646db3085193ba6d1333588ab39ac62ed4c13a6c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
122
123 /*
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
142
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146
147 #ifndef ARCH_KMALLOC_MINALIGN
148 /*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
156 */
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159
160 #ifndef ARCH_SLAB_MINALIGN
161 /*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
170
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
174
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK (SLAB_RED_ZONE | \
178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | \
180 SLAB_STORE_USER | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_CACHE_DMA | \
187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
191
192 /*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216
217 /*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224 struct slab {
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
231 };
232
233 /*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249 struct slab_rcu {
250 struct rcu_head head;
251 struct kmem_cache *cachep;
252 void *addr;
253 };
254
255 /*
256 * struct array_cache
257 *
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267 struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
272 spinlock_t lock;
273 void *entry[]; /*
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
277 */
278 };
279
280 /*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
283 */
284 #define BOOT_CPUCACHE_ENTRIES 1
285 struct arraycache_init {
286 struct array_cache cache;
287 void *entries[BOOT_CPUCACHE_ENTRIES];
288 };
289
290 /*
291 * The slab lists for all objects.
292 */
293 struct kmem_list3 {
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
298 unsigned int free_limit;
299 unsigned int colour_next; /* Per-node cache coloring */
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
305 };
306
307 /*
308 * Need this for bootstrapping a per node allocator.
309 */
310 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312 #define CACHE_CACHE 0
313 #define SIZE_AC MAX_NUMNODES
314 #define SIZE_L3 (2 * MAX_NUMNODES)
315
316 static int drain_freelist(struct kmem_cache *cache,
317 struct kmem_list3 *l3, int tofree);
318 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 int node);
320 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321 static void cache_reap(struct work_struct *unused);
322
323 /*
324 * This function must be completely optimized away if a constant is passed to
325 * it. Mostly the same as what is in linux/slab.h except it returns an index.
326 */
327 static __always_inline int index_of(const size_t size)
328 {
329 extern void __bad_size(void);
330
331 if (__builtin_constant_p(size)) {
332 int i = 0;
333
334 #define CACHE(x) \
335 if (size <=x) \
336 return i; \
337 else \
338 i++;
339 #include <linux/kmalloc_sizes.h>
340 #undef CACHE
341 __bad_size();
342 } else
343 __bad_size();
344 return 0;
345 }
346
347 static int slab_early_init = 1;
348
349 #define INDEX_AC index_of(sizeof(struct arraycache_init))
350 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
351
352 static void kmem_list3_init(struct kmem_list3 *parent)
353 {
354 INIT_LIST_HEAD(&parent->slabs_full);
355 INIT_LIST_HEAD(&parent->slabs_partial);
356 INIT_LIST_HEAD(&parent->slabs_free);
357 parent->shared = NULL;
358 parent->alien = NULL;
359 parent->colour_next = 0;
360 spin_lock_init(&parent->list_lock);
361 parent->free_objects = 0;
362 parent->free_touched = 0;
363 }
364
365 #define MAKE_LIST(cachep, listp, slab, nodeid) \
366 do { \
367 INIT_LIST_HEAD(listp); \
368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 } while (0)
370
371 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 do { \
373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 } while (0)
377
378 #define CFLGS_OFF_SLAB (0x80000000UL)
379 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
380
381 #define BATCHREFILL_LIMIT 16
382 /*
383 * Optimization question: fewer reaps means less probability for unnessary
384 * cpucache drain/refill cycles.
385 *
386 * OTOH the cpuarrays can contain lots of objects,
387 * which could lock up otherwise freeable slabs.
388 */
389 #define REAPTIMEOUT_CPUC (2*HZ)
390 #define REAPTIMEOUT_LIST3 (4*HZ)
391
392 #if STATS
393 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
394 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
395 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
396 #define STATS_INC_GROWN(x) ((x)->grown++)
397 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
398 #define STATS_SET_HIGH(x) \
399 do { \
400 if ((x)->num_active > (x)->high_mark) \
401 (x)->high_mark = (x)->num_active; \
402 } while (0)
403 #define STATS_INC_ERR(x) ((x)->errors++)
404 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
405 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
406 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
407 #define STATS_SET_FREEABLE(x, i) \
408 do { \
409 if ((x)->max_freeable < i) \
410 (x)->max_freeable = i; \
411 } while (0)
412 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
413 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
414 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
415 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
416 #else
417 #define STATS_INC_ACTIVE(x) do { } while (0)
418 #define STATS_DEC_ACTIVE(x) do { } while (0)
419 #define STATS_INC_ALLOCED(x) do { } while (0)
420 #define STATS_INC_GROWN(x) do { } while (0)
421 #define STATS_ADD_REAPED(x,y) do { } while (0)
422 #define STATS_SET_HIGH(x) do { } while (0)
423 #define STATS_INC_ERR(x) do { } while (0)
424 #define STATS_INC_NODEALLOCS(x) do { } while (0)
425 #define STATS_INC_NODEFREES(x) do { } while (0)
426 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
427 #define STATS_SET_FREEABLE(x, i) do { } while (0)
428 #define STATS_INC_ALLOCHIT(x) do { } while (0)
429 #define STATS_INC_ALLOCMISS(x) do { } while (0)
430 #define STATS_INC_FREEHIT(x) do { } while (0)
431 #define STATS_INC_FREEMISS(x) do { } while (0)
432 #endif
433
434 #if DEBUG
435
436 /*
437 * memory layout of objects:
438 * 0 : objp
439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
440 * the end of an object is aligned with the end of the real
441 * allocation. Catches writes behind the end of the allocation.
442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
443 * redzone word.
444 * cachep->obj_offset: The real object.
445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447 * [BYTES_PER_WORD long]
448 */
449 static int obj_offset(struct kmem_cache *cachep)
450 {
451 return cachep->obj_offset;
452 }
453
454 static int obj_size(struct kmem_cache *cachep)
455 {
456 return cachep->obj_size;
457 }
458
459 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 return (unsigned long long*) (objp + obj_offset(cachep) -
463 sizeof(unsigned long long));
464 }
465
466 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
467 {
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 if (cachep->flags & SLAB_STORE_USER)
470 return (unsigned long long *)(objp + cachep->buffer_size -
471 sizeof(unsigned long long) -
472 REDZONE_ALIGN);
473 return (unsigned long long *) (objp + cachep->buffer_size -
474 sizeof(unsigned long long));
475 }
476
477 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
478 {
479 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
481 }
482
483 #else
484
485 #define obj_offset(x) 0
486 #define obj_size(cachep) (cachep->buffer_size)
487 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
488 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
489 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
490
491 #endif
492
493 #ifdef CONFIG_KMEMTRACE
494 size_t slab_buffer_size(struct kmem_cache *cachep)
495 {
496 return cachep->buffer_size;
497 }
498 EXPORT_SYMBOL(slab_buffer_size);
499 #endif
500
501 /*
502 * Do not go above this order unless 0 objects fit into the slab.
503 */
504 #define BREAK_GFP_ORDER_HI 1
505 #define BREAK_GFP_ORDER_LO 0
506 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
507
508 /*
509 * Functions for storing/retrieving the cachep and or slab from the page
510 * allocator. These are used to find the slab an obj belongs to. With kfree(),
511 * these are used to find the cache which an obj belongs to.
512 */
513 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
514 {
515 page->lru.next = (struct list_head *)cache;
516 }
517
518 static inline struct kmem_cache *page_get_cache(struct page *page)
519 {
520 page = compound_head(page);
521 BUG_ON(!PageSlab(page));
522 return (struct kmem_cache *)page->lru.next;
523 }
524
525 static inline void page_set_slab(struct page *page, struct slab *slab)
526 {
527 page->lru.prev = (struct list_head *)slab;
528 }
529
530 static inline struct slab *page_get_slab(struct page *page)
531 {
532 BUG_ON(!PageSlab(page));
533 return (struct slab *)page->lru.prev;
534 }
535
536 static inline struct kmem_cache *virt_to_cache(const void *obj)
537 {
538 struct page *page = virt_to_head_page(obj);
539 return page_get_cache(page);
540 }
541
542 static inline struct slab *virt_to_slab(const void *obj)
543 {
544 struct page *page = virt_to_head_page(obj);
545 return page_get_slab(page);
546 }
547
548 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 unsigned int idx)
550 {
551 return slab->s_mem + cache->buffer_size * idx;
552 }
553
554 /*
555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
556 * Using the fact that buffer_size is a constant for a particular cache,
557 * we can replace (offset / cache->buffer_size) by
558 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
559 */
560 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 const struct slab *slab, void *obj)
562 {
563 u32 offset = (obj - slab->s_mem);
564 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 }
566
567 /*
568 * These are the default caches for kmalloc. Custom caches can have other sizes.
569 */
570 struct cache_sizes malloc_sizes[] = {
571 #define CACHE(x) { .cs_size = (x) },
572 #include <linux/kmalloc_sizes.h>
573 CACHE(ULONG_MAX)
574 #undef CACHE
575 };
576 EXPORT_SYMBOL(malloc_sizes);
577
578 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
579 struct cache_names {
580 char *name;
581 char *name_dma;
582 };
583
584 static struct cache_names __initdata cache_names[] = {
585 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586 #include <linux/kmalloc_sizes.h>
587 {NULL,}
588 #undef CACHE
589 };
590
591 static struct arraycache_init initarray_cache __initdata =
592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
593 static struct arraycache_init initarray_generic =
594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
595
596 /* internal cache of cache description objs */
597 static struct kmem_cache cache_cache = {
598 .batchcount = 1,
599 .limit = BOOT_CPUCACHE_ENTRIES,
600 .shared = 1,
601 .buffer_size = sizeof(struct kmem_cache),
602 .name = "kmem_cache",
603 };
604
605 #define BAD_ALIEN_MAGIC 0x01020304ul
606
607 #ifdef CONFIG_LOCKDEP
608
609 /*
610 * Slab sometimes uses the kmalloc slabs to store the slab headers
611 * for other slabs "off slab".
612 * The locking for this is tricky in that it nests within the locks
613 * of all other slabs in a few places; to deal with this special
614 * locking we put on-slab caches into a separate lock-class.
615 *
616 * We set lock class for alien array caches which are up during init.
617 * The lock annotation will be lost if all cpus of a node goes down and
618 * then comes back up during hotplug
619 */
620 static struct lock_class_key on_slab_l3_key;
621 static struct lock_class_key on_slab_alc_key;
622
623 static inline void init_lock_keys(void)
624
625 {
626 int q;
627 struct cache_sizes *s = malloc_sizes;
628
629 while (s->cs_size != ULONG_MAX) {
630 for_each_node(q) {
631 struct array_cache **alc;
632 int r;
633 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
634 if (!l3 || OFF_SLAB(s->cs_cachep))
635 continue;
636 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
637 alc = l3->alien;
638 /*
639 * FIXME: This check for BAD_ALIEN_MAGIC
640 * should go away when common slab code is taught to
641 * work even without alien caches.
642 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
643 * for alloc_alien_cache,
644 */
645 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
646 continue;
647 for_each_node(r) {
648 if (alc[r])
649 lockdep_set_class(&alc[r]->lock,
650 &on_slab_alc_key);
651 }
652 }
653 s++;
654 }
655 }
656 #else
657 static inline void init_lock_keys(void)
658 {
659 }
660 #endif
661
662 /*
663 * Guard access to the cache-chain.
664 */
665 static DEFINE_MUTEX(cache_chain_mutex);
666 static struct list_head cache_chain;
667
668 /*
669 * chicken and egg problem: delay the per-cpu array allocation
670 * until the general caches are up.
671 */
672 static enum {
673 NONE,
674 PARTIAL_AC,
675 PARTIAL_L3,
676 EARLY,
677 FULL
678 } g_cpucache_up;
679
680 /*
681 * used by boot code to determine if it can use slab based allocator
682 */
683 int slab_is_available(void)
684 {
685 return g_cpucache_up >= EARLY;
686 }
687
688 static DEFINE_PER_CPU(struct delayed_work, reap_work);
689
690 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
691 {
692 return cachep->array[smp_processor_id()];
693 }
694
695 static inline struct kmem_cache *__find_general_cachep(size_t size,
696 gfp_t gfpflags)
697 {
698 struct cache_sizes *csizep = malloc_sizes;
699
700 #if DEBUG
701 /* This happens if someone tries to call
702 * kmem_cache_create(), or __kmalloc(), before
703 * the generic caches are initialized.
704 */
705 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
706 #endif
707 if (!size)
708 return ZERO_SIZE_PTR;
709
710 while (size > csizep->cs_size)
711 csizep++;
712
713 /*
714 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
715 * has cs_{dma,}cachep==NULL. Thus no special case
716 * for large kmalloc calls required.
717 */
718 #ifdef CONFIG_ZONE_DMA
719 if (unlikely(gfpflags & GFP_DMA))
720 return csizep->cs_dmacachep;
721 #endif
722 return csizep->cs_cachep;
723 }
724
725 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
726 {
727 return __find_general_cachep(size, gfpflags);
728 }
729
730 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
731 {
732 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
733 }
734
735 /*
736 * Calculate the number of objects and left-over bytes for a given buffer size.
737 */
738 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
739 size_t align, int flags, size_t *left_over,
740 unsigned int *num)
741 {
742 int nr_objs;
743 size_t mgmt_size;
744 size_t slab_size = PAGE_SIZE << gfporder;
745
746 /*
747 * The slab management structure can be either off the slab or
748 * on it. For the latter case, the memory allocated for a
749 * slab is used for:
750 *
751 * - The struct slab
752 * - One kmem_bufctl_t for each object
753 * - Padding to respect alignment of @align
754 * - @buffer_size bytes for each object
755 *
756 * If the slab management structure is off the slab, then the
757 * alignment will already be calculated into the size. Because
758 * the slabs are all pages aligned, the objects will be at the
759 * correct alignment when allocated.
760 */
761 if (flags & CFLGS_OFF_SLAB) {
762 mgmt_size = 0;
763 nr_objs = slab_size / buffer_size;
764
765 if (nr_objs > SLAB_LIMIT)
766 nr_objs = SLAB_LIMIT;
767 } else {
768 /*
769 * Ignore padding for the initial guess. The padding
770 * is at most @align-1 bytes, and @buffer_size is at
771 * least @align. In the worst case, this result will
772 * be one greater than the number of objects that fit
773 * into the memory allocation when taking the padding
774 * into account.
775 */
776 nr_objs = (slab_size - sizeof(struct slab)) /
777 (buffer_size + sizeof(kmem_bufctl_t));
778
779 /*
780 * This calculated number will be either the right
781 * amount, or one greater than what we want.
782 */
783 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
784 > slab_size)
785 nr_objs--;
786
787 if (nr_objs > SLAB_LIMIT)
788 nr_objs = SLAB_LIMIT;
789
790 mgmt_size = slab_mgmt_size(nr_objs, align);
791 }
792 *num = nr_objs;
793 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
794 }
795
796 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
797
798 static void __slab_error(const char *function, struct kmem_cache *cachep,
799 char *msg)
800 {
801 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
802 function, cachep->name, msg);
803 dump_stack();
804 }
805
806 /*
807 * By default on NUMA we use alien caches to stage the freeing of
808 * objects allocated from other nodes. This causes massive memory
809 * inefficiencies when using fake NUMA setup to split memory into a
810 * large number of small nodes, so it can be disabled on the command
811 * line
812 */
813
814 static int use_alien_caches __read_mostly = 1;
815 static int __init noaliencache_setup(char *s)
816 {
817 use_alien_caches = 0;
818 return 1;
819 }
820 __setup("noaliencache", noaliencache_setup);
821
822 #ifdef CONFIG_NUMA
823 /*
824 * Special reaping functions for NUMA systems called from cache_reap().
825 * These take care of doing round robin flushing of alien caches (containing
826 * objects freed on different nodes from which they were allocated) and the
827 * flushing of remote pcps by calling drain_node_pages.
828 */
829 static DEFINE_PER_CPU(unsigned long, reap_node);
830
831 static void init_reap_node(int cpu)
832 {
833 int node;
834
835 node = next_node(cpu_to_node(cpu), node_online_map);
836 if (node == MAX_NUMNODES)
837 node = first_node(node_online_map);
838
839 per_cpu(reap_node, cpu) = node;
840 }
841
842 static void next_reap_node(void)
843 {
844 int node = __get_cpu_var(reap_node);
845
846 node = next_node(node, node_online_map);
847 if (unlikely(node >= MAX_NUMNODES))
848 node = first_node(node_online_map);
849 __get_cpu_var(reap_node) = node;
850 }
851
852 #else
853 #define init_reap_node(cpu) do { } while (0)
854 #define next_reap_node(void) do { } while (0)
855 #endif
856
857 /*
858 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
859 * via the workqueue/eventd.
860 * Add the CPU number into the expiration time to minimize the possibility of
861 * the CPUs getting into lockstep and contending for the global cache chain
862 * lock.
863 */
864 static void __cpuinit start_cpu_timer(int cpu)
865 {
866 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
867
868 /*
869 * When this gets called from do_initcalls via cpucache_init(),
870 * init_workqueues() has already run, so keventd will be setup
871 * at that time.
872 */
873 if (keventd_up() && reap_work->work.func == NULL) {
874 init_reap_node(cpu);
875 INIT_DELAYED_WORK(reap_work, cache_reap);
876 schedule_delayed_work_on(cpu, reap_work,
877 __round_jiffies_relative(HZ, cpu));
878 }
879 }
880
881 static struct array_cache *alloc_arraycache(int node, int entries,
882 int batchcount, gfp_t gfp)
883 {
884 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
885 struct array_cache *nc = NULL;
886
887 nc = kmalloc_node(memsize, gfp, node);
888 /*
889 * The array_cache structures contain pointers to free object.
890 * However, when such objects are allocated or transfered to another
891 * cache the pointers are not cleared and they could be counted as
892 * valid references during a kmemleak scan. Therefore, kmemleak must
893 * not scan such objects.
894 */
895 kmemleak_no_scan(nc);
896 if (nc) {
897 nc->avail = 0;
898 nc->limit = entries;
899 nc->batchcount = batchcount;
900 nc->touched = 0;
901 spin_lock_init(&nc->lock);
902 }
903 return nc;
904 }
905
906 /*
907 * Transfer objects in one arraycache to another.
908 * Locking must be handled by the caller.
909 *
910 * Return the number of entries transferred.
911 */
912 static int transfer_objects(struct array_cache *to,
913 struct array_cache *from, unsigned int max)
914 {
915 /* Figure out how many entries to transfer */
916 int nr = min(min(from->avail, max), to->limit - to->avail);
917
918 if (!nr)
919 return 0;
920
921 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
922 sizeof(void *) *nr);
923
924 from->avail -= nr;
925 to->avail += nr;
926 to->touched = 1;
927 return nr;
928 }
929
930 #ifndef CONFIG_NUMA
931
932 #define drain_alien_cache(cachep, alien) do { } while (0)
933 #define reap_alien(cachep, l3) do { } while (0)
934
935 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
936 {
937 return (struct array_cache **)BAD_ALIEN_MAGIC;
938 }
939
940 static inline void free_alien_cache(struct array_cache **ac_ptr)
941 {
942 }
943
944 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
945 {
946 return 0;
947 }
948
949 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
950 gfp_t flags)
951 {
952 return NULL;
953 }
954
955 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
956 gfp_t flags, int nodeid)
957 {
958 return NULL;
959 }
960
961 #else /* CONFIG_NUMA */
962
963 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
964 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
965
966 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
967 {
968 struct array_cache **ac_ptr;
969 int memsize = sizeof(void *) * nr_node_ids;
970 int i;
971
972 if (limit > 1)
973 limit = 12;
974 ac_ptr = kmalloc_node(memsize, gfp, node);
975 if (ac_ptr) {
976 for_each_node(i) {
977 if (i == node || !node_online(i)) {
978 ac_ptr[i] = NULL;
979 continue;
980 }
981 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
982 if (!ac_ptr[i]) {
983 for (i--; i >= 0; i--)
984 kfree(ac_ptr[i]);
985 kfree(ac_ptr);
986 return NULL;
987 }
988 }
989 }
990 return ac_ptr;
991 }
992
993 static void free_alien_cache(struct array_cache **ac_ptr)
994 {
995 int i;
996
997 if (!ac_ptr)
998 return;
999 for_each_node(i)
1000 kfree(ac_ptr[i]);
1001 kfree(ac_ptr);
1002 }
1003
1004 static void __drain_alien_cache(struct kmem_cache *cachep,
1005 struct array_cache *ac, int node)
1006 {
1007 struct kmem_list3 *rl3 = cachep->nodelists[node];
1008
1009 if (ac->avail) {
1010 spin_lock(&rl3->list_lock);
1011 /*
1012 * Stuff objects into the remote nodes shared array first.
1013 * That way we could avoid the overhead of putting the objects
1014 * into the free lists and getting them back later.
1015 */
1016 if (rl3->shared)
1017 transfer_objects(rl3->shared, ac, ac->limit);
1018
1019 free_block(cachep, ac->entry, ac->avail, node);
1020 ac->avail = 0;
1021 spin_unlock(&rl3->list_lock);
1022 }
1023 }
1024
1025 /*
1026 * Called from cache_reap() to regularly drain alien caches round robin.
1027 */
1028 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1029 {
1030 int node = __get_cpu_var(reap_node);
1031
1032 if (l3->alien) {
1033 struct array_cache *ac = l3->alien[node];
1034
1035 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1036 __drain_alien_cache(cachep, ac, node);
1037 spin_unlock_irq(&ac->lock);
1038 }
1039 }
1040 }
1041
1042 static void drain_alien_cache(struct kmem_cache *cachep,
1043 struct array_cache **alien)
1044 {
1045 int i = 0;
1046 struct array_cache *ac;
1047 unsigned long flags;
1048
1049 for_each_online_node(i) {
1050 ac = alien[i];
1051 if (ac) {
1052 spin_lock_irqsave(&ac->lock, flags);
1053 __drain_alien_cache(cachep, ac, i);
1054 spin_unlock_irqrestore(&ac->lock, flags);
1055 }
1056 }
1057 }
1058
1059 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1060 {
1061 struct slab *slabp = virt_to_slab(objp);
1062 int nodeid = slabp->nodeid;
1063 struct kmem_list3 *l3;
1064 struct array_cache *alien = NULL;
1065 int node;
1066
1067 node = numa_node_id();
1068
1069 /*
1070 * Make sure we are not freeing a object from another node to the array
1071 * cache on this cpu.
1072 */
1073 if (likely(slabp->nodeid == node))
1074 return 0;
1075
1076 l3 = cachep->nodelists[node];
1077 STATS_INC_NODEFREES(cachep);
1078 if (l3->alien && l3->alien[nodeid]) {
1079 alien = l3->alien[nodeid];
1080 spin_lock(&alien->lock);
1081 if (unlikely(alien->avail == alien->limit)) {
1082 STATS_INC_ACOVERFLOW(cachep);
1083 __drain_alien_cache(cachep, alien, nodeid);
1084 }
1085 alien->entry[alien->avail++] = objp;
1086 spin_unlock(&alien->lock);
1087 } else {
1088 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1089 free_block(cachep, &objp, 1, nodeid);
1090 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1091 }
1092 return 1;
1093 }
1094 #endif
1095
1096 static void __cpuinit cpuup_canceled(long cpu)
1097 {
1098 struct kmem_cache *cachep;
1099 struct kmem_list3 *l3 = NULL;
1100 int node = cpu_to_node(cpu);
1101 const struct cpumask *mask = cpumask_of_node(node);
1102
1103 list_for_each_entry(cachep, &cache_chain, next) {
1104 struct array_cache *nc;
1105 struct array_cache *shared;
1106 struct array_cache **alien;
1107
1108 /* cpu is dead; no one can alloc from it. */
1109 nc = cachep->array[cpu];
1110 cachep->array[cpu] = NULL;
1111 l3 = cachep->nodelists[node];
1112
1113 if (!l3)
1114 goto free_array_cache;
1115
1116 spin_lock_irq(&l3->list_lock);
1117
1118 /* Free limit for this kmem_list3 */
1119 l3->free_limit -= cachep->batchcount;
1120 if (nc)
1121 free_block(cachep, nc->entry, nc->avail, node);
1122
1123 if (!cpus_empty(*mask)) {
1124 spin_unlock_irq(&l3->list_lock);
1125 goto free_array_cache;
1126 }
1127
1128 shared = l3->shared;
1129 if (shared) {
1130 free_block(cachep, shared->entry,
1131 shared->avail, node);
1132 l3->shared = NULL;
1133 }
1134
1135 alien = l3->alien;
1136 l3->alien = NULL;
1137
1138 spin_unlock_irq(&l3->list_lock);
1139
1140 kfree(shared);
1141 if (alien) {
1142 drain_alien_cache(cachep, alien);
1143 free_alien_cache(alien);
1144 }
1145 free_array_cache:
1146 kfree(nc);
1147 }
1148 /*
1149 * In the previous loop, all the objects were freed to
1150 * the respective cache's slabs, now we can go ahead and
1151 * shrink each nodelist to its limit.
1152 */
1153 list_for_each_entry(cachep, &cache_chain, next) {
1154 l3 = cachep->nodelists[node];
1155 if (!l3)
1156 continue;
1157 drain_freelist(cachep, l3, l3->free_objects);
1158 }
1159 }
1160
1161 static int __cpuinit cpuup_prepare(long cpu)
1162 {
1163 struct kmem_cache *cachep;
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
1166 const int memsize = sizeof(struct kmem_list3);
1167
1168 /*
1169 * We need to do this right in the beginning since
1170 * alloc_arraycache's are going to use this list.
1171 * kmalloc_node allows us to add the slab to the right
1172 * kmem_list3 and not this cpu's kmem_list3
1173 */
1174
1175 list_for_each_entry(cachep, &cache_chain, next) {
1176 /*
1177 * Set up the size64 kmemlist for cpu before we can
1178 * begin anything. Make sure some other cpu on this
1179 * node has not already allocated this
1180 */
1181 if (!cachep->nodelists[node]) {
1182 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1183 if (!l3)
1184 goto bad;
1185 kmem_list3_init(l3);
1186 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1187 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1188
1189 /*
1190 * The l3s don't come and go as CPUs come and
1191 * go. cache_chain_mutex is sufficient
1192 * protection here.
1193 */
1194 cachep->nodelists[node] = l3;
1195 }
1196
1197 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1198 cachep->nodelists[node]->free_limit =
1199 (1 + nr_cpus_node(node)) *
1200 cachep->batchcount + cachep->num;
1201 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1202 }
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
1208 list_for_each_entry(cachep, &cache_chain, next) {
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
1214 cachep->batchcount, GFP_KERNEL);
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
1220 0xbaadf00d, GFP_KERNEL);
1221 if (!shared) {
1222 kfree(nc);
1223 goto bad;
1224 }
1225 }
1226 if (use_alien_caches) {
1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
1231 goto bad;
1232 }
1233 }
1234 cachep->array[cpu] = nc;
1235 l3 = cachep->nodelists[node];
1236 BUG_ON(!l3);
1237
1238 spin_lock_irq(&l3->list_lock);
1239 if (!l3->shared) {
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
1244 l3->shared = shared;
1245 shared = NULL;
1246 }
1247 #ifdef CONFIG_NUMA
1248 if (!l3->alien) {
1249 l3->alien = alien;
1250 alien = NULL;
1251 }
1252 #endif
1253 spin_unlock_irq(&l3->list_lock);
1254 kfree(shared);
1255 free_alien_cache(alien);
1256 }
1257 return 0;
1258 bad:
1259 cpuup_canceled(cpu);
1260 return -ENOMEM;
1261 }
1262
1263 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1264 unsigned long action, void *hcpu)
1265 {
1266 long cpu = (long)hcpu;
1267 int err = 0;
1268
1269 switch (action) {
1270 case CPU_UP_PREPARE:
1271 case CPU_UP_PREPARE_FROZEN:
1272 mutex_lock(&cache_chain_mutex);
1273 err = cpuup_prepare(cpu);
1274 mutex_unlock(&cache_chain_mutex);
1275 break;
1276 case CPU_ONLINE:
1277 case CPU_ONLINE_FROZEN:
1278 start_cpu_timer(cpu);
1279 break;
1280 #ifdef CONFIG_HOTPLUG_CPU
1281 case CPU_DOWN_PREPARE:
1282 case CPU_DOWN_PREPARE_FROZEN:
1283 /*
1284 * Shutdown cache reaper. Note that the cache_chain_mutex is
1285 * held so that if cache_reap() is invoked it cannot do
1286 * anything expensive but will only modify reap_work
1287 * and reschedule the timer.
1288 */
1289 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1290 /* Now the cache_reaper is guaranteed to be not running. */
1291 per_cpu(reap_work, cpu).work.func = NULL;
1292 break;
1293 case CPU_DOWN_FAILED:
1294 case CPU_DOWN_FAILED_FROZEN:
1295 start_cpu_timer(cpu);
1296 break;
1297 case CPU_DEAD:
1298 case CPU_DEAD_FROZEN:
1299 /*
1300 * Even if all the cpus of a node are down, we don't free the
1301 * kmem_list3 of any cache. This to avoid a race between
1302 * cpu_down, and a kmalloc allocation from another cpu for
1303 * memory from the node of the cpu going down. The list3
1304 * structure is usually allocated from kmem_cache_create() and
1305 * gets destroyed at kmem_cache_destroy().
1306 */
1307 /* fall through */
1308 #endif
1309 case CPU_UP_CANCELED:
1310 case CPU_UP_CANCELED_FROZEN:
1311 mutex_lock(&cache_chain_mutex);
1312 cpuup_canceled(cpu);
1313 mutex_unlock(&cache_chain_mutex);
1314 break;
1315 }
1316 return err ? NOTIFY_BAD : NOTIFY_OK;
1317 }
1318
1319 static struct notifier_block __cpuinitdata cpucache_notifier = {
1320 &cpuup_callback, NULL, 0
1321 };
1322
1323 /*
1324 * swap the static kmem_list3 with kmalloced memory
1325 */
1326 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327 int nodeid)
1328 {
1329 struct kmem_list3 *ptr;
1330
1331 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1332 BUG_ON(!ptr);
1333
1334 memcpy(ptr, list, sizeof(struct kmem_list3));
1335 /*
1336 * Do not assume that spinlocks can be initialized via memcpy:
1337 */
1338 spin_lock_init(&ptr->list_lock);
1339
1340 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341 cachep->nodelists[nodeid] = ptr;
1342 }
1343
1344 /*
1345 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1346 * size of kmem_list3.
1347 */
1348 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1349 {
1350 int node;
1351
1352 for_each_online_node(node) {
1353 cachep->nodelists[node] = &initkmem_list3[index + node];
1354 cachep->nodelists[node]->next_reap = jiffies +
1355 REAPTIMEOUT_LIST3 +
1356 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1357 }
1358 }
1359
1360 /*
1361 * Initialisation. Called after the page allocator have been initialised and
1362 * before smp_init().
1363 */
1364 void __init kmem_cache_init(void)
1365 {
1366 size_t left_over;
1367 struct cache_sizes *sizes;
1368 struct cache_names *names;
1369 int i;
1370 int order;
1371 int node;
1372
1373 if (num_possible_nodes() == 1)
1374 use_alien_caches = 0;
1375
1376 for (i = 0; i < NUM_INIT_LISTS; i++) {
1377 kmem_list3_init(&initkmem_list3[i]);
1378 if (i < MAX_NUMNODES)
1379 cache_cache.nodelists[i] = NULL;
1380 }
1381 set_up_list3s(&cache_cache, CACHE_CACHE);
1382
1383 /*
1384 * Fragmentation resistance on low memory - only use bigger
1385 * page orders on machines with more than 32MB of memory.
1386 */
1387 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1388 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1389
1390 /* Bootstrap is tricky, because several objects are allocated
1391 * from caches that do not exist yet:
1392 * 1) initialize the cache_cache cache: it contains the struct
1393 * kmem_cache structures of all caches, except cache_cache itself:
1394 * cache_cache is statically allocated.
1395 * Initially an __init data area is used for the head array and the
1396 * kmem_list3 structures, it's replaced with a kmalloc allocated
1397 * array at the end of the bootstrap.
1398 * 2) Create the first kmalloc cache.
1399 * The struct kmem_cache for the new cache is allocated normally.
1400 * An __init data area is used for the head array.
1401 * 3) Create the remaining kmalloc caches, with minimally sized
1402 * head arrays.
1403 * 4) Replace the __init data head arrays for cache_cache and the first
1404 * kmalloc cache with kmalloc allocated arrays.
1405 * 5) Replace the __init data for kmem_list3 for cache_cache and
1406 * the other cache's with kmalloc allocated memory.
1407 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1408 */
1409
1410 node = numa_node_id();
1411
1412 /* 1) create the cache_cache */
1413 INIT_LIST_HEAD(&cache_chain);
1414 list_add(&cache_cache.next, &cache_chain);
1415 cache_cache.colour_off = cache_line_size();
1416 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1417 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1418
1419 /*
1420 * struct kmem_cache size depends on nr_node_ids, which
1421 * can be less than MAX_NUMNODES.
1422 */
1423 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1424 nr_node_ids * sizeof(struct kmem_list3 *);
1425 #if DEBUG
1426 cache_cache.obj_size = cache_cache.buffer_size;
1427 #endif
1428 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1429 cache_line_size());
1430 cache_cache.reciprocal_buffer_size =
1431 reciprocal_value(cache_cache.buffer_size);
1432
1433 for (order = 0; order < MAX_ORDER; order++) {
1434 cache_estimate(order, cache_cache.buffer_size,
1435 cache_line_size(), 0, &left_over, &cache_cache.num);
1436 if (cache_cache.num)
1437 break;
1438 }
1439 BUG_ON(!cache_cache.num);
1440 cache_cache.gfporder = order;
1441 cache_cache.colour = left_over / cache_cache.colour_off;
1442 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1443 sizeof(struct slab), cache_line_size());
1444
1445 /* 2+3) create the kmalloc caches */
1446 sizes = malloc_sizes;
1447 names = cache_names;
1448
1449 /*
1450 * Initialize the caches that provide memory for the array cache and the
1451 * kmem_list3 structures first. Without this, further allocations will
1452 * bug.
1453 */
1454
1455 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1456 sizes[INDEX_AC].cs_size,
1457 ARCH_KMALLOC_MINALIGN,
1458 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1459 NULL);
1460
1461 if (INDEX_AC != INDEX_L3) {
1462 sizes[INDEX_L3].cs_cachep =
1463 kmem_cache_create(names[INDEX_L3].name,
1464 sizes[INDEX_L3].cs_size,
1465 ARCH_KMALLOC_MINALIGN,
1466 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1467 NULL);
1468 }
1469
1470 slab_early_init = 0;
1471
1472 while (sizes->cs_size != ULONG_MAX) {
1473 /*
1474 * For performance, all the general caches are L1 aligned.
1475 * This should be particularly beneficial on SMP boxes, as it
1476 * eliminates "false sharing".
1477 * Note for systems short on memory removing the alignment will
1478 * allow tighter packing of the smaller caches.
1479 */
1480 if (!sizes->cs_cachep) {
1481 sizes->cs_cachep = kmem_cache_create(names->name,
1482 sizes->cs_size,
1483 ARCH_KMALLOC_MINALIGN,
1484 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1485 NULL);
1486 }
1487 #ifdef CONFIG_ZONE_DMA
1488 sizes->cs_dmacachep = kmem_cache_create(
1489 names->name_dma,
1490 sizes->cs_size,
1491 ARCH_KMALLOC_MINALIGN,
1492 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1493 SLAB_PANIC,
1494 NULL);
1495 #endif
1496 sizes++;
1497 names++;
1498 }
1499 /* 4) Replace the bootstrap head arrays */
1500 {
1501 struct array_cache *ptr;
1502
1503 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1504
1505 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1506 memcpy(ptr, cpu_cache_get(&cache_cache),
1507 sizeof(struct arraycache_init));
1508 /*
1509 * Do not assume that spinlocks can be initialized via memcpy:
1510 */
1511 spin_lock_init(&ptr->lock);
1512
1513 cache_cache.array[smp_processor_id()] = ptr;
1514
1515 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1516
1517 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1518 != &initarray_generic.cache);
1519 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1520 sizeof(struct arraycache_init));
1521 /*
1522 * Do not assume that spinlocks can be initialized via memcpy:
1523 */
1524 spin_lock_init(&ptr->lock);
1525
1526 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1527 ptr;
1528 }
1529 /* 5) Replace the bootstrap kmem_list3's */
1530 {
1531 int nid;
1532
1533 for_each_online_node(nid) {
1534 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1535
1536 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1537 &initkmem_list3[SIZE_AC + nid], nid);
1538
1539 if (INDEX_AC != INDEX_L3) {
1540 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1541 &initkmem_list3[SIZE_L3 + nid], nid);
1542 }
1543 }
1544 }
1545
1546 g_cpucache_up = EARLY;
1547 }
1548
1549 void __init kmem_cache_init_late(void)
1550 {
1551 struct kmem_cache *cachep;
1552
1553 /* 6) resize the head arrays to their final sizes */
1554 mutex_lock(&cache_chain_mutex);
1555 list_for_each_entry(cachep, &cache_chain, next)
1556 if (enable_cpucache(cachep, GFP_NOWAIT))
1557 BUG();
1558 mutex_unlock(&cache_chain_mutex);
1559
1560 /* Done! */
1561 g_cpucache_up = FULL;
1562
1563 /* Annotate slab for lockdep -- annotate the malloc caches */
1564 init_lock_keys();
1565
1566 /*
1567 * Register a cpu startup notifier callback that initializes
1568 * cpu_cache_get for all new cpus
1569 */
1570 register_cpu_notifier(&cpucache_notifier);
1571
1572 /*
1573 * The reap timers are started later, with a module init call: That part
1574 * of the kernel is not yet operational.
1575 */
1576 }
1577
1578 static int __init cpucache_init(void)
1579 {
1580 int cpu;
1581
1582 /*
1583 * Register the timers that return unneeded pages to the page allocator
1584 */
1585 for_each_online_cpu(cpu)
1586 start_cpu_timer(cpu);
1587 return 0;
1588 }
1589 __initcall(cpucache_init);
1590
1591 /*
1592 * Interface to system's page allocator. No need to hold the cache-lock.
1593 *
1594 * If we requested dmaable memory, we will get it. Even if we
1595 * did not request dmaable memory, we might get it, but that
1596 * would be relatively rare and ignorable.
1597 */
1598 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1599 {
1600 struct page *page;
1601 int nr_pages;
1602 int i;
1603
1604 #ifndef CONFIG_MMU
1605 /*
1606 * Nommu uses slab's for process anonymous memory allocations, and thus
1607 * requires __GFP_COMP to properly refcount higher order allocations
1608 */
1609 flags |= __GFP_COMP;
1610 #endif
1611
1612 flags |= cachep->gfpflags;
1613 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1614 flags |= __GFP_RECLAIMABLE;
1615
1616 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1617 if (!page)
1618 return NULL;
1619
1620 nr_pages = (1 << cachep->gfporder);
1621 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1622 add_zone_page_state(page_zone(page),
1623 NR_SLAB_RECLAIMABLE, nr_pages);
1624 else
1625 add_zone_page_state(page_zone(page),
1626 NR_SLAB_UNRECLAIMABLE, nr_pages);
1627 for (i = 0; i < nr_pages; i++)
1628 __SetPageSlab(page + i);
1629
1630 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1631 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1632
1633 if (cachep->ctor)
1634 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1635 else
1636 kmemcheck_mark_unallocated_pages(page, nr_pages);
1637 }
1638
1639 return page_address(page);
1640 }
1641
1642 /*
1643 * Interface to system's page release.
1644 */
1645 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1646 {
1647 unsigned long i = (1 << cachep->gfporder);
1648 struct page *page = virt_to_page(addr);
1649 const unsigned long nr_freed = i;
1650
1651 kmemcheck_free_shadow(page, cachep->gfporder);
1652
1653 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1654 sub_zone_page_state(page_zone(page),
1655 NR_SLAB_RECLAIMABLE, nr_freed);
1656 else
1657 sub_zone_page_state(page_zone(page),
1658 NR_SLAB_UNRECLAIMABLE, nr_freed);
1659 while (i--) {
1660 BUG_ON(!PageSlab(page));
1661 __ClearPageSlab(page);
1662 page++;
1663 }
1664 if (current->reclaim_state)
1665 current->reclaim_state->reclaimed_slab += nr_freed;
1666 free_pages((unsigned long)addr, cachep->gfporder);
1667 }
1668
1669 static void kmem_rcu_free(struct rcu_head *head)
1670 {
1671 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1672 struct kmem_cache *cachep = slab_rcu->cachep;
1673
1674 kmem_freepages(cachep, slab_rcu->addr);
1675 if (OFF_SLAB(cachep))
1676 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1677 }
1678
1679 #if DEBUG
1680
1681 #ifdef CONFIG_DEBUG_PAGEALLOC
1682 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1683 unsigned long caller)
1684 {
1685 int size = obj_size(cachep);
1686
1687 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1688
1689 if (size < 5 * sizeof(unsigned long))
1690 return;
1691
1692 *addr++ = 0x12345678;
1693 *addr++ = caller;
1694 *addr++ = smp_processor_id();
1695 size -= 3 * sizeof(unsigned long);
1696 {
1697 unsigned long *sptr = &caller;
1698 unsigned long svalue;
1699
1700 while (!kstack_end(sptr)) {
1701 svalue = *sptr++;
1702 if (kernel_text_address(svalue)) {
1703 *addr++ = svalue;
1704 size -= sizeof(unsigned long);
1705 if (size <= sizeof(unsigned long))
1706 break;
1707 }
1708 }
1709
1710 }
1711 *addr++ = 0x87654321;
1712 }
1713 #endif
1714
1715 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1716 {
1717 int size = obj_size(cachep);
1718 addr = &((char *)addr)[obj_offset(cachep)];
1719
1720 memset(addr, val, size);
1721 *(unsigned char *)(addr + size - 1) = POISON_END;
1722 }
1723
1724 static void dump_line(char *data, int offset, int limit)
1725 {
1726 int i;
1727 unsigned char error = 0;
1728 int bad_count = 0;
1729
1730 printk(KERN_ERR "%03x:", offset);
1731 for (i = 0; i < limit; i++) {
1732 if (data[offset + i] != POISON_FREE) {
1733 error = data[offset + i];
1734 bad_count++;
1735 }
1736 printk(" %02x", (unsigned char)data[offset + i]);
1737 }
1738 printk("\n");
1739
1740 if (bad_count == 1) {
1741 error ^= POISON_FREE;
1742 if (!(error & (error - 1))) {
1743 printk(KERN_ERR "Single bit error detected. Probably "
1744 "bad RAM.\n");
1745 #ifdef CONFIG_X86
1746 printk(KERN_ERR "Run memtest86+ or a similar memory "
1747 "test tool.\n");
1748 #else
1749 printk(KERN_ERR "Run a memory test tool.\n");
1750 #endif
1751 }
1752 }
1753 }
1754 #endif
1755
1756 #if DEBUG
1757
1758 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1759 {
1760 int i, size;
1761 char *realobj;
1762
1763 if (cachep->flags & SLAB_RED_ZONE) {
1764 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1765 *dbg_redzone1(cachep, objp),
1766 *dbg_redzone2(cachep, objp));
1767 }
1768
1769 if (cachep->flags & SLAB_STORE_USER) {
1770 printk(KERN_ERR "Last user: [<%p>]",
1771 *dbg_userword(cachep, objp));
1772 print_symbol("(%s)",
1773 (unsigned long)*dbg_userword(cachep, objp));
1774 printk("\n");
1775 }
1776 realobj = (char *)objp + obj_offset(cachep);
1777 size = obj_size(cachep);
1778 for (i = 0; i < size && lines; i += 16, lines--) {
1779 int limit;
1780 limit = 16;
1781 if (i + limit > size)
1782 limit = size - i;
1783 dump_line(realobj, i, limit);
1784 }
1785 }
1786
1787 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1788 {
1789 char *realobj;
1790 int size, i;
1791 int lines = 0;
1792
1793 realobj = (char *)objp + obj_offset(cachep);
1794 size = obj_size(cachep);
1795
1796 for (i = 0; i < size; i++) {
1797 char exp = POISON_FREE;
1798 if (i == size - 1)
1799 exp = POISON_END;
1800 if (realobj[i] != exp) {
1801 int limit;
1802 /* Mismatch ! */
1803 /* Print header */
1804 if (lines == 0) {
1805 printk(KERN_ERR
1806 "Slab corruption: %s start=%p, len=%d\n",
1807 cachep->name, realobj, size);
1808 print_objinfo(cachep, objp, 0);
1809 }
1810 /* Hexdump the affected line */
1811 i = (i / 16) * 16;
1812 limit = 16;
1813 if (i + limit > size)
1814 limit = size - i;
1815 dump_line(realobj, i, limit);
1816 i += 16;
1817 lines++;
1818 /* Limit to 5 lines */
1819 if (lines > 5)
1820 break;
1821 }
1822 }
1823 if (lines != 0) {
1824 /* Print some data about the neighboring objects, if they
1825 * exist:
1826 */
1827 struct slab *slabp = virt_to_slab(objp);
1828 unsigned int objnr;
1829
1830 objnr = obj_to_index(cachep, slabp, objp);
1831 if (objnr) {
1832 objp = index_to_obj(cachep, slabp, objnr - 1);
1833 realobj = (char *)objp + obj_offset(cachep);
1834 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1835 realobj, size);
1836 print_objinfo(cachep, objp, 2);
1837 }
1838 if (objnr + 1 < cachep->num) {
1839 objp = index_to_obj(cachep, slabp, objnr + 1);
1840 realobj = (char *)objp + obj_offset(cachep);
1841 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1842 realobj, size);
1843 print_objinfo(cachep, objp, 2);
1844 }
1845 }
1846 }
1847 #endif
1848
1849 #if DEBUG
1850 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1851 {
1852 int i;
1853 for (i = 0; i < cachep->num; i++) {
1854 void *objp = index_to_obj(cachep, slabp, i);
1855
1856 if (cachep->flags & SLAB_POISON) {
1857 #ifdef CONFIG_DEBUG_PAGEALLOC
1858 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1859 OFF_SLAB(cachep))
1860 kernel_map_pages(virt_to_page(objp),
1861 cachep->buffer_size / PAGE_SIZE, 1);
1862 else
1863 check_poison_obj(cachep, objp);
1864 #else
1865 check_poison_obj(cachep, objp);
1866 #endif
1867 }
1868 if (cachep->flags & SLAB_RED_ZONE) {
1869 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1870 slab_error(cachep, "start of a freed object "
1871 "was overwritten");
1872 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1873 slab_error(cachep, "end of a freed object "
1874 "was overwritten");
1875 }
1876 }
1877 }
1878 #else
1879 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1880 {
1881 }
1882 #endif
1883
1884 /**
1885 * slab_destroy - destroy and release all objects in a slab
1886 * @cachep: cache pointer being destroyed
1887 * @slabp: slab pointer being destroyed
1888 *
1889 * Destroy all the objs in a slab, and release the mem back to the system.
1890 * Before calling the slab must have been unlinked from the cache. The
1891 * cache-lock is not held/needed.
1892 */
1893 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1894 {
1895 void *addr = slabp->s_mem - slabp->colouroff;
1896
1897 slab_destroy_debugcheck(cachep, slabp);
1898 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1899 struct slab_rcu *slab_rcu;
1900
1901 slab_rcu = (struct slab_rcu *)slabp;
1902 slab_rcu->cachep = cachep;
1903 slab_rcu->addr = addr;
1904 call_rcu(&slab_rcu->head, kmem_rcu_free);
1905 } else {
1906 kmem_freepages(cachep, addr);
1907 if (OFF_SLAB(cachep))
1908 kmem_cache_free(cachep->slabp_cache, slabp);
1909 }
1910 }
1911
1912 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1913 {
1914 int i;
1915 struct kmem_list3 *l3;
1916
1917 for_each_online_cpu(i)
1918 kfree(cachep->array[i]);
1919
1920 /* NUMA: free the list3 structures */
1921 for_each_online_node(i) {
1922 l3 = cachep->nodelists[i];
1923 if (l3) {
1924 kfree(l3->shared);
1925 free_alien_cache(l3->alien);
1926 kfree(l3);
1927 }
1928 }
1929 kmem_cache_free(&cache_cache, cachep);
1930 }
1931
1932
1933 /**
1934 * calculate_slab_order - calculate size (page order) of slabs
1935 * @cachep: pointer to the cache that is being created
1936 * @size: size of objects to be created in this cache.
1937 * @align: required alignment for the objects.
1938 * @flags: slab allocation flags
1939 *
1940 * Also calculates the number of objects per slab.
1941 *
1942 * This could be made much more intelligent. For now, try to avoid using
1943 * high order pages for slabs. When the gfp() functions are more friendly
1944 * towards high-order requests, this should be changed.
1945 */
1946 static size_t calculate_slab_order(struct kmem_cache *cachep,
1947 size_t size, size_t align, unsigned long flags)
1948 {
1949 unsigned long offslab_limit;
1950 size_t left_over = 0;
1951 int gfporder;
1952
1953 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1954 unsigned int num;
1955 size_t remainder;
1956
1957 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1958 if (!num)
1959 continue;
1960
1961 if (flags & CFLGS_OFF_SLAB) {
1962 /*
1963 * Max number of objs-per-slab for caches which
1964 * use off-slab slabs. Needed to avoid a possible
1965 * looping condition in cache_grow().
1966 */
1967 offslab_limit = size - sizeof(struct slab);
1968 offslab_limit /= sizeof(kmem_bufctl_t);
1969
1970 if (num > offslab_limit)
1971 break;
1972 }
1973
1974 /* Found something acceptable - save it away */
1975 cachep->num = num;
1976 cachep->gfporder = gfporder;
1977 left_over = remainder;
1978
1979 /*
1980 * A VFS-reclaimable slab tends to have most allocations
1981 * as GFP_NOFS and we really don't want to have to be allocating
1982 * higher-order pages when we are unable to shrink dcache.
1983 */
1984 if (flags & SLAB_RECLAIM_ACCOUNT)
1985 break;
1986
1987 /*
1988 * Large number of objects is good, but very large slabs are
1989 * currently bad for the gfp()s.
1990 */
1991 if (gfporder >= slab_break_gfp_order)
1992 break;
1993
1994 /*
1995 * Acceptable internal fragmentation?
1996 */
1997 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1998 break;
1999 }
2000 return left_over;
2001 }
2002
2003 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2004 {
2005 if (g_cpucache_up == FULL)
2006 return enable_cpucache(cachep, gfp);
2007
2008 if (g_cpucache_up == NONE) {
2009 /*
2010 * Note: the first kmem_cache_create must create the cache
2011 * that's used by kmalloc(24), otherwise the creation of
2012 * further caches will BUG().
2013 */
2014 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2015
2016 /*
2017 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2018 * the first cache, then we need to set up all its list3s,
2019 * otherwise the creation of further caches will BUG().
2020 */
2021 set_up_list3s(cachep, SIZE_AC);
2022 if (INDEX_AC == INDEX_L3)
2023 g_cpucache_up = PARTIAL_L3;
2024 else
2025 g_cpucache_up = PARTIAL_AC;
2026 } else {
2027 cachep->array[smp_processor_id()] =
2028 kmalloc(sizeof(struct arraycache_init), gfp);
2029
2030 if (g_cpucache_up == PARTIAL_AC) {
2031 set_up_list3s(cachep, SIZE_L3);
2032 g_cpucache_up = PARTIAL_L3;
2033 } else {
2034 int node;
2035 for_each_online_node(node) {
2036 cachep->nodelists[node] =
2037 kmalloc_node(sizeof(struct kmem_list3),
2038 gfp, node);
2039 BUG_ON(!cachep->nodelists[node]);
2040 kmem_list3_init(cachep->nodelists[node]);
2041 }
2042 }
2043 }
2044 cachep->nodelists[numa_node_id()]->next_reap =
2045 jiffies + REAPTIMEOUT_LIST3 +
2046 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2047
2048 cpu_cache_get(cachep)->avail = 0;
2049 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2050 cpu_cache_get(cachep)->batchcount = 1;
2051 cpu_cache_get(cachep)->touched = 0;
2052 cachep->batchcount = 1;
2053 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2054 return 0;
2055 }
2056
2057 /**
2058 * kmem_cache_create - Create a cache.
2059 * @name: A string which is used in /proc/slabinfo to identify this cache.
2060 * @size: The size of objects to be created in this cache.
2061 * @align: The required alignment for the objects.
2062 * @flags: SLAB flags
2063 * @ctor: A constructor for the objects.
2064 *
2065 * Returns a ptr to the cache on success, NULL on failure.
2066 * Cannot be called within a int, but can be interrupted.
2067 * The @ctor is run when new pages are allocated by the cache.
2068 *
2069 * @name must be valid until the cache is destroyed. This implies that
2070 * the module calling this has to destroy the cache before getting unloaded.
2071 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2072 * therefore applications must manage it themselves.
2073 *
2074 * The flags are
2075 *
2076 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2077 * to catch references to uninitialised memory.
2078 *
2079 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2080 * for buffer overruns.
2081 *
2082 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2083 * cacheline. This can be beneficial if you're counting cycles as closely
2084 * as davem.
2085 */
2086 struct kmem_cache *
2087 kmem_cache_create (const char *name, size_t size, size_t align,
2088 unsigned long flags, void (*ctor)(void *))
2089 {
2090 size_t left_over, slab_size, ralign;
2091 struct kmem_cache *cachep = NULL, *pc;
2092 gfp_t gfp;
2093
2094 /*
2095 * Sanity checks... these are all serious usage bugs.
2096 */
2097 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2098 size > KMALLOC_MAX_SIZE) {
2099 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2100 name);
2101 BUG();
2102 }
2103
2104 /*
2105 * We use cache_chain_mutex to ensure a consistent view of
2106 * cpu_online_mask as well. Please see cpuup_callback
2107 */
2108 if (slab_is_available()) {
2109 get_online_cpus();
2110 mutex_lock(&cache_chain_mutex);
2111 }
2112
2113 list_for_each_entry(pc, &cache_chain, next) {
2114 char tmp;
2115 int res;
2116
2117 /*
2118 * This happens when the module gets unloaded and doesn't
2119 * destroy its slab cache and no-one else reuses the vmalloc
2120 * area of the module. Print a warning.
2121 */
2122 res = probe_kernel_address(pc->name, tmp);
2123 if (res) {
2124 printk(KERN_ERR
2125 "SLAB: cache with size %d has lost its name\n",
2126 pc->buffer_size);
2127 continue;
2128 }
2129
2130 if (!strcmp(pc->name, name)) {
2131 printk(KERN_ERR
2132 "kmem_cache_create: duplicate cache %s\n", name);
2133 dump_stack();
2134 goto oops;
2135 }
2136 }
2137
2138 #if DEBUG
2139 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2140 #if FORCED_DEBUG
2141 /*
2142 * Enable redzoning and last user accounting, except for caches with
2143 * large objects, if the increased size would increase the object size
2144 * above the next power of two: caches with object sizes just above a
2145 * power of two have a significant amount of internal fragmentation.
2146 */
2147 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2148 2 * sizeof(unsigned long long)))
2149 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2150 if (!(flags & SLAB_DESTROY_BY_RCU))
2151 flags |= SLAB_POISON;
2152 #endif
2153 if (flags & SLAB_DESTROY_BY_RCU)
2154 BUG_ON(flags & SLAB_POISON);
2155 #endif
2156 /*
2157 * Always checks flags, a caller might be expecting debug support which
2158 * isn't available.
2159 */
2160 BUG_ON(flags & ~CREATE_MASK);
2161
2162 /*
2163 * Check that size is in terms of words. This is needed to avoid
2164 * unaligned accesses for some archs when redzoning is used, and makes
2165 * sure any on-slab bufctl's are also correctly aligned.
2166 */
2167 if (size & (BYTES_PER_WORD - 1)) {
2168 size += (BYTES_PER_WORD - 1);
2169 size &= ~(BYTES_PER_WORD - 1);
2170 }
2171
2172 /* calculate the final buffer alignment: */
2173
2174 /* 1) arch recommendation: can be overridden for debug */
2175 if (flags & SLAB_HWCACHE_ALIGN) {
2176 /*
2177 * Default alignment: as specified by the arch code. Except if
2178 * an object is really small, then squeeze multiple objects into
2179 * one cacheline.
2180 */
2181 ralign = cache_line_size();
2182 while (size <= ralign / 2)
2183 ralign /= 2;
2184 } else {
2185 ralign = BYTES_PER_WORD;
2186 }
2187
2188 /*
2189 * Redzoning and user store require word alignment or possibly larger.
2190 * Note this will be overridden by architecture or caller mandated
2191 * alignment if either is greater than BYTES_PER_WORD.
2192 */
2193 if (flags & SLAB_STORE_USER)
2194 ralign = BYTES_PER_WORD;
2195
2196 if (flags & SLAB_RED_ZONE) {
2197 ralign = REDZONE_ALIGN;
2198 /* If redzoning, ensure that the second redzone is suitably
2199 * aligned, by adjusting the object size accordingly. */
2200 size += REDZONE_ALIGN - 1;
2201 size &= ~(REDZONE_ALIGN - 1);
2202 }
2203
2204 /* 2) arch mandated alignment */
2205 if (ralign < ARCH_SLAB_MINALIGN) {
2206 ralign = ARCH_SLAB_MINALIGN;
2207 }
2208 /* 3) caller mandated alignment */
2209 if (ralign < align) {
2210 ralign = align;
2211 }
2212 /* disable debug if necessary */
2213 if (ralign > __alignof__(unsigned long long))
2214 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2215 /*
2216 * 4) Store it.
2217 */
2218 align = ralign;
2219
2220 if (slab_is_available())
2221 gfp = GFP_KERNEL;
2222 else
2223 gfp = GFP_NOWAIT;
2224
2225 /* Get cache's description obj. */
2226 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2227 if (!cachep)
2228 goto oops;
2229
2230 #if DEBUG
2231 cachep->obj_size = size;
2232
2233 /*
2234 * Both debugging options require word-alignment which is calculated
2235 * into align above.
2236 */
2237 if (flags & SLAB_RED_ZONE) {
2238 /* add space for red zone words */
2239 cachep->obj_offset += sizeof(unsigned long long);
2240 size += 2 * sizeof(unsigned long long);
2241 }
2242 if (flags & SLAB_STORE_USER) {
2243 /* user store requires one word storage behind the end of
2244 * the real object. But if the second red zone needs to be
2245 * aligned to 64 bits, we must allow that much space.
2246 */
2247 if (flags & SLAB_RED_ZONE)
2248 size += REDZONE_ALIGN;
2249 else
2250 size += BYTES_PER_WORD;
2251 }
2252 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2253 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2254 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2255 cachep->obj_offset += PAGE_SIZE - size;
2256 size = PAGE_SIZE;
2257 }
2258 #endif
2259 #endif
2260
2261 /*
2262 * Determine if the slab management is 'on' or 'off' slab.
2263 * (bootstrapping cannot cope with offslab caches so don't do
2264 * it too early on. Always use on-slab management when
2265 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2266 */
2267 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2268 !(flags & SLAB_NOLEAKTRACE))
2269 /*
2270 * Size is large, assume best to place the slab management obj
2271 * off-slab (should allow better packing of objs).
2272 */
2273 flags |= CFLGS_OFF_SLAB;
2274
2275 size = ALIGN(size, align);
2276
2277 left_over = calculate_slab_order(cachep, size, align, flags);
2278
2279 if (!cachep->num) {
2280 printk(KERN_ERR
2281 "kmem_cache_create: couldn't create cache %s.\n", name);
2282 kmem_cache_free(&cache_cache, cachep);
2283 cachep = NULL;
2284 goto oops;
2285 }
2286 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2287 + sizeof(struct slab), align);
2288
2289 /*
2290 * If the slab has been placed off-slab, and we have enough space then
2291 * move it on-slab. This is at the expense of any extra colouring.
2292 */
2293 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2294 flags &= ~CFLGS_OFF_SLAB;
2295 left_over -= slab_size;
2296 }
2297
2298 if (flags & CFLGS_OFF_SLAB) {
2299 /* really off slab. No need for manual alignment */
2300 slab_size =
2301 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2302
2303 #ifdef CONFIG_PAGE_POISONING
2304 /* If we're going to use the generic kernel_map_pages()
2305 * poisoning, then it's going to smash the contents of
2306 * the redzone and userword anyhow, so switch them off.
2307 */
2308 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2309 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2310 #endif
2311 }
2312
2313 cachep->colour_off = cache_line_size();
2314 /* Offset must be a multiple of the alignment. */
2315 if (cachep->colour_off < align)
2316 cachep->colour_off = align;
2317 cachep->colour = left_over / cachep->colour_off;
2318 cachep->slab_size = slab_size;
2319 cachep->flags = flags;
2320 cachep->gfpflags = 0;
2321 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2322 cachep->gfpflags |= GFP_DMA;
2323 cachep->buffer_size = size;
2324 cachep->reciprocal_buffer_size = reciprocal_value(size);
2325
2326 if (flags & CFLGS_OFF_SLAB) {
2327 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2328 /*
2329 * This is a possibility for one of the malloc_sizes caches.
2330 * But since we go off slab only for object size greater than
2331 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2332 * this should not happen at all.
2333 * But leave a BUG_ON for some lucky dude.
2334 */
2335 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2336 }
2337 cachep->ctor = ctor;
2338 cachep->name = name;
2339
2340 if (setup_cpu_cache(cachep, gfp)) {
2341 __kmem_cache_destroy(cachep);
2342 cachep = NULL;
2343 goto oops;
2344 }
2345
2346 /* cache setup completed, link it into the list */
2347 list_add(&cachep->next, &cache_chain);
2348 oops:
2349 if (!cachep && (flags & SLAB_PANIC))
2350 panic("kmem_cache_create(): failed to create slab `%s'\n",
2351 name);
2352 if (slab_is_available()) {
2353 mutex_unlock(&cache_chain_mutex);
2354 put_online_cpus();
2355 }
2356 return cachep;
2357 }
2358 EXPORT_SYMBOL(kmem_cache_create);
2359
2360 #if DEBUG
2361 static void check_irq_off(void)
2362 {
2363 BUG_ON(!irqs_disabled());
2364 }
2365
2366 static void check_irq_on(void)
2367 {
2368 BUG_ON(irqs_disabled());
2369 }
2370
2371 static void check_spinlock_acquired(struct kmem_cache *cachep)
2372 {
2373 #ifdef CONFIG_SMP
2374 check_irq_off();
2375 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2376 #endif
2377 }
2378
2379 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2380 {
2381 #ifdef CONFIG_SMP
2382 check_irq_off();
2383 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2384 #endif
2385 }
2386
2387 #else
2388 #define check_irq_off() do { } while(0)
2389 #define check_irq_on() do { } while(0)
2390 #define check_spinlock_acquired(x) do { } while(0)
2391 #define check_spinlock_acquired_node(x, y) do { } while(0)
2392 #endif
2393
2394 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2395 struct array_cache *ac,
2396 int force, int node);
2397
2398 static void do_drain(void *arg)
2399 {
2400 struct kmem_cache *cachep = arg;
2401 struct array_cache *ac;
2402 int node = numa_node_id();
2403
2404 check_irq_off();
2405 ac = cpu_cache_get(cachep);
2406 spin_lock(&cachep->nodelists[node]->list_lock);
2407 free_block(cachep, ac->entry, ac->avail, node);
2408 spin_unlock(&cachep->nodelists[node]->list_lock);
2409 ac->avail = 0;
2410 }
2411
2412 static void drain_cpu_caches(struct kmem_cache *cachep)
2413 {
2414 struct kmem_list3 *l3;
2415 int node;
2416
2417 on_each_cpu(do_drain, cachep, 1);
2418 check_irq_on();
2419 for_each_online_node(node) {
2420 l3 = cachep->nodelists[node];
2421 if (l3 && l3->alien)
2422 drain_alien_cache(cachep, l3->alien);
2423 }
2424
2425 for_each_online_node(node) {
2426 l3 = cachep->nodelists[node];
2427 if (l3)
2428 drain_array(cachep, l3, l3->shared, 1, node);
2429 }
2430 }
2431
2432 /*
2433 * Remove slabs from the list of free slabs.
2434 * Specify the number of slabs to drain in tofree.
2435 *
2436 * Returns the actual number of slabs released.
2437 */
2438 static int drain_freelist(struct kmem_cache *cache,
2439 struct kmem_list3 *l3, int tofree)
2440 {
2441 struct list_head *p;
2442 int nr_freed;
2443 struct slab *slabp;
2444
2445 nr_freed = 0;
2446 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2447
2448 spin_lock_irq(&l3->list_lock);
2449 p = l3->slabs_free.prev;
2450 if (p == &l3->slabs_free) {
2451 spin_unlock_irq(&l3->list_lock);
2452 goto out;
2453 }
2454
2455 slabp = list_entry(p, struct slab, list);
2456 #if DEBUG
2457 BUG_ON(slabp->inuse);
2458 #endif
2459 list_del(&slabp->list);
2460 /*
2461 * Safe to drop the lock. The slab is no longer linked
2462 * to the cache.
2463 */
2464 l3->free_objects -= cache->num;
2465 spin_unlock_irq(&l3->list_lock);
2466 slab_destroy(cache, slabp);
2467 nr_freed++;
2468 }
2469 out:
2470 return nr_freed;
2471 }
2472
2473 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2474 static int __cache_shrink(struct kmem_cache *cachep)
2475 {
2476 int ret = 0, i = 0;
2477 struct kmem_list3 *l3;
2478
2479 drain_cpu_caches(cachep);
2480
2481 check_irq_on();
2482 for_each_online_node(i) {
2483 l3 = cachep->nodelists[i];
2484 if (!l3)
2485 continue;
2486
2487 drain_freelist(cachep, l3, l3->free_objects);
2488
2489 ret += !list_empty(&l3->slabs_full) ||
2490 !list_empty(&l3->slabs_partial);
2491 }
2492 return (ret ? 1 : 0);
2493 }
2494
2495 /**
2496 * kmem_cache_shrink - Shrink a cache.
2497 * @cachep: The cache to shrink.
2498 *
2499 * Releases as many slabs as possible for a cache.
2500 * To help debugging, a zero exit status indicates all slabs were released.
2501 */
2502 int kmem_cache_shrink(struct kmem_cache *cachep)
2503 {
2504 int ret;
2505 BUG_ON(!cachep || in_interrupt());
2506
2507 get_online_cpus();
2508 mutex_lock(&cache_chain_mutex);
2509 ret = __cache_shrink(cachep);
2510 mutex_unlock(&cache_chain_mutex);
2511 put_online_cpus();
2512 return ret;
2513 }
2514 EXPORT_SYMBOL(kmem_cache_shrink);
2515
2516 /**
2517 * kmem_cache_destroy - delete a cache
2518 * @cachep: the cache to destroy
2519 *
2520 * Remove a &struct kmem_cache object from the slab cache.
2521 *
2522 * It is expected this function will be called by a module when it is
2523 * unloaded. This will remove the cache completely, and avoid a duplicate
2524 * cache being allocated each time a module is loaded and unloaded, if the
2525 * module doesn't have persistent in-kernel storage across loads and unloads.
2526 *
2527 * The cache must be empty before calling this function.
2528 *
2529 * The caller must guarantee that noone will allocate memory from the cache
2530 * during the kmem_cache_destroy().
2531 */
2532 void kmem_cache_destroy(struct kmem_cache *cachep)
2533 {
2534 BUG_ON(!cachep || in_interrupt());
2535
2536 /* Find the cache in the chain of caches. */
2537 get_online_cpus();
2538 mutex_lock(&cache_chain_mutex);
2539 /*
2540 * the chain is never empty, cache_cache is never destroyed
2541 */
2542 list_del(&cachep->next);
2543 if (__cache_shrink(cachep)) {
2544 slab_error(cachep, "Can't free all objects");
2545 list_add(&cachep->next, &cache_chain);
2546 mutex_unlock(&cache_chain_mutex);
2547 put_online_cpus();
2548 return;
2549 }
2550
2551 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2552 rcu_barrier();
2553
2554 __kmem_cache_destroy(cachep);
2555 mutex_unlock(&cache_chain_mutex);
2556 put_online_cpus();
2557 }
2558 EXPORT_SYMBOL(kmem_cache_destroy);
2559
2560 /*
2561 * Get the memory for a slab management obj.
2562 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2563 * always come from malloc_sizes caches. The slab descriptor cannot
2564 * come from the same cache which is getting created because,
2565 * when we are searching for an appropriate cache for these
2566 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2567 * If we are creating a malloc_sizes cache here it would not be visible to
2568 * kmem_find_general_cachep till the initialization is complete.
2569 * Hence we cannot have slabp_cache same as the original cache.
2570 */
2571 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2572 int colour_off, gfp_t local_flags,
2573 int nodeid)
2574 {
2575 struct slab *slabp;
2576
2577 if (OFF_SLAB(cachep)) {
2578 /* Slab management obj is off-slab. */
2579 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2580 local_flags, nodeid);
2581 /*
2582 * If the first object in the slab is leaked (it's allocated
2583 * but no one has a reference to it), we want to make sure
2584 * kmemleak does not treat the ->s_mem pointer as a reference
2585 * to the object. Otherwise we will not report the leak.
2586 */
2587 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2588 sizeof(struct list_head), local_flags);
2589 if (!slabp)
2590 return NULL;
2591 } else {
2592 slabp = objp + colour_off;
2593 colour_off += cachep->slab_size;
2594 }
2595 slabp->inuse = 0;
2596 slabp->colouroff = colour_off;
2597 slabp->s_mem = objp + colour_off;
2598 slabp->nodeid = nodeid;
2599 slabp->free = 0;
2600 return slabp;
2601 }
2602
2603 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2604 {
2605 return (kmem_bufctl_t *) (slabp + 1);
2606 }
2607
2608 static void cache_init_objs(struct kmem_cache *cachep,
2609 struct slab *slabp)
2610 {
2611 int i;
2612
2613 for (i = 0; i < cachep->num; i++) {
2614 void *objp = index_to_obj(cachep, slabp, i);
2615 #if DEBUG
2616 /* need to poison the objs? */
2617 if (cachep->flags & SLAB_POISON)
2618 poison_obj(cachep, objp, POISON_FREE);
2619 if (cachep->flags & SLAB_STORE_USER)
2620 *dbg_userword(cachep, objp) = NULL;
2621
2622 if (cachep->flags & SLAB_RED_ZONE) {
2623 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2624 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2625 }
2626 /*
2627 * Constructors are not allowed to allocate memory from the same
2628 * cache which they are a constructor for. Otherwise, deadlock.
2629 * They must also be threaded.
2630 */
2631 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2632 cachep->ctor(objp + obj_offset(cachep));
2633
2634 if (cachep->flags & SLAB_RED_ZONE) {
2635 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2636 slab_error(cachep, "constructor overwrote the"
2637 " end of an object");
2638 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2639 slab_error(cachep, "constructor overwrote the"
2640 " start of an object");
2641 }
2642 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2643 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2644 kernel_map_pages(virt_to_page(objp),
2645 cachep->buffer_size / PAGE_SIZE, 0);
2646 #else
2647 if (cachep->ctor)
2648 cachep->ctor(objp);
2649 #endif
2650 slab_bufctl(slabp)[i] = i + 1;
2651 }
2652 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2653 }
2654
2655 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2656 {
2657 if (CONFIG_ZONE_DMA_FLAG) {
2658 if (flags & GFP_DMA)
2659 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2660 else
2661 BUG_ON(cachep->gfpflags & GFP_DMA);
2662 }
2663 }
2664
2665 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2666 int nodeid)
2667 {
2668 void *objp = index_to_obj(cachep, slabp, slabp->free);
2669 kmem_bufctl_t next;
2670
2671 slabp->inuse++;
2672 next = slab_bufctl(slabp)[slabp->free];
2673 #if DEBUG
2674 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2675 WARN_ON(slabp->nodeid != nodeid);
2676 #endif
2677 slabp->free = next;
2678
2679 return objp;
2680 }
2681
2682 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2683 void *objp, int nodeid)
2684 {
2685 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2686
2687 #if DEBUG
2688 /* Verify that the slab belongs to the intended node */
2689 WARN_ON(slabp->nodeid != nodeid);
2690
2691 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2692 printk(KERN_ERR "slab: double free detected in cache "
2693 "'%s', objp %p\n", cachep->name, objp);
2694 BUG();
2695 }
2696 #endif
2697 slab_bufctl(slabp)[objnr] = slabp->free;
2698 slabp->free = objnr;
2699 slabp->inuse--;
2700 }
2701
2702 /*
2703 * Map pages beginning at addr to the given cache and slab. This is required
2704 * for the slab allocator to be able to lookup the cache and slab of a
2705 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2706 */
2707 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2708 void *addr)
2709 {
2710 int nr_pages;
2711 struct page *page;
2712
2713 page = virt_to_page(addr);
2714
2715 nr_pages = 1;
2716 if (likely(!PageCompound(page)))
2717 nr_pages <<= cache->gfporder;
2718
2719 do {
2720 page_set_cache(page, cache);
2721 page_set_slab(page, slab);
2722 page++;
2723 } while (--nr_pages);
2724 }
2725
2726 /*
2727 * Grow (by 1) the number of slabs within a cache. This is called by
2728 * kmem_cache_alloc() when there are no active objs left in a cache.
2729 */
2730 static int cache_grow(struct kmem_cache *cachep,
2731 gfp_t flags, int nodeid, void *objp)
2732 {
2733 struct slab *slabp;
2734 size_t offset;
2735 gfp_t local_flags;
2736 struct kmem_list3 *l3;
2737
2738 /*
2739 * Be lazy and only check for valid flags here, keeping it out of the
2740 * critical path in kmem_cache_alloc().
2741 */
2742 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2743 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2744
2745 /* Take the l3 list lock to change the colour_next on this node */
2746 check_irq_off();
2747 l3 = cachep->nodelists[nodeid];
2748 spin_lock(&l3->list_lock);
2749
2750 /* Get colour for the slab, and cal the next value. */
2751 offset = l3->colour_next;
2752 l3->colour_next++;
2753 if (l3->colour_next >= cachep->colour)
2754 l3->colour_next = 0;
2755 spin_unlock(&l3->list_lock);
2756
2757 offset *= cachep->colour_off;
2758
2759 if (local_flags & __GFP_WAIT)
2760 local_irq_enable();
2761
2762 /*
2763 * The test for missing atomic flag is performed here, rather than
2764 * the more obvious place, simply to reduce the critical path length
2765 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2766 * will eventually be caught here (where it matters).
2767 */
2768 kmem_flagcheck(cachep, flags);
2769
2770 /*
2771 * Get mem for the objs. Attempt to allocate a physical page from
2772 * 'nodeid'.
2773 */
2774 if (!objp)
2775 objp = kmem_getpages(cachep, local_flags, nodeid);
2776 if (!objp)
2777 goto failed;
2778
2779 /* Get slab management. */
2780 slabp = alloc_slabmgmt(cachep, objp, offset,
2781 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2782 if (!slabp)
2783 goto opps1;
2784
2785 slab_map_pages(cachep, slabp, objp);
2786
2787 cache_init_objs(cachep, slabp);
2788
2789 if (local_flags & __GFP_WAIT)
2790 local_irq_disable();
2791 check_irq_off();
2792 spin_lock(&l3->list_lock);
2793
2794 /* Make slab active. */
2795 list_add_tail(&slabp->list, &(l3->slabs_free));
2796 STATS_INC_GROWN(cachep);
2797 l3->free_objects += cachep->num;
2798 spin_unlock(&l3->list_lock);
2799 return 1;
2800 opps1:
2801 kmem_freepages(cachep, objp);
2802 failed:
2803 if (local_flags & __GFP_WAIT)
2804 local_irq_disable();
2805 return 0;
2806 }
2807
2808 #if DEBUG
2809
2810 /*
2811 * Perform extra freeing checks:
2812 * - detect bad pointers.
2813 * - POISON/RED_ZONE checking
2814 */
2815 static void kfree_debugcheck(const void *objp)
2816 {
2817 if (!virt_addr_valid(objp)) {
2818 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2819 (unsigned long)objp);
2820 BUG();
2821 }
2822 }
2823
2824 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2825 {
2826 unsigned long long redzone1, redzone2;
2827
2828 redzone1 = *dbg_redzone1(cache, obj);
2829 redzone2 = *dbg_redzone2(cache, obj);
2830
2831 /*
2832 * Redzone is ok.
2833 */
2834 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2835 return;
2836
2837 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2838 slab_error(cache, "double free detected");
2839 else
2840 slab_error(cache, "memory outside object was overwritten");
2841
2842 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2843 obj, redzone1, redzone2);
2844 }
2845
2846 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2847 void *caller)
2848 {
2849 struct page *page;
2850 unsigned int objnr;
2851 struct slab *slabp;
2852
2853 BUG_ON(virt_to_cache(objp) != cachep);
2854
2855 objp -= obj_offset(cachep);
2856 kfree_debugcheck(objp);
2857 page = virt_to_head_page(objp);
2858
2859 slabp = page_get_slab(page);
2860
2861 if (cachep->flags & SLAB_RED_ZONE) {
2862 verify_redzone_free(cachep, objp);
2863 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2864 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2865 }
2866 if (cachep->flags & SLAB_STORE_USER)
2867 *dbg_userword(cachep, objp) = caller;
2868
2869 objnr = obj_to_index(cachep, slabp, objp);
2870
2871 BUG_ON(objnr >= cachep->num);
2872 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2873
2874 #ifdef CONFIG_DEBUG_SLAB_LEAK
2875 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2876 #endif
2877 if (cachep->flags & SLAB_POISON) {
2878 #ifdef CONFIG_DEBUG_PAGEALLOC
2879 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2880 store_stackinfo(cachep, objp, (unsigned long)caller);
2881 kernel_map_pages(virt_to_page(objp),
2882 cachep->buffer_size / PAGE_SIZE, 0);
2883 } else {
2884 poison_obj(cachep, objp, POISON_FREE);
2885 }
2886 #else
2887 poison_obj(cachep, objp, POISON_FREE);
2888 #endif
2889 }
2890 return objp;
2891 }
2892
2893 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2894 {
2895 kmem_bufctl_t i;
2896 int entries = 0;
2897
2898 /* Check slab's freelist to see if this obj is there. */
2899 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2900 entries++;
2901 if (entries > cachep->num || i >= cachep->num)
2902 goto bad;
2903 }
2904 if (entries != cachep->num - slabp->inuse) {
2905 bad:
2906 printk(KERN_ERR "slab: Internal list corruption detected in "
2907 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2908 cachep->name, cachep->num, slabp, slabp->inuse);
2909 for (i = 0;
2910 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2911 i++) {
2912 if (i % 16 == 0)
2913 printk("\n%03x:", i);
2914 printk(" %02x", ((unsigned char *)slabp)[i]);
2915 }
2916 printk("\n");
2917 BUG();
2918 }
2919 }
2920 #else
2921 #define kfree_debugcheck(x) do { } while(0)
2922 #define cache_free_debugcheck(x,objp,z) (objp)
2923 #define check_slabp(x,y) do { } while(0)
2924 #endif
2925
2926 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2927 {
2928 int batchcount;
2929 struct kmem_list3 *l3;
2930 struct array_cache *ac;
2931 int node;
2932
2933 retry:
2934 check_irq_off();
2935 node = numa_node_id();
2936 ac = cpu_cache_get(cachep);
2937 batchcount = ac->batchcount;
2938 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2939 /*
2940 * If there was little recent activity on this cache, then
2941 * perform only a partial refill. Otherwise we could generate
2942 * refill bouncing.
2943 */
2944 batchcount = BATCHREFILL_LIMIT;
2945 }
2946 l3 = cachep->nodelists[node];
2947
2948 BUG_ON(ac->avail > 0 || !l3);
2949 spin_lock(&l3->list_lock);
2950
2951 /* See if we can refill from the shared array */
2952 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2953 goto alloc_done;
2954
2955 while (batchcount > 0) {
2956 struct list_head *entry;
2957 struct slab *slabp;
2958 /* Get slab alloc is to come from. */
2959 entry = l3->slabs_partial.next;
2960 if (entry == &l3->slabs_partial) {
2961 l3->free_touched = 1;
2962 entry = l3->slabs_free.next;
2963 if (entry == &l3->slabs_free)
2964 goto must_grow;
2965 }
2966
2967 slabp = list_entry(entry, struct slab, list);
2968 check_slabp(cachep, slabp);
2969 check_spinlock_acquired(cachep);
2970
2971 /*
2972 * The slab was either on partial or free list so
2973 * there must be at least one object available for
2974 * allocation.
2975 */
2976 BUG_ON(slabp->inuse >= cachep->num);
2977
2978 while (slabp->inuse < cachep->num && batchcount--) {
2979 STATS_INC_ALLOCED(cachep);
2980 STATS_INC_ACTIVE(cachep);
2981 STATS_SET_HIGH(cachep);
2982
2983 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2984 node);
2985 }
2986 check_slabp(cachep, slabp);
2987
2988 /* move slabp to correct slabp list: */
2989 list_del(&slabp->list);
2990 if (slabp->free == BUFCTL_END)
2991 list_add(&slabp->list, &l3->slabs_full);
2992 else
2993 list_add(&slabp->list, &l3->slabs_partial);
2994 }
2995
2996 must_grow:
2997 l3->free_objects -= ac->avail;
2998 alloc_done:
2999 spin_unlock(&l3->list_lock);
3000
3001 if (unlikely(!ac->avail)) {
3002 int x;
3003 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3004
3005 /* cache_grow can reenable interrupts, then ac could change. */
3006 ac = cpu_cache_get(cachep);
3007 if (!x && ac->avail == 0) /* no objects in sight? abort */
3008 return NULL;
3009
3010 if (!ac->avail) /* objects refilled by interrupt? */
3011 goto retry;
3012 }
3013 ac->touched = 1;
3014 return ac->entry[--ac->avail];
3015 }
3016
3017 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3018 gfp_t flags)
3019 {
3020 might_sleep_if(flags & __GFP_WAIT);
3021 #if DEBUG
3022 kmem_flagcheck(cachep, flags);
3023 #endif
3024 }
3025
3026 #if DEBUG
3027 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3028 gfp_t flags, void *objp, void *caller)
3029 {
3030 if (!objp)
3031 return objp;
3032 if (cachep->flags & SLAB_POISON) {
3033 #ifdef CONFIG_DEBUG_PAGEALLOC
3034 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3035 kernel_map_pages(virt_to_page(objp),
3036 cachep->buffer_size / PAGE_SIZE, 1);
3037 else
3038 check_poison_obj(cachep, objp);
3039 #else
3040 check_poison_obj(cachep, objp);
3041 #endif
3042 poison_obj(cachep, objp, POISON_INUSE);
3043 }
3044 if (cachep->flags & SLAB_STORE_USER)
3045 *dbg_userword(cachep, objp) = caller;
3046
3047 if (cachep->flags & SLAB_RED_ZONE) {
3048 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3049 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3050 slab_error(cachep, "double free, or memory outside"
3051 " object was overwritten");
3052 printk(KERN_ERR
3053 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3054 objp, *dbg_redzone1(cachep, objp),
3055 *dbg_redzone2(cachep, objp));
3056 }
3057 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3058 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3059 }
3060 #ifdef CONFIG_DEBUG_SLAB_LEAK
3061 {
3062 struct slab *slabp;
3063 unsigned objnr;
3064
3065 slabp = page_get_slab(virt_to_head_page(objp));
3066 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3067 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3068 }
3069 #endif
3070 objp += obj_offset(cachep);
3071 if (cachep->ctor && cachep->flags & SLAB_POISON)
3072 cachep->ctor(objp);
3073 #if ARCH_SLAB_MINALIGN
3074 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3075 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3076 objp, ARCH_SLAB_MINALIGN);
3077 }
3078 #endif
3079 return objp;
3080 }
3081 #else
3082 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3083 #endif
3084
3085 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3086 {
3087 if (cachep == &cache_cache)
3088 return false;
3089
3090 return should_failslab(obj_size(cachep), flags);
3091 }
3092
3093 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3094 {
3095 void *objp;
3096 struct array_cache *ac;
3097
3098 check_irq_off();
3099
3100 ac = cpu_cache_get(cachep);
3101 if (likely(ac->avail)) {
3102 STATS_INC_ALLOCHIT(cachep);
3103 ac->touched = 1;
3104 objp = ac->entry[--ac->avail];
3105 } else {
3106 STATS_INC_ALLOCMISS(cachep);
3107 objp = cache_alloc_refill(cachep, flags);
3108 }
3109 /*
3110 * To avoid a false negative, if an object that is in one of the
3111 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3112 * treat the array pointers as a reference to the object.
3113 */
3114 kmemleak_erase(&ac->entry[ac->avail]);
3115 return objp;
3116 }
3117
3118 #ifdef CONFIG_NUMA
3119 /*
3120 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3121 *
3122 * If we are in_interrupt, then process context, including cpusets and
3123 * mempolicy, may not apply and should not be used for allocation policy.
3124 */
3125 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3126 {
3127 int nid_alloc, nid_here;
3128
3129 if (in_interrupt() || (flags & __GFP_THISNODE))
3130 return NULL;
3131 nid_alloc = nid_here = numa_node_id();
3132 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3133 nid_alloc = cpuset_mem_spread_node();
3134 else if (current->mempolicy)
3135 nid_alloc = slab_node(current->mempolicy);
3136 if (nid_alloc != nid_here)
3137 return ____cache_alloc_node(cachep, flags, nid_alloc);
3138 return NULL;
3139 }
3140
3141 /*
3142 * Fallback function if there was no memory available and no objects on a
3143 * certain node and fall back is permitted. First we scan all the
3144 * available nodelists for available objects. If that fails then we
3145 * perform an allocation without specifying a node. This allows the page
3146 * allocator to do its reclaim / fallback magic. We then insert the
3147 * slab into the proper nodelist and then allocate from it.
3148 */
3149 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3150 {
3151 struct zonelist *zonelist;
3152 gfp_t local_flags;
3153 struct zoneref *z;
3154 struct zone *zone;
3155 enum zone_type high_zoneidx = gfp_zone(flags);
3156 void *obj = NULL;
3157 int nid;
3158
3159 if (flags & __GFP_THISNODE)
3160 return NULL;
3161
3162 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3163 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3164
3165 retry:
3166 /*
3167 * Look through allowed nodes for objects available
3168 * from existing per node queues.
3169 */
3170 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3171 nid = zone_to_nid(zone);
3172
3173 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3174 cache->nodelists[nid] &&
3175 cache->nodelists[nid]->free_objects) {
3176 obj = ____cache_alloc_node(cache,
3177 flags | GFP_THISNODE, nid);
3178 if (obj)
3179 break;
3180 }
3181 }
3182
3183 if (!obj) {
3184 /*
3185 * This allocation will be performed within the constraints
3186 * of the current cpuset / memory policy requirements.
3187 * We may trigger various forms of reclaim on the allowed
3188 * set and go into memory reserves if necessary.
3189 */
3190 if (local_flags & __GFP_WAIT)
3191 local_irq_enable();
3192 kmem_flagcheck(cache, flags);
3193 obj = kmem_getpages(cache, local_flags, numa_node_id());
3194 if (local_flags & __GFP_WAIT)
3195 local_irq_disable();
3196 if (obj) {
3197 /*
3198 * Insert into the appropriate per node queues
3199 */
3200 nid = page_to_nid(virt_to_page(obj));
3201 if (cache_grow(cache, flags, nid, obj)) {
3202 obj = ____cache_alloc_node(cache,
3203 flags | GFP_THISNODE, nid);
3204 if (!obj)
3205 /*
3206 * Another processor may allocate the
3207 * objects in the slab since we are
3208 * not holding any locks.
3209 */
3210 goto retry;
3211 } else {
3212 /* cache_grow already freed obj */
3213 obj = NULL;
3214 }
3215 }
3216 }
3217 return obj;
3218 }
3219
3220 /*
3221 * A interface to enable slab creation on nodeid
3222 */
3223 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3224 int nodeid)
3225 {
3226 struct list_head *entry;
3227 struct slab *slabp;
3228 struct kmem_list3 *l3;
3229 void *obj;
3230 int x;
3231
3232 l3 = cachep->nodelists[nodeid];
3233 BUG_ON(!l3);
3234
3235 retry:
3236 check_irq_off();
3237 spin_lock(&l3->list_lock);
3238 entry = l3->slabs_partial.next;
3239 if (entry == &l3->slabs_partial) {
3240 l3->free_touched = 1;
3241 entry = l3->slabs_free.next;
3242 if (entry == &l3->slabs_free)
3243 goto must_grow;
3244 }
3245
3246 slabp = list_entry(entry, struct slab, list);
3247 check_spinlock_acquired_node(cachep, nodeid);
3248 check_slabp(cachep, slabp);
3249
3250 STATS_INC_NODEALLOCS(cachep);
3251 STATS_INC_ACTIVE(cachep);
3252 STATS_SET_HIGH(cachep);
3253
3254 BUG_ON(slabp->inuse == cachep->num);
3255
3256 obj = slab_get_obj(cachep, slabp, nodeid);
3257 check_slabp(cachep, slabp);
3258 l3->free_objects--;
3259 /* move slabp to correct slabp list: */
3260 list_del(&slabp->list);
3261
3262 if (slabp->free == BUFCTL_END)
3263 list_add(&slabp->list, &l3->slabs_full);
3264 else
3265 list_add(&slabp->list, &l3->slabs_partial);
3266
3267 spin_unlock(&l3->list_lock);
3268 goto done;
3269
3270 must_grow:
3271 spin_unlock(&l3->list_lock);
3272 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3273 if (x)
3274 goto retry;
3275
3276 return fallback_alloc(cachep, flags);
3277
3278 done:
3279 return obj;
3280 }
3281
3282 /**
3283 * kmem_cache_alloc_node - Allocate an object on the specified node
3284 * @cachep: The cache to allocate from.
3285 * @flags: See kmalloc().
3286 * @nodeid: node number of the target node.
3287 * @caller: return address of caller, used for debug information
3288 *
3289 * Identical to kmem_cache_alloc but it will allocate memory on the given
3290 * node, which can improve the performance for cpu bound structures.
3291 *
3292 * Fallback to other node is possible if __GFP_THISNODE is not set.
3293 */
3294 static __always_inline void *
3295 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296 void *caller)
3297 {
3298 unsigned long save_flags;
3299 void *ptr;
3300
3301 flags &= gfp_allowed_mask;
3302
3303 lockdep_trace_alloc(flags);
3304
3305 if (slab_should_failslab(cachep, flags))
3306 return NULL;
3307
3308 cache_alloc_debugcheck_before(cachep, flags);
3309 local_irq_save(save_flags);
3310
3311 if (unlikely(nodeid == -1))
3312 nodeid = numa_node_id();
3313
3314 if (unlikely(!cachep->nodelists[nodeid])) {
3315 /* Node not bootstrapped yet */
3316 ptr = fallback_alloc(cachep, flags);
3317 goto out;
3318 }
3319
3320 if (nodeid == numa_node_id()) {
3321 /*
3322 * Use the locally cached objects if possible.
3323 * However ____cache_alloc does not allow fallback
3324 * to other nodes. It may fail while we still have
3325 * objects on other nodes available.
3326 */
3327 ptr = ____cache_alloc(cachep, flags);
3328 if (ptr)
3329 goto out;
3330 }
3331 /* ___cache_alloc_node can fall back to other nodes */
3332 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333 out:
3334 local_irq_restore(save_flags);
3335 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3337 flags);
3338
3339 if (likely(ptr))
3340 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3341
3342 if (unlikely((flags & __GFP_ZERO) && ptr))
3343 memset(ptr, 0, obj_size(cachep));
3344
3345 return ptr;
3346 }
3347
3348 static __always_inline void *
3349 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3350 {
3351 void *objp;
3352
3353 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3354 objp = alternate_node_alloc(cache, flags);
3355 if (objp)
3356 goto out;
3357 }
3358 objp = ____cache_alloc(cache, flags);
3359
3360 /*
3361 * We may just have run out of memory on the local node.
3362 * ____cache_alloc_node() knows how to locate memory on other nodes
3363 */
3364 if (!objp)
3365 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3366
3367 out:
3368 return objp;
3369 }
3370 #else
3371
3372 static __always_inline void *
3373 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3374 {
3375 return ____cache_alloc(cachep, flags);
3376 }
3377
3378 #endif /* CONFIG_NUMA */
3379
3380 static __always_inline void *
3381 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3382 {
3383 unsigned long save_flags;
3384 void *objp;
3385
3386 flags &= gfp_allowed_mask;
3387
3388 lockdep_trace_alloc(flags);
3389
3390 if (slab_should_failslab(cachep, flags))
3391 return NULL;
3392
3393 cache_alloc_debugcheck_before(cachep, flags);
3394 local_irq_save(save_flags);
3395 objp = __do_cache_alloc(cachep, flags);
3396 local_irq_restore(save_flags);
3397 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3398 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3399 flags);
3400 prefetchw(objp);
3401
3402 if (likely(objp))
3403 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3404
3405 if (unlikely((flags & __GFP_ZERO) && objp))
3406 memset(objp, 0, obj_size(cachep));
3407
3408 return objp;
3409 }
3410
3411 /*
3412 * Caller needs to acquire correct kmem_list's list_lock
3413 */
3414 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3415 int node)
3416 {
3417 int i;
3418 struct kmem_list3 *l3;
3419
3420 for (i = 0; i < nr_objects; i++) {
3421 void *objp = objpp[i];
3422 struct slab *slabp;
3423
3424 slabp = virt_to_slab(objp);
3425 l3 = cachep->nodelists[node];
3426 list_del(&slabp->list);
3427 check_spinlock_acquired_node(cachep, node);
3428 check_slabp(cachep, slabp);
3429 slab_put_obj(cachep, slabp, objp, node);
3430 STATS_DEC_ACTIVE(cachep);
3431 l3->free_objects++;
3432 check_slabp(cachep, slabp);
3433
3434 /* fixup slab chains */
3435 if (slabp->inuse == 0) {
3436 if (l3->free_objects > l3->free_limit) {
3437 l3->free_objects -= cachep->num;
3438 /* No need to drop any previously held
3439 * lock here, even if we have a off-slab slab
3440 * descriptor it is guaranteed to come from
3441 * a different cache, refer to comments before
3442 * alloc_slabmgmt.
3443 */
3444 slab_destroy(cachep, slabp);
3445 } else {
3446 list_add(&slabp->list, &l3->slabs_free);
3447 }
3448 } else {
3449 /* Unconditionally move a slab to the end of the
3450 * partial list on free - maximum time for the
3451 * other objects to be freed, too.
3452 */
3453 list_add_tail(&slabp->list, &l3->slabs_partial);
3454 }
3455 }
3456 }
3457
3458 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3459 {
3460 int batchcount;
3461 struct kmem_list3 *l3;
3462 int node = numa_node_id();
3463
3464 batchcount = ac->batchcount;
3465 #if DEBUG
3466 BUG_ON(!batchcount || batchcount > ac->avail);
3467 #endif
3468 check_irq_off();
3469 l3 = cachep->nodelists[node];
3470 spin_lock(&l3->list_lock);
3471 if (l3->shared) {
3472 struct array_cache *shared_array = l3->shared;
3473 int max = shared_array->limit - shared_array->avail;
3474 if (max) {
3475 if (batchcount > max)
3476 batchcount = max;
3477 memcpy(&(shared_array->entry[shared_array->avail]),
3478 ac->entry, sizeof(void *) * batchcount);
3479 shared_array->avail += batchcount;
3480 goto free_done;
3481 }
3482 }
3483
3484 free_block(cachep, ac->entry, batchcount, node);
3485 free_done:
3486 #if STATS
3487 {
3488 int i = 0;
3489 struct list_head *p;
3490
3491 p = l3->slabs_free.next;
3492 while (p != &(l3->slabs_free)) {
3493 struct slab *slabp;
3494
3495 slabp = list_entry(p, struct slab, list);
3496 BUG_ON(slabp->inuse);
3497
3498 i++;
3499 p = p->next;
3500 }
3501 STATS_SET_FREEABLE(cachep, i);
3502 }
3503 #endif
3504 spin_unlock(&l3->list_lock);
3505 ac->avail -= batchcount;
3506 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3507 }
3508
3509 /*
3510 * Release an obj back to its cache. If the obj has a constructed state, it must
3511 * be in this state _before_ it is released. Called with disabled ints.
3512 */
3513 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3514 {
3515 struct array_cache *ac = cpu_cache_get(cachep);
3516
3517 check_irq_off();
3518 kmemleak_free_recursive(objp, cachep->flags);
3519 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3520
3521 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3522
3523 /*
3524 * Skip calling cache_free_alien() when the platform is not numa.
3525 * This will avoid cache misses that happen while accessing slabp (which
3526 * is per page memory reference) to get nodeid. Instead use a global
3527 * variable to skip the call, which is mostly likely to be present in
3528 * the cache.
3529 */
3530 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3531 return;
3532
3533 if (likely(ac->avail < ac->limit)) {
3534 STATS_INC_FREEHIT(cachep);
3535 ac->entry[ac->avail++] = objp;
3536 return;
3537 } else {
3538 STATS_INC_FREEMISS(cachep);
3539 cache_flusharray(cachep, ac);
3540 ac->entry[ac->avail++] = objp;
3541 }
3542 }
3543
3544 /**
3545 * kmem_cache_alloc - Allocate an object
3546 * @cachep: The cache to allocate from.
3547 * @flags: See kmalloc().
3548 *
3549 * Allocate an object from this cache. The flags are only relevant
3550 * if the cache has no available objects.
3551 */
3552 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3553 {
3554 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3555
3556 trace_kmem_cache_alloc(_RET_IP_, ret,
3557 obj_size(cachep), cachep->buffer_size, flags);
3558
3559 return ret;
3560 }
3561 EXPORT_SYMBOL(kmem_cache_alloc);
3562
3563 #ifdef CONFIG_KMEMTRACE
3564 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3565 {
3566 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3567 }
3568 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3569 #endif
3570
3571 /**
3572 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3573 * @cachep: the cache we're checking against
3574 * @ptr: pointer to validate
3575 *
3576 * This verifies that the untrusted pointer looks sane;
3577 * it is _not_ a guarantee that the pointer is actually
3578 * part of the slab cache in question, but it at least
3579 * validates that the pointer can be dereferenced and
3580 * looks half-way sane.
3581 *
3582 * Currently only used for dentry validation.
3583 */
3584 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3585 {
3586 unsigned long addr = (unsigned long)ptr;
3587 unsigned long min_addr = PAGE_OFFSET;
3588 unsigned long align_mask = BYTES_PER_WORD - 1;
3589 unsigned long size = cachep->buffer_size;
3590 struct page *page;
3591
3592 if (unlikely(addr < min_addr))
3593 goto out;
3594 if (unlikely(addr > (unsigned long)high_memory - size))
3595 goto out;
3596 if (unlikely(addr & align_mask))
3597 goto out;
3598 if (unlikely(!kern_addr_valid(addr)))
3599 goto out;
3600 if (unlikely(!kern_addr_valid(addr + size - 1)))
3601 goto out;
3602 page = virt_to_page(ptr);
3603 if (unlikely(!PageSlab(page)))
3604 goto out;
3605 if (unlikely(page_get_cache(page) != cachep))
3606 goto out;
3607 return 1;
3608 out:
3609 return 0;
3610 }
3611
3612 #ifdef CONFIG_NUMA
3613 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3614 {
3615 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3616 __builtin_return_address(0));
3617
3618 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3619 obj_size(cachep), cachep->buffer_size,
3620 flags, nodeid);
3621
3622 return ret;
3623 }
3624 EXPORT_SYMBOL(kmem_cache_alloc_node);
3625
3626 #ifdef CONFIG_KMEMTRACE
3627 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3628 gfp_t flags,
3629 int nodeid)
3630 {
3631 return __cache_alloc_node(cachep, flags, nodeid,
3632 __builtin_return_address(0));
3633 }
3634 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3635 #endif
3636
3637 static __always_inline void *
3638 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3639 {
3640 struct kmem_cache *cachep;
3641 void *ret;
3642
3643 cachep = kmem_find_general_cachep(size, flags);
3644 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3645 return cachep;
3646 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3647
3648 trace_kmalloc_node((unsigned long) caller, ret,
3649 size, cachep->buffer_size, flags, node);
3650
3651 return ret;
3652 }
3653
3654 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3655 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3656 {
3657 return __do_kmalloc_node(size, flags, node,
3658 __builtin_return_address(0));
3659 }
3660 EXPORT_SYMBOL(__kmalloc_node);
3661
3662 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3663 int node, unsigned long caller)
3664 {
3665 return __do_kmalloc_node(size, flags, node, (void *)caller);
3666 }
3667 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3668 #else
3669 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3670 {
3671 return __do_kmalloc_node(size, flags, node, NULL);
3672 }
3673 EXPORT_SYMBOL(__kmalloc_node);
3674 #endif /* CONFIG_DEBUG_SLAB */
3675 #endif /* CONFIG_NUMA */
3676
3677 /**
3678 * __do_kmalloc - allocate memory
3679 * @size: how many bytes of memory are required.
3680 * @flags: the type of memory to allocate (see kmalloc).
3681 * @caller: function caller for debug tracking of the caller
3682 */
3683 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3684 void *caller)
3685 {
3686 struct kmem_cache *cachep;
3687 void *ret;
3688
3689 /* If you want to save a few bytes .text space: replace
3690 * __ with kmem_.
3691 * Then kmalloc uses the uninlined functions instead of the inline
3692 * functions.
3693 */
3694 cachep = __find_general_cachep(size, flags);
3695 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3696 return cachep;
3697 ret = __cache_alloc(cachep, flags, caller);
3698
3699 trace_kmalloc((unsigned long) caller, ret,
3700 size, cachep->buffer_size, flags);
3701
3702 return ret;
3703 }
3704
3705
3706 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3707 void *__kmalloc(size_t size, gfp_t flags)
3708 {
3709 return __do_kmalloc(size, flags, __builtin_return_address(0));
3710 }
3711 EXPORT_SYMBOL(__kmalloc);
3712
3713 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3714 {
3715 return __do_kmalloc(size, flags, (void *)caller);
3716 }
3717 EXPORT_SYMBOL(__kmalloc_track_caller);
3718
3719 #else
3720 void *__kmalloc(size_t size, gfp_t flags)
3721 {
3722 return __do_kmalloc(size, flags, NULL);
3723 }
3724 EXPORT_SYMBOL(__kmalloc);
3725 #endif
3726
3727 /**
3728 * kmem_cache_free - Deallocate an object
3729 * @cachep: The cache the allocation was from.
3730 * @objp: The previously allocated object.
3731 *
3732 * Free an object which was previously allocated from this
3733 * cache.
3734 */
3735 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3736 {
3737 unsigned long flags;
3738
3739 local_irq_save(flags);
3740 debug_check_no_locks_freed(objp, obj_size(cachep));
3741 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3742 debug_check_no_obj_freed(objp, obj_size(cachep));
3743 __cache_free(cachep, objp);
3744 local_irq_restore(flags);
3745
3746 trace_kmem_cache_free(_RET_IP_, objp);
3747 }
3748 EXPORT_SYMBOL(kmem_cache_free);
3749
3750 /**
3751 * kfree - free previously allocated memory
3752 * @objp: pointer returned by kmalloc.
3753 *
3754 * If @objp is NULL, no operation is performed.
3755 *
3756 * Don't free memory not originally allocated by kmalloc()
3757 * or you will run into trouble.
3758 */
3759 void kfree(const void *objp)
3760 {
3761 struct kmem_cache *c;
3762 unsigned long flags;
3763
3764 trace_kfree(_RET_IP_, objp);
3765
3766 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3767 return;
3768 local_irq_save(flags);
3769 kfree_debugcheck(objp);
3770 c = virt_to_cache(objp);
3771 debug_check_no_locks_freed(objp, obj_size(c));
3772 debug_check_no_obj_freed(objp, obj_size(c));
3773 __cache_free(c, (void *)objp);
3774 local_irq_restore(flags);
3775 }
3776 EXPORT_SYMBOL(kfree);
3777
3778 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3779 {
3780 return obj_size(cachep);
3781 }
3782 EXPORT_SYMBOL(kmem_cache_size);
3783
3784 const char *kmem_cache_name(struct kmem_cache *cachep)
3785 {
3786 return cachep->name;
3787 }
3788 EXPORT_SYMBOL_GPL(kmem_cache_name);
3789
3790 /*
3791 * This initializes kmem_list3 or resizes various caches for all nodes.
3792 */
3793 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3794 {
3795 int node;
3796 struct kmem_list3 *l3;
3797 struct array_cache *new_shared;
3798 struct array_cache **new_alien = NULL;
3799
3800 for_each_online_node(node) {
3801
3802 if (use_alien_caches) {
3803 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3804 if (!new_alien)
3805 goto fail;
3806 }
3807
3808 new_shared = NULL;
3809 if (cachep->shared) {
3810 new_shared = alloc_arraycache(node,
3811 cachep->shared*cachep->batchcount,
3812 0xbaadf00d, gfp);
3813 if (!new_shared) {
3814 free_alien_cache(new_alien);
3815 goto fail;
3816 }
3817 }
3818
3819 l3 = cachep->nodelists[node];
3820 if (l3) {
3821 struct array_cache *shared = l3->shared;
3822
3823 spin_lock_irq(&l3->list_lock);
3824
3825 if (shared)
3826 free_block(cachep, shared->entry,
3827 shared->avail, node);
3828
3829 l3->shared = new_shared;
3830 if (!l3->alien) {
3831 l3->alien = new_alien;
3832 new_alien = NULL;
3833 }
3834 l3->free_limit = (1 + nr_cpus_node(node)) *
3835 cachep->batchcount + cachep->num;
3836 spin_unlock_irq(&l3->list_lock);
3837 kfree(shared);
3838 free_alien_cache(new_alien);
3839 continue;
3840 }
3841 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3842 if (!l3) {
3843 free_alien_cache(new_alien);
3844 kfree(new_shared);
3845 goto fail;
3846 }
3847
3848 kmem_list3_init(l3);
3849 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3850 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3851 l3->shared = new_shared;
3852 l3->alien = new_alien;
3853 l3->free_limit = (1 + nr_cpus_node(node)) *
3854 cachep->batchcount + cachep->num;
3855 cachep->nodelists[node] = l3;
3856 }
3857 return 0;
3858
3859 fail:
3860 if (!cachep->next.next) {
3861 /* Cache is not active yet. Roll back what we did */
3862 node--;
3863 while (node >= 0) {
3864 if (cachep->nodelists[node]) {
3865 l3 = cachep->nodelists[node];
3866
3867 kfree(l3->shared);
3868 free_alien_cache(l3->alien);
3869 kfree(l3);
3870 cachep->nodelists[node] = NULL;
3871 }
3872 node--;
3873 }
3874 }
3875 return -ENOMEM;
3876 }
3877
3878 struct ccupdate_struct {
3879 struct kmem_cache *cachep;
3880 struct array_cache *new[NR_CPUS];
3881 };
3882
3883 static void do_ccupdate_local(void *info)
3884 {
3885 struct ccupdate_struct *new = info;
3886 struct array_cache *old;
3887
3888 check_irq_off();
3889 old = cpu_cache_get(new->cachep);
3890
3891 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3892 new->new[smp_processor_id()] = old;
3893 }
3894
3895 /* Always called with the cache_chain_mutex held */
3896 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3897 int batchcount, int shared, gfp_t gfp)
3898 {
3899 struct ccupdate_struct *new;
3900 int i;
3901
3902 new = kzalloc(sizeof(*new), gfp);
3903 if (!new)
3904 return -ENOMEM;
3905
3906 for_each_online_cpu(i) {
3907 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3908 batchcount, gfp);
3909 if (!new->new[i]) {
3910 for (i--; i >= 0; i--)
3911 kfree(new->new[i]);
3912 kfree(new);
3913 return -ENOMEM;
3914 }
3915 }
3916 new->cachep = cachep;
3917
3918 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3919
3920 check_irq_on();
3921 cachep->batchcount = batchcount;
3922 cachep->limit = limit;
3923 cachep->shared = shared;
3924
3925 for_each_online_cpu(i) {
3926 struct array_cache *ccold = new->new[i];
3927 if (!ccold)
3928 continue;
3929 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3930 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3931 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3932 kfree(ccold);
3933 }
3934 kfree(new);
3935 return alloc_kmemlist(cachep, gfp);
3936 }
3937
3938 /* Called with cache_chain_mutex held always */
3939 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3940 {
3941 int err;
3942 int limit, shared;
3943
3944 /*
3945 * The head array serves three purposes:
3946 * - create a LIFO ordering, i.e. return objects that are cache-warm
3947 * - reduce the number of spinlock operations.
3948 * - reduce the number of linked list operations on the slab and
3949 * bufctl chains: array operations are cheaper.
3950 * The numbers are guessed, we should auto-tune as described by
3951 * Bonwick.
3952 */
3953 if (cachep->buffer_size > 131072)
3954 limit = 1;
3955 else if (cachep->buffer_size > PAGE_SIZE)
3956 limit = 8;
3957 else if (cachep->buffer_size > 1024)
3958 limit = 24;
3959 else if (cachep->buffer_size > 256)
3960 limit = 54;
3961 else
3962 limit = 120;
3963
3964 /*
3965 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3966 * allocation behaviour: Most allocs on one cpu, most free operations
3967 * on another cpu. For these cases, an efficient object passing between
3968 * cpus is necessary. This is provided by a shared array. The array
3969 * replaces Bonwick's magazine layer.
3970 * On uniprocessor, it's functionally equivalent (but less efficient)
3971 * to a larger limit. Thus disabled by default.
3972 */
3973 shared = 0;
3974 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3975 shared = 8;
3976
3977 #if DEBUG
3978 /*
3979 * With debugging enabled, large batchcount lead to excessively long
3980 * periods with disabled local interrupts. Limit the batchcount
3981 */
3982 if (limit > 32)
3983 limit = 32;
3984 #endif
3985 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
3986 if (err)
3987 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3988 cachep->name, -err);
3989 return err;
3990 }
3991
3992 /*
3993 * Drain an array if it contains any elements taking the l3 lock only if
3994 * necessary. Note that the l3 listlock also protects the array_cache
3995 * if drain_array() is used on the shared array.
3996 */
3997 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3998 struct array_cache *ac, int force, int node)
3999 {
4000 int tofree;
4001
4002 if (!ac || !ac->avail)
4003 return;
4004 if (ac->touched && !force) {
4005 ac->touched = 0;
4006 } else {
4007 spin_lock_irq(&l3->list_lock);
4008 if (ac->avail) {
4009 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4010 if (tofree > ac->avail)
4011 tofree = (ac->avail + 1) / 2;
4012 free_block(cachep, ac->entry, tofree, node);
4013 ac->avail -= tofree;
4014 memmove(ac->entry, &(ac->entry[tofree]),
4015 sizeof(void *) * ac->avail);
4016 }
4017 spin_unlock_irq(&l3->list_lock);
4018 }
4019 }
4020
4021 /**
4022 * cache_reap - Reclaim memory from caches.
4023 * @w: work descriptor
4024 *
4025 * Called from workqueue/eventd every few seconds.
4026 * Purpose:
4027 * - clear the per-cpu caches for this CPU.
4028 * - return freeable pages to the main free memory pool.
4029 *
4030 * If we cannot acquire the cache chain mutex then just give up - we'll try
4031 * again on the next iteration.
4032 */
4033 static void cache_reap(struct work_struct *w)
4034 {
4035 struct kmem_cache *searchp;
4036 struct kmem_list3 *l3;
4037 int node = numa_node_id();
4038 struct delayed_work *work = to_delayed_work(w);
4039
4040 if (!mutex_trylock(&cache_chain_mutex))
4041 /* Give up. Setup the next iteration. */
4042 goto out;
4043
4044 list_for_each_entry(searchp, &cache_chain, next) {
4045 check_irq_on();
4046
4047 /*
4048 * We only take the l3 lock if absolutely necessary and we
4049 * have established with reasonable certainty that
4050 * we can do some work if the lock was obtained.
4051 */
4052 l3 = searchp->nodelists[node];
4053
4054 reap_alien(searchp, l3);
4055
4056 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4057
4058 /*
4059 * These are racy checks but it does not matter
4060 * if we skip one check or scan twice.
4061 */
4062 if (time_after(l3->next_reap, jiffies))
4063 goto next;
4064
4065 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4066
4067 drain_array(searchp, l3, l3->shared, 0, node);
4068
4069 if (l3->free_touched)
4070 l3->free_touched = 0;
4071 else {
4072 int freed;
4073
4074 freed = drain_freelist(searchp, l3, (l3->free_limit +
4075 5 * searchp->num - 1) / (5 * searchp->num));
4076 STATS_ADD_REAPED(searchp, freed);
4077 }
4078 next:
4079 cond_resched();
4080 }
4081 check_irq_on();
4082 mutex_unlock(&cache_chain_mutex);
4083 next_reap_node();
4084 out:
4085 /* Set up the next iteration */
4086 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4087 }
4088
4089 #ifdef CONFIG_SLABINFO
4090
4091 static void print_slabinfo_header(struct seq_file *m)
4092 {
4093 /*
4094 * Output format version, so at least we can change it
4095 * without _too_ many complaints.
4096 */
4097 #if STATS
4098 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4099 #else
4100 seq_puts(m, "slabinfo - version: 2.1\n");
4101 #endif
4102 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4103 "<objperslab> <pagesperslab>");
4104 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4105 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4106 #if STATS
4107 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4108 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4109 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4110 #endif
4111 seq_putc(m, '\n');
4112 }
4113
4114 static void *s_start(struct seq_file *m, loff_t *pos)
4115 {
4116 loff_t n = *pos;
4117
4118 mutex_lock(&cache_chain_mutex);
4119 if (!n)
4120 print_slabinfo_header(m);
4121
4122 return seq_list_start(&cache_chain, *pos);
4123 }
4124
4125 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4126 {
4127 return seq_list_next(p, &cache_chain, pos);
4128 }
4129
4130 static void s_stop(struct seq_file *m, void *p)
4131 {
4132 mutex_unlock(&cache_chain_mutex);
4133 }
4134
4135 static int s_show(struct seq_file *m, void *p)
4136 {
4137 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4138 struct slab *slabp;
4139 unsigned long active_objs;
4140 unsigned long num_objs;
4141 unsigned long active_slabs = 0;
4142 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4143 const char *name;
4144 char *error = NULL;
4145 int node;
4146 struct kmem_list3 *l3;
4147
4148 active_objs = 0;
4149 num_slabs = 0;
4150 for_each_online_node(node) {
4151 l3 = cachep->nodelists[node];
4152 if (!l3)
4153 continue;
4154
4155 check_irq_on();
4156 spin_lock_irq(&l3->list_lock);
4157
4158 list_for_each_entry(slabp, &l3->slabs_full, list) {
4159 if (slabp->inuse != cachep->num && !error)
4160 error = "slabs_full accounting error";
4161 active_objs += cachep->num;
4162 active_slabs++;
4163 }
4164 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4165 if (slabp->inuse == cachep->num && !error)
4166 error = "slabs_partial inuse accounting error";
4167 if (!slabp->inuse && !error)
4168 error = "slabs_partial/inuse accounting error";
4169 active_objs += slabp->inuse;
4170 active_slabs++;
4171 }
4172 list_for_each_entry(slabp, &l3->slabs_free, list) {
4173 if (slabp->inuse && !error)
4174 error = "slabs_free/inuse accounting error";
4175 num_slabs++;
4176 }
4177 free_objects += l3->free_objects;
4178 if (l3->shared)
4179 shared_avail += l3->shared->avail;
4180
4181 spin_unlock_irq(&l3->list_lock);
4182 }
4183 num_slabs += active_slabs;
4184 num_objs = num_slabs * cachep->num;
4185 if (num_objs - active_objs != free_objects && !error)
4186 error = "free_objects accounting error";
4187
4188 name = cachep->name;
4189 if (error)
4190 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4191
4192 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4193 name, active_objs, num_objs, cachep->buffer_size,
4194 cachep->num, (1 << cachep->gfporder));
4195 seq_printf(m, " : tunables %4u %4u %4u",
4196 cachep->limit, cachep->batchcount, cachep->shared);
4197 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4198 active_slabs, num_slabs, shared_avail);
4199 #if STATS
4200 { /* list3 stats */
4201 unsigned long high = cachep->high_mark;
4202 unsigned long allocs = cachep->num_allocations;
4203 unsigned long grown = cachep->grown;
4204 unsigned long reaped = cachep->reaped;
4205 unsigned long errors = cachep->errors;
4206 unsigned long max_freeable = cachep->max_freeable;
4207 unsigned long node_allocs = cachep->node_allocs;
4208 unsigned long node_frees = cachep->node_frees;
4209 unsigned long overflows = cachep->node_overflow;
4210
4211 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4212 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4213 reaped, errors, max_freeable, node_allocs,
4214 node_frees, overflows);
4215 }
4216 /* cpu stats */
4217 {
4218 unsigned long allochit = atomic_read(&cachep->allochit);
4219 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4220 unsigned long freehit = atomic_read(&cachep->freehit);
4221 unsigned long freemiss = atomic_read(&cachep->freemiss);
4222
4223 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4224 allochit, allocmiss, freehit, freemiss);
4225 }
4226 #endif
4227 seq_putc(m, '\n');
4228 return 0;
4229 }
4230
4231 /*
4232 * slabinfo_op - iterator that generates /proc/slabinfo
4233 *
4234 * Output layout:
4235 * cache-name
4236 * num-active-objs
4237 * total-objs
4238 * object size
4239 * num-active-slabs
4240 * total-slabs
4241 * num-pages-per-slab
4242 * + further values on SMP and with statistics enabled
4243 */
4244
4245 static const struct seq_operations slabinfo_op = {
4246 .start = s_start,
4247 .next = s_next,
4248 .stop = s_stop,
4249 .show = s_show,
4250 };
4251
4252 #define MAX_SLABINFO_WRITE 128
4253 /**
4254 * slabinfo_write - Tuning for the slab allocator
4255 * @file: unused
4256 * @buffer: user buffer
4257 * @count: data length
4258 * @ppos: unused
4259 */
4260 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4261 size_t count, loff_t *ppos)
4262 {
4263 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4264 int limit, batchcount, shared, res;
4265 struct kmem_cache *cachep;
4266
4267 if (count > MAX_SLABINFO_WRITE)
4268 return -EINVAL;
4269 if (copy_from_user(&kbuf, buffer, count))
4270 return -EFAULT;
4271 kbuf[MAX_SLABINFO_WRITE] = '\0';
4272
4273 tmp = strchr(kbuf, ' ');
4274 if (!tmp)
4275 return -EINVAL;
4276 *tmp = '\0';
4277 tmp++;
4278 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4279 return -EINVAL;
4280
4281 /* Find the cache in the chain of caches. */
4282 mutex_lock(&cache_chain_mutex);
4283 res = -EINVAL;
4284 list_for_each_entry(cachep, &cache_chain, next) {
4285 if (!strcmp(cachep->name, kbuf)) {
4286 if (limit < 1 || batchcount < 1 ||
4287 batchcount > limit || shared < 0) {
4288 res = 0;
4289 } else {
4290 res = do_tune_cpucache(cachep, limit,
4291 batchcount, shared,
4292 GFP_KERNEL);
4293 }
4294 break;
4295 }
4296 }
4297 mutex_unlock(&cache_chain_mutex);
4298 if (res >= 0)
4299 res = count;
4300 return res;
4301 }
4302
4303 static int slabinfo_open(struct inode *inode, struct file *file)
4304 {
4305 return seq_open(file, &slabinfo_op);
4306 }
4307
4308 static const struct file_operations proc_slabinfo_operations = {
4309 .open = slabinfo_open,
4310 .read = seq_read,
4311 .write = slabinfo_write,
4312 .llseek = seq_lseek,
4313 .release = seq_release,
4314 };
4315
4316 #ifdef CONFIG_DEBUG_SLAB_LEAK
4317
4318 static void *leaks_start(struct seq_file *m, loff_t *pos)
4319 {
4320 mutex_lock(&cache_chain_mutex);
4321 return seq_list_start(&cache_chain, *pos);
4322 }
4323
4324 static inline int add_caller(unsigned long *n, unsigned long v)
4325 {
4326 unsigned long *p;
4327 int l;
4328 if (!v)
4329 return 1;
4330 l = n[1];
4331 p = n + 2;
4332 while (l) {
4333 int i = l/2;
4334 unsigned long *q = p + 2 * i;
4335 if (*q == v) {
4336 q[1]++;
4337 return 1;
4338 }
4339 if (*q > v) {
4340 l = i;
4341 } else {
4342 p = q + 2;
4343 l -= i + 1;
4344 }
4345 }
4346 if (++n[1] == n[0])
4347 return 0;
4348 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4349 p[0] = v;
4350 p[1] = 1;
4351 return 1;
4352 }
4353
4354 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4355 {
4356 void *p;
4357 int i;
4358 if (n[0] == n[1])
4359 return;
4360 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4361 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4362 continue;
4363 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4364 return;
4365 }
4366 }
4367
4368 static void show_symbol(struct seq_file *m, unsigned long address)
4369 {
4370 #ifdef CONFIG_KALLSYMS
4371 unsigned long offset, size;
4372 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4373
4374 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4375 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4376 if (modname[0])
4377 seq_printf(m, " [%s]", modname);
4378 return;
4379 }
4380 #endif
4381 seq_printf(m, "%p", (void *)address);
4382 }
4383
4384 static int leaks_show(struct seq_file *m, void *p)
4385 {
4386 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4387 struct slab *slabp;
4388 struct kmem_list3 *l3;
4389 const char *name;
4390 unsigned long *n = m->private;
4391 int node;
4392 int i;
4393
4394 if (!(cachep->flags & SLAB_STORE_USER))
4395 return 0;
4396 if (!(cachep->flags & SLAB_RED_ZONE))
4397 return 0;
4398
4399 /* OK, we can do it */
4400
4401 n[1] = 0;
4402
4403 for_each_online_node(node) {
4404 l3 = cachep->nodelists[node];
4405 if (!l3)
4406 continue;
4407
4408 check_irq_on();
4409 spin_lock_irq(&l3->list_lock);
4410
4411 list_for_each_entry(slabp, &l3->slabs_full, list)
4412 handle_slab(n, cachep, slabp);
4413 list_for_each_entry(slabp, &l3->slabs_partial, list)
4414 handle_slab(n, cachep, slabp);
4415 spin_unlock_irq(&l3->list_lock);
4416 }
4417 name = cachep->name;
4418 if (n[0] == n[1]) {
4419 /* Increase the buffer size */
4420 mutex_unlock(&cache_chain_mutex);
4421 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4422 if (!m->private) {
4423 /* Too bad, we are really out */
4424 m->private = n;
4425 mutex_lock(&cache_chain_mutex);
4426 return -ENOMEM;
4427 }
4428 *(unsigned long *)m->private = n[0] * 2;
4429 kfree(n);
4430 mutex_lock(&cache_chain_mutex);
4431 /* Now make sure this entry will be retried */
4432 m->count = m->size;
4433 return 0;
4434 }
4435 for (i = 0; i < n[1]; i++) {
4436 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4437 show_symbol(m, n[2*i+2]);
4438 seq_putc(m, '\n');
4439 }
4440
4441 return 0;
4442 }
4443
4444 static const struct seq_operations slabstats_op = {
4445 .start = leaks_start,
4446 .next = s_next,
4447 .stop = s_stop,
4448 .show = leaks_show,
4449 };
4450
4451 static int slabstats_open(struct inode *inode, struct file *file)
4452 {
4453 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4454 int ret = -ENOMEM;
4455 if (n) {
4456 ret = seq_open(file, &slabstats_op);
4457 if (!ret) {
4458 struct seq_file *m = file->private_data;
4459 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4460 m->private = n;
4461 n = NULL;
4462 }
4463 kfree(n);
4464 }
4465 return ret;
4466 }
4467
4468 static const struct file_operations proc_slabstats_operations = {
4469 .open = slabstats_open,
4470 .read = seq_read,
4471 .llseek = seq_lseek,
4472 .release = seq_release_private,
4473 };
4474 #endif
4475
4476 static int __init slab_proc_init(void)
4477 {
4478 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4479 #ifdef CONFIG_DEBUG_SLAB_LEAK
4480 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4481 #endif
4482 return 0;
4483 }
4484 module_init(slab_proc_init);
4485 #endif
4486
4487 /**
4488 * ksize - get the actual amount of memory allocated for a given object
4489 * @objp: Pointer to the object
4490 *
4491 * kmalloc may internally round up allocations and return more memory
4492 * than requested. ksize() can be used to determine the actual amount of
4493 * memory allocated. The caller may use this additional memory, even though
4494 * a smaller amount of memory was initially specified with the kmalloc call.
4495 * The caller must guarantee that objp points to a valid object previously
4496 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4497 * must not be freed during the duration of the call.
4498 */
4499 size_t ksize(const void *objp)
4500 {
4501 BUG_ON(!objp);
4502 if (unlikely(objp == ZERO_SIZE_PTR))
4503 return 0;
4504
4505 return obj_size(virt_to_cache(objp));
4506 }
4507 EXPORT_SYMBOL(ksize);