #define CACHE_CACHE 0
296 #define SIZE_AC MAX_NUMNODES
297 #define SIZE_L3 (2 * MAX_NUMNODES)
298
299 static int drain_freelist(struct kmem_cache *cache,
300 struct kmem_list3 *l3, int tofree);
301 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
302 int node);
303 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
304 static void cache_reap(struct work_struct *unused);
305
306 /*
307 * This function must be completely optimized away if a constant is passed to
308 * it. Mostly the same as what is in linux/slab.h except it returns an index.
309 */
310 static __always_inline int index_of(const size_t size)
311 {
312 extern void __bad_size(void);
313
314 if (__builtin_constant_p(size)) {
315 int i = 0;
316
317 #define CACHE(x) \
318 if (size <=x) \
319 return i; \
320 else \
321 i++;
322 #include <linux/kmalloc_sizes.h>
323 #undef CACHE
324 __bad_size();
325 } else
326 __bad_size();
327 return 0;
328 }
329
330 static int slab_early_init = 1;
331
332 #define INDEX_AC index_of(sizeof(struct arraycache_init))
333 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
334
335 static void kmem_list3_init(struct kmem_list3 *parent)
336 {
337 INIT_LIST_HEAD(&parent->slabs_full);
338 INIT_LIST_HEAD(&parent->slabs_partial);
339 INIT_LIST_HEAD(&parent->slabs_free);
340 parent->shared = NULL;
341 parent->alien = NULL;
342 parent->colour_next = 0;
343 spin_lock_init(&parent->list_lock);
344 parent->free_objects = 0;
345 parent->free_touched = 0;
346 }
347
348 #define MAKE_LIST(cachep, listp, slab, nodeid) \
349 do { \
350 INIT_LIST_HEAD(listp); \
351 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
352 } while (0)
353
354 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
355 do { \
356 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
358 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
359 } while (0)
360
361 #define CFLGS_OFF_SLAB (0x80000000UL)
362 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
363
364 #define BATCHREFILL_LIMIT 16
365 /*
366 * Optimization question: fewer reaps means less probability for unnessary
367 * cpucache drain/refill cycles.
368 *
369 * OTOH the cpuarrays can contain lots of objects,
370 * which could lock up otherwise freeable slabs.
371 */
372 #define REAPTIMEOUT_CPUC (2*HZ)
373 #define REAPTIMEOUT_LIST3 (4*HZ)
374
375 #if STATS
376 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
377 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
378 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
379 #define STATS_INC_GROWN(x) ((x)->grown++)
380 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
381 #define STATS_SET_HIGH(x) \
382 do { \
383 if ((x)->num_active > (x)->high_mark) \
384 (x)->high_mark = (x)->num_active; \
385 } while (0)
386 #define STATS_INC_ERR(x) ((x)->errors++)
387 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
388 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
389 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
390 #define STATS_SET_FREEABLE(x, i) \
391 do { \
392 if ((x)->max_freeable < i) \
393 (x)->max_freeable = i; \
394 } while (0)
395 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
396 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
397 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
398 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
399 #else
400 #define STATS_INC_ACTIVE(x) do { } while (0)
401 #define STATS_DEC_ACTIVE(x) do { } while (0)
402 #define STATS_INC_ALLOCED(x) do { } while (0)
403 #define STATS_INC_GROWN(x) do { } while (0)
404 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
405 #define STATS_SET_HIGH(x) do { } while (0)
406 #define STATS_INC_ERR(x) do { } while (0)
407 #define STATS_INC_NODEALLOCS(x) do { } while (0)
408 #define STATS_INC_NODEFREES(x) do { } while (0)
409 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
410 #define STATS_SET_FREEABLE(x, i) do { } while (0)
411 #define STATS_INC_ALLOCHIT(x) do { } while (0)
412 #define STATS_INC_ALLOCMISS(x) do { } while (0)
413 #define STATS_INC_FREEHIT(x) do { } while (0)
414 #define STATS_INC_FREEMISS(x) do { } while (0)
415 #endif
416
417 #if DEBUG
418
419 /*
420 * memory layout of objects:
421 * 0 : objp
422 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
423 * the end of an object is aligned with the end of the real
424 * allocation. Catches writes behind the end of the allocation.
425 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
426 * redzone word.
427 * cachep->obj_offset: The real object.
428 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
429 * cachep->size - 1* BYTES_PER_WORD: last caller address
430 * [BYTES_PER_WORD long]
431 */
432 static int obj_offset(struct kmem_cache *cachep)
433 {
434 return cachep->obj_offset;
435 }
436
437 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
438 {
439 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
440 return (unsigned long long*) (objp + obj_offset(cachep) -
441 sizeof(unsigned long long));
442 }
443
444 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
445 {
446 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
447 if (cachep->flags & SLAB_STORE_USER)
448 return (unsigned long long *)(objp + cachep->size -
449 sizeof(unsigned long long) -
450 REDZONE_ALIGN);
451 return (unsigned long long *) (objp + cachep->size -
452 sizeof(unsigned long long));
453 }
454
455 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
456 {
457 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
458 return (void **)(objp + cachep->size - BYTES_PER_WORD);
459 }
460
461 #else
462
463 #define obj_offset(x) 0
464 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
466 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
467
468 #endif
469
470 #ifdef CONFIG_TRACING
471 size_t slab_buffer_size(struct kmem_cache *cachep)
472 {
473 return cachep->size;
474 }
475 EXPORT_SYMBOL(slab_buffer_size);
476 #endif
477
478 /*
479 * Do not go above this order unless 0 objects fit into the slab or
480 * overridden on the command line.
481 */
482 #define SLAB_MAX_ORDER_HI 1
483 #define SLAB_MAX_ORDER_LO 0
484 static int slab_max_order = SLAB_MAX_ORDER_LO;
485 static bool slab_max_order_set __initdata;
486
487 static inline struct kmem_cache *page_get_cache(struct page *page)
488 {
489 page = compound_head(page);
490 BUG_ON(!PageSlab(page));
491 return page->slab_cache;
492 }
493
494 static inline struct kmem_cache *virt_to_cache(const void *obj)
495 {
496 struct page *page = virt_to_head_page(obj);
497 return page->slab_cache;
498 }
499
500 static inline struct slab *virt_to_slab(const void *obj)
501 {
502 struct page *page = virt_to_head_page(obj);
503
504 VM_BUG_ON(!PageSlab(page));
505 return page->slab_page;
506 }
507
508 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 unsigned int idx)
510 {
511 return slab->s_mem + cache->size * idx;
512 }
513
514 /*
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 */
520 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 const struct slab *slab, void *obj)
522 {
523 u32 offset = (obj - slab->s_mem);
524 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 }
526
527 /*
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 */
530 struct cache_sizes malloc_sizes[] = {
531 #define CACHE(x) { .cs_size = (x) },
532 #include <linux/kmalloc_sizes.h>
533 CACHE(ULONG_MAX)
534 #undef CACHE
535 };
536 EXPORT_SYMBOL(malloc_sizes);
537
538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
539 struct cache_names {
540 char *name;
541 char *name_dma;
542 };
543
544 static struct cache_names __initdata cache_names[] = {
545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546 #include <linux/kmalloc_sizes.h>
547 {NULL,}
548 #undef CACHE
549 };
550
551 static struct arraycache_init initarray_cache __initdata =
552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
553 static struct arraycache_init initarray_generic =
554 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
555
556 /* internal cache of cache description objs */
557 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
558 static struct kmem_cache cache_cache = {
559 .nodelists = cache_cache_nodelists,
560 .batchcount = 1,
561 .limit = BOOT_CPUCACHE_ENTRIES,
562 .shared = 1,
563 .size = sizeof(struct kmem_cache),
564 .name = "kmem_cache",
565 };
566
567 #define BAD_ALIEN_MAGIC 0x01020304ul
568
569 #ifdef CONFIG_LOCKDEP
570
571 /*
572 * Slab sometimes uses the kmalloc slabs to store the slab headers
573 * for other slabs "off slab".
574 * The locking for this is tricky in that it nests within the locks
575 * of all other slabs in a few places; to deal with this special
576 * locking we put on-slab caches into a separate lock-class.
577 *
578 * We set lock class for alien array caches which are up during init.
579 * The lock annotation will be lost if all cpus of a node goes down and
580 * then comes back up during hotplug
581 */
582 static struct lock_class_key on_slab_l3_key;
583 static struct lock_class_key on_slab_alc_key;
584
585 static struct lock_class_key debugobj_l3_key;
586 static struct lock_class_key debugobj_alc_key;
587
588 static void slab_set_lock_classes(struct kmem_cache *cachep,
589 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
590 int q)
591 {
592 struct array_cache **alc;
593 struct kmem_list3 *l3;
594 int r;
595
596 l3 = cachep->nodelists[q];
597 if (!l3)
598 return;
599
600 lockdep_set_class(&l3->list_lock, l3_key);
601 alc = l3->alien;
602 /*
603 * FIXME: This check for BAD_ALIEN_MAGIC
604 * should go away when common slab code is taught to
605 * work even without alien caches.
606 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
607 * for alloc_alien_cache,
608 */
609 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
610 return;
611 for_each_node(r) {
612 if (alc[r])
613 lockdep_set_class(&alc[r]->lock, alc_key);
614 }
615 }
616
617 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
618 {
619 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
620 }
621
622 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
623 {
624 int node;
625
626 for_each_online_node(node)
627 slab_set_debugobj_lock_classes_node(cachep, node);
628 }
629
630 static void init_node_lock_keys(int q)
631 {
632 struct cache_sizes *s = malloc_sizes;
633
634 if (slab_state < UP)
635 return;
636
637 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
638 struct kmem_list3 *l3;
639
640 l3 = s->cs_cachep->nodelists[q];
641 if (!l3 || OFF_SLAB(s->cs_cachep))
642 continue;
643
644 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
645 &on_slab_alc_key, q);
646 }
647 }
648
649 static inline void init_lock_keys(void)
650 {
651 int node;
652
653 for_each_node(node)
654 init_node_lock_keys(node);
655 }
656 #else
657 static void init_node_lock_keys(int q)
658 {
659 }
660
661 static inline void init_lock_keys(void)
662 {
663 }
664
665 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
666 {
667 }
668
669 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
670 {
671 }
672 #endif
673
674 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
675
676 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
677 {
678 return cachep->array[smp_processor_id()];
679 }
680
681 static inline struct kmem_cache *__find_general_cachep(size_t size,
682 gfp_t gfpflags)
683 {
684 struct cache_sizes *csizep = malloc_sizes;
685
686 #if DEBUG
687 /* This happens if someone tries to call
688 * kmem_cache_create(), or __kmalloc(), before
689 * the generic caches are initialized.
690 */
691 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
692 #endif
693 if (!size)
694 return ZERO_SIZE_PTR;
695
696 while (size > csizep->cs_size)
697 csizep++;
698
699 /*
700 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
701 * has cs_{dma,}cachep==NULL. Thus no special case
702 * for large kmalloc calls required.
703 */
704 #ifdef CONFIG_ZONE_DMA
705 if (unlikely(gfpflags & GFP_DMA))
706 return csizep->cs_dmacachep;
707 #endif
708 return csizep->cs_cachep;
709 }
710
711 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
712 {
713 return __find_general_cachep(size, gfpflags);
714 }
715
716 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
717 {
718 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
719 }
720
721 /*
722 * Calculate the number of objects and left-over bytes for a given buffer size.
723 */
724 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
725 size_t align, int flags, size_t *left_over,
726 unsigned int *num)
727 {
728 int nr_objs;
729 size_t mgmt_size;
730 size_t slab_size = PAGE_SIZE << gfporder;
731
732 /*
733 * The slab management structure can be either off the slab or
734 * on it. For the latter case, the memory allocated for a
735 * slab is used for:
736 *
737 * - The struct slab
738 * - One kmem_bufctl_t for each object
739 * - Padding to respect alignment of @align
740 * - @buffer_size bytes for each object
741 *
742 * If the slab management structure is off the slab, then the
743 * alignment will already be calculated into the size. Because
744 * the slabs are all pages aligned, the objects will be at the
745 * correct alignment when allocated.
746 */
747 if (flags & CFLGS_OFF_SLAB) {
748 mgmt_size = 0;
749 nr_objs = slab_size / buffer_size;
750
751 if (nr_objs > SLAB_LIMIT)
752 nr_objs = SLAB_LIMIT;
753 } else {
754 /*
755 * Ignore padding for the initial guess. The padding
756 * is at most @align-1 bytes, and @buffer_size is at
757 * least @align. In the worst case, this result will
758 * be one greater than the number of objects that fit
759 * into the memory allocation when taking the padding
760 * into account.
761 */
762 nr_objs = (slab_size - sizeof(struct slab)) /
763 (buffer_size + sizeof(kmem_bufctl_t));
764
765 /*
766 * This calculated number will be either the right
767 * amount, or one greater than what we want.
768 */
769 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
770 > slab_size)
771 nr_objs--;
772
773 if (nr_objs > SLAB_LIMIT)
774 nr_objs = SLAB_LIMIT;
775
776 mgmt_size = slab_mgmt_size(nr_objs, align);
777 }
778 *num = nr_objs;
779 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
780 }
781
782 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
783
784 static void __slab_error(const char *function, struct kmem_cache *cachep,
785 char *msg)
786 {
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg);
789 dump_stack();
790 }
791
792 /*
793 * By default on NUMA we use alien caches to stage the freeing of
794 * objects allocated from other nodes. This causes massive memory
795 * inefficiencies when using fake NUMA setup to split memory into a
796 * large number of small nodes, so it can be disabled on the command
797 * line
798 */
799
800 static int use_alien_caches __read_mostly = 1;
801 static int __init noaliencache_setup(char *s)
802 {
803 use_alien_caches = 0;
804 return 1;
805 }
806 __setup("noaliencache", noaliencache_setup);
807
808 static int __init slab_max_order_setup(char *str)
809 {
810 get_option(&str, &slab_max_order);
811 slab_max_order = slab_max_order < 0 ? 0 :
812 min(slab_max_order, MAX_ORDER - 1);
813 slab_max_order_set = true;
814
815 return 1;
816 }
817 __setup("slab_max_order=", slab_max_order_setup);
818
819 #ifdef CONFIG_NUMA
820 /*
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
825 */
826 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
827
828 static void init_reap_node(int cpu)
829 {
830 int node;
831
832 node = next_node(cpu_to_mem(cpu), node_online_map);
833 if (node == MAX_NUMNODES)
834 node = first_node(node_online_map);
835
836 per_cpu(slab_reap_node, cpu) = node;
837 }
838
839 static void next_reap_node(void)
840 {
841 int node = __this_cpu_read(slab_reap_node);
842
843 node = next_node(node, node_online_map);
844 if (unlikely(node >= MAX_NUMNODES))
845 node = first_node(node_online_map);
846 __this_cpu_write(slab_reap_node, node);
847 }
848
849 #else
850 #define init_reap_node(cpu) do { } while (0)
851 #define next_reap_node(void) do { } while (0)
852 #endif
853
854 /*
855 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
856 * via the workqueue/eventd.
857 * Add the CPU number into the expiration time to minimize the possibility of
858 * the CPUs getting into lockstep and contending for the global cache chain
859 * lock.
860 */
861 static void __cpuinit start_cpu_timer(int cpu)
862 {
863 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
864
865 /*
866 * When this gets called from do_initcalls via cpucache_init(),
867 * init_workqueues() has already run, so keventd will be setup
868 * at that time.
869 */
870 if (keventd_up() && reap_work->work.func == NULL) {
871 init_reap_node(cpu);
872 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
873 schedule_delayed_work_on(cpu, reap_work,
874 __round_jiffies_relative(HZ, cpu));
875 }
876 }
877
878 static struct array_cache *alloc_arraycache(int node, int entries,
879 int batchcount, gfp_t gfp)
880 {
881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
882 struct array_cache *nc = NULL;
883
884 nc = kmalloc_node(memsize, gfp, node);
885 /*
886 * The array_cache structures contain pointers to free object.
887 * However, when such objects are allocated or transferred to another
888 * cache the pointers are not cleared and they could be counted as
889 * valid references during a kmemleak scan. Therefore, kmemleak must
890 * not scan such objects.
891 */
892 kmemleak_no_scan(nc);
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
898 spin_lock_init(&nc->lock);
899 }
900 return nc;
901 }
902
903 /*
904 * Transfer objects in one arraycache to another.
905 * Locking must be handled by the caller.
906 *
907 * Return the number of entries transferred.
908 */
909 static int transfer_objects(struct array_cache *to,
910 struct array_cache *from, unsigned int max)
911 {
912 /* Figure out how many entries to transfer */
913 int nr = min3(from->avail, max, to->limit - to->avail);
914
915 if (!nr)
916 return 0;
917
918 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
919 sizeof(void *) *nr);
920
921 from->avail -= nr;
922 to->avail += nr;
923 return nr;
924 }
925
926 #ifndef CONFIG_NUMA
927
928 #define drain_alien_cache(cachep, alien) do { } while (0)
929 #define reap_alien(cachep, l3) do { } while (0)
930
931 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
932 {
933 return (struct array_cache **)BAD_ALIEN_MAGIC;
934 }
935
936 static inline void free_alien_cache(struct array_cache **ac_ptr)
937 {
938 }
939
940 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
941 {
942 return 0;
943 }
944
945 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
946 gfp_t flags)
947 {
948 return NULL;
949 }
950
951 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
952 gfp_t flags, int nodeid)
953 {
954 return NULL;
955 }
956
957 #else /* CONFIG_NUMA */
958
959 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
960 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961
962 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
963 {
964 struct array_cache **ac_ptr;
965 int memsize = sizeof(void *) * nr_node_ids;
966 int i;
967
968 if (limit > 1)
969 limit = 12;
970 ac_ptr = kzalloc_node(memsize, gfp, node);
971 if (ac_ptr) {
972 for_each_node(i) {
973 if (i == node || !node_online(i))
974 continue;
975 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
976 if (!ac_ptr[i]) {
977 for (i--; i >= 0; i--)
978 kfree(ac_ptr[i]);
979 kfree(ac_ptr);
980 return NULL;
981 }
982 }
983 }
984 return ac_ptr;
985 }
986
987 static void free_alien_cache(struct array_cache **ac_ptr)
988 {
989 int i;
990
991 if (!ac_ptr)
992 return;
993 for_each_node(i)
994 kfree(ac_ptr[i]);
995 kfree(ac_ptr);
996 }
997
998 static void __drain_alien_cache(struct kmem_cache *cachep,
999 struct array_cache *ac, int node)
1000 {
1001 struct kmem_list3 *rl3 = cachep->nodelists[node];
1002
1003 if (ac->avail) {
1004 spin_lock(&rl3->list_lock);
1005 /*
1006 * Stuff objects into the remote nodes shared array first.
1007 * That way we could avoid the overhead of putting the objects
1008 * into the free lists and getting them back later.
1009 */
1010 if (rl3->shared)
1011 transfer_objects(rl3->shared, ac, ac->limit);
1012
1013 free_block(cachep, ac->entry, ac->avail, node);
1014 ac->avail = 0;
1015 spin_unlock(&rl3->list_lock);
1016 }
1017 }
1018
1019 /*
1020 * Called from cache_reap() to regularly drain alien caches round robin.
1021 */
1022 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1023 {
1024 int node = __this_cpu_read(slab_reap_node);
1025
1026 if (l3->alien) {
1027 struct array_cache *ac = l3->alien[node];
1028
1029 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1030 __drain_alien_cache(cachep, ac, node);
1031 spin_unlock_irq(&ac->lock);
1032 }
1033 }
1034 }
1035
1036 static void drain_alien_cache(struct kmem_cache *cachep,
1037 struct array_cache **alien)
1038 {
1039 int i = 0;
1040 struct array_cache *ac;
1041 unsigned long flags;
1042
1043 for_each_online_node(i) {
1044 ac = alien[i];
1045 if (ac) {
1046 spin_lock_irqsave(&ac->lock, flags);
1047 __drain_alien_cache(cachep, ac, i);
1048 spin_unlock_irqrestore(&ac->lock, flags);
1049 }
1050 }
1051 }
1052
1053 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1054 {
1055 struct slab *slabp = virt_to_slab(objp);
1056 int nodeid = slabp->nodeid;
1057 struct kmem_list3 *l3;
1058 struct array_cache *alien = NULL;
1059 int node;
1060
1061 node = numa_mem_id();
1062
1063 /*
1064 * Make sure we are not freeing a object from another node to the array
1065 * cache on this cpu.
1066 */
1067 if (likely(slabp->nodeid == node))
1068 return 0;
1069
1070 l3 = cachep->nodelists[node];
1071 STATS_INC_NODEFREES(cachep);
1072 if (l3->alien && l3->alien[nodeid]) {
1073 alien = l3->alien[nodeid];
1074 spin_lock(&alien->lock);
1075 if (unlikely(alien->avail == alien->limit)) {
1076 STATS_INC_ACOVERFLOW(cachep);
1077 __drain_alien_cache(cachep, alien, nodeid);
1078 }
1079 alien->entry[alien->avail++] = objp;
1080 spin_unlock(&alien->lock);
1081 } else {
1082 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1083 free_block(cachep, &objp, 1, nodeid);
1084 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1085 }
1086 return 1;
1087 }
1088 #endif
1089
1090 /*
1091 * Allocates and initializes nodelists for a node on each slab cache, used for
1092 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1093 * will be allocated off-node since memory is not yet online for the new node.
1094 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1095 * already in use.
1096 *
1097 * Must hold slab_mutex.
1098 */
1099 static int init_cache_nodelists_node(int node)
1100 {
1101 struct kmem_cache *cachep;
1102 struct kmem_list3 *l3;
1103 const int memsize = sizeof(struct kmem_list3);
1104
1105 list_for_each_entry(cachep, &slab_caches, list) {
1106 /*
1107 * Set up the size64 kmemlist for cpu before we can
1108 * begin anything. Make sure some other cpu on this
1109 * node has not already allocated this
1110 */
1111 if (!cachep->nodelists[node]) {
1112 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1113 if (!l3)
1114 return -ENOMEM;
1115 kmem_list3_init(l3);
1116 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1117 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1118
1119 /*
1120 * The l3s don't come and go as CPUs come and
1121 * go. slab_mutex is sufficient
1122 * protection here.
1123 */
1124 cachep->nodelists[node] = l3;
1125 }
1126
1127 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1128 cachep->nodelists[node]->free_limit =
1129 (1 + nr_cpus_node(node)) *
1130 cachep->batchcount + cachep->num;
1131 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1132 }
1133 return 0;
1134 }
1135
1136 static void __cpuinit cpuup_canceled(long cpu)
1137 {
1138 struct kmem_cache *cachep;
1139 struct kmem_list3 *l3 = NULL;
1140 int node = cpu_to_mem(cpu);
1141 const struct cpumask *mask = cpumask_of_node(node);
1142
1143 list_for_each_entry(cachep, &slab_caches, list) {
1144 struct array_cache *nc;
1145 struct array_cache *shared;
1146 struct array_cache **alien;
1147
1148 /* cpu is dead; no one can alloc from it. */
1149 nc = cachep->array[cpu];
1150 cachep->array[cpu] = NULL;
1151 l3 = cachep->nodelists[node];
1152
1153 if (!l3)
1154 goto free_array_cache;
1155
1156 spin_lock_irq(&l3->list_lock);
1157
1158 /* Free limit for this kmem_list3 */
1159 l3->free_limit -= cachep->batchcount;
1160 if (nc)
1161 free_block(cachep, nc->entry, nc->avail, node);
1162
1163 if (!cpumask_empty(mask)) {
1164 spin_unlock_irq(&l3->list_lock);
1165 goto free_array_cache;
1166 }
1167
1168 shared = l3->shared;
1169 if (shared) {
1170 free_block(cachep, shared->entry,
1171 shared->avail, node);
1172 l3->shared = NULL;
1173 }
1174
1175 alien = l3->alien;
1176 l3->alien = NULL;
1177
1178 spin_unlock_irq(&l3->list_lock);
1179
1180 kfree(shared);
1181 if (alien) {
1182 drain_alien_cache(cachep, alien);
1183 free_alien_cache(alien);
1184 }
1185 free_array_cache:
1186 kfree(nc);
1187 }
1188 /*
1189 * In the previous loop, all the objects were freed to
1190 * the respective cache's slabs, now we can go ahead and
1191 * shrink each nodelist to its limit.
1192 */
1193 list_for_each_entry(cachep, &slab_caches, list) {
1194 l3 = cachep->nodelists[node];
1195 if (!l3)
1196 continue;
1197 drain_freelist(cachep, l3, l3->free_objects);
1198 }
1199 }
1200
1201 static int __cpuinit cpuup_prepare(long cpu)
1202 {
1203 struct kmem_cache *cachep;
1204 struct kmem_list3 *l3 = NULL;
1205 int node = cpu_to_mem(cpu);
1206 int err;
1207
1208 /*
1209 * We need to do this right in the beginning since
1210 * alloc_arraycache's are going to use this list.
1211 * kmalloc_node allows us to add the slab to the right
1212 * kmem_list3 and not this cpu's kmem_list3
1213 */
1214 err = init_cache_nodelists_node(node);
1215 if (err < 0)
1216 goto bad;
1217
1218 /*
1219 * Now we can go ahead with allocating the shared arrays and
1220 * array caches
1221 */
1222 list_for_each_entry(cachep, &slab_caches, list) {
1223 struct array_cache *nc;
1224 struct array_cache *shared = NULL;
1225 struct array_cache **alien = NULL;
1226
1227 nc = alloc_arraycache(node, cachep->limit,
1228 cachep->batchcount, GFP_KERNEL);
1229 if (!nc)
1230 goto bad;
1231 if (cachep->shared) {
1232 shared = alloc_arraycache(node,
1233 cachep->shared * cachep->batchcount,
1234 0xbaadf00d, GFP_KERNEL);
1235 if (!shared) {
1236 kfree(nc);
1237 goto bad;
1238 }
1239 }
1240 if (use_alien_caches) {
1241 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1242 if (!alien) {
1243 kfree(shared);
1244 kfree(nc);
1245 goto bad;
1246 }
1247 }
1248 cachep->array[cpu] = nc;
1249 l3 = cachep->nodelists[node];
1250 BUG_ON(!l3);
1251
1252 spin_lock_irq(&l3->list_lock);
1253 if (!l3->shared) {
1254 /*
1255 * We are serialised from CPU_DEAD or
1256 * CPU_UP_CANCELLED by the cpucontrol lock
1257 */
1258 l3->shared = shared;
1259 shared = NULL;
1260 }
1261 #ifdef CONFIG_NUMA
1262 if (!l3->alien) {
1263 l3->alien = alien;
1264 alien = NULL;
1265 }
1266 #endif
1267 spin_unlock_irq(&l3->list_lock);
1268 kfree(shared);
1269 free_alien_cache(alien);
1270 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1271 slab_set_debugobj_lock_classes_node(cachep, node);
1272 }
1273 init_node_lock_keys(node);
1274
1275 return 0;
1276 bad:
1277 cpuup_canceled(cpu);
1278 return -ENOMEM;
1279 }
1280
1281 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1282 unsigned long action, void *hcpu)
1283 {
1284 long cpu = (long)hcpu;
1285 int err = 0;
1286
1287 switch (action) {
1288 case CPU_UP_PREPARE:
1289 case CPU_UP_PREPARE_FROZEN:
1290 mutex_lock(&slab_mutex);
1291 err = cpuup_prepare(cpu);
1292 mutex_unlock(&slab_mutex);
1293 break;
1294 case CPU_ONLINE:
1295 case CPU_ONLINE_FROZEN:
1296 start_cpu_timer(cpu);
1297 break;
1298 #ifdef CONFIG_HOTPLUG_CPU
1299 case CPU_DOWN_PREPARE:
1300 case CPU_DOWN_PREPARE_FROZEN:
1301 /*
1302 * Shutdown cache reaper. Note that the slab_mutex is
1303 * held so that if cache_reap() is invoked it cannot do
1304 * anything expensive but will only modify reap_work
1305 * and reschedule the timer.
1306 */
1307 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1308 /* Now the cache_reaper is guaranteed to be not running. */
1309 per_cpu(slab_reap_work, cpu).work.func = NULL;
1310 break;
1311 case CPU_DOWN_FAILED:
1312 case CPU_DOWN_FAILED_FROZEN:
1313 start_cpu_timer(cpu);
1314 break;
1315 case CPU_DEAD:
1316 case CPU_DEAD_FROZEN:
1317 /*
1318 * Even if all the cpus of a node are down, we don't free the
1319 * kmem_list3 of any cache. This to avoid a race between
1320 * cpu_down, and a kmalloc allocation from another cpu for
1321 * memory from the node of the cpu going down. The list3
1322 * structure is usually allocated from kmem_cache_create() and
1323 * gets destroyed at kmem_cache_destroy().
1324 */
1325 /* fall through */
1326 #endif
1327 case CPU_UP_CANCELED:
1328 case CPU_UP_CANCELED_FROZEN:
1329 mutex_lock(&slab_mutex);
1330 cpuup_canceled(cpu);
1331 mutex_unlock(&slab_mutex);
1332 break;
1333 }
1334 return notifier_from_errno(err);
1335 }
1336
1337 static struct notifier_block __cpuinitdata cpucache_notifier = {
1338 &cpuup_callback, NULL, 0
1339 };
1340
1341 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1342 /*
1343 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1344 * Returns -EBUSY if all objects cannot be drained so that the node is not
1345 * removed.
1346 *
1347 * Must hold slab_mutex.
1348 */
1349 static int __meminit drain_cache_nodelists_node(int node)
1350 {
1351 struct kmem_cache *cachep;
1352 int ret = 0;
1353
1354 list_for_each_entry(cachep, &slab_caches, list) {
1355 struct kmem_list3 *l3;
1356
1357 l3 = cachep->nodelists[node];
1358 if (!l3)
1359 continue;
1360
1361 drain_freelist(cachep, l3, l3->free_objects);
1362
1363 if (!list_empty(&l3->slabs_full) ||
1364 !list_empty(&l3->slabs_partial)) {
1365 ret = -EBUSY;
1366 break;
1367 }
1368 }
1369 return ret;
1370 }
1371
1372 static int __meminit slab_memory_callback(struct notifier_block *self,
1373 unsigned long action, void *arg)
1374 {
1375 struct memory_notify *mnb = arg;
1376 int ret = 0;
1377 int nid;
1378
1379 nid = mnb->status_change_nid;
1380 if (nid < 0)
1381 goto out;
1382
1383 switch (action) {
1384 case MEM_GOING_ONLINE:
1385 mutex_lock(&slab_mutex);
1386 ret = init_cache_nodelists_node(nid);
1387 mutex_unlock(&slab_mutex);
1388 break;
1389 case MEM_GOING_OFFLINE:
1390 mutex_lock(&slab_mutex);
1391 ret = drain_cache_nodelists_node(nid);
1392 mutex_unlock(&slab_mutex);
1393 break;
1394 case MEM_ONLINE:
1395 case MEM_OFFLINE:
1396 case MEM_CANCEL_ONLINE:
1397 case MEM_CANCEL_OFFLINE:
1398 break;
1399 }
1400 out:
1401 return notifier_from_errno(ret);
1402 }
1403 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1404
1405 /*
1406 * swap the static kmem_list3 with kmalloced memory
1407 */
1408 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1409 int nodeid)
1410 {
1411 struct kmem_list3 *ptr;
1412
1413 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1414 BUG_ON(!ptr);
1415
1416 memcpy(ptr, list, sizeof(struct kmem_list3));
1417 /*
1418 * Do not assume that spinlocks can be initialized via memcpy:
1419 */
1420 spin_lock_init(&ptr->list_lock);
1421
1422 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1423 cachep->nodelists[nodeid] = ptr;
1424 }
1425
1426 /*
1427 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1428 * size of kmem_list3.
1429 */
1430 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1431 {
1432 int node;
1433
1434 for_each_online_node(node) {
1435 cachep->nodelists[node] = &initkmem_list3[index + node];
1436 cachep->nodelists[node]->next_reap = jiffies +
1437 REAPTIMEOUT_LIST3 +
1438 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1439 }
1440 }
1441
1442 /*
1443 * Initialisation. Called after the page allocator have been initialised and
1444 * before smp_init().
1445 */
1446 void __init kmem_cache_init(void)
1447 {
1448 size_t left_over;
1449 struct cache_sizes *sizes;
1450 struct cache_names *names;
1451 int i;
1452 int order;
1453 int node;
1454
1455 if (num_possible_nodes() == 1)
1456 use_alien_caches = 0;
1457
1458 for (i = 0; i < NUM_INIT_LISTS; i++) {
1459 kmem_list3_init(&initkmem_list3[i]);
1460 if (i < MAX_NUMNODES)
1461 cache_cache.nodelists[i] = NULL;
1462 }
1463 set_up_list3s(&cache_cache, CACHE_CACHE);
1464
1465 /*
1466 * Fragmentation resistance on low memory - only use bigger
1467 * page orders on machines with more than 32MB of memory if
1468 * not overridden on the command line.
1469 */
1470 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1471 slab_max_order = SLAB_MAX_ORDER_HI;
1472
1473 /* Bootstrap is tricky, because several objects are allocated
1474 * from caches that do not exist yet:
1475 * 1) initialize the cache_cache cache: it contains the struct
1476 * kmem_cache structures of all caches, except cache_cache itself:
1477 * cache_cache is statically allocated.
1478 * Initially an __init data area is used for the head array and the
1479 * kmem_list3 structures, it's replaced with a kmalloc allocated
1480 * array at the end of the bootstrap.
1481 * 2) Create the first kmalloc cache.
1482 * The struct kmem_cache for the new cache is allocated normally.
1483 * An __init data area is used for the head array.
1484 * 3) Create the remaining kmalloc caches, with minimally sized
1485 * head arrays.
1486 * 4) Replace the __init data head arrays for cache_cache and the first
1487 * kmalloc cache with kmalloc allocated arrays.
1488 * 5) Replace the __init data for kmem_list3 for cache_cache and
1489 * the other cache's with kmalloc allocated memory.
1490 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1491 */
1492
1493 node = numa_mem_id();
1494
1495 /* 1) create the cache_cache */
1496 INIT_LIST_HEAD(&slab_caches);
1497 list_add(&cache_cache.list, &slab_caches);
1498 cache_cache.colour_off = cache_line_size();
1499 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1500 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1501
1502 /*
1503 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1504 */
1505 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1506 nr_node_ids * sizeof(struct kmem_list3 *);
1507 cache_cache.object_size = cache_cache.size;
1508 cache_cache.size = ALIGN(cache_cache.size,
1509 cache_line_size());
1510 cache_cache.reciprocal_buffer_size =
1511 reciprocal_value(cache_cache.size);
1512
1513 for (order = 0; order < MAX_ORDER; order++) {
1514 cache_estimate(order, cache_cache.size,
1515 cache_line_size(), 0, &left_over, &cache_cache.num);
1516 if (cache_cache.num)
1517 break;
1518 }
1519 BUG_ON(!cache_cache.num);
1520 cache_cache.gfporder = order;
1521 cache_cache.colour = left_over / cache_cache.colour_off;
1522 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1523 sizeof(struct slab), cache_line_size());
1524
1525 /* 2+3) create the kmalloc caches */
1526 sizes = malloc_sizes;
1527 names = cache_names;
1528
1529 /*
1530 * Initialize the caches that provide memory for the array cache and the
1531 * kmem_list3 structures first. Without this, further allocations will
1532 * bug.
1533 */
1534
1535 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1536 sizes[INDEX_AC].cs_size,
1537 ARCH_KMALLOC_MINALIGN,
1538 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1539 NULL);
1540
1541 if (INDEX_AC != INDEX_L3) {
1542 sizes[INDEX_L3].cs_cachep =
1543 __kmem_cache_create(names[INDEX_L3].name,
1544 sizes[INDEX_L3].cs_size,
1545 ARCH_KMALLOC_MINALIGN,
1546 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547 NULL);
1548 }
1549
1550 slab_early_init = 0;
1551
1552 while (sizes->cs_size != ULONG_MAX) {
1553 /*
1554 * For performance, all the general caches are L1 aligned.
1555 * This should be particularly beneficial on SMP boxes, as it
1556 * eliminates "false sharing".
1557 * Note for systems short on memory removing the alignment will
1558 * allow tighter packing of the smaller caches.
1559 */
1560 if (!sizes->cs_cachep) {
1561 sizes->cs_cachep = __kmem_cache_create(names->name,
1562 sizes->cs_size,
1563 ARCH_KMALLOC_MINALIGN,
1564 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1565 NULL);
1566 }
1567 #ifdef CONFIG_ZONE_DMA
1568 sizes->cs_dmacachep = __kmem_cache_create(
1569 names->name_dma,
1570 sizes->cs_size,
1571 ARCH_KMALLOC_MINALIGN,
1572 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1573 SLAB_PANIC,
1574 NULL);
1575 #endif
1576 sizes++;
1577 names++;
1578 }
1579 /* 4) Replace the bootstrap head arrays */
1580 {
1581 struct array_cache *ptr;
1582
1583 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1584
1585 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1586 memcpy(ptr, cpu_cache_get(&cache_cache),
1587 sizeof(struct arraycache_init));
1588 /*
1589 * Do not assume that spinlocks can be initialized via memcpy:
1590 */
1591 spin_lock_init(&ptr->lock);
1592
1593 cache_cache.array[smp_processor_id()] = ptr;
1594
1595 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1596
1597 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1598 != &initarray_generic.cache);
1599 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1600 sizeof(struct arraycache_init));
1601 /*
1602 * Do not assume that spinlocks can be initialized via memcpy:
1603 */
1604 spin_lock_init(&ptr->lock);
1605
1606 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1607 ptr;
1608 }
1609 /* 5) Replace the bootstrap kmem_list3's */
1610 {
1611 int nid;
1612
1613 for_each_online_node(nid) {
1614 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1615
1616 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1617 &initkmem_list3[SIZE_AC + nid], nid);
1618
1619 if (INDEX_AC != INDEX_L3) {
1620 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1621 &initkmem_list3[SIZE_L3 + nid], nid);
1622 }
1623 }
1624 }
1625
1626 slab_state = UP;
1627 }
1628
1629 void __init kmem_cache_init_late(void)
1630 {
1631 struct kmem_cache *cachep;
1632
1633 slab_state = UP;
1634
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 init_lock_keys();
1637
1638 /* 6) resize the head arrays to their final sizes */
1639 mutex_lock(&slab_mutex);
1640 list_for_each_entry(cachep, &slab_caches, list)
1641 if (enable_cpucache(cachep, GFP_NOWAIT))
1642 BUG();
1643 mutex_unlock(&slab_mutex);
1644
1645 /* Done! */
1646 slab_state = FULL;
1647
1648 /*
1649 * Register a cpu startup notifier callback that initializes
1650 * cpu_cache_get for all new cpus
1651 */
1652 register_cpu_notifier(&cpucache_notifier);
1653
1654 #ifdef CONFIG_NUMA
1655 /*
1656 * Register a memory hotplug callback that initializes and frees
1657 * nodelists.
1658 */
1659 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1660 #endif
1661
1662 /*
1663 * The reap timers are started later, with a module init call: That part
1664 * of the kernel is not yet operational.
1665 */
1666 }
1667
1668 static int __init cpucache_init(void)
1669 {
1670 int cpu;
1671
1672 /*
1673 * Register the timers that return unneeded pages to the page allocator
1674 */
1675 for_each_online_cpu(cpu)
1676 start_cpu_timer(cpu);
1677
1678 /* Done! */
1679 slab_state = FULL;
1680 return 0;
1681 }
1682 __initcall(cpucache_init);
1683
1684 static noinline void
1685 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1686 {
1687 struct kmem_list3 *l3;
1688 struct slab *slabp;
1689 unsigned long flags;
1690 int node;
1691
1692 printk(KERN_WARNING
1693 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1694 nodeid, gfpflags);
1695 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1696 cachep->name, cachep->size, cachep->gfporder);
1697
1698 for_each_online_node(node) {
1699 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1700 unsigned long active_slabs = 0, num_slabs = 0;
1701
1702 l3 = cachep->nodelists[node];
1703 if (!l3)
1704 continue;
1705
1706 spin_lock_irqsave(&l3->list_lock, flags);
1707 list_for_each_entry(slabp, &l3->slabs_full, list) {
1708 active_objs += cachep->num;
1709 active_slabs++;
1710 }
1711 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1712 active_objs += slabp->inuse;
1713 active_slabs++;
1714 }
1715 list_for_each_entry(slabp, &l3->slabs_free, list)
1716 num_slabs++;
1717
1718 free_objects += l3->free_objects;
1719 spin_unlock_irqrestore(&l3->list_lock, flags);
1720
1721 num_slabs += active_slabs;
1722 num_objs = num_slabs * cachep->num;
1723 printk(KERN_WARNING
1724 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1725 node, active_slabs, num_slabs, active_objs, num_objs,
1726 free_objects);
1727 }
1728 }
1729
1730 /*
1731 * Interface to system's page allocator. No need to hold the cache-lock.
1732 *
1733 * If we requested dmaable memory, we will get it. Even if we
1734 * did not request dmaable memory, we might get it, but that
1735 * would be relatively rare and ignorable.
1736 */
1737 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1738 {
1739 struct page *page;
1740 int nr_pages;
1741 int i;
1742
1743 #ifndef CONFIG_MMU
1744 /*
1745 * Nommu uses slab's for process anonymous memory allocations, and thus
1746 * requires __GFP_COMP to properly refcount higher order allocations
1747 */
1748 flags |= __GFP_COMP;
1749 #endif
1750
1751 flags |= cachep->allocflags;
1752 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1753 flags |= __GFP_RECLAIMABLE;
1754
1755 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1756 if (!page) {
1757 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1758 slab_out_of_memory(cachep, flags, nodeid);
1759 return NULL;
1760 }
1761
1762 nr_pages = (1 << cachep->gfporder);
1763 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1764 add_zone_page_state(page_zone(page),
1765 NR_SLAB_RECLAIMABLE, nr_pages);
1766 else
1767 add_zone_page_state(page_zone(page),
1768 NR_SLAB_UNRECLAIMABLE, nr_pages);
1769 for (i = 0; i < nr_pages; i++)
1770 __SetPageSlab(page + i);
1771
1772 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1773 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1774
1775 if (cachep->ctor)
1776 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1777 else
1778 kmemcheck_mark_unallocated_pages(page, nr_pages);
1779 }
1780
1781 return page_address(page);
1782 }
1783
1784 /*
1785 * Interface to system's page release.
1786 */
1787 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1788 {
1789 unsigned long i = (1 << cachep->gfporder);
1790 struct page *page = virt_to_page(addr);
1791 const unsigned long nr_freed = i;
1792
1793 kmemcheck_free_shadow(page, cachep->gfporder);
1794
1795 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1796 sub_zone_page_state(page_zone(page),
1797 NR_SLAB_RECLAIMABLE, nr_freed);
1798 else
1799 sub_zone_page_state(page_zone(page),
1800 NR_SLAB_UNRECLAIMABLE, nr_freed);
1801 while (i--) {
1802 BUG_ON(!PageSlab(page));
1803 __ClearPageSlab(page);
1804 page++;
1805 }
1806 if (current->reclaim_state)
1807 current->reclaim_state->reclaimed_slab += nr_freed;
1808 free_pages((unsigned long)addr, cachep->gfporder);
1809 }
1810
1811 static void kmem_rcu_free(struct rcu_head *head)
1812 {
1813 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1814 struct kmem_cache *cachep = slab_rcu->cachep;
1815
1816 kmem_freepages(cachep, slab_rcu->addr);
1817 if (OFF_SLAB(cachep))
1818 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1819 }
1820
1821 #if DEBUG
1822
1823 #ifdef CONFIG_DEBUG_PAGEALLOC
1824 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1825 unsigned long caller)
1826 {
1827 int size = cachep->object_size;
1828
1829 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1830
1831 if (size < 5 * sizeof(unsigned long))
1832 return;
1833
1834 *addr++ = 0x12345678;
1835 *addr++ = caller;
1836 *addr++ = smp_processor_id();
1837 size -= 3 * sizeof(unsigned long);
1838 {
1839 unsigned long *sptr = &caller;
1840 unsigned long svalue;
1841
1842 while (!kstack_end(sptr)) {
1843 svalue = *sptr++;
1844 if (kernel_text_address(svalue)) {
1845 *addr++ = svalue;
1846 size -= sizeof(unsigned long);
1847 if (size <= sizeof(unsigned long))
1848 break;
1849 }
1850 }
1851
1852 }
1853 *addr++ = 0x87654321;
1854 }
1855 #endif
1856
1857 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1858 {
1859 int size = cachep->object_size;
1860 addr = &((char *)addr)[obj_offset(cachep)];
1861
1862 memset(addr, val, size);
1863 *(unsigned char *)(addr + size - 1) = POISON_END;
1864 }
1865
1866 static void dump_line(char *data, int offset, int limit)
1867 {
1868 int i;
1869 unsigned char error = 0;
1870 int bad_count = 0;
1871
1872 printk(KERN_ERR "%03x: ", offset);
1873 for (i = 0; i < limit; i++) {
1874 if (data[offset + i] != POISON_FREE) {
1875 error = data[offset + i];
1876 bad_count++;
1877 }
1878 }
1879 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1880 &data[offset], limit, 1);
1881
1882 if (bad_count == 1) {
1883 error ^= POISON_FREE;
1884 if (!(error & (error - 1))) {
1885 printk(KERN_ERR "Single bit error detected. Probably "
1886 "bad RAM.\n");
1887 #ifdef CONFIG_X86
1888 printk(KERN_ERR "Run memtest86+ or a similar memory "
1889 "test tool.\n");
1890 #else
1891 printk(KERN_ERR "Run a memory test tool.\n");
1892 #endif
1893 }
1894 }
1895 }
1896 #endif
1897
1898 #if DEBUG
1899
1900 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1901 {
1902 int i, size;
1903 char *realobj;
1904
1905 if (cachep->flags & SLAB_RED_ZONE) {
1906 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1907 *dbg_redzone1(cachep, objp),
1908 *dbg_redzone2(cachep, objp));
1909 }
1910
1911 if (cachep->flags & SLAB_STORE_USER) {
1912 printk(KERN_ERR "Last user: [<%p>]",
1913 *dbg_userword(cachep, objp));
1914 print_symbol("(%s)",
1915 (unsigned long)*dbg_userword(cachep, objp));
1916 printk("\n");
1917 }
1918 realobj = (char *)objp + obj_offset(cachep);
1919 size = cachep->object_size;
1920 for (i = 0; i < size && lines; i += 16, lines--) {
1921 int limit;
1922 limit = 16;
1923 if (i + limit > size)
1924 limit = size - i;
1925 dump_line(realobj, i, limit);
1926 }
1927 }
1928
1929 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1930 {
1931 char *realobj;
1932 int size, i;
1933 int lines = 0;
1934
1935 realobj = (char *)objp + obj_offset(cachep);
1936 size = cachep->object_size;
1937
1938 for (i = 0; i < size; i++) {
1939 char exp = POISON_FREE;
1940 if (i == size - 1)
1941 exp = POISON_END;
1942 if (realobj[i] != exp) {
1943 int limit;
1944 /* Mismatch ! */
1945 /* Print header */
1946 if (lines == 0) {
1947 printk(KERN_ERR
1948 "Slab corruption (%s): %s start=%p, len=%d\n",
1949 print_tainted(), cachep->name, realobj, size);
1950 print_objinfo(cachep, objp, 0);
1951 }
1952 /* Hexdump the affected line */
1953 i = (i / 16) * 16;
1954 limit = 16;
1955 if (i + limit > size)
1956 limit = size - i;
1957 dump_line(realobj, i, limit);
1958 i += 16;
1959 lines++;
1960 /* Limit to 5 lines */
1961 if (lines > 5)
1962 break;
1963 }
1964 }
1965 if (lines != 0) {
1966 /* Print some data about the neighboring objects, if they
1967 * exist:
1968 */
1969 struct slab *slabp = virt_to_slab(objp);
1970 unsigned int objnr;
1971
1972 objnr = obj_to_index(cachep, slabp, objp);
1973 if (objnr) {
1974 objp = index_to_obj(cachep, slabp, objnr - 1);
1975 realobj = (char *)objp + obj_offset(cachep);
1976 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1977 realobj, size);
1978 print_objinfo(cachep, objp, 2);
1979 }
1980 if (objnr + 1 < cachep->num) {
1981 objp = index_to_obj(cachep, slabp, objnr + 1);
1982 realobj = (char *)objp + obj_offset(cachep);
1983 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1984 realobj, size);
1985 print_objinfo(cachep, objp, 2);
1986 }
1987 }
1988 }
1989 #endif
1990
1991 #if DEBUG
1992 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1993 {
1994 int i;
1995 for (i = 0; i < cachep->num; i++) {
1996 void *objp = index_to_obj(cachep, slabp, i);
1997
1998 if (cachep->flags & SLAB_POISON) {
1999 #ifdef CONFIG_DEBUG_PAGEALLOC
2000 if (cachep->size % PAGE_SIZE == 0 &&
2001 OFF_SLAB(cachep))
2002 kernel_map_pages(virt_to_page(objp),
2003 cachep->size / PAGE_SIZE, 1);
2004 else
2005 check_poison_obj(cachep, objp);
2006 #else
2007 check_poison_obj(cachep, objp);
2008 #endif
2009 }
2010 if (cachep->flags & SLAB_RED_ZONE) {
2011 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2012 slab_error(cachep, "start of a freed object "
2013 "was overwritten");
2014 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2015 slab_error(cachep, "end of a freed object "
2016 "was overwritten");
2017 }
2018 }
2019 }
2020 #else
2021 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2022 {
2023 }
2024 #endif
2025
2026 /**
2027 * slab_destroy - destroy and release all objects in a slab
2028 * @cachep: cache pointer being destroyed
2029 * @slabp: slab pointer being destroyed
2030 *
2031 * Destroy all the objs in a slab, and release the mem back to the system.
2032 * Before calling the slab must have been unlinked from the cache. The
2033 * cache-lock is not held/needed.
2034 */
2035 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2036 {
2037 void *addr = slabp->s_mem - slabp->colouroff;
2038
2039 slab_destroy_debugcheck(cachep, slabp);
2040 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2041 struct slab_rcu *slab_rcu;
2042
2043 slab_rcu = (struct slab_rcu *)slabp;
2044 slab_rcu->cachep = cachep;
2045 slab_rcu->addr = addr;
2046 call_rcu(&slab_rcu->head, kmem_rcu_free);
2047 } else {
2048 kmem_freepages(cachep, addr);
2049 if (OFF_SLAB(cachep))
2050 kmem_cache_free(cachep->slabp_cache, slabp);
2051 }
2052 }
2053
2054 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2055 {
2056 int i;
2057 struct kmem_list3 *l3;
2058
2059 for_each_online_cpu(i)
2060 kfree(cachep->array[i]);
2061
2062 /* NUMA: free the list3 structures */
2063 for_each_online_node(i) {
2064 l3 = cachep->nodelists[i];
2065 if (l3) {
2066 kfree(l3->shared);
2067 free_alien_cache(l3->alien);
2068 kfree(l3);
2069 }
2070 }
2071 kmem_cache_free(&cache_cache, cachep);
2072 }
2073
2074
2075 /**
2076 * calculate_slab_order - calculate size (page order) of slabs
2077 * @cachep: pointer to the cache that is being created
2078 * @size: size of objects to be created in this cache.
2079 * @align: required alignment for the objects.
2080 * @flags: slab allocation flags
2081 *
2082 * Also calculates the number of objects per slab.
2083 *
2084 * This could be made much more intelligent. For now, try to avoid using
2085 * high order pages for slabs. When the gfp() functions are more friendly
2086 * towards high-order requests, this should be changed.
2087 */
2088 static size_t calculate_slab_order(struct kmem_cache *cachep,
2089 size_t size, size_t align, unsigned long flags)
2090 {
2091 unsigned long offslab_limit;
2092 size_t left_over = 0;
2093 int gfporder;
2094
2095 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2096 unsigned int num;
2097 size_t remainder;
2098
2099 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2100 if (!num)
2101 continue;
2102
2103 if (flags & CFLGS_OFF_SLAB) {
2104 /*
2105 * Max number of objs-per-slab for caches which
2106 * use off-slab slabs. Needed to avoid a possible
2107 * looping condition in cache_grow().
2108 */
2109 offslab_limit = size - sizeof(struct slab);
2110 offslab_limit /= sizeof(kmem_bufctl_t);
2111
2112 if (num > offslab_limit)
2113 break;
2114 }
2115
2116 /* Found something acceptable - save it away */
2117 cachep->num = num;
2118 cachep->gfporder = gfporder;
2119 left_over = remainder;
2120
2121 /*
2122 * A VFS-reclaimable slab tends to have most allocations
2123 * as GFP_NOFS and we really don't want to have to be allocating
2124 * higher-order pages when we are unable to shrink dcache.
2125 */
2126 if (flags & SLAB_RECLAIM_ACCOUNT)
2127 break;
2128
2129 /*
2130 * Large number of objects is good, but very large slabs are
2131 * currently bad for the gfp()s.
2132 */
2133 if (gfporder >= slab_max_order)
2134 break;
2135
2136 /*
2137 * Acceptable internal fragmentation?
2138 */
2139 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2140 break;
2141 }
2142 return left_over;
2143 }
2144
2145 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2146 {
2147 if (slab_state >= FULL)
2148 return enable_cpucache(cachep, gfp);
2149
2150 if (slab_state == DOWN) {
2151 /*
2152 * Note: the first kmem_cache_create must create the cache
2153 * that's used by kmalloc(24), otherwise the creation of
2154 * further caches will BUG().
2155 */
2156 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2157
2158 /*
2159 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2160 * the first cache, then we need to set up all its list3s,
2161 * otherwise the creation of further caches will BUG().
2162 */
2163 set_up_list3s(cachep, SIZE_AC);
2164 if (INDEX_AC == INDEX_L3)
2165 slab_state = PARTIAL_L3;
2166 else
2167 slab_state = PARTIAL_ARRAYCACHE;
2168 } else {
2169 cachep->array[smp_processor_id()] =
2170 kmalloc(sizeof(struct arraycache_init), gfp);
2171
2172 if (slab_state == PARTIAL_ARRAYCACHE) {
2173 set_up_list3s(cachep, SIZE_L3);
2174 slab_state = PARTIAL_L3;
2175 } else {
2176 int node;
2177 for_each_online_node(node) {
2178 cachep->nodelists[node] =
2179 kmalloc_node(sizeof(struct kmem_list3),
2180 gfp, node);
2181 BUG_ON(!cachep->nodelists[node]);
2182 kmem_list3_init(cachep->nodelists[node]);
2183 }
2184 }
2185 }
2186 cachep->nodelists[numa_mem_id()]->next_reap =
2187 jiffies + REAPTIMEOUT_LIST3 +
2188 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2189
2190 cpu_cache_get(cachep)->avail = 0;
2191 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192 cpu_cache_get(cachep)->batchcount = 1;
2193 cpu_cache_get(cachep)->touched = 0;
2194 cachep->batchcount = 1;
2195 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196 return 0;
2197 }
2198
2199 /**
2200 * __kmem_cache_create - Create a cache.
2201 * @name: A string which is used in /proc/slabinfo to identify this cache.
2202 * @size: The size of objects to be created in this cache.
2203 * @align: The required alignment for the objects.
2204 * @flags: SLAB flags
2205 * @ctor: A constructor for the objects.
2206 *
2207 * Returns a ptr to the cache on success, NULL on failure.
2208 * Cannot be called within a int, but can be interrupted.
2209 * The @ctor is run when new pages are allocated by the cache.
2210 *
2211 * @name must be valid until the cache is destroyed. This implies that
2212 * the module calling this has to destroy the cache before getting unloaded.
2213 *
2214 * The flags are
2215 *
2216 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2217 * to catch references to uninitialised memory.
2218 *
2219 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2220 * for buffer overruns.
2221 *
2222 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2223 * cacheline. This can be beneficial if you're counting cycles as closely
2224 * as davem.
2225 */
2226 struct kmem_cache *
2227 __kmem_cache_create (const char *name, size_t size, size_t align,
2228 unsigned long flags, void (*ctor)(void *))
2229 {
2230 size_t left_over, slab_size, ralign;
2231 struct kmem_cache *cachep = NULL, *pc;
2232 gfp_t gfp;
2233
2234 /*
2235 * Sanity checks... these are all serious usage bugs.
2236 */
2237 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2238 size > KMALLOC_MAX_SIZE) {
2239 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2240 name);
2241 BUG();
2242 }
2243
2244 /*
2245 * We use cache_chain_mutex to ensure a consistent view of
2246 * cpu_online_mask as well. Please see cpuup_callback
2247 */
2248 if (slab_is_available()) {
2249 get_online_cpus();
2250 mutex_lock(&slab_mutex);
2251 }
2252
2253 list_for_each_entry(pc, &slab_caches, list) {
2254 char tmp;
2255 int res;
2256
2257 /*
2258 * This happens when the module gets unloaded and doesn't
2259 * destroy its slab cache and no-one else reuses the vmalloc
2260 * area of the module. Print a warning.
2261 */
2262 res = probe_kernel_address(pc->name, tmp);
2263 if (res) {
2264 printk(KERN_ERR
2265 "SLAB: cache with size %d has lost its name\n",
2266 pc->size);
2267 continue;
2268 }
2269
2270 if (!strcmp(pc->name, name)) {
2271 printk(KERN_ERR
2272 "kmem_cache_create: duplicate cache %s\n", name);
2273 dump_stack();
2274 goto oops;
2275 }
2276 }
2277
2278 #if DEBUG
2279 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2280 #if FORCED_DEBUG
2281 /*
2282 * Enable redzoning and last user accounting, except for caches with
2283 * large objects, if the increased size would increase the object size
2284 * above the next power of two: caches with object sizes just above a
2285 * power of two have a significant amount of internal fragmentation.
2286 */
2287 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2288 2 * sizeof(unsigned long long)))
2289 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2290 if (!(flags & SLAB_DESTROY_BY_RCU))
2291 flags |= SLAB_POISON;
2292 #endif
2293 if (flags & SLAB_DESTROY_BY_RCU)
2294 BUG_ON(flags & SLAB_POISON);
2295 #endif
2296 /*
2297 * Always checks flags, a caller might be expecting debug support which
2298 * isn't available.
2299 */
2300 BUG_ON(flags & ~CREATE_MASK);
2301
2302 /*
2303 * Check that size is in terms of words. This is needed to avoid
2304 * unaligned accesses for some archs when redzoning is used, and makes
2305 * sure any on-slab bufctl's are also correctly aligned.
2306 */
2307 if (size & (BYTES_PER_WORD - 1)) {
2308 size += (BYTES_PER_WORD - 1);
2309 size &= ~(BYTES_PER_WORD - 1);
2310 }
2311
2312 /* calculate the final buffer alignment: */
2313
2314 /* 1) arch recommendation: can be overridden for debug */
2315 if (flags & SLAB_HWCACHE_ALIGN) {
2316 /*
2317 * Default alignment: as specified by the arch code. Except if
2318 * an object is really small, then squeeze multiple objects into
2319 * one cacheline.
2320 */
2321 ralign = cache_line_size();
2322 while (size <= ralign / 2)
2323 ralign /= 2;
2324 } else {
2325 ralign = BYTES_PER_WORD;
2326 }
2327
2328 /*
2329 * Redzoning and user store require word alignment or possibly larger.
2330 * Note this will be overridden by architecture or caller mandated
2331 * alignment if either is greater than BYTES_PER_WORD.
2332 */
2333 if (flags & SLAB_STORE_USER)
2334 ralign = BYTES_PER_WORD;
2335
2336 if (flags & SLAB_RED_ZONE) {
2337 ralign = REDZONE_ALIGN;
2338 /* If redzoning, ensure that the second redzone is suitably
2339 * aligned, by adjusting the object size accordingly. */
2340 size += REDZONE_ALIGN - 1;
2341 size &= ~(REDZONE_ALIGN - 1);
2342 }
2343
2344 /* 2) arch mandated alignment */
2345 if (ralign < ARCH_SLAB_MINALIGN) {
2346 ralign = ARCH_SLAB_MINALIGN;
2347 }
2348 /* 3) caller mandated alignment */
2349 if (ralign < align) {
2350 ralign = align;
2351 }
2352 /* disable debug if necessary */
2353 if (ralign > __alignof__(unsigned long long))
2354 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2355 /*
2356 * 4) Store it.
2357 */
2358 align = ralign;
2359
2360 if (slab_is_available())
2361 gfp = GFP_KERNEL;
2362 else
2363 gfp = GFP_NOWAIT;
2364
2365 /* Get cache's description obj. */
2366 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2367 if (!cachep)
2368 return NULL;
2369
2370 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2371 cachep->object_size = size;
2372 cachep->align = align;
2373 #if DEBUG
2374
2375 /*
2376 * Both debugging options require word-alignment which is calculated
2377 * into align above.
2378 */
2379 if (flags & SLAB_RED_ZONE) {
2380 /* add space for red zone words */
2381 cachep->obj_offset += sizeof(unsigned long long);
2382 size += 2 * sizeof(unsigned long long);
2383 }
2384 if (flags & SLAB_STORE_USER) {
2385 /* user store requires one word storage behind the end of
2386 * the real object. But if the second red zone needs to be
2387 * aligned to 64 bits, we must allow that much space.
2388 */
2389 if (flags & SLAB_RED_ZONE)
2390 size += REDZONE_ALIGN;
2391 else
2392 size += BYTES_PER_WORD;
2393 }
2394 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2395 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2396 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2397 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2398 size = PAGE_SIZE;
2399 }
2400 #endif
2401 #endif
2402
2403 /*
2404 * Determine if the slab management is 'on' or 'off' slab.
2405 * (bootstrapping cannot cope with offslab caches so don't do
2406 * it too early on. Always use on-slab management when
2407 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2408 */
2409 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2410 !(flags & SLAB_NOLEAKTRACE))
2411 /*
2412 * Size is large, assume best to place the slab management obj
2413 * off-slab (should allow better packing of objs).
2414 */
2415 flags |= CFLGS_OFF_SLAB;
2416
2417 size = ALIGN(size, align);
2418
2419 left_over = calculate_slab_order(cachep, size, align, flags);
2420
2421 if (!cachep->num) {
2422 printk(KERN_ERR
2423 "kmem_cache_create: couldn't create cache %s.\n", name);
2424 kmem_cache_free(&cache_cache, cachep);
2425 return NULL;
2426 }
2427 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2428 + sizeof(struct slab), align);
2429
2430 /*
2431 * If the slab has been placed off-slab, and we have enough space then
2432 * move it on-slab. This is at the expense of any extra colouring.
2433 */
2434 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2435 flags &= ~CFLGS_OFF_SLAB;
2436 left_over -= slab_size;
2437 }
2438
2439 if (flags & CFLGS_OFF_SLAB) {
2440 /* really off slab. No need for manual alignment */
2441 slab_size =
2442 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2443
2444 #ifdef CONFIG_PAGE_POISONING
2445 /* If we're going to use the generic kernel_map_pages()
2446 * poisoning, then it's going to smash the contents of
2447 * the redzone and userword anyhow, so switch them off.
2448 */
2449 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2450 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2451 #endif
2452 }
2453
2454 cachep->colour_off = cache_line_size();
2455 /* Offset must be a multiple of the alignment. */
2456 if (cachep->colour_off < align)
2457 cachep->colour_off = align;
2458 cachep->colour = left_over / cachep->colour_off;
2459 cachep->slab_size = slab_size;
2460 cachep->flags = flags;
2461 cachep->allocflags = 0;
2462 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2463 cachep->allocflags |= GFP_DMA;
2464 cachep->size = size;
2465 cachep->reciprocal_buffer_size = reciprocal_value(size);
2466
2467 if (flags & CFLGS_OFF_SLAB) {
2468 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2469 /*
2470 * This is a possibility for one of the malloc_sizes caches.
2471 * But since we go off slab only for object size greater than
2472 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2473 * this should not happen at all.
2474 * But leave a BUG_ON for some lucky dude.
2475 */
2476 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2477 }
2478 cachep->ctor = ctor;
2479 cachep->name = name;
2480
2481 if (setup_cpu_cache(cachep, gfp)) {
2482 __kmem_cache_destroy(cachep);
2483 return NULL;
2484 }
2485
2486 if (flags & SLAB_DEBUG_OBJECTS) {
2487 /*
2488 * Would deadlock through slab_destroy()->call_rcu()->
2489 * debug_object_activate()->kmem_cache_alloc().
2490 */
2491 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2492
2493 slab_set_debugobj_lock_classes(cachep);
2494 }
2495
2496 /* cache setup completed, link it into the list */
2497 list_add(&cachep->list, &slab_caches);
2498 oops:
2499 if (slab_is_available()) {
2500 mutex_unlock(&slab_mutex);
2501 put_online_cpus();
2502 }
2503 return cachep;
2504 }
2505
2506 #if DEBUG
2507 static void check_irq_off(void)
2508 {
2509 BUG_ON(!irqs_disabled());
2510 }
2511
2512 static void check_irq_on(void)
2513 {
2514 BUG_ON(irqs_disabled());
2515 }
2516
2517 static void check_spinlock_acquired(struct kmem_cache *cachep)
2518 {
2519 #ifdef CONFIG_SMP
2520 check_irq_off();
2521 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2522 #endif
2523 }
2524
2525 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2526 {
2527 #ifdef CONFIG_SMP
2528 check_irq_off();
2529 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2530 #endif
2531 }
2532
2533 #else
2534 #define check_irq_off() do { } while(0)
2535 #define check_irq_on() do { } while(0)
2536 #define check_spinlock_acquired(x) do { } while(0)
2537 #define check_spinlock_acquired_node(x, y) do { } while(0)
2538 #endif
2539
2540 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2541 struct array_cache *ac,
2542 int force, int node);
2543
2544 static void do_drain(void *arg)
2545 {
2546 struct kmem_cache *cachep = arg;
2547 struct array_cache *ac;
2548 int node = numa_mem_id();
2549
2550 check_irq_off();
2551 ac = cpu_cache_get(cachep);
2552 spin_lock(&cachep->nodelists[node]->list_lock);
2553 free_block(cachep, ac->entry, ac->avail, node);
2554 spin_unlock(&cachep->nodelists[node]->list_lock);
2555 ac->avail = 0;
2556 }
2557
2558 static void drain_cpu_caches(struct kmem_cache *cachep)
2559 {
2560 struct kmem_list3 *l3;
2561 int node;
2562
2563 on_each_cpu(do_drain, cachep, 1);
2564 check_irq_on();
2565 for_each_online_node(node) {
2566 l3 = cachep->nodelists[node];
2567 if (l3 && l3->alien)
2568 drain_alien_cache(cachep, l3->alien);
2569 }
2570
2571 for_each_online_node(node) {
2572 l3 = cachep->nodelists[node];
2573 if (l3)
2574 drain_array(cachep, l3, l3->shared, 1, node);
2575 }
2576 }
2577
2578 /*
2579 * Remove slabs from the list of free slabs.
2580 * Specify the number of slabs to drain in tofree.
2581 *
2582 * Returns the actual number of slabs released.
2583 */
2584 static int drain_freelist(struct kmem_cache *cache,
2585 struct kmem_list3 *l3, int tofree)
2586 {
2587 struct list_head *p;
2588 int nr_freed;
2589 struct slab *slabp;
2590
2591 nr_freed = 0;
2592 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2593
2594 spin_lock_irq(&l3->list_lock);
2595 p = l3->slabs_free.prev;
2596 if (p == &l3->slabs_free) {
2597 spin_unlock_irq(&l3->list_lock);
2598 goto out;
2599 }
2600
2601 slabp = list_entry(p, struct slab, list);
2602 #if DEBUG
2603 BUG_ON(slabp->inuse);
2604 #endif
2605 list_del(&slabp->list);
2606 /*
2607 * Safe to drop the lock. The slab is no longer linked
2608 * to the cache.
2609 */
2610 l3->free_objects -= cache->num;
2611 spin_unlock_irq(&l3->list_lock);
2612 slab_destroy(cache, slabp);
2613 nr_freed++;
2614 }
2615 out:
2616 return nr_freed;
2617 }
2618
2619 /* Called with slab_mutex held to protect against cpu hotplug */
2620 static int __cache_shrink(struct kmem_cache *cachep)
2621 {
2622 int ret = 0, i = 0;
2623 struct kmem_list3 *l3;
2624
2625 drain_cpu_caches(cachep);
2626
2627 check_irq_on();
2628 for_each_online_node(i) {
2629 l3 = cachep->nodelists[i];
2630 if (!l3)
2631 continue;
2632
2633 drain_freelist(cachep, l3, l3->free_objects);
2634
2635 ret += !list_empty(&l3->slabs_full) ||
2636 !list_empty(&l3->slabs_partial);
2637 }
2638 return (ret ? 1 : 0);
2639 }
2640
2641 /**
2642 * kmem_cache_shrink - Shrink a cache.
2643 * @cachep: The cache to shrink.
2644 *
2645 * Releases as many slabs as possible for a cache.
2646 * To help debugging, a zero exit status indicates all slabs were released.
2647 */
2648 int kmem_cache_shrink(struct kmem_cache *cachep)
2649 {
2650 int ret;
2651 BUG_ON(!cachep || in_interrupt());
2652
2653 get_online_cpus();
2654 mutex_lock(&slab_mutex);
2655 ret = __cache_shrink(cachep);
2656 mutex_unlock(&slab_mutex);
2657 put_online_cpus();
2658 return ret;
2659 }
2660 EXPORT_SYMBOL(kmem_cache_shrink);
2661
2662 /**
2663 * kmem_cache_destroy - delete a cache
2664 * @cachep: the cache to destroy
2665 *
2666 * Remove a &struct kmem_cache object from the slab cache.
2667 *
2668 * It is expected this function will be called by a module when it is
2669 * unloaded. This will remove the cache completely, and avoid a duplicate
2670 * cache being allocated each time a module is loaded and unloaded, if the
2671 * module doesn't have persistent in-kernel storage across loads and unloads.
2672 *
2673 * The cache must be empty before calling this function.
2674 *
2675 * The caller must guarantee that no one will allocate memory from the cache
2676 * during the kmem_cache_destroy().
2677 */
2678 void kmem_cache_destroy(struct kmem_cache *cachep)
2679 {
2680 BUG_ON(!cachep || in_interrupt());
2681
2682 /* Find the cache in the chain of caches. */
2683 get_online_cpus();
2684 mutex_lock(&slab_mutex);
2685 /*
2686 * the chain is never empty, cache_cache is never destroyed
2687 */
2688 list_del(&cachep->list);
2689 if (__cache_shrink(cachep)) {
2690 slab_error(cachep, "Can't free all objects");
2691 list_add(&cachep->list, &slab_caches);
2692 mutex_unlock(&slab_mutex);
2693 put_online_cpus();
2694 return;
2695 }
2696
2697 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2698 rcu_barrier();
2699
2700 __kmem_cache_destroy(cachep);
2701 mutex_unlock(&slab_mutex);
2702 put_online_cpus();
2703 }
2704 EXPORT_SYMBOL(kmem_cache_destroy);
2705
2706 /*
2707 * Get the memory for a slab management obj.
2708 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2709 * always come from malloc_sizes caches. The slab descriptor cannot
2710 * come from the same cache which is getting created because,
2711 * when we are searching for an appropriate cache for these
2712 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2713 * If we are creating a malloc_sizes cache here it would not be visible to
2714 * kmem_find_general_cachep till the initialization is complete.
2715 * Hence we cannot have slabp_cache same as the original cache.
2716 */
2717 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2718 int colour_off, gfp_t local_flags,
2719 int nodeid)
2720 {
2721 struct slab *slabp;
2722
2723 if (OFF_SLAB(cachep)) {
2724 /* Slab management obj is off-slab. */
2725 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2726 local_flags, nodeid);
2727 /*
2728 * If the first object in the slab is leaked (it's allocated
2729 * but no one has a reference to it), we want to make sure
2730 * kmemleak does not treat the ->s_mem pointer as a reference
2731 * to the object. Otherwise we will not report the leak.
2732 */
2733 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2734 local_flags);
2735 if (!slabp)
2736 return NULL;
2737 } else {
2738 slabp = objp + colour_off;
2739 colour_off += cachep->slab_size;
2740 }
2741 slabp->inuse = 0;
2742 slabp->colouroff = colour_off;
2743 slabp->s_mem = objp + colour_off;
2744 slabp->nodeid = nodeid;
2745 slabp->free = 0;
2746 return slabp;
2747 }
2748
2749 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2750 {
2751 return (kmem_bufctl_t *) (slabp + 1);
2752 }
2753
2754 static void cache_init_objs(struct kmem_cache *cachep,
2755 struct slab *slabp)
2756 {
2757 int i;
2758
2759 for (i = 0; i < cachep->num; i++) {
2760 void *objp = index_to_obj(cachep, slabp, i);
2761 #if DEBUG
2762 /* need to poison the objs? */
2763 if (cachep->flags & SLAB_POISON)
2764 poison_obj(cachep, objp, POISON_FREE);
2765 if (cachep->flags & SLAB_STORE_USER)
2766 *dbg_userword(cachep, objp) = NULL;
2767
2768 if (cachep->flags & SLAB_RED_ZONE) {
2769 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2770 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2771 }
2772 /*
2773 * Constructors are not allowed to allocate memory from the same
2774 * cache which they are a constructor for. Otherwise, deadlock.
2775 * They must also be threaded.
2776 */
2777 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2778 cachep->ctor(objp + obj_offset(cachep));
2779
2780 if (cachep->flags & SLAB_RED_ZONE) {
2781 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2782 slab_error(cachep, "constructor overwrote the"
2783 " end of an object");
2784 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2785 slab_error(cachep, "constructor overwrote the"
2786 " start of an object");
2787 }
2788 if ((cachep->size % PAGE_SIZE) == 0 &&
2789 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2790 kernel_map_pages(virt_to_page(objp),
2791 cachep->size / PAGE_SIZE, 0);
2792 #else
2793 if (cachep->ctor)
2794 cachep->ctor(objp);
2795 #endif
2796 slab_bufctl(slabp)[i] = i + 1;
2797 }
2798 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2799 }
2800
2801 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2802 {
2803 if (CONFIG_ZONE_DMA_FLAG) {
2804 if (flags & GFP_DMA)
2805 BUG_ON(!(cachep->allocflags & GFP_DMA));
2806 else
2807 BUG_ON(cachep->allocflags & GFP_DMA);
2808 }
2809 }
2810
2811 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2812 int nodeid)
2813 {
2814 void *objp = index_to_obj(cachep, slabp, slabp->free);
2815 kmem_bufctl_t next;
2816
2817 slabp->inuse++;
2818 next = slab_bufctl(slabp)[slabp->free];
2819 #if DEBUG
2820 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2821 WARN_ON(slabp->nodeid != nodeid);
2822 #endif
2823 slabp->free = next;
2824
2825 return objp;
2826 }
2827
2828 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2829 void *objp, int nodeid)
2830 {
2831 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2832
2833 #if DEBUG
2834 /* Verify that the slab belongs to the intended node */
2835 WARN_ON(slabp->nodeid != nodeid);
2836
2837 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2838 printk(KERN_ERR "slab: double free detected in cache "
2839 "'%s', objp %p\n", cachep->name, objp);
2840 BUG();
2841 }
2842 #endif
2843 slab_bufctl(slabp)[objnr] = slabp->free;
2844 slabp->free = objnr;
2845 slabp->inuse--;
2846 }
2847
2848 /*
2849 * Map pages beginning at addr to the given cache and slab. This is required
2850 * for the slab allocator to be able to lookup the cache and slab of a
2851 * virtual address for kfree, ksize, and slab debugging.
2852 */
2853 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2854 void *addr)
2855 {
2856 int nr_pages;
2857 struct page *page;
2858
2859 page = virt_to_page(addr);
2860
2861 nr_pages = 1;
2862 if (likely(!PageCompound(page)))
2863 nr_pages <<= cache->gfporder;
2864
2865 do {
2866 page->slab_cache = cache;
2867 page->slab_page = slab;
2868 page++;
2869 } while (--nr_pages);
2870 }
2871
2872 /*
2873 * Grow (by 1) the number of slabs within a cache. This is called by
2874 * kmem_cache_alloc() when there are no active objs left in a cache.
2875 */
2876 static int cache_grow(struct kmem_cache *cachep,
2877 gfp_t flags, int nodeid, void *objp)
2878 {
2879 struct slab *slabp;
2880 size_t offset;
2881 gfp_t local_flags;
2882 struct kmem_list3 *l3;
2883
2884 /*
2885 * Be lazy and only check for valid flags here, keeping it out of the
2886 * critical path in kmem_cache_alloc().
2887 */
2888 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2889 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2890
2891 /* Take the l3 list lock to change the colour_next on this node */
2892 check_irq_off();
2893 l3 = cachep->nodelists[nodeid];
2894 spin_lock(&l3->list_lock);
2895
2896 /* Get colour for the slab, and cal the next value. */
2897 offset = l3->colour_next;
2898 l3->colour_next++;
2899 if (l3->colour_next >= cachep->colour)
2900 l3->colour_next = 0;
2901 spin_unlock(&l3->list_lock);
2902
2903 offset *= cachep->colour_off;
2904
2905 if (local_flags & __GFP_WAIT)
2906 local_irq_enable();
2907
2908 /*
2909 * The test for missing atomic flag is performed here, rather than
2910 * the more obvious place, simply to reduce the critical path length
2911 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2912 * will eventually be caught here (where it matters).
2913 */
2914 kmem_flagcheck(cachep, flags);
2915
2916 /*
2917 * Get mem for the objs. Attempt to allocate a physical page from
2918 * 'nodeid'.
2919 */
2920 if (!objp)
2921 objp = kmem_getpages(cachep, local_flags, nodeid);
2922 if (!objp)
2923 goto failed;
2924
2925 /* Get slab management. */
2926 slabp = alloc_slabmgmt(cachep, objp, offset,
2927 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2928 if (!slabp)
2929 goto opps1;
2930
2931 slab_map_pages(cachep, slabp, objp);
2932
2933 cache_init_objs(cachep, slabp);
2934
2935 if (local_flags & __GFP_WAIT)
2936 local_irq_disable();
2937 check_irq_off();
2938 spin_lock(&l3->list_lock);
2939
2940 /* Make slab active. */
2941 list_add_tail(&slabp->list, &(l3->slabs_free));
2942 STATS_INC_GROWN(cachep);
2943 l3->free_objects += cachep->num;
2944 spin_unlock(&l3->list_lock);
2945 return 1;
2946 opps1:
2947 kmem_freepages(cachep, objp);
2948 failed:
2949 if (local_flags & __GFP_WAIT)
2950 local_irq_disable();
2951 return 0;
2952 }
2953
2954 #if DEBUG
2955
2956 /*
2957 * Perform extra freeing checks:
2958 * - detect bad pointers.
2959 * - POISON/RED_ZONE checking
2960 */
2961 static void kfree_debugcheck(const void *objp)
2962 {
2963 if (!virt_addr_valid(objp)) {
2964 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2965 (unsigned long)objp);
2966 BUG();
2967 }
2968 }
2969
2970 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2971 {
2972 unsigned long long redzone1, redzone2;
2973
2974 redzone1 = *dbg_redzone1(cache, obj);
2975 redzone2 = *dbg_redzone2(cache, obj);
2976
2977 /*
2978 * Redzone is ok.
2979 */
2980 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2981 return;
2982
2983 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2984 slab_error(cache, "double free detected");
2985 else
2986 slab_error(cache, "memory outside object was overwritten");
2987
2988 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2989 obj, redzone1, redzone2);
2990 }
2991
2992 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2993 void *caller)
2994 {
2995 struct page *page;
2996 unsigned int objnr;
2997 struct slab *slabp;
2998
2999 BUG_ON(virt_to_cache(objp) != cachep);
3000
3001 objp -= obj_offset(cachep);
3002 kfree_debugcheck(objp);
3003 page = virt_to_head_page(objp);
3004
3005 slabp = page->slab_page;
3006
3007 if (cachep->flags & SLAB_RED_ZONE) {
3008 verify_redzone_free(cachep, objp);
3009 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3010 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3011 }
3012 if (cachep->flags & SLAB_STORE_USER)
3013 *dbg_userword(cachep, objp) = caller;
3014
3015 objnr = obj_to_index(cachep, slabp, objp);
3016
3017 BUG_ON(objnr >= cachep->num);
3018 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3019
3020 #ifdef CONFIG_DEBUG_SLAB_LEAK
3021 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3022 #endif
3023 if (cachep->flags & SLAB_POISON) {
3024 #ifdef CONFIG_DEBUG_PAGEALLOC
3025 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3026 store_stackinfo(cachep, objp, (unsigned long)caller);
3027 kernel_map_pages(virt_to_page(objp),
3028 cachep->size / PAGE_SIZE, 0);
3029 } else {
3030 poison_obj(cachep, objp, POISON_FREE);
3031 }
3032 #else
3033 poison_obj(cachep, objp, POISON_FREE);
3034 #endif
3035 }
3036 return objp;
3037 }
3038
3039 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3040 {
3041 kmem_bufctl_t i;
3042 int entries = 0;
3043
3044 /* Check slab's freelist to see if this obj is there. */
3045 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3046 entries++;
3047 if (entries > cachep->num || i >= cachep->num)
3048 goto bad;
3049 }
3050 if (entries != cachep->num - slabp->inuse) {
3051 bad:
3052 printk(KERN_ERR "slab: Internal list corruption detected in "
3053 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3054 cachep->name, cachep->num, slabp, slabp->inuse,
3055 print_tainted());
3056 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3057 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3058 1);
3059 BUG();
3060 }
3061 }
3062 #else
3063 #define kfree_debugcheck(x) do { } while(0)
3064 #define cache_free_debugcheck(x,objp,z) (objp)
3065 #define check_slabp(x,y) do { } while(0)
3066 #endif
3067
3068 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3069 {
3070 int batchcount;
3071 struct kmem_list3 *l3;
3072 struct array_cache *ac;
3073 int node;
3074
3075 retry:
3076 check_irq_off();
3077 node = numa_mem_id();
3078 ac = cpu_cache_get(cachep);
3079 batchcount = ac->batchcount;
3080 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3081 /*
3082 * If there was little recent activity on this cache, then
3083 * perform only a partial refill. Otherwise we could generate
3084 * refill bouncing.
3085 */
3086 batchcount = BATCHREFILL_LIMIT;
3087 }
3088 l3 = cachep->nodelists[node];
3089
3090 BUG_ON(ac->avail > 0 || !l3);
3091 spin_lock(&l3->list_lock);
3092
3093 /* See if we can refill from the shared array */
3094 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3095 l3->shared->touched = 1;
3096 goto alloc_done;
3097 }
3098
3099 while (batchcount > 0) {
3100 struct list_head *entry;
3101 struct slab *slabp;
3102 /* Get slab alloc is to come from. */
3103 entry = l3->slabs_partial.next;
3104 if (entry == &l3->slabs_partial) {
3105 l3->free_touched = 1;
3106 entry = l3->slabs_free.next;
3107 if (entry == &l3->slabs_free)
3108 goto must_grow;
3109 }
3110
3111 slabp = list_entry(entry, struct slab, list);
3112 check_slabp(cachep, slabp);
3113 check_spinlock_acquired(cachep);
3114
3115 /*
3116 * The slab was either on partial or free list so
3117 * there must be at least one object available for
3118 * allocation.
3119 */
3120 BUG_ON(slabp->inuse >= cachep->num);
3121
3122 while (slabp->inuse < cachep->num && batchcount--) {
3123 STATS_INC_ALLOCED(cachep);
3124 STATS_INC_ACTIVE(cachep);
3125 STATS_SET_HIGH(cachep);
3126
3127 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3128 node);
3129 }
3130 check_slabp(cachep, slabp);
3131
3132 /* move slabp to correct slabp list: */
3133 list_del(&slabp->list);
3134 if (slabp->free == BUFCTL_END)
3135 list_add(&slabp->list, &l3->slabs_full);
3136 else
3137 list_add(&slabp->list, &l3->slabs_partial);
3138 }
3139
3140 must_grow:
3141 l3->free_objects -= ac->avail;
3142 alloc_done:
3143 spin_unlock(&l3->list_lock);
3144
3145 if (unlikely(!ac->avail)) {
3146 int x;
3147 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3148
3149 /* cache_grow can reenable interrupts, then ac could change. */
3150 ac = cpu_cache_get(cachep);
3151 if (!x && ac->avail == 0) /* no objects in sight? abort */
3152 return NULL;
3153
3154 if (!ac->avail) /* objects refilled by interrupt? */
3155 goto retry;
3156 }
3157 ac->touched = 1;
3158 return ac->entry[--ac->avail];
3159 }
3160
3161 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3162 gfp_t flags)
3163 {
3164 might_sleep_if(flags & __GFP_WAIT);
3165 #if DEBUG
3166 kmem_flagcheck(cachep, flags);
3167 #endif
3168 }
3169
3170 #if DEBUG
3171 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3172 gfp_t flags, void *objp, void *caller)
3173 {
3174 if (!objp)
3175 return objp;
3176 if (cachep->flags & SLAB_POISON) {
3177 #ifdef CONFIG_DEBUG_PAGEALLOC
3178 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3179 kernel_map_pages(virt_to_page(objp),
3180 cachep->size / PAGE_SIZE, 1);
3181 else
3182 check_poison_obj(cachep, objp);
3183 #else
3184 check_poison_obj(cachep, objp);
3185 #endif
3186 poison_obj(cachep, objp, POISON_INUSE);
3187 }
3188 if (cachep->flags & SLAB_STORE_USER)
3189 *dbg_userword(cachep, objp) = caller;
3190
3191 if (cachep->flags & SLAB_RED_ZONE) {
3192 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3193 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3194 slab_error(cachep, "double free, or memory outside"
3195 " object was overwritten");
3196 printk(KERN_ERR
3197 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3198 objp, *dbg_redzone1(cachep, objp),
3199 *dbg_redzone2(cachep, objp));
3200 }
3201 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3202 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3203 }
3204 #ifdef CONFIG_DEBUG_SLAB_LEAK
3205 {
3206 struct slab *slabp;
3207 unsigned objnr;
3208
3209 slabp = virt_to_head_page(objp)->slab_page;
3210 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3211 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3212 }
3213 #endif
3214 objp += obj_offset(cachep);
3215 if (cachep->ctor && cachep->flags & SLAB_POISON)
3216 cachep->ctor(objp);
3217 if (ARCH_SLAB_MINALIGN &&
3218 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3219 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3220 objp, (int)ARCH_SLAB_MINALIGN);
3221 }
3222 return objp;
3223 }
3224 #else
3225 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3226 #endif
3227
3228 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3229 {
3230 if (cachep == &cache_cache)
3231 return false;
3232
3233 return should_failslab(cachep->object_size, flags, cachep->flags);
3234 }
3235
3236 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3237 {
3238 void *objp;
3239 struct array_cache *ac;
3240
3241 check_irq_off();
3242
3243 ac = cpu_cache_get(cachep);
3244 if (likely(ac->avail)) {
3245 STATS_INC_ALLOCHIT(cachep);
3246 ac->touched = 1;
3247 objp = ac->entry[--ac->avail];
3248 } else {
3249 STATS_INC_ALLOCMISS(cachep);
3250 objp = cache_alloc_refill(cachep, flags);
3251 /*
3252 * the 'ac' may be updated by cache_alloc_refill(),
3253 * and kmemleak_erase() requires its correct value.
3254 */
3255 ac = cpu_cache_get(cachep);
3256 }
3257 /*
3258 * To avoid a false negative, if an object that is in one of the
3259 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3260 * treat the array pointers as a reference to the object.
3261 */
3262 if (objp)
3263 kmemleak_erase(&ac->entry[ac->avail]);
3264 return objp;
3265 }
3266
3267 #ifdef CONFIG_NUMA
3268 /*
3269 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3270 *
3271 * If we are in_interrupt, then process context, including cpusets and
3272 * mempolicy, may not apply and should not be used for allocation policy.
3273 */
3274 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3275 {
3276 int nid_alloc, nid_here;
3277
3278 if (in_interrupt() || (flags & __GFP_THISNODE))
3279 return NULL;
3280 nid_alloc = nid_here = numa_mem_id();
3281 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3282 nid_alloc = cpuset_slab_spread_node();
3283 else if (current->mempolicy)
3284 nid_alloc = slab_node();
3285 if (nid_alloc != nid_here)
3286 return ____cache_alloc_node(cachep, flags, nid_alloc);
3287 return NULL;
3288 }
3289
3290 /*
3291 * Fallback function if there was no memory available and no objects on a
3292 * certain node and fall back is permitted. First we scan all the
3293 * available nodelists for available objects. If that fails then we
3294 * perform an allocation without specifying a node. This allows the page
3295 * allocator to do its reclaim / fallback magic. We then insert the
3296 * slab into the proper nodelist and then allocate from it.
3297 */
3298 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3299 {
3300 struct zonelist *zonelist;
3301 gfp_t local_flags;
3302 struct zoneref *z;
3303 struct zone *zone;
3304 enum zone_type high_zoneidx = gfp_zone(flags);
3305 void *obj = NULL;
3306 int nid;
3307 unsigned int cpuset_mems_cookie;
3308
3309 if (flags & __GFP_THISNODE)
3310 return NULL;
3311
3312 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3313
3314 retry_cpuset:
3315 cpuset_mems_cookie = get_mems_allowed();
3316 zonelist = node_zonelist(slab_node(), flags);
3317
3318 retry:
3319 /*
3320 * Look through allowed nodes for objects available
3321 * from existing per node queues.
3322 */
3323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3324 nid = zone_to_nid(zone);
3325
3326 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3327 cache->nodelists[nid] &&
3328 cache->nodelists[nid]->free_objects) {
3329 obj = ____cache_alloc_node(cache,
3330 flags | GFP_THISNODE, nid);
3331 if (obj)
3332 break;
3333 }
3334 }
3335
3336 if (!obj) {
3337 /*
3338 * This allocation will be performed within the constraints
3339 * of the current cpuset / memory policy requirements.
3340 * We may trigger various forms of reclaim on the allowed
3341 * set and go into memory reserves if necessary.
3342 */
3343 if (local_flags & __GFP_WAIT)
3344 local_irq_enable();
3345 kmem_flagcheck(cache, flags);
3346 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3347 if (local_flags & __GFP_WAIT)
3348 local_irq_disable();
3349 if (obj) {
3350 /*
3351 * Insert into the appropriate per node queues
3352 */
3353 nid = page_to_nid(virt_to_page(obj));
3354 if (cache_grow(cache, flags, nid, obj)) {
3355 obj = ____cache_alloc_node(cache,
3356 flags | GFP_THISNODE, nid);
3357 if (!obj)
3358 /*
3359 * Another processor may allocate the
3360 * objects in the slab since we are
3361 * not holding any locks.
3362 */
3363 goto retry;
3364 } else {
3365 /* cache_grow already freed obj */
3366 obj = NULL;
3367 }
3368 }
3369 }
3370
3371 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3372 goto retry_cpuset;
3373 return obj;
3374 }
3375
3376 /*
3377 * A interface to enable slab creation on nodeid
3378 */
3379 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3380 int nodeid)
3381 {
3382 struct list_head *entry;
3383 struct slab *slabp;
3384 struct kmem_list3 *l3;
3385 void *obj;
3386 int x;
3387
3388 l3 = cachep->nodelists[nodeid];
3389 BUG_ON(!l3);
3390
3391 retry:
3392 check_irq_off();
3393 spin_lock(&l3->list_lock);
3394 entry = l3->slabs_partial.next;
3395 if (entry == &l3->slabs_partial) {
3396 l3->free_touched = 1;
3397 entry = l3->slabs_free.next;
3398 if (entry == &l3->slabs_free)
3399 goto must_grow;
3400 }
3401
3402 slabp = list_entry(entry, struct slab, list);
3403 check_spinlock_acquired_node(cachep, nodeid);
3404 check_slabp(cachep, slabp);
3405
3406 STATS_INC_NODEALLOCS(cachep);
3407 STATS_INC_ACTIVE(cachep);
3408 STATS_SET_HIGH(cachep);
3409
3410 BUG_ON(slabp->inuse == cachep->num);
3411
3412 obj = slab_get_obj(cachep, slabp, nodeid);
3413 check_slabp(cachep, slabp);
3414 l3->free_objects--;
3415 /* move slabp to correct slabp list: */
3416 list_del(&slabp->list);
3417
3418 if (slabp->free == BUFCTL_END)
3419 list_add(&slabp->list, &l3->slabs_full);
3420 else
3421 list_add(&slabp->list, &l3->slabs_partial);
3422
3423 spin_unlock(&l3->list_lock);
3424 goto done;
3425
3426 must_grow:
3427 spin_unlock(&l3->list_lock);
3428 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3429 if (x)
3430 goto retry;
3431
3432 return fallback_alloc(cachep, flags);
3433
3434 done:
3435 return obj;
3436 }
3437
3438 /**
3439 * kmem_cache_alloc_node - Allocate an object on the specified node
3440 * @cachep: The cache to allocate from.
3441 * @flags: See kmalloc().
3442 * @nodeid: node number of the target node.
3443 * @caller: return address of caller, used for debug information
3444 *
3445 * Identical to kmem_cache_alloc but it will allocate memory on the given
3446 * node, which can improve the performance for cpu bound structures.
3447 *
3448 * Fallback to other node is possible if __GFP_THISNODE is not set.
3449 */
3450 static __always_inline void *
3451 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3452 void *caller)
3453 {
3454 unsigned long save_flags;
3455 void *ptr;
3456 int slab_node = numa_mem_id();
3457
3458 flags &= gfp_allowed_mask;
3459
3460 lockdep_trace_alloc(flags);
3461
3462 if (slab_should_failslab(cachep, flags))
3463 return NULL;
3464
3465 cache_alloc_debugcheck_before(cachep, flags);
3466 local_irq_save(save_flags);
3467
3468 if (nodeid == NUMA_NO_NODE)
3469 nodeid = slab_node;
3470
3471 if (unlikely(!cachep->nodelists[nodeid])) {
3472 /* Node not bootstrapped yet */
3473 ptr = fallback_alloc(cachep, flags);
3474 goto out;
3475 }
3476
3477 if (nodeid == slab_node) {
3478 /*
3479 * Use the locally cached objects if possible.
3480 * However ____cache_alloc does not allow fallback
3481 * to other nodes. It may fail while we still have
3482 * objects on other nodes available.
3483 */
3484 ptr = ____cache_alloc(cachep, flags);
3485 if (ptr)
3486 goto out;
3487 }
3488 /* ___cache_alloc_node can fall back to other nodes */
3489 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3490 out:
3491 local_irq_restore(save_flags);
3492 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3493 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3494 flags);
3495
3496 if (likely(ptr))
3497 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3498
3499 if (unlikely((flags & __GFP_ZERO) && ptr))
3500 memset(ptr, 0, cachep->object_size);
3501
3502 return ptr;
3503 }
3504
3505 static __always_inline void *
3506 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3507 {
3508 void *objp;
3509
3510 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3511 objp = alternate_node_alloc(cache, flags);
3512 if (objp)
3513 goto out;
3514 }
3515 objp = ____cache_alloc(cache, flags);
3516
3517 /*
3518 * We may just have run out of memory on the local node.
3519 * ____cache_alloc_node() knows how to locate memory on other nodes
3520 */
3521 if (!objp)
3522 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3523
3524 out:
3525 return objp;
3526 }
3527 #else
3528
3529 static __always_inline void *
3530 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3531 {
3532 return ____cache_alloc(cachep, flags);
3533 }
3534
3535 #endif /* CONFIG_NUMA */
3536
3537 static __always_inline void *
3538 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3539 {
3540 unsigned long save_flags;
3541 void *objp;
3542
3543 flags &= gfp_allowed_mask;
3544
3545 lockdep_trace_alloc(flags);
3546
3547 if (slab_should_failslab(cachep, flags))
3548 return NULL;
3549
3550 cache_alloc_debugcheck_before(cachep, flags);
3551 local_irq_save(save_flags);
3552 objp = __do_cache_alloc(cachep, flags);
3553 local_irq_restore(save_flags);
3554 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3555 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3556 flags);
3557 prefetchw(objp);
3558
3559 if (likely(objp))
3560 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3561
3562 if (unlikely((flags & __GFP_ZERO) && objp))
3563 memset(objp, 0, cachep->object_size);
3564
3565 return objp;
3566 }
3567
3568 /*
3569 * Caller needs to acquire correct kmem_list's list_lock
3570 */
3571 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3572 int node)
3573 {
3574 int i;
3575 struct kmem_list3 *l3;
3576
3577 for (i = 0; i < nr_objects; i++) {
3578 void *objp = objpp[i];
3579 struct slab *slabp;
3580
3581 slabp = virt_to_slab(objp);
3582 l3 = cachep->nodelists[node];
3583 list_del(&slabp->list);
3584 check_spinlock_acquired_node(cachep, node);
3585 check_slabp(cachep, slabp);
3586 slab_put_obj(cachep, slabp, objp, node);
3587 STATS_DEC_ACTIVE(cachep);
3588 l3->free_objects++;
3589 check_slabp(cachep, slabp);
3590
3591 /* fixup slab chains */
3592 if (slabp->inuse == 0) {
3593 if (l3->free_objects > l3->free_limit) {
3594 l3->free_objects -= cachep->num;
3595 /* No need to drop any previously held
3596 * lock here, even if we have a off-slab slab
3597 * descriptor it is guaranteed to come from
3598 * a different cache, refer to comments before
3599 * alloc_slabmgmt.
3600 */
3601 slab_destroy(cachep, slabp);
3602 } else {
3603 list_add(&slabp->list, &l3->slabs_free);
3604 }
3605 } else {
3606 /* Unconditionally move a slab to the end of the
3607 * partial list on free - maximum time for the
3608 * other objects to be freed, too.
3609 */
3610 list_add_tail(&slabp->list, &l3->slabs_partial);
3611 }
3612 }
3613 }
3614
3615 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3616 {
3617 int batchcount;
3618 struct kmem_list3 *l3;
3619 int node = numa_mem_id();
3620
3621 batchcount = ac->batchcount;
3622 #if DEBUG
3623 BUG_ON(!batchcount || batchcount > ac->avail);
3624 #endif
3625 check_irq_off();
3626 l3 = cachep->nodelists[node];
3627 spin_lock(&l3->list_lock);
3628 if (l3->shared) {
3629 struct array_cache *shared_array = l3->shared;
3630 int max = shared_array->limit - shared_array->avail;
3631 if (max) {
3632 if (batchcount > max)
3633 batchcount = max;
3634 memcpy(&(shared_array->entry[shared_array->avail]),
3635 ac->entry, sizeof(void *) * batchcount);
3636 shared_array->avail += batchcount;
3637 goto free_done;
3638 }
3639 }
3640
3641 free_block(cachep, ac->entry, batchcount, node);
3642 free_done:
3643 #if STATS
3644 {
3645 int i = 0;
3646 struct list_head *p;
3647
3648 p = l3->slabs_free.next;
3649 while (p != &(l3->slabs_free)) {
3650 struct slab *slabp;
3651
3652 slabp = list_entry(p, struct slab, list);
3653 BUG_ON(slabp->inuse);
3654
3655 i++;
3656 p = p->next;
3657 }
3658 STATS_SET_FREEABLE(cachep, i);
3659 }
3660 #endif
3661 spin_unlock(&l3->list_lock);
3662 ac->avail -= batchcount;
3663 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3664 }
3665
3666 /*
3667 * Release an obj back to its cache. If the obj has a constructed state, it must
3668 * be in this state _before_ it is released. Called with disabled ints.
3669 */
3670 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3671 void *caller)
3672 {
3673 struct array_cache *ac = cpu_cache_get(cachep);
3674
3675 check_irq_off();
3676 kmemleak_free_recursive(objp, cachep->flags);
3677 objp = cache_free_debugcheck(cachep, objp, caller);
3678
3679 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3680
3681 /*
3682 * Skip calling cache_free_alien() when the platform is not numa.
3683 * This will avoid cache misses that happen while accessing slabp (which
3684 * is per page memory reference) to get nodeid. Instead use a global
3685 * variable to skip the call, which is mostly likely to be present in
3686 * the cache.
3687 */
3688 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3689 return;
3690
3691 if (likely(ac->avail < ac->limit)) {
3692 STATS_INC_FREEHIT(cachep);
3693 } else {
3694 STATS_INC_FREEMISS(cachep);
3695 cache_flusharray(cachep, ac);
3696 }
3697
3698 ac->entry[ac->avail++] = objp;
3699 }
3700
3701 /**
3702 * kmem_cache_alloc - Allocate an object
3703 * @cachep: The cache to allocate from.
3704 * @flags: See kmalloc().
3705 *
3706 * Allocate an object from this cache. The flags are only relevant
3707 * if the cache has no available objects.
3708 */
3709 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3710 {
3711 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3712
3713 trace_kmem_cache_alloc(_RET_IP_, ret,
3714 cachep->object_size, cachep->size, flags);
3715
3716 return ret;
3717 }
3718 EXPORT_SYMBOL(kmem_cache_alloc);
3719
3720 #ifdef CONFIG_TRACING
3721 void *
3722 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3723 {
3724 void *ret;
3725
3726 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3727
3728 trace_kmalloc(_RET_IP_, ret,
3729 size, slab_buffer_size(cachep), flags);
3730 return ret;
3731 }
3732 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3733 #endif
3734
3735 #ifdef CONFIG_NUMA
3736 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3737 {
3738 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3739 __builtin_return_address(0));
3740
3741 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3742 cachep->object_size, cachep->size,
3743 flags, nodeid);
3744
3745 return ret;
3746 }
3747 EXPORT_SYMBOL(kmem_cache_alloc_node);
3748
3749 #ifdef CONFIG_TRACING
3750 void *kmem_cache_alloc_node_trace(size_t size,
3751 struct kmem_cache *cachep,
3752 gfp_t flags,
3753 int nodeid)
3754 {
3755 void *ret;
3756
3757 ret = __cache_alloc_node(cachep, flags, nodeid,
3758 __builtin_return_address(0));
3759 trace_kmalloc_node(_RET_IP_, ret,
3760 size, slab_buffer_size(cachep),
3761 flags, nodeid);
3762 return ret;
3763 }
3764 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3765 #endif
3766
3767 static __always_inline void *
3768 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3769 {
3770 struct kmem_cache *cachep;
3771
3772 cachep = kmem_find_general_cachep(size, flags);
3773 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3774 return cachep;
3775 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3776 }
3777
3778 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3779 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3780 {
3781 return __do_kmalloc_node(size, flags, node,
3782 __builtin_return_address(0));
3783 }
3784 EXPORT_SYMBOL(__kmalloc_node);
3785
3786 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3787 int node, unsigned long caller)
3788 {
3789 return __do_kmalloc_node(size, flags, node, (void *)caller);
3790 }
3791 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3792 #else
3793 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3794 {
3795 return __do_kmalloc_node(size, flags, node, NULL);
3796 }
3797 EXPORT_SYMBOL(__kmalloc_node);
3798 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3799 #endif /* CONFIG_NUMA */
3800
3801 /**
3802 * __do_kmalloc - allocate memory
3803 * @size: how many bytes of memory are required.
3804 * @flags: the type of memory to allocate (see kmalloc).
3805 * @caller: function caller for debug tracking of the caller
3806 */
3807 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3808 void *caller)
3809 {
3810 struct kmem_cache *cachep;
3811 void *ret;
3812
3813 /* If you want to save a few bytes .text space: replace
3814 * __ with kmem_.
3815 * Then kmalloc uses the uninlined functions instead of the inline
3816 * functions.
3817 */
3818 cachep = __find_general_cachep(size, flags);
3819 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3820 return cachep;
3821 ret = __cache_alloc(cachep, flags, caller);
3822
3823 trace_kmalloc((unsigned long) caller, ret,
3824 size, cachep->size, flags);
3825
3826 return ret;
3827 }
3828
3829
3830 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3831 void *__kmalloc(size_t size, gfp_t flags)
3832 {
3833 return __do_kmalloc(size, flags, __builtin_return_address(0));
3834 }
3835 EXPORT_SYMBOL(__kmalloc);
3836
3837 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3838 {
3839 return __do_kmalloc(size, flags, (void *)caller);
3840 }
3841 EXPORT_SYMBOL(__kmalloc_track_caller);
3842
3843 #else
3844 void *__kmalloc(size_t size, gfp_t flags)
3845 {
3846 return __do_kmalloc(size, flags, NULL);
3847 }
3848 EXPORT_SYMBOL(__kmalloc);
3849 #endif
3850
3851 /**
3852 * kmem_cache_free - Deallocate an object
3853 * @cachep: The cache the allocation was from.
3854 * @objp: The previously allocated object.
3855 *
3856 * Free an object which was previously allocated from this
3857 * cache.
3858 */
3859 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3860 {
3861 unsigned long flags;
3862
3863 local_irq_save(flags);
3864 debug_check_no_locks_freed(objp, cachep->object_size);
3865 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3866 debug_check_no_obj_freed(objp, cachep->object_size);
3867 __cache_free(cachep, objp, __builtin_return_address(0));
3868 local_irq_restore(flags);
3869
3870 trace_kmem_cache_free(_RET_IP_, objp);
3871 }
3872 EXPORT_SYMBOL(kmem_cache_free);
3873
3874 /**
3875 * kfree - free previously allocated memory
3876 * @objp: pointer returned by kmalloc.
3877 *
3878 * If @objp is NULL, no operation is performed.
3879 *
3880 * Don't free memory not originally allocated by kmalloc()
3881 * or you will run into trouble.
3882 */
3883 void kfree(const void *objp)
3884 {
3885 struct kmem_cache *c;
3886 unsigned long flags;
3887
3888 trace_kfree(_RET_IP_, objp);
3889
3890 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3891 return;
3892 local_irq_save(flags);
3893 kfree_debugcheck(objp);
3894 c = virt_to_cache(objp);
3895 debug_check_no_locks_freed(objp, c->object_size);
3896
3897 debug_check_no_obj_freed(objp, c->object_size);
3898 __cache_free(c, (void *)objp, __builtin_return_address(0));
3899 local_irq_restore(flags);
3900 }
3901 EXPORT_SYMBOL(kfree);
3902
3903 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3904 {
3905 return cachep->object_size;
3906 }
3907 EXPORT_SYMBOL(kmem_cache_size);
3908
3909 /*
3910 * This initializes kmem_list3 or resizes various caches for all nodes.
3911 */
3912 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3913 {
3914 int node;
3915 struct kmem_list3 *l3;
3916 struct array_cache *new_shared;
3917 struct array_cache **new_alien = NULL;
3918
3919 for_each_online_node(node) {
3920
3921 if (use_alien_caches) {
3922 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3923 if (!new_alien)
3924 goto fail;
3925 }
3926
3927 new_shared = NULL;
3928 if (cachep->shared) {
3929 new_shared = alloc_arraycache(node,
3930 cachep->shared*cachep->batchcount,
3931 0xbaadf00d, gfp);
3932 if (!new_shared) {
3933 free_alien_cache(new_alien);
3934 goto fail;
3935 }
3936 }
3937
3938 l3 = cachep->nodelists[node];
3939 if (l3) {
3940 struct array_cache *shared = l3->shared;
3941
3942 spin_lock_irq(&l3->list_lock);
3943
3944 if (shared)
3945 free_block(cachep, shared->entry,
3946 shared->avail, node);
3947
3948 l3->shared = new_shared;
3949 if (!l3->alien) {
3950 l3->alien = new_alien;
3951 new_alien = NULL;
3952 }
3953 l3->free_limit = (1 + nr_cpus_node(node)) *
3954 cachep->batchcount + cachep->num;
3955 spin_unlock_irq(&l3->list_lock);
3956 kfree(shared);
3957 free_alien_cache(new_alien);
3958 continue;
3959 }
3960 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3961 if (!l3) {
3962 free_alien_cache(new_alien);
3963 kfree(new_shared);
3964 goto fail;
3965 }
3966
3967 kmem_list3_init(l3);
3968 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3969 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3970 l3->shared = new_shared;
3971 l3->alien = new_alien;
3972 l3->free_limit = (1 + nr_cpus_node(node)) *
3973 cachep->batchcount + cachep->num;
3974 cachep->nodelists[node] = l3;
3975 }
3976 return 0;
3977
3978 fail:
3979 if (!cachep->list.next) {
3980 /* Cache is not active yet. Roll back what we did */
3981 node--;
3982 while (node >= 0) {
3983 if (cachep->nodelists[node]) {
3984 l3 = cachep->nodelists[node];
3985
3986 kfree(l3->shared);
3987 free_alien_cache(l3->alien);
3988 kfree(l3);
3989 cachep->nodelists[node] = NULL;
3990 }
3991 node--;
3992 }
3993 }
3994 return -ENOMEM;
3995 }
3996
3997 struct ccupdate_struct {
3998 struct kmem_cache *cachep;
3999 struct array_cache *new[0];
4000 };
4001
4002 static void do_ccupdate_local(void *info)
4003 {
4004 struct ccupdate_struct *new = info;
4005 struct array_cache *old;
4006
4007 check_irq_off();
4008 old = cpu_cache_get(new->cachep);
4009
4010 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4011 new->new[smp_processor_id()] = old;
4012 }
4013
4014 /* Always called with the slab_mutex held */
4015 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4016 int batchcount, int shared, gfp_t gfp)
4017 {
4018 struct ccupdate_struct *new;
4019 int i;
4020
4021 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4022 gfp);
4023 if (!new)
4024 return -ENOMEM;
4025
4026 for_each_online_cpu(i) {
4027 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4028 batchcount, gfp);
4029 if (!new->new[i]) {
4030 for (i--; i >= 0; i--)
4031 kfree(new->new[i]);
4032 kfree(new);
4033 return -ENOMEM;
4034 }
4035 }
4036 new->cachep = cachep;
4037
4038 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4039
4040 check_irq_on();
4041 cachep->batchcount = batchcount;
4042 cachep->limit = limit;
4043 cachep->shared = shared;
4044
4045 for_each_online_cpu(i) {
4046 struct array_cache *ccold = new->new[i];
4047 if (!ccold)
4048 continue;
4049 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4050 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4051 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4052 kfree(ccold);
4053 }
4054 kfree(new);
4055 return alloc_kmemlist(cachep, gfp);
4056 }
4057
4058 /* Called with slab_mutex held always */
4059 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4060 {
4061 int err;
4062 int limit, shared;
4063
4064 /*
4065 * The head array serves three purposes:
4066 * - create a LIFO ordering, i.e. return objects that are cache-warm
4067 * - reduce the number of spinlock operations.
4068 * - reduce the number of linked list operations on the slab and
4069 * bufctl chains: array operations are cheaper.
4070 * The numbers are guessed, we should auto-tune as described by
4071 * Bonwick.
4072 */
4073 if (cachep->size > 131072)
4074 limit = 1;
4075 else if (cachep->size > PAGE_SIZE)
4076 limit = 8;
4077 else if (cachep->size > 1024)
4078 limit = 24;
4079 else if (cachep->size > 256)
4080 limit = 54;
4081 else
4082 limit = 120;
4083
4084 /*
4085 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4086 * allocation behaviour: Most allocs on one cpu, most free operations
4087 * on another cpu. For these cases, an efficient object passing between
4088 * cpus is necessary. This is provided by a shared array. The array
4089 * replaces Bonwick's magazine layer.
4090 * On uniprocessor, it's functionally equivalent (but less efficient)
4091 * to a larger limit. Thus disabled by default.
4092 */
4093 shared = 0;
4094 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4095 shared = 8;
4096
4097 #if DEBUG
4098 /*
4099 * With debugging enabled, large batchcount lead to excessively long
4100 * periods with disabled local interrupts. Limit the batchcount
4101 */
4102 if (limit > 32)
4103 limit = 32;
4104 #endif
4105 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4106 if (err)
4107 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4108 cachep->name, -err);
4109 return err;
4110 }
4111
4112 /*
4113 * Drain an array if it contains any elements taking the l3 lock only if
4114 * necessary. Note that the l3 listlock also protects the array_cache
4115 * if drain_array() is used on the shared array.
4116 */
4117 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4118 struct array_cache *ac, int force, int node)
4119 {
4120 int tofree;
4121
4122 if (!ac || !ac->avail)
4123 return;
4124 if (ac->touched && !force) {
4125 ac->touched = 0;
4126 } else {
4127 spin_lock_irq(&l3->list_lock);
4128 if (ac->avail) {
4129 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4130 if (tofree > ac->avail)
4131 tofree = (ac->avail + 1) / 2;
4132 free_block(cachep, ac->entry, tofree, node);
4133 ac->avail -= tofree;
4134 memmove(ac->entry, &(ac->entry[tofree]),
4135 sizeof(void *) * ac->avail);
4136 }
4137 spin_unlock_irq(&l3->list_lock);
4138 }
4139 }
4140
4141 /**
4142 * cache_reap - Reclaim memory from caches.
4143 * @w: work descriptor
4144 *
4145 * Called from workqueue/eventd every few seconds.
4146 * Purpose:
4147 * - clear the per-cpu caches for this CPU.
4148 * - return freeable pages to the main free memory pool.
4149 *
4150 * If we cannot acquire the cache chain mutex then just give up - we'll try
4151 * again on the next iteration.
4152 */
4153 static void cache_reap(struct work_struct *w)
4154 {
4155 struct kmem_cache *searchp;
4156 struct kmem_list3 *l3;
4157 int node = numa_mem_id();
4158 struct delayed_work *work = to_delayed_work(w);
4159
4160 if (!mutex_trylock(&slab_mutex))
4161 /* Give up. Setup the next iteration. */
4162 goto out;
4163
4164 list_for_each_entry(searchp, &slab_caches, list) {
4165 check_irq_on();
4166
4167 /*
4168 * We only take the l3 lock if absolutely necessary and we
4169 * have established with reasonable certainty that
4170 * we can do some work if the lock was obtained.
4171 */
4172 l3 = searchp->nodelists[node];
4173
4174 reap_alien(searchp, l3);
4175
4176 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4177
4178 /*
4179 * These are racy checks but it does not matter
4180 * if we skip one check or scan twice.
4181 */
4182 if (time_after(l3->next_reap, jiffies))
4183 goto next;
4184
4185 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4186
4187 drain_array(searchp, l3, l3->shared, 0, node);
4188
4189 if (l3->free_touched)
4190 l3->free_touched = 0;
4191 else {
4192 int freed;
4193
4194 freed = drain_freelist(searchp, l3, (l3->free_limit +
4195 5 * searchp->num - 1) / (5 * searchp->num));
4196 STATS_ADD_REAPED(searchp, freed);
4197 }
4198 next:
4199 cond_resched();
4200 }
4201 check_irq_on();
4202 mutex_unlock(&slab_mutex);
4203 next_reap_node();
4204 out:
4205 /* Set up the next iteration */
4206 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4207 }
4208
4209 #ifdef CONFIG_SLABINFO
4210
4211 static void print_slabinfo_header(struct seq_file *m)
4212 {
4213 /*
4214 * Output format version, so at least we can change it
4215 * without _too_ many complaints.
4216 */
4217 #if STATS
4218 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4219 #else
4220 seq_puts(m, "slabinfo - version: 2.1\n");
4221 #endif
4222 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4223 "<objperslab> <pagesperslab>");
4224 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4225 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4226 #if STATS
4227 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4228 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4229 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4230 #endif
4231 seq_putc(m, '\n');
4232 }
4233
4234 static void *s_start(struct seq_file *m, loff_t *pos)
4235 {
4236 loff_t n = *pos;
4237
4238 mutex_lock(&slab_mutex);
4239 if (!n)
4240 print_slabinfo_header(m);
4241
4242 return seq_list_start(&slab_caches, *pos);
4243 }
4244
4245 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4246 {
4247 return seq_list_next(p, &slab_caches, pos);
4248 }
4249
4250 static void s_stop(struct seq_file *m, void *p)
4251 {
4252 mutex_unlock(&slab_mutex);
4253 }
4254
4255 static int s_show(struct seq_file *m, void *p)
4256 {
4257 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4258 struct slab *slabp;
4259 unsigned long active_objs;
4260 unsigned long num_objs;
4261 unsigned long active_slabs = 0;
4262 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4263 const char *name;
4264 char *error = NULL;
4265 int node;
4266 struct kmem_list3 *l3;
4267
4268 active_objs = 0;
4269 num_slabs = 0;
4270 for_each_online_node(node) {
4271 l3 = cachep->nodelists[node];
4272 if (!l3)
4273 continue;
4274
4275 check_irq_on();
4276 spin_lock_irq(&l3->list_lock);
4277
4278 list_for_each_entry(slabp, &l3->slabs_full, list) {
4279 if (slabp->inuse != cachep->num && !error)
4280 error = "slabs_full accounting error";
4281 active_objs += cachep->num;
4282 active_slabs++;
4283 }
4284 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4285 if (slabp->inuse == cachep->num && !error)
4286 error = "slabs_partial inuse accounting error";
4287 if (!slabp->inuse && !error)
4288 error = "slabs_partial/inuse accounting error";
4289 active_objs += slabp->inuse;
4290 active_slabs++;
4291 }
4292 list_for_each_entry(slabp, &l3->slabs_free, list) {
4293 if (slabp->inuse && !error)
4294 error = "slabs_free/inuse accounting error";
4295 num_slabs++;
4296 }
4297 free_objects += l3->free_objects;
4298 if (l3->shared)
4299 shared_avail += l3->shared->avail;
4300
4301 spin_unlock_irq(&l3->list_lock);
4302 }
4303 num_slabs += active_slabs;
4304 num_objs = num_slabs * cachep->num;
4305 if (num_objs - active_objs != free_objects && !error)
4306 error = "free_objects accounting error";
4307
4308 name = cachep->name;
4309 if (error)
4310 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4311
4312 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4313 name, active_objs, num_objs, cachep->size,
4314 cachep->num, (1 << cachep->gfporder));
4315 seq_printf(m, " : tunables %4u %4u %4u",
4316 cachep->limit, cachep->batchcount, cachep->shared);
4317 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4318 active_slabs, num_slabs, shared_avail);
4319 #if STATS
4320 { /* list3 stats */
4321 unsigned long high = cachep->high_mark;
4322 unsigned long allocs = cachep->num_allocations;
4323 unsigned long grown = cachep->grown;
4324 unsigned long reaped = cachep->reaped;
4325 unsigned long errors = cachep->errors;
4326 unsigned long max_freeable = cachep->max_freeable;
4327 unsigned long node_allocs = cachep->node_allocs;
4328 unsigned long node_frees = cachep->node_frees;
4329 unsigned long overflows = cachep->node_overflow;
4330
4331 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4332 "%4lu %4lu %4lu %4lu %4lu",
4333 allocs, high, grown,
4334 reaped, errors, max_freeable, node_allocs,
4335 node_frees, overflows);
4336 }
4337 /* cpu stats */
4338 {
4339 unsigned long allochit = atomic_read(&cachep->allochit);
4340 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4341 unsigned long freehit = atomic_read(&cachep->freehit);
4342 unsigned long freemiss = atomic_read(&cachep->freemiss);
4343
4344 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4345 allochit, allocmiss, freehit, freemiss);
4346 }
4347 #endif
4348 seq_putc(m, '\n');
4349 return 0;
4350 }
4351
4352 /*
4353 * slabinfo_op - iterator that generates /proc/slabinfo
4354 *
4355 * Output layout:
4356 * cache-name
4357 * num-active-objs
4358 * total-objs
4359 * object size
4360 * num-active-slabs
4361 * total-slabs
4362 * num-pages-per-slab
4363 * + further values on SMP and with statistics enabled
4364 */
4365
4366 static const struct seq_operations slabinfo_op = {
4367 .start = s_start,
4368 .next = s_next,
4369 .stop = s_stop,
4370 .show = s_show,
4371 };
4372
4373 #define MAX_SLABINFO_WRITE 128
4374 /**
4375 * slabinfo_write - Tuning for the slab allocator
4376 * @file: unused
4377 * @buffer: user buffer
4378 * @count: data length
4379 * @ppos: unused
4380 */
4381 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4382 size_t count, loff_t *ppos)
4383 {
4384 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4385 int limit, batchcount, shared, res;
4386 struct kmem_cache *cachep;
4387
4388 if (count > MAX_SLABINFO_WRITE)
4389 return -EINVAL;
4390 if (copy_from_user(&kbuf, buffer, count))
4391 return -EFAULT;
4392 kbuf[MAX_SLABINFO_WRITE] = '\0';
4393
4394 tmp = strchr(kbuf, ' ');
4395 if (!tmp)
4396 return -EINVAL;
4397 *tmp = '\0';
4398 tmp++;
4399 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4400 return -EINVAL;
4401
4402 /* Find the cache in the chain of caches. */
4403 mutex_lock(&slab_mutex);
4404 res = -EINVAL;
4405 list_for_each_entry(cachep, &slab_caches, list) {
4406 if (!strcmp(cachep->name, kbuf)) {
4407 if (limit < 1 || batchcount < 1 ||
4408 batchcount > limit || shared < 0) {
4409 res = 0;
4410 } else {
4411 res = do_tune_cpucache(cachep, limit,
4412 batchcount, shared,
4413 GFP_KERNEL);
4414 }
4415 break;
4416 }
4417 }
4418 mutex_unlock(&slab_mutex);
4419 if (res >= 0)
4420 res = count;
4421 return res;
4422 }
4423
4424 static int slabinfo_open(struct inode *inode, struct file *file)
4425 {
4426 return seq_open(file, &slabinfo_op);
4427 }
4428
4429 static const struct file_operations proc_slabinfo_operations = {
4430 .open = slabinfo_open,
4431 .read = seq_read,
4432 .write = slabinfo_write,
4433 .llseek = seq_lseek,
4434 .release = seq_release,
4435 };
4436
4437 #ifdef CONFIG_DEBUG_SLAB_LEAK
4438
4439 static void *leaks_start(struct seq_file *m, loff_t *pos)
4440 {
4441 mutex_lock(&slab_mutex);
4442 return seq_list_start(&slab_caches, *pos);
4443 }
4444
4445 static inline int add_caller(unsigned long *n, unsigned long v)
4446 {
4447 unsigned long *p;
4448 int l;
4449 if (!v)
4450 return 1;
4451 l = n[1];
4452 p = n + 2;
4453 while (l) {
4454 int i = l/2;
4455 unsigned long *q = p + 2 * i;
4456 if (*q == v) {
4457 q[1]++;
4458 return 1;
4459 }
4460 if (*q > v) {
4461 l = i;
4462 } else {
4463 p = q + 2;
4464 l -= i + 1;
4465 }
4466 }
4467 if (++n[1] == n[0])
4468 return 0;
4469 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4470 p[0] = v;
4471 p[1] = 1;
4472 return 1;
4473 }
4474
4475 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4476 {
4477 void *p;
4478 int i;
4479 if (n[0] == n[1])
4480 return;
4481 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4482 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4483 continue;
4484 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4485 return;
4486 }
4487 }
4488
4489 static void show_symbol(struct seq_file *m, unsigned long address)
4490 {
4491 #ifdef CONFIG_KALLSYMS
4492 unsigned long offset, size;
4493 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4494
4495 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4496 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4497 if (modname[0])
4498 seq_printf(m, " [%s]", modname);
4499 return;
4500 }
4501 #endif
4502 seq_printf(m, "%p", (void *)address);
4503 }
4504
4505 static int leaks_show(struct seq_file *m, void *p)
4506 {
4507 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4508 struct slab *slabp;
4509 struct kmem_list3 *l3;
4510 const char *name;
4511 unsigned long *n = m->private;
4512 int node;
4513 int i;
4514
4515 if (!(cachep->flags & SLAB_STORE_USER))
4516 return 0;
4517 if (!(cachep->flags & SLAB_RED_ZONE))
4518 return 0;
4519
4520 /* OK, we can do it */
4521
4522 n[1] = 0;
4523
4524 for_each_online_node(node) {
4525 l3 = cachep->nodelists[node];
4526 if (!l3)
4527 continue;
4528
4529 check_irq_on();
4530 spin_lock_irq(&l3->list_lock);
4531
4532 list_for_each_entry(slabp, &l3->slabs_full, list)
4533 handle_slab(n, cachep, slabp);
4534 list_for_each_entry(slabp, &l3->slabs_partial, list)
4535 handle_slab(n, cachep, slabp);
4536 spin_unlock_irq(&l3->list_lock);
4537 }
4538 name = cachep->name;
4539 if (n[0] == n[1]) {
4540 /* Increase the buffer size */
4541 mutex_unlock(&slab_mutex);
4542 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4543 if (!m->private) {
4544 /* Too bad, we are really out */
4545 m->private = n;
4546 mutex_lock(&slab_mutex);
4547 return -ENOMEM;
4548 }
4549 *(unsigned long *)m->private = n[0] * 2;
4550 kfree(n);
4551 mutex_lock(&slab_mutex);
4552 /* Now make sure this entry will be retried */
4553 m->count = m->size;
4554 return 0;
4555 }
4556 for (i = 0; i < n[1]; i++) {
4557 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4558 show_symbol(m, n[2*i+2]);
4559 seq_putc(m, '\n');
4560 }
4561
4562 return 0;
4563 }
4564
4565 static const struct seq_operations slabstats_op = {
4566 .start = leaks_start,
4567 .next = s_next,
4568 .stop = s_stop,
4569 .show = leaks_show,
4570 };
4571
4572 static int slabstats_open(struct inode *inode, struct file *file)
4573 {
4574 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4575 int ret = -ENOMEM;
4576 if (n) {
4577 ret = seq_open(file, &slabstats_op);
4578 if (!ret) {
4579 struct seq_file *m = file->private_data;
4580 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4581 m->private = n;
4582 n = NULL;
4583 }
4584 kfree(n);
4585 }
4586 return ret;
4587 }
4588
4589 static const struct file_operations proc_slabstats_operations = {
4590 .open = slabstats_open,
4591 .read = seq_read,
4592 .llseek = seq_lseek,
4593 .release = seq_release_private,
4594 };
4595 #endif
4596
4597 static int __init slab_proc_init(void)
4598 {
4599 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4600 #ifdef CONFIG_DEBUG_SLAB_LEAK
4601 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4602 #endif
4603 return 0;
4604 }
4605 module_init(slab_proc_init);
4606 #endif
4607
4608 /**
4609 * ksize - get the actual amount of memory allocated for a given object
4610 * @objp: Pointer to the object
4611 *
4612 * kmalloc may internally round up allocations and return more memory
4613 * than requested. ksize() can be used to determine the actual amount of
4614 * memory allocated. The caller may use this additional memory, even though
4615 * a smaller amount of memory was initially specified with the kmalloc call.
4616 * The caller must guarantee that objp points to a valid object previously
4617 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4618 * must not be freed during the duration of the call.
4619 */
4620 size_t ksize(const void *objp)
4621 {
4622 BUG_ON(!objp);
4623 if (unlikely(objp == ZERO_SIZE_PTR))
4624 return 0;
4625
4626 return virt_to_cache(objp)->object_size;
4627 }
4628 EXPORT_SYMBOL(ksize);