mm: coalesce split strings
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static int slab_early_init = 1;
217
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231 }
232
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
237 } while (0)
238
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
245
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251 #define BATCHREFILL_LIMIT 16
252 /*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
255 *
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
258 */
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
261
262 #if STATS
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286 #else
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
302 #endif
303
304 #if DEBUG
305
306 /*
307 * memory layout of objects:
308 * 0 : objp
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313 * redzone word.
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
318 */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 return cachep->obj_offset;
322 }
323
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
329 }
330
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
337 REDZONE_ALIGN);
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
340 }
341
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347
348 #else
349
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355 #endif
356
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 return atomic_read(&cachep->store_user_clean) == 1;
362 }
363
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 atomic_set(&cachep->store_user_clean, 1);
367 }
368
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
373 }
374
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377
378 #endif
379
380 /*
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
383 */
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
393 }
394
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 unsigned int idx)
397 {
398 return page->s_mem + cache->size * idx;
399 }
400
401 /*
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
409 {
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
422 };
423
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
427
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
429 {
430 return this_cpu_ptr(cachep->cpu_cache);
431 }
432
433 /*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
438 {
439 unsigned int num;
440 size_t slab_size = PAGE_SIZE << gfporder;
441
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
447 * - @buffer_size bytes for each object
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460 num = slab_size / buffer_size;
461 *left_over = slab_size % buffer_size;
462 } else {
463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
466 }
467
468 return num;
469 }
470
471 #if DEBUG
472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
473
474 static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
476 {
477 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
478 function, cachep->name, msg);
479 dump_stack();
480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
481 }
482 #endif
483
484 /*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492 static int use_alien_caches __read_mostly = 1;
493 static int __init noaliencache_setup(char *s)
494 {
495 use_alien_caches = 0;
496 return 1;
497 }
498 __setup("noaliencache", noaliencache_setup);
499
500 static int __init slab_max_order_setup(char *str)
501 {
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508 }
509 __setup("slab_max_order=", slab_max_order_setup);
510
511 #ifdef CONFIG_NUMA
512 /*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
518 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519
520 static void init_reap_node(int cpu)
521 {
522 int node;
523
524 node = next_node(cpu_to_mem(cpu), node_online_map);
525 if (node == MAX_NUMNODES)
526 node = first_node(node_online_map);
527
528 per_cpu(slab_reap_node, cpu) = node;
529 }
530
531 static void next_reap_node(void)
532 {
533 int node = __this_cpu_read(slab_reap_node);
534
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
538 __this_cpu_write(slab_reap_node, node);
539 }
540
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545
546 /*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
553 static void start_cpu_timer(int cpu)
554 {
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
562 if (keventd_up() && reap_work->work.func == NULL) {
563 init_reap_node(cpu);
564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
567 }
568 }
569
570 static void init_arraycache(struct array_cache *ac, int limit, int batch)
571 {
572 /*
573 * The array_cache structures contain pointers to free object.
574 * However, when such objects are allocated or transferred to another
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
585 }
586 }
587
588 static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590 {
591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
597 }
598
599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
601 {
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
605
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
608
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
612
613 slabs_destroy(cachep, &list);
614 }
615
616 /*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622 static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624 {
625 /* Figure out how many entries to transfer */
626 int nr = min3(from->avail, max, to->limit - to->avail);
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
636 return nr;
637 }
638
639 #ifndef CONFIG_NUMA
640
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
643
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
646 {
647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 }
649
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 {
652 }
653
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655 {
656 return 0;
657 }
658
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661 {
662 return NULL;
663 }
664
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 gfp_t flags, int nodeid)
667 {
668 return NULL;
669 }
670
671 static inline gfp_t gfp_exact_node(gfp_t flags)
672 {
673 return flags & ~__GFP_NOFAIL;
674 }
675
676 #else /* CONFIG_NUMA */
677
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683 {
684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
689 spin_lock_init(&alc->lock);
690 return alc;
691 }
692
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694 {
695 struct alien_cache **alc_ptr;
696 size_t memsize = sizeof(void *) * nr_node_ids;
697 int i;
698
699 if (limit > 1)
700 limit = 12;
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
714 }
715 }
716 return alc_ptr;
717 }
718
719 static void free_alien_cache(struct alien_cache **alc_ptr)
720 {
721 int i;
722
723 if (!alc_ptr)
724 return;
725 for_each_node(i)
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
728 }
729
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 struct array_cache *ac, int node,
732 struct list_head *list)
733 {
734 struct kmem_cache_node *n = get_node(cachep, node);
735
736 if (ac->avail) {
737 spin_lock(&n->list_lock);
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
745
746 free_block(cachep, ac->entry, ac->avail, node, list);
747 ac->avail = 0;
748 spin_unlock(&n->list_lock);
749 }
750 }
751
752 /*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756 {
757 int node = __this_cpu_read(slab_reap_node);
758
759 if (n->alien) {
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
769 spin_unlock_irq(&alc->lock);
770 slabs_destroy(cachep, &list);
771 }
772 }
773 }
774 }
775
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 struct alien_cache **alien)
778 {
779 int i = 0;
780 struct alien_cache *alc;
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
785 alc = alien[i];
786 if (alc) {
787 LIST_HEAD(list);
788
789 ac = &alc->ac;
790 spin_lock_irqsave(&alc->lock, flags);
791 __drain_alien_cache(cachep, ac, i, &list);
792 spin_unlock_irqrestore(&alc->lock, flags);
793 slabs_destroy(cachep, &list);
794 }
795 }
796 }
797
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
800 {
801 struct kmem_cache_node *n;
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
804 LIST_HEAD(list);
805
806 n = get_node(cachep, node);
807 STATS_INC_NODEFREES(cachep);
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
810 ac = &alien->ac;
811 spin_lock(&alien->lock);
812 if (unlikely(ac->avail == ac->limit)) {
813 STATS_INC_ACOVERFLOW(cachep);
814 __drain_alien_cache(cachep, ac, page_node, &list);
815 }
816 ac->entry[ac->avail++] = objp;
817 spin_unlock(&alien->lock);
818 slabs_destroy(cachep, &list);
819 } else {
820 n = get_node(cachep, page_node);
821 spin_lock(&n->list_lock);
822 free_block(cachep, &objp, 1, page_node, &list);
823 spin_unlock(&n->list_lock);
824 slabs_destroy(cachep, &list);
825 }
826 return 1;
827 }
828
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830 {
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841 }
842
843 /*
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
846 */
847 static inline gfp_t gfp_exact_node(gfp_t flags)
848 {
849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
850 }
851 #endif
852
853 /*
854 * Allocates and initializes node for a node on each slab cache, used for
855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
856 * will be allocated off-node since memory is not yet online for the new node.
857 * When hotplugging memory or a cpu, existing node are not replaced if
858 * already in use.
859 *
860 * Must hold slab_mutex.
861 */
862 static int init_cache_node_node(int node)
863 {
864 struct kmem_cache *cachep;
865 struct kmem_cache_node *n;
866 const size_t memsize = sizeof(struct kmem_cache_node);
867
868 list_for_each_entry(cachep, &slab_caches, list) {
869 /*
870 * Set up the kmem_cache_node for cpu before we can
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
874 n = get_node(cachep, node);
875 if (!n) {
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
878 return -ENOMEM;
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 /*
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
886 * protection here.
887 */
888 cachep->node[node] = n;
889 }
890
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
895 spin_unlock_irq(&n->list_lock);
896 }
897 return 0;
898 }
899
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902 {
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904 }
905
906 static void cpuup_canceled(long cpu)
907 {
908 struct kmem_cache *cachep;
909 struct kmem_cache_node *n = NULL;
910 int node = cpu_to_mem(cpu);
911 const struct cpumask *mask = cpumask_of_node(node);
912
913 list_for_each_entry(cachep, &slab_caches, list) {
914 struct array_cache *nc;
915 struct array_cache *shared;
916 struct alien_cache **alien;
917 LIST_HEAD(list);
918
919 n = get_node(cachep, node);
920 if (!n)
921 continue;
922
923 spin_lock_irq(&n->list_lock);
924
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
931 free_block(cachep, nc->entry, nc->avail, node, &list);
932 nc->avail = 0;
933 }
934
935 if (!cpumask_empty(mask)) {
936 spin_unlock_irq(&n->list_lock);
937 goto free_slab;
938 }
939
940 shared = n->shared;
941 if (shared) {
942 free_block(cachep, shared->entry,
943 shared->avail, node, &list);
944 n->shared = NULL;
945 }
946
947 alien = n->alien;
948 n->alien = NULL;
949
950 spin_unlock_irq(&n->list_lock);
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
957
958 free_slab:
959 slabs_destroy(cachep, &list);
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
966 list_for_each_entry(cachep, &slab_caches, list) {
967 n = get_node(cachep, node);
968 if (!n)
969 continue;
970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 }
972 }
973
974 static int cpuup_prepare(long cpu)
975 {
976 struct kmem_cache *cachep;
977 struct kmem_cache_node *n = NULL;
978 int node = cpu_to_mem(cpu);
979 int err;
980
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
985 * kmem_cache_node and not this cpu's kmem_cache_node
986 */
987 err = init_cache_node_node(node);
988 if (err < 0)
989 goto bad;
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
995 list_for_each_entry(cachep, &slab_caches, list) {
996 struct array_cache *shared = NULL;
997 struct alien_cache **alien = NULL;
998
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
1002 0xbaadf00d, GFP_KERNEL);
1003 if (!shared)
1004 goto bad;
1005 }
1006 if (use_alien_caches) {
1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 if (!alien) {
1009 kfree(shared);
1010 goto bad;
1011 }
1012 }
1013 n = get_node(cachep, node);
1014 BUG_ON(!n);
1015
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
1022 n->shared = shared;
1023 shared = NULL;
1024 }
1025 #ifdef CONFIG_NUMA
1026 if (!n->alien) {
1027 n->alien = alien;
1028 alien = NULL;
1029 }
1030 #endif
1031 spin_unlock_irq(&n->list_lock);
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
1035
1036 return 0;
1037 bad:
1038 cpuup_canceled(cpu);
1039 return -ENOMEM;
1040 }
1041
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 unsigned long action, void *hcpu)
1044 {
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
1051 mutex_lock(&slab_mutex);
1052 err = cpuup_prepare(cpu);
1053 mutex_unlock(&slab_mutex);
1054 break;
1055 case CPU_ONLINE:
1056 case CPU_ONLINE_FROZEN:
1057 start_cpu_timer(cpu);
1058 break;
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 case CPU_DOWN_PREPARE:
1061 case CPU_DOWN_PREPARE_FROZEN:
1062 /*
1063 * Shutdown cache reaper. Note that the slab_mutex is
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 /* Now the cache_reaper is guaranteed to be not running. */
1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
1071 break;
1072 case CPU_DOWN_FAILED:
1073 case CPU_DOWN_FAILED_FROZEN:
1074 start_cpu_timer(cpu);
1075 break;
1076 case CPU_DEAD:
1077 case CPU_DEAD_FROZEN:
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
1080 * kmem_cache_node of any cache. This to avoid a race between
1081 * cpu_down, and a kmalloc allocation from another cpu for
1082 * memory from the node of the cpu going down. The node
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
1086 /* fall through */
1087 #endif
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 mutex_lock(&slab_mutex);
1091 cpuup_canceled(cpu);
1092 mutex_unlock(&slab_mutex);
1093 break;
1094 }
1095 return notifier_from_errno(err);
1096 }
1097
1098 static struct notifier_block cpucache_notifier = {
1099 &cpuup_callback, NULL, 0
1100 };
1101
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103 /*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
1108 * Must hold slab_mutex.
1109 */
1110 static int __meminit drain_cache_node_node(int node)
1111 {
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
1115 list_for_each_entry(cachep, &slab_caches, list) {
1116 struct kmem_cache_node *n;
1117
1118 n = get_node(cachep, node);
1119 if (!n)
1120 continue;
1121
1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131 }
1132
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135 {
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = init_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1149 break;
1150 case MEM_GOING_OFFLINE:
1151 mutex_lock(&slab_mutex);
1152 ret = drain_cache_node_node(nid);
1153 mutex_unlock(&slab_mutex);
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161 out:
1162 return notifier_from_errno(ret);
1163 }
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
1166 /*
1167 * swap the static kmem_cache_node with kmalloced memory
1168 */
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170 int nodeid)
1171 {
1172 struct kmem_cache_node *ptr;
1173
1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 BUG_ON(!ptr);
1176
1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 cachep->node[nodeid] = ptr;
1185 }
1186
1187 /*
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1190 */
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 {
1193 int node;
1194
1195 for_each_online_node(node) {
1196 cachep->node[node] = &init_kmem_cache_node[index + node];
1197 cachep->node[node]->next_reap = jiffies +
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 }
1201 }
1202
1203 /*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1206 */
1207 void __init kmem_cache_init(void)
1208 {
1209 int i;
1210
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
1213 kmem_cache = &kmem_cache_boot;
1214
1215 if (num_possible_nodes() == 1)
1216 use_alien_caches = 0;
1217
1218 for (i = 0; i < NUM_INIT_LISTS; i++)
1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
1220
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1225 */
1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 slab_max_order = SLAB_MAX_ORDER_HI;
1228
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
1234 * Initially an __init data area is used for the head array and the
1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 * array at the end of the bootstrap.
1237 * 2) Create the first kmalloc cache.
1238 * The struct kmem_cache for the new cache is allocated normally.
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 * kmalloc cache with kmalloc allocated arrays.
1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 */
1248
1249 /* 1) create the kmem_cache */
1250
1251 /*
1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253 */
1254 create_boot_cache(kmem_cache, "kmem_cache",
1255 offsetof(struct kmem_cache, node) +
1256 nr_node_ids * sizeof(struct kmem_cache_node *),
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
1259 slab_state = PARTIAL;
1260
1261 /*
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
1264 */
1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 slab_state = PARTIAL_NODE;
1268 setup_kmalloc_cache_index_table();
1269
1270 slab_early_init = 0;
1271
1272 /* 5) Replace the bootstrap kmem_cache_node */
1273 {
1274 int nid;
1275
1276 for_each_online_node(nid) {
1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278
1279 init_list(kmalloc_caches[INDEX_NODE],
1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 }
1282 }
1283
1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 }
1286
1287 void __init kmem_cache_init_late(void)
1288 {
1289 struct kmem_cache *cachep;
1290
1291 slab_state = UP;
1292
1293 /* 6) resize the head arrays to their final sizes */
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
1298 mutex_unlock(&slab_mutex);
1299
1300 /* Done! */
1301 slab_state = FULL;
1302
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
1312 * node.
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315 #endif
1316
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1320 */
1321 }
1322
1323 static int __init cpucache_init(void)
1324 {
1325 int cpu;
1326
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1329 */
1330 for_each_online_cpu(cpu)
1331 start_cpu_timer(cpu);
1332
1333 /* Done! */
1334 slab_state = FULL;
1335 return 0;
1336 }
1337 __initcall(cpucache_init);
1338
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341 {
1342 #if DEBUG
1343 struct kmem_cache_node *n;
1344 struct page *page;
1345 unsigned long flags;
1346 int node;
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
1352
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
1356 cachep->name, cachep->size, cachep->gfporder);
1357
1358 for_each_kmem_cache_node(cachep, node, n) {
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
1362 spin_lock_irqsave(&n->list_lock, flags);
1363 list_for_each_entry(page, &n->slabs_full, lru) {
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
1369 active_slabs++;
1370 }
1371 list_for_each_entry(page, &n->slabs_free, lru)
1372 num_slabs++;
1373
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
1383 #endif
1384 }
1385
1386 /*
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1396 {
1397 struct page *page;
1398 int nr_pages;
1399
1400 flags |= cachep->allocflags;
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
1403
1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405 if (!page) {
1406 slab_out_of_memory(cachep, flags, nodeid);
1407 return NULL;
1408 }
1409
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
1415 nr_pages = (1 << cachep->gfporder);
1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
1422
1423 __SetPageSlab(page);
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426 SetPageSlabPfmemalloc(page);
1427
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
1436
1437 return page;
1438 }
1439
1440 /*
1441 * Interface to system's page release.
1442 */
1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444 {
1445 int order = cachep->gfporder;
1446 unsigned long nr_freed = (1 << order);
1447
1448 kmemcheck_free_shadow(page, order);
1449
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 sub_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_freed);
1453 else
1454 sub_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_freed);
1456
1457 BUG_ON(!PageSlab(page));
1458 __ClearPageSlabPfmemalloc(page);
1459 __ClearPageSlab(page);
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1462
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1467 }
1468
1469 static void kmem_rcu_free(struct rcu_head *head)
1470 {
1471 struct kmem_cache *cachep;
1472 struct page *page;
1473
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1478 }
1479
1480 #if DEBUG
1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482 {
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488 }
1489
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492 unsigned long caller)
1493 {
1494 int size = cachep->object_size;
1495
1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497
1498 if (size < 5 * sizeof(unsigned long))
1499 return;
1500
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
1512 *addr++ = svalue;
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
1520 *addr++ = 0x87654321;
1521 }
1522
1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525 {
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533 }
1534
1535 #else
1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1539 #endif
1540
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542 {
1543 int size = cachep->object_size;
1544 addr = &((char *)addr)[obj_offset(cachep)];
1545
1546 memset(addr, val, size);
1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1548 }
1549
1550 static void dump_line(char *data, int offset, int limit)
1551 {
1552 int i;
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
1556 printk(KERN_ERR "%03x: ", offset);
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
1562 }
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1569 printk(KERN_ERR "Single bit error detected. Probably bad RAM.\n");
1570 #ifdef CONFIG_X86
1571 printk(KERN_ERR "Run memtest86+ or a similar memory test tool.\n");
1572 #else
1573 printk(KERN_ERR "Run a memory test tool.\n");
1574 #endif
1575 }
1576 }
1577 }
1578 #endif
1579
1580 #if DEBUG
1581
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1588 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1594 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1597 }
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = cachep->object_size;
1600 for (i = 0; i < size && lines; i += 16, lines--) {
1601 int limit;
1602 limit = 16;
1603 if (i + limit > size)
1604 limit = size - i;
1605 dump_line(realobj, i, limit);
1606 }
1607 }
1608
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
1618 realobj = (char *)objp + obj_offset(cachep);
1619 size = cachep->object_size;
1620
1621 for (i = 0; i < size; i++) {
1622 char exp = POISON_FREE;
1623 if (i == size - 1)
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1630 printk(KERN_ERR
1631 "Slab corruption (%s): %s start=%p, len=%d\n",
1632 print_tainted(), cachep->name, realobj, size);
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
1636 i = (i / 16) * 16;
1637 limit = 16;
1638 if (i + limit > size)
1639 limit = size - i;
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
1652 struct page *page = virt_to_head_page(objp);
1653 unsigned int objnr;
1654
1655 objnr = obj_to_index(cachep, page, objp);
1656 if (objnr) {
1657 objp = index_to_obj(cachep, page, objnr - 1);
1658 realobj = (char *)objp + obj_offset(cachep);
1659 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1660 realobj, size);
1661 print_objinfo(cachep, objp, 2);
1662 }
1663 if (objnr + 1 < cachep->num) {
1664 objp = index_to_obj(cachep, page, objnr + 1);
1665 realobj = (char *)objp + obj_offset(cachep);
1666 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1667 realobj, size);
1668 print_objinfo(cachep, objp, 2);
1669 }
1670 }
1671 }
1672 #endif
1673
1674 #if DEBUG
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 struct page *page)
1677 {
1678 int i;
1679
1680 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1681 poison_obj(cachep, page->freelist - obj_offset(cachep),
1682 POISON_FREE);
1683 }
1684
1685 for (i = 0; i < cachep->num; i++) {
1686 void *objp = index_to_obj(cachep, page, i);
1687
1688 if (cachep->flags & SLAB_POISON) {
1689 check_poison_obj(cachep, objp);
1690 slab_kernel_map(cachep, objp, 1, 0);
1691 }
1692 if (cachep->flags & SLAB_RED_ZONE) {
1693 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1694 slab_error(cachep, "start of a freed object was overwritten");
1695 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1696 slab_error(cachep, "end of a freed object was overwritten");
1697 }
1698 }
1699 }
1700 #else
1701 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1702 struct page *page)
1703 {
1704 }
1705 #endif
1706
1707 /**
1708 * slab_destroy - destroy and release all objects in a slab
1709 * @cachep: cache pointer being destroyed
1710 * @page: page pointer being destroyed
1711 *
1712 * Destroy all the objs in a slab page, and release the mem back to the system.
1713 * Before calling the slab page must have been unlinked from the cache. The
1714 * kmem_cache_node ->list_lock is not held/needed.
1715 */
1716 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1717 {
1718 void *freelist;
1719
1720 freelist = page->freelist;
1721 slab_destroy_debugcheck(cachep, page);
1722 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1723 call_rcu(&page->rcu_head, kmem_rcu_free);
1724 else
1725 kmem_freepages(cachep, page);
1726
1727 /*
1728 * From now on, we don't use freelist
1729 * although actual page can be freed in rcu context
1730 */
1731 if (OFF_SLAB(cachep))
1732 kmem_cache_free(cachep->freelist_cache, freelist);
1733 }
1734
1735 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1736 {
1737 struct page *page, *n;
1738
1739 list_for_each_entry_safe(page, n, list, lru) {
1740 list_del(&page->lru);
1741 slab_destroy(cachep, page);
1742 }
1743 }
1744
1745 /**
1746 * calculate_slab_order - calculate size (page order) of slabs
1747 * @cachep: pointer to the cache that is being created
1748 * @size: size of objects to be created in this cache.
1749 * @flags: slab allocation flags
1750 *
1751 * Also calculates the number of objects per slab.
1752 *
1753 * This could be made much more intelligent. For now, try to avoid using
1754 * high order pages for slabs. When the gfp() functions are more friendly
1755 * towards high-order requests, this should be changed.
1756 */
1757 static size_t calculate_slab_order(struct kmem_cache *cachep,
1758 size_t size, unsigned long flags)
1759 {
1760 size_t left_over = 0;
1761 int gfporder;
1762
1763 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1764 unsigned int num;
1765 size_t remainder;
1766
1767 num = cache_estimate(gfporder, size, flags, &remainder);
1768 if (!num)
1769 continue;
1770
1771 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1772 if (num > SLAB_OBJ_MAX_NUM)
1773 break;
1774
1775 if (flags & CFLGS_OFF_SLAB) {
1776 struct kmem_cache *freelist_cache;
1777 size_t freelist_size;
1778
1779 freelist_size = num * sizeof(freelist_idx_t);
1780 freelist_cache = kmalloc_slab(freelist_size, 0u);
1781 if (!freelist_cache)
1782 continue;
1783
1784 /*
1785 * Needed to avoid possible looping condition
1786 * in cache_grow()
1787 */
1788 if (OFF_SLAB(freelist_cache))
1789 continue;
1790
1791 /* check if off slab has enough benefit */
1792 if (freelist_cache->size > cachep->size / 2)
1793 continue;
1794 }
1795
1796 /* Found something acceptable - save it away */
1797 cachep->num = num;
1798 cachep->gfporder = gfporder;
1799 left_over = remainder;
1800
1801 /*
1802 * A VFS-reclaimable slab tends to have most allocations
1803 * as GFP_NOFS and we really don't want to have to be allocating
1804 * higher-order pages when we are unable to shrink dcache.
1805 */
1806 if (flags & SLAB_RECLAIM_ACCOUNT)
1807 break;
1808
1809 /*
1810 * Large number of objects is good, but very large slabs are
1811 * currently bad for the gfp()s.
1812 */
1813 if (gfporder >= slab_max_order)
1814 break;
1815
1816 /*
1817 * Acceptable internal fragmentation?
1818 */
1819 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1820 break;
1821 }
1822 return left_over;
1823 }
1824
1825 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1826 struct kmem_cache *cachep, int entries, int batchcount)
1827 {
1828 int cpu;
1829 size_t size;
1830 struct array_cache __percpu *cpu_cache;
1831
1832 size = sizeof(void *) * entries + sizeof(struct array_cache);
1833 cpu_cache = __alloc_percpu(size, sizeof(void *));
1834
1835 if (!cpu_cache)
1836 return NULL;
1837
1838 for_each_possible_cpu(cpu) {
1839 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1840 entries, batchcount);
1841 }
1842
1843 return cpu_cache;
1844 }
1845
1846 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1847 {
1848 if (slab_state >= FULL)
1849 return enable_cpucache(cachep, gfp);
1850
1851 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1852 if (!cachep->cpu_cache)
1853 return 1;
1854
1855 if (slab_state == DOWN) {
1856 /* Creation of first cache (kmem_cache). */
1857 set_up_node(kmem_cache, CACHE_CACHE);
1858 } else if (slab_state == PARTIAL) {
1859 /* For kmem_cache_node */
1860 set_up_node(cachep, SIZE_NODE);
1861 } else {
1862 int node;
1863
1864 for_each_online_node(node) {
1865 cachep->node[node] = kmalloc_node(
1866 sizeof(struct kmem_cache_node), gfp, node);
1867 BUG_ON(!cachep->node[node]);
1868 kmem_cache_node_init(cachep->node[node]);
1869 }
1870 }
1871
1872 cachep->node[numa_mem_id()]->next_reap =
1873 jiffies + REAPTIMEOUT_NODE +
1874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1875
1876 cpu_cache_get(cachep)->avail = 0;
1877 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1878 cpu_cache_get(cachep)->batchcount = 1;
1879 cpu_cache_get(cachep)->touched = 0;
1880 cachep->batchcount = 1;
1881 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1882 return 0;
1883 }
1884
1885 unsigned long kmem_cache_flags(unsigned long object_size,
1886 unsigned long flags, const char *name,
1887 void (*ctor)(void *))
1888 {
1889 return flags;
1890 }
1891
1892 struct kmem_cache *
1893 __kmem_cache_alias(const char *name, size_t size, size_t align,
1894 unsigned long flags, void (*ctor)(void *))
1895 {
1896 struct kmem_cache *cachep;
1897
1898 cachep = find_mergeable(size, align, flags, name, ctor);
1899 if (cachep) {
1900 cachep->refcount++;
1901
1902 /*
1903 * Adjust the object sizes so that we clear
1904 * the complete object on kzalloc.
1905 */
1906 cachep->object_size = max_t(int, cachep->object_size, size);
1907 }
1908 return cachep;
1909 }
1910
1911 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1912 size_t size, unsigned long flags)
1913 {
1914 size_t left;
1915
1916 cachep->num = 0;
1917
1918 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1919 return false;
1920
1921 left = calculate_slab_order(cachep, size,
1922 flags | CFLGS_OBJFREELIST_SLAB);
1923 if (!cachep->num)
1924 return false;
1925
1926 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1927 return false;
1928
1929 cachep->colour = left / cachep->colour_off;
1930
1931 return true;
1932 }
1933
1934 static bool set_off_slab_cache(struct kmem_cache *cachep,
1935 size_t size, unsigned long flags)
1936 {
1937 size_t left;
1938
1939 cachep->num = 0;
1940
1941 /*
1942 * Always use on-slab management when SLAB_NOLEAKTRACE
1943 * to avoid recursive calls into kmemleak.
1944 */
1945 if (flags & SLAB_NOLEAKTRACE)
1946 return false;
1947
1948 /*
1949 * Size is large, assume best to place the slab management obj
1950 * off-slab (should allow better packing of objs).
1951 */
1952 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1953 if (!cachep->num)
1954 return false;
1955
1956 /*
1957 * If the slab has been placed off-slab, and we have enough space then
1958 * move it on-slab. This is at the expense of any extra colouring.
1959 */
1960 if (left >= cachep->num * sizeof(freelist_idx_t))
1961 return false;
1962
1963 cachep->colour = left / cachep->colour_off;
1964
1965 return true;
1966 }
1967
1968 static bool set_on_slab_cache(struct kmem_cache *cachep,
1969 size_t size, unsigned long flags)
1970 {
1971 size_t left;
1972
1973 cachep->num = 0;
1974
1975 left = calculate_slab_order(cachep, size, flags);
1976 if (!cachep->num)
1977 return false;
1978
1979 cachep->colour = left / cachep->colour_off;
1980
1981 return true;
1982 }
1983
1984 /**
1985 * __kmem_cache_create - Create a cache.
1986 * @cachep: cache management descriptor
1987 * @flags: SLAB flags
1988 *
1989 * Returns a ptr to the cache on success, NULL on failure.
1990 * Cannot be called within a int, but can be interrupted.
1991 * The @ctor is run when new pages are allocated by the cache.
1992 *
1993 * The flags are
1994 *
1995 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1996 * to catch references to uninitialised memory.
1997 *
1998 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1999 * for buffer overruns.
2000 *
2001 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2002 * cacheline. This can be beneficial if you're counting cycles as closely
2003 * as davem.
2004 */
2005 int
2006 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2007 {
2008 size_t ralign = BYTES_PER_WORD;
2009 gfp_t gfp;
2010 int err;
2011 size_t size = cachep->size;
2012
2013 #if DEBUG
2014 #if FORCED_DEBUG
2015 /*
2016 * Enable redzoning and last user accounting, except for caches with
2017 * large objects, if the increased size would increase the object size
2018 * above the next power of two: caches with object sizes just above a
2019 * power of two have a significant amount of internal fragmentation.
2020 */
2021 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2022 2 * sizeof(unsigned long long)))
2023 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2024 if (!(flags & SLAB_DESTROY_BY_RCU))
2025 flags |= SLAB_POISON;
2026 #endif
2027 #endif
2028
2029 /*
2030 * Check that size is in terms of words. This is needed to avoid
2031 * unaligned accesses for some archs when redzoning is used, and makes
2032 * sure any on-slab bufctl's are also correctly aligned.
2033 */
2034 if (size & (BYTES_PER_WORD - 1)) {
2035 size += (BYTES_PER_WORD - 1);
2036 size &= ~(BYTES_PER_WORD - 1);
2037 }
2038
2039 if (flags & SLAB_RED_ZONE) {
2040 ralign = REDZONE_ALIGN;
2041 /* If redzoning, ensure that the second redzone is suitably
2042 * aligned, by adjusting the object size accordingly. */
2043 size += REDZONE_ALIGN - 1;
2044 size &= ~(REDZONE_ALIGN - 1);
2045 }
2046
2047 /* 3) caller mandated alignment */
2048 if (ralign < cachep->align) {
2049 ralign = cachep->align;
2050 }
2051 /* disable debug if necessary */
2052 if (ralign > __alignof__(unsigned long long))
2053 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2054 /*
2055 * 4) Store it.
2056 */
2057 cachep->align = ralign;
2058 cachep->colour_off = cache_line_size();
2059 /* Offset must be a multiple of the alignment. */
2060 if (cachep->colour_off < cachep->align)
2061 cachep->colour_off = cachep->align;
2062
2063 if (slab_is_available())
2064 gfp = GFP_KERNEL;
2065 else
2066 gfp = GFP_NOWAIT;
2067
2068 #if DEBUG
2069
2070 /*
2071 * Both debugging options require word-alignment which is calculated
2072 * into align above.
2073 */
2074 if (flags & SLAB_RED_ZONE) {
2075 /* add space for red zone words */
2076 cachep->obj_offset += sizeof(unsigned long long);
2077 size += 2 * sizeof(unsigned long long);
2078 }
2079 if (flags & SLAB_STORE_USER) {
2080 /* user store requires one word storage behind the end of
2081 * the real object. But if the second red zone needs to be
2082 * aligned to 64 bits, we must allow that much space.
2083 */
2084 if (flags & SLAB_RED_ZONE)
2085 size += REDZONE_ALIGN;
2086 else
2087 size += BYTES_PER_WORD;
2088 }
2089 #endif
2090
2091 size = ALIGN(size, cachep->align);
2092 /*
2093 * We should restrict the number of objects in a slab to implement
2094 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 */
2096 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099 #if DEBUG
2100 /*
2101 * To activate debug pagealloc, off-slab management is necessary
2102 * requirement. In early phase of initialization, small sized slab
2103 * doesn't get initialized so it would not be possible. So, we need
2104 * to check size >= 256. It guarantees that all necessary small
2105 * sized slab is initialized in current slab initialization sequence.
2106 */
2107 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108 size >= 256 && cachep->object_size > cache_line_size()) {
2109 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 flags |= CFLGS_OFF_SLAB;
2114 cachep->obj_offset += tmp_size - size;
2115 size = tmp_size;
2116 goto done;
2117 }
2118 }
2119 }
2120 #endif
2121
2122 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 flags |= CFLGS_OBJFREELIST_SLAB;
2124 goto done;
2125 }
2126
2127 if (set_off_slab_cache(cachep, size, flags)) {
2128 flags |= CFLGS_OFF_SLAB;
2129 goto done;
2130 }
2131
2132 if (set_on_slab_cache(cachep, size, flags))
2133 goto done;
2134
2135 return -E2BIG;
2136
2137 done:
2138 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139 cachep->flags = flags;
2140 cachep->allocflags = __GFP_COMP;
2141 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142 cachep->allocflags |= GFP_DMA;
2143 cachep->size = size;
2144 cachep->reciprocal_buffer_size = reciprocal_value(size);
2145
2146 #if DEBUG
2147 /*
2148 * If we're going to use the generic kernel_map_pages()
2149 * poisoning, then it's going to smash the contents of
2150 * the redzone and userword anyhow, so switch them off.
2151 */
2152 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 (cachep->flags & SLAB_POISON) &&
2154 is_debug_pagealloc_cache(cachep))
2155 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156 #endif
2157
2158 if (OFF_SLAB(cachep)) {
2159 cachep->freelist_cache =
2160 kmalloc_slab(cachep->freelist_size, 0u);
2161 }
2162
2163 err = setup_cpu_cache(cachep, gfp);
2164 if (err) {
2165 __kmem_cache_release(cachep);
2166 return err;
2167 }
2168
2169 return 0;
2170 }
2171
2172 #if DEBUG
2173 static void check_irq_off(void)
2174 {
2175 BUG_ON(!irqs_disabled());
2176 }
2177
2178 static void check_irq_on(void)
2179 {
2180 BUG_ON(irqs_disabled());
2181 }
2182
2183 static void check_spinlock_acquired(struct kmem_cache *cachep)
2184 {
2185 #ifdef CONFIG_SMP
2186 check_irq_off();
2187 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2188 #endif
2189 }
2190
2191 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192 {
2193 #ifdef CONFIG_SMP
2194 check_irq_off();
2195 assert_spin_locked(&get_node(cachep, node)->list_lock);
2196 #endif
2197 }
2198
2199 #else
2200 #define check_irq_off() do { } while(0)
2201 #define check_irq_on() do { } while(0)
2202 #define check_spinlock_acquired(x) do { } while(0)
2203 #define check_spinlock_acquired_node(x, y) do { } while(0)
2204 #endif
2205
2206 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207 struct array_cache *ac,
2208 int force, int node);
2209
2210 static void do_drain(void *arg)
2211 {
2212 struct kmem_cache *cachep = arg;
2213 struct array_cache *ac;
2214 int node = numa_mem_id();
2215 struct kmem_cache_node *n;
2216 LIST_HEAD(list);
2217
2218 check_irq_off();
2219 ac = cpu_cache_get(cachep);
2220 n = get_node(cachep, node);
2221 spin_lock(&n->list_lock);
2222 free_block(cachep, ac->entry, ac->avail, node, &list);
2223 spin_unlock(&n->list_lock);
2224 slabs_destroy(cachep, &list);
2225 ac->avail = 0;
2226 }
2227
2228 static void drain_cpu_caches(struct kmem_cache *cachep)
2229 {
2230 struct kmem_cache_node *n;
2231 int node;
2232
2233 on_each_cpu(do_drain, cachep, 1);
2234 check_irq_on();
2235 for_each_kmem_cache_node(cachep, node, n)
2236 if (n->alien)
2237 drain_alien_cache(cachep, n->alien);
2238
2239 for_each_kmem_cache_node(cachep, node, n)
2240 drain_array(cachep, n, n->shared, 1, node);
2241 }
2242
2243 /*
2244 * Remove slabs from the list of free slabs.
2245 * Specify the number of slabs to drain in tofree.
2246 *
2247 * Returns the actual number of slabs released.
2248 */
2249 static int drain_freelist(struct kmem_cache *cache,
2250 struct kmem_cache_node *n, int tofree)
2251 {
2252 struct list_head *p;
2253 int nr_freed;
2254 struct page *page;
2255
2256 nr_freed = 0;
2257 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2258
2259 spin_lock_irq(&n->list_lock);
2260 p = n->slabs_free.prev;
2261 if (p == &n->slabs_free) {
2262 spin_unlock_irq(&n->list_lock);
2263 goto out;
2264 }
2265
2266 page = list_entry(p, struct page, lru);
2267 list_del(&page->lru);
2268 /*
2269 * Safe to drop the lock. The slab is no longer linked
2270 * to the cache.
2271 */
2272 n->free_objects -= cache->num;
2273 spin_unlock_irq(&n->list_lock);
2274 slab_destroy(cache, page);
2275 nr_freed++;
2276 }
2277 out:
2278 return nr_freed;
2279 }
2280
2281 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2282 {
2283 int ret = 0;
2284 int node;
2285 struct kmem_cache_node *n;
2286
2287 drain_cpu_caches(cachep);
2288
2289 check_irq_on();
2290 for_each_kmem_cache_node(cachep, node, n) {
2291 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292
2293 ret += !list_empty(&n->slabs_full) ||
2294 !list_empty(&n->slabs_partial);
2295 }
2296 return (ret ? 1 : 0);
2297 }
2298
2299 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300 {
2301 return __kmem_cache_shrink(cachep, false);
2302 }
2303
2304 void __kmem_cache_release(struct kmem_cache *cachep)
2305 {
2306 int i;
2307 struct kmem_cache_node *n;
2308
2309 free_percpu(cachep->cpu_cache);
2310
2311 /* NUMA: free the node structures */
2312 for_each_kmem_cache_node(cachep, i, n) {
2313 kfree(n->shared);
2314 free_alien_cache(n->alien);
2315 kfree(n);
2316 cachep->node[i] = NULL;
2317 }
2318 }
2319
2320 /*
2321 * Get the memory for a slab management obj.
2322 *
2323 * For a slab cache when the slab descriptor is off-slab, the
2324 * slab descriptor can't come from the same cache which is being created,
2325 * Because if it is the case, that means we defer the creation of
2326 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327 * And we eventually call down to __kmem_cache_create(), which
2328 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329 * This is a "chicken-and-egg" problem.
2330 *
2331 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332 * which are all initialized during kmem_cache_init().
2333 */
2334 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335 struct page *page, int colour_off,
2336 gfp_t local_flags, int nodeid)
2337 {
2338 void *freelist;
2339 void *addr = page_address(page);
2340
2341 page->s_mem = addr + colour_off;
2342 page->active = 0;
2343
2344 if (OBJFREELIST_SLAB(cachep))
2345 freelist = NULL;
2346 else if (OFF_SLAB(cachep)) {
2347 /* Slab management obj is off-slab. */
2348 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349 local_flags, nodeid);
2350 if (!freelist)
2351 return NULL;
2352 } else {
2353 /* We will use last bytes at the slab for freelist */
2354 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355 cachep->freelist_size;
2356 }
2357
2358 return freelist;
2359 }
2360
2361 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2362 {
2363 return ((freelist_idx_t *)page->freelist)[idx];
2364 }
2365
2366 static inline void set_free_obj(struct page *page,
2367 unsigned int idx, freelist_idx_t val)
2368 {
2369 ((freelist_idx_t *)(page->freelist))[idx] = val;
2370 }
2371
2372 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2373 {
2374 #if DEBUG
2375 int i;
2376
2377 for (i = 0; i < cachep->num; i++) {
2378 void *objp = index_to_obj(cachep, page, i);
2379
2380 if (cachep->flags & SLAB_STORE_USER)
2381 *dbg_userword(cachep, objp) = NULL;
2382
2383 if (cachep->flags & SLAB_RED_ZONE) {
2384 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386 }
2387 /*
2388 * Constructors are not allowed to allocate memory from the same
2389 * cache which they are a constructor for. Otherwise, deadlock.
2390 * They must also be threaded.
2391 */
2392 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2393 cachep->ctor(objp + obj_offset(cachep));
2394
2395 if (cachep->flags & SLAB_RED_ZONE) {
2396 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2397 slab_error(cachep, "constructor overwrote the end of an object");
2398 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2399 slab_error(cachep, "constructor overwrote the start of an object");
2400 }
2401 /* need to poison the objs? */
2402 if (cachep->flags & SLAB_POISON) {
2403 poison_obj(cachep, objp, POISON_FREE);
2404 slab_kernel_map(cachep, objp, 0, 0);
2405 }
2406 }
2407 #endif
2408 }
2409
2410 static void cache_init_objs(struct kmem_cache *cachep,
2411 struct page *page)
2412 {
2413 int i;
2414
2415 cache_init_objs_debug(cachep, page);
2416
2417 if (OBJFREELIST_SLAB(cachep)) {
2418 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2419 obj_offset(cachep);
2420 }
2421
2422 for (i = 0; i < cachep->num; i++) {
2423 /* constructor could break poison info */
2424 if (DEBUG == 0 && cachep->ctor)
2425 cachep->ctor(index_to_obj(cachep, page, i));
2426
2427 set_free_obj(page, i, i);
2428 }
2429 }
2430
2431 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2432 {
2433 if (CONFIG_ZONE_DMA_FLAG) {
2434 if (flags & GFP_DMA)
2435 BUG_ON(!(cachep->allocflags & GFP_DMA));
2436 else
2437 BUG_ON(cachep->allocflags & GFP_DMA);
2438 }
2439 }
2440
2441 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2442 {
2443 void *objp;
2444
2445 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2446 page->active++;
2447
2448 #if DEBUG
2449 if (cachep->flags & SLAB_STORE_USER)
2450 set_store_user_dirty(cachep);
2451 #endif
2452
2453 return objp;
2454 }
2455
2456 static void slab_put_obj(struct kmem_cache *cachep,
2457 struct page *page, void *objp)
2458 {
2459 unsigned int objnr = obj_to_index(cachep, page, objp);
2460 #if DEBUG
2461 unsigned int i;
2462
2463 /* Verify double free bug */
2464 for (i = page->active; i < cachep->num; i++) {
2465 if (get_free_obj(page, i) == objnr) {
2466 printk(KERN_ERR "slab: double free detected in cache '%s', objp %p\n",
2467 cachep->name, objp);
2468 BUG();
2469 }
2470 }
2471 #endif
2472 page->active--;
2473 if (!page->freelist)
2474 page->freelist = objp + obj_offset(cachep);
2475
2476 set_free_obj(page, page->active, objnr);
2477 }
2478
2479 /*
2480 * Map pages beginning at addr to the given cache and slab. This is required
2481 * for the slab allocator to be able to lookup the cache and slab of a
2482 * virtual address for kfree, ksize, and slab debugging.
2483 */
2484 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2485 void *freelist)
2486 {
2487 page->slab_cache = cache;
2488 page->freelist = freelist;
2489 }
2490
2491 /*
2492 * Grow (by 1) the number of slabs within a cache. This is called by
2493 * kmem_cache_alloc() when there are no active objs left in a cache.
2494 */
2495 static int cache_grow(struct kmem_cache *cachep,
2496 gfp_t flags, int nodeid, struct page *page)
2497 {
2498 void *freelist;
2499 size_t offset;
2500 gfp_t local_flags;
2501 struct kmem_cache_node *n;
2502
2503 /*
2504 * Be lazy and only check for valid flags here, keeping it out of the
2505 * critical path in kmem_cache_alloc().
2506 */
2507 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2508 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2509 BUG();
2510 }
2511 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2512
2513 /* Take the node list lock to change the colour_next on this node */
2514 check_irq_off();
2515 n = get_node(cachep, nodeid);
2516 spin_lock(&n->list_lock);
2517
2518 /* Get colour for the slab, and cal the next value. */
2519 offset = n->colour_next;
2520 n->colour_next++;
2521 if (n->colour_next >= cachep->colour)
2522 n->colour_next = 0;
2523 spin_unlock(&n->list_lock);
2524
2525 offset *= cachep->colour_off;
2526
2527 if (gfpflags_allow_blocking(local_flags))
2528 local_irq_enable();
2529
2530 /*
2531 * The test for missing atomic flag is performed here, rather than
2532 * the more obvious place, simply to reduce the critical path length
2533 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2534 * will eventually be caught here (where it matters).
2535 */
2536 kmem_flagcheck(cachep, flags);
2537
2538 /*
2539 * Get mem for the objs. Attempt to allocate a physical page from
2540 * 'nodeid'.
2541 */
2542 if (!page)
2543 page = kmem_getpages(cachep, local_flags, nodeid);
2544 if (!page)
2545 goto failed;
2546
2547 /* Get slab management. */
2548 freelist = alloc_slabmgmt(cachep, page, offset,
2549 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2550 if (OFF_SLAB(cachep) && !freelist)
2551 goto opps1;
2552
2553 slab_map_pages(cachep, page, freelist);
2554
2555 cache_init_objs(cachep, page);
2556
2557 if (gfpflags_allow_blocking(local_flags))
2558 local_irq_disable();
2559 check_irq_off();
2560 spin_lock(&n->list_lock);
2561
2562 /* Make slab active. */
2563 list_add_tail(&page->lru, &(n->slabs_free));
2564 STATS_INC_GROWN(cachep);
2565 n->free_objects += cachep->num;
2566 spin_unlock(&n->list_lock);
2567 return 1;
2568 opps1:
2569 kmem_freepages(cachep, page);
2570 failed:
2571 if (gfpflags_allow_blocking(local_flags))
2572 local_irq_disable();
2573 return 0;
2574 }
2575
2576 #if DEBUG
2577
2578 /*
2579 * Perform extra freeing checks:
2580 * - detect bad pointers.
2581 * - POISON/RED_ZONE checking
2582 */
2583 static void kfree_debugcheck(const void *objp)
2584 {
2585 if (!virt_addr_valid(objp)) {
2586 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2587 (unsigned long)objp);
2588 BUG();
2589 }
2590 }
2591
2592 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2593 {
2594 unsigned long long redzone1, redzone2;
2595
2596 redzone1 = *dbg_redzone1(cache, obj);
2597 redzone2 = *dbg_redzone2(cache, obj);
2598
2599 /*
2600 * Redzone is ok.
2601 */
2602 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2603 return;
2604
2605 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2606 slab_error(cache, "double free detected");
2607 else
2608 slab_error(cache, "memory outside object was overwritten");
2609
2610 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2611 obj, redzone1, redzone2);
2612 }
2613
2614 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2615 unsigned long caller)
2616 {
2617 unsigned int objnr;
2618 struct page *page;
2619
2620 BUG_ON(virt_to_cache(objp) != cachep);
2621
2622 objp -= obj_offset(cachep);
2623 kfree_debugcheck(objp);
2624 page = virt_to_head_page(objp);
2625
2626 if (cachep->flags & SLAB_RED_ZONE) {
2627 verify_redzone_free(cachep, objp);
2628 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2630 }
2631 if (cachep->flags & SLAB_STORE_USER) {
2632 set_store_user_dirty(cachep);
2633 *dbg_userword(cachep, objp) = (void *)caller;
2634 }
2635
2636 objnr = obj_to_index(cachep, page, objp);
2637
2638 BUG_ON(objnr >= cachep->num);
2639 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2640
2641 if (cachep->flags & SLAB_POISON) {
2642 poison_obj(cachep, objp, POISON_FREE);
2643 slab_kernel_map(cachep, objp, 0, caller);
2644 }
2645 return objp;
2646 }
2647
2648 #else
2649 #define kfree_debugcheck(x) do { } while(0)
2650 #define cache_free_debugcheck(x,objp,z) (objp)
2651 #endif
2652
2653 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2654 void **list)
2655 {
2656 #if DEBUG
2657 void *next = *list;
2658 void *objp;
2659
2660 while (next) {
2661 objp = next - obj_offset(cachep);
2662 next = *(void **)next;
2663 poison_obj(cachep, objp, POISON_FREE);
2664 }
2665 #endif
2666 }
2667
2668 static inline void fixup_slab_list(struct kmem_cache *cachep,
2669 struct kmem_cache_node *n, struct page *page,
2670 void **list)
2671 {
2672 /* move slabp to correct slabp list: */
2673 list_del(&page->lru);
2674 if (page->active == cachep->num) {
2675 list_add(&page->lru, &n->slabs_full);
2676 if (OBJFREELIST_SLAB(cachep)) {
2677 #if DEBUG
2678 /* Poisoning will be done without holding the lock */
2679 if (cachep->flags & SLAB_POISON) {
2680 void **objp = page->freelist;
2681
2682 *objp = *list;
2683 *list = objp;
2684 }
2685 #endif
2686 page->freelist = NULL;
2687 }
2688 } else
2689 list_add(&page->lru, &n->slabs_partial);
2690 }
2691
2692 /* Try to find non-pfmemalloc slab if needed */
2693 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2694 struct page *page, bool pfmemalloc)
2695 {
2696 if (!page)
2697 return NULL;
2698
2699 if (pfmemalloc)
2700 return page;
2701
2702 if (!PageSlabPfmemalloc(page))
2703 return page;
2704
2705 /* No need to keep pfmemalloc slab if we have enough free objects */
2706 if (n->free_objects > n->free_limit) {
2707 ClearPageSlabPfmemalloc(page);
2708 return page;
2709 }
2710
2711 /* Move pfmemalloc slab to the end of list to speed up next search */
2712 list_del(&page->lru);
2713 if (!page->active)
2714 list_add_tail(&page->lru, &n->slabs_free);
2715 else
2716 list_add_tail(&page->lru, &n->slabs_partial);
2717
2718 list_for_each_entry(page, &n->slabs_partial, lru) {
2719 if (!PageSlabPfmemalloc(page))
2720 return page;
2721 }
2722
2723 list_for_each_entry(page, &n->slabs_free, lru) {
2724 if (!PageSlabPfmemalloc(page))
2725 return page;
2726 }
2727
2728 return NULL;
2729 }
2730
2731 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2732 {
2733 struct page *page;
2734
2735 page = list_first_entry_or_null(&n->slabs_partial,
2736 struct page, lru);
2737 if (!page) {
2738 n->free_touched = 1;
2739 page = list_first_entry_or_null(&n->slabs_free,
2740 struct page, lru);
2741 }
2742
2743 if (sk_memalloc_socks())
2744 return get_valid_first_slab(n, page, pfmemalloc);
2745
2746 return page;
2747 }
2748
2749 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2750 struct kmem_cache_node *n, gfp_t flags)
2751 {
2752 struct page *page;
2753 void *obj;
2754 void *list = NULL;
2755
2756 if (!gfp_pfmemalloc_allowed(flags))
2757 return NULL;
2758
2759 spin_lock(&n->list_lock);
2760 page = get_first_slab(n, true);
2761 if (!page) {
2762 spin_unlock(&n->list_lock);
2763 return NULL;
2764 }
2765
2766 obj = slab_get_obj(cachep, page);
2767 n->free_objects--;
2768
2769 fixup_slab_list(cachep, n, page, &list);
2770
2771 spin_unlock(&n->list_lock);
2772 fixup_objfreelist_debug(cachep, &list);
2773
2774 return obj;
2775 }
2776
2777 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2778 {
2779 int batchcount;
2780 struct kmem_cache_node *n;
2781 struct array_cache *ac;
2782 int node;
2783 void *list = NULL;
2784
2785 check_irq_off();
2786 node = numa_mem_id();
2787
2788 retry:
2789 ac = cpu_cache_get(cachep);
2790 batchcount = ac->batchcount;
2791 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2792 /*
2793 * If there was little recent activity on this cache, then
2794 * perform only a partial refill. Otherwise we could generate
2795 * refill bouncing.
2796 */
2797 batchcount = BATCHREFILL_LIMIT;
2798 }
2799 n = get_node(cachep, node);
2800
2801 BUG_ON(ac->avail > 0 || !n);
2802 spin_lock(&n->list_lock);
2803
2804 /* See if we can refill from the shared array */
2805 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2806 n->shared->touched = 1;
2807 goto alloc_done;
2808 }
2809
2810 while (batchcount > 0) {
2811 struct page *page;
2812 /* Get slab alloc is to come from. */
2813 page = get_first_slab(n, false);
2814 if (!page)
2815 goto must_grow;
2816
2817 check_spinlock_acquired(cachep);
2818
2819 /*
2820 * The slab was either on partial or free list so
2821 * there must be at least one object available for
2822 * allocation.
2823 */
2824 BUG_ON(page->active >= cachep->num);
2825
2826 while (page->active < cachep->num && batchcount--) {
2827 STATS_INC_ALLOCED(cachep);
2828 STATS_INC_ACTIVE(cachep);
2829 STATS_SET_HIGH(cachep);
2830
2831 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2832 }
2833
2834 fixup_slab_list(cachep, n, page, &list);
2835 }
2836
2837 must_grow:
2838 n->free_objects -= ac->avail;
2839 alloc_done:
2840 spin_unlock(&n->list_lock);
2841 fixup_objfreelist_debug(cachep, &list);
2842
2843 if (unlikely(!ac->avail)) {
2844 int x;
2845
2846 /* Check if we can use obj in pfmemalloc slab */
2847 if (sk_memalloc_socks()) {
2848 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2849
2850 if (obj)
2851 return obj;
2852 }
2853
2854 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2855
2856 /* cache_grow can reenable interrupts, then ac could change. */
2857 ac = cpu_cache_get(cachep);
2858 node = numa_mem_id();
2859
2860 /* no objects in sight? abort */
2861 if (!x && ac->avail == 0)
2862 return NULL;
2863
2864 if (!ac->avail) /* objects refilled by interrupt? */
2865 goto retry;
2866 }
2867 ac->touched = 1;
2868
2869 return ac->entry[--ac->avail];
2870 }
2871
2872 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2873 gfp_t flags)
2874 {
2875 might_sleep_if(gfpflags_allow_blocking(flags));
2876 #if DEBUG
2877 kmem_flagcheck(cachep, flags);
2878 #endif
2879 }
2880
2881 #if DEBUG
2882 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2883 gfp_t flags, void *objp, unsigned long caller)
2884 {
2885 if (!objp)
2886 return objp;
2887 if (cachep->flags & SLAB_POISON) {
2888 check_poison_obj(cachep, objp);
2889 slab_kernel_map(cachep, objp, 1, 0);
2890 poison_obj(cachep, objp, POISON_INUSE);
2891 }
2892 if (cachep->flags & SLAB_STORE_USER)
2893 *dbg_userword(cachep, objp) = (void *)caller;
2894
2895 if (cachep->flags & SLAB_RED_ZONE) {
2896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2897 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2898 slab_error(cachep, "double free, or memory outside object was overwritten");
2899 printk(KERN_ERR
2900 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2901 objp, *dbg_redzone1(cachep, objp),
2902 *dbg_redzone2(cachep, objp));
2903 }
2904 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2905 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2906 }
2907
2908 objp += obj_offset(cachep);
2909 if (cachep->ctor && cachep->flags & SLAB_POISON)
2910 cachep->ctor(objp);
2911 if (ARCH_SLAB_MINALIGN &&
2912 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2913 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2914 objp, (int)ARCH_SLAB_MINALIGN);
2915 }
2916 return objp;
2917 }
2918 #else
2919 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2920 #endif
2921
2922 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2923 {
2924 void *objp;
2925 struct array_cache *ac;
2926
2927 check_irq_off();
2928
2929 ac = cpu_cache_get(cachep);
2930 if (likely(ac->avail)) {
2931 ac->touched = 1;
2932 objp = ac->entry[--ac->avail];
2933
2934 STATS_INC_ALLOCHIT(cachep);
2935 goto out;
2936 }
2937
2938 STATS_INC_ALLOCMISS(cachep);
2939 objp = cache_alloc_refill(cachep, flags);
2940 /*
2941 * the 'ac' may be updated by cache_alloc_refill(),
2942 * and kmemleak_erase() requires its correct value.
2943 */
2944 ac = cpu_cache_get(cachep);
2945
2946 out:
2947 /*
2948 * To avoid a false negative, if an object that is in one of the
2949 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2950 * treat the array pointers as a reference to the object.
2951 */
2952 if (objp)
2953 kmemleak_erase(&ac->entry[ac->avail]);
2954 return objp;
2955 }
2956
2957 #ifdef CONFIG_NUMA
2958 /*
2959 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2960 *
2961 * If we are in_interrupt, then process context, including cpusets and
2962 * mempolicy, may not apply and should not be used for allocation policy.
2963 */
2964 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2965 {
2966 int nid_alloc, nid_here;
2967
2968 if (in_interrupt() || (flags & __GFP_THISNODE))
2969 return NULL;
2970 nid_alloc = nid_here = numa_mem_id();
2971 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2972 nid_alloc = cpuset_slab_spread_node();
2973 else if (current->mempolicy)
2974 nid_alloc = mempolicy_slab_node();
2975 if (nid_alloc != nid_here)
2976 return ____cache_alloc_node(cachep, flags, nid_alloc);
2977 return NULL;
2978 }
2979
2980 /*
2981 * Fallback function if there was no memory available and no objects on a
2982 * certain node and fall back is permitted. First we scan all the
2983 * available node for available objects. If that fails then we
2984 * perform an allocation without specifying a node. This allows the page
2985 * allocator to do its reclaim / fallback magic. We then insert the
2986 * slab into the proper nodelist and then allocate from it.
2987 */
2988 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2989 {
2990 struct zonelist *zonelist;
2991 gfp_t local_flags;
2992 struct zoneref *z;
2993 struct zone *zone;
2994 enum zone_type high_zoneidx = gfp_zone(flags);
2995 void *obj = NULL;
2996 int nid;
2997 unsigned int cpuset_mems_cookie;
2998
2999 if (flags & __GFP_THISNODE)
3000 return NULL;
3001
3002 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3003
3004 retry_cpuset:
3005 cpuset_mems_cookie = read_mems_allowed_begin();
3006 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3007
3008 retry:
3009 /*
3010 * Look through allowed nodes for objects available
3011 * from existing per node queues.
3012 */
3013 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3014 nid = zone_to_nid(zone);
3015
3016 if (cpuset_zone_allowed(zone, flags) &&
3017 get_node(cache, nid) &&
3018 get_node(cache, nid)->free_objects) {
3019 obj = ____cache_alloc_node(cache,
3020 gfp_exact_node(flags), nid);
3021 if (obj)
3022 break;
3023 }
3024 }
3025
3026 if (!obj) {
3027 /*
3028 * This allocation will be performed within the constraints
3029 * of the current cpuset / memory policy requirements.
3030 * We may trigger various forms of reclaim on the allowed
3031 * set and go into memory reserves if necessary.
3032 */
3033 struct page *page;
3034
3035 if (gfpflags_allow_blocking(local_flags))
3036 local_irq_enable();
3037 kmem_flagcheck(cache, flags);
3038 page = kmem_getpages(cache, local_flags, numa_mem_id());
3039 if (gfpflags_allow_blocking(local_flags))
3040 local_irq_disable();
3041 if (page) {
3042 /*
3043 * Insert into the appropriate per node queues
3044 */
3045 nid = page_to_nid(page);
3046 if (cache_grow(cache, flags, nid, page)) {
3047 obj = ____cache_alloc_node(cache,
3048 gfp_exact_node(flags), nid);
3049 if (!obj)
3050 /*
3051 * Another processor may allocate the
3052 * objects in the slab since we are
3053 * not holding any locks.
3054 */
3055 goto retry;
3056 } else {
3057 /* cache_grow already freed obj */
3058 obj = NULL;
3059 }
3060 }
3061 }
3062
3063 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3064 goto retry_cpuset;
3065 return obj;
3066 }
3067
3068 /*
3069 * A interface to enable slab creation on nodeid
3070 */
3071 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3072 int nodeid)
3073 {
3074 struct page *page;
3075 struct kmem_cache_node *n;
3076 void *obj;
3077 void *list = NULL;
3078 int x;
3079
3080 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3081 n = get_node(cachep, nodeid);
3082 BUG_ON(!n);
3083
3084 retry:
3085 check_irq_off();
3086 spin_lock(&n->list_lock);
3087 page = get_first_slab(n, false);
3088 if (!page)
3089 goto must_grow;
3090
3091 check_spinlock_acquired_node(cachep, nodeid);
3092
3093 STATS_INC_NODEALLOCS(cachep);
3094 STATS_INC_ACTIVE(cachep);
3095 STATS_SET_HIGH(cachep);
3096
3097 BUG_ON(page->active == cachep->num);
3098
3099 obj = slab_get_obj(cachep, page);
3100 n->free_objects--;
3101
3102 fixup_slab_list(cachep, n, page, &list);
3103
3104 spin_unlock(&n->list_lock);
3105 fixup_objfreelist_debug(cachep, &list);
3106 goto done;
3107
3108 must_grow:
3109 spin_unlock(&n->list_lock);
3110 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3111 if (x)
3112 goto retry;
3113
3114 return fallback_alloc(cachep, flags);
3115
3116 done:
3117 return obj;
3118 }
3119
3120 static __always_inline void *
3121 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3122 unsigned long caller)
3123 {
3124 unsigned long save_flags;
3125 void *ptr;
3126 int slab_node = numa_mem_id();
3127
3128 flags &= gfp_allowed_mask;
3129 cachep = slab_pre_alloc_hook(cachep, flags);
3130 if (unlikely(!cachep))
3131 return NULL;
3132
3133 cache_alloc_debugcheck_before(cachep, flags);
3134 local_irq_save(save_flags);
3135
3136 if (nodeid == NUMA_NO_NODE)
3137 nodeid = slab_node;
3138
3139 if (unlikely(!get_node(cachep, nodeid))) {
3140 /* Node not bootstrapped yet */
3141 ptr = fallback_alloc(cachep, flags);
3142 goto out;
3143 }
3144
3145 if (nodeid == slab_node) {
3146 /*
3147 * Use the locally cached objects if possible.
3148 * However ____cache_alloc does not allow fallback
3149 * to other nodes. It may fail while we still have
3150 * objects on other nodes available.
3151 */
3152 ptr = ____cache_alloc(cachep, flags);
3153 if (ptr)
3154 goto out;
3155 }
3156 /* ___cache_alloc_node can fall back to other nodes */
3157 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3158 out:
3159 local_irq_restore(save_flags);
3160 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3161
3162 if (unlikely(flags & __GFP_ZERO) && ptr)
3163 memset(ptr, 0, cachep->object_size);
3164
3165 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3166 return ptr;
3167 }
3168
3169 static __always_inline void *
3170 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3171 {
3172 void *objp;
3173
3174 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3175 objp = alternate_node_alloc(cache, flags);
3176 if (objp)
3177 goto out;
3178 }
3179 objp = ____cache_alloc(cache, flags);
3180
3181 /*
3182 * We may just have run out of memory on the local node.
3183 * ____cache_alloc_node() knows how to locate memory on other nodes
3184 */
3185 if (!objp)
3186 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3187
3188 out:
3189 return objp;
3190 }
3191 #else
3192
3193 static __always_inline void *
3194 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3195 {
3196 return ____cache_alloc(cachep, flags);
3197 }
3198
3199 #endif /* CONFIG_NUMA */
3200
3201 static __always_inline void *
3202 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3203 {
3204 unsigned long save_flags;
3205 void *objp;
3206
3207 flags &= gfp_allowed_mask;
3208 cachep = slab_pre_alloc_hook(cachep, flags);
3209 if (unlikely(!cachep))
3210 return NULL;
3211
3212 cache_alloc_debugcheck_before(cachep, flags);
3213 local_irq_save(save_flags);
3214 objp = __do_cache_alloc(cachep, flags);
3215 local_irq_restore(save_flags);
3216 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3217 prefetchw(objp);
3218
3219 if (unlikely(flags & __GFP_ZERO) && objp)
3220 memset(objp, 0, cachep->object_size);
3221
3222 slab_post_alloc_hook(cachep, flags, 1, &objp);
3223 return objp;
3224 }
3225
3226 /*
3227 * Caller needs to acquire correct kmem_cache_node's list_lock
3228 * @list: List of detached free slabs should be freed by caller
3229 */
3230 static void free_block(struct kmem_cache *cachep, void **objpp,
3231 int nr_objects, int node, struct list_head *list)
3232 {
3233 int i;
3234 struct kmem_cache_node *n = get_node(cachep, node);
3235
3236 for (i = 0; i < nr_objects; i++) {
3237 void *objp;
3238 struct page *page;
3239
3240 objp = objpp[i];
3241
3242 page = virt_to_head_page(objp);
3243 list_del(&page->lru);
3244 check_spinlock_acquired_node(cachep, node);
3245 slab_put_obj(cachep, page, objp);
3246 STATS_DEC_ACTIVE(cachep);
3247 n->free_objects++;
3248
3249 /* fixup slab chains */
3250 if (page->active == 0) {
3251 if (n->free_objects > n->free_limit) {
3252 n->free_objects -= cachep->num;
3253 list_add_tail(&page->lru, list);
3254 } else {
3255 list_add(&page->lru, &n->slabs_free);
3256 }
3257 } else {
3258 /* Unconditionally move a slab to the end of the
3259 * partial list on free - maximum time for the
3260 * other objects to be freed, too.
3261 */
3262 list_add_tail(&page->lru, &n->slabs_partial);
3263 }
3264 }
3265 }
3266
3267 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3268 {
3269 int batchcount;
3270 struct kmem_cache_node *n;
3271 int node = numa_mem_id();
3272 LIST_HEAD(list);
3273
3274 batchcount = ac->batchcount;
3275
3276 check_irq_off();
3277 n = get_node(cachep, node);
3278 spin_lock(&n->list_lock);
3279 if (n->shared) {
3280 struct array_cache *shared_array = n->shared;
3281 int max = shared_array->limit - shared_array->avail;
3282 if (max) {
3283 if (batchcount > max)
3284 batchcount = max;
3285 memcpy(&(shared_array->entry[shared_array->avail]),
3286 ac->entry, sizeof(void *) * batchcount);
3287 shared_array->avail += batchcount;
3288 goto free_done;
3289 }
3290 }
3291
3292 free_block(cachep, ac->entry, batchcount, node, &list);
3293 free_done:
3294 #if STATS
3295 {
3296 int i = 0;
3297 struct page *page;
3298
3299 list_for_each_entry(page, &n->slabs_free, lru) {
3300 BUG_ON(page->active);
3301
3302 i++;
3303 }
3304 STATS_SET_FREEABLE(cachep, i);
3305 }
3306 #endif
3307 spin_unlock(&n->list_lock);
3308 slabs_destroy(cachep, &list);
3309 ac->avail -= batchcount;
3310 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3311 }
3312
3313 /*
3314 * Release an obj back to its cache. If the obj has a constructed state, it must
3315 * be in this state _before_ it is released. Called with disabled ints.
3316 */
3317 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3318 unsigned long caller)
3319 {
3320 struct array_cache *ac = cpu_cache_get(cachep);
3321
3322 check_irq_off();
3323 kmemleak_free_recursive(objp, cachep->flags);
3324 objp = cache_free_debugcheck(cachep, objp, caller);
3325
3326 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3327
3328 /*
3329 * Skip calling cache_free_alien() when the platform is not numa.
3330 * This will avoid cache misses that happen while accessing slabp (which
3331 * is per page memory reference) to get nodeid. Instead use a global
3332 * variable to skip the call, which is mostly likely to be present in
3333 * the cache.
3334 */
3335 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3336 return;
3337
3338 if (ac->avail < ac->limit) {
3339 STATS_INC_FREEHIT(cachep);
3340 } else {
3341 STATS_INC_FREEMISS(cachep);
3342 cache_flusharray(cachep, ac);
3343 }
3344
3345 if (sk_memalloc_socks()) {
3346 struct page *page = virt_to_head_page(objp);
3347
3348 if (unlikely(PageSlabPfmemalloc(page))) {
3349 cache_free_pfmemalloc(cachep, page, objp);
3350 return;
3351 }
3352 }
3353
3354 ac->entry[ac->avail++] = objp;
3355 }
3356
3357 /**
3358 * kmem_cache_alloc - Allocate an object
3359 * @cachep: The cache to allocate from.
3360 * @flags: See kmalloc().
3361 *
3362 * Allocate an object from this cache. The flags are only relevant
3363 * if the cache has no available objects.
3364 */
3365 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3366 {
3367 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3368
3369 trace_kmem_cache_alloc(_RET_IP_, ret,
3370 cachep->object_size, cachep->size, flags);
3371
3372 return ret;
3373 }
3374 EXPORT_SYMBOL(kmem_cache_alloc);
3375
3376 static __always_inline void
3377 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3378 size_t size, void **p, unsigned long caller)
3379 {
3380 size_t i;
3381
3382 for (i = 0; i < size; i++)
3383 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3384 }
3385
3386 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3387 void **p)
3388 {
3389 size_t i;
3390
3391 s = slab_pre_alloc_hook(s, flags);
3392 if (!s)
3393 return 0;
3394
3395 cache_alloc_debugcheck_before(s, flags);
3396
3397 local_irq_disable();
3398 for (i = 0; i < size; i++) {
3399 void *objp = __do_cache_alloc(s, flags);
3400
3401 if (unlikely(!objp))
3402 goto error;
3403 p[i] = objp;
3404 }
3405 local_irq_enable();
3406
3407 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3408
3409 /* Clear memory outside IRQ disabled section */
3410 if (unlikely(flags & __GFP_ZERO))
3411 for (i = 0; i < size; i++)
3412 memset(p[i], 0, s->object_size);
3413
3414 slab_post_alloc_hook(s, flags, size, p);
3415 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3416 return size;
3417 error:
3418 local_irq_enable();
3419 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3420 slab_post_alloc_hook(s, flags, i, p);
3421 __kmem_cache_free_bulk(s, i, p);
3422 return 0;
3423 }
3424 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3425
3426 #ifdef CONFIG_TRACING
3427 void *
3428 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3429 {
3430 void *ret;
3431
3432 ret = slab_alloc(cachep, flags, _RET_IP_);
3433
3434 trace_kmalloc(_RET_IP_, ret,
3435 size, cachep->size, flags);
3436 return ret;
3437 }
3438 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3439 #endif
3440
3441 #ifdef CONFIG_NUMA
3442 /**
3443 * kmem_cache_alloc_node - Allocate an object on the specified node
3444 * @cachep: The cache to allocate from.
3445 * @flags: See kmalloc().
3446 * @nodeid: node number of the target node.
3447 *
3448 * Identical to kmem_cache_alloc but it will allocate memory on the given
3449 * node, which can improve the performance for cpu bound structures.
3450 *
3451 * Fallback to other node is possible if __GFP_THISNODE is not set.
3452 */
3453 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3454 {
3455 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3456
3457 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3458 cachep->object_size, cachep->size,
3459 flags, nodeid);
3460
3461 return ret;
3462 }
3463 EXPORT_SYMBOL(kmem_cache_alloc_node);
3464
3465 #ifdef CONFIG_TRACING
3466 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3467 gfp_t flags,
3468 int nodeid,
3469 size_t size)
3470 {
3471 void *ret;
3472
3473 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3474
3475 trace_kmalloc_node(_RET_IP_, ret,
3476 size, cachep->size,
3477 flags, nodeid);
3478 return ret;
3479 }
3480 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3481 #endif
3482
3483 static __always_inline void *
3484 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3485 {
3486 struct kmem_cache *cachep;
3487
3488 cachep = kmalloc_slab(size, flags);
3489 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3490 return cachep;
3491 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3492 }
3493
3494 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3495 {
3496 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3497 }
3498 EXPORT_SYMBOL(__kmalloc_node);
3499
3500 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3501 int node, unsigned long caller)
3502 {
3503 return __do_kmalloc_node(size, flags, node, caller);
3504 }
3505 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3506 #endif /* CONFIG_NUMA */
3507
3508 /**
3509 * __do_kmalloc - allocate memory
3510 * @size: how many bytes of memory are required.
3511 * @flags: the type of memory to allocate (see kmalloc).
3512 * @caller: function caller for debug tracking of the caller
3513 */
3514 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3515 unsigned long caller)
3516 {
3517 struct kmem_cache *cachep;
3518 void *ret;
3519
3520 cachep = kmalloc_slab(size, flags);
3521 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3522 return cachep;
3523 ret = slab_alloc(cachep, flags, caller);
3524
3525 trace_kmalloc(caller, ret,
3526 size, cachep->size, flags);
3527
3528 return ret;
3529 }
3530
3531 void *__kmalloc(size_t size, gfp_t flags)
3532 {
3533 return __do_kmalloc(size, flags, _RET_IP_);
3534 }
3535 EXPORT_SYMBOL(__kmalloc);
3536
3537 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3538 {
3539 return __do_kmalloc(size, flags, caller);
3540 }
3541 EXPORT_SYMBOL(__kmalloc_track_caller);
3542
3543 /**
3544 * kmem_cache_free - Deallocate an object
3545 * @cachep: The cache the allocation was from.
3546 * @objp: The previously allocated object.
3547 *
3548 * Free an object which was previously allocated from this
3549 * cache.
3550 */
3551 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3552 {
3553 unsigned long flags;
3554 cachep = cache_from_obj(cachep, objp);
3555 if (!cachep)
3556 return;
3557
3558 local_irq_save(flags);
3559 debug_check_no_locks_freed(objp, cachep->object_size);
3560 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3561 debug_check_no_obj_freed(objp, cachep->object_size);
3562 __cache_free(cachep, objp, _RET_IP_);
3563 local_irq_restore(flags);
3564
3565 trace_kmem_cache_free(_RET_IP_, objp);
3566 }
3567 EXPORT_SYMBOL(kmem_cache_free);
3568
3569 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3570 {
3571 struct kmem_cache *s;
3572 size_t i;
3573
3574 local_irq_disable();
3575 for (i = 0; i < size; i++) {
3576 void *objp = p[i];
3577
3578 if (!orig_s) /* called via kfree_bulk */
3579 s = virt_to_cache(objp);
3580 else
3581 s = cache_from_obj(orig_s, objp);
3582
3583 debug_check_no_locks_freed(objp, s->object_size);
3584 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3585 debug_check_no_obj_freed(objp, s->object_size);
3586
3587 __cache_free(s, objp, _RET_IP_);
3588 }
3589 local_irq_enable();
3590
3591 /* FIXME: add tracing */
3592 }
3593 EXPORT_SYMBOL(kmem_cache_free_bulk);
3594
3595 /**
3596 * kfree - free previously allocated memory
3597 * @objp: pointer returned by kmalloc.
3598 *
3599 * If @objp is NULL, no operation is performed.
3600 *
3601 * Don't free memory not originally allocated by kmalloc()
3602 * or you will run into trouble.
3603 */
3604 void kfree(const void *objp)
3605 {
3606 struct kmem_cache *c;
3607 unsigned long flags;
3608
3609 trace_kfree(_RET_IP_, objp);
3610
3611 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3612 return;
3613 local_irq_save(flags);
3614 kfree_debugcheck(objp);
3615 c = virt_to_cache(objp);
3616 debug_check_no_locks_freed(objp, c->object_size);
3617
3618 debug_check_no_obj_freed(objp, c->object_size);
3619 __cache_free(c, (void *)objp, _RET_IP_);
3620 local_irq_restore(flags);
3621 }
3622 EXPORT_SYMBOL(kfree);
3623
3624 /*
3625 * This initializes kmem_cache_node or resizes various caches for all nodes.
3626 */
3627 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3628 {
3629 int node;
3630 struct kmem_cache_node *n;
3631 struct array_cache *new_shared;
3632 struct alien_cache **new_alien = NULL;
3633
3634 for_each_online_node(node) {
3635
3636 if (use_alien_caches) {
3637 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3638 if (!new_alien)
3639 goto fail;
3640 }
3641
3642 new_shared = NULL;
3643 if (cachep->shared) {
3644 new_shared = alloc_arraycache(node,
3645 cachep->shared*cachep->batchcount,
3646 0xbaadf00d, gfp);
3647 if (!new_shared) {
3648 free_alien_cache(new_alien);
3649 goto fail;
3650 }
3651 }
3652
3653 n = get_node(cachep, node);
3654 if (n) {
3655 struct array_cache *shared = n->shared;
3656 LIST_HEAD(list);
3657
3658 spin_lock_irq(&n->list_lock);
3659
3660 if (shared)
3661 free_block(cachep, shared->entry,
3662 shared->avail, node, &list);
3663
3664 n->shared = new_shared;
3665 if (!n->alien) {
3666 n->alien = new_alien;
3667 new_alien = NULL;
3668 }
3669 n->free_limit = (1 + nr_cpus_node(node)) *
3670 cachep->batchcount + cachep->num;
3671 spin_unlock_irq(&n->list_lock);
3672 slabs_destroy(cachep, &list);
3673 kfree(shared);
3674 free_alien_cache(new_alien);
3675 continue;
3676 }
3677 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3678 if (!n) {
3679 free_alien_cache(new_alien);
3680 kfree(new_shared);
3681 goto fail;
3682 }
3683
3684 kmem_cache_node_init(n);
3685 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3686 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3687 n->shared = new_shared;
3688 n->alien = new_alien;
3689 n->free_limit = (1 + nr_cpus_node(node)) *
3690 cachep->batchcount + cachep->num;
3691 cachep->node[node] = n;
3692 }
3693 return 0;
3694
3695 fail:
3696 if (!cachep->list.next) {
3697 /* Cache is not active yet. Roll back what we did */
3698 node--;
3699 while (node >= 0) {
3700 n = get_node(cachep, node);
3701 if (n) {
3702 kfree(n->shared);
3703 free_alien_cache(n->alien);
3704 kfree(n);
3705 cachep->node[node] = NULL;
3706 }
3707 node--;
3708 }
3709 }
3710 return -ENOMEM;
3711 }
3712
3713 /* Always called with the slab_mutex held */
3714 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3715 int batchcount, int shared, gfp_t gfp)
3716 {
3717 struct array_cache __percpu *cpu_cache, *prev;
3718 int cpu;
3719
3720 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3721 if (!cpu_cache)
3722 return -ENOMEM;
3723
3724 prev = cachep->cpu_cache;
3725 cachep->cpu_cache = cpu_cache;
3726 kick_all_cpus_sync();
3727
3728 check_irq_on();
3729 cachep->batchcount = batchcount;
3730 cachep->limit = limit;
3731 cachep->shared = shared;
3732
3733 if (!prev)
3734 goto alloc_node;
3735
3736 for_each_online_cpu(cpu) {
3737 LIST_HEAD(list);
3738 int node;
3739 struct kmem_cache_node *n;
3740 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3741
3742 node = cpu_to_mem(cpu);
3743 n = get_node(cachep, node);
3744 spin_lock_irq(&n->list_lock);
3745 free_block(cachep, ac->entry, ac->avail, node, &list);
3746 spin_unlock_irq(&n->list_lock);
3747 slabs_destroy(cachep, &list);
3748 }
3749 free_percpu(prev);
3750
3751 alloc_node:
3752 return alloc_kmem_cache_node(cachep, gfp);
3753 }
3754
3755 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3756 int batchcount, int shared, gfp_t gfp)
3757 {
3758 int ret;
3759 struct kmem_cache *c;
3760
3761 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3762
3763 if (slab_state < FULL)
3764 return ret;
3765
3766 if ((ret < 0) || !is_root_cache(cachep))
3767 return ret;
3768
3769 lockdep_assert_held(&slab_mutex);
3770 for_each_memcg_cache(c, cachep) {
3771 /* return value determined by the root cache only */
3772 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3773 }
3774
3775 return ret;
3776 }
3777
3778 /* Called with slab_mutex held always */
3779 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3780 {
3781 int err;
3782 int limit = 0;
3783 int shared = 0;
3784 int batchcount = 0;
3785
3786 if (!is_root_cache(cachep)) {
3787 struct kmem_cache *root = memcg_root_cache(cachep);
3788 limit = root->limit;
3789 shared = root->shared;
3790 batchcount = root->batchcount;
3791 }
3792
3793 if (limit && shared && batchcount)
3794 goto skip_setup;
3795 /*
3796 * The head array serves three purposes:
3797 * - create a LIFO ordering, i.e. return objects that are cache-warm
3798 * - reduce the number of spinlock operations.
3799 * - reduce the number of linked list operations on the slab and
3800 * bufctl chains: array operations are cheaper.
3801 * The numbers are guessed, we should auto-tune as described by
3802 * Bonwick.
3803 */
3804 if (cachep->size > 131072)
3805 limit = 1;
3806 else if (cachep->size > PAGE_SIZE)
3807 limit = 8;
3808 else if (cachep->size > 1024)
3809 limit = 24;
3810 else if (cachep->size > 256)
3811 limit = 54;
3812 else
3813 limit = 120;
3814
3815 /*
3816 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3817 * allocation behaviour: Most allocs on one cpu, most free operations
3818 * on another cpu. For these cases, an efficient object passing between
3819 * cpus is necessary. This is provided by a shared array. The array
3820 * replaces Bonwick's magazine layer.
3821 * On uniprocessor, it's functionally equivalent (but less efficient)
3822 * to a larger limit. Thus disabled by default.
3823 */
3824 shared = 0;
3825 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3826 shared = 8;
3827
3828 #if DEBUG
3829 /*
3830 * With debugging enabled, large batchcount lead to excessively long
3831 * periods with disabled local interrupts. Limit the batchcount
3832 */
3833 if (limit > 32)
3834 limit = 32;
3835 #endif
3836 batchcount = (limit + 1) / 2;
3837 skip_setup:
3838 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3839 if (err)
3840 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3841 cachep->name, -err);
3842 return err;
3843 }
3844
3845 /*
3846 * Drain an array if it contains any elements taking the node lock only if
3847 * necessary. Note that the node listlock also protects the array_cache
3848 * if drain_array() is used on the shared array.
3849 */
3850 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3851 struct array_cache *ac, int force, int node)
3852 {
3853 LIST_HEAD(list);
3854 int tofree;
3855
3856 if (!ac || !ac->avail)
3857 return;
3858 if (ac->touched && !force) {
3859 ac->touched = 0;
3860 } else {
3861 spin_lock_irq(&n->list_lock);
3862 if (ac->avail) {
3863 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3864 if (tofree > ac->avail)
3865 tofree = (ac->avail + 1) / 2;
3866 free_block(cachep, ac->entry, tofree, node, &list);
3867 ac->avail -= tofree;
3868 memmove(ac->entry, &(ac->entry[tofree]),
3869 sizeof(void *) * ac->avail);
3870 }
3871 spin_unlock_irq(&n->list_lock);
3872 slabs_destroy(cachep, &list);
3873 }
3874 }
3875
3876 /**
3877 * cache_reap - Reclaim memory from caches.
3878 * @w: work descriptor
3879 *
3880 * Called from workqueue/eventd every few seconds.
3881 * Purpose:
3882 * - clear the per-cpu caches for this CPU.
3883 * - return freeable pages to the main free memory pool.
3884 *
3885 * If we cannot acquire the cache chain mutex then just give up - we'll try
3886 * again on the next iteration.
3887 */
3888 static void cache_reap(struct work_struct *w)
3889 {
3890 struct kmem_cache *searchp;
3891 struct kmem_cache_node *n;
3892 int node = numa_mem_id();
3893 struct delayed_work *work = to_delayed_work(w);
3894
3895 if (!mutex_trylock(&slab_mutex))
3896 /* Give up. Setup the next iteration. */
3897 goto out;
3898
3899 list_for_each_entry(searchp, &slab_caches, list) {
3900 check_irq_on();
3901
3902 /*
3903 * We only take the node lock if absolutely necessary and we
3904 * have established with reasonable certainty that
3905 * we can do some work if the lock was obtained.
3906 */
3907 n = get_node(searchp, node);
3908
3909 reap_alien(searchp, n);
3910
3911 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3912
3913 /*
3914 * These are racy checks but it does not matter
3915 * if we skip one check or scan twice.
3916 */
3917 if (time_after(n->next_reap, jiffies))
3918 goto next;
3919
3920 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3921
3922 drain_array(searchp, n, n->shared, 0, node);
3923
3924 if (n->free_touched)
3925 n->free_touched = 0;
3926 else {
3927 int freed;
3928
3929 freed = drain_freelist(searchp, n, (n->free_limit +
3930 5 * searchp->num - 1) / (5 * searchp->num));
3931 STATS_ADD_REAPED(searchp, freed);
3932 }
3933 next:
3934 cond_resched();
3935 }
3936 check_irq_on();
3937 mutex_unlock(&slab_mutex);
3938 next_reap_node();
3939 out:
3940 /* Set up the next iteration */
3941 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3942 }
3943
3944 #ifdef CONFIG_SLABINFO
3945 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3946 {
3947 struct page *page;
3948 unsigned long active_objs;
3949 unsigned long num_objs;
3950 unsigned long active_slabs = 0;
3951 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3952 const char *name;
3953 char *error = NULL;
3954 int node;
3955 struct kmem_cache_node *n;
3956
3957 active_objs = 0;
3958 num_slabs = 0;
3959 for_each_kmem_cache_node(cachep, node, n) {
3960
3961 check_irq_on();
3962 spin_lock_irq(&n->list_lock);
3963
3964 list_for_each_entry(page, &n->slabs_full, lru) {
3965 if (page->active != cachep->num && !error)
3966 error = "slabs_full accounting error";
3967 active_objs += cachep->num;
3968 active_slabs++;
3969 }
3970 list_for_each_entry(page, &n->slabs_partial, lru) {
3971 if (page->active == cachep->num && !error)
3972 error = "slabs_partial accounting error";
3973 if (!page->active && !error)
3974 error = "slabs_partial accounting error";
3975 active_objs += page->active;
3976 active_slabs++;
3977 }
3978 list_for_each_entry(page, &n->slabs_free, lru) {
3979 if (page->active && !error)
3980 error = "slabs_free accounting error";
3981 num_slabs++;
3982 }
3983 free_objects += n->free_objects;
3984 if (n->shared)
3985 shared_avail += n->shared->avail;
3986
3987 spin_unlock_irq(&n->list_lock);
3988 }
3989 num_slabs += active_slabs;
3990 num_objs = num_slabs * cachep->num;
3991 if (num_objs - active_objs != free_objects && !error)
3992 error = "free_objects accounting error";
3993
3994 name = cachep->name;
3995 if (error)
3996 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3997
3998 sinfo->active_objs = active_objs;
3999 sinfo->num_objs = num_objs;
4000 sinfo->active_slabs = active_slabs;
4001 sinfo->num_slabs = num_slabs;
4002 sinfo->shared_avail = shared_avail;
4003 sinfo->limit = cachep->limit;
4004 sinfo->batchcount = cachep->batchcount;
4005 sinfo->shared = cachep->shared;
4006 sinfo->objects_per_slab = cachep->num;
4007 sinfo->cache_order = cachep->gfporder;
4008 }
4009
4010 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4011 {
4012 #if STATS
4013 { /* node stats */
4014 unsigned long high = cachep->high_mark;
4015 unsigned long allocs = cachep->num_allocations;
4016 unsigned long grown = cachep->grown;
4017 unsigned long reaped = cachep->reaped;
4018 unsigned long errors = cachep->errors;
4019 unsigned long max_freeable = cachep->max_freeable;
4020 unsigned long node_allocs = cachep->node_allocs;
4021 unsigned long node_frees = cachep->node_frees;
4022 unsigned long overflows = cachep->node_overflow;
4023
4024 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4025 allocs, high, grown,
4026 reaped, errors, max_freeable, node_allocs,
4027 node_frees, overflows);
4028 }
4029 /* cpu stats */
4030 {
4031 unsigned long allochit = atomic_read(&cachep->allochit);
4032 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4033 unsigned long freehit = atomic_read(&cachep->freehit);
4034 unsigned long freemiss = atomic_read(&cachep->freemiss);
4035
4036 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4037 allochit, allocmiss, freehit, freemiss);
4038 }
4039 #endif
4040 }
4041
4042 #define MAX_SLABINFO_WRITE 128
4043 /**
4044 * slabinfo_write - Tuning for the slab allocator
4045 * @file: unused
4046 * @buffer: user buffer
4047 * @count: data length
4048 * @ppos: unused
4049 */
4050 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4051 size_t count, loff_t *ppos)
4052 {
4053 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4054 int limit, batchcount, shared, res;
4055 struct kmem_cache *cachep;
4056
4057 if (count > MAX_SLABINFO_WRITE)
4058 return -EINVAL;
4059 if (copy_from_user(&kbuf, buffer, count))
4060 return -EFAULT;
4061 kbuf[MAX_SLABINFO_WRITE] = '\0';
4062
4063 tmp = strchr(kbuf, ' ');
4064 if (!tmp)
4065 return -EINVAL;
4066 *tmp = '\0';
4067 tmp++;
4068 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4069 return -EINVAL;
4070
4071 /* Find the cache in the chain of caches. */
4072 mutex_lock(&slab_mutex);
4073 res = -EINVAL;
4074 list_for_each_entry(cachep, &slab_caches, list) {
4075 if (!strcmp(cachep->name, kbuf)) {
4076 if (limit < 1 || batchcount < 1 ||
4077 batchcount > limit || shared < 0) {
4078 res = 0;
4079 } else {
4080 res = do_tune_cpucache(cachep, limit,
4081 batchcount, shared,
4082 GFP_KERNEL);
4083 }
4084 break;
4085 }
4086 }
4087 mutex_unlock(&slab_mutex);
4088 if (res >= 0)
4089 res = count;
4090 return res;
4091 }
4092
4093 #ifdef CONFIG_DEBUG_SLAB_LEAK
4094
4095 static inline int add_caller(unsigned long *n, unsigned long v)
4096 {
4097 unsigned long *p;
4098 int l;
4099 if (!v)
4100 return 1;
4101 l = n[1];
4102 p = n + 2;
4103 while (l) {
4104 int i = l/2;
4105 unsigned long *q = p + 2 * i;
4106 if (*q == v) {
4107 q[1]++;
4108 return 1;
4109 }
4110 if (*q > v) {
4111 l = i;
4112 } else {
4113 p = q + 2;
4114 l -= i + 1;
4115 }
4116 }
4117 if (++n[1] == n[0])
4118 return 0;
4119 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4120 p[0] = v;
4121 p[1] = 1;
4122 return 1;
4123 }
4124
4125 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4126 struct page *page)
4127 {
4128 void *p;
4129 int i, j;
4130 unsigned long v;
4131
4132 if (n[0] == n[1])
4133 return;
4134 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4135 bool active = true;
4136
4137 for (j = page->active; j < c->num; j++) {
4138 if (get_free_obj(page, j) == i) {
4139 active = false;
4140 break;
4141 }
4142 }
4143
4144 if (!active)
4145 continue;
4146
4147 /*
4148 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4149 * mapping is established when actual object allocation and
4150 * we could mistakenly access the unmapped object in the cpu
4151 * cache.
4152 */
4153 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4154 continue;
4155
4156 if (!add_caller(n, v))
4157 return;
4158 }
4159 }
4160
4161 static void show_symbol(struct seq_file *m, unsigned long address)
4162 {
4163 #ifdef CONFIG_KALLSYMS
4164 unsigned long offset, size;
4165 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4166
4167 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4168 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4169 if (modname[0])
4170 seq_printf(m, " [%s]", modname);
4171 return;
4172 }
4173 #endif
4174 seq_printf(m, "%p", (void *)address);
4175 }
4176
4177 static int leaks_show(struct seq_file *m, void *p)
4178 {
4179 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4180 struct page *page;
4181 struct kmem_cache_node *n;
4182 const char *name;
4183 unsigned long *x = m->private;
4184 int node;
4185 int i;
4186
4187 if (!(cachep->flags & SLAB_STORE_USER))
4188 return 0;
4189 if (!(cachep->flags & SLAB_RED_ZONE))
4190 return 0;
4191
4192 /*
4193 * Set store_user_clean and start to grab stored user information
4194 * for all objects on this cache. If some alloc/free requests comes
4195 * during the processing, information would be wrong so restart
4196 * whole processing.
4197 */
4198 do {
4199 set_store_user_clean(cachep);
4200 drain_cpu_caches(cachep);
4201
4202 x[1] = 0;
4203
4204 for_each_kmem_cache_node(cachep, node, n) {
4205
4206 check_irq_on();
4207 spin_lock_irq(&n->list_lock);
4208
4209 list_for_each_entry(page, &n->slabs_full, lru)
4210 handle_slab(x, cachep, page);
4211 list_for_each_entry(page, &n->slabs_partial, lru)
4212 handle_slab(x, cachep, page);
4213 spin_unlock_irq(&n->list_lock);
4214 }
4215 } while (!is_store_user_clean(cachep));
4216
4217 name = cachep->name;
4218 if (x[0] == x[1]) {
4219 /* Increase the buffer size */
4220 mutex_unlock(&slab_mutex);
4221 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4222 if (!m->private) {
4223 /* Too bad, we are really out */
4224 m->private = x;
4225 mutex_lock(&slab_mutex);
4226 return -ENOMEM;
4227 }
4228 *(unsigned long *)m->private = x[0] * 2;
4229 kfree(x);
4230 mutex_lock(&slab_mutex);
4231 /* Now make sure this entry will be retried */
4232 m->count = m->size;
4233 return 0;
4234 }
4235 for (i = 0; i < x[1]; i++) {
4236 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4237 show_symbol(m, x[2*i+2]);
4238 seq_putc(m, '\n');
4239 }
4240
4241 return 0;
4242 }
4243
4244 static const struct seq_operations slabstats_op = {
4245 .start = slab_start,
4246 .next = slab_next,
4247 .stop = slab_stop,
4248 .show = leaks_show,
4249 };
4250
4251 static int slabstats_open(struct inode *inode, struct file *file)
4252 {
4253 unsigned long *n;
4254
4255 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4256 if (!n)
4257 return -ENOMEM;
4258
4259 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4260
4261 return 0;
4262 }
4263
4264 static const struct file_operations proc_slabstats_operations = {
4265 .open = slabstats_open,
4266 .read = seq_read,
4267 .llseek = seq_lseek,
4268 .release = seq_release_private,
4269 };
4270 #endif
4271
4272 static int __init slab_proc_init(void)
4273 {
4274 #ifdef CONFIG_DEBUG_SLAB_LEAK
4275 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4276 #endif
4277 return 0;
4278 }
4279 module_init(slab_proc_init);
4280 #endif
4281
4282 /**
4283 * ksize - get the actual amount of memory allocated for a given object
4284 * @objp: Pointer to the object
4285 *
4286 * kmalloc may internally round up allocations and return more memory
4287 * than requested. ksize() can be used to determine the actual amount of
4288 * memory allocated. The caller may use this additional memory, even though
4289 * a smaller amount of memory was initially specified with the kmalloc call.
4290 * The caller must guarantee that objp points to a valid object previously
4291 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4292 * must not be freed during the duration of the call.
4293 */
4294 size_t ksize(const void *objp)
4295 {
4296 BUG_ON(!objp);
4297 if (unlikely(objp == ZERO_SIZE_PTR))
4298 return 0;
4299
4300 return virt_to_cache(objp)->object_size;
4301 }
4302 EXPORT_SYMBOL(ksize);