Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 /*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164 static bool pfmemalloc_active __read_mostly;
165
166 /*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191 /*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
204 */
205 struct slab_rcu {
206 struct rcu_head head;
207 struct kmem_cache *cachep;
208 void *addr;
209 };
210
211 /*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218 struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230 };
231
232 /*
233 * struct array_cache
234 *
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244 struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
249 spinlock_t lock;
250 void *entry[]; /*
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
258 */
259 };
260
261 #define SLAB_OBJ_PFMEMALLOC 1
262 static inline bool is_obj_pfmemalloc(void *objp)
263 {
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265 }
266
267 static inline void set_obj_pfmemalloc(void **objp)
268 {
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271 }
272
273 static inline void clear_obj_pfmemalloc(void **objp)
274 {
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276 }
277
278 /*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
286 };
287
288 /*
289 * The slab lists for all objects.
290 */
291 struct kmem_list3 {
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
303 };
304
305 /*
306 * Need this for bootstrapping a per node allocator.
307 */
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define CACHE_CACHE 0
311 #define SIZE_AC MAX_NUMNODES
312 #define SIZE_L3 (2 * MAX_NUMNODES)
313
314 static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
318 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319 static void cache_reap(struct work_struct *unused);
320
321 /*
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 */
325 static __always_inline int index_of(const size_t size)
326 {
327 extern void __bad_size(void);
328
329 if (__builtin_constant_p(size)) {
330 int i = 0;
331
332 #define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337 #include <linux/kmalloc_sizes.h>
338 #undef CACHE
339 __bad_size();
340 } else
341 __bad_size();
342 return 0;
343 }
344
345 static int slab_early_init = 1;
346
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349
350 static void kmem_list3_init(struct kmem_list3 *parent)
351 {
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
357 parent->colour_next = 0;
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
361 }
362
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 } while (0)
368
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
375
376 #define CFLGS_OFF_SLAB (0x80000000UL)
377 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
378
379 #define BATCHREFILL_LIMIT 16
380 /*
381 * Optimization question: fewer reaps means less probability for unnessary
382 * cpucache drain/refill cycles.
383 *
384 * OTOH the cpuarrays can contain lots of objects,
385 * which could lock up otherwise freeable slabs.
386 */
387 #define REAPTIMEOUT_CPUC (2*HZ)
388 #define REAPTIMEOUT_LIST3 (4*HZ)
389
390 #if STATS
391 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
392 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
393 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
394 #define STATS_INC_GROWN(x) ((x)->grown++)
395 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
396 #define STATS_SET_HIGH(x) \
397 do { \
398 if ((x)->num_active > (x)->high_mark) \
399 (x)->high_mark = (x)->num_active; \
400 } while (0)
401 #define STATS_INC_ERR(x) ((x)->errors++)
402 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
403 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
404 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
405 #define STATS_SET_FREEABLE(x, i) \
406 do { \
407 if ((x)->max_freeable < i) \
408 (x)->max_freeable = i; \
409 } while (0)
410 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
411 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
412 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
413 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
414 #else
415 #define STATS_INC_ACTIVE(x) do { } while (0)
416 #define STATS_DEC_ACTIVE(x) do { } while (0)
417 #define STATS_INC_ALLOCED(x) do { } while (0)
418 #define STATS_INC_GROWN(x) do { } while (0)
419 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
420 #define STATS_SET_HIGH(x) do { } while (0)
421 #define STATS_INC_ERR(x) do { } while (0)
422 #define STATS_INC_NODEALLOCS(x) do { } while (0)
423 #define STATS_INC_NODEFREES(x) do { } while (0)
424 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
425 #define STATS_SET_FREEABLE(x, i) do { } while (0)
426 #define STATS_INC_ALLOCHIT(x) do { } while (0)
427 #define STATS_INC_ALLOCMISS(x) do { } while (0)
428 #define STATS_INC_FREEHIT(x) do { } while (0)
429 #define STATS_INC_FREEMISS(x) do { } while (0)
430 #endif
431
432 #if DEBUG
433
434 /*
435 * memory layout of objects:
436 * 0 : objp
437 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
438 * the end of an object is aligned with the end of the real
439 * allocation. Catches writes behind the end of the allocation.
440 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
441 * redzone word.
442 * cachep->obj_offset: The real object.
443 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
444 * cachep->size - 1* BYTES_PER_WORD: last caller address
445 * [BYTES_PER_WORD long]
446 */
447 static int obj_offset(struct kmem_cache *cachep)
448 {
449 return cachep->obj_offset;
450 }
451
452 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
453 {
454 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
455 return (unsigned long long*) (objp + obj_offset(cachep) -
456 sizeof(unsigned long long));
457 }
458
459 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 if (cachep->flags & SLAB_STORE_USER)
463 return (unsigned long long *)(objp + cachep->size -
464 sizeof(unsigned long long) -
465 REDZONE_ALIGN);
466 return (unsigned long long *) (objp + cachep->size -
467 sizeof(unsigned long long));
468 }
469
470 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
471 {
472 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
473 return (void **)(objp + cachep->size - BYTES_PER_WORD);
474 }
475
476 #else
477
478 #define obj_offset(x) 0
479 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
481 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
482
483 #endif
484
485 /*
486 * Do not go above this order unless 0 objects fit into the slab or
487 * overridden on the command line.
488 */
489 #define SLAB_MAX_ORDER_HI 1
490 #define SLAB_MAX_ORDER_LO 0
491 static int slab_max_order = SLAB_MAX_ORDER_LO;
492 static bool slab_max_order_set __initdata;
493
494 static inline struct kmem_cache *virt_to_cache(const void *obj)
495 {
496 struct page *page = virt_to_head_page(obj);
497 return page->slab_cache;
498 }
499
500 static inline struct slab *virt_to_slab(const void *obj)
501 {
502 struct page *page = virt_to_head_page(obj);
503
504 VM_BUG_ON(!PageSlab(page));
505 return page->slab_page;
506 }
507
508 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
509 unsigned int idx)
510 {
511 return slab->s_mem + cache->size * idx;
512 }
513
514 /*
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 */
520 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
521 const struct slab *slab, void *obj)
522 {
523 u32 offset = (obj - slab->s_mem);
524 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 }
526
527 /*
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 */
530 struct cache_sizes malloc_sizes[] = {
531 #define CACHE(x) { .cs_size = (x) },
532 #include <linux/kmalloc_sizes.h>
533 CACHE(ULONG_MAX)
534 #undef CACHE
535 };
536 EXPORT_SYMBOL(malloc_sizes);
537
538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
539 struct cache_names {
540 char *name;
541 char *name_dma;
542 };
543
544 static struct cache_names __initdata cache_names[] = {
545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546 #include <linux/kmalloc_sizes.h>
547 {NULL,}
548 #undef CACHE
549 };
550
551 static struct arraycache_init initarray_generic =
552 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
553
554 /* internal cache of cache description objs */
555 static struct kmem_cache kmem_cache_boot = {
556 .batchcount = 1,
557 .limit = BOOT_CPUCACHE_ENTRIES,
558 .shared = 1,
559 .size = sizeof(struct kmem_cache),
560 .name = "kmem_cache",
561 };
562
563 #define BAD_ALIEN_MAGIC 0x01020304ul
564
565 #ifdef CONFIG_LOCKDEP
566
567 /*
568 * Slab sometimes uses the kmalloc slabs to store the slab headers
569 * for other slabs "off slab".
570 * The locking for this is tricky in that it nests within the locks
571 * of all other slabs in a few places; to deal with this special
572 * locking we put on-slab caches into a separate lock-class.
573 *
574 * We set lock class for alien array caches which are up during init.
575 * The lock annotation will be lost if all cpus of a node goes down and
576 * then comes back up during hotplug
577 */
578 static struct lock_class_key on_slab_l3_key;
579 static struct lock_class_key on_slab_alc_key;
580
581 static struct lock_class_key debugobj_l3_key;
582 static struct lock_class_key debugobj_alc_key;
583
584 static void slab_set_lock_classes(struct kmem_cache *cachep,
585 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
586 int q)
587 {
588 struct array_cache **alc;
589 struct kmem_list3 *l3;
590 int r;
591
592 l3 = cachep->nodelists[q];
593 if (!l3)
594 return;
595
596 lockdep_set_class(&l3->list_lock, l3_key);
597 alc = l3->alien;
598 /*
599 * FIXME: This check for BAD_ALIEN_MAGIC
600 * should go away when common slab code is taught to
601 * work even without alien caches.
602 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
603 * for alloc_alien_cache,
604 */
605 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
606 return;
607 for_each_node(r) {
608 if (alc[r])
609 lockdep_set_class(&alc[r]->lock, alc_key);
610 }
611 }
612
613 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
614 {
615 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
616 }
617
618 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
619 {
620 int node;
621
622 for_each_online_node(node)
623 slab_set_debugobj_lock_classes_node(cachep, node);
624 }
625
626 static void init_node_lock_keys(int q)
627 {
628 struct cache_sizes *s = malloc_sizes;
629
630 if (slab_state < UP)
631 return;
632
633 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
634 struct kmem_list3 *l3;
635
636 l3 = s->cs_cachep->nodelists[q];
637 if (!l3 || OFF_SLAB(s->cs_cachep))
638 continue;
639
640 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
641 &on_slab_alc_key, q);
642 }
643 }
644
645 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
646 {
647 struct kmem_list3 *l3;
648 l3 = cachep->nodelists[q];
649 if (!l3)
650 return;
651
652 slab_set_lock_classes(cachep, &on_slab_l3_key,
653 &on_slab_alc_key, q);
654 }
655
656 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
657 {
658 int node;
659
660 VM_BUG_ON(OFF_SLAB(cachep));
661 for_each_node(node)
662 on_slab_lock_classes_node(cachep, node);
663 }
664
665 static inline void init_lock_keys(void)
666 {
667 int node;
668
669 for_each_node(node)
670 init_node_lock_keys(node);
671 }
672 #else
673 static void init_node_lock_keys(int q)
674 {
675 }
676
677 static inline void init_lock_keys(void)
678 {
679 }
680
681 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
682 {
683 }
684
685 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
686 {
687 }
688
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690 {
691 }
692
693 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694 {
695 }
696 #endif
697
698 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
699
700 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
701 {
702 return cachep->array[smp_processor_id()];
703 }
704
705 static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
707 {
708 struct cache_sizes *csizep = malloc_sizes;
709
710 #if DEBUG
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
716 #endif
717 if (!size)
718 return ZERO_SIZE_PTR;
719
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
731 #endif
732 return csizep->cs_cachep;
733 }
734
735 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 {
737 return __find_general_cachep(size, gfpflags);
738 }
739
740 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 {
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743 }
744
745 /*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
748 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751 {
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
755
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
804 }
805
806 #if DEBUG
807 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
808
809 static void __slab_error(const char *function, struct kmem_cache *cachep,
810 char *msg)
811 {
812 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
813 function, cachep->name, msg);
814 dump_stack();
815 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
816 }
817 #endif
818
819 /*
820 * By default on NUMA we use alien caches to stage the freeing of
821 * objects allocated from other nodes. This causes massive memory
822 * inefficiencies when using fake NUMA setup to split memory into a
823 * large number of small nodes, so it can be disabled on the command
824 * line
825 */
826
827 static int use_alien_caches __read_mostly = 1;
828 static int __init noaliencache_setup(char *s)
829 {
830 use_alien_caches = 0;
831 return 1;
832 }
833 __setup("noaliencache", noaliencache_setup);
834
835 static int __init slab_max_order_setup(char *str)
836 {
837 get_option(&str, &slab_max_order);
838 slab_max_order = slab_max_order < 0 ? 0 :
839 min(slab_max_order, MAX_ORDER - 1);
840 slab_max_order_set = true;
841
842 return 1;
843 }
844 __setup("slab_max_order=", slab_max_order_setup);
845
846 #ifdef CONFIG_NUMA
847 /*
848 * Special reaping functions for NUMA systems called from cache_reap().
849 * These take care of doing round robin flushing of alien caches (containing
850 * objects freed on different nodes from which they were allocated) and the
851 * flushing of remote pcps by calling drain_node_pages.
852 */
853 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
854
855 static void init_reap_node(int cpu)
856 {
857 int node;
858
859 node = next_node(cpu_to_mem(cpu), node_online_map);
860 if (node == MAX_NUMNODES)
861 node = first_node(node_online_map);
862
863 per_cpu(slab_reap_node, cpu) = node;
864 }
865
866 static void next_reap_node(void)
867 {
868 int node = __this_cpu_read(slab_reap_node);
869
870 node = next_node(node, node_online_map);
871 if (unlikely(node >= MAX_NUMNODES))
872 node = first_node(node_online_map);
873 __this_cpu_write(slab_reap_node, node);
874 }
875
876 #else
877 #define init_reap_node(cpu) do { } while (0)
878 #define next_reap_node(void) do { } while (0)
879 #endif
880
881 /*
882 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
883 * via the workqueue/eventd.
884 * Add the CPU number into the expiration time to minimize the possibility of
885 * the CPUs getting into lockstep and contending for the global cache chain
886 * lock.
887 */
888 static void __cpuinit start_cpu_timer(int cpu)
889 {
890 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
891
892 /*
893 * When this gets called from do_initcalls via cpucache_init(),
894 * init_workqueues() has already run, so keventd will be setup
895 * at that time.
896 */
897 if (keventd_up() && reap_work->work.func == NULL) {
898 init_reap_node(cpu);
899 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
900 schedule_delayed_work_on(cpu, reap_work,
901 __round_jiffies_relative(HZ, cpu));
902 }
903 }
904
905 static struct array_cache *alloc_arraycache(int node, int entries,
906 int batchcount, gfp_t gfp)
907 {
908 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
909 struct array_cache *nc = NULL;
910
911 nc = kmalloc_node(memsize, gfp, node);
912 /*
913 * The array_cache structures contain pointers to free object.
914 * However, when such objects are allocated or transferred to another
915 * cache the pointers are not cleared and they could be counted as
916 * valid references during a kmemleak scan. Therefore, kmemleak must
917 * not scan such objects.
918 */
919 kmemleak_no_scan(nc);
920 if (nc) {
921 nc->avail = 0;
922 nc->limit = entries;
923 nc->batchcount = batchcount;
924 nc->touched = 0;
925 spin_lock_init(&nc->lock);
926 }
927 return nc;
928 }
929
930 static inline bool is_slab_pfmemalloc(struct slab *slabp)
931 {
932 struct page *page = virt_to_page(slabp->s_mem);
933
934 return PageSlabPfmemalloc(page);
935 }
936
937 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
938 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
939 struct array_cache *ac)
940 {
941 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
942 struct slab *slabp;
943 unsigned long flags;
944
945 if (!pfmemalloc_active)
946 return;
947
948 spin_lock_irqsave(&l3->list_lock, flags);
949 list_for_each_entry(slabp, &l3->slabs_full, list)
950 if (is_slab_pfmemalloc(slabp))
951 goto out;
952
953 list_for_each_entry(slabp, &l3->slabs_partial, list)
954 if (is_slab_pfmemalloc(slabp))
955 goto out;
956
957 list_for_each_entry(slabp, &l3->slabs_free, list)
958 if (is_slab_pfmemalloc(slabp))
959 goto out;
960
961 pfmemalloc_active = false;
962 out:
963 spin_unlock_irqrestore(&l3->list_lock, flags);
964 }
965
966 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
967 gfp_t flags, bool force_refill)
968 {
969 int i;
970 void *objp = ac->entry[--ac->avail];
971
972 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
973 if (unlikely(is_obj_pfmemalloc(objp))) {
974 struct kmem_list3 *l3;
975
976 if (gfp_pfmemalloc_allowed(flags)) {
977 clear_obj_pfmemalloc(&objp);
978 return objp;
979 }
980
981 /* The caller cannot use PFMEMALLOC objects, find another one */
982 for (i = 0; i < ac->avail; i++) {
983 /* If a !PFMEMALLOC object is found, swap them */
984 if (!is_obj_pfmemalloc(ac->entry[i])) {
985 objp = ac->entry[i];
986 ac->entry[i] = ac->entry[ac->avail];
987 ac->entry[ac->avail] = objp;
988 return objp;
989 }
990 }
991
992 /*
993 * If there are empty slabs on the slabs_free list and we are
994 * being forced to refill the cache, mark this one !pfmemalloc.
995 */
996 l3 = cachep->nodelists[numa_mem_id()];
997 if (!list_empty(&l3->slabs_free) && force_refill) {
998 struct slab *slabp = virt_to_slab(objp);
999 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
1000 clear_obj_pfmemalloc(&objp);
1001 recheck_pfmemalloc_active(cachep, ac);
1002 return objp;
1003 }
1004
1005 /* No !PFMEMALLOC objects available */
1006 ac->avail++;
1007 objp = NULL;
1008 }
1009
1010 return objp;
1011 }
1012
1013 static inline void *ac_get_obj(struct kmem_cache *cachep,
1014 struct array_cache *ac, gfp_t flags, bool force_refill)
1015 {
1016 void *objp;
1017
1018 if (unlikely(sk_memalloc_socks()))
1019 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1020 else
1021 objp = ac->entry[--ac->avail];
1022
1023 return objp;
1024 }
1025
1026 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1027 void *objp)
1028 {
1029 if (unlikely(pfmemalloc_active)) {
1030 /* Some pfmemalloc slabs exist, check if this is one */
1031 struct page *page = virt_to_head_page(objp);
1032 if (PageSlabPfmemalloc(page))
1033 set_obj_pfmemalloc(&objp);
1034 }
1035
1036 return objp;
1037 }
1038
1039 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1040 void *objp)
1041 {
1042 if (unlikely(sk_memalloc_socks()))
1043 objp = __ac_put_obj(cachep, ac, objp);
1044
1045 ac->entry[ac->avail++] = objp;
1046 }
1047
1048 /*
1049 * Transfer objects in one arraycache to another.
1050 * Locking must be handled by the caller.
1051 *
1052 * Return the number of entries transferred.
1053 */
1054 static int transfer_objects(struct array_cache *to,
1055 struct array_cache *from, unsigned int max)
1056 {
1057 /* Figure out how many entries to transfer */
1058 int nr = min3(from->avail, max, to->limit - to->avail);
1059
1060 if (!nr)
1061 return 0;
1062
1063 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1064 sizeof(void *) *nr);
1065
1066 from->avail -= nr;
1067 to->avail += nr;
1068 return nr;
1069 }
1070
1071 #ifndef CONFIG_NUMA
1072
1073 #define drain_alien_cache(cachep, alien) do { } while (0)
1074 #define reap_alien(cachep, l3) do { } while (0)
1075
1076 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1077 {
1078 return (struct array_cache **)BAD_ALIEN_MAGIC;
1079 }
1080
1081 static inline void free_alien_cache(struct array_cache **ac_ptr)
1082 {
1083 }
1084
1085 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1086 {
1087 return 0;
1088 }
1089
1090 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1091 gfp_t flags)
1092 {
1093 return NULL;
1094 }
1095
1096 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1097 gfp_t flags, int nodeid)
1098 {
1099 return NULL;
1100 }
1101
1102 #else /* CONFIG_NUMA */
1103
1104 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1105 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1106
1107 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1108 {
1109 struct array_cache **ac_ptr;
1110 int memsize = sizeof(void *) * nr_node_ids;
1111 int i;
1112
1113 if (limit > 1)
1114 limit = 12;
1115 ac_ptr = kzalloc_node(memsize, gfp, node);
1116 if (ac_ptr) {
1117 for_each_node(i) {
1118 if (i == node || !node_online(i))
1119 continue;
1120 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1121 if (!ac_ptr[i]) {
1122 for (i--; i >= 0; i--)
1123 kfree(ac_ptr[i]);
1124 kfree(ac_ptr);
1125 return NULL;
1126 }
1127 }
1128 }
1129 return ac_ptr;
1130 }
1131
1132 static void free_alien_cache(struct array_cache **ac_ptr)
1133 {
1134 int i;
1135
1136 if (!ac_ptr)
1137 return;
1138 for_each_node(i)
1139 kfree(ac_ptr[i]);
1140 kfree(ac_ptr);
1141 }
1142
1143 static void __drain_alien_cache(struct kmem_cache *cachep,
1144 struct array_cache *ac, int node)
1145 {
1146 struct kmem_list3 *rl3 = cachep->nodelists[node];
1147
1148 if (ac->avail) {
1149 spin_lock(&rl3->list_lock);
1150 /*
1151 * Stuff objects into the remote nodes shared array first.
1152 * That way we could avoid the overhead of putting the objects
1153 * into the free lists and getting them back later.
1154 */
1155 if (rl3->shared)
1156 transfer_objects(rl3->shared, ac, ac->limit);
1157
1158 free_block(cachep, ac->entry, ac->avail, node);
1159 ac->avail = 0;
1160 spin_unlock(&rl3->list_lock);
1161 }
1162 }
1163
1164 /*
1165 * Called from cache_reap() to regularly drain alien caches round robin.
1166 */
1167 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1168 {
1169 int node = __this_cpu_read(slab_reap_node);
1170
1171 if (l3->alien) {
1172 struct array_cache *ac = l3->alien[node];
1173
1174 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1175 __drain_alien_cache(cachep, ac, node);
1176 spin_unlock_irq(&ac->lock);
1177 }
1178 }
1179 }
1180
1181 static void drain_alien_cache(struct kmem_cache *cachep,
1182 struct array_cache **alien)
1183 {
1184 int i = 0;
1185 struct array_cache *ac;
1186 unsigned long flags;
1187
1188 for_each_online_node(i) {
1189 ac = alien[i];
1190 if (ac) {
1191 spin_lock_irqsave(&ac->lock, flags);
1192 __drain_alien_cache(cachep, ac, i);
1193 spin_unlock_irqrestore(&ac->lock, flags);
1194 }
1195 }
1196 }
1197
1198 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1199 {
1200 struct slab *slabp = virt_to_slab(objp);
1201 int nodeid = slabp->nodeid;
1202 struct kmem_list3 *l3;
1203 struct array_cache *alien = NULL;
1204 int node;
1205
1206 node = numa_mem_id();
1207
1208 /*
1209 * Make sure we are not freeing a object from another node to the array
1210 * cache on this cpu.
1211 */
1212 if (likely(slabp->nodeid == node))
1213 return 0;
1214
1215 l3 = cachep->nodelists[node];
1216 STATS_INC_NODEFREES(cachep);
1217 if (l3->alien && l3->alien[nodeid]) {
1218 alien = l3->alien[nodeid];
1219 spin_lock(&alien->lock);
1220 if (unlikely(alien->avail == alien->limit)) {
1221 STATS_INC_ACOVERFLOW(cachep);
1222 __drain_alien_cache(cachep, alien, nodeid);
1223 }
1224 ac_put_obj(cachep, alien, objp);
1225 spin_unlock(&alien->lock);
1226 } else {
1227 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1228 free_block(cachep, &objp, 1, nodeid);
1229 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1230 }
1231 return 1;
1232 }
1233 #endif
1234
1235 /*
1236 * Allocates and initializes nodelists for a node on each slab cache, used for
1237 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1238 * will be allocated off-node since memory is not yet online for the new node.
1239 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1240 * already in use.
1241 *
1242 * Must hold slab_mutex.
1243 */
1244 static int init_cache_nodelists_node(int node)
1245 {
1246 struct kmem_cache *cachep;
1247 struct kmem_list3 *l3;
1248 const int memsize = sizeof(struct kmem_list3);
1249
1250 list_for_each_entry(cachep, &slab_caches, list) {
1251 /*
1252 * Set up the size64 kmemlist for cpu before we can
1253 * begin anything. Make sure some other cpu on this
1254 * node has not already allocated this
1255 */
1256 if (!cachep->nodelists[node]) {
1257 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1258 if (!l3)
1259 return -ENOMEM;
1260 kmem_list3_init(l3);
1261 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1262 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1263
1264 /*
1265 * The l3s don't come and go as CPUs come and
1266 * go. slab_mutex is sufficient
1267 * protection here.
1268 */
1269 cachep->nodelists[node] = l3;
1270 }
1271
1272 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1273 cachep->nodelists[node]->free_limit =
1274 (1 + nr_cpus_node(node)) *
1275 cachep->batchcount + cachep->num;
1276 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1277 }
1278 return 0;
1279 }
1280
1281 static void __cpuinit cpuup_canceled(long cpu)
1282 {
1283 struct kmem_cache *cachep;
1284 struct kmem_list3 *l3 = NULL;
1285 int node = cpu_to_mem(cpu);
1286 const struct cpumask *mask = cpumask_of_node(node);
1287
1288 list_for_each_entry(cachep, &slab_caches, list) {
1289 struct array_cache *nc;
1290 struct array_cache *shared;
1291 struct array_cache **alien;
1292
1293 /* cpu is dead; no one can alloc from it. */
1294 nc = cachep->array[cpu];
1295 cachep->array[cpu] = NULL;
1296 l3 = cachep->nodelists[node];
1297
1298 if (!l3)
1299 goto free_array_cache;
1300
1301 spin_lock_irq(&l3->list_lock);
1302
1303 /* Free limit for this kmem_list3 */
1304 l3->free_limit -= cachep->batchcount;
1305 if (nc)
1306 free_block(cachep, nc->entry, nc->avail, node);
1307
1308 if (!cpumask_empty(mask)) {
1309 spin_unlock_irq(&l3->list_lock);
1310 goto free_array_cache;
1311 }
1312
1313 shared = l3->shared;
1314 if (shared) {
1315 free_block(cachep, shared->entry,
1316 shared->avail, node);
1317 l3->shared = NULL;
1318 }
1319
1320 alien = l3->alien;
1321 l3->alien = NULL;
1322
1323 spin_unlock_irq(&l3->list_lock);
1324
1325 kfree(shared);
1326 if (alien) {
1327 drain_alien_cache(cachep, alien);
1328 free_alien_cache(alien);
1329 }
1330 free_array_cache:
1331 kfree(nc);
1332 }
1333 /*
1334 * In the previous loop, all the objects were freed to
1335 * the respective cache's slabs, now we can go ahead and
1336 * shrink each nodelist to its limit.
1337 */
1338 list_for_each_entry(cachep, &slab_caches, list) {
1339 l3 = cachep->nodelists[node];
1340 if (!l3)
1341 continue;
1342 drain_freelist(cachep, l3, l3->free_objects);
1343 }
1344 }
1345
1346 static int __cpuinit cpuup_prepare(long cpu)
1347 {
1348 struct kmem_cache *cachep;
1349 struct kmem_list3 *l3 = NULL;
1350 int node = cpu_to_mem(cpu);
1351 int err;
1352
1353 /*
1354 * We need to do this right in the beginning since
1355 * alloc_arraycache's are going to use this list.
1356 * kmalloc_node allows us to add the slab to the right
1357 * kmem_list3 and not this cpu's kmem_list3
1358 */
1359 err = init_cache_nodelists_node(node);
1360 if (err < 0)
1361 goto bad;
1362
1363 /*
1364 * Now we can go ahead with allocating the shared arrays and
1365 * array caches
1366 */
1367 list_for_each_entry(cachep, &slab_caches, list) {
1368 struct array_cache *nc;
1369 struct array_cache *shared = NULL;
1370 struct array_cache **alien = NULL;
1371
1372 nc = alloc_arraycache(node, cachep->limit,
1373 cachep->batchcount, GFP_KERNEL);
1374 if (!nc)
1375 goto bad;
1376 if (cachep->shared) {
1377 shared = alloc_arraycache(node,
1378 cachep->shared * cachep->batchcount,
1379 0xbaadf00d, GFP_KERNEL);
1380 if (!shared) {
1381 kfree(nc);
1382 goto bad;
1383 }
1384 }
1385 if (use_alien_caches) {
1386 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1387 if (!alien) {
1388 kfree(shared);
1389 kfree(nc);
1390 goto bad;
1391 }
1392 }
1393 cachep->array[cpu] = nc;
1394 l3 = cachep->nodelists[node];
1395 BUG_ON(!l3);
1396
1397 spin_lock_irq(&l3->list_lock);
1398 if (!l3->shared) {
1399 /*
1400 * We are serialised from CPU_DEAD or
1401 * CPU_UP_CANCELLED by the cpucontrol lock
1402 */
1403 l3->shared = shared;
1404 shared = NULL;
1405 }
1406 #ifdef CONFIG_NUMA
1407 if (!l3->alien) {
1408 l3->alien = alien;
1409 alien = NULL;
1410 }
1411 #endif
1412 spin_unlock_irq(&l3->list_lock);
1413 kfree(shared);
1414 free_alien_cache(alien);
1415 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1416 slab_set_debugobj_lock_classes_node(cachep, node);
1417 else if (!OFF_SLAB(cachep) &&
1418 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1419 on_slab_lock_classes_node(cachep, node);
1420 }
1421 init_node_lock_keys(node);
1422
1423 return 0;
1424 bad:
1425 cpuup_canceled(cpu);
1426 return -ENOMEM;
1427 }
1428
1429 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1430 unsigned long action, void *hcpu)
1431 {
1432 long cpu = (long)hcpu;
1433 int err = 0;
1434
1435 switch (action) {
1436 case CPU_UP_PREPARE:
1437 case CPU_UP_PREPARE_FROZEN:
1438 mutex_lock(&slab_mutex);
1439 err = cpuup_prepare(cpu);
1440 mutex_unlock(&slab_mutex);
1441 break;
1442 case CPU_ONLINE:
1443 case CPU_ONLINE_FROZEN:
1444 start_cpu_timer(cpu);
1445 break;
1446 #ifdef CONFIG_HOTPLUG_CPU
1447 case CPU_DOWN_PREPARE:
1448 case CPU_DOWN_PREPARE_FROZEN:
1449 /*
1450 * Shutdown cache reaper. Note that the slab_mutex is
1451 * held so that if cache_reap() is invoked it cannot do
1452 * anything expensive but will only modify reap_work
1453 * and reschedule the timer.
1454 */
1455 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1456 /* Now the cache_reaper is guaranteed to be not running. */
1457 per_cpu(slab_reap_work, cpu).work.func = NULL;
1458 break;
1459 case CPU_DOWN_FAILED:
1460 case CPU_DOWN_FAILED_FROZEN:
1461 start_cpu_timer(cpu);
1462 break;
1463 case CPU_DEAD:
1464 case CPU_DEAD_FROZEN:
1465 /*
1466 * Even if all the cpus of a node are down, we don't free the
1467 * kmem_list3 of any cache. This to avoid a race between
1468 * cpu_down, and a kmalloc allocation from another cpu for
1469 * memory from the node of the cpu going down. The list3
1470 * structure is usually allocated from kmem_cache_create() and
1471 * gets destroyed at kmem_cache_destroy().
1472 */
1473 /* fall through */
1474 #endif
1475 case CPU_UP_CANCELED:
1476 case CPU_UP_CANCELED_FROZEN:
1477 mutex_lock(&slab_mutex);
1478 cpuup_canceled(cpu);
1479 mutex_unlock(&slab_mutex);
1480 break;
1481 }
1482 return notifier_from_errno(err);
1483 }
1484
1485 static struct notifier_block __cpuinitdata cpucache_notifier = {
1486 &cpuup_callback, NULL, 0
1487 };
1488
1489 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1490 /*
1491 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1492 * Returns -EBUSY if all objects cannot be drained so that the node is not
1493 * removed.
1494 *
1495 * Must hold slab_mutex.
1496 */
1497 static int __meminit drain_cache_nodelists_node(int node)
1498 {
1499 struct kmem_cache *cachep;
1500 int ret = 0;
1501
1502 list_for_each_entry(cachep, &slab_caches, list) {
1503 struct kmem_list3 *l3;
1504
1505 l3 = cachep->nodelists[node];
1506 if (!l3)
1507 continue;
1508
1509 drain_freelist(cachep, l3, l3->free_objects);
1510
1511 if (!list_empty(&l3->slabs_full) ||
1512 !list_empty(&l3->slabs_partial)) {
1513 ret = -EBUSY;
1514 break;
1515 }
1516 }
1517 return ret;
1518 }
1519
1520 static int __meminit slab_memory_callback(struct notifier_block *self,
1521 unsigned long action, void *arg)
1522 {
1523 struct memory_notify *mnb = arg;
1524 int ret = 0;
1525 int nid;
1526
1527 nid = mnb->status_change_nid;
1528 if (nid < 0)
1529 goto out;
1530
1531 switch (action) {
1532 case MEM_GOING_ONLINE:
1533 mutex_lock(&slab_mutex);
1534 ret = init_cache_nodelists_node(nid);
1535 mutex_unlock(&slab_mutex);
1536 break;
1537 case MEM_GOING_OFFLINE:
1538 mutex_lock(&slab_mutex);
1539 ret = drain_cache_nodelists_node(nid);
1540 mutex_unlock(&slab_mutex);
1541 break;
1542 case MEM_ONLINE:
1543 case MEM_OFFLINE:
1544 case MEM_CANCEL_ONLINE:
1545 case MEM_CANCEL_OFFLINE:
1546 break;
1547 }
1548 out:
1549 return notifier_from_errno(ret);
1550 }
1551 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1552
1553 /*
1554 * swap the static kmem_list3 with kmalloced memory
1555 */
1556 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1557 int nodeid)
1558 {
1559 struct kmem_list3 *ptr;
1560
1561 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1562 BUG_ON(!ptr);
1563
1564 memcpy(ptr, list, sizeof(struct kmem_list3));
1565 /*
1566 * Do not assume that spinlocks can be initialized via memcpy:
1567 */
1568 spin_lock_init(&ptr->list_lock);
1569
1570 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1571 cachep->nodelists[nodeid] = ptr;
1572 }
1573
1574 /*
1575 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1576 * size of kmem_list3.
1577 */
1578 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1579 {
1580 int node;
1581
1582 for_each_online_node(node) {
1583 cachep->nodelists[node] = &initkmem_list3[index + node];
1584 cachep->nodelists[node]->next_reap = jiffies +
1585 REAPTIMEOUT_LIST3 +
1586 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1587 }
1588 }
1589
1590 /*
1591 * The memory after the last cpu cache pointer is used for the
1592 * the nodelists pointer.
1593 */
1594 static void setup_nodelists_pointer(struct kmem_cache *cachep)
1595 {
1596 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1597 }
1598
1599 /*
1600 * Initialisation. Called after the page allocator have been initialised and
1601 * before smp_init().
1602 */
1603 void __init kmem_cache_init(void)
1604 {
1605 struct cache_sizes *sizes;
1606 struct cache_names *names;
1607 int i;
1608
1609 kmem_cache = &kmem_cache_boot;
1610 setup_nodelists_pointer(kmem_cache);
1611
1612 if (num_possible_nodes() == 1)
1613 use_alien_caches = 0;
1614
1615 for (i = 0; i < NUM_INIT_LISTS; i++)
1616 kmem_list3_init(&initkmem_list3[i]);
1617
1618 set_up_list3s(kmem_cache, CACHE_CACHE);
1619
1620 /*
1621 * Fragmentation resistance on low memory - only use bigger
1622 * page orders on machines with more than 32MB of memory if
1623 * not overridden on the command line.
1624 */
1625 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1626 slab_max_order = SLAB_MAX_ORDER_HI;
1627
1628 /* Bootstrap is tricky, because several objects are allocated
1629 * from caches that do not exist yet:
1630 * 1) initialize the kmem_cache cache: it contains the struct
1631 * kmem_cache structures of all caches, except kmem_cache itself:
1632 * kmem_cache is statically allocated.
1633 * Initially an __init data area is used for the head array and the
1634 * kmem_list3 structures, it's replaced with a kmalloc allocated
1635 * array at the end of the bootstrap.
1636 * 2) Create the first kmalloc cache.
1637 * The struct kmem_cache for the new cache is allocated normally.
1638 * An __init data area is used for the head array.
1639 * 3) Create the remaining kmalloc caches, with minimally sized
1640 * head arrays.
1641 * 4) Replace the __init data head arrays for kmem_cache and the first
1642 * kmalloc cache with kmalloc allocated arrays.
1643 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 * the other cache's with kmalloc allocated memory.
1645 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1646 */
1647
1648 /* 1) create the kmem_cache */
1649
1650 /*
1651 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1652 */
1653 create_boot_cache(kmem_cache, "kmem_cache",
1654 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1655 nr_node_ids * sizeof(struct kmem_list3 *),
1656 SLAB_HWCACHE_ALIGN);
1657 list_add(&kmem_cache->list, &slab_caches);
1658
1659 /* 2+3) create the kmalloc caches */
1660 sizes = malloc_sizes;
1661 names = cache_names;
1662
1663 /*
1664 * Initialize the caches that provide memory for the array cache and the
1665 * kmem_list3 structures first. Without this, further allocations will
1666 * bug.
1667 */
1668
1669 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1670 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1671
1672 if (INDEX_AC != INDEX_L3)
1673 sizes[INDEX_L3].cs_cachep =
1674 create_kmalloc_cache(names[INDEX_L3].name,
1675 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1676
1677 slab_early_init = 0;
1678
1679 while (sizes->cs_size != ULONG_MAX) {
1680 /*
1681 * For performance, all the general caches are L1 aligned.
1682 * This should be particularly beneficial on SMP boxes, as it
1683 * eliminates "false sharing".
1684 * Note for systems short on memory removing the alignment will
1685 * allow tighter packing of the smaller caches.
1686 */
1687 if (!sizes->cs_cachep)
1688 sizes->cs_cachep = create_kmalloc_cache(names->name,
1689 sizes->cs_size, ARCH_KMALLOC_FLAGS);
1690
1691 #ifdef CONFIG_ZONE_DMA
1692 sizes->cs_dmacachep = create_kmalloc_cache(
1693 names->name_dma, sizes->cs_size,
1694 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1695 #endif
1696 sizes++;
1697 names++;
1698 }
1699 /* 4) Replace the bootstrap head arrays */
1700 {
1701 struct array_cache *ptr;
1702
1703 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1704
1705 memcpy(ptr, cpu_cache_get(kmem_cache),
1706 sizeof(struct arraycache_init));
1707 /*
1708 * Do not assume that spinlocks can be initialized via memcpy:
1709 */
1710 spin_lock_init(&ptr->lock);
1711
1712 kmem_cache->array[smp_processor_id()] = ptr;
1713
1714 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1715
1716 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1717 != &initarray_generic.cache);
1718 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1719 sizeof(struct arraycache_init));
1720 /*
1721 * Do not assume that spinlocks can be initialized via memcpy:
1722 */
1723 spin_lock_init(&ptr->lock);
1724
1725 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1726 ptr;
1727 }
1728 /* 5) Replace the bootstrap kmem_list3's */
1729 {
1730 int nid;
1731
1732 for_each_online_node(nid) {
1733 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1734
1735 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1736 &initkmem_list3[SIZE_AC + nid], nid);
1737
1738 if (INDEX_AC != INDEX_L3) {
1739 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1740 &initkmem_list3[SIZE_L3 + nid], nid);
1741 }
1742 }
1743 }
1744
1745 slab_state = UP;
1746 }
1747
1748 void __init kmem_cache_init_late(void)
1749 {
1750 struct kmem_cache *cachep;
1751
1752 slab_state = UP;
1753
1754 /* 6) resize the head arrays to their final sizes */
1755 mutex_lock(&slab_mutex);
1756 list_for_each_entry(cachep, &slab_caches, list)
1757 if (enable_cpucache(cachep, GFP_NOWAIT))
1758 BUG();
1759 mutex_unlock(&slab_mutex);
1760
1761 /* Annotate slab for lockdep -- annotate the malloc caches */
1762 init_lock_keys();
1763
1764 /* Done! */
1765 slab_state = FULL;
1766
1767 /*
1768 * Register a cpu startup notifier callback that initializes
1769 * cpu_cache_get for all new cpus
1770 */
1771 register_cpu_notifier(&cpucache_notifier);
1772
1773 #ifdef CONFIG_NUMA
1774 /*
1775 * Register a memory hotplug callback that initializes and frees
1776 * nodelists.
1777 */
1778 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1779 #endif
1780
1781 /*
1782 * The reap timers are started later, with a module init call: That part
1783 * of the kernel is not yet operational.
1784 */
1785 }
1786
1787 static int __init cpucache_init(void)
1788 {
1789 int cpu;
1790
1791 /*
1792 * Register the timers that return unneeded pages to the page allocator
1793 */
1794 for_each_online_cpu(cpu)
1795 start_cpu_timer(cpu);
1796
1797 /* Done! */
1798 slab_state = FULL;
1799 return 0;
1800 }
1801 __initcall(cpucache_init);
1802
1803 static noinline void
1804 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1805 {
1806 struct kmem_list3 *l3;
1807 struct slab *slabp;
1808 unsigned long flags;
1809 int node;
1810
1811 printk(KERN_WARNING
1812 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1813 nodeid, gfpflags);
1814 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1815 cachep->name, cachep->size, cachep->gfporder);
1816
1817 for_each_online_node(node) {
1818 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1819 unsigned long active_slabs = 0, num_slabs = 0;
1820
1821 l3 = cachep->nodelists[node];
1822 if (!l3)
1823 continue;
1824
1825 spin_lock_irqsave(&l3->list_lock, flags);
1826 list_for_each_entry(slabp, &l3->slabs_full, list) {
1827 active_objs += cachep->num;
1828 active_slabs++;
1829 }
1830 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1831 active_objs += slabp->inuse;
1832 active_slabs++;
1833 }
1834 list_for_each_entry(slabp, &l3->slabs_free, list)
1835 num_slabs++;
1836
1837 free_objects += l3->free_objects;
1838 spin_unlock_irqrestore(&l3->list_lock, flags);
1839
1840 num_slabs += active_slabs;
1841 num_objs = num_slabs * cachep->num;
1842 printk(KERN_WARNING
1843 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1844 node, active_slabs, num_slabs, active_objs, num_objs,
1845 free_objects);
1846 }
1847 }
1848
1849 /*
1850 * Interface to system's page allocator. No need to hold the cache-lock.
1851 *
1852 * If we requested dmaable memory, we will get it. Even if we
1853 * did not request dmaable memory, we might get it, but that
1854 * would be relatively rare and ignorable.
1855 */
1856 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1857 {
1858 struct page *page;
1859 int nr_pages;
1860 int i;
1861
1862 #ifndef CONFIG_MMU
1863 /*
1864 * Nommu uses slab's for process anonymous memory allocations, and thus
1865 * requires __GFP_COMP to properly refcount higher order allocations
1866 */
1867 flags |= __GFP_COMP;
1868 #endif
1869
1870 flags |= cachep->allocflags;
1871 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1872 flags |= __GFP_RECLAIMABLE;
1873
1874 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1875 if (!page) {
1876 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1877 slab_out_of_memory(cachep, flags, nodeid);
1878 return NULL;
1879 }
1880
1881 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 if (unlikely(page->pfmemalloc))
1883 pfmemalloc_active = true;
1884
1885 nr_pages = (1 << cachep->gfporder);
1886 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1887 add_zone_page_state(page_zone(page),
1888 NR_SLAB_RECLAIMABLE, nr_pages);
1889 else
1890 add_zone_page_state(page_zone(page),
1891 NR_SLAB_UNRECLAIMABLE, nr_pages);
1892 for (i = 0; i < nr_pages; i++) {
1893 __SetPageSlab(page + i);
1894
1895 if (page->pfmemalloc)
1896 SetPageSlabPfmemalloc(page + i);
1897 }
1898 memcg_bind_pages(cachep, cachep->gfporder);
1899
1900 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1901 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1902
1903 if (cachep->ctor)
1904 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1905 else
1906 kmemcheck_mark_unallocated_pages(page, nr_pages);
1907 }
1908
1909 return page_address(page);
1910 }
1911
1912 /*
1913 * Interface to system's page release.
1914 */
1915 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1916 {
1917 unsigned long i = (1 << cachep->gfporder);
1918 struct page *page = virt_to_page(addr);
1919 const unsigned long nr_freed = i;
1920
1921 kmemcheck_free_shadow(page, cachep->gfporder);
1922
1923 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1924 sub_zone_page_state(page_zone(page),
1925 NR_SLAB_RECLAIMABLE, nr_freed);
1926 else
1927 sub_zone_page_state(page_zone(page),
1928 NR_SLAB_UNRECLAIMABLE, nr_freed);
1929 while (i--) {
1930 BUG_ON(!PageSlab(page));
1931 __ClearPageSlabPfmemalloc(page);
1932 __ClearPageSlab(page);
1933 page++;
1934 }
1935
1936 memcg_release_pages(cachep, cachep->gfporder);
1937 if (current->reclaim_state)
1938 current->reclaim_state->reclaimed_slab += nr_freed;
1939 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1940 }
1941
1942 static void kmem_rcu_free(struct rcu_head *head)
1943 {
1944 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1945 struct kmem_cache *cachep = slab_rcu->cachep;
1946
1947 kmem_freepages(cachep, slab_rcu->addr);
1948 if (OFF_SLAB(cachep))
1949 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1950 }
1951
1952 #if DEBUG
1953
1954 #ifdef CONFIG_DEBUG_PAGEALLOC
1955 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1956 unsigned long caller)
1957 {
1958 int size = cachep->object_size;
1959
1960 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1961
1962 if (size < 5 * sizeof(unsigned long))
1963 return;
1964
1965 *addr++ = 0x12345678;
1966 *addr++ = caller;
1967 *addr++ = smp_processor_id();
1968 size -= 3 * sizeof(unsigned long);
1969 {
1970 unsigned long *sptr = &caller;
1971 unsigned long svalue;
1972
1973 while (!kstack_end(sptr)) {
1974 svalue = *sptr++;
1975 if (kernel_text_address(svalue)) {
1976 *addr++ = svalue;
1977 size -= sizeof(unsigned long);
1978 if (size <= sizeof(unsigned long))
1979 break;
1980 }
1981 }
1982
1983 }
1984 *addr++ = 0x87654321;
1985 }
1986 #endif
1987
1988 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1989 {
1990 int size = cachep->object_size;
1991 addr = &((char *)addr)[obj_offset(cachep)];
1992
1993 memset(addr, val, size);
1994 *(unsigned char *)(addr + size - 1) = POISON_END;
1995 }
1996
1997 static void dump_line(char *data, int offset, int limit)
1998 {
1999 int i;
2000 unsigned char error = 0;
2001 int bad_count = 0;
2002
2003 printk(KERN_ERR "%03x: ", offset);
2004 for (i = 0; i < limit; i++) {
2005 if (data[offset + i] != POISON_FREE) {
2006 error = data[offset + i];
2007 bad_count++;
2008 }
2009 }
2010 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2011 &data[offset], limit, 1);
2012
2013 if (bad_count == 1) {
2014 error ^= POISON_FREE;
2015 if (!(error & (error - 1))) {
2016 printk(KERN_ERR "Single bit error detected. Probably "
2017 "bad RAM.\n");
2018 #ifdef CONFIG_X86
2019 printk(KERN_ERR "Run memtest86+ or a similar memory "
2020 "test tool.\n");
2021 #else
2022 printk(KERN_ERR "Run a memory test tool.\n");
2023 #endif
2024 }
2025 }
2026 }
2027 #endif
2028
2029 #if DEBUG
2030
2031 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2032 {
2033 int i, size;
2034 char *realobj;
2035
2036 if (cachep->flags & SLAB_RED_ZONE) {
2037 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2038 *dbg_redzone1(cachep, objp),
2039 *dbg_redzone2(cachep, objp));
2040 }
2041
2042 if (cachep->flags & SLAB_STORE_USER) {
2043 printk(KERN_ERR "Last user: [<%p>]",
2044 *dbg_userword(cachep, objp));
2045 print_symbol("(%s)",
2046 (unsigned long)*dbg_userword(cachep, objp));
2047 printk("\n");
2048 }
2049 realobj = (char *)objp + obj_offset(cachep);
2050 size = cachep->object_size;
2051 for (i = 0; i < size && lines; i += 16, lines--) {
2052 int limit;
2053 limit = 16;
2054 if (i + limit > size)
2055 limit = size - i;
2056 dump_line(realobj, i, limit);
2057 }
2058 }
2059
2060 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2061 {
2062 char *realobj;
2063 int size, i;
2064 int lines = 0;
2065
2066 realobj = (char *)objp + obj_offset(cachep);
2067 size = cachep->object_size;
2068
2069 for (i = 0; i < size; i++) {
2070 char exp = POISON_FREE;
2071 if (i == size - 1)
2072 exp = POISON_END;
2073 if (realobj[i] != exp) {
2074 int limit;
2075 /* Mismatch ! */
2076 /* Print header */
2077 if (lines == 0) {
2078 printk(KERN_ERR
2079 "Slab corruption (%s): %s start=%p, len=%d\n",
2080 print_tainted(), cachep->name, realobj, size);
2081 print_objinfo(cachep, objp, 0);
2082 }
2083 /* Hexdump the affected line */
2084 i = (i / 16) * 16;
2085 limit = 16;
2086 if (i + limit > size)
2087 limit = size - i;
2088 dump_line(realobj, i, limit);
2089 i += 16;
2090 lines++;
2091 /* Limit to 5 lines */
2092 if (lines > 5)
2093 break;
2094 }
2095 }
2096 if (lines != 0) {
2097 /* Print some data about the neighboring objects, if they
2098 * exist:
2099 */
2100 struct slab *slabp = virt_to_slab(objp);
2101 unsigned int objnr;
2102
2103 objnr = obj_to_index(cachep, slabp, objp);
2104 if (objnr) {
2105 objp = index_to_obj(cachep, slabp, objnr - 1);
2106 realobj = (char *)objp + obj_offset(cachep);
2107 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2108 realobj, size);
2109 print_objinfo(cachep, objp, 2);
2110 }
2111 if (objnr + 1 < cachep->num) {
2112 objp = index_to_obj(cachep, slabp, objnr + 1);
2113 realobj = (char *)objp + obj_offset(cachep);
2114 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2115 realobj, size);
2116 print_objinfo(cachep, objp, 2);
2117 }
2118 }
2119 }
2120 #endif
2121
2122 #if DEBUG
2123 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2124 {
2125 int i;
2126 for (i = 0; i < cachep->num; i++) {
2127 void *objp = index_to_obj(cachep, slabp, i);
2128
2129 if (cachep->flags & SLAB_POISON) {
2130 #ifdef CONFIG_DEBUG_PAGEALLOC
2131 if (cachep->size % PAGE_SIZE == 0 &&
2132 OFF_SLAB(cachep))
2133 kernel_map_pages(virt_to_page(objp),
2134 cachep->size / PAGE_SIZE, 1);
2135 else
2136 check_poison_obj(cachep, objp);
2137 #else
2138 check_poison_obj(cachep, objp);
2139 #endif
2140 }
2141 if (cachep->flags & SLAB_RED_ZONE) {
2142 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2143 slab_error(cachep, "start of a freed object "
2144 "was overwritten");
2145 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2146 slab_error(cachep, "end of a freed object "
2147 "was overwritten");
2148 }
2149 }
2150 }
2151 #else
2152 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2153 {
2154 }
2155 #endif
2156
2157 /**
2158 * slab_destroy - destroy and release all objects in a slab
2159 * @cachep: cache pointer being destroyed
2160 * @slabp: slab pointer being destroyed
2161 *
2162 * Destroy all the objs in a slab, and release the mem back to the system.
2163 * Before calling the slab must have been unlinked from the cache. The
2164 * cache-lock is not held/needed.
2165 */
2166 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2167 {
2168 void *addr = slabp->s_mem - slabp->colouroff;
2169
2170 slab_destroy_debugcheck(cachep, slabp);
2171 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2172 struct slab_rcu *slab_rcu;
2173
2174 slab_rcu = (struct slab_rcu *)slabp;
2175 slab_rcu->cachep = cachep;
2176 slab_rcu->addr = addr;
2177 call_rcu(&slab_rcu->head, kmem_rcu_free);
2178 } else {
2179 kmem_freepages(cachep, addr);
2180 if (OFF_SLAB(cachep))
2181 kmem_cache_free(cachep->slabp_cache, slabp);
2182 }
2183 }
2184
2185 /**
2186 * calculate_slab_order - calculate size (page order) of slabs
2187 * @cachep: pointer to the cache that is being created
2188 * @size: size of objects to be created in this cache.
2189 * @align: required alignment for the objects.
2190 * @flags: slab allocation flags
2191 *
2192 * Also calculates the number of objects per slab.
2193 *
2194 * This could be made much more intelligent. For now, try to avoid using
2195 * high order pages for slabs. When the gfp() functions are more friendly
2196 * towards high-order requests, this should be changed.
2197 */
2198 static size_t calculate_slab_order(struct kmem_cache *cachep,
2199 size_t size, size_t align, unsigned long flags)
2200 {
2201 unsigned long offslab_limit;
2202 size_t left_over = 0;
2203 int gfporder;
2204
2205 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2206 unsigned int num;
2207 size_t remainder;
2208
2209 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2210 if (!num)
2211 continue;
2212
2213 if (flags & CFLGS_OFF_SLAB) {
2214 /*
2215 * Max number of objs-per-slab for caches which
2216 * use off-slab slabs. Needed to avoid a possible
2217 * looping condition in cache_grow().
2218 */
2219 offslab_limit = size - sizeof(struct slab);
2220 offslab_limit /= sizeof(kmem_bufctl_t);
2221
2222 if (num > offslab_limit)
2223 break;
2224 }
2225
2226 /* Found something acceptable - save it away */
2227 cachep->num = num;
2228 cachep->gfporder = gfporder;
2229 left_over = remainder;
2230
2231 /*
2232 * A VFS-reclaimable slab tends to have most allocations
2233 * as GFP_NOFS and we really don't want to have to be allocating
2234 * higher-order pages when we are unable to shrink dcache.
2235 */
2236 if (flags & SLAB_RECLAIM_ACCOUNT)
2237 break;
2238
2239 /*
2240 * Large number of objects is good, but very large slabs are
2241 * currently bad for the gfp()s.
2242 */
2243 if (gfporder >= slab_max_order)
2244 break;
2245
2246 /*
2247 * Acceptable internal fragmentation?
2248 */
2249 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2250 break;
2251 }
2252 return left_over;
2253 }
2254
2255 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2256 {
2257 if (slab_state >= FULL)
2258 return enable_cpucache(cachep, gfp);
2259
2260 if (slab_state == DOWN) {
2261 /*
2262 * Note: Creation of first cache (kmem_cache).
2263 * The setup_list3s is taken care
2264 * of by the caller of __kmem_cache_create
2265 */
2266 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2267 slab_state = PARTIAL;
2268 } else if (slab_state == PARTIAL) {
2269 /*
2270 * Note: the second kmem_cache_create must create the cache
2271 * that's used by kmalloc(24), otherwise the creation of
2272 * further caches will BUG().
2273 */
2274 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2275
2276 /*
2277 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2278 * the second cache, then we need to set up all its list3s,
2279 * otherwise the creation of further caches will BUG().
2280 */
2281 set_up_list3s(cachep, SIZE_AC);
2282 if (INDEX_AC == INDEX_L3)
2283 slab_state = PARTIAL_L3;
2284 else
2285 slab_state = PARTIAL_ARRAYCACHE;
2286 } else {
2287 /* Remaining boot caches */
2288 cachep->array[smp_processor_id()] =
2289 kmalloc(sizeof(struct arraycache_init), gfp);
2290
2291 if (slab_state == PARTIAL_ARRAYCACHE) {
2292 set_up_list3s(cachep, SIZE_L3);
2293 slab_state = PARTIAL_L3;
2294 } else {
2295 int node;
2296 for_each_online_node(node) {
2297 cachep->nodelists[node] =
2298 kmalloc_node(sizeof(struct kmem_list3),
2299 gfp, node);
2300 BUG_ON(!cachep->nodelists[node]);
2301 kmem_list3_init(cachep->nodelists[node]);
2302 }
2303 }
2304 }
2305 cachep->nodelists[numa_mem_id()]->next_reap =
2306 jiffies + REAPTIMEOUT_LIST3 +
2307 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2308
2309 cpu_cache_get(cachep)->avail = 0;
2310 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2311 cpu_cache_get(cachep)->batchcount = 1;
2312 cpu_cache_get(cachep)->touched = 0;
2313 cachep->batchcount = 1;
2314 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2315 return 0;
2316 }
2317
2318 /**
2319 * __kmem_cache_create - Create a cache.
2320 * @cachep: cache management descriptor
2321 * @flags: SLAB flags
2322 *
2323 * Returns a ptr to the cache on success, NULL on failure.
2324 * Cannot be called within a int, but can be interrupted.
2325 * The @ctor is run when new pages are allocated by the cache.
2326 *
2327 * The flags are
2328 *
2329 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2330 * to catch references to uninitialised memory.
2331 *
2332 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2333 * for buffer overruns.
2334 *
2335 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2336 * cacheline. This can be beneficial if you're counting cycles as closely
2337 * as davem.
2338 */
2339 int
2340 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2341 {
2342 size_t left_over, slab_size, ralign;
2343 gfp_t gfp;
2344 int err;
2345 size_t size = cachep->size;
2346
2347 #if DEBUG
2348 #if FORCED_DEBUG
2349 /*
2350 * Enable redzoning and last user accounting, except for caches with
2351 * large objects, if the increased size would increase the object size
2352 * above the next power of two: caches with object sizes just above a
2353 * power of two have a significant amount of internal fragmentation.
2354 */
2355 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2356 2 * sizeof(unsigned long long)))
2357 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2358 if (!(flags & SLAB_DESTROY_BY_RCU))
2359 flags |= SLAB_POISON;
2360 #endif
2361 if (flags & SLAB_DESTROY_BY_RCU)
2362 BUG_ON(flags & SLAB_POISON);
2363 #endif
2364
2365 /*
2366 * Check that size is in terms of words. This is needed to avoid
2367 * unaligned accesses for some archs when redzoning is used, and makes
2368 * sure any on-slab bufctl's are also correctly aligned.
2369 */
2370 if (size & (BYTES_PER_WORD - 1)) {
2371 size += (BYTES_PER_WORD - 1);
2372 size &= ~(BYTES_PER_WORD - 1);
2373 }
2374
2375 /*
2376 * Redzoning and user store require word alignment or possibly larger.
2377 * Note this will be overridden by architecture or caller mandated
2378 * alignment if either is greater than BYTES_PER_WORD.
2379 */
2380 if (flags & SLAB_STORE_USER)
2381 ralign = BYTES_PER_WORD;
2382
2383 if (flags & SLAB_RED_ZONE) {
2384 ralign = REDZONE_ALIGN;
2385 /* If redzoning, ensure that the second redzone is suitably
2386 * aligned, by adjusting the object size accordingly. */
2387 size += REDZONE_ALIGN - 1;
2388 size &= ~(REDZONE_ALIGN - 1);
2389 }
2390
2391 /* 3) caller mandated alignment */
2392 if (ralign < cachep->align) {
2393 ralign = cachep->align;
2394 }
2395 /* disable debug if necessary */
2396 if (ralign > __alignof__(unsigned long long))
2397 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2398 /*
2399 * 4) Store it.
2400 */
2401 cachep->align = ralign;
2402
2403 if (slab_is_available())
2404 gfp = GFP_KERNEL;
2405 else
2406 gfp = GFP_NOWAIT;
2407
2408 setup_nodelists_pointer(cachep);
2409 #if DEBUG
2410
2411 /*
2412 * Both debugging options require word-alignment which is calculated
2413 * into align above.
2414 */
2415 if (flags & SLAB_RED_ZONE) {
2416 /* add space for red zone words */
2417 cachep->obj_offset += sizeof(unsigned long long);
2418 size += 2 * sizeof(unsigned long long);
2419 }
2420 if (flags & SLAB_STORE_USER) {
2421 /* user store requires one word storage behind the end of
2422 * the real object. But if the second red zone needs to be
2423 * aligned to 64 bits, we must allow that much space.
2424 */
2425 if (flags & SLAB_RED_ZONE)
2426 size += REDZONE_ALIGN;
2427 else
2428 size += BYTES_PER_WORD;
2429 }
2430 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2431 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2432 && cachep->object_size > cache_line_size()
2433 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2434 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2435 size = PAGE_SIZE;
2436 }
2437 #endif
2438 #endif
2439
2440 /*
2441 * Determine if the slab management is 'on' or 'off' slab.
2442 * (bootstrapping cannot cope with offslab caches so don't do
2443 * it too early on. Always use on-slab management when
2444 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2445 */
2446 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2447 !(flags & SLAB_NOLEAKTRACE))
2448 /*
2449 * Size is large, assume best to place the slab management obj
2450 * off-slab (should allow better packing of objs).
2451 */
2452 flags |= CFLGS_OFF_SLAB;
2453
2454 size = ALIGN(size, cachep->align);
2455
2456 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2457
2458 if (!cachep->num)
2459 return -E2BIG;
2460
2461 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2462 + sizeof(struct slab), cachep->align);
2463
2464 /*
2465 * If the slab has been placed off-slab, and we have enough space then
2466 * move it on-slab. This is at the expense of any extra colouring.
2467 */
2468 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2469 flags &= ~CFLGS_OFF_SLAB;
2470 left_over -= slab_size;
2471 }
2472
2473 if (flags & CFLGS_OFF_SLAB) {
2474 /* really off slab. No need for manual alignment */
2475 slab_size =
2476 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2477
2478 #ifdef CONFIG_PAGE_POISONING
2479 /* If we're going to use the generic kernel_map_pages()
2480 * poisoning, then it's going to smash the contents of
2481 * the redzone and userword anyhow, so switch them off.
2482 */
2483 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2484 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2485 #endif
2486 }
2487
2488 cachep->colour_off = cache_line_size();
2489 /* Offset must be a multiple of the alignment. */
2490 if (cachep->colour_off < cachep->align)
2491 cachep->colour_off = cachep->align;
2492 cachep->colour = left_over / cachep->colour_off;
2493 cachep->slab_size = slab_size;
2494 cachep->flags = flags;
2495 cachep->allocflags = 0;
2496 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2497 cachep->allocflags |= GFP_DMA;
2498 cachep->size = size;
2499 cachep->reciprocal_buffer_size = reciprocal_value(size);
2500
2501 if (flags & CFLGS_OFF_SLAB) {
2502 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2503 /*
2504 * This is a possibility for one of the malloc_sizes caches.
2505 * But since we go off slab only for object size greater than
2506 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2507 * this should not happen at all.
2508 * But leave a BUG_ON for some lucky dude.
2509 */
2510 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2511 }
2512
2513 err = setup_cpu_cache(cachep, gfp);
2514 if (err) {
2515 __kmem_cache_shutdown(cachep);
2516 return err;
2517 }
2518
2519 if (flags & SLAB_DEBUG_OBJECTS) {
2520 /*
2521 * Would deadlock through slab_destroy()->call_rcu()->
2522 * debug_object_activate()->kmem_cache_alloc().
2523 */
2524 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2525
2526 slab_set_debugobj_lock_classes(cachep);
2527 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2528 on_slab_lock_classes(cachep);
2529
2530 return 0;
2531 }
2532
2533 #if DEBUG
2534 static void check_irq_off(void)
2535 {
2536 BUG_ON(!irqs_disabled());
2537 }
2538
2539 static void check_irq_on(void)
2540 {
2541 BUG_ON(irqs_disabled());
2542 }
2543
2544 static void check_spinlock_acquired(struct kmem_cache *cachep)
2545 {
2546 #ifdef CONFIG_SMP
2547 check_irq_off();
2548 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2549 #endif
2550 }
2551
2552 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2553 {
2554 #ifdef CONFIG_SMP
2555 check_irq_off();
2556 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2557 #endif
2558 }
2559
2560 #else
2561 #define check_irq_off() do { } while(0)
2562 #define check_irq_on() do { } while(0)
2563 #define check_spinlock_acquired(x) do { } while(0)
2564 #define check_spinlock_acquired_node(x, y) do { } while(0)
2565 #endif
2566
2567 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2568 struct array_cache *ac,
2569 int force, int node);
2570
2571 static void do_drain(void *arg)
2572 {
2573 struct kmem_cache *cachep = arg;
2574 struct array_cache *ac;
2575 int node = numa_mem_id();
2576
2577 check_irq_off();
2578 ac = cpu_cache_get(cachep);
2579 spin_lock(&cachep->nodelists[node]->list_lock);
2580 free_block(cachep, ac->entry, ac->avail, node);
2581 spin_unlock(&cachep->nodelists[node]->list_lock);
2582 ac->avail = 0;
2583 }
2584
2585 static void drain_cpu_caches(struct kmem_cache *cachep)
2586 {
2587 struct kmem_list3 *l3;
2588 int node;
2589
2590 on_each_cpu(do_drain, cachep, 1);
2591 check_irq_on();
2592 for_each_online_node(node) {
2593 l3 = cachep->nodelists[node];
2594 if (l3 && l3->alien)
2595 drain_alien_cache(cachep, l3->alien);
2596 }
2597
2598 for_each_online_node(node) {
2599 l3 = cachep->nodelists[node];
2600 if (l3)
2601 drain_array(cachep, l3, l3->shared, 1, node);
2602 }
2603 }
2604
2605 /*
2606 * Remove slabs from the list of free slabs.
2607 * Specify the number of slabs to drain in tofree.
2608 *
2609 * Returns the actual number of slabs released.
2610 */
2611 static int drain_freelist(struct kmem_cache *cache,
2612 struct kmem_list3 *l3, int tofree)
2613 {
2614 struct list_head *p;
2615 int nr_freed;
2616 struct slab *slabp;
2617
2618 nr_freed = 0;
2619 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2620
2621 spin_lock_irq(&l3->list_lock);
2622 p = l3->slabs_free.prev;
2623 if (p == &l3->slabs_free) {
2624 spin_unlock_irq(&l3->list_lock);
2625 goto out;
2626 }
2627
2628 slabp = list_entry(p, struct slab, list);
2629 #if DEBUG
2630 BUG_ON(slabp->inuse);
2631 #endif
2632 list_del(&slabp->list);
2633 /*
2634 * Safe to drop the lock. The slab is no longer linked
2635 * to the cache.
2636 */
2637 l3->free_objects -= cache->num;
2638 spin_unlock_irq(&l3->list_lock);
2639 slab_destroy(cache, slabp);
2640 nr_freed++;
2641 }
2642 out:
2643 return nr_freed;
2644 }
2645
2646 /* Called with slab_mutex held to protect against cpu hotplug */
2647 static int __cache_shrink(struct kmem_cache *cachep)
2648 {
2649 int ret = 0, i = 0;
2650 struct kmem_list3 *l3;
2651
2652 drain_cpu_caches(cachep);
2653
2654 check_irq_on();
2655 for_each_online_node(i) {
2656 l3 = cachep->nodelists[i];
2657 if (!l3)
2658 continue;
2659
2660 drain_freelist(cachep, l3, l3->free_objects);
2661
2662 ret += !list_empty(&l3->slabs_full) ||
2663 !list_empty(&l3->slabs_partial);
2664 }
2665 return (ret ? 1 : 0);
2666 }
2667
2668 /**
2669 * kmem_cache_shrink - Shrink a cache.
2670 * @cachep: The cache to shrink.
2671 *
2672 * Releases as many slabs as possible for a cache.
2673 * To help debugging, a zero exit status indicates all slabs were released.
2674 */
2675 int kmem_cache_shrink(struct kmem_cache *cachep)
2676 {
2677 int ret;
2678 BUG_ON(!cachep || in_interrupt());
2679
2680 get_online_cpus();
2681 mutex_lock(&slab_mutex);
2682 ret = __cache_shrink(cachep);
2683 mutex_unlock(&slab_mutex);
2684 put_online_cpus();
2685 return ret;
2686 }
2687 EXPORT_SYMBOL(kmem_cache_shrink);
2688
2689 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2690 {
2691 int i;
2692 struct kmem_list3 *l3;
2693 int rc = __cache_shrink(cachep);
2694
2695 if (rc)
2696 return rc;
2697
2698 for_each_online_cpu(i)
2699 kfree(cachep->array[i]);
2700
2701 /* NUMA: free the list3 structures */
2702 for_each_online_node(i) {
2703 l3 = cachep->nodelists[i];
2704 if (l3) {
2705 kfree(l3->shared);
2706 free_alien_cache(l3->alien);
2707 kfree(l3);
2708 }
2709 }
2710 return 0;
2711 }
2712
2713 /*
2714 * Get the memory for a slab management obj.
2715 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2716 * always come from malloc_sizes caches. The slab descriptor cannot
2717 * come from the same cache which is getting created because,
2718 * when we are searching for an appropriate cache for these
2719 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2720 * If we are creating a malloc_sizes cache here it would not be visible to
2721 * kmem_find_general_cachep till the initialization is complete.
2722 * Hence we cannot have slabp_cache same as the original cache.
2723 */
2724 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2725 int colour_off, gfp_t local_flags,
2726 int nodeid)
2727 {
2728 struct slab *slabp;
2729
2730 if (OFF_SLAB(cachep)) {
2731 /* Slab management obj is off-slab. */
2732 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2733 local_flags, nodeid);
2734 /*
2735 * If the first object in the slab is leaked (it's allocated
2736 * but no one has a reference to it), we want to make sure
2737 * kmemleak does not treat the ->s_mem pointer as a reference
2738 * to the object. Otherwise we will not report the leak.
2739 */
2740 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2741 local_flags);
2742 if (!slabp)
2743 return NULL;
2744 } else {
2745 slabp = objp + colour_off;
2746 colour_off += cachep->slab_size;
2747 }
2748 slabp->inuse = 0;
2749 slabp->colouroff = colour_off;
2750 slabp->s_mem = objp + colour_off;
2751 slabp->nodeid = nodeid;
2752 slabp->free = 0;
2753 return slabp;
2754 }
2755
2756 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2757 {
2758 return (kmem_bufctl_t *) (slabp + 1);
2759 }
2760
2761 static void cache_init_objs(struct kmem_cache *cachep,
2762 struct slab *slabp)
2763 {
2764 int i;
2765
2766 for (i = 0; i < cachep->num; i++) {
2767 void *objp = index_to_obj(cachep, slabp, i);
2768 #if DEBUG
2769 /* need to poison the objs? */
2770 if (cachep->flags & SLAB_POISON)
2771 poison_obj(cachep, objp, POISON_FREE);
2772 if (cachep->flags & SLAB_STORE_USER)
2773 *dbg_userword(cachep, objp) = NULL;
2774
2775 if (cachep->flags & SLAB_RED_ZONE) {
2776 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2777 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2778 }
2779 /*
2780 * Constructors are not allowed to allocate memory from the same
2781 * cache which they are a constructor for. Otherwise, deadlock.
2782 * They must also be threaded.
2783 */
2784 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2785 cachep->ctor(objp + obj_offset(cachep));
2786
2787 if (cachep->flags & SLAB_RED_ZONE) {
2788 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2789 slab_error(cachep, "constructor overwrote the"
2790 " end of an object");
2791 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2792 slab_error(cachep, "constructor overwrote the"
2793 " start of an object");
2794 }
2795 if ((cachep->size % PAGE_SIZE) == 0 &&
2796 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2797 kernel_map_pages(virt_to_page(objp),
2798 cachep->size / PAGE_SIZE, 0);
2799 #else
2800 if (cachep->ctor)
2801 cachep->ctor(objp);
2802 #endif
2803 slab_bufctl(slabp)[i] = i + 1;
2804 }
2805 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2806 }
2807
2808 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2809 {
2810 if (CONFIG_ZONE_DMA_FLAG) {
2811 if (flags & GFP_DMA)
2812 BUG_ON(!(cachep->allocflags & GFP_DMA));
2813 else
2814 BUG_ON(cachep->allocflags & GFP_DMA);
2815 }
2816 }
2817
2818 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2819 int nodeid)
2820 {
2821 void *objp = index_to_obj(cachep, slabp, slabp->free);
2822 kmem_bufctl_t next;
2823
2824 slabp->inuse++;
2825 next = slab_bufctl(slabp)[slabp->free];
2826 #if DEBUG
2827 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2828 WARN_ON(slabp->nodeid != nodeid);
2829 #endif
2830 slabp->free = next;
2831
2832 return objp;
2833 }
2834
2835 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2836 void *objp, int nodeid)
2837 {
2838 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2839
2840 #if DEBUG
2841 /* Verify that the slab belongs to the intended node */
2842 WARN_ON(slabp->nodeid != nodeid);
2843
2844 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2845 printk(KERN_ERR "slab: double free detected in cache "
2846 "'%s', objp %p\n", cachep->name, objp);
2847 BUG();
2848 }
2849 #endif
2850 slab_bufctl(slabp)[objnr] = slabp->free;
2851 slabp->free = objnr;
2852 slabp->inuse--;
2853 }
2854
2855 /*
2856 * Map pages beginning at addr to the given cache and slab. This is required
2857 * for the slab allocator to be able to lookup the cache and slab of a
2858 * virtual address for kfree, ksize, and slab debugging.
2859 */
2860 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2861 void *addr)
2862 {
2863 int nr_pages;
2864 struct page *page;
2865
2866 page = virt_to_page(addr);
2867
2868 nr_pages = 1;
2869 if (likely(!PageCompound(page)))
2870 nr_pages <<= cache->gfporder;
2871
2872 do {
2873 page->slab_cache = cache;
2874 page->slab_page = slab;
2875 page++;
2876 } while (--nr_pages);
2877 }
2878
2879 /*
2880 * Grow (by 1) the number of slabs within a cache. This is called by
2881 * kmem_cache_alloc() when there are no active objs left in a cache.
2882 */
2883 static int cache_grow(struct kmem_cache *cachep,
2884 gfp_t flags, int nodeid, void *objp)
2885 {
2886 struct slab *slabp;
2887 size_t offset;
2888 gfp_t local_flags;
2889 struct kmem_list3 *l3;
2890
2891 /*
2892 * Be lazy and only check for valid flags here, keeping it out of the
2893 * critical path in kmem_cache_alloc().
2894 */
2895 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2896 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2897
2898 /* Take the l3 list lock to change the colour_next on this node */
2899 check_irq_off();
2900 l3 = cachep->nodelists[nodeid];
2901 spin_lock(&l3->list_lock);
2902
2903 /* Get colour for the slab, and cal the next value. */
2904 offset = l3->colour_next;
2905 l3->colour_next++;
2906 if (l3->colour_next >= cachep->colour)
2907 l3->colour_next = 0;
2908 spin_unlock(&l3->list_lock);
2909
2910 offset *= cachep->colour_off;
2911
2912 if (local_flags & __GFP_WAIT)
2913 local_irq_enable();
2914
2915 /*
2916 * The test for missing atomic flag is performed here, rather than
2917 * the more obvious place, simply to reduce the critical path length
2918 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2919 * will eventually be caught here (where it matters).
2920 */
2921 kmem_flagcheck(cachep, flags);
2922
2923 /*
2924 * Get mem for the objs. Attempt to allocate a physical page from
2925 * 'nodeid'.
2926 */
2927 if (!objp)
2928 objp = kmem_getpages(cachep, local_flags, nodeid);
2929 if (!objp)
2930 goto failed;
2931
2932 /* Get slab management. */
2933 slabp = alloc_slabmgmt(cachep, objp, offset,
2934 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2935 if (!slabp)
2936 goto opps1;
2937
2938 slab_map_pages(cachep, slabp, objp);
2939
2940 cache_init_objs(cachep, slabp);
2941
2942 if (local_flags & __GFP_WAIT)
2943 local_irq_disable();
2944 check_irq_off();
2945 spin_lock(&l3->list_lock);
2946
2947 /* Make slab active. */
2948 list_add_tail(&slabp->list, &(l3->slabs_free));
2949 STATS_INC_GROWN(cachep);
2950 l3->free_objects += cachep->num;
2951 spin_unlock(&l3->list_lock);
2952 return 1;
2953 opps1:
2954 kmem_freepages(cachep, objp);
2955 failed:
2956 if (local_flags & __GFP_WAIT)
2957 local_irq_disable();
2958 return 0;
2959 }
2960
2961 #if DEBUG
2962
2963 /*
2964 * Perform extra freeing checks:
2965 * - detect bad pointers.
2966 * - POISON/RED_ZONE checking
2967 */
2968 static void kfree_debugcheck(const void *objp)
2969 {
2970 if (!virt_addr_valid(objp)) {
2971 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2972 (unsigned long)objp);
2973 BUG();
2974 }
2975 }
2976
2977 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2978 {
2979 unsigned long long redzone1, redzone2;
2980
2981 redzone1 = *dbg_redzone1(cache, obj);
2982 redzone2 = *dbg_redzone2(cache, obj);
2983
2984 /*
2985 * Redzone is ok.
2986 */
2987 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2988 return;
2989
2990 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2991 slab_error(cache, "double free detected");
2992 else
2993 slab_error(cache, "memory outside object was overwritten");
2994
2995 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2996 obj, redzone1, redzone2);
2997 }
2998
2999 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3000 unsigned long caller)
3001 {
3002 struct page *page;
3003 unsigned int objnr;
3004 struct slab *slabp;
3005
3006 BUG_ON(virt_to_cache(objp) != cachep);
3007
3008 objp -= obj_offset(cachep);
3009 kfree_debugcheck(objp);
3010 page = virt_to_head_page(objp);
3011
3012 slabp = page->slab_page;
3013
3014 if (cachep->flags & SLAB_RED_ZONE) {
3015 verify_redzone_free(cachep, objp);
3016 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3017 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3018 }
3019 if (cachep->flags & SLAB_STORE_USER)
3020 *dbg_userword(cachep, objp) = (void *)caller;
3021
3022 objnr = obj_to_index(cachep, slabp, objp);
3023
3024 BUG_ON(objnr >= cachep->num);
3025 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3026
3027 #ifdef CONFIG_DEBUG_SLAB_LEAK
3028 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3029 #endif
3030 if (cachep->flags & SLAB_POISON) {
3031 #ifdef CONFIG_DEBUG_PAGEALLOC
3032 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3033 store_stackinfo(cachep, objp, caller);
3034 kernel_map_pages(virt_to_page(objp),
3035 cachep->size / PAGE_SIZE, 0);
3036 } else {
3037 poison_obj(cachep, objp, POISON_FREE);
3038 }
3039 #else
3040 poison_obj(cachep, objp, POISON_FREE);
3041 #endif
3042 }
3043 return objp;
3044 }
3045
3046 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3047 {
3048 kmem_bufctl_t i;
3049 int entries = 0;
3050
3051 /* Check slab's freelist to see if this obj is there. */
3052 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3053 entries++;
3054 if (entries > cachep->num || i >= cachep->num)
3055 goto bad;
3056 }
3057 if (entries != cachep->num - slabp->inuse) {
3058 bad:
3059 printk(KERN_ERR "slab: Internal list corruption detected in "
3060 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3061 cachep->name, cachep->num, slabp, slabp->inuse,
3062 print_tainted());
3063 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3064 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3065 1);
3066 BUG();
3067 }
3068 }
3069 #else
3070 #define kfree_debugcheck(x) do { } while(0)
3071 #define cache_free_debugcheck(x,objp,z) (objp)
3072 #define check_slabp(x,y) do { } while(0)
3073 #endif
3074
3075 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3076 bool force_refill)
3077 {
3078 int batchcount;
3079 struct kmem_list3 *l3;
3080 struct array_cache *ac;
3081 int node;
3082
3083 check_irq_off();
3084 node = numa_mem_id();
3085 if (unlikely(force_refill))
3086 goto force_grow;
3087 retry:
3088 ac = cpu_cache_get(cachep);
3089 batchcount = ac->batchcount;
3090 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3091 /*
3092 * If there was little recent activity on this cache, then
3093 * perform only a partial refill. Otherwise we could generate
3094 * refill bouncing.
3095 */
3096 batchcount = BATCHREFILL_LIMIT;
3097 }
3098 l3 = cachep->nodelists[node];
3099
3100 BUG_ON(ac->avail > 0 || !l3);
3101 spin_lock(&l3->list_lock);
3102
3103 /* See if we can refill from the shared array */
3104 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3105 l3->shared->touched = 1;
3106 goto alloc_done;
3107 }
3108
3109 while (batchcount > 0) {
3110 struct list_head *entry;
3111 struct slab *slabp;
3112 /* Get slab alloc is to come from. */
3113 entry = l3->slabs_partial.next;
3114 if (entry == &l3->slabs_partial) {
3115 l3->free_touched = 1;
3116 entry = l3->slabs_free.next;
3117 if (entry == &l3->slabs_free)
3118 goto must_grow;
3119 }
3120
3121 slabp = list_entry(entry, struct slab, list);
3122 check_slabp(cachep, slabp);
3123 check_spinlock_acquired(cachep);
3124
3125 /*
3126 * The slab was either on partial or free list so
3127 * there must be at least one object available for
3128 * allocation.
3129 */
3130 BUG_ON(slabp->inuse >= cachep->num);
3131
3132 while (slabp->inuse < cachep->num && batchcount--) {
3133 STATS_INC_ALLOCED(cachep);
3134 STATS_INC_ACTIVE(cachep);
3135 STATS_SET_HIGH(cachep);
3136
3137 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3138 node));
3139 }
3140 check_slabp(cachep, slabp);
3141
3142 /* move slabp to correct slabp list: */
3143 list_del(&slabp->list);
3144 if (slabp->free == BUFCTL_END)
3145 list_add(&slabp->list, &l3->slabs_full);
3146 else
3147 list_add(&slabp->list, &l3->slabs_partial);
3148 }
3149
3150 must_grow:
3151 l3->free_objects -= ac->avail;
3152 alloc_done:
3153 spin_unlock(&l3->list_lock);
3154
3155 if (unlikely(!ac->avail)) {
3156 int x;
3157 force_grow:
3158 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3159
3160 /* cache_grow can reenable interrupts, then ac could change. */
3161 ac = cpu_cache_get(cachep);
3162 node = numa_mem_id();
3163
3164 /* no objects in sight? abort */
3165 if (!x && (ac->avail == 0 || force_refill))
3166 return NULL;
3167
3168 if (!ac->avail) /* objects refilled by interrupt? */
3169 goto retry;
3170 }
3171 ac->touched = 1;
3172
3173 return ac_get_obj(cachep, ac, flags, force_refill);
3174 }
3175
3176 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3177 gfp_t flags)
3178 {
3179 might_sleep_if(flags & __GFP_WAIT);
3180 #if DEBUG
3181 kmem_flagcheck(cachep, flags);
3182 #endif
3183 }
3184
3185 #if DEBUG
3186 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3187 gfp_t flags, void *objp, unsigned long caller)
3188 {
3189 if (!objp)
3190 return objp;
3191 if (cachep->flags & SLAB_POISON) {
3192 #ifdef CONFIG_DEBUG_PAGEALLOC
3193 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3194 kernel_map_pages(virt_to_page(objp),
3195 cachep->size / PAGE_SIZE, 1);
3196 else
3197 check_poison_obj(cachep, objp);
3198 #else
3199 check_poison_obj(cachep, objp);
3200 #endif
3201 poison_obj(cachep, objp, POISON_INUSE);
3202 }
3203 if (cachep->flags & SLAB_STORE_USER)
3204 *dbg_userword(cachep, objp) = (void *)caller;
3205
3206 if (cachep->flags & SLAB_RED_ZONE) {
3207 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3208 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3209 slab_error(cachep, "double free, or memory outside"
3210 " object was overwritten");
3211 printk(KERN_ERR
3212 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3213 objp, *dbg_redzone1(cachep, objp),
3214 *dbg_redzone2(cachep, objp));
3215 }
3216 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3217 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3218 }
3219 #ifdef CONFIG_DEBUG_SLAB_LEAK
3220 {
3221 struct slab *slabp;
3222 unsigned objnr;
3223
3224 slabp = virt_to_head_page(objp)->slab_page;
3225 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3226 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3227 }
3228 #endif
3229 objp += obj_offset(cachep);
3230 if (cachep->ctor && cachep->flags & SLAB_POISON)
3231 cachep->ctor(objp);
3232 if (ARCH_SLAB_MINALIGN &&
3233 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3234 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3235 objp, (int)ARCH_SLAB_MINALIGN);
3236 }
3237 return objp;
3238 }
3239 #else
3240 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3241 #endif
3242
3243 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3244 {
3245 if (cachep == kmem_cache)
3246 return false;
3247
3248 return should_failslab(cachep->object_size, flags, cachep->flags);
3249 }
3250
3251 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3252 {
3253 void *objp;
3254 struct array_cache *ac;
3255 bool force_refill = false;
3256
3257 check_irq_off();
3258
3259 ac = cpu_cache_get(cachep);
3260 if (likely(ac->avail)) {
3261 ac->touched = 1;
3262 objp = ac_get_obj(cachep, ac, flags, false);
3263
3264 /*
3265 * Allow for the possibility all avail objects are not allowed
3266 * by the current flags
3267 */
3268 if (objp) {
3269 STATS_INC_ALLOCHIT(cachep);
3270 goto out;
3271 }
3272 force_refill = true;
3273 }
3274
3275 STATS_INC_ALLOCMISS(cachep);
3276 objp = cache_alloc_refill(cachep, flags, force_refill);
3277 /*
3278 * the 'ac' may be updated by cache_alloc_refill(),
3279 * and kmemleak_erase() requires its correct value.
3280 */
3281 ac = cpu_cache_get(cachep);
3282
3283 out:
3284 /*
3285 * To avoid a false negative, if an object that is in one of the
3286 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3287 * treat the array pointers as a reference to the object.
3288 */
3289 if (objp)
3290 kmemleak_erase(&ac->entry[ac->avail]);
3291 return objp;
3292 }
3293
3294 #ifdef CONFIG_NUMA
3295 /*
3296 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3297 *
3298 * If we are in_interrupt, then process context, including cpusets and
3299 * mempolicy, may not apply and should not be used for allocation policy.
3300 */
3301 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3302 {
3303 int nid_alloc, nid_here;
3304
3305 if (in_interrupt() || (flags & __GFP_THISNODE))
3306 return NULL;
3307 nid_alloc = nid_here = numa_mem_id();
3308 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3309 nid_alloc = cpuset_slab_spread_node();
3310 else if (current->mempolicy)
3311 nid_alloc = slab_node();
3312 if (nid_alloc != nid_here)
3313 return ____cache_alloc_node(cachep, flags, nid_alloc);
3314 return NULL;
3315 }
3316
3317 /*
3318 * Fallback function if there was no memory available and no objects on a
3319 * certain node and fall back is permitted. First we scan all the
3320 * available nodelists for available objects. If that fails then we
3321 * perform an allocation without specifying a node. This allows the page
3322 * allocator to do its reclaim / fallback magic. We then insert the
3323 * slab into the proper nodelist and then allocate from it.
3324 */
3325 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3326 {
3327 struct zonelist *zonelist;
3328 gfp_t local_flags;
3329 struct zoneref *z;
3330 struct zone *zone;
3331 enum zone_type high_zoneidx = gfp_zone(flags);
3332 void *obj = NULL;
3333 int nid;
3334 unsigned int cpuset_mems_cookie;
3335
3336 if (flags & __GFP_THISNODE)
3337 return NULL;
3338
3339 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3340
3341 retry_cpuset:
3342 cpuset_mems_cookie = get_mems_allowed();
3343 zonelist = node_zonelist(slab_node(), flags);
3344
3345 retry:
3346 /*
3347 * Look through allowed nodes for objects available
3348 * from existing per node queues.
3349 */
3350 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3351 nid = zone_to_nid(zone);
3352
3353 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3354 cache->nodelists[nid] &&
3355 cache->nodelists[nid]->free_objects) {
3356 obj = ____cache_alloc_node(cache,
3357 flags | GFP_THISNODE, nid);
3358 if (obj)
3359 break;
3360 }
3361 }
3362
3363 if (!obj) {
3364 /*
3365 * This allocation will be performed within the constraints
3366 * of the current cpuset / memory policy requirements.
3367 * We may trigger various forms of reclaim on the allowed
3368 * set and go into memory reserves if necessary.
3369 */
3370 if (local_flags & __GFP_WAIT)
3371 local_irq_enable();
3372 kmem_flagcheck(cache, flags);
3373 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3374 if (local_flags & __GFP_WAIT)
3375 local_irq_disable();
3376 if (obj) {
3377 /*
3378 * Insert into the appropriate per node queues
3379 */
3380 nid = page_to_nid(virt_to_page(obj));
3381 if (cache_grow(cache, flags, nid, obj)) {
3382 obj = ____cache_alloc_node(cache,
3383 flags | GFP_THISNODE, nid);
3384 if (!obj)
3385 /*
3386 * Another processor may allocate the
3387 * objects in the slab since we are
3388 * not holding any locks.
3389 */
3390 goto retry;
3391 } else {
3392 /* cache_grow already freed obj */
3393 obj = NULL;
3394 }
3395 }
3396 }
3397
3398 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3399 goto retry_cpuset;
3400 return obj;
3401 }
3402
3403 /*
3404 * A interface to enable slab creation on nodeid
3405 */
3406 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3407 int nodeid)
3408 {
3409 struct list_head *entry;
3410 struct slab *slabp;
3411 struct kmem_list3 *l3;
3412 void *obj;
3413 int x;
3414
3415 l3 = cachep->nodelists[nodeid];
3416 BUG_ON(!l3);
3417
3418 retry:
3419 check_irq_off();
3420 spin_lock(&l3->list_lock);
3421 entry = l3->slabs_partial.next;
3422 if (entry == &l3->slabs_partial) {
3423 l3->free_touched = 1;
3424 entry = l3->slabs_free.next;
3425 if (entry == &l3->slabs_free)
3426 goto must_grow;
3427 }
3428
3429 slabp = list_entry(entry, struct slab, list);
3430 check_spinlock_acquired_node(cachep, nodeid);
3431 check_slabp(cachep, slabp);
3432
3433 STATS_INC_NODEALLOCS(cachep);
3434 STATS_INC_ACTIVE(cachep);
3435 STATS_SET_HIGH(cachep);
3436
3437 BUG_ON(slabp->inuse == cachep->num);
3438
3439 obj = slab_get_obj(cachep, slabp, nodeid);
3440 check_slabp(cachep, slabp);
3441 l3->free_objects--;
3442 /* move slabp to correct slabp list: */
3443 list_del(&slabp->list);
3444
3445 if (slabp->free == BUFCTL_END)
3446 list_add(&slabp->list, &l3->slabs_full);
3447 else
3448 list_add(&slabp->list, &l3->slabs_partial);
3449
3450 spin_unlock(&l3->list_lock);
3451 goto done;
3452
3453 must_grow:
3454 spin_unlock(&l3->list_lock);
3455 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3456 if (x)
3457 goto retry;
3458
3459 return fallback_alloc(cachep, flags);
3460
3461 done:
3462 return obj;
3463 }
3464
3465 /**
3466 * kmem_cache_alloc_node - Allocate an object on the specified node
3467 * @cachep: The cache to allocate from.
3468 * @flags: See kmalloc().
3469 * @nodeid: node number of the target node.
3470 * @caller: return address of caller, used for debug information
3471 *
3472 * Identical to kmem_cache_alloc but it will allocate memory on the given
3473 * node, which can improve the performance for cpu bound structures.
3474 *
3475 * Fallback to other node is possible if __GFP_THISNODE is not set.
3476 */
3477 static __always_inline void *
3478 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3479 unsigned long caller)
3480 {
3481 unsigned long save_flags;
3482 void *ptr;
3483 int slab_node = numa_mem_id();
3484
3485 flags &= gfp_allowed_mask;
3486
3487 lockdep_trace_alloc(flags);
3488
3489 if (slab_should_failslab(cachep, flags))
3490 return NULL;
3491
3492 cachep = memcg_kmem_get_cache(cachep, flags);
3493
3494 cache_alloc_debugcheck_before(cachep, flags);
3495 local_irq_save(save_flags);
3496
3497 if (nodeid == NUMA_NO_NODE)
3498 nodeid = slab_node;
3499
3500 if (unlikely(!cachep->nodelists[nodeid])) {
3501 /* Node not bootstrapped yet */
3502 ptr = fallback_alloc(cachep, flags);
3503 goto out;
3504 }
3505
3506 if (nodeid == slab_node) {
3507 /*
3508 * Use the locally cached objects if possible.
3509 * However ____cache_alloc does not allow fallback
3510 * to other nodes. It may fail while we still have
3511 * objects on other nodes available.
3512 */
3513 ptr = ____cache_alloc(cachep, flags);
3514 if (ptr)
3515 goto out;
3516 }
3517 /* ___cache_alloc_node can fall back to other nodes */
3518 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3519 out:
3520 local_irq_restore(save_flags);
3521 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3522 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3523 flags);
3524
3525 if (likely(ptr))
3526 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3527
3528 if (unlikely((flags & __GFP_ZERO) && ptr))
3529 memset(ptr, 0, cachep->object_size);
3530
3531 return ptr;
3532 }
3533
3534 static __always_inline void *
3535 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3536 {
3537 void *objp;
3538
3539 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3540 objp = alternate_node_alloc(cache, flags);
3541 if (objp)
3542 goto out;
3543 }
3544 objp = ____cache_alloc(cache, flags);
3545
3546 /*
3547 * We may just have run out of memory on the local node.
3548 * ____cache_alloc_node() knows how to locate memory on other nodes
3549 */
3550 if (!objp)
3551 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3552
3553 out:
3554 return objp;
3555 }
3556 #else
3557
3558 static __always_inline void *
3559 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560 {
3561 return ____cache_alloc(cachep, flags);
3562 }
3563
3564 #endif /* CONFIG_NUMA */
3565
3566 static __always_inline void *
3567 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3568 {
3569 unsigned long save_flags;
3570 void *objp;
3571
3572 flags &= gfp_allowed_mask;
3573
3574 lockdep_trace_alloc(flags);
3575
3576 if (slab_should_failslab(cachep, flags))
3577 return NULL;
3578
3579 cachep = memcg_kmem_get_cache(cachep, flags);
3580
3581 cache_alloc_debugcheck_before(cachep, flags);
3582 local_irq_save(save_flags);
3583 objp = __do_cache_alloc(cachep, flags);
3584 local_irq_restore(save_flags);
3585 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3586 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3587 flags);
3588 prefetchw(objp);
3589
3590 if (likely(objp))
3591 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3592
3593 if (unlikely((flags & __GFP_ZERO) && objp))
3594 memset(objp, 0, cachep->object_size);
3595
3596 return objp;
3597 }
3598
3599 /*
3600 * Caller needs to acquire correct kmem_list's list_lock
3601 */
3602 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3603 int node)
3604 {
3605 int i;
3606 struct kmem_list3 *l3;
3607
3608 for (i = 0; i < nr_objects; i++) {
3609 void *objp;
3610 struct slab *slabp;
3611
3612 clear_obj_pfmemalloc(&objpp[i]);
3613 objp = objpp[i];
3614
3615 slabp = virt_to_slab(objp);
3616 l3 = cachep->nodelists[node];
3617 list_del(&slabp->list);
3618 check_spinlock_acquired_node(cachep, node);
3619 check_slabp(cachep, slabp);
3620 slab_put_obj(cachep, slabp, objp, node);
3621 STATS_DEC_ACTIVE(cachep);
3622 l3->free_objects++;
3623 check_slabp(cachep, slabp);
3624
3625 /* fixup slab chains */
3626 if (slabp->inuse == 0) {
3627 if (l3->free_objects > l3->free_limit) {
3628 l3->free_objects -= cachep->num;
3629 /* No need to drop any previously held
3630 * lock here, even if we have a off-slab slab
3631 * descriptor it is guaranteed to come from
3632 * a different cache, refer to comments before
3633 * alloc_slabmgmt.
3634 */
3635 slab_destroy(cachep, slabp);
3636 } else {
3637 list_add(&slabp->list, &l3->slabs_free);
3638 }
3639 } else {
3640 /* Unconditionally move a slab to the end of the
3641 * partial list on free - maximum time for the
3642 * other objects to be freed, too.
3643 */
3644 list_add_tail(&slabp->list, &l3->slabs_partial);
3645 }
3646 }
3647 }
3648
3649 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3650 {
3651 int batchcount;
3652 struct kmem_list3 *l3;
3653 int node = numa_mem_id();
3654
3655 batchcount = ac->batchcount;
3656 #if DEBUG
3657 BUG_ON(!batchcount || batchcount > ac->avail);
3658 #endif
3659 check_irq_off();
3660 l3 = cachep->nodelists[node];
3661 spin_lock(&l3->list_lock);
3662 if (l3->shared) {
3663 struct array_cache *shared_array = l3->shared;
3664 int max = shared_array->limit - shared_array->avail;
3665 if (max) {
3666 if (batchcount > max)
3667 batchcount = max;
3668 memcpy(&(shared_array->entry[shared_array->avail]),
3669 ac->entry, sizeof(void *) * batchcount);
3670 shared_array->avail += batchcount;
3671 goto free_done;
3672 }
3673 }
3674
3675 free_block(cachep, ac->entry, batchcount, node);
3676 free_done:
3677 #if STATS
3678 {
3679 int i = 0;
3680 struct list_head *p;
3681
3682 p = l3->slabs_free.next;
3683 while (p != &(l3->slabs_free)) {
3684 struct slab *slabp;
3685
3686 slabp = list_entry(p, struct slab, list);
3687 BUG_ON(slabp->inuse);
3688
3689 i++;
3690 p = p->next;
3691 }
3692 STATS_SET_FREEABLE(cachep, i);
3693 }
3694 #endif
3695 spin_unlock(&l3->list_lock);
3696 ac->avail -= batchcount;
3697 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3698 }
3699
3700 /*
3701 * Release an obj back to its cache. If the obj has a constructed state, it must
3702 * be in this state _before_ it is released. Called with disabled ints.
3703 */
3704 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3705 unsigned long caller)
3706 {
3707 struct array_cache *ac = cpu_cache_get(cachep);
3708
3709 check_irq_off();
3710 kmemleak_free_recursive(objp, cachep->flags);
3711 objp = cache_free_debugcheck(cachep, objp, caller);
3712
3713 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3714
3715 /*
3716 * Skip calling cache_free_alien() when the platform is not numa.
3717 * This will avoid cache misses that happen while accessing slabp (which
3718 * is per page memory reference) to get nodeid. Instead use a global
3719 * variable to skip the call, which is mostly likely to be present in
3720 * the cache.
3721 */
3722 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3723 return;
3724
3725 if (likely(ac->avail < ac->limit)) {
3726 STATS_INC_FREEHIT(cachep);
3727 } else {
3728 STATS_INC_FREEMISS(cachep);
3729 cache_flusharray(cachep, ac);
3730 }
3731
3732 ac_put_obj(cachep, ac, objp);
3733 }
3734
3735 /**
3736 * kmem_cache_alloc - Allocate an object
3737 * @cachep: The cache to allocate from.
3738 * @flags: See kmalloc().
3739 *
3740 * Allocate an object from this cache. The flags are only relevant
3741 * if the cache has no available objects.
3742 */
3743 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3744 {
3745 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3746
3747 trace_kmem_cache_alloc(_RET_IP_, ret,
3748 cachep->object_size, cachep->size, flags);
3749
3750 return ret;
3751 }
3752 EXPORT_SYMBOL(kmem_cache_alloc);
3753
3754 #ifdef CONFIG_TRACING
3755 void *
3756 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3757 {
3758 void *ret;
3759
3760 ret = slab_alloc(cachep, flags, _RET_IP_);
3761
3762 trace_kmalloc(_RET_IP_, ret,
3763 size, cachep->size, flags);
3764 return ret;
3765 }
3766 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3767 #endif
3768
3769 #ifdef CONFIG_NUMA
3770 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3771 {
3772 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3773
3774 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3775 cachep->object_size, cachep->size,
3776 flags, nodeid);
3777
3778 return ret;
3779 }
3780 EXPORT_SYMBOL(kmem_cache_alloc_node);
3781
3782 #ifdef CONFIG_TRACING
3783 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3784 gfp_t flags,
3785 int nodeid,
3786 size_t size)
3787 {
3788 void *ret;
3789
3790 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3791
3792 trace_kmalloc_node(_RET_IP_, ret,
3793 size, cachep->size,
3794 flags, nodeid);
3795 return ret;
3796 }
3797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3798 #endif
3799
3800 static __always_inline void *
3801 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3802 {
3803 struct kmem_cache *cachep;
3804
3805 cachep = kmem_find_general_cachep(size, flags);
3806 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3807 return cachep;
3808 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3809 }
3810
3811 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3812 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3813 {
3814 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3815 }
3816 EXPORT_SYMBOL(__kmalloc_node);
3817
3818 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3819 int node, unsigned long caller)
3820 {
3821 return __do_kmalloc_node(size, flags, node, caller);
3822 }
3823 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3824 #else
3825 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3826 {
3827 return __do_kmalloc_node(size, flags, node, 0);
3828 }
3829 EXPORT_SYMBOL(__kmalloc_node);
3830 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3831 #endif /* CONFIG_NUMA */
3832
3833 /**
3834 * __do_kmalloc - allocate memory
3835 * @size: how many bytes of memory are required.
3836 * @flags: the type of memory to allocate (see kmalloc).
3837 * @caller: function caller for debug tracking of the caller
3838 */
3839 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3840 unsigned long caller)
3841 {
3842 struct kmem_cache *cachep;
3843 void *ret;
3844
3845 /* If you want to save a few bytes .text space: replace
3846 * __ with kmem_.
3847 * Then kmalloc uses the uninlined functions instead of the inline
3848 * functions.
3849 */
3850 cachep = __find_general_cachep(size, flags);
3851 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3852 return cachep;
3853 ret = slab_alloc(cachep, flags, caller);
3854
3855 trace_kmalloc(caller, ret,
3856 size, cachep->size, flags);
3857
3858 return ret;
3859 }
3860
3861
3862 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3863 void *__kmalloc(size_t size, gfp_t flags)
3864 {
3865 return __do_kmalloc(size, flags, _RET_IP_);
3866 }
3867 EXPORT_SYMBOL(__kmalloc);
3868
3869 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3870 {
3871 return __do_kmalloc(size, flags, caller);
3872 }
3873 EXPORT_SYMBOL(__kmalloc_track_caller);
3874
3875 #else
3876 void *__kmalloc(size_t size, gfp_t flags)
3877 {
3878 return __do_kmalloc(size, flags, 0);
3879 }
3880 EXPORT_SYMBOL(__kmalloc);
3881 #endif
3882
3883 /**
3884 * kmem_cache_free - Deallocate an object
3885 * @cachep: The cache the allocation was from.
3886 * @objp: The previously allocated object.
3887 *
3888 * Free an object which was previously allocated from this
3889 * cache.
3890 */
3891 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3892 {
3893 unsigned long flags;
3894 cachep = cache_from_obj(cachep, objp);
3895 if (!cachep)
3896 return;
3897
3898 local_irq_save(flags);
3899 debug_check_no_locks_freed(objp, cachep->object_size);
3900 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3901 debug_check_no_obj_freed(objp, cachep->object_size);
3902 __cache_free(cachep, objp, _RET_IP_);
3903 local_irq_restore(flags);
3904
3905 trace_kmem_cache_free(_RET_IP_, objp);
3906 }
3907 EXPORT_SYMBOL(kmem_cache_free);
3908
3909 /**
3910 * kfree - free previously allocated memory
3911 * @objp: pointer returned by kmalloc.
3912 *
3913 * If @objp is NULL, no operation is performed.
3914 *
3915 * Don't free memory not originally allocated by kmalloc()
3916 * or you will run into trouble.
3917 */
3918 void kfree(const void *objp)
3919 {
3920 struct kmem_cache *c;
3921 unsigned long flags;
3922
3923 trace_kfree(_RET_IP_, objp);
3924
3925 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3926 return;
3927 local_irq_save(flags);
3928 kfree_debugcheck(objp);
3929 c = virt_to_cache(objp);
3930 debug_check_no_locks_freed(objp, c->object_size);
3931
3932 debug_check_no_obj_freed(objp, c->object_size);
3933 __cache_free(c, (void *)objp, _RET_IP_);
3934 local_irq_restore(flags);
3935 }
3936 EXPORT_SYMBOL(kfree);
3937
3938 /*
3939 * This initializes kmem_list3 or resizes various caches for all nodes.
3940 */
3941 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3942 {
3943 int node;
3944 struct kmem_list3 *l3;
3945 struct array_cache *new_shared;
3946 struct array_cache **new_alien = NULL;
3947
3948 for_each_online_node(node) {
3949
3950 if (use_alien_caches) {
3951 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3952 if (!new_alien)
3953 goto fail;
3954 }
3955
3956 new_shared = NULL;
3957 if (cachep->shared) {
3958 new_shared = alloc_arraycache(node,
3959 cachep->shared*cachep->batchcount,
3960 0xbaadf00d, gfp);
3961 if (!new_shared) {
3962 free_alien_cache(new_alien);
3963 goto fail;
3964 }
3965 }
3966
3967 l3 = cachep->nodelists[node];
3968 if (l3) {
3969 struct array_cache *shared = l3->shared;
3970
3971 spin_lock_irq(&l3->list_lock);
3972
3973 if (shared)
3974 free_block(cachep, shared->entry,
3975 shared->avail, node);
3976
3977 l3->shared = new_shared;
3978 if (!l3->alien) {
3979 l3->alien = new_alien;
3980 new_alien = NULL;
3981 }
3982 l3->free_limit = (1 + nr_cpus_node(node)) *
3983 cachep->batchcount + cachep->num;
3984 spin_unlock_irq(&l3->list_lock);
3985 kfree(shared);
3986 free_alien_cache(new_alien);
3987 continue;
3988 }
3989 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3990 if (!l3) {
3991 free_alien_cache(new_alien);
3992 kfree(new_shared);
3993 goto fail;
3994 }
3995
3996 kmem_list3_init(l3);
3997 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3998 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3999 l3->shared = new_shared;
4000 l3->alien = new_alien;
4001 l3->free_limit = (1 + nr_cpus_node(node)) *
4002 cachep->batchcount + cachep->num;
4003 cachep->nodelists[node] = l3;
4004 }
4005 return 0;
4006
4007 fail:
4008 if (!cachep->list.next) {
4009 /* Cache is not active yet. Roll back what we did */
4010 node--;
4011 while (node >= 0) {
4012 if (cachep->nodelists[node]) {
4013 l3 = cachep->nodelists[node];
4014
4015 kfree(l3->shared);
4016 free_alien_cache(l3->alien);
4017 kfree(l3);
4018 cachep->nodelists[node] = NULL;
4019 }
4020 node--;
4021 }
4022 }
4023 return -ENOMEM;
4024 }
4025
4026 struct ccupdate_struct {
4027 struct kmem_cache *cachep;
4028 struct array_cache *new[0];
4029 };
4030
4031 static void do_ccupdate_local(void *info)
4032 {
4033 struct ccupdate_struct *new = info;
4034 struct array_cache *old;
4035
4036 check_irq_off();
4037 old = cpu_cache_get(new->cachep);
4038
4039 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4040 new->new[smp_processor_id()] = old;
4041 }
4042
4043 /* Always called with the slab_mutex held */
4044 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
4045 int batchcount, int shared, gfp_t gfp)
4046 {
4047 struct ccupdate_struct *new;
4048 int i;
4049
4050 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4051 gfp);
4052 if (!new)
4053 return -ENOMEM;
4054
4055 for_each_online_cpu(i) {
4056 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4057 batchcount, gfp);
4058 if (!new->new[i]) {
4059 for (i--; i >= 0; i--)
4060 kfree(new->new[i]);
4061 kfree(new);
4062 return -ENOMEM;
4063 }
4064 }
4065 new->cachep = cachep;
4066
4067 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4068
4069 check_irq_on();
4070 cachep->batchcount = batchcount;
4071 cachep->limit = limit;
4072 cachep->shared = shared;
4073
4074 for_each_online_cpu(i) {
4075 struct array_cache *ccold = new->new[i];
4076 if (!ccold)
4077 continue;
4078 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4079 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4080 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4081 kfree(ccold);
4082 }
4083 kfree(new);
4084 return alloc_kmemlist(cachep, gfp);
4085 }
4086
4087 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4088 int batchcount, int shared, gfp_t gfp)
4089 {
4090 int ret;
4091 struct kmem_cache *c = NULL;
4092 int i = 0;
4093
4094 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4095
4096 if (slab_state < FULL)
4097 return ret;
4098
4099 if ((ret < 0) || !is_root_cache(cachep))
4100 return ret;
4101
4102 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
4103 for_each_memcg_cache_index(i) {
4104 c = cache_from_memcg(cachep, i);
4105 if (c)
4106 /* return value determined by the parent cache only */
4107 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4108 }
4109
4110 return ret;
4111 }
4112
4113 /* Called with slab_mutex held always */
4114 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4115 {
4116 int err;
4117 int limit = 0;
4118 int shared = 0;
4119 int batchcount = 0;
4120
4121 if (!is_root_cache(cachep)) {
4122 struct kmem_cache *root = memcg_root_cache(cachep);
4123 limit = root->limit;
4124 shared = root->shared;
4125 batchcount = root->batchcount;
4126 }
4127
4128 if (limit && shared && batchcount)
4129 goto skip_setup;
4130 /*
4131 * The head array serves three purposes:
4132 * - create a LIFO ordering, i.e. return objects that are cache-warm
4133 * - reduce the number of spinlock operations.
4134 * - reduce the number of linked list operations on the slab and
4135 * bufctl chains: array operations are cheaper.
4136 * The numbers are guessed, we should auto-tune as described by
4137 * Bonwick.
4138 */
4139 if (cachep->size > 131072)
4140 limit = 1;
4141 else if (cachep->size > PAGE_SIZE)
4142 limit = 8;
4143 else if (cachep->size > 1024)
4144 limit = 24;
4145 else if (cachep->size > 256)
4146 limit = 54;
4147 else
4148 limit = 120;
4149
4150 /*
4151 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4152 * allocation behaviour: Most allocs on one cpu, most free operations
4153 * on another cpu. For these cases, an efficient object passing between
4154 * cpus is necessary. This is provided by a shared array. The array
4155 * replaces Bonwick's magazine layer.
4156 * On uniprocessor, it's functionally equivalent (but less efficient)
4157 * to a larger limit. Thus disabled by default.
4158 */
4159 shared = 0;
4160 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4161 shared = 8;
4162
4163 #if DEBUG
4164 /*
4165 * With debugging enabled, large batchcount lead to excessively long
4166 * periods with disabled local interrupts. Limit the batchcount
4167 */
4168 if (limit > 32)
4169 limit = 32;
4170 #endif
4171 batchcount = (limit + 1) / 2;
4172 skip_setup:
4173 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4174 if (err)
4175 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4176 cachep->name, -err);
4177 return err;
4178 }
4179
4180 /*
4181 * Drain an array if it contains any elements taking the l3 lock only if
4182 * necessary. Note that the l3 listlock also protects the array_cache
4183 * if drain_array() is used on the shared array.
4184 */
4185 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4186 struct array_cache *ac, int force, int node)
4187 {
4188 int tofree;
4189
4190 if (!ac || !ac->avail)
4191 return;
4192 if (ac->touched && !force) {
4193 ac->touched = 0;
4194 } else {
4195 spin_lock_irq(&l3->list_lock);
4196 if (ac->avail) {
4197 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4198 if (tofree > ac->avail)
4199 tofree = (ac->avail + 1) / 2;
4200 free_block(cachep, ac->entry, tofree, node);
4201 ac->avail -= tofree;
4202 memmove(ac->entry, &(ac->entry[tofree]),
4203 sizeof(void *) * ac->avail);
4204 }
4205 spin_unlock_irq(&l3->list_lock);
4206 }
4207 }
4208
4209 /**
4210 * cache_reap - Reclaim memory from caches.
4211 * @w: work descriptor
4212 *
4213 * Called from workqueue/eventd every few seconds.
4214 * Purpose:
4215 * - clear the per-cpu caches for this CPU.
4216 * - return freeable pages to the main free memory pool.
4217 *
4218 * If we cannot acquire the cache chain mutex then just give up - we'll try
4219 * again on the next iteration.
4220 */
4221 static void cache_reap(struct work_struct *w)
4222 {
4223 struct kmem_cache *searchp;
4224 struct kmem_list3 *l3;
4225 int node = numa_mem_id();
4226 struct delayed_work *work = to_delayed_work(w);
4227
4228 if (!mutex_trylock(&slab_mutex))
4229 /* Give up. Setup the next iteration. */
4230 goto out;
4231
4232 list_for_each_entry(searchp, &slab_caches, list) {
4233 check_irq_on();
4234
4235 /*
4236 * We only take the l3 lock if absolutely necessary and we
4237 * have established with reasonable certainty that
4238 * we can do some work if the lock was obtained.
4239 */
4240 l3 = searchp->nodelists[node];
4241
4242 reap_alien(searchp, l3);
4243
4244 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4245
4246 /*
4247 * These are racy checks but it does not matter
4248 * if we skip one check or scan twice.
4249 */
4250 if (time_after(l3->next_reap, jiffies))
4251 goto next;
4252
4253 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4254
4255 drain_array(searchp, l3, l3->shared, 0, node);
4256
4257 if (l3->free_touched)
4258 l3->free_touched = 0;
4259 else {
4260 int freed;
4261
4262 freed = drain_freelist(searchp, l3, (l3->free_limit +
4263 5 * searchp->num - 1) / (5 * searchp->num));
4264 STATS_ADD_REAPED(searchp, freed);
4265 }
4266 next:
4267 cond_resched();
4268 }
4269 check_irq_on();
4270 mutex_unlock(&slab_mutex);
4271 next_reap_node();
4272 out:
4273 /* Set up the next iteration */
4274 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4275 }
4276
4277 #ifdef CONFIG_SLABINFO
4278 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4279 {
4280 struct slab *slabp;
4281 unsigned long active_objs;
4282 unsigned long num_objs;
4283 unsigned long active_slabs = 0;
4284 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4285 const char *name;
4286 char *error = NULL;
4287 int node;
4288 struct kmem_list3 *l3;
4289
4290 active_objs = 0;
4291 num_slabs = 0;
4292 for_each_online_node(node) {
4293 l3 = cachep->nodelists[node];
4294 if (!l3)
4295 continue;
4296
4297 check_irq_on();
4298 spin_lock_irq(&l3->list_lock);
4299
4300 list_for_each_entry(slabp, &l3->slabs_full, list) {
4301 if (slabp->inuse != cachep->num && !error)
4302 error = "slabs_full accounting error";
4303 active_objs += cachep->num;
4304 active_slabs++;
4305 }
4306 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4307 if (slabp->inuse == cachep->num && !error)
4308 error = "slabs_partial inuse accounting error";
4309 if (!slabp->inuse && !error)
4310 error = "slabs_partial/inuse accounting error";
4311 active_objs += slabp->inuse;
4312 active_slabs++;
4313 }
4314 list_for_each_entry(slabp, &l3->slabs_free, list) {
4315 if (slabp->inuse && !error)
4316 error = "slabs_free/inuse accounting error";
4317 num_slabs++;
4318 }
4319 free_objects += l3->free_objects;
4320 if (l3->shared)
4321 shared_avail += l3->shared->avail;
4322
4323 spin_unlock_irq(&l3->list_lock);
4324 }
4325 num_slabs += active_slabs;
4326 num_objs = num_slabs * cachep->num;
4327 if (num_objs - active_objs != free_objects && !error)
4328 error = "free_objects accounting error";
4329
4330 name = cachep->name;
4331 if (error)
4332 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4333
4334 sinfo->active_objs = active_objs;
4335 sinfo->num_objs = num_objs;
4336 sinfo->active_slabs = active_slabs;
4337 sinfo->num_slabs = num_slabs;
4338 sinfo->shared_avail = shared_avail;
4339 sinfo->limit = cachep->limit;
4340 sinfo->batchcount = cachep->batchcount;
4341 sinfo->shared = cachep->shared;
4342 sinfo->objects_per_slab = cachep->num;
4343 sinfo->cache_order = cachep->gfporder;
4344 }
4345
4346 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4347 {
4348 #if STATS
4349 { /* list3 stats */
4350 unsigned long high = cachep->high_mark;
4351 unsigned long allocs = cachep->num_allocations;
4352 unsigned long grown = cachep->grown;
4353 unsigned long reaped = cachep->reaped;
4354 unsigned long errors = cachep->errors;
4355 unsigned long max_freeable = cachep->max_freeable;
4356 unsigned long node_allocs = cachep->node_allocs;
4357 unsigned long node_frees = cachep->node_frees;
4358 unsigned long overflows = cachep->node_overflow;
4359
4360 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4361 "%4lu %4lu %4lu %4lu %4lu",
4362 allocs, high, grown,
4363 reaped, errors, max_freeable, node_allocs,
4364 node_frees, overflows);
4365 }
4366 /* cpu stats */
4367 {
4368 unsigned long allochit = atomic_read(&cachep->allochit);
4369 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4370 unsigned long freehit = atomic_read(&cachep->freehit);
4371 unsigned long freemiss = atomic_read(&cachep->freemiss);
4372
4373 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4374 allochit, allocmiss, freehit, freemiss);
4375 }
4376 #endif
4377 }
4378
4379 #define MAX_SLABINFO_WRITE 128
4380 /**
4381 * slabinfo_write - Tuning for the slab allocator
4382 * @file: unused
4383 * @buffer: user buffer
4384 * @count: data length
4385 * @ppos: unused
4386 */
4387 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4388 size_t count, loff_t *ppos)
4389 {
4390 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4391 int limit, batchcount, shared, res;
4392 struct kmem_cache *cachep;
4393
4394 if (count > MAX_SLABINFO_WRITE)
4395 return -EINVAL;
4396 if (copy_from_user(&kbuf, buffer, count))
4397 return -EFAULT;
4398 kbuf[MAX_SLABINFO_WRITE] = '\0';
4399
4400 tmp = strchr(kbuf, ' ');
4401 if (!tmp)
4402 return -EINVAL;
4403 *tmp = '\0';
4404 tmp++;
4405 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4406 return -EINVAL;
4407
4408 /* Find the cache in the chain of caches. */
4409 mutex_lock(&slab_mutex);
4410 res = -EINVAL;
4411 list_for_each_entry(cachep, &slab_caches, list) {
4412 if (!strcmp(cachep->name, kbuf)) {
4413 if (limit < 1 || batchcount < 1 ||
4414 batchcount > limit || shared < 0) {
4415 res = 0;
4416 } else {
4417 res = do_tune_cpucache(cachep, limit,
4418 batchcount, shared,
4419 GFP_KERNEL);
4420 }
4421 break;
4422 }
4423 }
4424 mutex_unlock(&slab_mutex);
4425 if (res >= 0)
4426 res = count;
4427 return res;
4428 }
4429
4430 #ifdef CONFIG_DEBUG_SLAB_LEAK
4431
4432 static void *leaks_start(struct seq_file *m, loff_t *pos)
4433 {
4434 mutex_lock(&slab_mutex);
4435 return seq_list_start(&slab_caches, *pos);
4436 }
4437
4438 static inline int add_caller(unsigned long *n, unsigned long v)
4439 {
4440 unsigned long *p;
4441 int l;
4442 if (!v)
4443 return 1;
4444 l = n[1];
4445 p = n + 2;
4446 while (l) {
4447 int i = l/2;
4448 unsigned long *q = p + 2 * i;
4449 if (*q == v) {
4450 q[1]++;
4451 return 1;
4452 }
4453 if (*q > v) {
4454 l = i;
4455 } else {
4456 p = q + 2;
4457 l -= i + 1;
4458 }
4459 }
4460 if (++n[1] == n[0])
4461 return 0;
4462 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4463 p[0] = v;
4464 p[1] = 1;
4465 return 1;
4466 }
4467
4468 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4469 {
4470 void *p;
4471 int i;
4472 if (n[0] == n[1])
4473 return;
4474 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4475 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4476 continue;
4477 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4478 return;
4479 }
4480 }
4481
4482 static void show_symbol(struct seq_file *m, unsigned long address)
4483 {
4484 #ifdef CONFIG_KALLSYMS
4485 unsigned long offset, size;
4486 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4487
4488 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4489 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4490 if (modname[0])
4491 seq_printf(m, " [%s]", modname);
4492 return;
4493 }
4494 #endif
4495 seq_printf(m, "%p", (void *)address);
4496 }
4497
4498 static int leaks_show(struct seq_file *m, void *p)
4499 {
4500 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4501 struct slab *slabp;
4502 struct kmem_list3 *l3;
4503 const char *name;
4504 unsigned long *n = m->private;
4505 int node;
4506 int i;
4507
4508 if (!(cachep->flags & SLAB_STORE_USER))
4509 return 0;
4510 if (!(cachep->flags & SLAB_RED_ZONE))
4511 return 0;
4512
4513 /* OK, we can do it */
4514
4515 n[1] = 0;
4516
4517 for_each_online_node(node) {
4518 l3 = cachep->nodelists[node];
4519 if (!l3)
4520 continue;
4521
4522 check_irq_on();
4523 spin_lock_irq(&l3->list_lock);
4524
4525 list_for_each_entry(slabp, &l3->slabs_full, list)
4526 handle_slab(n, cachep, slabp);
4527 list_for_each_entry(slabp, &l3->slabs_partial, list)
4528 handle_slab(n, cachep, slabp);
4529 spin_unlock_irq(&l3->list_lock);
4530 }
4531 name = cachep->name;
4532 if (n[0] == n[1]) {
4533 /* Increase the buffer size */
4534 mutex_unlock(&slab_mutex);
4535 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4536 if (!m->private) {
4537 /* Too bad, we are really out */
4538 m->private = n;
4539 mutex_lock(&slab_mutex);
4540 return -ENOMEM;
4541 }
4542 *(unsigned long *)m->private = n[0] * 2;
4543 kfree(n);
4544 mutex_lock(&slab_mutex);
4545 /* Now make sure this entry will be retried */
4546 m->count = m->size;
4547 return 0;
4548 }
4549 for (i = 0; i < n[1]; i++) {
4550 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4551 show_symbol(m, n[2*i+2]);
4552 seq_putc(m, '\n');
4553 }
4554
4555 return 0;
4556 }
4557
4558 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4559 {
4560 return seq_list_next(p, &slab_caches, pos);
4561 }
4562
4563 static void s_stop(struct seq_file *m, void *p)
4564 {
4565 mutex_unlock(&slab_mutex);
4566 }
4567
4568 static const struct seq_operations slabstats_op = {
4569 .start = leaks_start,
4570 .next = s_next,
4571 .stop = s_stop,
4572 .show = leaks_show,
4573 };
4574
4575 static int slabstats_open(struct inode *inode, struct file *file)
4576 {
4577 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4578 int ret = -ENOMEM;
4579 if (n) {
4580 ret = seq_open(file, &slabstats_op);
4581 if (!ret) {
4582 struct seq_file *m = file->private_data;
4583 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4584 m->private = n;
4585 n = NULL;
4586 }
4587 kfree(n);
4588 }
4589 return ret;
4590 }
4591
4592 static const struct file_operations proc_slabstats_operations = {
4593 .open = slabstats_open,
4594 .read = seq_read,
4595 .llseek = seq_lseek,
4596 .release = seq_release_private,
4597 };
4598 #endif
4599
4600 static int __init slab_proc_init(void)
4601 {
4602 #ifdef CONFIG_DEBUG_SLAB_LEAK
4603 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4604 #endif
4605 return 0;
4606 }
4607 module_init(slab_proc_init);
4608 #endif
4609
4610 /**
4611 * ksize - get the actual amount of memory allocated for a given object
4612 * @objp: Pointer to the object
4613 *
4614 * kmalloc may internally round up allocations and return more memory
4615 * than requested. ksize() can be used to determine the actual amount of
4616 * memory allocated. The caller may use this additional memory, even though
4617 * a smaller amount of memory was initially specified with the kmalloc call.
4618 * The caller must guarantee that objp points to a valid object previously
4619 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4620 * must not be freed during the duration of the call.
4621 */
4622 size_t ksize(const void *objp)
4623 {
4624 BUG_ON(!objp);
4625 if (unlikely(objp == ZERO_SIZE_PTR))
4626 return 0;
4627
4628 return virt_to_cache(objp)->object_size;
4629 }
4630 EXPORT_SYMBOL(ksize);