cpuset: mm: reduce large amounts of memory barrier related damage v3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
123
124 #include <trace/events/kmem.h>
125
126 /*
127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
132 *
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 */
135
136 #ifdef CONFIG_DEBUG_SLAB
137 #define DEBUG 1
138 #define STATS 1
139 #define FORCED_DEBUG 1
140 #else
141 #define DEBUG 0
142 #define STATS 0
143 #define FORCED_DEBUG 0
144 #endif
145
146 /* Shouldn't this be in a header file somewhere? */
147 #define BYTES_PER_WORD sizeof(void *)
148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
149
150 #ifndef ARCH_KMALLOC_FLAGS
151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 #endif
153
154 /* Legal flag mask for kmem_cache_create(). */
155 #if DEBUG
156 # define CREATE_MASK (SLAB_RED_ZONE | \
157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_CACHE_DMA | \
159 SLAB_STORE_USER | \
160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
163 #else
164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
165 SLAB_CACHE_DMA | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
169 #endif
170
171 /*
172 * kmem_bufctl_t:
173 *
174 * Bufctl's are used for linking objs within a slab
175 * linked offsets.
176 *
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 */
189
190 typedef unsigned int kmem_bufctl_t;
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
195
196 /*
197 * struct slab_rcu
198 *
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
206 *
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
209 */
210 struct slab_rcu {
211 struct rcu_head head;
212 struct kmem_cache *cachep;
213 void *addr;
214 };
215
216 /*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223 struct slab {
224 union {
225 struct {
226 struct list_head list;
227 unsigned long colouroff;
228 void *s_mem; /* including colour offset */
229 unsigned int inuse; /* num of objs active in slab */
230 kmem_bufctl_t free;
231 unsigned short nodeid;
232 };
233 struct slab_rcu __slab_cover_slab_rcu;
234 };
235 };
236
237 /*
238 * struct array_cache
239 *
240 * Purpose:
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
244 *
245 * The limit is stored in the per-cpu structure to reduce the data cache
246 * footprint.
247 *
248 */
249 struct array_cache {
250 unsigned int avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int touched;
254 spinlock_t lock;
255 void *entry[]; /*
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
258 * the entries.
259 */
260 };
261
262 /*
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
265 */
266 #define BOOT_CPUCACHE_ENTRIES 1
267 struct arraycache_init {
268 struct array_cache cache;
269 void *entries[BOOT_CPUCACHE_ENTRIES];
270 };
271
272 /*
273 * The slab lists for all objects.
274 */
275 struct kmem_list3 {
276 struct list_head slabs_partial; /* partial list first, better asm code */
277 struct list_head slabs_full;
278 struct list_head slabs_free;
279 unsigned long free_objects;
280 unsigned int free_limit;
281 unsigned int colour_next; /* Per-node cache coloring */
282 spinlock_t list_lock;
283 struct array_cache *shared; /* shared per node */
284 struct array_cache **alien; /* on other nodes */
285 unsigned long next_reap; /* updated without locking */
286 int free_touched; /* updated without locking */
287 };
288
289 /*
290 * Need this for bootstrapping a per node allocator.
291 */
292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
294 #define CACHE_CACHE 0
295 #define SIZE_AC MAX_NUMNODES
296 #define SIZE_L3 (2 * MAX_NUMNODES)
297
298 static int drain_freelist(struct kmem_cache *cache,
299 struct kmem_list3 *l3, int tofree);
300 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
301 int node);
302 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
303 static void cache_reap(struct work_struct *unused);
304
305 /*
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
308 */
309 static __always_inline int index_of(const size_t size)
310 {
311 extern void __bad_size(void);
312
313 if (__builtin_constant_p(size)) {
314 int i = 0;
315
316 #define CACHE(x) \
317 if (size <=x) \
318 return i; \
319 else \
320 i++;
321 #include <linux/kmalloc_sizes.h>
322 #undef CACHE
323 __bad_size();
324 } else
325 __bad_size();
326 return 0;
327 }
328
329 static int slab_early_init = 1;
330
331 #define INDEX_AC index_of(sizeof(struct arraycache_init))
332 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
333
334 static void kmem_list3_init(struct kmem_list3 *parent)
335 {
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
341 parent->colour_next = 0;
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345 }
346
347 #define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 } while (0)
352
353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
359
360 #define CFLGS_OFF_SLAB (0x80000000UL)
361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363 #define BATCHREFILL_LIMIT 16
364 /*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
367 *
368 * OTOH the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
370 */
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
373
374 #if STATS
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
380 #define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
385 #define STATS_INC_ERR(x) ((x)->errors++)
386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
389 #define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398 #else
399 #define STATS_INC_ACTIVE(x) do { } while (0)
400 #define STATS_DEC_ACTIVE(x) do { } while (0)
401 #define STATS_INC_ALLOCED(x) do { } while (0)
402 #define STATS_INC_GROWN(x) do { } while (0)
403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
404 #define STATS_SET_HIGH(x) do { } while (0)
405 #define STATS_INC_ERR(x) do { } while (0)
406 #define STATS_INC_NODEALLOCS(x) do { } while (0)
407 #define STATS_INC_NODEFREES(x) do { } while (0)
408 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
409 #define STATS_SET_FREEABLE(x, i) do { } while (0)
410 #define STATS_INC_ALLOCHIT(x) do { } while (0)
411 #define STATS_INC_ALLOCMISS(x) do { } while (0)
412 #define STATS_INC_FREEHIT(x) do { } while (0)
413 #define STATS_INC_FREEMISS(x) do { } while (0)
414 #endif
415
416 #if DEBUG
417
418 /*
419 * memory layout of objects:
420 * 0 : objp
421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
425 * redzone word.
426 * cachep->obj_offset: The real object.
427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
429 * [BYTES_PER_WORD long]
430 */
431 static int obj_offset(struct kmem_cache *cachep)
432 {
433 return cachep->obj_offset;
434 }
435
436 static int obj_size(struct kmem_cache *cachep)
437 {
438 return cachep->obj_size;
439 }
440
441 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
442 {
443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
444 return (unsigned long long*) (objp + obj_offset(cachep) -
445 sizeof(unsigned long long));
446 }
447
448 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
449 {
450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
451 if (cachep->flags & SLAB_STORE_USER)
452 return (unsigned long long *)(objp + cachep->buffer_size -
453 sizeof(unsigned long long) -
454 REDZONE_ALIGN);
455 return (unsigned long long *) (objp + cachep->buffer_size -
456 sizeof(unsigned long long));
457 }
458
459 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
462 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
463 }
464
465 #else
466
467 #define obj_offset(x) 0
468 #define obj_size(cachep) (cachep->buffer_size)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
472
473 #endif
474
475 #ifdef CONFIG_TRACING
476 size_t slab_buffer_size(struct kmem_cache *cachep)
477 {
478 return cachep->buffer_size;
479 }
480 EXPORT_SYMBOL(slab_buffer_size);
481 #endif
482
483 /*
484 * Do not go above this order unless 0 objects fit into the slab or
485 * overridden on the command line.
486 */
487 #define SLAB_MAX_ORDER_HI 1
488 #define SLAB_MAX_ORDER_LO 0
489 static int slab_max_order = SLAB_MAX_ORDER_LO;
490 static bool slab_max_order_set __initdata;
491
492 /*
493 * Functions for storing/retrieving the cachep and or slab from the page
494 * allocator. These are used to find the slab an obj belongs to. With kfree(),
495 * these are used to find the cache which an obj belongs to.
496 */
497 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
498 {
499 page->lru.next = (struct list_head *)cache;
500 }
501
502 static inline struct kmem_cache *page_get_cache(struct page *page)
503 {
504 page = compound_head(page);
505 BUG_ON(!PageSlab(page));
506 return (struct kmem_cache *)page->lru.next;
507 }
508
509 static inline void page_set_slab(struct page *page, struct slab *slab)
510 {
511 page->lru.prev = (struct list_head *)slab;
512 }
513
514 static inline struct slab *page_get_slab(struct page *page)
515 {
516 BUG_ON(!PageSlab(page));
517 return (struct slab *)page->lru.prev;
518 }
519
520 static inline struct kmem_cache *virt_to_cache(const void *obj)
521 {
522 struct page *page = virt_to_head_page(obj);
523 return page_get_cache(page);
524 }
525
526 static inline struct slab *virt_to_slab(const void *obj)
527 {
528 struct page *page = virt_to_head_page(obj);
529 return page_get_slab(page);
530 }
531
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534 {
535 return slab->s_mem + cache->buffer_size * idx;
536 }
537
538 /*
539 * We want to avoid an expensive divide : (offset / cache->buffer_size)
540 * Using the fact that buffer_size is a constant for a particular cache,
541 * we can replace (offset / cache->buffer_size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
546 {
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 }
550
551 /*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
559 };
560 EXPORT_SYMBOL(malloc_sizes);
561
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
566 };
567
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
573 };
574
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
579
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache cache_cache = {
583 .nodelists = cache_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .buffer_size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
589 };
590
591 #define BAD_ALIEN_MAGIC 0x01020304ul
592
593 /*
594 * chicken and egg problem: delay the per-cpu array allocation
595 * until the general caches are up.
596 */
597 static enum {
598 NONE,
599 PARTIAL_AC,
600 PARTIAL_L3,
601 EARLY,
602 LATE,
603 FULL
604 } g_cpucache_up;
605
606 /*
607 * used by boot code to determine if it can use slab based allocator
608 */
609 int slab_is_available(void)
610 {
611 return g_cpucache_up >= EARLY;
612 }
613
614 #ifdef CONFIG_LOCKDEP
615
616 /*
617 * Slab sometimes uses the kmalloc slabs to store the slab headers
618 * for other slabs "off slab".
619 * The locking for this is tricky in that it nests within the locks
620 * of all other slabs in a few places; to deal with this special
621 * locking we put on-slab caches into a separate lock-class.
622 *
623 * We set lock class for alien array caches which are up during init.
624 * The lock annotation will be lost if all cpus of a node goes down and
625 * then comes back up during hotplug
626 */
627 static struct lock_class_key on_slab_l3_key;
628 static struct lock_class_key on_slab_alc_key;
629
630 static struct lock_class_key debugobj_l3_key;
631 static struct lock_class_key debugobj_alc_key;
632
633 static void slab_set_lock_classes(struct kmem_cache *cachep,
634 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
635 int q)
636 {
637 struct array_cache **alc;
638 struct kmem_list3 *l3;
639 int r;
640
641 l3 = cachep->nodelists[q];
642 if (!l3)
643 return;
644
645 lockdep_set_class(&l3->list_lock, l3_key);
646 alc = l3->alien;
647 /*
648 * FIXME: This check for BAD_ALIEN_MAGIC
649 * should go away when common slab code is taught to
650 * work even without alien caches.
651 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
652 * for alloc_alien_cache,
653 */
654 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
655 return;
656 for_each_node(r) {
657 if (alc[r])
658 lockdep_set_class(&alc[r]->lock, alc_key);
659 }
660 }
661
662 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
663 {
664 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
665 }
666
667 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
668 {
669 int node;
670
671 for_each_online_node(node)
672 slab_set_debugobj_lock_classes_node(cachep, node);
673 }
674
675 static void init_node_lock_keys(int q)
676 {
677 struct cache_sizes *s = malloc_sizes;
678
679 if (g_cpucache_up < LATE)
680 return;
681
682 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
683 struct kmem_list3 *l3;
684
685 l3 = s->cs_cachep->nodelists[q];
686 if (!l3 || OFF_SLAB(s->cs_cachep))
687 continue;
688
689 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
690 &on_slab_alc_key, q);
691 }
692 }
693
694 static inline void init_lock_keys(void)
695 {
696 int node;
697
698 for_each_node(node)
699 init_node_lock_keys(node);
700 }
701 #else
702 static void init_node_lock_keys(int q)
703 {
704 }
705
706 static inline void init_lock_keys(void)
707 {
708 }
709
710 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
711 {
712 }
713
714 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
715 {
716 }
717 #endif
718
719 /*
720 * Guard access to the cache-chain.
721 */
722 static DEFINE_MUTEX(cache_chain_mutex);
723 static struct list_head cache_chain;
724
725 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
726
727 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
728 {
729 return cachep->array[smp_processor_id()];
730 }
731
732 static inline struct kmem_cache *__find_general_cachep(size_t size,
733 gfp_t gfpflags)
734 {
735 struct cache_sizes *csizep = malloc_sizes;
736
737 #if DEBUG
738 /* This happens if someone tries to call
739 * kmem_cache_create(), or __kmalloc(), before
740 * the generic caches are initialized.
741 */
742 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
743 #endif
744 if (!size)
745 return ZERO_SIZE_PTR;
746
747 while (size > csizep->cs_size)
748 csizep++;
749
750 /*
751 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
752 * has cs_{dma,}cachep==NULL. Thus no special case
753 * for large kmalloc calls required.
754 */
755 #ifdef CONFIG_ZONE_DMA
756 if (unlikely(gfpflags & GFP_DMA))
757 return csizep->cs_dmacachep;
758 #endif
759 return csizep->cs_cachep;
760 }
761
762 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
763 {
764 return __find_general_cachep(size, gfpflags);
765 }
766
767 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
768 {
769 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
770 }
771
772 /*
773 * Calculate the number of objects and left-over bytes for a given buffer size.
774 */
775 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
776 size_t align, int flags, size_t *left_over,
777 unsigned int *num)
778 {
779 int nr_objs;
780 size_t mgmt_size;
781 size_t slab_size = PAGE_SIZE << gfporder;
782
783 /*
784 * The slab management structure can be either off the slab or
785 * on it. For the latter case, the memory allocated for a
786 * slab is used for:
787 *
788 * - The struct slab
789 * - One kmem_bufctl_t for each object
790 * - Padding to respect alignment of @align
791 * - @buffer_size bytes for each object
792 *
793 * If the slab management structure is off the slab, then the
794 * alignment will already be calculated into the size. Because
795 * the slabs are all pages aligned, the objects will be at the
796 * correct alignment when allocated.
797 */
798 if (flags & CFLGS_OFF_SLAB) {
799 mgmt_size = 0;
800 nr_objs = slab_size / buffer_size;
801
802 if (nr_objs > SLAB_LIMIT)
803 nr_objs = SLAB_LIMIT;
804 } else {
805 /*
806 * Ignore padding for the initial guess. The padding
807 * is at most @align-1 bytes, and @buffer_size is at
808 * least @align. In the worst case, this result will
809 * be one greater than the number of objects that fit
810 * into the memory allocation when taking the padding
811 * into account.
812 */
813 nr_objs = (slab_size - sizeof(struct slab)) /
814 (buffer_size + sizeof(kmem_bufctl_t));
815
816 /*
817 * This calculated number will be either the right
818 * amount, or one greater than what we want.
819 */
820 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
821 > slab_size)
822 nr_objs--;
823
824 if (nr_objs > SLAB_LIMIT)
825 nr_objs = SLAB_LIMIT;
826
827 mgmt_size = slab_mgmt_size(nr_objs, align);
828 }
829 *num = nr_objs;
830 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
831 }
832
833 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
834
835 static void __slab_error(const char *function, struct kmem_cache *cachep,
836 char *msg)
837 {
838 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
839 function, cachep->name, msg);
840 dump_stack();
841 }
842
843 /*
844 * By default on NUMA we use alien caches to stage the freeing of
845 * objects allocated from other nodes. This causes massive memory
846 * inefficiencies when using fake NUMA setup to split memory into a
847 * large number of small nodes, so it can be disabled on the command
848 * line
849 */
850
851 static int use_alien_caches __read_mostly = 1;
852 static int __init noaliencache_setup(char *s)
853 {
854 use_alien_caches = 0;
855 return 1;
856 }
857 __setup("noaliencache", noaliencache_setup);
858
859 static int __init slab_max_order_setup(char *str)
860 {
861 get_option(&str, &slab_max_order);
862 slab_max_order = slab_max_order < 0 ? 0 :
863 min(slab_max_order, MAX_ORDER - 1);
864 slab_max_order_set = true;
865
866 return 1;
867 }
868 __setup("slab_max_order=", slab_max_order_setup);
869
870 #ifdef CONFIG_NUMA
871 /*
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
876 */
877 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
878
879 static void init_reap_node(int cpu)
880 {
881 int node;
882
883 node = next_node(cpu_to_mem(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
885 node = first_node(node_online_map);
886
887 per_cpu(slab_reap_node, cpu) = node;
888 }
889
890 static void next_reap_node(void)
891 {
892 int node = __this_cpu_read(slab_reap_node);
893
894 node = next_node(node, node_online_map);
895 if (unlikely(node >= MAX_NUMNODES))
896 node = first_node(node_online_map);
897 __this_cpu_write(slab_reap_node, node);
898 }
899
900 #else
901 #define init_reap_node(cpu) do { } while (0)
902 #define next_reap_node(void) do { } while (0)
903 #endif
904
905 /*
906 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
907 * via the workqueue/eventd.
908 * Add the CPU number into the expiration time to minimize the possibility of
909 * the CPUs getting into lockstep and contending for the global cache chain
910 * lock.
911 */
912 static void __cpuinit start_cpu_timer(int cpu)
913 {
914 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
915
916 /*
917 * When this gets called from do_initcalls via cpucache_init(),
918 * init_workqueues() has already run, so keventd will be setup
919 * at that time.
920 */
921 if (keventd_up() && reap_work->work.func == NULL) {
922 init_reap_node(cpu);
923 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
924 schedule_delayed_work_on(cpu, reap_work,
925 __round_jiffies_relative(HZ, cpu));
926 }
927 }
928
929 static struct array_cache *alloc_arraycache(int node, int entries,
930 int batchcount, gfp_t gfp)
931 {
932 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
933 struct array_cache *nc = NULL;
934
935 nc = kmalloc_node(memsize, gfp, node);
936 /*
937 * The array_cache structures contain pointers to free object.
938 * However, when such objects are allocated or transferred to another
939 * cache the pointers are not cleared and they could be counted as
940 * valid references during a kmemleak scan. Therefore, kmemleak must
941 * not scan such objects.
942 */
943 kmemleak_no_scan(nc);
944 if (nc) {
945 nc->avail = 0;
946 nc->limit = entries;
947 nc->batchcount = batchcount;
948 nc->touched = 0;
949 spin_lock_init(&nc->lock);
950 }
951 return nc;
952 }
953
954 /*
955 * Transfer objects in one arraycache to another.
956 * Locking must be handled by the caller.
957 *
958 * Return the number of entries transferred.
959 */
960 static int transfer_objects(struct array_cache *to,
961 struct array_cache *from, unsigned int max)
962 {
963 /* Figure out how many entries to transfer */
964 int nr = min3(from->avail, max, to->limit - to->avail);
965
966 if (!nr)
967 return 0;
968
969 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
970 sizeof(void *) *nr);
971
972 from->avail -= nr;
973 to->avail += nr;
974 return nr;
975 }
976
977 #ifndef CONFIG_NUMA
978
979 #define drain_alien_cache(cachep, alien) do { } while (0)
980 #define reap_alien(cachep, l3) do { } while (0)
981
982 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
983 {
984 return (struct array_cache **)BAD_ALIEN_MAGIC;
985 }
986
987 static inline void free_alien_cache(struct array_cache **ac_ptr)
988 {
989 }
990
991 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
992 {
993 return 0;
994 }
995
996 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
997 gfp_t flags)
998 {
999 return NULL;
1000 }
1001
1002 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1003 gfp_t flags, int nodeid)
1004 {
1005 return NULL;
1006 }
1007
1008 #else /* CONFIG_NUMA */
1009
1010 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1011 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1012
1013 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1014 {
1015 struct array_cache **ac_ptr;
1016 int memsize = sizeof(void *) * nr_node_ids;
1017 int i;
1018
1019 if (limit > 1)
1020 limit = 12;
1021 ac_ptr = kzalloc_node(memsize, gfp, node);
1022 if (ac_ptr) {
1023 for_each_node(i) {
1024 if (i == node || !node_online(i))
1025 continue;
1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1027 if (!ac_ptr[i]) {
1028 for (i--; i >= 0; i--)
1029 kfree(ac_ptr[i]);
1030 kfree(ac_ptr);
1031 return NULL;
1032 }
1033 }
1034 }
1035 return ac_ptr;
1036 }
1037
1038 static void free_alien_cache(struct array_cache **ac_ptr)
1039 {
1040 int i;
1041
1042 if (!ac_ptr)
1043 return;
1044 for_each_node(i)
1045 kfree(ac_ptr[i]);
1046 kfree(ac_ptr);
1047 }
1048
1049 static void __drain_alien_cache(struct kmem_cache *cachep,
1050 struct array_cache *ac, int node)
1051 {
1052 struct kmem_list3 *rl3 = cachep->nodelists[node];
1053
1054 if (ac->avail) {
1055 spin_lock(&rl3->list_lock);
1056 /*
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1060 */
1061 if (rl3->shared)
1062 transfer_objects(rl3->shared, ac, ac->limit);
1063
1064 free_block(cachep, ac->entry, ac->avail, node);
1065 ac->avail = 0;
1066 spin_unlock(&rl3->list_lock);
1067 }
1068 }
1069
1070 /*
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1072 */
1073 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1074 {
1075 int node = __this_cpu_read(slab_reap_node);
1076
1077 if (l3->alien) {
1078 struct array_cache *ac = l3->alien[node];
1079
1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081 __drain_alien_cache(cachep, ac, node);
1082 spin_unlock_irq(&ac->lock);
1083 }
1084 }
1085 }
1086
1087 static void drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache **alien)
1089 {
1090 int i = 0;
1091 struct array_cache *ac;
1092 unsigned long flags;
1093
1094 for_each_online_node(i) {
1095 ac = alien[i];
1096 if (ac) {
1097 spin_lock_irqsave(&ac->lock, flags);
1098 __drain_alien_cache(cachep, ac, i);
1099 spin_unlock_irqrestore(&ac->lock, flags);
1100 }
1101 }
1102 }
1103
1104 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1105 {
1106 struct slab *slabp = virt_to_slab(objp);
1107 int nodeid = slabp->nodeid;
1108 struct kmem_list3 *l3;
1109 struct array_cache *alien = NULL;
1110 int node;
1111
1112 node = numa_mem_id();
1113
1114 /*
1115 * Make sure we are not freeing a object from another node to the array
1116 * cache on this cpu.
1117 */
1118 if (likely(slabp->nodeid == node))
1119 return 0;
1120
1121 l3 = cachep->nodelists[node];
1122 STATS_INC_NODEFREES(cachep);
1123 if (l3->alien && l3->alien[nodeid]) {
1124 alien = l3->alien[nodeid];
1125 spin_lock(&alien->lock);
1126 if (unlikely(alien->avail == alien->limit)) {
1127 STATS_INC_ACOVERFLOW(cachep);
1128 __drain_alien_cache(cachep, alien, nodeid);
1129 }
1130 alien->entry[alien->avail++] = objp;
1131 spin_unlock(&alien->lock);
1132 } else {
1133 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1134 free_block(cachep, &objp, 1, nodeid);
1135 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1136 }
1137 return 1;
1138 }
1139 #endif
1140
1141 /*
1142 * Allocates and initializes nodelists for a node on each slab cache, used for
1143 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1144 * will be allocated off-node since memory is not yet online for the new node.
1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1146 * already in use.
1147 *
1148 * Must hold cache_chain_mutex.
1149 */
1150 static int init_cache_nodelists_node(int node)
1151 {
1152 struct kmem_cache *cachep;
1153 struct kmem_list3 *l3;
1154 const int memsize = sizeof(struct kmem_list3);
1155
1156 list_for_each_entry(cachep, &cache_chain, next) {
1157 /*
1158 * Set up the size64 kmemlist for cpu before we can
1159 * begin anything. Make sure some other cpu on this
1160 * node has not already allocated this
1161 */
1162 if (!cachep->nodelists[node]) {
1163 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1164 if (!l3)
1165 return -ENOMEM;
1166 kmem_list3_init(l3);
1167 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1168 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1169
1170 /*
1171 * The l3s don't come and go as CPUs come and
1172 * go. cache_chain_mutex is sufficient
1173 * protection here.
1174 */
1175 cachep->nodelists[node] = l3;
1176 }
1177
1178 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1179 cachep->nodelists[node]->free_limit =
1180 (1 + nr_cpus_node(node)) *
1181 cachep->batchcount + cachep->num;
1182 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1183 }
1184 return 0;
1185 }
1186
1187 static void __cpuinit cpuup_canceled(long cpu)
1188 {
1189 struct kmem_cache *cachep;
1190 struct kmem_list3 *l3 = NULL;
1191 int node = cpu_to_mem(cpu);
1192 const struct cpumask *mask = cpumask_of_node(node);
1193
1194 list_for_each_entry(cachep, &cache_chain, next) {
1195 struct array_cache *nc;
1196 struct array_cache *shared;
1197 struct array_cache **alien;
1198
1199 /* cpu is dead; no one can alloc from it. */
1200 nc = cachep->array[cpu];
1201 cachep->array[cpu] = NULL;
1202 l3 = cachep->nodelists[node];
1203
1204 if (!l3)
1205 goto free_array_cache;
1206
1207 spin_lock_irq(&l3->list_lock);
1208
1209 /* Free limit for this kmem_list3 */
1210 l3->free_limit -= cachep->batchcount;
1211 if (nc)
1212 free_block(cachep, nc->entry, nc->avail, node);
1213
1214 if (!cpumask_empty(mask)) {
1215 spin_unlock_irq(&l3->list_lock);
1216 goto free_array_cache;
1217 }
1218
1219 shared = l3->shared;
1220 if (shared) {
1221 free_block(cachep, shared->entry,
1222 shared->avail, node);
1223 l3->shared = NULL;
1224 }
1225
1226 alien = l3->alien;
1227 l3->alien = NULL;
1228
1229 spin_unlock_irq(&l3->list_lock);
1230
1231 kfree(shared);
1232 if (alien) {
1233 drain_alien_cache(cachep, alien);
1234 free_alien_cache(alien);
1235 }
1236 free_array_cache:
1237 kfree(nc);
1238 }
1239 /*
1240 * In the previous loop, all the objects were freed to
1241 * the respective cache's slabs, now we can go ahead and
1242 * shrink each nodelist to its limit.
1243 */
1244 list_for_each_entry(cachep, &cache_chain, next) {
1245 l3 = cachep->nodelists[node];
1246 if (!l3)
1247 continue;
1248 drain_freelist(cachep, l3, l3->free_objects);
1249 }
1250 }
1251
1252 static int __cpuinit cpuup_prepare(long cpu)
1253 {
1254 struct kmem_cache *cachep;
1255 struct kmem_list3 *l3 = NULL;
1256 int node = cpu_to_mem(cpu);
1257 int err;
1258
1259 /*
1260 * We need to do this right in the beginning since
1261 * alloc_arraycache's are going to use this list.
1262 * kmalloc_node allows us to add the slab to the right
1263 * kmem_list3 and not this cpu's kmem_list3
1264 */
1265 err = init_cache_nodelists_node(node);
1266 if (err < 0)
1267 goto bad;
1268
1269 /*
1270 * Now we can go ahead with allocating the shared arrays and
1271 * array caches
1272 */
1273 list_for_each_entry(cachep, &cache_chain, next) {
1274 struct array_cache *nc;
1275 struct array_cache *shared = NULL;
1276 struct array_cache **alien = NULL;
1277
1278 nc = alloc_arraycache(node, cachep->limit,
1279 cachep->batchcount, GFP_KERNEL);
1280 if (!nc)
1281 goto bad;
1282 if (cachep->shared) {
1283 shared = alloc_arraycache(node,
1284 cachep->shared * cachep->batchcount,
1285 0xbaadf00d, GFP_KERNEL);
1286 if (!shared) {
1287 kfree(nc);
1288 goto bad;
1289 }
1290 }
1291 if (use_alien_caches) {
1292 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1293 if (!alien) {
1294 kfree(shared);
1295 kfree(nc);
1296 goto bad;
1297 }
1298 }
1299 cachep->array[cpu] = nc;
1300 l3 = cachep->nodelists[node];
1301 BUG_ON(!l3);
1302
1303 spin_lock_irq(&l3->list_lock);
1304 if (!l3->shared) {
1305 /*
1306 * We are serialised from CPU_DEAD or
1307 * CPU_UP_CANCELLED by the cpucontrol lock
1308 */
1309 l3->shared = shared;
1310 shared = NULL;
1311 }
1312 #ifdef CONFIG_NUMA
1313 if (!l3->alien) {
1314 l3->alien = alien;
1315 alien = NULL;
1316 }
1317 #endif
1318 spin_unlock_irq(&l3->list_lock);
1319 kfree(shared);
1320 free_alien_cache(alien);
1321 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1322 slab_set_debugobj_lock_classes_node(cachep, node);
1323 }
1324 init_node_lock_keys(node);
1325
1326 return 0;
1327 bad:
1328 cpuup_canceled(cpu);
1329 return -ENOMEM;
1330 }
1331
1332 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1333 unsigned long action, void *hcpu)
1334 {
1335 long cpu = (long)hcpu;
1336 int err = 0;
1337
1338 switch (action) {
1339 case CPU_UP_PREPARE:
1340 case CPU_UP_PREPARE_FROZEN:
1341 mutex_lock(&cache_chain_mutex);
1342 err = cpuup_prepare(cpu);
1343 mutex_unlock(&cache_chain_mutex);
1344 break;
1345 case CPU_ONLINE:
1346 case CPU_ONLINE_FROZEN:
1347 start_cpu_timer(cpu);
1348 break;
1349 #ifdef CONFIG_HOTPLUG_CPU
1350 case CPU_DOWN_PREPARE:
1351 case CPU_DOWN_PREPARE_FROZEN:
1352 /*
1353 * Shutdown cache reaper. Note that the cache_chain_mutex is
1354 * held so that if cache_reap() is invoked it cannot do
1355 * anything expensive but will only modify reap_work
1356 * and reschedule the timer.
1357 */
1358 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1359 /* Now the cache_reaper is guaranteed to be not running. */
1360 per_cpu(slab_reap_work, cpu).work.func = NULL;
1361 break;
1362 case CPU_DOWN_FAILED:
1363 case CPU_DOWN_FAILED_FROZEN:
1364 start_cpu_timer(cpu);
1365 break;
1366 case CPU_DEAD:
1367 case CPU_DEAD_FROZEN:
1368 /*
1369 * Even if all the cpus of a node are down, we don't free the
1370 * kmem_list3 of any cache. This to avoid a race between
1371 * cpu_down, and a kmalloc allocation from another cpu for
1372 * memory from the node of the cpu going down. The list3
1373 * structure is usually allocated from kmem_cache_create() and
1374 * gets destroyed at kmem_cache_destroy().
1375 */
1376 /* fall through */
1377 #endif
1378 case CPU_UP_CANCELED:
1379 case CPU_UP_CANCELED_FROZEN:
1380 mutex_lock(&cache_chain_mutex);
1381 cpuup_canceled(cpu);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1384 }
1385 return notifier_from_errno(err);
1386 }
1387
1388 static struct notifier_block __cpuinitdata cpucache_notifier = {
1389 &cpuup_callback, NULL, 0
1390 };
1391
1392 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1393 /*
1394 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1395 * Returns -EBUSY if all objects cannot be drained so that the node is not
1396 * removed.
1397 *
1398 * Must hold cache_chain_mutex.
1399 */
1400 static int __meminit drain_cache_nodelists_node(int node)
1401 {
1402 struct kmem_cache *cachep;
1403 int ret = 0;
1404
1405 list_for_each_entry(cachep, &cache_chain, next) {
1406 struct kmem_list3 *l3;
1407
1408 l3 = cachep->nodelists[node];
1409 if (!l3)
1410 continue;
1411
1412 drain_freelist(cachep, l3, l3->free_objects);
1413
1414 if (!list_empty(&l3->slabs_full) ||
1415 !list_empty(&l3->slabs_partial)) {
1416 ret = -EBUSY;
1417 break;
1418 }
1419 }
1420 return ret;
1421 }
1422
1423 static int __meminit slab_memory_callback(struct notifier_block *self,
1424 unsigned long action, void *arg)
1425 {
1426 struct memory_notify *mnb = arg;
1427 int ret = 0;
1428 int nid;
1429
1430 nid = mnb->status_change_nid;
1431 if (nid < 0)
1432 goto out;
1433
1434 switch (action) {
1435 case MEM_GOING_ONLINE:
1436 mutex_lock(&cache_chain_mutex);
1437 ret = init_cache_nodelists_node(nid);
1438 mutex_unlock(&cache_chain_mutex);
1439 break;
1440 case MEM_GOING_OFFLINE:
1441 mutex_lock(&cache_chain_mutex);
1442 ret = drain_cache_nodelists_node(nid);
1443 mutex_unlock(&cache_chain_mutex);
1444 break;
1445 case MEM_ONLINE:
1446 case MEM_OFFLINE:
1447 case MEM_CANCEL_ONLINE:
1448 case MEM_CANCEL_OFFLINE:
1449 break;
1450 }
1451 out:
1452 return notifier_from_errno(ret);
1453 }
1454 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1455
1456 /*
1457 * swap the static kmem_list3 with kmalloced memory
1458 */
1459 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1460 int nodeid)
1461 {
1462 struct kmem_list3 *ptr;
1463
1464 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1465 BUG_ON(!ptr);
1466
1467 memcpy(ptr, list, sizeof(struct kmem_list3));
1468 /*
1469 * Do not assume that spinlocks can be initialized via memcpy:
1470 */
1471 spin_lock_init(&ptr->list_lock);
1472
1473 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1474 cachep->nodelists[nodeid] = ptr;
1475 }
1476
1477 /*
1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1479 * size of kmem_list3.
1480 */
1481 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1482 {
1483 int node;
1484
1485 for_each_online_node(node) {
1486 cachep->nodelists[node] = &initkmem_list3[index + node];
1487 cachep->nodelists[node]->next_reap = jiffies +
1488 REAPTIMEOUT_LIST3 +
1489 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1490 }
1491 }
1492
1493 /*
1494 * Initialisation. Called after the page allocator have been initialised and
1495 * before smp_init().
1496 */
1497 void __init kmem_cache_init(void)
1498 {
1499 size_t left_over;
1500 struct cache_sizes *sizes;
1501 struct cache_names *names;
1502 int i;
1503 int order;
1504 int node;
1505
1506 if (num_possible_nodes() == 1)
1507 use_alien_caches = 0;
1508
1509 for (i = 0; i < NUM_INIT_LISTS; i++) {
1510 kmem_list3_init(&initkmem_list3[i]);
1511 if (i < MAX_NUMNODES)
1512 cache_cache.nodelists[i] = NULL;
1513 }
1514 set_up_list3s(&cache_cache, CACHE_CACHE);
1515
1516 /*
1517 * Fragmentation resistance on low memory - only use bigger
1518 * page orders on machines with more than 32MB of memory if
1519 * not overridden on the command line.
1520 */
1521 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1522 slab_max_order = SLAB_MAX_ORDER_HI;
1523
1524 /* Bootstrap is tricky, because several objects are allocated
1525 * from caches that do not exist yet:
1526 * 1) initialize the cache_cache cache: it contains the struct
1527 * kmem_cache structures of all caches, except cache_cache itself:
1528 * cache_cache is statically allocated.
1529 * Initially an __init data area is used for the head array and the
1530 * kmem_list3 structures, it's replaced with a kmalloc allocated
1531 * array at the end of the bootstrap.
1532 * 2) Create the first kmalloc cache.
1533 * The struct kmem_cache for the new cache is allocated normally.
1534 * An __init data area is used for the head array.
1535 * 3) Create the remaining kmalloc caches, with minimally sized
1536 * head arrays.
1537 * 4) Replace the __init data head arrays for cache_cache and the first
1538 * kmalloc cache with kmalloc allocated arrays.
1539 * 5) Replace the __init data for kmem_list3 for cache_cache and
1540 * the other cache's with kmalloc allocated memory.
1541 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1542 */
1543
1544 node = numa_mem_id();
1545
1546 /* 1) create the cache_cache */
1547 INIT_LIST_HEAD(&cache_chain);
1548 list_add(&cache_cache.next, &cache_chain);
1549 cache_cache.colour_off = cache_line_size();
1550 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1551 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1552
1553 /*
1554 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1555 */
1556 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1557 nr_node_ids * sizeof(struct kmem_list3 *);
1558 #if DEBUG
1559 cache_cache.obj_size = cache_cache.buffer_size;
1560 #endif
1561 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1562 cache_line_size());
1563 cache_cache.reciprocal_buffer_size =
1564 reciprocal_value(cache_cache.buffer_size);
1565
1566 for (order = 0; order < MAX_ORDER; order++) {
1567 cache_estimate(order, cache_cache.buffer_size,
1568 cache_line_size(), 0, &left_over, &cache_cache.num);
1569 if (cache_cache.num)
1570 break;
1571 }
1572 BUG_ON(!cache_cache.num);
1573 cache_cache.gfporder = order;
1574 cache_cache.colour = left_over / cache_cache.colour_off;
1575 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1576 sizeof(struct slab), cache_line_size());
1577
1578 /* 2+3) create the kmalloc caches */
1579 sizes = malloc_sizes;
1580 names = cache_names;
1581
1582 /*
1583 * Initialize the caches that provide memory for the array cache and the
1584 * kmem_list3 structures first. Without this, further allocations will
1585 * bug.
1586 */
1587
1588 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1589 sizes[INDEX_AC].cs_size,
1590 ARCH_KMALLOC_MINALIGN,
1591 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1592 NULL);
1593
1594 if (INDEX_AC != INDEX_L3) {
1595 sizes[INDEX_L3].cs_cachep =
1596 kmem_cache_create(names[INDEX_L3].name,
1597 sizes[INDEX_L3].cs_size,
1598 ARCH_KMALLOC_MINALIGN,
1599 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1600 NULL);
1601 }
1602
1603 slab_early_init = 0;
1604
1605 while (sizes->cs_size != ULONG_MAX) {
1606 /*
1607 * For performance, all the general caches are L1 aligned.
1608 * This should be particularly beneficial on SMP boxes, as it
1609 * eliminates "false sharing".
1610 * Note for systems short on memory removing the alignment will
1611 * allow tighter packing of the smaller caches.
1612 */
1613 if (!sizes->cs_cachep) {
1614 sizes->cs_cachep = kmem_cache_create(names->name,
1615 sizes->cs_size,
1616 ARCH_KMALLOC_MINALIGN,
1617 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1618 NULL);
1619 }
1620 #ifdef CONFIG_ZONE_DMA
1621 sizes->cs_dmacachep = kmem_cache_create(
1622 names->name_dma,
1623 sizes->cs_size,
1624 ARCH_KMALLOC_MINALIGN,
1625 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1626 SLAB_PANIC,
1627 NULL);
1628 #endif
1629 sizes++;
1630 names++;
1631 }
1632 /* 4) Replace the bootstrap head arrays */
1633 {
1634 struct array_cache *ptr;
1635
1636 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1637
1638 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1639 memcpy(ptr, cpu_cache_get(&cache_cache),
1640 sizeof(struct arraycache_init));
1641 /*
1642 * Do not assume that spinlocks can be initialized via memcpy:
1643 */
1644 spin_lock_init(&ptr->lock);
1645
1646 cache_cache.array[smp_processor_id()] = ptr;
1647
1648 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1649
1650 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1651 != &initarray_generic.cache);
1652 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1653 sizeof(struct arraycache_init));
1654 /*
1655 * Do not assume that spinlocks can be initialized via memcpy:
1656 */
1657 spin_lock_init(&ptr->lock);
1658
1659 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1660 ptr;
1661 }
1662 /* 5) Replace the bootstrap kmem_list3's */
1663 {
1664 int nid;
1665
1666 for_each_online_node(nid) {
1667 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1668
1669 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1670 &initkmem_list3[SIZE_AC + nid], nid);
1671
1672 if (INDEX_AC != INDEX_L3) {
1673 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1674 &initkmem_list3[SIZE_L3 + nid], nid);
1675 }
1676 }
1677 }
1678
1679 g_cpucache_up = EARLY;
1680 }
1681
1682 void __init kmem_cache_init_late(void)
1683 {
1684 struct kmem_cache *cachep;
1685
1686 g_cpucache_up = LATE;
1687
1688 /* Annotate slab for lockdep -- annotate the malloc caches */
1689 init_lock_keys();
1690
1691 /* 6) resize the head arrays to their final sizes */
1692 mutex_lock(&cache_chain_mutex);
1693 list_for_each_entry(cachep, &cache_chain, next)
1694 if (enable_cpucache(cachep, GFP_NOWAIT))
1695 BUG();
1696 mutex_unlock(&cache_chain_mutex);
1697
1698 /* Done! */
1699 g_cpucache_up = FULL;
1700
1701 /*
1702 * Register a cpu startup notifier callback that initializes
1703 * cpu_cache_get for all new cpus
1704 */
1705 register_cpu_notifier(&cpucache_notifier);
1706
1707 #ifdef CONFIG_NUMA
1708 /*
1709 * Register a memory hotplug callback that initializes and frees
1710 * nodelists.
1711 */
1712 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1713 #endif
1714
1715 /*
1716 * The reap timers are started later, with a module init call: That part
1717 * of the kernel is not yet operational.
1718 */
1719 }
1720
1721 static int __init cpucache_init(void)
1722 {
1723 int cpu;
1724
1725 /*
1726 * Register the timers that return unneeded pages to the page allocator
1727 */
1728 for_each_online_cpu(cpu)
1729 start_cpu_timer(cpu);
1730 return 0;
1731 }
1732 __initcall(cpucache_init);
1733
1734 /*
1735 * Interface to system's page allocator. No need to hold the cache-lock.
1736 *
1737 * If we requested dmaable memory, we will get it. Even if we
1738 * did not request dmaable memory, we might get it, but that
1739 * would be relatively rare and ignorable.
1740 */
1741 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1742 {
1743 struct page *page;
1744 int nr_pages;
1745 int i;
1746
1747 #ifndef CONFIG_MMU
1748 /*
1749 * Nommu uses slab's for process anonymous memory allocations, and thus
1750 * requires __GFP_COMP to properly refcount higher order allocations
1751 */
1752 flags |= __GFP_COMP;
1753 #endif
1754
1755 flags |= cachep->gfpflags;
1756 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1757 flags |= __GFP_RECLAIMABLE;
1758
1759 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1760 if (!page)
1761 return NULL;
1762
1763 nr_pages = (1 << cachep->gfporder);
1764 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1765 add_zone_page_state(page_zone(page),
1766 NR_SLAB_RECLAIMABLE, nr_pages);
1767 else
1768 add_zone_page_state(page_zone(page),
1769 NR_SLAB_UNRECLAIMABLE, nr_pages);
1770 for (i = 0; i < nr_pages; i++)
1771 __SetPageSlab(page + i);
1772
1773 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1774 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1775
1776 if (cachep->ctor)
1777 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1778 else
1779 kmemcheck_mark_unallocated_pages(page, nr_pages);
1780 }
1781
1782 return page_address(page);
1783 }
1784
1785 /*
1786 * Interface to system's page release.
1787 */
1788 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1789 {
1790 unsigned long i = (1 << cachep->gfporder);
1791 struct page *page = virt_to_page(addr);
1792 const unsigned long nr_freed = i;
1793
1794 kmemcheck_free_shadow(page, cachep->gfporder);
1795
1796 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1797 sub_zone_page_state(page_zone(page),
1798 NR_SLAB_RECLAIMABLE, nr_freed);
1799 else
1800 sub_zone_page_state(page_zone(page),
1801 NR_SLAB_UNRECLAIMABLE, nr_freed);
1802 while (i--) {
1803 BUG_ON(!PageSlab(page));
1804 __ClearPageSlab(page);
1805 page++;
1806 }
1807 if (current->reclaim_state)
1808 current->reclaim_state->reclaimed_slab += nr_freed;
1809 free_pages((unsigned long)addr, cachep->gfporder);
1810 }
1811
1812 static void kmem_rcu_free(struct rcu_head *head)
1813 {
1814 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1815 struct kmem_cache *cachep = slab_rcu->cachep;
1816
1817 kmem_freepages(cachep, slab_rcu->addr);
1818 if (OFF_SLAB(cachep))
1819 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1820 }
1821
1822 #if DEBUG
1823
1824 #ifdef CONFIG_DEBUG_PAGEALLOC
1825 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1826 unsigned long caller)
1827 {
1828 int size = obj_size(cachep);
1829
1830 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1831
1832 if (size < 5 * sizeof(unsigned long))
1833 return;
1834
1835 *addr++ = 0x12345678;
1836 *addr++ = caller;
1837 *addr++ = smp_processor_id();
1838 size -= 3 * sizeof(unsigned long);
1839 {
1840 unsigned long *sptr = &caller;
1841 unsigned long svalue;
1842
1843 while (!kstack_end(sptr)) {
1844 svalue = *sptr++;
1845 if (kernel_text_address(svalue)) {
1846 *addr++ = svalue;
1847 size -= sizeof(unsigned long);
1848 if (size <= sizeof(unsigned long))
1849 break;
1850 }
1851 }
1852
1853 }
1854 *addr++ = 0x87654321;
1855 }
1856 #endif
1857
1858 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1859 {
1860 int size = obj_size(cachep);
1861 addr = &((char *)addr)[obj_offset(cachep)];
1862
1863 memset(addr, val, size);
1864 *(unsigned char *)(addr + size - 1) = POISON_END;
1865 }
1866
1867 static void dump_line(char *data, int offset, int limit)
1868 {
1869 int i;
1870 unsigned char error = 0;
1871 int bad_count = 0;
1872
1873 printk(KERN_ERR "%03x: ", offset);
1874 for (i = 0; i < limit; i++) {
1875 if (data[offset + i] != POISON_FREE) {
1876 error = data[offset + i];
1877 bad_count++;
1878 }
1879 }
1880 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1881 &data[offset], limit, 1);
1882
1883 if (bad_count == 1) {
1884 error ^= POISON_FREE;
1885 if (!(error & (error - 1))) {
1886 printk(KERN_ERR "Single bit error detected. Probably "
1887 "bad RAM.\n");
1888 #ifdef CONFIG_X86
1889 printk(KERN_ERR "Run memtest86+ or a similar memory "
1890 "test tool.\n");
1891 #else
1892 printk(KERN_ERR "Run a memory test tool.\n");
1893 #endif
1894 }
1895 }
1896 }
1897 #endif
1898
1899 #if DEBUG
1900
1901 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1902 {
1903 int i, size;
1904 char *realobj;
1905
1906 if (cachep->flags & SLAB_RED_ZONE) {
1907 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1908 *dbg_redzone1(cachep, objp),
1909 *dbg_redzone2(cachep, objp));
1910 }
1911
1912 if (cachep->flags & SLAB_STORE_USER) {
1913 printk(KERN_ERR "Last user: [<%p>]",
1914 *dbg_userword(cachep, objp));
1915 print_symbol("(%s)",
1916 (unsigned long)*dbg_userword(cachep, objp));
1917 printk("\n");
1918 }
1919 realobj = (char *)objp + obj_offset(cachep);
1920 size = obj_size(cachep);
1921 for (i = 0; i < size && lines; i += 16, lines--) {
1922 int limit;
1923 limit = 16;
1924 if (i + limit > size)
1925 limit = size - i;
1926 dump_line(realobj, i, limit);
1927 }
1928 }
1929
1930 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1931 {
1932 char *realobj;
1933 int size, i;
1934 int lines = 0;
1935
1936 realobj = (char *)objp + obj_offset(cachep);
1937 size = obj_size(cachep);
1938
1939 for (i = 0; i < size; i++) {
1940 char exp = POISON_FREE;
1941 if (i == size - 1)
1942 exp = POISON_END;
1943 if (realobj[i] != exp) {
1944 int limit;
1945 /* Mismatch ! */
1946 /* Print header */
1947 if (lines == 0) {
1948 printk(KERN_ERR
1949 "Slab corruption (%s): %s start=%p, len=%d\n",
1950 print_tainted(), cachep->name, realobj, size);
1951 print_objinfo(cachep, objp, 0);
1952 }
1953 /* Hexdump the affected line */
1954 i = (i / 16) * 16;
1955 limit = 16;
1956 if (i + limit > size)
1957 limit = size - i;
1958 dump_line(realobj, i, limit);
1959 i += 16;
1960 lines++;
1961 /* Limit to 5 lines */
1962 if (lines > 5)
1963 break;
1964 }
1965 }
1966 if (lines != 0) {
1967 /* Print some data about the neighboring objects, if they
1968 * exist:
1969 */
1970 struct slab *slabp = virt_to_slab(objp);
1971 unsigned int objnr;
1972
1973 objnr = obj_to_index(cachep, slabp, objp);
1974 if (objnr) {
1975 objp = index_to_obj(cachep, slabp, objnr - 1);
1976 realobj = (char *)objp + obj_offset(cachep);
1977 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1978 realobj, size);
1979 print_objinfo(cachep, objp, 2);
1980 }
1981 if (objnr + 1 < cachep->num) {
1982 objp = index_to_obj(cachep, slabp, objnr + 1);
1983 realobj = (char *)objp + obj_offset(cachep);
1984 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1985 realobj, size);
1986 print_objinfo(cachep, objp, 2);
1987 }
1988 }
1989 }
1990 #endif
1991
1992 #if DEBUG
1993 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1994 {
1995 int i;
1996 for (i = 0; i < cachep->num; i++) {
1997 void *objp = index_to_obj(cachep, slabp, i);
1998
1999 if (cachep->flags & SLAB_POISON) {
2000 #ifdef CONFIG_DEBUG_PAGEALLOC
2001 if (cachep->buffer_size % PAGE_SIZE == 0 &&
2002 OFF_SLAB(cachep))
2003 kernel_map_pages(virt_to_page(objp),
2004 cachep->buffer_size / PAGE_SIZE, 1);
2005 else
2006 check_poison_obj(cachep, objp);
2007 #else
2008 check_poison_obj(cachep, objp);
2009 #endif
2010 }
2011 if (cachep->flags & SLAB_RED_ZONE) {
2012 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2013 slab_error(cachep, "start of a freed object "
2014 "was overwritten");
2015 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2016 slab_error(cachep, "end of a freed object "
2017 "was overwritten");
2018 }
2019 }
2020 }
2021 #else
2022 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2023 {
2024 }
2025 #endif
2026
2027 /**
2028 * slab_destroy - destroy and release all objects in a slab
2029 * @cachep: cache pointer being destroyed
2030 * @slabp: slab pointer being destroyed
2031 *
2032 * Destroy all the objs in a slab, and release the mem back to the system.
2033 * Before calling the slab must have been unlinked from the cache. The
2034 * cache-lock is not held/needed.
2035 */
2036 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2037 {
2038 void *addr = slabp->s_mem - slabp->colouroff;
2039
2040 slab_destroy_debugcheck(cachep, slabp);
2041 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2042 struct slab_rcu *slab_rcu;
2043
2044 slab_rcu = (struct slab_rcu *)slabp;
2045 slab_rcu->cachep = cachep;
2046 slab_rcu->addr = addr;
2047 call_rcu(&slab_rcu->head, kmem_rcu_free);
2048 } else {
2049 kmem_freepages(cachep, addr);
2050 if (OFF_SLAB(cachep))
2051 kmem_cache_free(cachep->slabp_cache, slabp);
2052 }
2053 }
2054
2055 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2056 {
2057 int i;
2058 struct kmem_list3 *l3;
2059
2060 for_each_online_cpu(i)
2061 kfree(cachep->array[i]);
2062
2063 /* NUMA: free the list3 structures */
2064 for_each_online_node(i) {
2065 l3 = cachep->nodelists[i];
2066 if (l3) {
2067 kfree(l3->shared);
2068 free_alien_cache(l3->alien);
2069 kfree(l3);
2070 }
2071 }
2072 kmem_cache_free(&cache_cache, cachep);
2073 }
2074
2075
2076 /**
2077 * calculate_slab_order - calculate size (page order) of slabs
2078 * @cachep: pointer to the cache that is being created
2079 * @size: size of objects to be created in this cache.
2080 * @align: required alignment for the objects.
2081 * @flags: slab allocation flags
2082 *
2083 * Also calculates the number of objects per slab.
2084 *
2085 * This could be made much more intelligent. For now, try to avoid using
2086 * high order pages for slabs. When the gfp() functions are more friendly
2087 * towards high-order requests, this should be changed.
2088 */
2089 static size_t calculate_slab_order(struct kmem_cache *cachep,
2090 size_t size, size_t align, unsigned long flags)
2091 {
2092 unsigned long offslab_limit;
2093 size_t left_over = 0;
2094 int gfporder;
2095
2096 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2097 unsigned int num;
2098 size_t remainder;
2099
2100 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2101 if (!num)
2102 continue;
2103
2104 if (flags & CFLGS_OFF_SLAB) {
2105 /*
2106 * Max number of objs-per-slab for caches which
2107 * use off-slab slabs. Needed to avoid a possible
2108 * looping condition in cache_grow().
2109 */
2110 offslab_limit = size - sizeof(struct slab);
2111 offslab_limit /= sizeof(kmem_bufctl_t);
2112
2113 if (num > offslab_limit)
2114 break;
2115 }
2116
2117 /* Found something acceptable - save it away */
2118 cachep->num = num;
2119 cachep->gfporder = gfporder;
2120 left_over = remainder;
2121
2122 /*
2123 * A VFS-reclaimable slab tends to have most allocations
2124 * as GFP_NOFS and we really don't want to have to be allocating
2125 * higher-order pages when we are unable to shrink dcache.
2126 */
2127 if (flags & SLAB_RECLAIM_ACCOUNT)
2128 break;
2129
2130 /*
2131 * Large number of objects is good, but very large slabs are
2132 * currently bad for the gfp()s.
2133 */
2134 if (gfporder >= slab_max_order)
2135 break;
2136
2137 /*
2138 * Acceptable internal fragmentation?
2139 */
2140 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2141 break;
2142 }
2143 return left_over;
2144 }
2145
2146 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2147 {
2148 if (g_cpucache_up == FULL)
2149 return enable_cpucache(cachep, gfp);
2150
2151 if (g_cpucache_up == NONE) {
2152 /*
2153 * Note: the first kmem_cache_create must create the cache
2154 * that's used by kmalloc(24), otherwise the creation of
2155 * further caches will BUG().
2156 */
2157 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2158
2159 /*
2160 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2161 * the first cache, then we need to set up all its list3s,
2162 * otherwise the creation of further caches will BUG().
2163 */
2164 set_up_list3s(cachep, SIZE_AC);
2165 if (INDEX_AC == INDEX_L3)
2166 g_cpucache_up = PARTIAL_L3;
2167 else
2168 g_cpucache_up = PARTIAL_AC;
2169 } else {
2170 cachep->array[smp_processor_id()] =
2171 kmalloc(sizeof(struct arraycache_init), gfp);
2172
2173 if (g_cpucache_up == PARTIAL_AC) {
2174 set_up_list3s(cachep, SIZE_L3);
2175 g_cpucache_up = PARTIAL_L3;
2176 } else {
2177 int node;
2178 for_each_online_node(node) {
2179 cachep->nodelists[node] =
2180 kmalloc_node(sizeof(struct kmem_list3),
2181 gfp, node);
2182 BUG_ON(!cachep->nodelists[node]);
2183 kmem_list3_init(cachep->nodelists[node]);
2184 }
2185 }
2186 }
2187 cachep->nodelists[numa_mem_id()]->next_reap =
2188 jiffies + REAPTIMEOUT_LIST3 +
2189 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2190
2191 cpu_cache_get(cachep)->avail = 0;
2192 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2193 cpu_cache_get(cachep)->batchcount = 1;
2194 cpu_cache_get(cachep)->touched = 0;
2195 cachep->batchcount = 1;
2196 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2197 return 0;
2198 }
2199
2200 /**
2201 * kmem_cache_create - Create a cache.
2202 * @name: A string which is used in /proc/slabinfo to identify this cache.
2203 * @size: The size of objects to be created in this cache.
2204 * @align: The required alignment for the objects.
2205 * @flags: SLAB flags
2206 * @ctor: A constructor for the objects.
2207 *
2208 * Returns a ptr to the cache on success, NULL on failure.
2209 * Cannot be called within a int, but can be interrupted.
2210 * The @ctor is run when new pages are allocated by the cache.
2211 *
2212 * @name must be valid until the cache is destroyed. This implies that
2213 * the module calling this has to destroy the cache before getting unloaded.
2214 *
2215 * The flags are
2216 *
2217 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2218 * to catch references to uninitialised memory.
2219 *
2220 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2221 * for buffer overruns.
2222 *
2223 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2224 * cacheline. This can be beneficial if you're counting cycles as closely
2225 * as davem.
2226 */
2227 struct kmem_cache *
2228 kmem_cache_create (const char *name, size_t size, size_t align,
2229 unsigned long flags, void (*ctor)(void *))
2230 {
2231 size_t left_over, slab_size, ralign;
2232 struct kmem_cache *cachep = NULL, *pc;
2233 gfp_t gfp;
2234
2235 /*
2236 * Sanity checks... these are all serious usage bugs.
2237 */
2238 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2239 size > KMALLOC_MAX_SIZE) {
2240 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2241 name);
2242 BUG();
2243 }
2244
2245 /*
2246 * We use cache_chain_mutex to ensure a consistent view of
2247 * cpu_online_mask as well. Please see cpuup_callback
2248 */
2249 if (slab_is_available()) {
2250 get_online_cpus();
2251 mutex_lock(&cache_chain_mutex);
2252 }
2253
2254 list_for_each_entry(pc, &cache_chain, next) {
2255 char tmp;
2256 int res;
2257
2258 /*
2259 * This happens when the module gets unloaded and doesn't
2260 * destroy its slab cache and no-one else reuses the vmalloc
2261 * area of the module. Print a warning.
2262 */
2263 res = probe_kernel_address(pc->name, tmp);
2264 if (res) {
2265 printk(KERN_ERR
2266 "SLAB: cache with size %d has lost its name\n",
2267 pc->buffer_size);
2268 continue;
2269 }
2270
2271 if (!strcmp(pc->name, name)) {
2272 printk(KERN_ERR
2273 "kmem_cache_create: duplicate cache %s\n", name);
2274 dump_stack();
2275 goto oops;
2276 }
2277 }
2278
2279 #if DEBUG
2280 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2281 #if FORCED_DEBUG
2282 /*
2283 * Enable redzoning and last user accounting, except for caches with
2284 * large objects, if the increased size would increase the object size
2285 * above the next power of two: caches with object sizes just above a
2286 * power of two have a significant amount of internal fragmentation.
2287 */
2288 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2289 2 * sizeof(unsigned long long)))
2290 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2291 if (!(flags & SLAB_DESTROY_BY_RCU))
2292 flags |= SLAB_POISON;
2293 #endif
2294 if (flags & SLAB_DESTROY_BY_RCU)
2295 BUG_ON(flags & SLAB_POISON);
2296 #endif
2297 /*
2298 * Always checks flags, a caller might be expecting debug support which
2299 * isn't available.
2300 */
2301 BUG_ON(flags & ~CREATE_MASK);
2302
2303 /*
2304 * Check that size is in terms of words. This is needed to avoid
2305 * unaligned accesses for some archs when redzoning is used, and makes
2306 * sure any on-slab bufctl's are also correctly aligned.
2307 */
2308 if (size & (BYTES_PER_WORD - 1)) {
2309 size += (BYTES_PER_WORD - 1);
2310 size &= ~(BYTES_PER_WORD - 1);
2311 }
2312
2313 /* calculate the final buffer alignment: */
2314
2315 /* 1) arch recommendation: can be overridden for debug */
2316 if (flags & SLAB_HWCACHE_ALIGN) {
2317 /*
2318 * Default alignment: as specified by the arch code. Except if
2319 * an object is really small, then squeeze multiple objects into
2320 * one cacheline.
2321 */
2322 ralign = cache_line_size();
2323 while (size <= ralign / 2)
2324 ralign /= 2;
2325 } else {
2326 ralign = BYTES_PER_WORD;
2327 }
2328
2329 /*
2330 * Redzoning and user store require word alignment or possibly larger.
2331 * Note this will be overridden by architecture or caller mandated
2332 * alignment if either is greater than BYTES_PER_WORD.
2333 */
2334 if (flags & SLAB_STORE_USER)
2335 ralign = BYTES_PER_WORD;
2336
2337 if (flags & SLAB_RED_ZONE) {
2338 ralign = REDZONE_ALIGN;
2339 /* If redzoning, ensure that the second redzone is suitably
2340 * aligned, by adjusting the object size accordingly. */
2341 size += REDZONE_ALIGN - 1;
2342 size &= ~(REDZONE_ALIGN - 1);
2343 }
2344
2345 /* 2) arch mandated alignment */
2346 if (ralign < ARCH_SLAB_MINALIGN) {
2347 ralign = ARCH_SLAB_MINALIGN;
2348 }
2349 /* 3) caller mandated alignment */
2350 if (ralign < align) {
2351 ralign = align;
2352 }
2353 /* disable debug if necessary */
2354 if (ralign > __alignof__(unsigned long long))
2355 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2356 /*
2357 * 4) Store it.
2358 */
2359 align = ralign;
2360
2361 if (slab_is_available())
2362 gfp = GFP_KERNEL;
2363 else
2364 gfp = GFP_NOWAIT;
2365
2366 /* Get cache's description obj. */
2367 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2368 if (!cachep)
2369 goto oops;
2370
2371 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2372 #if DEBUG
2373 cachep->obj_size = size;
2374
2375 /*
2376 * Both debugging options require word-alignment which is calculated
2377 * into align above.
2378 */
2379 if (flags & SLAB_RED_ZONE) {
2380 /* add space for red zone words */
2381 cachep->obj_offset += sizeof(unsigned long long);
2382 size += 2 * sizeof(unsigned long long);
2383 }
2384 if (flags & SLAB_STORE_USER) {
2385 /* user store requires one word storage behind the end of
2386 * the real object. But if the second red zone needs to be
2387 * aligned to 64 bits, we must allow that much space.
2388 */
2389 if (flags & SLAB_RED_ZONE)
2390 size += REDZONE_ALIGN;
2391 else
2392 size += BYTES_PER_WORD;
2393 }
2394 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2395 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2396 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2397 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2398 size = PAGE_SIZE;
2399 }
2400 #endif
2401 #endif
2402
2403 /*
2404 * Determine if the slab management is 'on' or 'off' slab.
2405 * (bootstrapping cannot cope with offslab caches so don't do
2406 * it too early on. Always use on-slab management when
2407 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2408 */
2409 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2410 !(flags & SLAB_NOLEAKTRACE))
2411 /*
2412 * Size is large, assume best to place the slab management obj
2413 * off-slab (should allow better packing of objs).
2414 */
2415 flags |= CFLGS_OFF_SLAB;
2416
2417 size = ALIGN(size, align);
2418
2419 left_over = calculate_slab_order(cachep, size, align, flags);
2420
2421 if (!cachep->num) {
2422 printk(KERN_ERR
2423 "kmem_cache_create: couldn't create cache %s.\n", name);
2424 kmem_cache_free(&cache_cache, cachep);
2425 cachep = NULL;
2426 goto oops;
2427 }
2428 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2429 + sizeof(struct slab), align);
2430
2431 /*
2432 * If the slab has been placed off-slab, and we have enough space then
2433 * move it on-slab. This is at the expense of any extra colouring.
2434 */
2435 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2436 flags &= ~CFLGS_OFF_SLAB;
2437 left_over -= slab_size;
2438 }
2439
2440 if (flags & CFLGS_OFF_SLAB) {
2441 /* really off slab. No need for manual alignment */
2442 slab_size =
2443 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2444
2445 #ifdef CONFIG_PAGE_POISONING
2446 /* If we're going to use the generic kernel_map_pages()
2447 * poisoning, then it's going to smash the contents of
2448 * the redzone and userword anyhow, so switch them off.
2449 */
2450 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2451 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2452 #endif
2453 }
2454
2455 cachep->colour_off = cache_line_size();
2456 /* Offset must be a multiple of the alignment. */
2457 if (cachep->colour_off < align)
2458 cachep->colour_off = align;
2459 cachep->colour = left_over / cachep->colour_off;
2460 cachep->slab_size = slab_size;
2461 cachep->flags = flags;
2462 cachep->gfpflags = 0;
2463 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2464 cachep->gfpflags |= GFP_DMA;
2465 cachep->buffer_size = size;
2466 cachep->reciprocal_buffer_size = reciprocal_value(size);
2467
2468 if (flags & CFLGS_OFF_SLAB) {
2469 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2470 /*
2471 * This is a possibility for one of the malloc_sizes caches.
2472 * But since we go off slab only for object size greater than
2473 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2474 * this should not happen at all.
2475 * But leave a BUG_ON for some lucky dude.
2476 */
2477 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2478 }
2479 cachep->ctor = ctor;
2480 cachep->name = name;
2481
2482 if (setup_cpu_cache(cachep, gfp)) {
2483 __kmem_cache_destroy(cachep);
2484 cachep = NULL;
2485 goto oops;
2486 }
2487
2488 if (flags & SLAB_DEBUG_OBJECTS) {
2489 /*
2490 * Would deadlock through slab_destroy()->call_rcu()->
2491 * debug_object_activate()->kmem_cache_alloc().
2492 */
2493 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2494
2495 slab_set_debugobj_lock_classes(cachep);
2496 }
2497
2498 /* cache setup completed, link it into the list */
2499 list_add(&cachep->next, &cache_chain);
2500 oops:
2501 if (!cachep && (flags & SLAB_PANIC))
2502 panic("kmem_cache_create(): failed to create slab `%s'\n",
2503 name);
2504 if (slab_is_available()) {
2505 mutex_unlock(&cache_chain_mutex);
2506 put_online_cpus();
2507 }
2508 return cachep;
2509 }
2510 EXPORT_SYMBOL(kmem_cache_create);
2511
2512 #if DEBUG
2513 static void check_irq_off(void)
2514 {
2515 BUG_ON(!irqs_disabled());
2516 }
2517
2518 static void check_irq_on(void)
2519 {
2520 BUG_ON(irqs_disabled());
2521 }
2522
2523 static void check_spinlock_acquired(struct kmem_cache *cachep)
2524 {
2525 #ifdef CONFIG_SMP
2526 check_irq_off();
2527 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2528 #endif
2529 }
2530
2531 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2532 {
2533 #ifdef CONFIG_SMP
2534 check_irq_off();
2535 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2536 #endif
2537 }
2538
2539 #else
2540 #define check_irq_off() do { } while(0)
2541 #define check_irq_on() do { } while(0)
2542 #define check_spinlock_acquired(x) do { } while(0)
2543 #define check_spinlock_acquired_node(x, y) do { } while(0)
2544 #endif
2545
2546 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2547 struct array_cache *ac,
2548 int force, int node);
2549
2550 static void do_drain(void *arg)
2551 {
2552 struct kmem_cache *cachep = arg;
2553 struct array_cache *ac;
2554 int node = numa_mem_id();
2555
2556 check_irq_off();
2557 ac = cpu_cache_get(cachep);
2558 spin_lock(&cachep->nodelists[node]->list_lock);
2559 free_block(cachep, ac->entry, ac->avail, node);
2560 spin_unlock(&cachep->nodelists[node]->list_lock);
2561 ac->avail = 0;
2562 }
2563
2564 static void drain_cpu_caches(struct kmem_cache *cachep)
2565 {
2566 struct kmem_list3 *l3;
2567 int node;
2568
2569 on_each_cpu(do_drain, cachep, 1);
2570 check_irq_on();
2571 for_each_online_node(node) {
2572 l3 = cachep->nodelists[node];
2573 if (l3 && l3->alien)
2574 drain_alien_cache(cachep, l3->alien);
2575 }
2576
2577 for_each_online_node(node) {
2578 l3 = cachep->nodelists[node];
2579 if (l3)
2580 drain_array(cachep, l3, l3->shared, 1, node);
2581 }
2582 }
2583
2584 /*
2585 * Remove slabs from the list of free slabs.
2586 * Specify the number of slabs to drain in tofree.
2587 *
2588 * Returns the actual number of slabs released.
2589 */
2590 static int drain_freelist(struct kmem_cache *cache,
2591 struct kmem_list3 *l3, int tofree)
2592 {
2593 struct list_head *p;
2594 int nr_freed;
2595 struct slab *slabp;
2596
2597 nr_freed = 0;
2598 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2599
2600 spin_lock_irq(&l3->list_lock);
2601 p = l3->slabs_free.prev;
2602 if (p == &l3->slabs_free) {
2603 spin_unlock_irq(&l3->list_lock);
2604 goto out;
2605 }
2606
2607 slabp = list_entry(p, struct slab, list);
2608 #if DEBUG
2609 BUG_ON(slabp->inuse);
2610 #endif
2611 list_del(&slabp->list);
2612 /*
2613 * Safe to drop the lock. The slab is no longer linked
2614 * to the cache.
2615 */
2616 l3->free_objects -= cache->num;
2617 spin_unlock_irq(&l3->list_lock);
2618 slab_destroy(cache, slabp);
2619 nr_freed++;
2620 }
2621 out:
2622 return nr_freed;
2623 }
2624
2625 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2626 static int __cache_shrink(struct kmem_cache *cachep)
2627 {
2628 int ret = 0, i = 0;
2629 struct kmem_list3 *l3;
2630
2631 drain_cpu_caches(cachep);
2632
2633 check_irq_on();
2634 for_each_online_node(i) {
2635 l3 = cachep->nodelists[i];
2636 if (!l3)
2637 continue;
2638
2639 drain_freelist(cachep, l3, l3->free_objects);
2640
2641 ret += !list_empty(&l3->slabs_full) ||
2642 !list_empty(&l3->slabs_partial);
2643 }
2644 return (ret ? 1 : 0);
2645 }
2646
2647 /**
2648 * kmem_cache_shrink - Shrink a cache.
2649 * @cachep: The cache to shrink.
2650 *
2651 * Releases as many slabs as possible for a cache.
2652 * To help debugging, a zero exit status indicates all slabs were released.
2653 */
2654 int kmem_cache_shrink(struct kmem_cache *cachep)
2655 {
2656 int ret;
2657 BUG_ON(!cachep || in_interrupt());
2658
2659 get_online_cpus();
2660 mutex_lock(&cache_chain_mutex);
2661 ret = __cache_shrink(cachep);
2662 mutex_unlock(&cache_chain_mutex);
2663 put_online_cpus();
2664 return ret;
2665 }
2666 EXPORT_SYMBOL(kmem_cache_shrink);
2667
2668 /**
2669 * kmem_cache_destroy - delete a cache
2670 * @cachep: the cache to destroy
2671 *
2672 * Remove a &struct kmem_cache object from the slab cache.
2673 *
2674 * It is expected this function will be called by a module when it is
2675 * unloaded. This will remove the cache completely, and avoid a duplicate
2676 * cache being allocated each time a module is loaded and unloaded, if the
2677 * module doesn't have persistent in-kernel storage across loads and unloads.
2678 *
2679 * The cache must be empty before calling this function.
2680 *
2681 * The caller must guarantee that no one will allocate memory from the cache
2682 * during the kmem_cache_destroy().
2683 */
2684 void kmem_cache_destroy(struct kmem_cache *cachep)
2685 {
2686 BUG_ON(!cachep || in_interrupt());
2687
2688 /* Find the cache in the chain of caches. */
2689 get_online_cpus();
2690 mutex_lock(&cache_chain_mutex);
2691 /*
2692 * the chain is never empty, cache_cache is never destroyed
2693 */
2694 list_del(&cachep->next);
2695 if (__cache_shrink(cachep)) {
2696 slab_error(cachep, "Can't free all objects");
2697 list_add(&cachep->next, &cache_chain);
2698 mutex_unlock(&cache_chain_mutex);
2699 put_online_cpus();
2700 return;
2701 }
2702
2703 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2704 rcu_barrier();
2705
2706 __kmem_cache_destroy(cachep);
2707 mutex_unlock(&cache_chain_mutex);
2708 put_online_cpus();
2709 }
2710 EXPORT_SYMBOL(kmem_cache_destroy);
2711
2712 /*
2713 * Get the memory for a slab management obj.
2714 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2715 * always come from malloc_sizes caches. The slab descriptor cannot
2716 * come from the same cache which is getting created because,
2717 * when we are searching for an appropriate cache for these
2718 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2719 * If we are creating a malloc_sizes cache here it would not be visible to
2720 * kmem_find_general_cachep till the initialization is complete.
2721 * Hence we cannot have slabp_cache same as the original cache.
2722 */
2723 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2724 int colour_off, gfp_t local_flags,
2725 int nodeid)
2726 {
2727 struct slab *slabp;
2728
2729 if (OFF_SLAB(cachep)) {
2730 /* Slab management obj is off-slab. */
2731 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2732 local_flags, nodeid);
2733 /*
2734 * If the first object in the slab is leaked (it's allocated
2735 * but no one has a reference to it), we want to make sure
2736 * kmemleak does not treat the ->s_mem pointer as a reference
2737 * to the object. Otherwise we will not report the leak.
2738 */
2739 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2740 local_flags);
2741 if (!slabp)
2742 return NULL;
2743 } else {
2744 slabp = objp + colour_off;
2745 colour_off += cachep->slab_size;
2746 }
2747 slabp->inuse = 0;
2748 slabp->colouroff = colour_off;
2749 slabp->s_mem = objp + colour_off;
2750 slabp->nodeid = nodeid;
2751 slabp->free = 0;
2752 return slabp;
2753 }
2754
2755 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2756 {
2757 return (kmem_bufctl_t *) (slabp + 1);
2758 }
2759
2760 static void cache_init_objs(struct kmem_cache *cachep,
2761 struct slab *slabp)
2762 {
2763 int i;
2764
2765 for (i = 0; i < cachep->num; i++) {
2766 void *objp = index_to_obj(cachep, slabp, i);
2767 #if DEBUG
2768 /* need to poison the objs? */
2769 if (cachep->flags & SLAB_POISON)
2770 poison_obj(cachep, objp, POISON_FREE);
2771 if (cachep->flags & SLAB_STORE_USER)
2772 *dbg_userword(cachep, objp) = NULL;
2773
2774 if (cachep->flags & SLAB_RED_ZONE) {
2775 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2776 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2777 }
2778 /*
2779 * Constructors are not allowed to allocate memory from the same
2780 * cache which they are a constructor for. Otherwise, deadlock.
2781 * They must also be threaded.
2782 */
2783 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2784 cachep->ctor(objp + obj_offset(cachep));
2785
2786 if (cachep->flags & SLAB_RED_ZONE) {
2787 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2788 slab_error(cachep, "constructor overwrote the"
2789 " end of an object");
2790 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2791 slab_error(cachep, "constructor overwrote the"
2792 " start of an object");
2793 }
2794 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2795 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2796 kernel_map_pages(virt_to_page(objp),
2797 cachep->buffer_size / PAGE_SIZE, 0);
2798 #else
2799 if (cachep->ctor)
2800 cachep->ctor(objp);
2801 #endif
2802 slab_bufctl(slabp)[i] = i + 1;
2803 }
2804 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2805 }
2806
2807 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2808 {
2809 if (CONFIG_ZONE_DMA_FLAG) {
2810 if (flags & GFP_DMA)
2811 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2812 else
2813 BUG_ON(cachep->gfpflags & GFP_DMA);
2814 }
2815 }
2816
2817 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2818 int nodeid)
2819 {
2820 void *objp = index_to_obj(cachep, slabp, slabp->free);
2821 kmem_bufctl_t next;
2822
2823 slabp->inuse++;
2824 next = slab_bufctl(slabp)[slabp->free];
2825 #if DEBUG
2826 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2827 WARN_ON(slabp->nodeid != nodeid);
2828 #endif
2829 slabp->free = next;
2830
2831 return objp;
2832 }
2833
2834 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2835 void *objp, int nodeid)
2836 {
2837 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2838
2839 #if DEBUG
2840 /* Verify that the slab belongs to the intended node */
2841 WARN_ON(slabp->nodeid != nodeid);
2842
2843 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2844 printk(KERN_ERR "slab: double free detected in cache "
2845 "'%s', objp %p\n", cachep->name, objp);
2846 BUG();
2847 }
2848 #endif
2849 slab_bufctl(slabp)[objnr] = slabp->free;
2850 slabp->free = objnr;
2851 slabp->inuse--;
2852 }
2853
2854 /*
2855 * Map pages beginning at addr to the given cache and slab. This is required
2856 * for the slab allocator to be able to lookup the cache and slab of a
2857 * virtual address for kfree, ksize, and slab debugging.
2858 */
2859 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2860 void *addr)
2861 {
2862 int nr_pages;
2863 struct page *page;
2864
2865 page = virt_to_page(addr);
2866
2867 nr_pages = 1;
2868 if (likely(!PageCompound(page)))
2869 nr_pages <<= cache->gfporder;
2870
2871 do {
2872 page_set_cache(page, cache);
2873 page_set_slab(page, slab);
2874 page++;
2875 } while (--nr_pages);
2876 }
2877
2878 /*
2879 * Grow (by 1) the number of slabs within a cache. This is called by
2880 * kmem_cache_alloc() when there are no active objs left in a cache.
2881 */
2882 static int cache_grow(struct kmem_cache *cachep,
2883 gfp_t flags, int nodeid, void *objp)
2884 {
2885 struct slab *slabp;
2886 size_t offset;
2887 gfp_t local_flags;
2888 struct kmem_list3 *l3;
2889
2890 /*
2891 * Be lazy and only check for valid flags here, keeping it out of the
2892 * critical path in kmem_cache_alloc().
2893 */
2894 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2895 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2896
2897 /* Take the l3 list lock to change the colour_next on this node */
2898 check_irq_off();
2899 l3 = cachep->nodelists[nodeid];
2900 spin_lock(&l3->list_lock);
2901
2902 /* Get colour for the slab, and cal the next value. */
2903 offset = l3->colour_next;
2904 l3->colour_next++;
2905 if (l3->colour_next >= cachep->colour)
2906 l3->colour_next = 0;
2907 spin_unlock(&l3->list_lock);
2908
2909 offset *= cachep->colour_off;
2910
2911 if (local_flags & __GFP_WAIT)
2912 local_irq_enable();
2913
2914 /*
2915 * The test for missing atomic flag is performed here, rather than
2916 * the more obvious place, simply to reduce the critical path length
2917 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2918 * will eventually be caught here (where it matters).
2919 */
2920 kmem_flagcheck(cachep, flags);
2921
2922 /*
2923 * Get mem for the objs. Attempt to allocate a physical page from
2924 * 'nodeid'.
2925 */
2926 if (!objp)
2927 objp = kmem_getpages(cachep, local_flags, nodeid);
2928 if (!objp)
2929 goto failed;
2930
2931 /* Get slab management. */
2932 slabp = alloc_slabmgmt(cachep, objp, offset,
2933 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2934 if (!slabp)
2935 goto opps1;
2936
2937 slab_map_pages(cachep, slabp, objp);
2938
2939 cache_init_objs(cachep, slabp);
2940
2941 if (local_flags & __GFP_WAIT)
2942 local_irq_disable();
2943 check_irq_off();
2944 spin_lock(&l3->list_lock);
2945
2946 /* Make slab active. */
2947 list_add_tail(&slabp->list, &(l3->slabs_free));
2948 STATS_INC_GROWN(cachep);
2949 l3->free_objects += cachep->num;
2950 spin_unlock(&l3->list_lock);
2951 return 1;
2952 opps1:
2953 kmem_freepages(cachep, objp);
2954 failed:
2955 if (local_flags & __GFP_WAIT)
2956 local_irq_disable();
2957 return 0;
2958 }
2959
2960 #if DEBUG
2961
2962 /*
2963 * Perform extra freeing checks:
2964 * - detect bad pointers.
2965 * - POISON/RED_ZONE checking
2966 */
2967 static void kfree_debugcheck(const void *objp)
2968 {
2969 if (!virt_addr_valid(objp)) {
2970 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2971 (unsigned long)objp);
2972 BUG();
2973 }
2974 }
2975
2976 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2977 {
2978 unsigned long long redzone1, redzone2;
2979
2980 redzone1 = *dbg_redzone1(cache, obj);
2981 redzone2 = *dbg_redzone2(cache, obj);
2982
2983 /*
2984 * Redzone is ok.
2985 */
2986 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2987 return;
2988
2989 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2990 slab_error(cache, "double free detected");
2991 else
2992 slab_error(cache, "memory outside object was overwritten");
2993
2994 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2995 obj, redzone1, redzone2);
2996 }
2997
2998 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2999 void *caller)
3000 {
3001 struct page *page;
3002 unsigned int objnr;
3003 struct slab *slabp;
3004
3005 BUG_ON(virt_to_cache(objp) != cachep);
3006
3007 objp -= obj_offset(cachep);
3008 kfree_debugcheck(objp);
3009 page = virt_to_head_page(objp);
3010
3011 slabp = page_get_slab(page);
3012
3013 if (cachep->flags & SLAB_RED_ZONE) {
3014 verify_redzone_free(cachep, objp);
3015 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3016 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3017 }
3018 if (cachep->flags & SLAB_STORE_USER)
3019 *dbg_userword(cachep, objp) = caller;
3020
3021 objnr = obj_to_index(cachep, slabp, objp);
3022
3023 BUG_ON(objnr >= cachep->num);
3024 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3025
3026 #ifdef CONFIG_DEBUG_SLAB_LEAK
3027 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3028 #endif
3029 if (cachep->flags & SLAB_POISON) {
3030 #ifdef CONFIG_DEBUG_PAGEALLOC
3031 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3032 store_stackinfo(cachep, objp, (unsigned long)caller);
3033 kernel_map_pages(virt_to_page(objp),
3034 cachep->buffer_size / PAGE_SIZE, 0);
3035 } else {
3036 poison_obj(cachep, objp, POISON_FREE);
3037 }
3038 #else
3039 poison_obj(cachep, objp, POISON_FREE);
3040 #endif
3041 }
3042 return objp;
3043 }
3044
3045 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3046 {
3047 kmem_bufctl_t i;
3048 int entries = 0;
3049
3050 /* Check slab's freelist to see if this obj is there. */
3051 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3052 entries++;
3053 if (entries > cachep->num || i >= cachep->num)
3054 goto bad;
3055 }
3056 if (entries != cachep->num - slabp->inuse) {
3057 bad:
3058 printk(KERN_ERR "slab: Internal list corruption detected in "
3059 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3060 cachep->name, cachep->num, slabp, slabp->inuse,
3061 print_tainted());
3062 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3063 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3064 1);
3065 BUG();
3066 }
3067 }
3068 #else
3069 #define kfree_debugcheck(x) do { } while(0)
3070 #define cache_free_debugcheck(x,objp,z) (objp)
3071 #define check_slabp(x,y) do { } while(0)
3072 #endif
3073
3074 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3075 {
3076 int batchcount;
3077 struct kmem_list3 *l3;
3078 struct array_cache *ac;
3079 int node;
3080
3081 retry:
3082 check_irq_off();
3083 node = numa_mem_id();
3084 ac = cpu_cache_get(cachep);
3085 batchcount = ac->batchcount;
3086 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3087 /*
3088 * If there was little recent activity on this cache, then
3089 * perform only a partial refill. Otherwise we could generate
3090 * refill bouncing.
3091 */
3092 batchcount = BATCHREFILL_LIMIT;
3093 }
3094 l3 = cachep->nodelists[node];
3095
3096 BUG_ON(ac->avail > 0 || !l3);
3097 spin_lock(&l3->list_lock);
3098
3099 /* See if we can refill from the shared array */
3100 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3101 l3->shared->touched = 1;
3102 goto alloc_done;
3103 }
3104
3105 while (batchcount > 0) {
3106 struct list_head *entry;
3107 struct slab *slabp;
3108 /* Get slab alloc is to come from. */
3109 entry = l3->slabs_partial.next;
3110 if (entry == &l3->slabs_partial) {
3111 l3->free_touched = 1;
3112 entry = l3->slabs_free.next;
3113 if (entry == &l3->slabs_free)
3114 goto must_grow;
3115 }
3116
3117 slabp = list_entry(entry, struct slab, list);
3118 check_slabp(cachep, slabp);
3119 check_spinlock_acquired(cachep);
3120
3121 /*
3122 * The slab was either on partial or free list so
3123 * there must be at least one object available for
3124 * allocation.
3125 */
3126 BUG_ON(slabp->inuse >= cachep->num);
3127
3128 while (slabp->inuse < cachep->num && batchcount--) {
3129 STATS_INC_ALLOCED(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3132
3133 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3134 node);
3135 }
3136 check_slabp(cachep, slabp);
3137
3138 /* move slabp to correct slabp list: */
3139 list_del(&slabp->list);
3140 if (slabp->free == BUFCTL_END)
3141 list_add(&slabp->list, &l3->slabs_full);
3142 else
3143 list_add(&slabp->list, &l3->slabs_partial);
3144 }
3145
3146 must_grow:
3147 l3->free_objects -= ac->avail;
3148 alloc_done:
3149 spin_unlock(&l3->list_lock);
3150
3151 if (unlikely(!ac->avail)) {
3152 int x;
3153 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3154
3155 /* cache_grow can reenable interrupts, then ac could change. */
3156 ac = cpu_cache_get(cachep);
3157 if (!x && ac->avail == 0) /* no objects in sight? abort */
3158 return NULL;
3159
3160 if (!ac->avail) /* objects refilled by interrupt? */
3161 goto retry;
3162 }
3163 ac->touched = 1;
3164 return ac->entry[--ac->avail];
3165 }
3166
3167 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3168 gfp_t flags)
3169 {
3170 might_sleep_if(flags & __GFP_WAIT);
3171 #if DEBUG
3172 kmem_flagcheck(cachep, flags);
3173 #endif
3174 }
3175
3176 #if DEBUG
3177 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3178 gfp_t flags, void *objp, void *caller)
3179 {
3180 if (!objp)
3181 return objp;
3182 if (cachep->flags & SLAB_POISON) {
3183 #ifdef CONFIG_DEBUG_PAGEALLOC
3184 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3185 kernel_map_pages(virt_to_page(objp),
3186 cachep->buffer_size / PAGE_SIZE, 1);
3187 else
3188 check_poison_obj(cachep, objp);
3189 #else
3190 check_poison_obj(cachep, objp);
3191 #endif
3192 poison_obj(cachep, objp, POISON_INUSE);
3193 }
3194 if (cachep->flags & SLAB_STORE_USER)
3195 *dbg_userword(cachep, objp) = caller;
3196
3197 if (cachep->flags & SLAB_RED_ZONE) {
3198 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3199 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3200 slab_error(cachep, "double free, or memory outside"
3201 " object was overwritten");
3202 printk(KERN_ERR
3203 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3204 objp, *dbg_redzone1(cachep, objp),
3205 *dbg_redzone2(cachep, objp));
3206 }
3207 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3208 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3209 }
3210 #ifdef CONFIG_DEBUG_SLAB_LEAK
3211 {
3212 struct slab *slabp;
3213 unsigned objnr;
3214
3215 slabp = page_get_slab(virt_to_head_page(objp));
3216 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3217 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3218 }
3219 #endif
3220 objp += obj_offset(cachep);
3221 if (cachep->ctor && cachep->flags & SLAB_POISON)
3222 cachep->ctor(objp);
3223 if (ARCH_SLAB_MINALIGN &&
3224 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3225 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3226 objp, (int)ARCH_SLAB_MINALIGN);
3227 }
3228 return objp;
3229 }
3230 #else
3231 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3232 #endif
3233
3234 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3235 {
3236 if (cachep == &cache_cache)
3237 return false;
3238
3239 return should_failslab(obj_size(cachep), flags, cachep->flags);
3240 }
3241
3242 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3243 {
3244 void *objp;
3245 struct array_cache *ac;
3246
3247 check_irq_off();
3248
3249 ac = cpu_cache_get(cachep);
3250 if (likely(ac->avail)) {
3251 STATS_INC_ALLOCHIT(cachep);
3252 ac->touched = 1;
3253 objp = ac->entry[--ac->avail];
3254 } else {
3255 STATS_INC_ALLOCMISS(cachep);
3256 objp = cache_alloc_refill(cachep, flags);
3257 /*
3258 * the 'ac' may be updated by cache_alloc_refill(),
3259 * and kmemleak_erase() requires its correct value.
3260 */
3261 ac = cpu_cache_get(cachep);
3262 }
3263 /*
3264 * To avoid a false negative, if an object that is in one of the
3265 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3266 * treat the array pointers as a reference to the object.
3267 */
3268 if (objp)
3269 kmemleak_erase(&ac->entry[ac->avail]);
3270 return objp;
3271 }
3272
3273 #ifdef CONFIG_NUMA
3274 /*
3275 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3276 *
3277 * If we are in_interrupt, then process context, including cpusets and
3278 * mempolicy, may not apply and should not be used for allocation policy.
3279 */
3280 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3281 {
3282 int nid_alloc, nid_here;
3283
3284 if (in_interrupt() || (flags & __GFP_THISNODE))
3285 return NULL;
3286 nid_alloc = nid_here = numa_mem_id();
3287 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3288 nid_alloc = cpuset_slab_spread_node();
3289 else if (current->mempolicy)
3290 nid_alloc = slab_node(current->mempolicy);
3291 if (nid_alloc != nid_here)
3292 return ____cache_alloc_node(cachep, flags, nid_alloc);
3293 return NULL;
3294 }
3295
3296 /*
3297 * Fallback function if there was no memory available and no objects on a
3298 * certain node and fall back is permitted. First we scan all the
3299 * available nodelists for available objects. If that fails then we
3300 * perform an allocation without specifying a node. This allows the page
3301 * allocator to do its reclaim / fallback magic. We then insert the
3302 * slab into the proper nodelist and then allocate from it.
3303 */
3304 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3305 {
3306 struct zonelist *zonelist;
3307 gfp_t local_flags;
3308 struct zoneref *z;
3309 struct zone *zone;
3310 enum zone_type high_zoneidx = gfp_zone(flags);
3311 void *obj = NULL;
3312 int nid;
3313 unsigned int cpuset_mems_cookie;
3314
3315 if (flags & __GFP_THISNODE)
3316 return NULL;
3317
3318 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3319
3320 retry_cpuset:
3321 cpuset_mems_cookie = get_mems_allowed();
3322 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3323
3324 retry:
3325 /*
3326 * Look through allowed nodes for objects available
3327 * from existing per node queues.
3328 */
3329 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3330 nid = zone_to_nid(zone);
3331
3332 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3333 cache->nodelists[nid] &&
3334 cache->nodelists[nid]->free_objects) {
3335 obj = ____cache_alloc_node(cache,
3336 flags | GFP_THISNODE, nid);
3337 if (obj)
3338 break;
3339 }
3340 }
3341
3342 if (!obj) {
3343 /*
3344 * This allocation will be performed within the constraints
3345 * of the current cpuset / memory policy requirements.
3346 * We may trigger various forms of reclaim on the allowed
3347 * set and go into memory reserves if necessary.
3348 */
3349 if (local_flags & __GFP_WAIT)
3350 local_irq_enable();
3351 kmem_flagcheck(cache, flags);
3352 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3353 if (local_flags & __GFP_WAIT)
3354 local_irq_disable();
3355 if (obj) {
3356 /*
3357 * Insert into the appropriate per node queues
3358 */
3359 nid = page_to_nid(virt_to_page(obj));
3360 if (cache_grow(cache, flags, nid, obj)) {
3361 obj = ____cache_alloc_node(cache,
3362 flags | GFP_THISNODE, nid);
3363 if (!obj)
3364 /*
3365 * Another processor may allocate the
3366 * objects in the slab since we are
3367 * not holding any locks.
3368 */
3369 goto retry;
3370 } else {
3371 /* cache_grow already freed obj */
3372 obj = NULL;
3373 }
3374 }
3375 }
3376
3377 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3378 goto retry_cpuset;
3379 return obj;
3380 }
3381
3382 /*
3383 * A interface to enable slab creation on nodeid
3384 */
3385 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3386 int nodeid)
3387 {
3388 struct list_head *entry;
3389 struct slab *slabp;
3390 struct kmem_list3 *l3;
3391 void *obj;
3392 int x;
3393
3394 l3 = cachep->nodelists[nodeid];
3395 BUG_ON(!l3);
3396
3397 retry:
3398 check_irq_off();
3399 spin_lock(&l3->list_lock);
3400 entry = l3->slabs_partial.next;
3401 if (entry == &l3->slabs_partial) {
3402 l3->free_touched = 1;
3403 entry = l3->slabs_free.next;
3404 if (entry == &l3->slabs_free)
3405 goto must_grow;
3406 }
3407
3408 slabp = list_entry(entry, struct slab, list);
3409 check_spinlock_acquired_node(cachep, nodeid);
3410 check_slabp(cachep, slabp);
3411
3412 STATS_INC_NODEALLOCS(cachep);
3413 STATS_INC_ACTIVE(cachep);
3414 STATS_SET_HIGH(cachep);
3415
3416 BUG_ON(slabp->inuse == cachep->num);
3417
3418 obj = slab_get_obj(cachep, slabp, nodeid);
3419 check_slabp(cachep, slabp);
3420 l3->free_objects--;
3421 /* move slabp to correct slabp list: */
3422 list_del(&slabp->list);
3423
3424 if (slabp->free == BUFCTL_END)
3425 list_add(&slabp->list, &l3->slabs_full);
3426 else
3427 list_add(&slabp->list, &l3->slabs_partial);
3428
3429 spin_unlock(&l3->list_lock);
3430 goto done;
3431
3432 must_grow:
3433 spin_unlock(&l3->list_lock);
3434 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3435 if (x)
3436 goto retry;
3437
3438 return fallback_alloc(cachep, flags);
3439
3440 done:
3441 return obj;
3442 }
3443
3444 /**
3445 * kmem_cache_alloc_node - Allocate an object on the specified node
3446 * @cachep: The cache to allocate from.
3447 * @flags: See kmalloc().
3448 * @nodeid: node number of the target node.
3449 * @caller: return address of caller, used for debug information
3450 *
3451 * Identical to kmem_cache_alloc but it will allocate memory on the given
3452 * node, which can improve the performance for cpu bound structures.
3453 *
3454 * Fallback to other node is possible if __GFP_THISNODE is not set.
3455 */
3456 static __always_inline void *
3457 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3458 void *caller)
3459 {
3460 unsigned long save_flags;
3461 void *ptr;
3462 int slab_node = numa_mem_id();
3463
3464 flags &= gfp_allowed_mask;
3465
3466 lockdep_trace_alloc(flags);
3467
3468 if (slab_should_failslab(cachep, flags))
3469 return NULL;
3470
3471 cache_alloc_debugcheck_before(cachep, flags);
3472 local_irq_save(save_flags);
3473
3474 if (nodeid == NUMA_NO_NODE)
3475 nodeid = slab_node;
3476
3477 if (unlikely(!cachep->nodelists[nodeid])) {
3478 /* Node not bootstrapped yet */
3479 ptr = fallback_alloc(cachep, flags);
3480 goto out;
3481 }
3482
3483 if (nodeid == slab_node) {
3484 /*
3485 * Use the locally cached objects if possible.
3486 * However ____cache_alloc does not allow fallback
3487 * to other nodes. It may fail while we still have
3488 * objects on other nodes available.
3489 */
3490 ptr = ____cache_alloc(cachep, flags);
3491 if (ptr)
3492 goto out;
3493 }
3494 /* ___cache_alloc_node can fall back to other nodes */
3495 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3496 out:
3497 local_irq_restore(save_flags);
3498 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3499 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3500 flags);
3501
3502 if (likely(ptr))
3503 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3504
3505 if (unlikely((flags & __GFP_ZERO) && ptr))
3506 memset(ptr, 0, obj_size(cachep));
3507
3508 return ptr;
3509 }
3510
3511 static __always_inline void *
3512 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3513 {
3514 void *objp;
3515
3516 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3517 objp = alternate_node_alloc(cache, flags);
3518 if (objp)
3519 goto out;
3520 }
3521 objp = ____cache_alloc(cache, flags);
3522
3523 /*
3524 * We may just have run out of memory on the local node.
3525 * ____cache_alloc_node() knows how to locate memory on other nodes
3526 */
3527 if (!objp)
3528 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3529
3530 out:
3531 return objp;
3532 }
3533 #else
3534
3535 static __always_inline void *
3536 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3537 {
3538 return ____cache_alloc(cachep, flags);
3539 }
3540
3541 #endif /* CONFIG_NUMA */
3542
3543 static __always_inline void *
3544 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3545 {
3546 unsigned long save_flags;
3547 void *objp;
3548
3549 flags &= gfp_allowed_mask;
3550
3551 lockdep_trace_alloc(flags);
3552
3553 if (slab_should_failslab(cachep, flags))
3554 return NULL;
3555
3556 cache_alloc_debugcheck_before(cachep, flags);
3557 local_irq_save(save_flags);
3558 objp = __do_cache_alloc(cachep, flags);
3559 local_irq_restore(save_flags);
3560 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3561 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3562 flags);
3563 prefetchw(objp);
3564
3565 if (likely(objp))
3566 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3567
3568 if (unlikely((flags & __GFP_ZERO) && objp))
3569 memset(objp, 0, obj_size(cachep));
3570
3571 return objp;
3572 }
3573
3574 /*
3575 * Caller needs to acquire correct kmem_list's list_lock
3576 */
3577 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3578 int node)
3579 {
3580 int i;
3581 struct kmem_list3 *l3;
3582
3583 for (i = 0; i < nr_objects; i++) {
3584 void *objp = objpp[i];
3585 struct slab *slabp;
3586
3587 slabp = virt_to_slab(objp);
3588 l3 = cachep->nodelists[node];
3589 list_del(&slabp->list);
3590 check_spinlock_acquired_node(cachep, node);
3591 check_slabp(cachep, slabp);
3592 slab_put_obj(cachep, slabp, objp, node);
3593 STATS_DEC_ACTIVE(cachep);
3594 l3->free_objects++;
3595 check_slabp(cachep, slabp);
3596
3597 /* fixup slab chains */
3598 if (slabp->inuse == 0) {
3599 if (l3->free_objects > l3->free_limit) {
3600 l3->free_objects -= cachep->num;
3601 /* No need to drop any previously held
3602 * lock here, even if we have a off-slab slab
3603 * descriptor it is guaranteed to come from
3604 * a different cache, refer to comments before
3605 * alloc_slabmgmt.
3606 */
3607 slab_destroy(cachep, slabp);
3608 } else {
3609 list_add(&slabp->list, &l3->slabs_free);
3610 }
3611 } else {
3612 /* Unconditionally move a slab to the end of the
3613 * partial list on free - maximum time for the
3614 * other objects to be freed, too.
3615 */
3616 list_add_tail(&slabp->list, &l3->slabs_partial);
3617 }
3618 }
3619 }
3620
3621 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3622 {
3623 int batchcount;
3624 struct kmem_list3 *l3;
3625 int node = numa_mem_id();
3626
3627 batchcount = ac->batchcount;
3628 #if DEBUG
3629 BUG_ON(!batchcount || batchcount > ac->avail);
3630 #endif
3631 check_irq_off();
3632 l3 = cachep->nodelists[node];
3633 spin_lock(&l3->list_lock);
3634 if (l3->shared) {
3635 struct array_cache *shared_array = l3->shared;
3636 int max = shared_array->limit - shared_array->avail;
3637 if (max) {
3638 if (batchcount > max)
3639 batchcount = max;
3640 memcpy(&(shared_array->entry[shared_array->avail]),
3641 ac->entry, sizeof(void *) * batchcount);
3642 shared_array->avail += batchcount;
3643 goto free_done;
3644 }
3645 }
3646
3647 free_block(cachep, ac->entry, batchcount, node);
3648 free_done:
3649 #if STATS
3650 {
3651 int i = 0;
3652 struct list_head *p;
3653
3654 p = l3->slabs_free.next;
3655 while (p != &(l3->slabs_free)) {
3656 struct slab *slabp;
3657
3658 slabp = list_entry(p, struct slab, list);
3659 BUG_ON(slabp->inuse);
3660
3661 i++;
3662 p = p->next;
3663 }
3664 STATS_SET_FREEABLE(cachep, i);
3665 }
3666 #endif
3667 spin_unlock(&l3->list_lock);
3668 ac->avail -= batchcount;
3669 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3670 }
3671
3672 /*
3673 * Release an obj back to its cache. If the obj has a constructed state, it must
3674 * be in this state _before_ it is released. Called with disabled ints.
3675 */
3676 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3677 void *caller)
3678 {
3679 struct array_cache *ac = cpu_cache_get(cachep);
3680
3681 check_irq_off();
3682 kmemleak_free_recursive(objp, cachep->flags);
3683 objp = cache_free_debugcheck(cachep, objp, caller);
3684
3685 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3686
3687 /*
3688 * Skip calling cache_free_alien() when the platform is not numa.
3689 * This will avoid cache misses that happen while accessing slabp (which
3690 * is per page memory reference) to get nodeid. Instead use a global
3691 * variable to skip the call, which is mostly likely to be present in
3692 * the cache.
3693 */
3694 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3695 return;
3696
3697 if (likely(ac->avail < ac->limit)) {
3698 STATS_INC_FREEHIT(cachep);
3699 ac->entry[ac->avail++] = objp;
3700 return;
3701 } else {
3702 STATS_INC_FREEMISS(cachep);
3703 cache_flusharray(cachep, ac);
3704 ac->entry[ac->avail++] = objp;
3705 }
3706 }
3707
3708 /**
3709 * kmem_cache_alloc - Allocate an object
3710 * @cachep: The cache to allocate from.
3711 * @flags: See kmalloc().
3712 *
3713 * Allocate an object from this cache. The flags are only relevant
3714 * if the cache has no available objects.
3715 */
3716 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3717 {
3718 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3719
3720 trace_kmem_cache_alloc(_RET_IP_, ret,
3721 obj_size(cachep), cachep->buffer_size, flags);
3722
3723 return ret;
3724 }
3725 EXPORT_SYMBOL(kmem_cache_alloc);
3726
3727 #ifdef CONFIG_TRACING
3728 void *
3729 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3730 {
3731 void *ret;
3732
3733 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3734
3735 trace_kmalloc(_RET_IP_, ret,
3736 size, slab_buffer_size(cachep), flags);
3737 return ret;
3738 }
3739 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3740 #endif
3741
3742 #ifdef CONFIG_NUMA
3743 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3744 {
3745 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3746 __builtin_return_address(0));
3747
3748 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3749 obj_size(cachep), cachep->buffer_size,
3750 flags, nodeid);
3751
3752 return ret;
3753 }
3754 EXPORT_SYMBOL(kmem_cache_alloc_node);
3755
3756 #ifdef CONFIG_TRACING
3757 void *kmem_cache_alloc_node_trace(size_t size,
3758 struct kmem_cache *cachep,
3759 gfp_t flags,
3760 int nodeid)
3761 {
3762 void *ret;
3763
3764 ret = __cache_alloc_node(cachep, flags, nodeid,
3765 __builtin_return_address(0));
3766 trace_kmalloc_node(_RET_IP_, ret,
3767 size, slab_buffer_size(cachep),
3768 flags, nodeid);
3769 return ret;
3770 }
3771 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3772 #endif
3773
3774 static __always_inline void *
3775 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3776 {
3777 struct kmem_cache *cachep;
3778
3779 cachep = kmem_find_general_cachep(size, flags);
3780 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3781 return cachep;
3782 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3783 }
3784
3785 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3786 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3787 {
3788 return __do_kmalloc_node(size, flags, node,
3789 __builtin_return_address(0));
3790 }
3791 EXPORT_SYMBOL(__kmalloc_node);
3792
3793 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3794 int node, unsigned long caller)
3795 {
3796 return __do_kmalloc_node(size, flags, node, (void *)caller);
3797 }
3798 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3799 #else
3800 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3801 {
3802 return __do_kmalloc_node(size, flags, node, NULL);
3803 }
3804 EXPORT_SYMBOL(__kmalloc_node);
3805 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3806 #endif /* CONFIG_NUMA */
3807
3808 /**
3809 * __do_kmalloc - allocate memory
3810 * @size: how many bytes of memory are required.
3811 * @flags: the type of memory to allocate (see kmalloc).
3812 * @caller: function caller for debug tracking of the caller
3813 */
3814 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3815 void *caller)
3816 {
3817 struct kmem_cache *cachep;
3818 void *ret;
3819
3820 /* If you want to save a few bytes .text space: replace
3821 * __ with kmem_.
3822 * Then kmalloc uses the uninlined functions instead of the inline
3823 * functions.
3824 */
3825 cachep = __find_general_cachep(size, flags);
3826 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3827 return cachep;
3828 ret = __cache_alloc(cachep, flags, caller);
3829
3830 trace_kmalloc((unsigned long) caller, ret,
3831 size, cachep->buffer_size, flags);
3832
3833 return ret;
3834 }
3835
3836
3837 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3838 void *__kmalloc(size_t size, gfp_t flags)
3839 {
3840 return __do_kmalloc(size, flags, __builtin_return_address(0));
3841 }
3842 EXPORT_SYMBOL(__kmalloc);
3843
3844 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3845 {
3846 return __do_kmalloc(size, flags, (void *)caller);
3847 }
3848 EXPORT_SYMBOL(__kmalloc_track_caller);
3849
3850 #else
3851 void *__kmalloc(size_t size, gfp_t flags)
3852 {
3853 return __do_kmalloc(size, flags, NULL);
3854 }
3855 EXPORT_SYMBOL(__kmalloc);
3856 #endif
3857
3858 /**
3859 * kmem_cache_free - Deallocate an object
3860 * @cachep: The cache the allocation was from.
3861 * @objp: The previously allocated object.
3862 *
3863 * Free an object which was previously allocated from this
3864 * cache.
3865 */
3866 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3867 {
3868 unsigned long flags;
3869
3870 local_irq_save(flags);
3871 debug_check_no_locks_freed(objp, obj_size(cachep));
3872 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3873 debug_check_no_obj_freed(objp, obj_size(cachep));
3874 __cache_free(cachep, objp, __builtin_return_address(0));
3875 local_irq_restore(flags);
3876
3877 trace_kmem_cache_free(_RET_IP_, objp);
3878 }
3879 EXPORT_SYMBOL(kmem_cache_free);
3880
3881 /**
3882 * kfree - free previously allocated memory
3883 * @objp: pointer returned by kmalloc.
3884 *
3885 * If @objp is NULL, no operation is performed.
3886 *
3887 * Don't free memory not originally allocated by kmalloc()
3888 * or you will run into trouble.
3889 */
3890 void kfree(const void *objp)
3891 {
3892 struct kmem_cache *c;
3893 unsigned long flags;
3894
3895 trace_kfree(_RET_IP_, objp);
3896
3897 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3898 return;
3899 local_irq_save(flags);
3900 kfree_debugcheck(objp);
3901 c = virt_to_cache(objp);
3902 debug_check_no_locks_freed(objp, obj_size(c));
3903 debug_check_no_obj_freed(objp, obj_size(c));
3904 __cache_free(c, (void *)objp, __builtin_return_address(0));
3905 local_irq_restore(flags);
3906 }
3907 EXPORT_SYMBOL(kfree);
3908
3909 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3910 {
3911 return obj_size(cachep);
3912 }
3913 EXPORT_SYMBOL(kmem_cache_size);
3914
3915 /*
3916 * This initializes kmem_list3 or resizes various caches for all nodes.
3917 */
3918 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3919 {
3920 int node;
3921 struct kmem_list3 *l3;
3922 struct array_cache *new_shared;
3923 struct array_cache **new_alien = NULL;
3924
3925 for_each_online_node(node) {
3926
3927 if (use_alien_caches) {
3928 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3929 if (!new_alien)
3930 goto fail;
3931 }
3932
3933 new_shared = NULL;
3934 if (cachep->shared) {
3935 new_shared = alloc_arraycache(node,
3936 cachep->shared*cachep->batchcount,
3937 0xbaadf00d, gfp);
3938 if (!new_shared) {
3939 free_alien_cache(new_alien);
3940 goto fail;
3941 }
3942 }
3943
3944 l3 = cachep->nodelists[node];
3945 if (l3) {
3946 struct array_cache *shared = l3->shared;
3947
3948 spin_lock_irq(&l3->list_lock);
3949
3950 if (shared)
3951 free_block(cachep, shared->entry,
3952 shared->avail, node);
3953
3954 l3->shared = new_shared;
3955 if (!l3->alien) {
3956 l3->alien = new_alien;
3957 new_alien = NULL;
3958 }
3959 l3->free_limit = (1 + nr_cpus_node(node)) *
3960 cachep->batchcount + cachep->num;
3961 spin_unlock_irq(&l3->list_lock);
3962 kfree(shared);
3963 free_alien_cache(new_alien);
3964 continue;
3965 }
3966 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3967 if (!l3) {
3968 free_alien_cache(new_alien);
3969 kfree(new_shared);
3970 goto fail;
3971 }
3972
3973 kmem_list3_init(l3);
3974 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3975 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3976 l3->shared = new_shared;
3977 l3->alien = new_alien;
3978 l3->free_limit = (1 + nr_cpus_node(node)) *
3979 cachep->batchcount + cachep->num;
3980 cachep->nodelists[node] = l3;
3981 }
3982 return 0;
3983
3984 fail:
3985 if (!cachep->next.next) {
3986 /* Cache is not active yet. Roll back what we did */
3987 node--;
3988 while (node >= 0) {
3989 if (cachep->nodelists[node]) {
3990 l3 = cachep->nodelists[node];
3991
3992 kfree(l3->shared);
3993 free_alien_cache(l3->alien);
3994 kfree(l3);
3995 cachep->nodelists[node] = NULL;
3996 }
3997 node--;
3998 }
3999 }
4000 return -ENOMEM;
4001 }
4002
4003 struct ccupdate_struct {
4004 struct kmem_cache *cachep;
4005 struct array_cache *new[0];
4006 };
4007
4008 static void do_ccupdate_local(void *info)
4009 {
4010 struct ccupdate_struct *new = info;
4011 struct array_cache *old;
4012
4013 check_irq_off();
4014 old = cpu_cache_get(new->cachep);
4015
4016 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4017 new->new[smp_processor_id()] = old;
4018 }
4019
4020 /* Always called with the cache_chain_mutex held */
4021 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4022 int batchcount, int shared, gfp_t gfp)
4023 {
4024 struct ccupdate_struct *new;
4025 int i;
4026
4027 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4028 gfp);
4029 if (!new)
4030 return -ENOMEM;
4031
4032 for_each_online_cpu(i) {
4033 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4034 batchcount, gfp);
4035 if (!new->new[i]) {
4036 for (i--; i >= 0; i--)
4037 kfree(new->new[i]);
4038 kfree(new);
4039 return -ENOMEM;
4040 }
4041 }
4042 new->cachep = cachep;
4043
4044 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4045
4046 check_irq_on();
4047 cachep->batchcount = batchcount;
4048 cachep->limit = limit;
4049 cachep->shared = shared;
4050
4051 for_each_online_cpu(i) {
4052 struct array_cache *ccold = new->new[i];
4053 if (!ccold)
4054 continue;
4055 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4056 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4057 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4058 kfree(ccold);
4059 }
4060 kfree(new);
4061 return alloc_kmemlist(cachep, gfp);
4062 }
4063
4064 /* Called with cache_chain_mutex held always */
4065 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4066 {
4067 int err;
4068 int limit, shared;
4069
4070 /*
4071 * The head array serves three purposes:
4072 * - create a LIFO ordering, i.e. return objects that are cache-warm
4073 * - reduce the number of spinlock operations.
4074 * - reduce the number of linked list operations on the slab and
4075 * bufctl chains: array operations are cheaper.
4076 * The numbers are guessed, we should auto-tune as described by
4077 * Bonwick.
4078 */
4079 if (cachep->buffer_size > 131072)
4080 limit = 1;
4081 else if (cachep->buffer_size > PAGE_SIZE)
4082 limit = 8;
4083 else if (cachep->buffer_size > 1024)
4084 limit = 24;
4085 else if (cachep->buffer_size > 256)
4086 limit = 54;
4087 else
4088 limit = 120;
4089
4090 /*
4091 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4092 * allocation behaviour: Most allocs on one cpu, most free operations
4093 * on another cpu. For these cases, an efficient object passing between
4094 * cpus is necessary. This is provided by a shared array. The array
4095 * replaces Bonwick's magazine layer.
4096 * On uniprocessor, it's functionally equivalent (but less efficient)
4097 * to a larger limit. Thus disabled by default.
4098 */
4099 shared = 0;
4100 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4101 shared = 8;
4102
4103 #if DEBUG
4104 /*
4105 * With debugging enabled, large batchcount lead to excessively long
4106 * periods with disabled local interrupts. Limit the batchcount
4107 */
4108 if (limit > 32)
4109 limit = 32;
4110 #endif
4111 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4112 if (err)
4113 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4114 cachep->name, -err);
4115 return err;
4116 }
4117
4118 /*
4119 * Drain an array if it contains any elements taking the l3 lock only if
4120 * necessary. Note that the l3 listlock also protects the array_cache
4121 * if drain_array() is used on the shared array.
4122 */
4123 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4124 struct array_cache *ac, int force, int node)
4125 {
4126 int tofree;
4127
4128 if (!ac || !ac->avail)
4129 return;
4130 if (ac->touched && !force) {
4131 ac->touched = 0;
4132 } else {
4133 spin_lock_irq(&l3->list_lock);
4134 if (ac->avail) {
4135 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4136 if (tofree > ac->avail)
4137 tofree = (ac->avail + 1) / 2;
4138 free_block(cachep, ac->entry, tofree, node);
4139 ac->avail -= tofree;
4140 memmove(ac->entry, &(ac->entry[tofree]),
4141 sizeof(void *) * ac->avail);
4142 }
4143 spin_unlock_irq(&l3->list_lock);
4144 }
4145 }
4146
4147 /**
4148 * cache_reap - Reclaim memory from caches.
4149 * @w: work descriptor
4150 *
4151 * Called from workqueue/eventd every few seconds.
4152 * Purpose:
4153 * - clear the per-cpu caches for this CPU.
4154 * - return freeable pages to the main free memory pool.
4155 *
4156 * If we cannot acquire the cache chain mutex then just give up - we'll try
4157 * again on the next iteration.
4158 */
4159 static void cache_reap(struct work_struct *w)
4160 {
4161 struct kmem_cache *searchp;
4162 struct kmem_list3 *l3;
4163 int node = numa_mem_id();
4164 struct delayed_work *work = to_delayed_work(w);
4165
4166 if (!mutex_trylock(&cache_chain_mutex))
4167 /* Give up. Setup the next iteration. */
4168 goto out;
4169
4170 list_for_each_entry(searchp, &cache_chain, next) {
4171 check_irq_on();
4172
4173 /*
4174 * We only take the l3 lock if absolutely necessary and we
4175 * have established with reasonable certainty that
4176 * we can do some work if the lock was obtained.
4177 */
4178 l3 = searchp->nodelists[node];
4179
4180 reap_alien(searchp, l3);
4181
4182 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4183
4184 /*
4185 * These are racy checks but it does not matter
4186 * if we skip one check or scan twice.
4187 */
4188 if (time_after(l3->next_reap, jiffies))
4189 goto next;
4190
4191 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4192
4193 drain_array(searchp, l3, l3->shared, 0, node);
4194
4195 if (l3->free_touched)
4196 l3->free_touched = 0;
4197 else {
4198 int freed;
4199
4200 freed = drain_freelist(searchp, l3, (l3->free_limit +
4201 5 * searchp->num - 1) / (5 * searchp->num));
4202 STATS_ADD_REAPED(searchp, freed);
4203 }
4204 next:
4205 cond_resched();
4206 }
4207 check_irq_on();
4208 mutex_unlock(&cache_chain_mutex);
4209 next_reap_node();
4210 out:
4211 /* Set up the next iteration */
4212 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4213 }
4214
4215 #ifdef CONFIG_SLABINFO
4216
4217 static void print_slabinfo_header(struct seq_file *m)
4218 {
4219 /*
4220 * Output format version, so at least we can change it
4221 * without _too_ many complaints.
4222 */
4223 #if STATS
4224 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4225 #else
4226 seq_puts(m, "slabinfo - version: 2.1\n");
4227 #endif
4228 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4229 "<objperslab> <pagesperslab>");
4230 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4231 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4232 #if STATS
4233 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4234 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4235 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4236 #endif
4237 seq_putc(m, '\n');
4238 }
4239
4240 static void *s_start(struct seq_file *m, loff_t *pos)
4241 {
4242 loff_t n = *pos;
4243
4244 mutex_lock(&cache_chain_mutex);
4245 if (!n)
4246 print_slabinfo_header(m);
4247
4248 return seq_list_start(&cache_chain, *pos);
4249 }
4250
4251 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4252 {
4253 return seq_list_next(p, &cache_chain, pos);
4254 }
4255
4256 static void s_stop(struct seq_file *m, void *p)
4257 {
4258 mutex_unlock(&cache_chain_mutex);
4259 }
4260
4261 static int s_show(struct seq_file *m, void *p)
4262 {
4263 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4264 struct slab *slabp;
4265 unsigned long active_objs;
4266 unsigned long num_objs;
4267 unsigned long active_slabs = 0;
4268 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4269 const char *name;
4270 char *error = NULL;
4271 int node;
4272 struct kmem_list3 *l3;
4273
4274 active_objs = 0;
4275 num_slabs = 0;
4276 for_each_online_node(node) {
4277 l3 = cachep->nodelists[node];
4278 if (!l3)
4279 continue;
4280
4281 check_irq_on();
4282 spin_lock_irq(&l3->list_lock);
4283
4284 list_for_each_entry(slabp, &l3->slabs_full, list) {
4285 if (slabp->inuse != cachep->num && !error)
4286 error = "slabs_full accounting error";
4287 active_objs += cachep->num;
4288 active_slabs++;
4289 }
4290 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4291 if (slabp->inuse == cachep->num && !error)
4292 error = "slabs_partial inuse accounting error";
4293 if (!slabp->inuse && !error)
4294 error = "slabs_partial/inuse accounting error";
4295 active_objs += slabp->inuse;
4296 active_slabs++;
4297 }
4298 list_for_each_entry(slabp, &l3->slabs_free, list) {
4299 if (slabp->inuse && !error)
4300 error = "slabs_free/inuse accounting error";
4301 num_slabs++;
4302 }
4303 free_objects += l3->free_objects;
4304 if (l3->shared)
4305 shared_avail += l3->shared->avail;
4306
4307 spin_unlock_irq(&l3->list_lock);
4308 }
4309 num_slabs += active_slabs;
4310 num_objs = num_slabs * cachep->num;
4311 if (num_objs - active_objs != free_objects && !error)
4312 error = "free_objects accounting error";
4313
4314 name = cachep->name;
4315 if (error)
4316 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4317
4318 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4319 name, active_objs, num_objs, cachep->buffer_size,
4320 cachep->num, (1 << cachep->gfporder));
4321 seq_printf(m, " : tunables %4u %4u %4u",
4322 cachep->limit, cachep->batchcount, cachep->shared);
4323 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4324 active_slabs, num_slabs, shared_avail);
4325 #if STATS
4326 { /* list3 stats */
4327 unsigned long high = cachep->high_mark;
4328 unsigned long allocs = cachep->num_allocations;
4329 unsigned long grown = cachep->grown;
4330 unsigned long reaped = cachep->reaped;
4331 unsigned long errors = cachep->errors;
4332 unsigned long max_freeable = cachep->max_freeable;
4333 unsigned long node_allocs = cachep->node_allocs;
4334 unsigned long node_frees = cachep->node_frees;
4335 unsigned long overflows = cachep->node_overflow;
4336
4337 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4338 "%4lu %4lu %4lu %4lu %4lu",
4339 allocs, high, grown,
4340 reaped, errors, max_freeable, node_allocs,
4341 node_frees, overflows);
4342 }
4343 /* cpu stats */
4344 {
4345 unsigned long allochit = atomic_read(&cachep->allochit);
4346 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4347 unsigned long freehit = atomic_read(&cachep->freehit);
4348 unsigned long freemiss = atomic_read(&cachep->freemiss);
4349
4350 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4351 allochit, allocmiss, freehit, freemiss);
4352 }
4353 #endif
4354 seq_putc(m, '\n');
4355 return 0;
4356 }
4357
4358 /*
4359 * slabinfo_op - iterator that generates /proc/slabinfo
4360 *
4361 * Output layout:
4362 * cache-name
4363 * num-active-objs
4364 * total-objs
4365 * object size
4366 * num-active-slabs
4367 * total-slabs
4368 * num-pages-per-slab
4369 * + further values on SMP and with statistics enabled
4370 */
4371
4372 static const struct seq_operations slabinfo_op = {
4373 .start = s_start,
4374 .next = s_next,
4375 .stop = s_stop,
4376 .show = s_show,
4377 };
4378
4379 #define MAX_SLABINFO_WRITE 128
4380 /**
4381 * slabinfo_write - Tuning for the slab allocator
4382 * @file: unused
4383 * @buffer: user buffer
4384 * @count: data length
4385 * @ppos: unused
4386 */
4387 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4388 size_t count, loff_t *ppos)
4389 {
4390 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4391 int limit, batchcount, shared, res;
4392 struct kmem_cache *cachep;
4393
4394 if (count > MAX_SLABINFO_WRITE)
4395 return -EINVAL;
4396 if (copy_from_user(&kbuf, buffer, count))
4397 return -EFAULT;
4398 kbuf[MAX_SLABINFO_WRITE] = '\0';
4399
4400 tmp = strchr(kbuf, ' ');
4401 if (!tmp)
4402 return -EINVAL;
4403 *tmp = '\0';
4404 tmp++;
4405 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4406 return -EINVAL;
4407
4408 /* Find the cache in the chain of caches. */
4409 mutex_lock(&cache_chain_mutex);
4410 res = -EINVAL;
4411 list_for_each_entry(cachep, &cache_chain, next) {
4412 if (!strcmp(cachep->name, kbuf)) {
4413 if (limit < 1 || batchcount < 1 ||
4414 batchcount > limit || shared < 0) {
4415 res = 0;
4416 } else {
4417 res = do_tune_cpucache(cachep, limit,
4418 batchcount, shared,
4419 GFP_KERNEL);
4420 }
4421 break;
4422 }
4423 }
4424 mutex_unlock(&cache_chain_mutex);
4425 if (res >= 0)
4426 res = count;
4427 return res;
4428 }
4429
4430 static int slabinfo_open(struct inode *inode, struct file *file)
4431 {
4432 return seq_open(file, &slabinfo_op);
4433 }
4434
4435 static const struct file_operations proc_slabinfo_operations = {
4436 .open = slabinfo_open,
4437 .read = seq_read,
4438 .write = slabinfo_write,
4439 .llseek = seq_lseek,
4440 .release = seq_release,
4441 };
4442
4443 #ifdef CONFIG_DEBUG_SLAB_LEAK
4444
4445 static void *leaks_start(struct seq_file *m, loff_t *pos)
4446 {
4447 mutex_lock(&cache_chain_mutex);
4448 return seq_list_start(&cache_chain, *pos);
4449 }
4450
4451 static inline int add_caller(unsigned long *n, unsigned long v)
4452 {
4453 unsigned long *p;
4454 int l;
4455 if (!v)
4456 return 1;
4457 l = n[1];
4458 p = n + 2;
4459 while (l) {
4460 int i = l/2;
4461 unsigned long *q = p + 2 * i;
4462 if (*q == v) {
4463 q[1]++;
4464 return 1;
4465 }
4466 if (*q > v) {
4467 l = i;
4468 } else {
4469 p = q + 2;
4470 l -= i + 1;
4471 }
4472 }
4473 if (++n[1] == n[0])
4474 return 0;
4475 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4476 p[0] = v;
4477 p[1] = 1;
4478 return 1;
4479 }
4480
4481 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4482 {
4483 void *p;
4484 int i;
4485 if (n[0] == n[1])
4486 return;
4487 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4488 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4489 continue;
4490 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4491 return;
4492 }
4493 }
4494
4495 static void show_symbol(struct seq_file *m, unsigned long address)
4496 {
4497 #ifdef CONFIG_KALLSYMS
4498 unsigned long offset, size;
4499 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4500
4501 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4502 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4503 if (modname[0])
4504 seq_printf(m, " [%s]", modname);
4505 return;
4506 }
4507 #endif
4508 seq_printf(m, "%p", (void *)address);
4509 }
4510
4511 static int leaks_show(struct seq_file *m, void *p)
4512 {
4513 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4514 struct slab *slabp;
4515 struct kmem_list3 *l3;
4516 const char *name;
4517 unsigned long *n = m->private;
4518 int node;
4519 int i;
4520
4521 if (!(cachep->flags & SLAB_STORE_USER))
4522 return 0;
4523 if (!(cachep->flags & SLAB_RED_ZONE))
4524 return 0;
4525
4526 /* OK, we can do it */
4527
4528 n[1] = 0;
4529
4530 for_each_online_node(node) {
4531 l3 = cachep->nodelists[node];
4532 if (!l3)
4533 continue;
4534
4535 check_irq_on();
4536 spin_lock_irq(&l3->list_lock);
4537
4538 list_for_each_entry(slabp, &l3->slabs_full, list)
4539 handle_slab(n, cachep, slabp);
4540 list_for_each_entry(slabp, &l3->slabs_partial, list)
4541 handle_slab(n, cachep, slabp);
4542 spin_unlock_irq(&l3->list_lock);
4543 }
4544 name = cachep->name;
4545 if (n[0] == n[1]) {
4546 /* Increase the buffer size */
4547 mutex_unlock(&cache_chain_mutex);
4548 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4549 if (!m->private) {
4550 /* Too bad, we are really out */
4551 m->private = n;
4552 mutex_lock(&cache_chain_mutex);
4553 return -ENOMEM;
4554 }
4555 *(unsigned long *)m->private = n[0] * 2;
4556 kfree(n);
4557 mutex_lock(&cache_chain_mutex);
4558 /* Now make sure this entry will be retried */
4559 m->count = m->size;
4560 return 0;
4561 }
4562 for (i = 0; i < n[1]; i++) {
4563 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4564 show_symbol(m, n[2*i+2]);
4565 seq_putc(m, '\n');
4566 }
4567
4568 return 0;
4569 }
4570
4571 static const struct seq_operations slabstats_op = {
4572 .start = leaks_start,
4573 .next = s_next,
4574 .stop = s_stop,
4575 .show = leaks_show,
4576 };
4577
4578 static int slabstats_open(struct inode *inode, struct file *file)
4579 {
4580 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4581 int ret = -ENOMEM;
4582 if (n) {
4583 ret = seq_open(file, &slabstats_op);
4584 if (!ret) {
4585 struct seq_file *m = file->private_data;
4586 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4587 m->private = n;
4588 n = NULL;
4589 }
4590 kfree(n);
4591 }
4592 return ret;
4593 }
4594
4595 static const struct file_operations proc_slabstats_operations = {
4596 .open = slabstats_open,
4597 .read = seq_read,
4598 .llseek = seq_lseek,
4599 .release = seq_release_private,
4600 };
4601 #endif
4602
4603 static int __init slab_proc_init(void)
4604 {
4605 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4606 #ifdef CONFIG_DEBUG_SLAB_LEAK
4607 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4608 #endif
4609 return 0;
4610 }
4611 module_init(slab_proc_init);
4612 #endif
4613
4614 /**
4615 * ksize - get the actual amount of memory allocated for a given object
4616 * @objp: Pointer to the object
4617 *
4618 * kmalloc may internally round up allocations and return more memory
4619 * than requested. ksize() can be used to determine the actual amount of
4620 * memory allocated. The caller may use this additional memory, even though
4621 * a smaller amount of memory was initially specified with the kmalloc call.
4622 * The caller must guarantee that objp points to a valid object previously
4623 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4624 * must not be freed during the duration of the call.
4625 */
4626 size_t ksize(const void *objp)
4627 {
4628 BUG_ON(!objp);
4629 if (unlikely(objp == ZERO_SIZE_PTR))
4630 return 0;
4631
4632 return obj_size(virt_to_cache(objp));
4633 }
4634 EXPORT_SYMBOL(ksize);